6 research outputs found

    The Expressive Power of CSP-Quantifiers

    Get PDF
    A generalized quantifier QK is called a CSP-quantifier if its defining class K consists of all structures that can be homomorphically mapped to a fixed finite template structure. For all positive integers n ≥ 2 and k, we define a pebble game that characterizes equivalence of structures with respect to the logic Lk∞ω(CSP+n ), where CSP+n is the union of the class Q1 of all unary quantifiers and the class CSPn of all CSP-quantifiers with template structures that have at most n elements. Using these games we prove that for every n ≥ 2 there exists a CSP-quantifier with template of size n + 1 which is not definable in Lω∞ω(CSP+n ). The proof of this result is based on a new variation of the well-known Cai-Fürer-Immerman construction.publishedVersionPeer reviewe

    Enhancing Fixed Point Logic with Cardinality Quantifiers

    Get PDF
    Let Q IPP be any quantifier such that FO(QIFP), first-order logic enhanced with Q IPP and its vectorizations, equals inductive fixed point logic, IFP in expressive power. It is known that for certain quantifiers Q, the equivalence FO(QIFP) ≡ IFP is no longer true if Q is added on both sides. Rather, we have FO (QIFP, Q) < IFP(Q) in such cases. We extend these results to a great variety of quantifiers, namely all unbounded simple cardinality quantifiers. Our argument also applies to partial fixed point logic, PFP. In order to establish an analogous result for least fixed point logic, LFP, we exhibit a general method to pass from arbitrary quantifiers to monotone quantifiers. Our proof shows that the three isomorphism problem is not definable in, infinitary logic extended with all monadic quantifiers and their vectorizations, where a finite bound is imposed to the number of variables as well as to the number of nested quantifiers in Q1. This strengthens a result of Etessami and Immerman by which tree isomorphism is not definable in TC + COUNTIN

    Capturing MSO with One Quantifier

    Get PDF
    International audienceWe construct a single Lindström quantifier Q such that FO(Q), the extension of first-order logic with Q has the same expressive power as monadic second-order logic on the class of binary trees (with distinct left and right successors) and also on unranked trees with a sibling order. This resolves a conjecture by ten Cate and Segoufin. The quantifier Q is a variation of a quantifier expressing the Boolean satisfiability problem

    Regular Representations of Uniform TC^0

    Full text link
    The circuit complexity class DLOGTIME-uniform AC^0 is known to be a modest subclass of DLOGTIME-uniform TC^0. The weakness of AC^0 is caused by the fact that AC^0 is not closed under restricting AC^0-computable queries into simple subsequences of the input. Analogously, in descriptive complexity, the logics corresponding to DLOGTIME-uniform AC^0 do not have the relativization property and hence they are not regular. This weakness of DLOGTIME-uniform AC^0 has been elaborated in the line of research on the Crane Beach Conjecture. The conjecture (which was refuted by Barrington, Immerman, Lautemann, Schweikardt and Th{\'e}rien) was that if a language L has a neutral letter, then L can be defined in first-order logic with the collection of all numerical built-in relations, if and only if L can be already defined in FO with order. In the first part of this article we consider logics in the range of AC^0 and TC^0. First we formulate a combinatorial criterion for a cardinality quantifier C_S implying that all languages in DLOGTIME-uniform TC^0 can be defined in FO(C_S). For instance, this criterion is satisfied by C_S if S is the range of some polynomial with positive integer coefficients of degree at least two. In the second part of the paper we first adapt the key properties of abstract logics to accommodate built-in relations. Then we define the regular interior R-int(L) and regular closure R-cl(L), of a logic L, and show that the Crane Beach Conjecture can be interpreted as a statement concerning the regular interior of first-order logic with built-in relations B. We show that if B={+}, or B contains only unary relations besides the order, then R-int(FO_B) collapses to FO with order. In contrast, our results imply that if B contains the order and the range of a polynomial of degree at least two, then R-cl(FO_B) includes all languages in DLOGTIME-uniform TC^0

    New Design and Analysis Techniques for Post-Quantum Cryptography

    Get PDF
    Due to the threat of scalable quantum computation breaking existing public-key cryptography, interest in post-quantum cryptography has exploded in the past decade. There are two key aspects to the mitigation of the quantum threat. The first is to have a complete understanding of the capabilities of a quantum enabled adversary and be able to predict the impact on the security of protocols. The second is to find suitable replacements for those protocols rendered insecure. In this thesis, we develop new techniques to help address these problems, in order to better prepare for the post-quantum era. Proofs in security models that consider quantum adversaries are notoriously more challenging compared to their classical analogues. The quantum random oracle model abstracts real world hash functions to a black box, but allows for superposition queries. This model is important as it often makes possible the reduction of the security of a protocol to the hardness of an underlying hard problem. We prove several results about the model itself. We provide upper and lower bounds on the ability of the adversary to find collisions in non-uniform functions in this model. We also compare the quantum random oracle model to the classical random oracle model and establish that a key aspect of their relationship to the standard model is unchanged. As well, we develop a way to model a new security property (dubbed quantum annoyingness) that considers the security of classical password-authenticated key exchange schemes in the presence of quantum adversaries, and prove the security of a recently standardized protocol in this model. For the second problem, we show how established post-quantum problems can be used to build protocols beyond key establishment and signing. We look at two protocols, that of key-blinded signatures and updatable public-key encryption, which are variants of signature and key-establishment protocols. We show how these protocols can be instantiated by modifying existing post-quantum signature and key-establishment protocols. Both of these protocols were originally built heavily relying on the structure of the discrete logarithm problem. In instantiating the schemes with post-quantum assumptions, we also highlight how alternative mathematical structures can be adapted to achieve the same results. Finally, we provide proofs, implementations, and performance metrics for these instantiations
    corecore