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Abstract

Due to the threat of scalable quantum computation breaking existing public-key cryp-
tography, interest in post-quantum cryptography has exploded in the past decade. There
are two key aspects to the mitigation of the quantum threat. The first is to have a complete
understanding of the capabilities of a quantum enabled adversary and be able to predict
the impact on the security of protocols. The second is to find suitable replacements for
those protocols rendered insecure. In this thesis, we develop new techniques to help address
these problems, in order to better prepare for the post-quantum era.

Proofs in security models that consider quantum adversaries are notoriously more
challenging compared to their classical analogues. The quantum random oracle model
abstracts real world hash functions to a black box, but allows for superposition queries.
This model is important as it often makes possible the reduction of the security of a
protocol to the hardness of an underlying hard problem. We prove several results about
the model itself. We provide upper and lower bounds on the ability of the adversary to find
collisions in non-uniform functions in this model. We also compare the quantum random
oracle model to the classical random oracle model and establish that a key aspect of their
relationship to the standard model is unchanged. As well, we develop a way to model a new
security property (dubbed quantum annoyingness) that considers the security of classical
password-authenticated key exchange schemes in the presence of quantum adversaries, and
prove the security of a recently standardized protocol in this model.

For the second problem, we show how established post-quantum problems can be used
to build protocols beyond key establishment and signing. We look at two protocols, that of
key-blinded signatures and updatable public-key encryption, which are variants of signature
and key-establishment protocols. We show how these protocols can be instantiated by
modifying existing post-quantum signature and key-establishment protocols. Both of these
protocols were originally built heavily relying on the structure of the discrete logarithm
problem. In instantiating the schemes with post-quantum assumptions, we also highlight
how alternative mathematical structures can be adapted to achieve the same results. Finally,
we provide proofs, implementations, and performance metrics for these instantiations.
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Chapter 1

Introduction

The possible construction of quantum computers in the near future has entirely upended
public key cryptography. It is not immediately obvious why quantum mechanics should
lend itself so well to the computation of certain problems. The fact that being able to
control the entanglement, superposition, and evolution of quantum states allows one to
factor large numbers is one of the most surprising results in computer science. The original
application for quantum computers was to simulate quantum systems, a natural fit. But in
1994 Peter Shor devised an algorithm that ran on a quantum computer and was capable of
factoring large numbers and solving discrete logarithms quickly.

While an incredible breakthrough for the potential of quantum computation, the result
also revealed a weakness in public key cryptography. All public key cryptography in use at
the time (and practically to this day) is based on precisely the presumed hardness of the
problems that Shor’s algorithm solves. Should a quantum computer capable of running
Shor’s algorithm on large instances be built, it could calculate the private key associated
with any public key, immediately compromising the authentication and confidentiality of
essentially all electronic communication. Furthermore, encrypted data that has been stored
can become decryptable, compromising past communication. Thus for any messages sent
today with long-term confidentiality requirements, Shor’s algorithm is a threat.

Since Shor’s breakthrough, quantum technologies have moved from an academic
potentiality to an industry reality. The threat of an adversary equipped with a quantum
computer has become more urgent. Interest in post-quantum cryptography increased
significantly after August of 2015, when the NSA announced their intention to transition their
recommended cipher suite away from classical cryptography and towards quantum-resistant
protocols [4]. Soon after, the National Institute of Standards and Technology (NIST)
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announced that they would be soliciting proposals for post-quantum key encapsulation
methods (KEMs) and digital signature schemes [121]. Over the next four years, NIST has
reduced the number of candidate proposals from 69 to 7 finalists: four KEMs and three
signature schemes. NIST hopes to publish draft standards for some of these schemes some
time in the next few years.

The timeline of post-quantum cryptography has so far been dominated by this compe-
tition and the need to get the basic building blocks of public-key cryptography ‘up and
running’, so to speak. But classical cryptography has been used in a myriad of ways beyond
these straightforward ways. With the NIST standardization process drawing to a conclusion,
the time has come to focus on how to make the next generation of cryptographic primitives
post-quantum.

The discrete logarithm problem is particularly flexible and strong when it comes to
designing cryptographic protocols. This is due to its structure as a homomorphism, its
‘tweakable’ security assumption1, and the efficiency of computations in the group. This is
not the case with most post quantum primitives, which may have some of these properties,
but, so far, never all. Post-quantum primitives generally require more bandwidth and have
less usable structure to them. Building post-quantum alternatives to classical systems is
therefore often non-trivial, if at all possible.

But the actual construction of post-quantum replacements is only the start of preparation
for quantum adversaries. The other key aspect is to accurately forecast the capabilities
of quantum computers. It is obvious that a quantum computer can solve the discrete
logarithm problem quickly enough to necessitate the shift to post-quantum cryptography.
What is less obvious is how quantum computers impact symmetric primitives. Showing the
expected number of function queries needed to brute-force a search space of size N is a
trivial task classically. But showing the optimality of Grover’s algorithm, requiring

√
N

quantum function queries, is a significantly more complex task.

Furthermore, quantum computers force us to change how we model adversaries. Even if
a symmetric primitive, such as a hash function, is secure against a quantum computer, an
adversary could still instantiate it on a quantum computer and evaluate it in superposition.
For security models like the random oracle model this challenges assumptions baked into
the model. The consequences of allowing superposition evaluation for the ability to prove
the security of a protocol can be unexpected, and must be thoroughly understood.

In this thesis, we will address some of the questions that arise from these challenges.
We look at some classical schemes that introduce minor variations on signing and key estab-

1Assumptions such as the security of the one-more discrete logarithm problem [22] are variations that
are still believed to be secure.
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lishment protocols, and investigate the mathematical structure that enables these variants.
We then look at post-quantum schemes and consider for which ones that mathematical
structure is present, and for others, if the scheme can be recovered using other methods.
We also develop some new results on quantum security models, proving results on the
abilities of quantum adversaries relative to an oracle, showing a separation between the ‘real
world’ and some quantum models, and considering an alternative way to model quantum
adversaries for some protocols.

1.1 Constructing Post-Quantum Primitives

One of the fundamental challenges in post-quantum cryptography is the inflexibility in the
underlying primitives. For classical primitives such as RSA or elliptic curve cryptography
(ECC), the behaviour of the underlying mapping often has appealing properties. For
example, the RSA trapdoor function is close to a permutation on the domain, a fact that
is used in analyzing the security of the Full Domain Hash signature scheme [55]. Group
element exponentiation is a commutative homomorphism, which is exploited to no end to
construct all kinds of discrete-logarithm protocols.

For post-quantum primitives, our mappings do not behave nearly so nicely. In part,
this is the nature of building cryptography that can resist quantum computers. When a
problem has too much structure, a quantum computer can often step in to solve it.2 So the
fundamental challenge in post-quantum cryptography is to figure out how to ‘sand down’
the edges of post-quantum primitives and get them to work in the way that the classical
protocols we are used to will behave.

We often categorize post-quantum cryptography into five main areas:

1. Lattices. Arguably the largest area of post-quantum cryptography. ‘Lattices’ here
refers to a discrete additive subgroup, and there is an entire zoo of mathematical
problems and relations between those problems that are relevant to cryptography.
Most modern protocols however are based on one of three problems, or a ring variant
of the problem: learning with errors (LWE), short integer solution (SIS), and the
NTRU problem. In LWE, an adversary is given a matrix A and a value t = As+ e,
where e and possibly s are drawn from a special narrow distribution. Depending on

2This is usually because quantum computers are especially good at a class of problems called period
finding. Very roughly put, the quantum Fourier transform allows us to find how long it takes a sequence to
repeat itself, which unexpectedly allows us to solve all kinds of problems that have enough structure to
them.
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the problem statement, they then must either find s or distinguish t from a uniform
element. Without the error term e, this problem is quite easy, but the inclusion of
even a small error appears to make it exponentially hard for reasonable parameter
sets. For SIS, given a matrix A an adversary must find a short vector s such that
As ≡ 0. Finally, NTRU takes place over more specific rings, and requires it to be
hard to find short x, y in that ring such that hx− y = 0 (mod q) for a given h.

Due to the relative flexibility (compared to other post-quantum categories) of the
operations that lattices admit, many cryptographic primitives are possible to build
with lattices. Notably, this includes incredibly advanced constructions such as fully
homomorphic encryption (FHE) [76, 78]. In NIST’s standardization process for
post-quantum cryptography, five of the seven finalists and two of the eight alternates
are lattice-based, which indicates both the many ways that lattices can be used to
construct secure and efficient protocols and also their relative popularity in the field.
Finalists for key establishment are KYBER [130], NTRU [52], and SABER [59], while
signature finalists are DILITHIUM [110] and FALCON [127]. Lattice-based schemes
often boast the fastest speeds of any category, and in general have small to medium
sized keys and ciphertexts/signatures.

2. Hash / Symmetric Based. This area of cryptography attempts to build protocols
that rely solely on the one-wayness of a symmetric function F . Because of this
restriction, very few protocols can be built out of such schemes. Generally only
signature schemes and closely related protocols can be built out of such a simple
function. Notable examples include SPHINCS+ [91], Picnic [148], and LegRoast [34].
Protocols in this category are often characterized by having small public keys, but
large signatures and slow signing/verifying routines.

3. Isogenies. Often considered the newest area of post quantum cryptography. An
isogeny is a rational mapping from one elliptic curve to another. The usage in
cryptography comes from the fact that for an elliptic curve E and isogeny ϕ, it is
difficult to recover ϕ from E and ϕ(E) alone. This as well as the fact that for some
classes of curves and isogenies, the mapping can be made to be commutative has
allowed many protocols to be built. Notable key exchange protocols include SIDH [98]
and its modern form, SIKE [97], as well as the variant CSIDH [49]. For a long time
it stood as an open problem to build an efficient signature scheme from isogenies.
Recently, this problem has seen significant advancement in the form of signature
schemes CSI-FiSh [38] and SQI-Sign [61]. In general, isogeny-based protocols are
characterized by having small keys and signatures / ciphertexts, but being rather
slow and computationally expensive.
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4. Error Correcting Codes. This is the oldest of the post-quantum cryptography
areas, dating back to 1978 [115]. In error correction, a generator matrix is used to
encode information in a redundant manner, and a parity check matrix is used to
decode information after errors have possibly been introduced. To turn this into a
public key encryption system, a randomized form of the generator matrix can be used
as a public key with the parity check matrix as the associated secret key. Encrypting
a message can then be done by encoding a session key and introducing errors. Then
to decrypt, the parity check matrix can be used to recover the session key. The
security thus relies on the difficulty of recovering a parity check matrix from a suitably
randomized generator matrix.

Due to their relatively long history, code based systems are seen as a more conservative
option, which partially makes up for the generally large public keys. Attempts to
build code based signature schemes have historically not performed well. The round
three finalist Classic McEliece [7] and alternates BIKE [14] and HQC [5] are all code
based KEMs.

5. Multivariate. This subfield is based on multivariate quadratic mappings, i.e., given
an input (x1, . . . , xn) ∈ Fn

p , the output in Fm
p can be described as m polynomials

in the xi’s with each term having degree at most 2. In general, such mappings are
one-way, i.e., hard to invert.

The most common trick in multivariate systems is to construct the mapping so that
it can be secretly decomposed into individual parts that can be easily inverted. This
allows the bearer of the key to invert the mapping, allowing for a kind of full-domain
hash construction. As this mapping is generally surjective, but not injective (m < n),
the mapping is usually used to construct signature schemes, but not key establishment.

Multivariate schemes in round 3 are the finalist Rainbow [62] and the alternate
GeMSS [48]. Due to the quadratic complexity of describing the mapping, public keys
are usually quite large, although the signatures are generally quite small.

Between these five core categories, researchers have developed a variety of methodologies
to build both key establishment and signing protocols. These are certainly the most essential
parts of public key cryptography, underpinning core protocols such as TLS, SSH, Bitcoin,
and countless more. But many more protocols take standard signing or key establishment
schemes and apply small modifications to better suit a specific context. These variations
often take advantage of the specific properties of the discrete logarithm problem to add
additional features to a standard signature or key establishment protocol.
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This raises additional problems with the transition to post-quantum cryptography.
The post-quantum schemes to be standardized lack the properties used in these variants.
Protocols need to either be redesigned to make use only of a simple signature scheme and
KEM, or find ways that the new post-quantum schemes can be similarly modified.

This forms the first main theme of this thesis. We examine two protocols based
on the discrete logarithm problem that are simple tweaks on standard signature and
key establishment protocols. We consider what it takes to replicate these tweaks using
post-quantum protocols. This is done with a particular eye towards what mathematical
properties were required by the variants, and what mathematical properties of the various
post-quantum schemes can enable these variants.

Key-Blinding In Chapter 2, we consider the problem of how to add a key-blinding
functionality to various post-quantum signature schemes. Key-blinding is used in Tor to
transform public keys so that authentication is still possible, but the identity public key is
masked.

We show how four post-quantum signature schemes can be extended to allow for key-
blinding. First we consider the lattice-based scheme Dilithium-QROM [103], which is a
variant of the NIST finalist Dilithium [110]. This scheme uses homomorphic properties to
allow for key-blinding, similar to current solutions that extend Ed25519. Next we look at
the isogeny-based scheme CSI-FiSh [38]. This variant makes use of the fact that CSI-FiSh
instantiates a group action that is free and transitive, making the blinding efficient and
conceptually simple.

Two more signature schemes based on generic zero-knowledge proof frameworks are
considered: Picnic [148] (a NIST round 3 alternate) and LegRoast [34]. As well, a generic
framework for proving the unlinkability property of key-blinding schemes is provided. Proofs
of security and detailed descriptions of the protocols are provided for Dilithium-QROM,
CSI-FiSh, and LegRoast. Implementations are described with performance comparisons to
the versions of the signature scheme that do not support blinding.

Chapter 2 is adapted from the paper “Post-Quantum Key-Blinding for Authentication
in Anonymity Networks” written by myself, Douglas Stebila, and Roy Stracovsky. It was
published in the proceedings of Latincrypt 2021, and the original paper can be found on
the Cryptology ePrint Archive at https://ia.cr/2021/963.

Updatable Public-Key Encryption In Chapter 3 we continue to examine variants
on discrete logarithm systems, this time considering key establishment. The focus here is
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on the notion of ‘updatable public-key encryption’, or UPKE. UPKE has been proposed
for usage in the MLS messaging protocol to help ensure the post-compromise and forward
secrecy of the group key exchange protocol.

Similar to the previous chapter, we decouple and refine security definitions from an
isolated use case. We then discuss how one can use techniques from CSI-FiSh, also used in
the previous chapter, to build a post-quantum UPKE scheme.

This chapter is adapted from the paper “Towards Post-Quantum Updatable Public-Key
Encryption via Supersingular Isogenies” written by myself, David Jao, Chelsea Komlo, and
Youcef Mokrani. It was published in the proceedings of Selected Areas in Cryptography,
and the original paper can be found on the Cryptology ePrint Archive at https://ia.cr/
2020/1593.

1.2 Modelling Quantum Adversaries

To trust the usage of a new cryptographic protocol, we typically expect the protocol to
have a proof of security. Such a proof is usually an algorithmic reduction showing that
the existence of an efficient adversary who follows a certain set of rules, and yet is still
able to break the security of the scheme, implies that there exists an efficient algorithm
capable of breaking some underlying problem believed to be difficult. As an example, we can
consider the Schnorr signature scheme. The security proof for Schnorr signatures considers
the existential unforgeability property in the random oracle model. This means that the
adversary (modelled as a polynomial-time black box) has access to a hashing oracle and a
signing oracle and is challenged to find a signature for any message that was not submitted
to the signing oracle. The proof establishes that should such an adversary exist, we can
use a technique known as the forking lemma to run it multiple times in order to obtain the
solution to a discrete logarithm problem. Thus an efficient (polynomial time) adversary
that succeeds implies a slightly less efficient (but still polynomial time) way to find discrete
logarithms.

In considering this proof (and its applicability to the real world security) there are
three key attributes: the underlying problem, the proof, and the model. We want an
underlying problem that is believably hard, a proof that is logically sound, and modelling
that reflects a real world adversary’s abilities. Quantum computation upends all three
of these attributes. Problems such as the discrete logarithm problem are no longer hard
to a quantum computer, proof techniques such as the forking lemma are not logically
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sound,3 and implicit assumptions made in modelling, such as queries to the random oracle
being classical, do not hold when the adversary is capable of computing a hash function in
superposition.

In order to address this issue, many researchers have moved their proofs to consider a
fully quantum adversary. One notable example is the quantum random oracle model [40].
As the random oracle model replaces a hash function with an oracle O : x 7→ H(x),
the quantum random oracle model allows this oracle to be queried in superposition, i.e.,
performs the mapping

O :
∑
x,y

αx,y|x⟩|y⟩ 7→
∑
x,y

αx,y|x⟩|y ⊕H(x)⟩.

This impacts many techniques that are used in random oracle model proofs, such as
monitoring the queries that an adversary makes in order to extract a witness, or programming
certain inputs in a subtle way in order to force the adversary to produce a meaningful
computation.

This has resulted in an area of research focused on understanding quantum computation
models in a cryptographic context. A series of results has attempted to clarify questions
related to what, if any, advantage quantum computation provides to an adversary. There
have been many advancements in finding ways to elevate proof techniques used in the
random oracle model to the quantum random oracle model [64, 68, 142, 149, 151]. In this
section of the thesis, we provide a few original contributions to this problem, helping to
clarify where advantages come from (or do not come) when an adversary has access to
quantum resources.

Finding Collisions in Non-Uniform Functions Chapter 4 investigates the generic
ability of quantum computers to find a collision in a non-uniform function. For uniform
functions with a codomain with size N , it is well understood that Θ(N1/3) quantum queries
are necessary and sufficient [150]. To characterize non-uniform functions, we focus on the
min-entropy, i.e., the negative logarithm of the probability of the most likely point in the
codomain. For a function with min-entropy k, we show that a quantum adversary requires
at least Ω(2k/3) queries to find a collision with constant probability. Setting N = 2k shows
that this matches the uniform case.

In addition to the generic lower-bound, we consider upper bounds, i.e., what is the
performance of known quantum algorithms on distributions. We also consider upper and

3In the specific case of the forking lemma, this is due to the no-cloning theorem for quantum computation.
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lower bounds for more specific distributions with min-entropy k: the flat distribution, which
is uniform on a subset of size 2k, and the δ-min-k distribution, which has a single mode
with probability 2−k and the rest of the codomain is uniform (with N > 2k).

Chapter 4 is adapted from the paper “Quantum Collision-Finding in Non-Uniform
Random Functions” written by myself, Marko Balogh, and Fang Song. It was published in
the proceedings of PQCrypto 2018, and the original paper can be found on the Cryptology
ePrint Archive at https://ia.cr/2017/688.

Instantiating the Quantum Random Oracle Classically, it has long been known that
there exist schemes that can be proven to be secure in the random oracle model that are
insecure in the standard model, when the random oracle is instantiated with an actual hash
function. This implies a separation between the random oracle model and the standard
model: in general, ROM proofs do not imply standard model security proofs.

In Chapter 5 we show that the same is true for the quantum random oracle model. I
consider two signature schemes that establish such a separation, and in both cases show
that the scheme is also secure in the QROM.

The first scheme is the original, classical result from Canetti, Goldreich, and Halevi
that relies on Computationally Sound (CS) proofs. The separation technique requires the
signature scheme to sign very long messages, and so the second scheme only signs short
messages, which establishes that the separation holds either way.

Chapter 5 is adapted from the paper “A Note on the Instantiability of the Quantum
Random Oracle” written by myself and Fang Song. It was published in the proceedings of
PQCrypto 2020, and the original paper can be found on the Cryptology ePrint Archive at
https://ia.cr/2019/1466.

Quantum “Annoying” Password-Authenticated Key-Exchange Chapter 6 consid-
ers what it means to be “quantum annoying”. Informally, a scheme is quantum annoying
if a quantum adversary can compromise its security, but only by solving a large number
of discrete logarithm problems. The idea of a scheme being quantum annoying came up
during a process by the Crypto Forum Research Group (CFRG) to decide on a Password-
Authenticated Key-Exchange (PAKE) to be recommended for usage in Internet Engineering
Task Force (IETF) protocols. It was informally observed that some of the schemes had this
property, meaning that an adversary trying to compromise the security would seemingly
need to solve a discrete logarithm for each guess of the password, and then only succeed
when they guessed correctly. Such a scheme is thus not necessarily secure against quantum
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adversaries (as there is a polynomial time attack), but it can change the economic incentives
for an attacker. One scheme in particular that was believed to be quantum annoying was
CPace [85], which was eventually recommended for usage.

However, the property was only informally described and reasoned about. In this
chapter, we discuss the question of how to formally reason about the quantum annoying
property, and how a scheme can be proven to be quantum annoying. We propose a security
model for the quantum annoying property, which takes the well-known Bellare, Pointcheval,
Rogaway (BPR) model [23] for PAKEs, sets it in the generic group model, and provides the
adversary with a (classical) discrete logarithm oracle. While this falls short of considering
a fully quantum adversary, it at least establishes the additional power gained by solving
discrete logarithms. In this model, we are able to show that a simplified variant of CPace
is indeed quantum annoying.

Chapter 6 is adapted from the paper “The ‘Quantum Annoying’ Property of Password-
Authenticated Key Exchange Protocols” written by myself and Douglas Stebila. It was
published in the proceedings of PQCrypto 2021, and the original paper can be found on
the Cryptology ePrint Archive at https://ia.cr/2021/696.

10

https://ia.cr/2021/696


Chapter 2

Post-Quantum Key-Blinding

2.1 Introduction

Among the many difficulties in building a robust anonymity network, authenticating entities
is a unique challenge that cannot be solved with typical techniques. Most networks will
accomplish authenticity goals through the use of a signature scheme, but in a network with
anonymity goals, the public keys used for signing can run contrary to those goals. One
technique to overcome these conflicting goals is used in the Tor network: key-blinding.

A signature scheme with key-blinding works similarly to a regular signature scheme,
but with the added property that given a public key pk and a nonce τ , a new public key
pkτ can be derived, which in turn can be used for signing and verification. This is useful in
contexts where two parties wish to exchange signed material, but must do so in the presence
of a potential eavesdropper who may attempt to de-anonymize them. Tor describes such
a scheme, and its use, in version 3 of the rendezvous specification, describing how clients
connect to onion services in the network [139]. In Section 2.2 we will describe precisely how
key-blinding is used in Tor, and the security it is meant to provide.

It is useful to describe the key-blinding scheme as it exists in Tor, to gain some intuition
for how such a scheme works and what security it provides. Key-blinding in Tor today uses
the Ed25519 signature scheme [30]. Keys in this signature scheme are made with respect to
a generator B of a cyclic group of size ℓ (written with additive notation). Secret keys are
an integer a ∈ {1, . . . , ℓ− 1} and the corresponding public key is A = aB. We refer to [30]
for a complete description of the signing and verification processes, but for our description,
it suffices to know that any such (a,A) pair are a valid key pair for Ed25519.
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To blind a public key A with a nonce τ , one computes a value t ← H(τ ||A), with
t ∈ {1, . . . , ℓ− 1}. Then the blinded public key is tA, with corresponding secret key t · a
(mod 8ℓ). This forms a new key pair that is entirely compatible with Ed25519, so that it
can be used for signing and verification.

It is fairly easy to see why this scheme has the desired security properties. Given two
blinded keys and the associated nonces, there is no way to tell if they come from the same
identity public key or not. Without knowledge of the identity public key, the distribution
of the blinded public key is entirely uniform over the public key space, so that these keys
are entirely unlinkable to each other. Furthermore, the keys retain their unforgeability, as
(informally put) the blinded secret key ta requires both t and a to be known. Formal proofs
of the security properties can be found in a tech report posted to the Tor developer mailing
list [90].

This system works quite well for Tor today, but with the development of quantum
computers, cryptography based on the discrete logarithm problem will eventually be
rendered insecure. To ensure the long-term security of Tor, a replacement post-quantum
signature scheme with key-blinding will be needed.

Chapter Contributions and Structure. In this chapter we address the challenge of
extending post-quantum signature schemes to have a key-blinding functionality. We consider
four promising post-quantum signature schemes. Dilithium is a lattice-based signature
scheme that is currently under consideration in NIST’s Post-Quantum Cryptography
standardization effort [65]. Instead of directly working with Dilithium, we will work with
the Dilithium-QROM variant [103]. Dilithium-QROM has simpler provable guarantees
by neatly fitting into the ‘Lossy ID scheme’ framework [2], so we work within the same
framework to ensure that our scheme has similar guarantees. CSI-FiSh is a relatively
new post-quantum signature scheme based on the CSIDH group action [38]. With both
Dilithium and CSI-FiSh we are able to establish that they have enough mathematical
structure to enable key-blinding. For Dilithium we exploit a homomorphism between the
secret and public key spaces, and only require a small change to the signing and verification
procedures. For CSI-FiSh we use the fact that the scheme instantiates a free and transitive
group action, which provides enough structure to add on key-blinding with essentially no
change to the signing procedure.

Picnic is another submission to NIST’s efforts, which constructs a signature scheme
out of the ‘MPC-in-the-head’ paradigm [93, 50], proving knowledge of a secret encryption
key associated with a ciphertext. LegRoast is based on the Picnic framework, but replaces
the more traditional symmetric function used with the Legendre PRF, the homomorphic
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Scheme |pk| |σ| KeyGen Blind Sign Verify

Dilithium-QROM 7.7 kB 5.7 kB 3810ms - 9360ms 2890ms
blDlithium-QROM 10 kB 5.7 kB 2180ms 1650ms 28300ms 717ms
Increase from blinding 1.3× 1× 0.6× - 3× 0.25×

LegRoast 0.50 kB 7.94 kB 0.9ms - 12.4ms 11.7ms
blLegRoast 0.50 kB 11.22 kB 0.9ms 0.9ms 18.6ms 17.8ms
Increase from blinding 1.0× 1.4× 1.0× - 1.5× 1.5×

CSI-FiSh-Merkleized 32 B 1.8–2.1 kB 10900ms - 559ms 559ms
CSI-FiSh-unMerkleized 16 kB 0.45 kB 10800ms - 554ms 553ms
blCSI-FiSh 16 kB 0.45 kB 10600ms 10600ms 546ms 540ms
Increase from blinding 1.0× 1.0× 1.0× - 1.0× 1.0×

Table 2.1: Performance results from the implemented key-blinding schemes.

properties of which allow for small signatures [58, 34]. Key-blinding in LegRoast and Picnic
does not use the same homomorphism between the keyspaces, but instead exploits the
generic nature of the zero-knowledge proof underlying the protocols.

In all the schemes, blinding is generally around as efficient as key generation, while
signing is either as efficient, or at worst a quarter as fast. We provide a generic framework
for proving the unlinkability property, showing that it can be reduced to two straightforward
properties of signature schemes. We prove all these schemes both unlinkable and unforgeable
in the random oracle model. Note that each of the signature schemes we have discussed are
built out of the Fiat–Shamir paradigm. We discuss why this is the case, and what some of
the challenges are for building a key-blinded scheme out of a trapdoor signature scheme.
Finally, we provide prototype implementations of the blinded CSI-FiSh, LegRoast, and
Dilithium-QROM schemes and discuss aspects of their performance as it applies to Tor. Our
results from the three implemented schemes are shown in Table 2.1. Note that we emphasize
the increase over the raw numbers for the timing information. Implementations are not
optimized and may not reflect how long a ‘proper’ implementation will take. Nonetheless,
the increase reflects how much additional work is required to use the scheme for key-blinding.
For all schemes, blinded public keys have the same size as their unblinded version and so
we do not distinguish between the two.

To begin in Section 2.2, we provide background information on Tor and key-blinding to
motivate the construction and provide context. We then provide definitions of key-blinding
and its security properties for a formal framework we use for remainder of the paper in
Section 2.3. Section 2.4 discusses the security property of unlinkability and establish a
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useful framework for proving the property.

After this set-up, we are able to dive into the details of the schemes themselves and
their associated proofs. We refer to the version of each scheme that supports blinding with
the prefix ‘bl’. First in Section 2.5 we describe an extension of Dilithium-QROM and in
Section 2.6 an extension of CSI-FiSh. Then in Section 2.7 we show how LegRoast can be
extended using somewhat different techniques, before finally sketching an outline on how
Picnic can be extended in Section 2.8. For each of blDilithium-QROM, blCSI-FiSh, and
blLegRoast, we provide a complete description of the scheme, specific parameters, and a
detailed proof of unforgeability and unlinkability. In Section 2.9 we also discuss the results
of prototype implementations of each of these schemes, comparing their performance to an
unblinded version. Finally, we conclude our findings in Section 2.10.

Related Work As mentioned, the schemes that we choose to base blinded signature
schemes off of are Dilithium [65, 103], CSI-FiSh [38], LegRoast / PorcRoast [34], and
Picnic [50]. While to our knowledge, this is the first attempt to construct post-quantum
key-blinded signatures, there are a few other papers who have attempted to build similar
primitives, for different reasons. In a 2018 preprint [18], Barreto, Ricardini, Simplicio Jr.,
and Patil considered post-quantum PKIs in vehicle-to-anything (V2X) communications. One
of the techniques they developed to provide anonymity to vehicles in such a context involved
transformations on public key materials similar to that of key-blinding. Their construction
was based on the lattice scheme qTESLA, which was a candidate for standardization in
the first two rounds of NIST’s process. The process of key-blinding also bears a similarity
to hierarchical deterministic wallets used for Bitcoin [84, 109]. These wallets allow a user
to create child public and secret keys for the delegation of abilities for spending. Such a
protocol has much stronger requirements than simple key-blinding, which does not need
to be hierarchical and does not need for the child secret keys to contain no information
about parent secret keys. Some work on post-quantum deterministic wallets has been
published [8], with their scheme also based on qTESLA.

It is important to distinguish between the key-blinding schemes we discuss here and the
notion of ‘blind signatures’, for which post-quantum schemes already exist [88, 124]. Blind
signatures are an interactive protocol that allow a user to obtain a signature on a message
without the signer knowing the message. This is very different from key-blinded schemes,
which have the same functionality as a traditional signature scheme, but with the extra
ability to randomize public keys.
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2.2 Onion Services

The Tor network serves millions of clients a day, providing anonymity to users from the
websites they connect to, and concealing what they are connecting to from their Internet
service provider and any other intermediary in their path [138]. An important part of
the Tor networks is onion services (previously known as hidden services). Onion services
allow users to not only access content with Tor’s strong privacy guarantees, but also serve
content.

At a high level, onion services work by uploading a three hop path (called a circuit
in Tor terminology) to a Tor node called a introduction point. This path begins at the
introduction point and ends at the onion service. Because of Tor’s layered encryption, the
introduction point does not know where the onion service lives, only where the next node
in the path lives. For a client to connect to the onion service, they use the .onion address
to find the introduction point, who will then direct their communication towards the onion
service.

To help clients access introduction points, the onion service uploads an encrypted list of
the introduction points to distinguished nodes in the network called HSDirs (hidden service
directories). The client’s overall process for accessing an onion service is to (i) query the
HSDir for the descriptor, which provides a list of introduction points, and then (ii) ask one
of the introduction points to pass along a rendezvous point (another random node in the
network) to the onion service, and then (iii) communicate with the onion service through
the rendezvous point.

Of particular interest to us is the process by which the client obtains the descriptor
from the HSDir. Because this is the first point of contact between the client and the HSDir,
the client holds no information about the HSDir except for the .onion address (which was
communicated in some out-of-band way) and the current state of the network. HSDirs
are not trusted authorities in Tor, as nodes in Tor are run by volunteers, and anyone can
become an HSDir. After joining the network, they will be flagged as an HSDir and included
in the list of directories after some time (approximately 2–3 days), to ensure that churn
does not affect the availability of services too much.

This makes the descriptor lookup challenging from a privacy perspective. HSDirs are
somewhat untrusted, but clients possess no private information other than the .onion

address. The previous version of the rendezvous specification (v2) had the .onion address
be the hash of the onion service’s public key. When a client connected to the HSDir, they
would provide the .onion address directly, and the HSDir would respond with the full
public key and the descriptor. For version 3 of the specification, a goal was to provide less
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information to the HSDir. For this, the technique of key-blinding is employed.

In the most recent version of the rendezvous specification (the specification that describes
the process of connecting to an onion service), the .onion address is the long-lived EdDSA
public key of the onion service. Time in the Tor network is divided into periods, with
the period length a consensus parameter and the period number the number of periods
that have occurred since the Unix epoch. So given a public key, a nonce, and consensus
parameters of the Tor network, the blinding factor t is computed by hashing together the
public key, the nonce, and the current period number, as well as some parameters of both
the Tor network and the signature scheme. As mentioned in the introduction, this value t
is treated as an integer in the range 1 to ℓ− 1, with ℓ the order of the cyclic group, so that
public keys are transformed by simply multiplying by t.

The blinded key can then be used to index the descriptors while they are held by
the HSDir. Clients can derive the blinded key from the .onion address and query for a
descriptor by providing the blinded key. So, the blinded key serves as a private index from
which the descriptor may be queried. This also implicitly means that the client is implicitly
checking the connection between the identity public key from the .onion address and the
blinded public key. For security it is important that only the actual owner of the .onion
address can upload a descriptor to a given index. This is where the signing functionality of
key-blinding is used. Onion services also upload a signature on the descriptor, which can
be verified with the blinded key. When HSDirs verify this signature, they ensure that the
descriptor is being uploaded by the actual owner of the identity public key—all without
knowing what the .onion address is.

Under the current system with Ed25519, a malicious actor with a quantum computer
could forge a signature with respect to a chosen blinded public key, and use this to upload
false information about an introduction point. This would mean that queries to the onion
service could be redirected to the adversary.

2.3 Key-Blinding Signature Scheme Definitions

Definition 1. A key-blinding signature scheme ∆ consists of four algorithms: KeyGen,
BlindPk, Sign, and Verify, where

• KeyGen() generates an identity key pair (pk, sk).

• BlindPk(pk, τ) deterministically generates a blinded public key pkτ .
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• Sign(msg, sk, τ) generates a signature σ for the message msg using the identity secret
key sk and epoch τ .

• Verify(msg, σ, pkτ ) accepts if the signature is valid under the message msg and epoch
τ used to generate pkτ , otherwise it rejects.

We require the usual correctness properties for signature schemes, but extended for
key-blinding. That is, if (pk, sk) is a keypair generated from KeyGen, pkτ is then derived
from BlindPk with a given nonce τ , and σ ← Sign(msg, sk, τ), then with overwhelming
probability Verify(msg, σ, pkτ ) will accept. Anyone without knowledge of the identity public
key can verify using the pkτ given in the descriptor, while someone with knowledge of the
identity key can take the additional step of checking pkτ = BlindPk(pk, τ). Note that we do
not require that blinded keys can be blinded again.

Signatures with key-blinding must satisfy two security requirements. First, they must
be unlinkable, which means that an adversary without knowledge of the identity public key
who observes many public key blindings as well as signatures under those blindings cannot
distinguish a fresh blinding of the public key from an entirely unrelated key. Second, the
scheme must satisfy unforgeability. This property is largely the same for signature schemes
with key-blinding as it is for typical signature schemes. However, rather than just devising
an (msg, σ) such that Verify(msg, σ, pk) accepts, the adversary must be able to provide an
(msg, σ, τ) such that Verify(msg, σ, pkτ ) accepts where pkτ ← BlindPk(pk, τ).

Earlier versions of both of these formulations appear in [90]. The security definitions
that we present here are more general. The definitions in [90] were tied to the exact usage
of key-blinding in Tor, and do not consider security in situations where the blinding process
is decoupled from the signing process, so that multiple signatures can be issued under the
same blinded public key.

Definition 2 (Unlinkability under Chosen Message and Epoch Attack). Let ∆ = (KeyGen,
BlindPk, Sign, Verify) be a signature scheme with key-blinding. Then for an adversary A we
define the ‘Unlinkability under Chosen Message and Epoch Attack’ experiment as follows:
First, obtain (pk0, sk0)← KeyGen() as a fresh identity key pair. The adversary does not
get access to the identity keys. The adversary does have access to the following oracles:

• A blinding oracle, which takes as input a blinding nonce τ (representing a chosen
epoch) and provides BlindPk(pk0, τ) to A.

• A signing oracle, which takes a messagemsg and a blinding nonce τ that has previously
been queried to the blinding oracle and provides Sign(msg, sk0, τ).
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Eventually the adversary may submit a challenge query τ ∗ that has not previously been
queried to the blinding oracle. A new key pair (pk1, sk1)← KeyGen() and a bit b←$ {0, 1}
is uniformly sampled. The adversary receives pk∗b ← BlindPk(pkb, τ

∗).

The adversary may continue to query the blinding and signing oracle, with the restriction
that if τ ∗ is queried to either oracle then the keypair (pkb, skb) is used. After having made
a total of qB queries to the public key blinding oracle and qS queries to the signing oracle,
the adversary submits a guess b∗ for the bit b, and is said to have won if b∗ = b.

For a signature scheme with key-blinding, let A be the adversary in the unlinkability
experiment. Then we define their advantage as

AdvUL-CMEA
∆ (A) =

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Next, we define the notion of unforgeability. Our model for unforgeability is essentially

the standard definition of existential unforgeability under chosen message attack, with the
additional consideration that the adversary can make signing queries with respect to an
epoch nonce τ of their choice, and has access to the identity public and secret key.

Definition 3 (Existential Unforgeability under Chosen Message and Epoch Attack). Let
∆ = (KeyGen, BlindPk, Sign, Verify) be a signature scheme with key-blinding. Then for
an adversary A we define the ‘unforgeability under chosen message and epoch attack’
experiment as follows: First, obtain (pk0, sk0)← KeyGen() as a fresh identity key pair. The
adversary is provided with pk0. The adversary has access to an oracle that signs a chosen
message with respect to a chosen epoch nonce. Specifically, they may query (msg, τ ) to the
signing oracle which generates σmsg,τ ← Sign(msg, sk, τ) and sends that to the adversary.

After having made qS queries to the signing oracle, the adversary submits a forgery
(msg∗, σ∗, τ ∗), and is said to have won if Verify(msg∗, σ∗,BlindPk(pk0, τ

∗)) accepts, and
(msg∗, τ ∗) was not a query made to the signing oracle.

For a signature scheme with key-blinding, let A be the adversary in the unforgeability
experiment. Then we define their advantage as

AdvEU-CMEA
∆ (A) =

∣∣Pr[A wins]
∣∣ .

2.4 Unlinkability of Signatures with Key-Blinding

We want to establish that an adversary who has access to a blinding oracle and a signing
oracle still cannot distinguish a new blinding of the identity public key from the blinding
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of a fresh public key. We observe a common technique that could be used for showing
unlinkability among the signature schemes we consider. The general framework we employ
is to (i) show that the distribution of blinded public keys is independent from the value
of the identity public key (over the randomness in the random oracle) and then (ii) show
that the distribution of signatures is dependent only on the value of the blinded public key.
Taken together, this means that the values provided to the adversary from the blinding
and signing oracles are independent from the identity public and secret key, and thus do
not leak any information.

While our techniques provide a generic framework to establish unlinkability, they do not
extend to showing unforgeability or provide a way to generically construct schemes with
key-blinding out of Fiat–Shamir style signature schemes. This is because the mechanism by
which blinding is accomplished changes depending on the scheme. As a result, there is no
common framework for constructing a key-blinding scheme, and the proof of unforgeability
similarly must take the blinding mechanism into account.

We call the first property independent blinding. Informally, it states that the distribution
of blinded public keys is independent from the identity public key. This means that seeing
any number of blindings of a public key leaks no information on the identity public key.

We show how the second property can be established by a property we call signing with
oracle reprogramming, which states that if we have the ability to reprogram the random
oracle used in the signature scheme, then we can create signatures indistinguishable from
real ones for any message. Many signature schemes show their security by first establishing
just such a property. As an example, for signature schemes built from an identification
protocol and the Fiat–Shamir heuristic, the zero-knowledge property is typically proven
by establishing the ability to simulate transcripts given only the public key. When given
control of the random oracle, we can sample transcripts and reprogram the random oracle
to generate a signature.

To formalize this notion, we require a concept we call a reprogrammed point extractor.
This is a simple function, efficiently computable and publicly known to all, which, given a
signature σ, public key, and message, can extract the point on which the random oracle is
reprogrammed to make the signature verify.

It is best to illustrate this with an example. Consider a generic form of the Probabilistic
Signature Scheme [26] defined with respect to a trapdoor permutation T . To sign a
message, sample a random salt r and compute x = T−1(H(pk∥msg∥r)). The signature
is σ = (x, r). To verify a signature, simply check that T (x) = H(pk∥msg∥r). It is
straightforward to show that signatures can be generated if the random oracle can be
reprogrammed. On input of a message m, sample a random (x, r) and reprogram H so
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that H(pk∥msg∥r) = T (x). If T is a permutation, it is easy to see that (x, r) will have
the same distribution as in a real signature, and the reprogramming cannot be detected as
long as r is sufficiently long (so that the adversary is unlikely to have queried pk∥msg∥r
beforehand). Let Ext denote our reprogrammed point extractor. For the example above,
we have Ext((x, r), pk,msg) = pk∥msg∥r. Note that not all of the signature is necessarily
used as part of the reprogrammed point, which is why x does not appear in it.

Definition 4 (Signing with oracle reprogramming). Let Σ be a signature scheme that relies
on a random oracle H. We say that the signature scheme admits signing with oracle repro-
gramming if there exists a reprogrammed point extractor Ext and a forgery function Forge
that takes in pk,msg and returns (y, σ) such that Σ.VerifyH:Ext(σ,pk,msg)7→y(pk,msg, σ) →
‘accept’, where H : x 7→ y denotes the random oracle reprogrammed such that H(x) = y.

In order to use oracle reprogramming to sign a message, we need to consider the
probability that an adversary is capable of noticing that the real signing algorithm wasn’t
used. This amounts to considering the joint distribution of the signature as well as the
input and output of the hash function on the reprogrammed point.

Definition 5 (Statistical distance of forgeries). Let Σ = (Sign,Verify) be a signature scheme
defined with respect to a random oracle H and a public key space PK that admits signing
with oracle reprogramming via a point extractor Ext and a forgery process Forge.

For a public key and message pk,msg, we consider the adversary’s ability to distinguish
the distribution of (yforged, σforged)← Forge(pk,msg) from the distribution of (yreal, σreal)
where σreal ← Sign(pk,msg) and yreal = H(Ext(σreal, pk,msg)) (i.e., the output of the hash
on the input that would be reprogrammed).

We denote L1 distance between these distributions as δ, that is

δ =
∑
σ,y

∣∣Pr[σreal = σ, yreal = y]− Pr[σforged = σ, yforged = y]
∣∣ .

As well, we need to consider the ability of an adversary to detect that reprogramming
has occurred. This can be evaluated by considering the min-entropy of the point that is
reprogrammed, to ensure that the probability that an adversary queries this point prior to
reprogramming is low.

Definition 6 (Min-entropy of extracted point). Let hmin denote the min-entropy of
Ext(σ, pk,msg), where (y, σ)← Forge(pk,msg). Here the entropy is over the randomness
in the Forge process.
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Note that in the above definition we are implicitly assuming that the statistical distance
and the entropy are not dependent on msg, pk, or H. For all of the schemes that we
construct this is the case. Even if these values were dependent on pk, msg, or H, the
scheme could still be secure as long as they were sufficiently small on average. However to
simplify the proof and notation, our definition only considers schemes where they do not
depend on pk, msg, or H.

We now consider the unlinkability experiment in Definition 2. We will show a reduction
from an adversary who makes queries to the signing oracle to an adversary who makes
none.

Lemma 1. Let ∆ be a key-blinding signature scheme which admits signing with oracle
reprogramming with L1 distance δ and min-entropy of reprogrammed points hmin. Let A be
an adversary making qB queries to the blinding oracle, qS queries to the signing oracle, and
qH queries to the (classical) random oracle. Using A, we construct an adversary AKO that
makes no signing queries (i.e., a key-only adversary) for which

Adv∆
UL-CMEA(A) ≤ Adv∆

UL-CMEA(AKO) + qHqS2
−hmin + qSδ

Proof. To construct the adversary AKO while relying on the adversary A as a subroutine,
we must show how to handle queries to the blinding oracle and the signing oracle. For
queries to the blinding oracle, AKO can simply pass along these queries to the blinding
oracle provided to them.

To handle the signing queries, we rely on signing with oracle reprogramming. Whenever
a signing query is made with respect to a blinded public key pkτi , we can use signing with
oracle reprogramming (Definition 4) to create a signature for the adversary. We generate
(y, σ)← Forge(pkτi ,msg) and reprogram the random oracle so that H(Ext(σ, pkτi ,msg)→
y.

By Definition 4 the resulting signature verifies, so we need to consider the adversary’s
ability to distinguish that the secret key is not being used to sign messages. To realize this,
the adversary either needs to observe that the oracle has been reprogrammed, or notice a
difference in the observed distribution of some part of the signature.

To distinguish that reprogramming has occurred during signing, the adversary must
have queried the random oracle on the reprogrammed point previously. In total, qS points
will be reprogrammed. So the adversary makes qH guesses, and then qS points are chosen
to be reprogrammed from a distribution with min entropy hmin, and we want to consider
the probability of a match between the qH and qS points. We can upper-bound this by
qHqS2

−hmin .
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Next we consider the output distribution of the programmed points. There are qS
reprogrammed points, and the statistical (L1) distance between the forged values and the
real values is δ, so the adversary’s advantage in distinguishing based on the distribution of
reprogrammed values is at most qSδ.

We now only need to consider the advantage of AKO, an adversary who makes no queries
to the signing oracle. So, we need only consider how the blinding oracle and random oracle
provide information to the adversary.

To characterize the security of blinding, we want to insist that the distribution of the
public key returned by BlindPk is independent of the identity public key input, so that no
knowledge is gained. However care must be taken here, because the BlindPk algorithm is
actually deterministic on the inputs pk and τ . So when we refer to the ‘distribution’ of
BlindPk we need to be clear over what randomness.

In practice, the BlindPk function hashes the public key and the nonce τ to generate
some randomness, and then uses that randomness to blind the public key. To separate out
the process of hashing to generate randomness and using the randomness, we will define
a new function RandBlind(pk; r), which takes in a public key and some randomness, and
blinds the public key. Then BlindPk is defined by making RandBlind deterministic through
the random oracle H. Specifically, BlindPk(pk, τ) = RandBlind(pk;H(pk∥τ)).

Definition 7 (Independent Blinding). Let ∆ be a key-blinding signature scheme and
let n be a positive integer. Let pk0, pk1, . . . , pkn be public keys generated from KeyGen.
Sample uniform randomness r1, r2, . . . , rn. The independent blinding advantage, denoted
AdvInd−Blind

∆,n (A), is the advantage that an adversary has in distinguishing the following two
distributions:

1) RandBlind(pk0; r1),RandBlind(pk0; r2), . . . ,RandBlind(pk0; rn)

2) RandBlind(pk1; r1),RandBlind(pk2; r2), . . . ,RandBlind(pkn; rn)

This ensures that the adversary AKO may observe many blindings of the public key with
respect to arbitrary nonces but what they see is close to a distribution independent of the
identity public key.

Lemma 2. Let ∆ be a key-blinding signature scheme and let hpk be the min-entropy of the
public key returned from ∆.KeyGen. Let AKO be an UL− CMEA adversary that makes no
queries to its signing oracle. Then there exists an algorithm B such that

AdvUL−CMEA
∆ (AKO) ≤ 2AdvInd−Blind

∆,n (B) + qH2
−hpk ,
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where n is the number of blinding queries AKO makes to its public key-blinding oracle, qH is
the number of queries to the hash oracle, and the runtime of B is approximately the same
as the runtime of A.

Proof. We use a simple game-hopping proof to bound the adversary’s success probability.
Game G0 proceeds according to ExpUL−CMEA with the adversary making no signing queries
by assumption. In game G1, when the adversary queries the blinding oracle with input
τ , rather than responding with BlindPk(pk, τ) = RandBlind(pk,H(pk∥τ)), we sample a
uniformly random r and return RandBlind(pk, r). Note that there is no difference between
these games until an adversary queries H(pk∥τ) for some τ ; we let bad be the event that
the adversary makes such a query. Games G0 and G1 are identical-until-bad [27].

In game G2 we modify the response to each blinding query from RandBlind(pk, r)
by sampling a fresh pk′ each time from KeyGen and returning RandBlind(pk′, r). We can
construct, from an adversary that distinguishes G1 from G2, a reduction B that distinguishes
the two distributions in the independent blinding property: G1 uses the first distribution in
7, whereas G2 uses the second. Thus G2 can be distinguished from G1 with advantage at
most AdvInd−Blind

∆,n (B).
We now consider the probability of event bad—i.e., the adversary querying H(pk∥τ)—in

G2. Since none of the blindings actually use pk, the success probability is bounded by the
adversary’s ability to guess the public key. For this we use the min-entropy of the public
key returned from key-generation. Over qH queries, the probability that an adversary is
able to guess the public key is bounded by qH2

−hpk . By the fundamental lemma of game
playing [27], we can thus bound the probability that an adversary distinguishes G0 and G1

by this quantity and the difference between G1 and G2, i.e., qH2
−hpk +AdvInd−Blind

∆,n (B).
Finally, in game G2 all blinded public keys are independent of the original key, so

everything the adversary sees is independent of the challenge bit b, and thus the adversary’s
advantage in G2 is 0, yielding the desired result.

One could go to the effort of computing or bounding the min-entropy hpk of the public
key returned from KeyGen for each scheme. It is convenient to observe that for any correct
signature scheme there exists a very simple adversary A for which 2−hpk ≤ AdvEUF−CMEA

∆ (A).
Otherwise, if a scheme has certain public keys that have an abnormally high chance of
being generated, A can break unforgeability by running KeyGen and hoping that the desired
public key (with the corresponding secret key) is generated. Thus,

Corollary 1. Let ∆ and AKO be as in Lemma 2. Then there exist algorithms B1,B2 such
that

AdvUL−CMEA
∆ (AKO) ≤ 2AdvInd−Blind

∆,n (B1) + qHAdvEUF−CMEA
∆ (B2),
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where n is the number of blinding queries AKO makes to its public key-blinding oracle and
the runtimes of B1 and B2 are approximately the same as that of A.

2.5 A Lattice-Based Key-Blinding Scheme

Dilithium [65] is a finalist in the NIST post-quantum signature standardization process
and comes from a long line of lattice-based signature schemes. We present a key-blinded
version of Dilithium-QROM [103] which modifies Dilithium to permit lossy key generation,
hence allowing a reduction from the scheme to the Module Learning with Errors (MLWE)
assumption. Later, in Section 2.5.5, we discuss the challenges in blinding Dilithium itself.

Our construction, blDilithium-QROM utilizes the fact that addition is homomorphic.
As a result, the A matrix is a public matrix used by all parties in the network. In addition,
both signing and verification use the public key when sampling the challenge c. Finally, the
identity public key consists of an extra bit as this permits key-blinding.

2.5.1 blDilithium-QROM Preliminaries

Throughout this section, vectors are written in lowercase bold-face and matrices are written
in uppercase bold-face. Let q be prime, then Zq denotes the integers modulo q, and R and
Rq denote the rings Z[x]/⟨xn + 1⟩ and Zq[x]/⟨xn + 1⟩ respectively.

For some w ∈ Zq, ∥w∥∞ denotes |w′| where w′ ∈ Z such that w′ ≡ w (mod q) and
− q−1

2
≤ w′ ≤ w−1

2
. This norm can be extended as follows. For some w = wn−1x

n−1 + · · ·+
w1x+ w0 ∈ Rq, ∥w∥∞ = max (∥w1∥∞ , . . . ,∥wn−1∥∞), and for some w = (w1, . . . , wk) ∈ Rk

q ,
∥w∥∞ = max (∥w1∥∞ , . . . ,∥wk∥∞). We let Sη denote the set of w ∈ Rq such that∥w∥∞ ≤ η.

In addition, we also define the L2 norm for w ∈ R as ∥w∥ =
√
∥w0∥2∞ + · · ·+∥wn−1∥2∞.

ChSet denotes the challenge space. In the context of identification protocols, ChSet is
the set of possible challenges a verifier can submit to the prover. In the context of signature
schemes arrived at via the Fiat–Shamir transform, ChSet is the output domain of the hash
function H used to digest the message.

G is also a hash function that takes in elements of Rk
q×Rk

q×{0, 1}∗ and returns elements
of Sℓ

η × Sk
η .

We make use of several supporting algorithms with full descriptions in [103] which
extract or compute on higher and lower order bits of elements in Zq. These algorithms are
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extended to elements of Rq and Rk
q by coefficient-wise and element-wise application. We

give a general description of the supporting algorithms:

• Power2Roundq(r, d) extracts the higher (log(r)− d) order bits of r.

• HighBitsq(r, α) extracts the higher (≈ log(r)− logα) order bits of r.

• LowBitsq(r, α) extracts the lower (≈ logα) order bits of r.

• MakeHintq(z, r, α) constructs a hint to allow the computation of the higher order bits
of r + z without the need to store z.

• UseHintq(h, r, α) uses the hint to compute the higher order bits of r + z.

The interactions of these algorithms are outlined by Lemmas 4.1 and 4.2 of [103], which we
make use of in the proof of unforgeability.

We now discuss the MLWE assumption which was introduced in [108] as a generalization
of the LWE assumption introduced in [128]. We leverage the decision version of the
assumption, which posits that the following problem is hard given appropriate parameter
selection.

Definition 8. The decisional MLWEm,k,χ problem over the ring Rq is to distinguish the pair
(A, t) for A←$ Rm×k

q , t←$ Rm
q from the pair (A,As1+s2) where A←$ Rm×k

q , s1←$ χ(Rk
q ),

s2←$ χ(Rm
q ). The MLWEm,k,χ advantage is defined as

AdvMLWE
m,k,χ (A) =

∣∣∣∣Pr[A wins decisional MLWEm,k,χ over Rq]−
1

2

∣∣∣∣
We introduce a modified version of the MLWE assumption in which the A matrix is a

parameter of decisional MLWE problem. This modified assumption is required because each
signer in the anonymity network shares the same A matrix. We refer to this assumption as
the MLWE assumption with static A, which assumes that the following problem is hard
given appropriate parameter selection.

Definition 9. The decisional SA-MLWEm,k,χ,A problem over the ring Rq is to distinguish t
for t←$ Rm

q from As1+s2 where s1←$ χ(Rk
q ), s2←$ χ(Rm

q ). The SA-MLWEm,k,χ advantage
is defined as

AdvSA-MLWE
m,k,χ,A (A) =

∣∣∣∣Pr[A wins decisional SA-MLWEm,k,χ,A over Rq]−
1

2

∣∣∣∣
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There are a few implications to using a constant (rather than per-user) A matrix. The
first is the question of how to generate such a matrix. It is well known that there exist
methods to construct an A matrix that is ‘backdoored’, so that an adversary can solve
problems with respect to A otherwise meant to be infeasible [77]. Especially in the context
of Tor, users of a constant A matrix need assurance that whoever generated it did not
include a backdoor. One possible way to accomplish this is to generate A pseudorandomly
from a “nothing up my sleeve” seed. With a simple and publicly available seed, hopefully
users would be convinced that there is no backdoor.

The other issue is the potential for all for the price of one attacks. With everyone using
the same matrix, if someone performs a large computation on A, they might be able to
determine a kind of backdoor, even if A was not generated with one. This causes the
potential security consequences of a break to be more severe. Of course, parameters are
already chosen for LWE instances so that no one should be able to break even a single
instance of the problem, but such consequences should still be considered before deployment
of such a system.

2.5.2 blDilithium-QROM Specification

Signing is performed by using G to sample blinding secrets adding these to the identity
public key secrets, and performing the operations in KeyGen. Then, the procedure in [103]
is followed except that the public key is added to the hash to produce the challenge c (this
is done to prevent attacks similar to that of related-key attacks [117]), and an extra bit
is included as part of the public key t1, so that rounding errors are not introduced when
we blind the public key. We want t0 to be unchanged, so we remove the last bit of t1
first. Verification is also similar to that in [103] except that ct1,τ is multiplied by 2d−1.
Key Generation, blinding, signing, and verifying are described in full in Figure 2.1. The
parameters of the scheme are identical to the parameters in [103], except that d = 7 and
β = 644. We list them in full in Table 2.2.

In Figure 2.2 we also detail a version of blDilithium-QROM in which both t1 and t0
are both published in the identity public key. Differences between the two versions are
highlighted in red. This is in keeping with the unforgeability proof in [103], and is necessary
for both the proofs of unforgeability and unlinkability. Observe that signatures generated
via the procedure in Figure 2.1 are identical to those generated in Figure 2.2 given the same
inputs and randomness, hence the scheme in Figure 2.1 must be at least as secure as the
scheme in Figure 2.2 as it simply releases less information in the identity public key.
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blDilithium-QROM.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)←$ Sℓ
η × Sk

η

3 : t← As1 + s2

4 : t1 ← Power2Roundq(t, d− 1)

5 : t0 ← t− ⌊t1/2⌋ · 2d

6 : pk ← t1

7 : sk ← (s1, s2, t0,K)

8 : return (pk, sk)

blDilithium-QROM.BlindPk(pk = t1, τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : t′ ← As′1 + s′2

3 : t′1 ← Power2Roundq(t
′, d− 1)

4 : t1,τ ← t1 + t′1

5 : pkτ ← t1,τ

6 : return pkτ

blDilithium-QROM.Sign(M, pk = t1, sk = (s1, s2, t0, K), τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : s1,τ ← s1 + s′1

3 : s2,τ ← s2 + s′2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d− 1)

6 : t0,τ ← tτ − ⌊t1,τ/2⌋ · 2d

7 : κ← 0

8 : while (z,h) = (⊥,⊥) and κ ≤ 200/(1− δ) do

9 : κ← κ+ 1

10 : y←$ Sℓ
γ′−1

11 : w← Ay

12 : w1 ← HighBitsq(w, 2γ)

13 : c← H(M∥w1∥t1,τ )
14 : z← y + cs1,τ

15 : if ∥z∥∞ ≥ γ′ − β or
∥∥LowBitsq(w − cs2,τ , 2γ)

∥∥
∞ ≥ γ − β then (z,h)← (⊥,⊥)

16 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

17 : return σ = (z,h, c)

blDilithium-QROM.Verify(M,σ = (z,h, c), pkτ = t1,τ )

1 : w′
1 ← UseHintq(h,Az− ct1,τ · 2d−1, 2γ)

2 : if ∥z∥∞ < γ′ − β and c = H(M∥w1∥t1,τ ) then return accept

3 : else return reject

Figure 2.1: blDilithium-QROM signature scheme.
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blDilithium-QROM Dilithium-QROM
recommended recommended

q 245 − 21283 245 − 21283
n 512 512

(k, ℓ) (4,4) (4,4)

d 7 15

ChSet = {c ∈ R |∥c∥∞ = 1 ∧∥c∥ = . . . }
√
46

√
46

γ 905679 905679
γ′ 905679 905679
η 7 7
β 644 322

BKZ block-size to break LWE 480
Best known classical bit-cost 136
Best known quantum bit-cost 127

Table 2.2: Parameters for the blDilithium-QROM scheme, compared with Dilithium-QROM
parameters.
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blDilithium-QROM′.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)←$ Sℓ
η × Sk

η

3 : t← As1 + s2

4 : t1 ← Power2Roundq(t, d)

5 : t0 ← t− t1 · 2d

6 : pk ← (t1, t0)

7 : sk ← (s1, s2,K)

8 : return (pk, sk)

blDilithium-QROM′.BlindPk(pk = (t1, t0), τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : t′ ← As′1 + s′2

3 : t← t1 · 2d + t0

4 : tτ ← t+ t′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : pkτ ← (t1,τ , t0,τ )

8 : return pkτ

blDilithium-QROM′.Sign(M, pk = (t1, t0), sk = (s1, s2, K), τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : s1,τ ← s1 + s′1

3 : s2,τ ← s2 + s′2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : κ← 0

8 : while (z,h) = (⊥,⊥) and κ ≤ 200/(1− δ) do

9 : κ← κ+ 1

10 : y←$ Sℓ
γ′−1

11 : w← Ay

12 : w1 ← HighBitsq(w, 2γ)

13 : c← H(M∥w1∥pkτ )
14 : z← y + cs1,τ

15 : if ∥z∥∞ ≥ γ′ − β or
∥∥LowBitsq(w − cs2,τ , 2γ)

∥∥
∞ ≥ γ − β then (z,h)← (⊥,⊥)

16 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

17 : return σ = (z,h, c)

blDilithium-QROM′.Verify(M,σ = (z,h, c), pkτ = (t1,τ , t0,τ ))

1 : w′
1 ← UseHintq(h,Az− ct1,τ · 2d, 2γ)

2 : if ∥z∥∞ < γ′ − β and c = H(M∥w1∥pkτ ) then return accept

3 : else return reject

Figure 2.2: blDilithium-QROM′, with extra information in the identity public key.
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2.5.3 blDilithium-QROM Unforgeability

We begin by proving the unforgeability of blDilithium-QROM′ in the context of key-blinded
signature schemes (see Definition 3), which we achieve by emulating the proof found in [103]
while introducing the blinding procedure into relevant algorithms. At a high level, we begin
by defining an identification protocol blDilithium-QROM-ID, addressing four key properties
(naHVZK, correctness, lossiness, and min entropy), and applying the Fiat–Shamir transform
to arrive at a signature scheme equivalent to blDilithium-QROM′. This allows us to leverage
Theorem 3.1 of [103] (with the appropriate modifications to take into account blinding) to
bound AdvEUF−CMEA

blDilithium-QROM(A).

Non Abort Honest Verifier Zero-Knowledge

We begin by showing that blDilithium-QROM-ID is naHVZK with εzk = 0 as defined in
Definition 2.5 of [103]. This entails showing that transcripts of honest interactions of
blDilithium-QROM-ID are statistically indistinguishable from the output of some transcript
simulator that only has access to the public key.

Lemma 3. If maxs∈Sη ,c∈ChSet∥2cs∥∞ ≤ β then blDilithium-QROM-ID is naHVZK with εzk =
0.

Proof. Suppose s1, s2 come from a valid identity keypair i.e. As1 + s2 = t. For a given
z ∈ Sℓ

γ′−β−1 and c ∈ ChSet, the probability z was generated in Trans is equal to

Pr[y←$ Sℓ
γ′−1 | y + c(s1 + s′1) = z] = Pr[y←$ Sℓ

γ′−1 | y = z− c(s1 + s′1)]

Since
∥∥c(s1 + s2)

∥∥
∞ ≤ β, then z− c(s1 + s′1) ∈ Sℓ

γ′−1 thus

Pr[y←$ Sℓ
γ′−1 | y = z− c(s1 + s2)] =

1∣∣∣Sℓ
γ′−1

∣∣∣ .
Hence, every z ∈ Sℓ

γ′−β−1 has an equal probability of being generated. In addition, it follows

that the probability of not producing a z ∈ Sℓ
γ′−β−1 in Trans is 1−

∣∣∣Sℓ
γ′−β−1

∣∣∣ /∣∣∣Sℓ
γ′−1

∣∣∣, so the

distribution of (c, z) is identical between Trans and Sim.

Finally, observe that

w − c(s2 + s′2) = Ay − c(s2 + s′2) = A(z− c(s1 + s′1))− (s2 + s′2) = Az− c(t+ t′).

Thus Trans and Sim produce h from identical distribution as well.

As the output distributions of Trans and Sim are exactly identical, εzk = 0.
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blDilithium-QROM-ID.KeyGen()

1 : (s1, s2)←$ Sℓ
η × Sk

η

2 : t← As1 + s2

3 : t1 ← Power2Roundq(t, d)

4 : t0 ← t− t1 · 2d

5 : pk ← (t1, t0)

6 : sk ← (s1, s2, pk)

7 : return (pk, sk)

blDilithium-QROM-ID.Prv1(sk = (s1, s2, pk), τ)

1 : y←$ Sℓ
γ′−1

2 : w← Ay

3 : w1 ← HighBitsq(w, 2γ)

4 : return (W = w1, St = (w,y))

blDilithium-QROM-ID.Prv2(sk = (s1, s2, pk),W = w1, c, St = (w,y), τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : s1,τ ← s1 + s′1

3 : s2,τ ← s2 + s′2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : z← y + cs1,τ

8 : if ∥z∥∞ ≥ γ′ − β or
∥∥LowBitsq(w − cs2,τ , 2γ)

∥∥
∞ ≥ γ − β then (z,h)← (⊥,⊥)

9 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

10 : return Z = (z,h)

blDilithium-QROM-ID.Verify(pk = (t1, t0),W = w1, c, Z = (z,h), τ)

1 : (s′1, s
′
2)← G(pk∥τ)

2 : t′ ← As′1 + s′2

3 : t← t1 · 2d + t0

4 : tτ ← t+ t′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : if ∥z∥∞ < γ′ − β and w1 = UseHintq(h,Az− ct1,τ · 2d, 2γ) then return accept

8 : else return reject

Figure 2.3: Key generation, proving, and verification algorithms for blDilithium-QROM-ID.

Correctness

We now consider the correctness error of blDilithium-QROM-ID in the sense of Definition
2.3 of [103], which involves the probability of both the prover failing and the verifier failing
on a valid output of the prover.
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Trans

1 : (s′1, s
′
2)← G(pk∥τ)

2 : s1,τ ← s1 + s′1

3 : s2,τ ← s2 + s′2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : y←$ Sℓ
γ′−1

8 : w← Ay

9 : w1 ← HighBitsq(w, 2γ)

10 : c←$ ChSet

11 : z← y + cs1,τ

12 : if ∥z∥∞ ≥ γ′ − β then return (⊥, (⊥,⊥))
13 : if

∥∥LowBitsq(w − cs2,τ , 2γ)
∥∥
∞ ≥ γ − β then

14 : return (⊥, (⊥,⊥))
15 : h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

16 : return (c, (z,h))

Sim

1 : (s′1, s
′
2)← G(pk∥τ)

2 : t′ ← As′1 + s′2

3 : t← t1 · 2d + t0

4 : tτ ← t+ t′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : with probability 1−

∣∣∣Sℓ
γ′−β−1

∣∣∣∣∣∣Sℓ
γ′−1

∣∣∣ return (⊥, (⊥,⊥))

8 : z←$ Sℓ
γ′−β−1

9 : c←$ ChSet

10 : if
∥∥LowBitsq(Az− ctτ , 2γ)

∥∥
∞ ≥ γ − β then

11 : return (⊥, (⊥,⊥))
12 : h← MakeHintq(−ct0,τ ,Az− ctτ + ct0,τ , 2γ)

13 : return (c, (z,h))

Figure 2.4: Real and simulated transcripts of the blDilithium-QROM-ID protocol.

Lemma 4. If maxs∈Sη ,c∈ChSet∥2cs∥∞ ≤ β, maxt0∈S′
2d

,c∈ChSet∥2ct0∥∞ ≤ γ, β ≪ γ′, and

β + 1 < 2β, then blDilithium-QROM-ID has correctness error

δ ≈ 1− exp

(
−βn

(
ℓ

γ′
+

k

γ

))
.

Proof. We begin by computing the probability Prv1 or Prv2 does not output (⊥, (⊥,⊥)).
The probability (⊥, (⊥,⊥)) is not output in line 12 of Trans is simply the probability it is
not output in line 7 of Sim, thus this probability is∣∣∣Sℓ

γ′−β−1

∣∣∣∣∣∣Sℓ
γ′−1

∣∣∣ =

(
2(γ′ − β)− 1

2γ′ − 1

)nℓ

>

(
1− β

γ′

)nℓ

≈ exp

(
−βnℓ

γ′

)

as β ≪ γ′. On the assumption that the distribution of Az− c(t+ t′) mod 2γ is close to
uniform when z ∈ Sk

γ′−β−1 is uniformly sampled, then the probability (⊥, (⊥,⊥)) is not

32



output in line 14 of Trans or equivalently line 11 of Sim is

Pr[z←$ Sℓ
γ′−β−1 |

∥∥LowBitsq(Az− c(t+ t′))
∥∥
∞ < γ − β] ≈

∣∣∣Sk
γ−β−1

∣∣∣∣∣∣Sk
γ−1

∣∣∣ ≈ exp

(
−βnk

γ

)
.

Hence

Pr[y←$ Sℓ
γ′−1, c←$ ChSet | (z,h) ̸= (⊥,⊥)] ≈ exp

(
−βn

(
ℓ

γ′
+

k

γ

))
.

Finally, assume (z,h) ̸= (⊥,⊥). Then blDilithium-QROM-ID.Verify will always accept.
Clearly, ∥z∥∞ < γ′ − β. Also, since

w − c(s2 + s′2) = Az− c(t0 + t′0)− c(t1 + t′1) · 2d

and
∥∥c(t0 + t′0)

∥∥
∞ < γ and

∥∥LowBitsq(w − c(s2 + s′2), 2γ)
∥∥
∞ < γ − β, by Lemmas 4.1 and

4.2 of [103],

UseHintq(h,Az− c(t1 + t′1) · 2d, 2γ) = HighBitsq(w − c(s2 + s′2), 2γ) = w1

Hence, blDilithium-QROM-ID has correctness error based solely off of the probability Prv
fails, thus

δ ≈ 1− exp

(
−βn

(
ℓ

γ′
+

k

γ

))
.

Lossiness

We now show that a bounded adversary has trouble distinguishing valid identity public
keys as done in Fig 2.3 and randomly generated identity public keys as done in Fig 2.5. In
addition, given a randomly generated identity public key, any unbounded adversary has
only a little more than 1/|ChSet| probability of impersonating the prover. More concretely,
we address these two properties as defined in Definition 2.8 of [103].

Lemma 5. For any adversary A,

AdvLOSS
blDilithium-QROM-ID(A) = AdvSA-MLWE

k,ℓ,U (A)

where U is the uniform distribution over Sη.
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blDilithium-QROM-ID.LosKeyGen()

1 : t←$ Rk
q

2 : t1 ← Power2Roundq(t, d)

3 : t0 ← t− t1 · 2d

4 : return pk = (t1, t0)

Figure 2.5: Lossy key generator of blDilithium-QROM-ID.

Game LOSSY-IMP

1 : pkls = (t1, t0)← blDilithium-QROM-ID.LosKeyGen()

2 : (w1, τ, St)← A(pkls)
3 : c← ChSet

4 : (z,h)← A(St, c, τ)
5 : return Verify(pkls,w1, c, (z,h))

Figure 2.6: LOSSY-IMP game.

Proof. Differentiating between the output of blDilithium-QROM-ID.KeyGen and
blDilithium-QROM-ID.LosKeyGen is clearly equivalent to differentiating between MLWE
samples with static A and uniform samples over Rk

q .

Lemma 6. If q ≡ 5 (mod 8), maxs∈Sη ,c∈ChSet∥2cs∥∞ ≤ β, 4γ+2dβ+2, 2γ′+(2d−2)β−2 <√
q/2, and 2d < 4γ′ + (2d+1 − 4)β − 4, then blDilithium-QROM-ID has εls-lossy soundness

for

εls ≤
1

|ChSet|
+ 2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)ℓ · (8γ + 2d+1β + 5)k

qk

)n

.

Proof. Let A be an unbounded adversary executed in the LOSSY-IMP game as shown in
Fig 2.6. We first consider the case where there exist two distinct (c, (z,h)), (c′, (z′,h′)) such
that A is able to impersonate the prover. It follows that ∥z∥∞ ,∥z′∥∞ < γ′ − β and

w1 = UseHintq(h,Az− (t1 + t′1)c · 2d, 2γ) = UseHintq(h
′,Az′ − (t1 + t′1)c

′ · 2d, 2γ)

Thus by Lemma 4.1 of [103]∥∥∥Az− (t1 + t′1)c · 2d −w1 · 2γ
∥∥∥
∞
≤ 2γ + 1,
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∥∥∥Az′ − (t1 + t′1)c
′ · 2d −w1 · 2γ

∥∥∥
∞
≤ 2γ + 1.

So by the triangle equality,∥∥∥A(z− z′)− (t1 + t′1) · (c− c′) · 2d
∥∥∥
∞
≤ 4γ + 2

Hence, for some u such that ∥u∥∞ ≤ 4γ + 2,

A(z− z′ − s′1 · 2d(c− c′)) + (u− s′2 · 2d(c− c′)) = t1 · 2d(c− c′).

Since ∥2cs1∥∞ ≤ β, then
∥∥z− z′ − s′1 · 2d(c− c′)

∥∥
∞ ≤ 2(γ′ − β − 1) + 2dβ and∥∥u− s′2 · 2d(c− c′)

∥∥
∞ ≤ 4γ + 2 + 2dβ, then by Lemma 4.6 of [103], the above equation is

satisfied with probability

2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)ℓ · (8γ + 2d+1β + 5)k

qk

)n

.

In the case where there is only one c that allows A to impersonate the prover, then A only
has a 1/|ChSet| probability of winning the LOSSY-IMP game. The Lemma follows from
combining probabilities of both these cases.

Min Entropy

We finally consider the probability that the w1 output is distinct for every run of the prover.
As Prv1 is identical between Dilithium-QROM-ID and blDilithium-QROM-ID, Lemma 4.7 of
[103] applies directly to this setting. As such, we restate Lemma 4.7 here.

Lemma 7 (Lemma 4.7 of [103]). If 2γ, 2γ′ <
√

q/2 and ℓ ≤ k then blDilithium-QROM-ID
has

α > nℓ · log

(
min

(
q

(4γ + 1)(4γ′ + 1)
, 2γ′ − 1

))
bits of min-entropy as defined in Definition 2.6 of [103].

Unforgeability under Chosen Message and Epoch Attack

We now arrive at showing the unforgeability of blDilithium-QROM in the context of blinded
signature schemes. First observe that FS[blDilithium-QROM-ID,H, 200

1−δ ] is equivalent to

blDilithium-QROM′.

The following Theorem is a direct result of preceding Lemmas as well as the techniques
used to prove Theorem 3.1 of [103].
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Theorem 1. Let A be any adversary that makes at most qH hash queries and qS signing
queries against the unforgeability of blDilithium-QROM′ with parameters as specified in
Figure 2.2, with key generation min-entropy 2−hpk . Then there exists an algorithm B such
that

AdvEUF−CMEA
blDilithium-QROM(A) ≤ AdvSA-MLWE

k,ℓ,U (B) + qHqS · 2−hpk + 8(qH + 1) · 2−137 + qS2
−2899

where Time(B) ≈ Time(A) + κmqHqS.

Proof. We want to adapt Theorem 3.1 of [103] to our context of existential unforgeability
under chosen message and epoch attack. To begin, we summarize the structure of the
proof of Theorem 3.1. We note that this theorem is interested in establishing the quantum
random oracle model security of the Fiat-Shamir transformation for lossy ID schemes.
However because we are only interested in the classical random oracle model security, we
use the classical version of the theorem. As the authors note, the only difference between
the two bounds is whether one of the terms is linear or quadratic in qH .

The proof of existential unforgeability is established in two steps: first they show that
the lossiness property implies existential unforgeability with respect to a key-only adversary.
They then show that if a scheme is secure against a key-only adversary, and also is naHVZK
and the min-entropy of the commitment (as canonical ID scheme) has sufficient min-entropy,
then the scheme is existentially unforgeable.

We now consider how these two steps must change to properly account for the additional
powers we give the adversary leveraged by blinding. In the first step, we want to show
that it is impossible for the adversary to create signatures for a lossy public key. The only
modification that blinding introduces here is that the adversary is permitted to blind the
identity public key however they would like, and then attempt to create a forgery with
respect to that blinding. So, we work with a slightly altered version of lossiness to consider
this. This is what we address with Lemma 6, showing that even with this additional degree
of freedom, constructing forgeries for a lossy key is still impossible.

Thus making the same arguments as in [103], we have that

AdvEU-CMEA
blDilithium-QROM(AKO) ≤ AdvLOSS

blDilithium-QROM-ID(B) + 8(qH + 1) · εls. (2.1)

As mentioned previously, this bound depends linearly on qH , as we are working in the
classical random oracle model.

By Lemma 5,
AdvLOSS

blDilithium-QROM-ID(B) = AdvSA-MLWE
k,ℓ,U (B)
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where U is the uniform distribution over Sη. By Lemma 6,

εls ≤
1

|ChSet|
+ 2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)ℓ · (8γ + 2d+1β + 5)k

qk

)n

.

Substituting in the parameters from Figure 2.2 and noting that the magnitude of |ChSet| is(
512
46

)
· 246 > 2265, we get that εls ≤ 2−265 + 2−138 ≤ 2−137.

The next step is to relate the EU-CMEA security to the EU-CMEA security against a
key-only adversary. In [103] this is done in Theorem 3.3 by a game hopping argument and
using the naHVZK property to simulate signatures. In Figures 2.7 and 2.8 we illustrate
their proof, adapted to incorporate blinding. Note that line comments indicate which line
of code is run in each game. If a line is unannotated, it is run in all four game hops. Game
0 is the plain EU-CMEA game, and so AdvEU-CMEA

blDilithium-QROM(A).
In Game 1, we modify the how the random oracle and the blinding oracle interact

with each other. Whenever the adversary queries G(pk∥τ), we answer honestly, returning
(s′1, s

′
2). If pk is the identity public key, we also calculate the corresponding pkτ and add

(pk, τ, pkτ = (t1,τ , t0,τ ) to a maintained table T . We then abort if the following sequence of
events (denoted event E1) happens:

1. The adversary queries H(msg∥w1∥t1,τ ), with t1,τ not appearing as part of any public
key in the table T .

2. The adversary later makes a query (pk∥τ) to G where pk is the identity public key
and this causes t1,τ to be added to T .

Since we are not changing any distributions or how oracles are run, we only need to consider
the probability of event E1 to bound the difference between these two games. E1 essentially
means that the adversary was able to ‘guess’ a blinded public key prior to actually querying
to get that public key, so the probability of E1 can be determined from the entropy of the
blinding process. The entropy of the blinding process is straightforward to consider for
Dilithium-QROM, as we simply sample a new secret key, generate the associated public key,
and add it to the identity key. So the entropy of the blinded public key given the identity
public key is simply the entropy of the plain key generation process. As a result we can see
that Pr[E1] ≤ qHqS · 2−hpk .

In Game 2, the naHVZK property is used to simulate the signing oracle instead of properly
signing messages. With blinding being introduced, we now require that the naHVZK property
can hold with respect to any blinding that the adversary that the adversary might use for
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Game Structure

1 : (pk, sk)← blDilithium-QROM′.KeyGen()

2 : (msg∗, τ∗, σ∗)← AH,G,Sign(pk)

3 : Parse σ∗ = (c∗, z∗,h∗)

4 : pkτ∗ = (t1,τ∗ , t0,τ∗)← blDilithium-QROM′.BlindPk(pk, τ∗)

5 : w∗1 ← UseHintq(h
∗,Az∗ − c∗t1,τ∗ · 2d, 2γ)

6 : if c∗ ̸= H ′(msg∥w∗1∥pkτ∗) then return 0 // G3

7 : return (msg∗, τ∗) /∈M∧ blDilithium-QROM′.Verify(msg∗, σ∗, pkτ∗)

GetTrans(msg, τ, i)

1 : pkτ ← blDilithium-QROM′.BlindPk(pk, τ)

2 : κ = 0

3 : while z =⊥ and κ ≤ κm do

4 : κ← κ+ 1

5 : (w1, c, (z,h))← Sim(pkτ ;RF(msg∥pkτ∥κ∥i))
6 : return (w1, c, (z,h))

Sign(msg, τ)

1 : return blDilithium-QROM.Sign(msg, pk, sk, τ) // G0, G1

2 : ctrmsg ← ctrmsg + 1 // G2, G3

3 : M←M∪ {(msg, τ)} // G2, G3

4 : (w1, c, (z,h)← GetTrans(msg, τ, ctrmsg) // G2, G3

5 : return (c, (z,h)) // G2, G3

Figure 2.7: Illustrating the game-hopping proof for reducing existential unforgeability to
key-only security for blDilithium-QROM′.

their blinding query, which is what we prove in Lemma 3. Therefore, we rely on the same
logic used to prove Theorem 3.3 of [103] to note that the difference between games 1 and 2
are at most κmqSεzk, where κm = 200

1−δ is informed from the correctness error.

In more detail, we use the Sim procedure in Figure 2.4 to sign messages. For a (msg, τ )
pair we define a GetTrans(msg, τ, ctr) oracle used to generate valid transcripts. This
oracle operates by running the Sim procedure, with the randomness seeded by the string
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G(pk∥τ)

1 : if pk is the identity public key provided to A // G1, G2, G3

2 : // Use G’ here to prevent recursion

3 : pkτ ← blDilithium-QROM.BlindPk(pk, τ) // G1, G2, G2

4 : if pkτ ∈ B abort // G1, G2, G2

5 : T ← T ∪ {(τ, pkτ )} // G1, G2, G3

6 : return G′(pk∥τ)

H(w1∥msg∥pkτ )

1 : if (τ, pkτ ) /∈ T // G1, G2, G3

2 : B ← B ∪ {pkτ} // G1, G2, G3

3 : return H ′(w1∥msg∥pkτ ) // G2, G3

4 : for i in{1, . . . , qS} // G2, G3

5 : (w′1, c, (z,h))← GetTrans(msg, τ, i) // G2, G3

6 : if w′1 = w1 return c // G2, G3

7 : return H ′(w1∥msg∥pkτ )

Figure 2.8: Illustrating how random oracles are managed in game-hopping proof of Fig-
ure 2.7.

msg∥pkτ∥κ∥ctr, where ctr counts how many times the adversary has made this specific
signing query and κ counts how many times Sim has failed to produce a transcript for
this query. If the result is (⊥, (⊥,⊥)) then we increment κ and try again. Otherwise
return (w1, c, (z,h)), where w1 = UseHintq(h,Az− ct1,τ · 2d, 2γ). If after κm = 200/(1− δ)
attempts we have failed to get a successful transcript, return (⊥,⊥, (⊥,⊥)).

We then can simulate the signing oracle as follows. When a query (msg, τ) is made
for the ith time, generate (w1, c, (z,h)) ← GetTrans(pk, τ, i). Return σ = (c, z,h). The
naHVZK property gives us that the distribution of the signature provided to the adversary
has a statistical difference of at most κmqSϵzk from how signatures are meant to be truly
generated.

However, we also need to make sure that the random oracle H is handled in such a
way that these signatures actually verify. To do this, we use the GetTrans oracle to check
and see if a query needs to be modified. We start with an ‘unmodified’ hash function H ′.
When the adversary makes a query of the form msg∥w1∥pkτ to H, we use the lookup table
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T to find the τ value that blinded pk to pkτ . If pkτ does not appear in T , then we simply
rely on H ′ to answer the query. Otherwise, we check and see if the w1 part of the query
matches with a possible signing query the adversary has made or might make, and if it is,
return the c required to make it consistent.

Note that this will result in a consistent query response, unless the adversary makes a
query H(w1∥msg∥pkτ ) where (τ, pkτ ) is not in T , but then later it becomes added to T ,
for some τ , causing an inconsistency in the responses of H. But this is precisely the event
E1, and we have already considered its probability.

Finally, in Game 3, we return 0 if for the forgery submitted we have that c∗ ̸=
H ′(msg∥w∗1∥pkτ∗). In other words, we return 0 if the forgery submitted is on a ‘pro-
grammed’ point of the random oracle. But this means there exists a value 1 ≤ ctr ≤ qS with
w∗1 matching w1 from GetTrans(msg∗, τ ∗, ctr), but (msg∗, τ ∗) /∈ M. But this means that
this associated w1 has not been revealed as part of any signing query and no information
about it has been revealed. So, for the adversary to “predict” the value, we need to consider
its min-entropy, α. Following the logic in the original proof, we have that the difference in
the success probabilities in Games 2 and 3 is at most qS2

−α+1.

Finally, we need to consider the success probability in Game 3. Here, we note that no
signing queries are being made. As well, if the adversary succeeds (and ‘1’ is returned) in
Game 3, we have that this is a valid forgery with respect to the hash function H ′. In other
words, we have made no signing queries (relying entirely on simulating transcripts and
programming the random oracle), but have a forgery valid for an un-programmed oracle H ′.
Thus we can bound the success probability of the adversary in this game by the key-only
success probability.

So, we have that

AdvEU-CMEA
blDilithium-QROM(A) ≤ qHqS · 2−hpk + κmqS · ϵzk + qS · 21−α +AdvEU-CMEA

blDilithium-QROM(AKO).

By Lemma 3, εzk = 0. Finally, by Lemma 7, 21−α < 2−2899. Combining this with
Equation 2.1 we get the desired result.

2.5.4 blDilithium-QROM Unlinkability

We now proceed to showing that blDilithium-QROM′ is unlinkable, and begin by demon-
strating that it satisfies the independent blinding property.
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Lemma 8. If the SA-MWLE problem is hard, then blDilithium-QROM′ satisfies independent
blinding. In particular, for any adversary A, there exists an adversary B such that

AdvInd−Blind
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U ,A (B)

where U is the uniform distribution over Sη.

Proof. We begin by defining the RandBlind function for blDilithium-QROM′ as identical to
BlindPk except that (s′1, s

′
2) are uniformly sampled from Sℓ

η × Sk
η rather than output from

G(pk∥τ).

Let G0 be a game where A is given independent blindings of a single identity public key
and game G4 be a game where A is given independent blindings of independent identity
public keys.

We first introduce a game G1 which differs from G0 in that each output of RandBlind,
specifically t0+ t′i for 1 ≤ i ≤ t where t′i is an SA-MLWE sample, is replaced with t0+ t̃′i for
1 ≤ i ≤ t where t̃′i is randomly and uniformly sampled from Rk

q . Note that any adversary A
that can differentiate between a single sample t0 + t′ and t0 + t̃′ can be used to construct
an adversary B that differentiates between plain SA-MLWE samples, as the SA-MLWE
challenge can be transformed into an input A uses by simply adding t0 to the challenge. As
we must replace each of the t samples of t0 + t′i individually, the triangle equality implies
that

∣∣Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]
∣∣ ≤ tAdvSA-MLWE

m,k,U ,A (B).

We now introduce G2, which is identical to G1 except that each sample t0 + t̃′i for
1 ≤ i ≤ t is replaced with a sample t̃i where t̃i is randomly and uniformly sampled from Rk

q .

Recall that t̃′i is randomly and uniformly sampled from Rk
q , thus it is effectively randomly

permuting t0 over Rk
q so G1 and G2 are indistinguishable.

In G3, we now take the reverse step of replacing each t̃i for 1 ≤ i ≤ t in G2 with
ti + (t̃i − ti). Note t̃i − ti is uniformly random over Rk

q . G3 is clearly equivalent to G2.

Finally, we make the hop from G3 to G4 by replacing each ti + (t̃i − ti) with ti + t′i
where t′i is an MLWE sample for 1 ≤ i ≤ t. As t̃i − ti is uniformly random over Rk

q , the
bound in the difference between G3 and G4 is the same as the bound in the difference
between G0 and G1. Hence by the triangle equality,∣∣∣Pr[AG0 ⇒ 1]− Pr[AG4 ⇒ 1]

∣∣∣ = AdvInd−Blind
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U ,A (B).
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We now show that blDilithium-QROM′ permits signing with oracle reprogramming as
specified in Definition 4. Let Forge output (y = c, σ = (z,h, c)) where z, h, and c are output
from Sim in Figure 2.4. In addition, let Ext output M∥UseHintq(h,Az− ct1,τ · 2d, 2γ)∥t1,τ .
Since by Lemma 3 blDilithium-QROM′ is naHVZK given appropriate parameters, then real
signatures and the output of Forge are drawn from the exact same distributions, thus δ = 0.
Furthermore, the min entropy of Ext is solely dependent on w1 = Az − ct1,τ · 2d, as the
adversary has control over M and knowledge of t1,τ , hence the min entropy of Ext is the
same as the min entropy from Lemma 7.

We are now ready to consider unlinkability under chosen message and epoch attack,
which follows directly from the preceding Lemmas as well as the Lemmas in Section 2.4.

Theorem 2. For any adversary A that makes qS signing queries and qH random oracle
queries, there exists an algorithm B such that

AdvUL−CMEA
blDilithium-QROM,t(A) ≤ 4tAdvSA-MLWE

m,k,U ,A (B1) + qHAdvEUF−CMEA
blDilithium-QROM(B2) + qHqS2

−2899.

2.5.5 Key-blinding DILITHIUM

We briefly describe a key-blinded version of Dilithium [65] but we provide no security analysis
or guarantees.

As is with blDilithium-QROM, A is a public parameter of the network and thus ρ can
be omitted from the scheme. In addition, Power2Round is modified to release one extra bit
for t1 while keeping t0 the same. The appropriate changes to Sign and Verify are made in a
similar fashion to the changes made from Dilithium-QROM to blDilithium-QROM.

Note that during signing, tr may be recomputed as it is dependent solely on the
identity public key and not the blinded public key. One possibility could be to set
tr = CRH(s1,τ , ∥s2,τ ).

No parameters need to be changed to modify the correctness of the blinded scheme.

2.6 An Isogeny-Based Key-Blinding Scheme

In this section we briefly describe how to realize a key-blinding signature scheme from
CSI-FiSh [38], which is an isogeny-based signature scheme that uses the structure of the
CSIDH [49] group action. The ‘group’ here refers to class group Cl(O), with O being the
endomorphism ring EndFp(E), the ring of endomorphisms from a curve E to itself defined
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over Fp, which is an order in the imaginary quadratic field Q(
√
−p). A main contribution

of the CSI-FiSh paper was to calculate the precise structure of this group, so that it can be
described as a cyclic group of order N . This allows for two crucial operations with respect
to the group action: group elements can now be sampled uniformly from the group, and
group elements can now be given a canonical representation as a member of ZN , so that
for example, when revealing to an adversary a group element g = g1 · g2, we can be assured
that no information about g1 or g2 is leaked by how g is represented.

For our purpose, we will describe the scheme as an abstract group action, and avoid
notation that refers to how the group is actually constructed. For complete details about
the group action we refer to the CSI-FiSh paper [38].

We briefly recall the details of a group action. We have a group G and a set E along
with an operation ⋆ : G× E → E . The operation ⋆ satisfies the property that if id ∈ G is
the identity group element, then id ⋆ E = E for all E ∈ E . Furthermore, for g1, g2 ∈ G, it
must be the case that g1 ⋆ (g2 ⋆E) = (g1 · g2) ⋆E. In fact, the group action described in [38]
is both free and transitive, meaning that for E1, E2 ∈ E there is one and only one g ∈ G
such that g ⋆ E1 = E2. Furthermore, the group G in our case is cyclic, and we will denote
the order N .

In CSI-Fish, signatures correspond to a zero-knowledge proof of knowledge of a secret
group element gsk such that gsk ⋆ E0 = Epk, with Epk being the public key and E0 being a
system parameter. Proving knowledge of such a gsk is done via a simple sigma protocol.
The commitment is created by uniformly sampling g←$ G and computing Ecom = g ⋆ Epk

as the commitment. The verifier then selects a bit b←$ {0, 1} as the challenge, and the
prover responds by sending g if b = 0, and g · gsk if b = 1.

The verifier then checks: if b = 0 that g⋆Epk = Ecom; and if b = 1 that (g·gsk)⋆E0 = Ecom.
Soundness follows from the fact that, from two responses g and g ·gsk, the secret key gsk can
quickly be recovered. Honest-verifier zero-knowledge can be shown by simulating transcripts
in a straightforward way (here we rely on the fact that group elements have a canonical
representation).

The basic idea of how key-blinding functionality can be added to the scheme is already
apparent. From a value τ , a group element gτ can be generated, and the public key Epk

is blinded to Eτ = gτ ⋆ Epk. Anyone who knows the public key and τ can perform this
operation, but to sign a message, one must know gτ and gsk so the scheme is still unforgeable.
Furthermore, because the group action is transitive, the action of gτ entirely hides Epk.
Observing many blindings still leaks no information about Epk, ensuring that the scheme is
unlinkable.

Of course, the soundness of this zero-knowledge scheme is only 1/2, and would have to
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blCSI-FiSh.KeyGen()

1 : for i ∈ [L] do

2 : gsk,i←$ ZN

3 : Epk,i ← gsk,i ⋆ E0

4 : endfor

5 : return (pk, sk) = ((Epk,i)i∈[L], (gsk,i)i∈[L])

blCSI-FiSh.BlindPk((Epk,i)i∈[L], τ)

1 : (gτ,i)i∈[L] ← KDF ((Epk,i)i∈[L]∥τ)
2 : for i ∈ [L] do

3 : Eτ,i ← gτ,i ⋆ Epk,i

4 : endfor

5 : return pkτ = (Eτ,i)i∈[L]

Figure 2.9: Key generation and blinding algorithms for blCSI-FiSh signature scheme.

be repeated many times in order for the signature scheme to be existentially unforgeable.
The authors of CSI-FiSh employed many clever techniques in order to improve on the
efficiency of the scheme over just repeating the signature scheme 128 times. Most notably,
the public keys of CSI-FiSh consist of many curves Epk,1, Epk,2, . . . , Epk,L, generated by
computing gsk,1 ⋆E0, gsk,2 ⋆E0, etc. Then rather than choosing a single bit for the challenge,
an index from 0 to L can be chosen. This increases the soundness significantly, and so the
protocol can be repeated fewer times to achieve the same level of security, allowing for a
trade-off between the signature size and the public key size. To blind, we can similarly
sample independent blinding factors gτ,1, gτ,2, . . . and apply each of them to each part of
the public key.

CSI-FiSh uses a further technique to then double the number of available elliptic curves
in the public key without increasing the corresponding size of the public key. For each
curve Epk,i, anyone can compute the quadratic twist of the curve, Et

pk,i, and the associated
secret key is −gsk,i (mod N). So if the public key contains L elliptic curves, the verifier
can expand this to 2L curves, and we choose an index from −L to L. To account for this
in signing, we simply set gsk,−i = −gsk,i for each i ∈ [L].

The last optimization that CSI-FiSh optionally takes is to then ‘Merkleize’ the public
key. Rather than including each of Epk,1, . . . , Epk,L, key generation commits to these public
keys by constructing a Merkle tree with each curve as a leaf node. When signing a message,
each Epk,i that gets used, as well as the Merkle path that proves the commitment, is
provided. This causes the public key to be only 32 bytes, at the expense of increasing the
size of signatures and making signing and verification slightly slower. Unfortunately, it
is not possible to use this technique for a blinded version. The raw Epk,i values must be
available in order to construct the blinded version of the public key, and so ‘Merkleization’
is impossible.
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Next, we describe signing and verification, which are essentially unchanged from in CSI-
FiSh. We also prove the unlinkability of the scheme, and discuss the proof of unforgeability
of the scheme. The greatest benefit of the CSI-FiSh scheme is that it requires the fewest
changes to signing and verification. In this sense it is the most similar to the Ed25519
key-blinding scheme, where the public and secret keys are blinded in a straightforward way
and signing and verification need not change. In Figure 2.10 we describe the signing and
verification procedures. Note that except for the fact that the signing procedure starts by
blinding the public key and incorporating the blinding factor into the secret key, it is not
changed from in CSI-FiSh.

2.6.1 Unlinkability

To show that the scheme satisfies unlinkability, we need to prove the independent blinding
property and the signing with oracle reprogramming property. We begin with the easier of
the two, independent blinding. CSI-FiSh in fact satisfies the strongest possible independent
blinding, as the adversary’s advantage in distinguishing the two distributions is statistically
0. This is because the the distribution of RandBlind(pk, r) for a uniform r is actually uniform
over the entire public key space and independent of pk.

This fact comes from the group action structure. Because we are using a regular group
action, the act of sampling a group element gτ,i←$ ZN and applying it to Epk,i provides
a uniformly random element of the set, the distribution of which is thus independent of
Epk,i. So the act of blinding each entry in the public key with a uniform group element
causes the entire public key to be perfectly uniformly random and independent, and thus
the adversary’s advantage in distinguishing the two distributions is 0.

For the signing with oracle reprogramming property, the proof is again a relatively
straightforward consequence of the Fiat–Shamir paradigm. By choosing the indices
(c1, . . . , cM) that will be returned from H in advance, we can easily construct a signa-
ture that will verify by selecting ri←$ ZN and computing Ei ← ri ⋆ Eci . It is easy to check
the correctness and to see that the fact that our group action is free and transitive will
guarantee that the distribution of the signatures generated is statistically identical. Fur-
thermore, the Extract function will return the point E1|| . . . ||EM ||msg, and as the Ei have
a distribution uniform over the set (which has size roughly 2256), the resulting min-entropy
is 2256M , more than sufficient.
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blCSI-FiSh.Sign(msg, pk = (Epk,i)i∈[L], sk = (gsk,i)i∈[L], τ)

1 : (gτ,i)i∈[L] ← KDF ((Epk,i)i∈[L]||τ)
2 : for i ∈ [L] do

3 : gτ,i ← gτ,i + gsk,i (mod N)

4 : gτ,−i ← −gτ,i (mod N)

5 : endfor

6 : gτ,0 ← 0

7 : for i ∈ [M ] do

8 : bi←$ ZN

9 : Ei ← bi ⋆ E0

10 : endfor

11 : (c1, . . . , cM )← H(E1||E2|| . . . EM ||msg), ci ∈ {−L, . . . , L}.
12 : for i ∈ [M ] do

13 : ri ← bi − gτ,ci (mod N)

14 : endfor

15 : return σ = (r1, . . . , rM , c1, . . . , cM )

blCSI-FiSh.Verify(msg, blpk = (Eτ,i)i∈[L], σ = (r1, . . . , rM , c1, . . . , cM))

1 : Let Eτ,−i = Et
τ,i, the quadratic twist

2 : for i ∈ [M ] do

3 : Ei ← ri ⋆ Eτ,ci

4 : endfor

5 : if (c1, . . . , cM ) = H(E1|| . . . ||EM ||msg) then return accept

6 : else return reject

Figure 2.10: Signing and Verification algorithms for blCSI-FiSh signature scheme.
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2.6.2 Unforgeability

The proof of unforgeability is straightforward and not particularly impacted by the addition
of blinding. In the CSI-FiSh paper [38], the security of the scheme is proven by showing
that the scheme satisfies special soundness, unique responses, large min entropy and satisfies
honest-verifier zero knowledge. None of these proofs are changed by the addition of the
blinding factor. The blinding factor merely introduces an arbitrary ‘offset’ for each of
the parts of the public key, but this offset does not materially change anything about the
security of the scheme, even if an adversary knows the offset.

2.7 Extending LegRoast with Key-Blinding

LegRoast and PorcRoast are new adaptations of Picnic that use the Legendre symbol as
a symmetric PRF [34, 58]. In this section we show how the mathematical structure of
LegRoast enables a more efficient key-blinding signature scheme compared to näıvely using
the MPC-in-the-head framework.

Recall that the Legendre symbol modulo a prime p, denoted (a
p
), is defined as 0 if

a ≡ 0 (mod p), 1 if a is a quadratic residue modulo p, and −1 if it is not. To use the
Legendre symbol as a single-bit keyed PRF with input X and key K, we can define a
function that returns values in {0, 1}. For an odd prime p, define LK(X) to return 0 if
K+X is a quadratic residue or 0 (mod p), and 1 otherwise. This concept can be generalized
to consider the ℓ-th power residue, instead of just quadratic residues. This allows for a
keyed PRF with log2 ℓ bits of output to be defined as

Lℓ
K(X) =

{
i, if (X +K)/gi ≡ hℓ (mod p) for some h ∈ F×p
0, if K +X ≡ 0 (mod p).

A key property of this PRF is that it is a group homomorphism from F×p to Zℓ. This is
helpful for proving statements in zero-knowledge about preimages of the PRF. To prove
knowledge of a K such that Lℓ

K(X) = s, one can sample a random value r ∈ F×p and send
(K + X) · r and Lℓ

0(r). The prover then only needs to prove that the multiplication of
(K + X) · r was computed correctly for the verifier to calculate s and be convinced of
knowledge of K.1 Since the equation being proven consists of a single multiplication gate,
the resulting proof can be comparatively short.

1The verifier must also be convinced that the prover did not lie about the value of Lℓ
0(r). This is

accomplished by having the prover commit to this value before the challenge X is issued, so that the prover
cannot choose the output of the PRF in a way to help them.
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LegRoast and PorcRoast [34] expand this idea into a signature scheme that uses the
Fiat–Shamir heuristic. In LegRoast, the 1-bit Legendre PRF is used, while PorcRoast uses
the generalized log2 ℓ-bit output. In general, we do not distinguish between the two, and
present the scheme with the general log2 ℓ-bit PRF. Public keys consist of the output of
L computations of the Legendre PRF, with inputs I = i1, . . . , iL, which can be public
parameters. We define the function F , which is parameterized by ℓ and I, as taking in the
secret key K and returning Lℓ

K(im) for m ∈ [L]. Hence, key generation consists of sampling
a random secret key K ∈ F×p and computing the public key F ℓ

I(K) =
(
Lℓ

K(i1), . . . ,Lℓ
K(iL)

)
.

The same homomorphic property that makes the Legendre symbol an attractive option
for zero knowledge proofs is also what allows for a blinding mechanism. Hashing the nonce
and public key to a value T ∈ F×p , we can calculate L computations of the Legendre PRF
with separate inputs j1, . . . , jL. The public key blinded under the value T becomes(

Lℓ
K(i1) + Lℓ

T (j1), . . . ,Lℓ
K(iL) + Lℓ

T (jL)
)
,

where addition is performed modulo ℓ. Due to the homomorphic property of L, this can
also be written as

(
Lℓ

0((K + im) · (T + jm))
)
m∈[L].

As mentioned, LegRoast works by presenting parts of the public key multiplied by
random values r(j) ∈ F×p , the results of which are denoted by o(j). Then the signer proves
knowledge of K by presenting a zero knowledge proof that a random linear combination of
B (K + I(j)) · r(j) − o(j) terms is equal to 0; here the I(j) values are a random re-indexing
of the i(j) values in the public key. We call such a linear combination the error term, which
should be equal to zero. Once the coefficients {λ(j)} of the linear combination are defined,
the error term is

E =
B∑
j=1

λ(j)
(
(K + I(j)) · r(j) − oj

)
= K ·

 B∑
j=1

λ(j)r(j)

+
B∑
j=1

λ(j)(I(j)r(j) − o(j)).

Since only the K and r(j) values are secret, the only time we have a secret value multiplied
by a secret value is in the K ·

∑
λ(j)r(j) term, so the error term can be verified to be 0

with only one multiplication gate.

If we are using a blinded public key, then the corresponding error term is the summation
of

λ(j)((K + I(j))(T + J (j))r(j) − o(j))

terms. Through rearranging in a similar way to that of LegRoast, we get an error term that
has three multiplication gates as opposed to one. First, we discuss the blinding process.
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blLegRoast.KeyGen()

1 : K←$ Fp

2 : for i ∈ [L] do

3 : wi,pk ← LℓT (ii)

4 : endfor

5 : return (pk, sk) = (wi,pk)i∈[L],K)

blLegRoast.BlindPk((wi,pk)i∈[L], τ)

1 : T ← KDF (pk||τ)
2 : for i ∈ [L] do

3 : vi ← LℓT (ji)

4 : wi,τ ← wi,pk + vi (mod ℓ)

5 : endfor

6 : return pkτ = (wi,τ )i∈[L]

Figure 2.11: blLegRoast.KeyGen and blLegRoast.BlindPk.

To complete the security assessment for blLegRoast, we still need to establish (i) the
independent blinding property, (ii) the signing with oracle reprogramming property, and (iii)
the existential unforgeability of the scheme. As the scheme uses the Fiat–Shamir heuristic,
signing with reprogramming is possible by choosing the output of the hash function in
advance and constructing the signature accordingly. The existential unforgeability of the
scheme follows from how finding a K and T that satisfy the relations informed by the
public key is still hard. In the remainder of this section, we provide a complete description
of the scheme and the proofs of the unlinkability and unforgeability properties.

2.7.1 Algorithm Description

Here we detail the blinded version of LegRoast or PorcRoast. The scheme mostly resembles
the original, but with a few key changes. For the blinded version, we are proving knowledge
of a pair (K,T ) ∈ Fp such that F ℓ

I(K) + F ℓ
J (T ) = pkτ (more accurately, we are proving

a relaxation of this relation, but more on this later). This is done through proving that
the error term from equation 2.2 is equal to zero. LegRoast’s error term is very simple,
consisting of a single multiplication gate. Our blinded version requires three. This increases
the signature length, but also requires some revisions to how the signature scheme works.
Other than simple modular arithmetic, LegRoast relies on a small number of symmetric
primitives: hash functions H1,H2,H3,H4, a commitment hash function Hcom, a hash
function used to build a binary tree from a root value, and a Expand function that can be
used to generate an arbitrary number of values in Fp.
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E =
B∑
j=1

λ(j)
(
(K + I(j)) · (T + J (j)) · r(j) − o(j)

)

= K ·

T ·

 B∑
j=1

λ(j)r(j)

+
B∑
j=1

λ(j)r(j)J (j)


+ T ·

 B∑
j=1

λ(j)I(j)r(j)

+
B∑
j=1

λ(j)
(
I(j)J (j)r(j) − o(j)

)
(2.2)

One issue is that because LegRoast has a single multiplication gate, the output of the
gate is publicly known. This allows for some optimizations. As our blinded version has
multiple nested multiplication gates, we need to more closely follow the zero-knowledge
protocol from [20] that LegRoast uses. This means that the shares of the output gates z are
not known, and a correction term ∆z must be committed to by the prover. But since the
indices I

(j)
e are not known until after the prover has committed to the seeds, the correction

values ∆z are known in a round after the other correction values. To fix this issue, we insert
an additional round for the prover. After the λ challenge has been generated, the prover
must commit to the ∆z correction terms before they get the ϵ challenge values. Other than
this, our protocol largely follows that of LegRoast, except with the added values for the
two additional multiplication gates used in the computation.
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blLegRoast.Sign(msg, pk, sk, τ), Part 1

// Prover Part 1: Generating Pre-processing triples and input shares

1 : T ← KDF (pk||τ)

2 : Pick a random salt←$ {0, 1}2λ.
3 : for e ∈ [M ] do

4 : Sample root seed sde←$ {0, 1}λ.
5 : Build a binary tree from sde with leaves sde,1, . . . , sde,N .

6 : for i ∈ [N ] do

7 : Sample shares:



Ke,i, Te,i,

r
(1)
e,i , . . . , r

(B)
e,i ,

a
(1)
e,i , a

(2)
e,i , a

(3)
e,i ,

b
(1)
e,i , b

(2)
e,i , b

(3)
e,i ,

c
(1)
e,i , c

(2)
e,i , c

(3)
e,i ,

z
(1)
e,i , z

(2)
e,i , z

(3)
e,i


← Expand(sde,i).

8 : Commit to seed: come,i ← Hcom(salt, e, i, sde,i)

9 : endfor

10 : Compute witness offsets: ∆Ke ← K −
N∑
i=1

Ke,i, ∆Te ← T −
N∑
i=1

Ti,e

11 : Adjust first shares: Ke,1 ← Ke,1 +∆Ke, Te,1 ← Te,1 +∆Te.

12 : for k ∈ [3] do

13 : Compute triple: a
(k)
e ←

N∑
i=1

a
(k)
e,i , b

(k)
e ←

N∑
i=1

b
(k)
e,i , c

(k)
e ← a

(k)
e · b(k)e

14 : Compute triple offset: ∆c
(k)
e ← c

(k)
e −

N∑
i=1

c
(k)
e,i

15 : Adjust first share: c
(k)
e,1 ← c

(k)
e,1 +∆c

(k)
e .

16 : endfor

17 : for j ∈ [B] do

18 : r
(j)
e ←

N∑
i=1

r
(j)
e,i

19 : Compute residue symbol: s
(j)
e ← Lℓ0(r

(j)
e ).

20 : endfor

21 : endfor

22 : Set σ1 ←
(
(come,i)i∈[N ], (s

(j)
e )j∈[B],∆Ke,∆Te, (∆c

(k)
e )k∈[3]

)
e∈[M ]

.

Figure 2.12: blLegRoast.Sign, Part 1 of 4.
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blLegRoast.Sign(msg, pk, sk, τ), Part 2

// Challenger part 1: Issuing public key index challenge

23 : Compute challenge hash: h1 ←H1(msg, salt, σ1).

24 : Expand hash: (I
(j)
e , J

(j)
e )e∈[M ],j∈[B] ← Expand(h1).

// Prover part 2: Compute public product values

25 : for e ∈ [M ] do

26 : for j ∈ [B] do

27 : Compute output value: o
(j)
e ← (K + I

(j)
e )(T + J

(j)
e ) · r(j)e .

28 : endfor

29 : endfor

30 : Set σ2 ← (o
(j)
e )e∈[M ],j∈[B].

// Challenger part 2: Linear combination challenge

31 : Compute challenge hash: h2 ←H2(h1, σ2).

32 : Expand the hash (λ
(1)
e , λ

(2)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).

// Prover part 3: Constructing output shares for multiplication gates

33 : for e ∈ [M ] do

// Compute first multiplication gate offset:

34 : ∆z
(1)
e ← T ·

∑
j

λ
(j)
e r

(j)
e

−∑
i

z
(1)
e,i

// Compute second multiplication gate offset:

35 : ∆z
(2)
e ← K ·


∑

j

λ
(j)
e J

(j)
e r

(j)
e

+ T ·
∑
j

λ
(j)
e r

(j)
e

−∑
i

z
(2)
e,i

// Compute final multiplication gate offset:

36 : ∆z
(3)
e ← T ·

∑
j

λ
(j)
e I

(j)
e r

(j)
e

−∑
i

z
(3)
e,i .

37 : for k ∈ [3] do

38 : Adjust first shares: z
(k)
e,1 ← z

(k)
e,1 +∆z

(k)
e .

39 : endfor

40 : endfor

41 : Set σ3 ← (∆z
(1)
e ,∆z

(2)
e ,∆z

(3)
e )e∈[M ].

Figure 2.13: blLegRoast.Sign, Part 2 of 4.
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blLegRoast.Sign(msg, pk, sk, τ), Part 3

// Challenger part 3: Multiplication gate challenge

42 : Compute challenge hash: h3 ←H3(h2, σ3).

43 : Expand the hash (ϵ
(1)
e , ϵ

(2)
e , ϵ

(3)
e )e∈[M ] ← Expand(h3).

// Prover part 4: Committing to the views of the MPC parties

44 : for e ∈ [M ] do

// Views for first multiplication gate

45 : for i ∈ [N ] do

46 : Compute shares: α
(1)
i,e ← a

(1)
e,i + ϵ

(1)
e · Te,i,

47 : β
(1)
e,i ← b

(1)
e,i +

∑
j

λ
(j)
e r

(j)
e,i .

48 : endfor

49 : Compute values α
(1)
e ←

∑
i

α
(1)
e,i and β

(1)
e ←

∑
i

β
(1)
e,i .

50 : for i ∈ [N ] do

51 : Compute γ
(1)
i,e ← ϵ

(1)
e z

(1)
e,i − c

(1)
e,i + α

(1)
e b

(1)
e,i + β

(1)
e a

(1)
e,i .

52 : if i = 1 then set γ
(1)
e,i ← γ

(1)
e,i − α

(1)
e · β(1)

e endif .

53 : endfor

// Views for second multiplication gate

54 : for i ∈ [N ] do

55 : Compute shares: α
(2)
e,i ← a

(2)
e,i + ϵ

(2)
e ·Ke,i,

56 : β
(2)
e,i ← b

(2)
e,i + z

(1)
e,i +

∑
j

λ
(j)
e J

(j)
e r

(j)
e,i .

57 : endfor

58 : Compute values α
(2)
e ←

∑
i

α
(2)
e,i and β

(2)
e ←

∑
i

β
(2)
e,i .

59 : for i ∈ [N ] do

60 : Compute γ
(2)
e,i ← ϵ

(2)
e z

(2)
e,i − c

(2)
e,i + α

(2)
e b

(2)
e,i + β

(2)
e a

(2)
e,i .

61 : if i = 1 then set γ
(2)
e,i ← γ

(2)
e,i − α

(2)
e · β(2)

e .

62 : endfor

63 :

Figure 2.14: blLegRoast.Sign, Part 3 of 4.
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blLegRoast.Sign(msg, pk, sk, τ), Part 4

// Views for final multiplication gate

64 : for i ∈ [N ] do

65 : Compute shares: α
(3)
e,i ← a

(3)
e,i + ϵ

(3)
e · Te,i

66 : β
(3)
e,i ← b

(3)
e,i +

∑
j

λ
(j)
e I

(j)
e r

(j)
e,i

67 : endfor

68 : Compute values α
(3)
e ←

∑
i

α
(3)
e,i , β

(3)
e ←

∑
i

β
(3)
e,i .

69 : for i ∈ [N ] do

70 : Compute γ
(3)
e,i ← ϵ

(3)
e z

(3)
e,i − c

(3)
e,i + α

(3)
e b

(3)
e,i + β

(3)
e a

(3)
e,i .

71 : if i = 1 then set γ
(3)
e,i ← γ

(3)
e,i − α

(3)
e · β(3)

e endif

72 : Compute output values: ωe,i ← z
(2)
e,i + z

(3)
e,i +

∑
j

λ
(j)
e I

(j)
e J

(j)
e r

(j)
e,i

73 : if i = 1 then set ωe,i ← ωe,i −
∑
j

λ
(j)
e o

(j)
e endif

74 : endfor

75 : endfor

76 : Set σ4 ←
(
(α

(k)
e , β

(k)
e , (α

(k)
e,i , β

(k)
e,i , γ

(k)
e,i )i∈[N ])k∈[3], (ωe,i)i∈[N ]

)
e∈[M ]

.

// Challenger Part 4: Challenge on the sacrificing protocol

77 : Compute challenge hash h4 ←H4(h3, σ4)

78 : Expand hash (ie)e∈[M ] ← Expand(h4), where each ie ∈ [N ].

// Prover Part 5: Opening the views of the sacrificing protocol

79 : for e ∈ [M ] do

80 : Set seedse ← {log2(N) nodes needed to compute sde,i for i ∈ [N ] \ {ie}}.
81 : endfor

82 : return σ =



salt, h1, h4,(
∆Ke,∆Te, o

(1)
e , . . . , o

(B)
e

)
e∈[M ](

α
(k)
e , β

(k)
e , γ

(k)
e ,∆z

(k)
e

)
e∈[M ],k∈[3](

seedse, come,i

)
e∈[M ]



Figure 2.15: blLegRoast.Sign, Part 4 of 4.
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blLegRoast.Verify(msg, pkτ , σ), Part 1

1 : Parse signature σ as

2 : σ =



salt, h1, h4,(
∆Ke,∆Te, o

(1)
e , . . . , o

(B)
e

)
e∈[M ](

α
(k)
e , β

(k)
e , γ

(k)
e ,∆z

(k)
e

)
e∈[M ],k∈[3](

seedse, come,i

)
e∈[M ]


3 : Compute h2 ←H2

(
h1, (o

(j)
e )e∈[M ],j∈[B]

)
.

4 : Compute h3 ←H3

(
h2, (∆z

(k)
e )e∈[M ],k∈[3]

)
.

5 : Expand challenge hash 1: (I
(j)
e , J

(j)
e )e∈[M ],j∈[B] ← Expand(h1).

6 : Expand challenge hash 2: (λ
(1)
e , λ

(2)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).

7 : Expand challenge hash 3: (ϵ
(1)
e , ϵ

(2)
e , ϵ

(3)
e )e∈[M ] ← Expand(h3).

8 : Expand challenge hash 4: (ie)e∈[M ] ← Expand(h4).

9 : for e ∈ [M ] do

10 : Use seedse to compute sde,i for i ∈ [N ] \ {i}.
11 : for i ∈ [N ] do

12 : Sample shares:



Ke,i, Te,i,

r
(1)
e,i , . . . , r

(B)
e,i ,

a
(1)
e,i , a

(2)
e,i , a

(3)
e,i ,

b
(1)
e,i , b

(2)
e,i , b

(3)
e,i ,

c
(1)
e,i , c

(2)
e,i , c

(3)
e,i ,

z
(1)
e,i , z

(2)
e,i , z

(3)
e,i


← Expand(sde,i).

13 : if i = 1 then

14 : Adjust shares: Ke,1 ← Ke,1 +∆Ke, T1 ← T1 +∆Te

15 : for k ∈ [3] do

16 : c
(k)
e,1 ← c

(k)
e,1 +∆c

(k)
e , z

(k)
e,1 ← z

(k)
e,1 +∆z

(k)
e .

17 : endfor

18 : endif

19 : Recompute commitments come,i ← Hcom(salt, e, i, sde,i).

// First multiplication gate

20 : Recompute shares: α
(1)
e,i ← a

(1)
e,i + ϵ

(1)
e · Te,i, β

(1)
e,i ← b

(1)
e,i +

∑
j

λ
(j)
e r

(j)
e,i .

// Second multiplication gate

21 : α
(2)
e,i ← a

(2)
e,i + ϵ

(2)
e ·Ke,i, β

(2)
e,i ← b

(2)
e,i + z

(1)
e,i +

∑
j

λ
(j)
e J

(j)
e r

(j)
e,i .

Figure 2.16: blLegRoast.Verify, Part 1.
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blLegRoast.Verify(msg, pkτ , σ), Part 2

// Final multiplication gates

22 : α
(3)
e,i ← a

(3)
e,i + ϵ

(3)
e · Te,i, β

(3)
e,i ← b

(3)
e,i +

∑
j

λ
(j)
e I

(j)
e r

(j)
e,i .

23 : for k ∈ [3] do

24 : Recompute share: γ
(k)
e,i ← ϵ

(k)
e z

(k)
e,i − c

(k)
e,i + α

(k)
e b

(k)
e,i + β

(k)
e a

(k)
e,i

25 : if i = 1 then set γ
(k)
e,1 ← γ

(k)
e,1 − α

(k)
e β

(k)
e endif

26 : endfor

27 : Recompute output: ωe,i ← z
(2)
e,i + z

(3)
e,i +

∑
j

λ(j)I
(j)
e J

(j)
e r

(j)
e,i .

28 : if i = 1 then set ωe,1 ← ωe,1 −
∑
j

λ
(j)
e o

(j)
e endif

29 : endfor

30 : for k ∈ [3] do

31 : Compute missing shares: α
(k)

e,i
← α

(k)
e −

∑
i̸=i

α
(k)
e,i

32 : β
(k)

e,i
← β

(k)
e −

∑
i̸=i

β
(k)
e,i

33 : Compute missing check value share: γ
(k)

e,i
← −

∑
i ̸=i

γ
(k)
e,i .

34 : endfor

35 : Recompute missing output share: ωe,i ← −
∑
i̸=i

ωe,i.

36 : for j ∈ [B] do

37 : Recompute residuosity symbols: s
(j)
e ← Lℓ0(o

(j)
e )− pk

I
(j)
e

.

38 : endfor

39 : endfor

40 : Check 1: h1 = H1(msg, salt, ((come,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆Te, (∆c

(k)
e )k∈[3])e∈[M ])

41 : Check 2: h4 = H4

(
h3,

(
(α

(k)
e , β

(k)
e , (α

(k)
e,i , β

(k)
e,i , γ

(k)
e,i )i∈[N ])k∈[3](ωe,i)i∈[N ]

)
e∈[M ]

)
42 : Output accept if both checks pass, fail otherwise.

Figure 2.17: blLegRoast.Verify, Part 2.
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2.7.2 blLegRoast Proof

We now show that blLegRoast satisfies the independent blinding property (7). We define
randBlind by simply using a random T ∈ F×p instead of having it determined by the hash

function. To show that AdvInd−Blind(A) is small, we need to reduce to the security of L the
ability to distinguish whether K1 = K2 = · · · = Kn or not in the following matrix:


F ℓ
I(K1) + F ℓ

J (T1)
F ℓ
I(K2) + F ℓ

J (T2)
...

F ℓ
I(Kn) + F ℓ

J (Tn)

 =


Lℓ

K1
(i1) + Lℓ

T1
(j1) . . . Lℓ

K1
(iL) + Lℓ

T1
(jL)

Lℓ
K2
(i1) + Lℓ

T2
(j1) . . . Lℓ

K2
(iL) + Lℓ

T2
(jL)

...
. . .

...
Lℓ

Kn
(i1) + Lℓ

Tn
(j1) . . . Lℓ

Kn
(iL) + Lℓ

Tn
(jL)

 . (2.3)

The natural property of L to reduce to is its security as a PRF. If, for each key Ti the
result on the inputs {jm} for m ∈ [L] is indistinguishable from random, then each row
of the matrix is indistinguishable from uniformly random, independent of whether the Ki

values are all the same or not. This means that rather than relying on a search version of
the problem that defines the security of the Legendre PRF, we require a decisional version.

Definition 10 (Decisional Fixed Input Power Residue Symbol Problem). Let p be an
odd prime and ℓ be a positive integer with ℓ | p − 1. Let J = (j1, j2, . . . , jL) ∈ FL

p . Let
OPow be an oracle that, when queried samples a random T ←$ Fp and returns F ℓ

J (T ). Let
ORan be an oracle that returns a uniform element form ZL

ℓ . The Decisional Fixed Input
Power Residue Symbol Problem is, given p, ℓ,J , L as input distinguish the two oracles with
non-negligible probability. We write AdvInd−PRF(A) to denote∣∣∣Pr[1← AOPow ]− Pr[1← AORan ]

∣∣∣ .
We note that the security of “plain” LegRoast does not depend on such a property.

It requires only a search version of the problem, where A is required to actually find the
corresponding T value. The security of the decisional variant and its relation to the search
variant is still conjectural. Damg̊ard’s original 1988 paper [58] that proposed the use of
the Legendre function as a PRF investigates statistical properties with respect to standard
randomness tests, but this does not constitute a serious cryptanalytic effort. Grassi et al.’s
2016 paper [82] is largely responsible for the renewed interest in the Legendre function as a
PRF. They defined a decisional variant similar to our own, except allowing for adaptive
queries. However, later cryptanalytic works [102, 33] focused on the search variant. Security
of our scheme relies on the decisional variant; significantly more research on the hardness
of the decisional variant is needed before this scheme can be confidently used.
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Lemma 9. If the Legendre PRF is pseudo-random, then blLegRoast satisfies the independent
blinding property (7). In particular, for any adversary A that distinguishes a random oracle
from the power residue symbols with advantage AdvInd−PRF(A) (defined above), we have
that AdvInd−Blind

blLegRoast(A) ≤ 2 ·AdvInd−PRF(A).

Proof. Let game G0 be one in which A is given independent blindings of the same public
key, and game G3 be where A is given independent blindings of independent public keys.
We will introduce intermediate games G1 and G2, and bound the difference in probability
between subsequent hops.

In game G1, we replace the correct values from F ℓ
J (Ti) with uniformly random outputs

in ZL
ℓ for i ∈ [n]. Since the Ti values are uniformly random already, this replacement causes

at most a difference AdvInd−PRF(A), that is |Pr[1← AG0 ]− Pr[1← AG1 ]| ≤ AdvInd−PRF.

As F ℓ
I(K) is now being added to uniformly random values, we can replace it with

whatever we like and cause no change in the distribution. Thus, for game G2 we replace
each the n instances of F ℓ

I(K) by drawing a random Ki and using F ℓ
I(Ki) instead. Again,

this does not change the distribution of what the adversary has access to, so |PrG1 [1 ←
A]− PrG2 [1← A]| = 0.

Finally, for game G3, we swap the F ℓ
J (Ti) values back to being honestly generated from

Ti, instead of just uniformly random. At this point we have correctly generated F ℓ
I(Ki) and

F ℓ
J (Ti) values, with all Ki uniform and independent. This again introduces a difference

bounded by AdvInd−PRF. Summing up the differences across all games, we obtain∣∣∣∣PrG0

[1← A]− Pr
G3

[1← A]
∣∣∣∣ ≤ 2 ·AdvInd−PRF(A).

It remains to be shown that the signing with oracle reprogramming property is satisfied
and the the scheme is existentially unforgeable. In LegRoast, the proof of existential
unforgeability has a fairly straightforward structure. First, the authors show that an
adversary A that attacks the existential unforgeability under chosen message attack can be
used to construct an adversary R that makes no signing queries. This is done by essentially
proving the signing with oracle reprogramming property that we defined in Section 2.4.
Then to justify the key-only security, they show that with high probability, an adversary
that has successfully constructed a signature has, with all but negligible probability, queried
a witness to a β-relaxation of the PRF relation. Finally, they show that, with all but
negligible probability, the only witness to such a relaxation is the actual secret key K.
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We take a similar approach for the blinded version of LegRoast. The proof that an
EU-CMA adversary implies a EU-KO one also works as a proof of the signing with oracle
reprogramming property, and closely mirrors the original proof. The proof showing that a
key only adversary can be used to recover a witness for the relaxed relation is also similar,
with appropriate modifications made for the additional multiplication gates and the extra
round. Finally, the proof that the only witness of the relaxation is the original (K,T )
proceeds similarly, with a small modification needed to account for the flexibility in having
the T parameter. We will present these proofs in the opposite order, starting by talking
about the underlying relation and building towards the proof of the EU-CMA security.

Underlying (relaxed) relation

The security of the blinded LegRoast scheme depends on the inability of the adversary to
find values K and T such that F ℓ

I(K) + F ℓ
J (T ) = blpk. In the signature scheme, because

only a random subset of the indices of the public key are verified, we need to consider a
β-relaxation of finding such a K and T , where only ‘enough’ of the indices match. We
adapt Definitions 1 and 2 from [34] to our situation.

Definition 11 (Additive ℓth-power residue PRF relation). For an odd prime p, a positive
integer ℓ | p− 1 and lists I,J ∈ ZL

p we define the additive ℓth power residue PRF relation
R+
Lℓ with output length L as

R+
Lℓ = {(F

ℓ
I(K) + F ℓ

J (T ), (K,T )) ∈ ZL
ℓ × Fp × Fp}.

Definition 12 (Additive β-approximate PRF relation). For β ∈ [0, 1], an odd prime p,
a positive integer ℓ | p − 1, and lists I,J ∈ ZL

p define the additive β-approximate PRF
relation R+

βLℓ with output length L as

R+
βLℓ = {(s, (K,T )) ∈ ZL

ℓ × Fp × Fp | ∃a ∈ Zℓ : d(s+ (a, . . . , a), F ℓ
I(K) + F ℓ

J (T )) ≤ βL},

where d(·, ·) denotes the Hamming distance.

We can then adapt Theorem 1 from [34] to our situation.

Theorem 3. Let B(n, q) denote the binomial distribution with n samples each with success
probability q. Let C(n, q,m) denote the cumulative distribution function with at least m
successes, i.e., C(n, q,m) = Pr[B(n, q) ≥ m]. Take K,T ∈ Fp and s = F ℓ

I(K) + F ℓ
J (T ).

Then with probability at least

1− ℓp2 · C

(
L,

1

ℓ
+

1
√
p
+

2

p
, (1− β)L

)
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over the choice of I,J , there exists only one witness for s ∈ R+
βLℓ, which is (K,T ), the

witness for the exact relation R+
Lℓ.

To prove the theorem we will require Lemma 1 from [34].

Lemma 10. Let p be a prime and ℓ | p− 1. For any K,K ′ ∈ Fp with K ̸= K ′, and a ∈ Zℓ,
we have

Pr
i←$ Fp

[Lℓ(K + i) = Lℓ(K ′ + i) + a] ≤ 1

ℓ
+

1
√
p
+

2

p
.

Proof of Theorem 3. For any K ′, T ′, j ∈ Fp with K ′ ̸= K, and any a ∈ Zℓ, we let a′ =
Lℓ(T ′ + j) − Lℓ(T + j) + a. Then by Lemma 10 we have that the probability, over the
choice i that Lℓ(K + i) = L(K ′ + i) + a′ is bounded. Rearranging the terms of a′ we have a
bound on the probability that Lℓ(K + i) + L(T + j) = Lℓ(K ′ + i) + Lℓ(T ′ + j) + a. As
each of the i values is sampled independently, we get that the probability that for a tuple
(K ′, T ′, a) we have that d(F ℓ

I(K
′) + F ℓ

J (T
′), F ℓ

I(K) + F ℓ
J (T ) + (a, . . . , a)) ≤ βL is

C(L, 1/ℓ+ 1/
√
p+ 2/p, (1− β)L).

This is true for any K ′ ̸= K, and any T ′ or a. There are (p− 1) choices for K ′, p choices
for T ′, and ℓ choices for a. So the probability that there exists such a K ′, T ′, and a is upper
bounded by the previous probability multiplied by ℓ(p− 1)p, which we replace with ℓp2 for
simplicity.

Relaxed relation implies key-only security

Theorem 4. Let qcom, q1, q2, q3, and q4 be the number of queries that an adversary A makes
to random oracles Hcom, H1, H2, H3, and H4 respectively. Fix a constant β ∈ {0, 1}. If A
succeeds in breaking the existential unforgeability of blLegRoast with advantage a then there
exists an adversary R capable of finding a β-approximate witness for blpk with probability
at least

a− MN(qsd + q1 + q2 + q3 + q4)
2

22λ
− Pr[X + Y + Z +W = M ]

where X is a r.v. distributed as the max(X1, . . . , Xq1), with each Xi distributed as B(M, (1−
β)B), and Y , Z, and W defined similarly, but with:

• Yi ranging from i = 1 to q2 and Yi distributed as B(M −X, 1/p),
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• Zi ranging from i = 1 to q3 and Zi distributed as B(M −X − Y, 3/p),

• Wi ranging from i = 1 to q4 and Wi distributed as B(M −X − Y − Z, 1/N).

Proof. We define how the reduction algorithm R will operate. To begin with, R is provided
s = F ℓ

I(K) + F ℓ
J (T ) which is passed along to A as the blinded public key. R will maintain

Hcom, H1H2, H3, and H4 as random oracles. Typical to random oracle proofs, R will employ
the ‘lazy sampling’ methodology, and respond consistently when given repeated queries
and otherwise sample a random output and provide it to A, maintaining a table of all
inputs and outputs. In general, the sampled output is entirely uniform, with some small
exceptions:

• The same value is never returned twice (no collisions).

• When the adversary makes a query to H1 of the form
(
(come,i)i∈[N ], . . .

)
e∈[M ]

, add

the come,i values to a list of values to never return for new queries. This means
that A cannot cannot provide a commitment and then later find an opening to that
commitment.

• Do the same thing for queries to H2 of the form (h1, σ2) (do not return h1), queries
to H3 of the form (h2, σ3) (do not return h2), and queries to H4 of the form (h3, σ4)
(do not return h3). This ensures that the adversary is forced to adhere to the ‘correct’
order of the Fiat–Shamir paradigm.

Note that R clearly runs in time roughly the same as A. We will show that, if A
succeeds then with high probability, embedded into A’s queries to the random oracles is
enough information to recover a witness (K ′, T ′).

The remainder of the proof works very similarly as in [34]. We call specific attention to
the cases where the proof differs.

Extracting a β-relaxed witness. To recover a witness, R looks at the queries made
to the hash function. Let Qi denote the set of query-responses to oracle Hi. For each
query σ1 = ((come,i)i∈[N ], . . . ,∆Ke,∆Te, . . . )e∈[M ] to H1, check and see if each come,i is the
output for a query (salt, e, i, sde,i) to Hcom. If so, then by expanding sde,i to recover Ke,i

for each e, i, summing them together over i and adding in ∆Ke, then doing the same for
T , we have a candidate witness. For each query to H1 where this is possible, we maintain
a table Ti of inputs. The table Ti is indexed by a query σ1 and the round e and contains
the values Ke, Te, (r

(j)
e,i )i∈[N ],j∈[B], (a

(k)
e,i , b

(k)
e,i , c

(k)
e,i , z

(k)
e,i )i∈[N ],k∈[3]. Our task is to show that if no
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such candidate witness can be constructed, then it is only with negligible probability that
A can create a valid signature.

Cheating in the First Phase. Let σbest1 , hbest1 be the best query-response pair from
H1 that A receives. ‘Best’ here refers to maximizing the probability that A can cheat
from this query because the chosen indices that result from the output ‘line up’ in a way
favourable to the adversary. For a query-response pair ((msg, salt, σ1), h1) to H1, define

G1(σ1, h1 = {I(j)e }e∈[M ],j∈[B]) as the rounds e ∈ [M ] for which:

• An entry at index [σ1, e] exist in Ti.

• Lℓ((Ke + I
(j)
e )(Te + J

(j)
e )r

(j)
e ) = s

(j)
e + pk

I
(j)
e ,J

(j)
e

for all j ∈ [B].

We then rely on the following lemma from [34]:

Lemma 11. If a witness (K,T ) cannot be recovered from the queries to H1 then for any
positive integer x, we have that for all query-response pairs to H1

Pr[#G1(σ1, e) > x] ≤ Pr[X > x]

where X is a random variable distributed as max(X1, X2, . . . , Xq1) where each Xi is i.i.d.
B(M, (1− β)B).

Cheating in the second phase. For the second round, any ‘functional’ (could possibly

verify) query-response pair ((h1, σ2 = (o
(j)
e )e∈[M ],j∈[B]), (λ

(j)
e )e∈[M ],j∈[B]) we define the set of

good rounds G(h1, σ2, h2) as:

• ∅ if h1 is not the output of a query σ1 to H1. Otherwise this cannot lead to a valid
signature. Let σ1 = (. . . , (s

(j)
e )j∈[B], . . . ).

• ∅ if there is an index (e, j) such that Lℓ(o
(j)
e ) ̸= s

(j)
e + pk

I
(j)
e ,J

(j)
e
. If there is, then the

signature will not verify, because the check on h1 will fail when reconstructing the s
values.

• The values e ∈ [M ] for which the following procedure passes:

– Using the associated σ1, recover the inputs from T [σ1, e].
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– With these inputs, as well as the I
(j)
e , J (e), o

(j)
e , and λ

(j)
e values, calculate if the

error term E found in Equation 2.2 is equal to 0.

We once again must establish that if a witness for the relation cannot be recovered from
the inputs, then the size of G2(h1, σ2, h2) is bounded. Obviously we must be in the third
case, or else G2(h1, σ2, h2) is empty. There are two possibilities:

• A given index e ∈ [M ] is also in G1(σ1, h1).

• If the index in not in G1(σ1, h1), then it must be due to the fact that there is an

index j ∈ [B] such that Lℓ((Ke + I
(j)
e )(Te + J

(j)
e )r

(j)
e ) ̸= s

(j)
e + pk

I
(j)
e ,J

(j)
e
. But since we

have that Lℓ(o
(j)
e ) = s

(j)
e + pk

I
(j)
e ,J

(j)
e
, this means that the same index has the property

that Lℓ((Ke + I
(j)
e )(Te + J

(j)
e )r

(j)
e ) ̸= o

(j)
e . This in turn means that the error term is

a non-zero linear function in the λ
(j)
e values. So, over the random choices of λ, the

probability that the error term works out to be 0 anyways is equal to 1/p. This allows
us to establish the following Lemma:

Lemma 12. If a witness (K,T ) cannot be recovered from the queries to H1, then for any
positive integer x, we have that for all query-response pairs to H2

Pr[#G2(h1, σ2, h2) > x]leq Pr[X + Y > x]

where X is a random variable distributed as in Lemma 11, and Y is distributed as
max(Y1, Y2, . . . , Yq2) with each Yi is i.i.d. B(M −X, 1

p
).

This proof essentially states that we must either be in the first or second case, and that
in the second case the probability that a round works out is bounded by 1/p, as already
discussed. Remaining details for this part of the proof can similarly be found in [34].

Cheating in the third phase. For round three, we continue with our characterization
of the best possible input an adversary can construct. Recall that the input to H3 consists
of an h2 and the ∆z

(k)
e values. For an input-output pair, define the set G3(h2, σ3, h3) as

• ∅ if h2 is not the output of a previous query (h1, σ2) to H2, which in turn is associated
with a query σ1 that has already been made to H1. Otherwise, the signature will
never verify.
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• The values e ∈ [M ] such that the following procedure passes: trace back to the
input to the fist phase and recover the seeds in order to generate the shares of K,
T , r(j), a(k), b(k), c(k), and z(k). By summing over these shares and incorporating the
committed to ∆ values, we get the candidate state of the equations at the time when
the ϵ(k) values become defined. This in turn allows us to define the corresponding
α(k), β(k), γ(k), and ω(k) values, by

α(1)
e =a(1)e + ϵ(1)e · Te β(1)

e = b(1)e +
∑
j

λ(j)
e r(j)e

α(2)
e =a(2)e + ϵ(2)e ·Ke β(2)

e = b(2)e + z(1)e +
∑
j

λ(j)
e J (j)

e r(j)e

α(3)
e =a(3)e + ϵ(3)e · Te β(3)

e = b(3)e +
∑
j

λ(j)
e I(j)e r(j)e

γ(k)
e =ϵ(k)e z(k)e − c(k)e + α(k)

e b(k)e + β(k)
e a(k)e − α(k)

e β(k)
e

ωe =z(2)e + z(3)e +
∑
j

λ(j)
e I(j)e J (j)

e r(j)e −
∑
j

λ(j)
e o(j)e .

Then pass if all of γ
(k)
e and ω

(k)
e are equal to zero.

Again, we need to bound the number of such rounds in the event that a witness cannot
be recovered from the queries to H1. Clearly it must be the case that we can trace the
query h2 back to the original input to H1, or else the size of G3(h2, σ3, h3) is zero. For
each index e ∈ [M ], it may be the case that the index is in G2(h1, σ2, h2). Assume it is not.
Since the index is not in G2, we can see that it must be the case that the error term is
not equal to zero. A simple reduction shows that if x(k) and y(k) are the inputs to the kth
multiplication gate, we have that,

γ(k)
e = ϵ(k)e · (z(k)e − x(k)

e · y(k)e )− c(k)e + a(k)e · b(k)e .

We can see that this is equal to zero only if either:

• z
(k)
e = x

(k)
e · y(k)e and c

(k)
e = a

(k)
e · b(k)e (that is, the ∆z

(k)
e and ∆c

(k)
e values were chosen

properly so that z and c really are equal to the product of the inputs).

• ϵ
(k)
e = (a

(k)
e · b(k)e − c

(k)
e )(z

(k)
e − x

(k)
e · y(k)e )−1.

As the ϵ(k) values are chosen uniformly at random, for each of the γ values, the chances
that γ

(k)
e = 0 without z

(k)
e = x

(k)
e · y(k)e is 1/p. But if, for each k, we do have z

(k)
e = x

(k)
e · y(k)e

64



then the corresponding ωe value will in fact be equal to the error term. But since we are
assuming that this round is not in G2(h1, σ2, h2) we have that the error term is in fact not

equal to zero. So we have that for least one of the γ
(k)
e terms we must have that z

(k)
e is not

equal to the inputs. Thus the probability that all values are equal to zero is at most 3/p.

This allows us, as in the previous round, to bound the size of G3(h2, σ3, h3):

Lemma 13. If a witness (K,T ) cannot be recovered from the queries to H1, then for any
positive integer x, we have that for all query-response pairs to H3

Pr[#G3(h2, σ3, h3) > x] ≤ Pr[X + Y + Z > x]

where X is a random variable distributed as in Lemma 11, and Y is distributed as in 12,
and Z is distributed as max(Z1, Z2, . . . , Zq2) with each Zi is i.i.d. B(M −X − Y, 3

p
).

Cheating in the fourth phase. Assume without loss of generality that A verifies the
signature that they submit as a forgery. Recall that queries to H4 should take the form

h3, σ4 =
(
(α(k)

e , β(k)
e , (α

(k)
e,i , β

(k)
e,i , γ

(k)
e,i )i∈[N ])k∈[3], (ωe,i)i∈[N ]

)
e∈[M ]

.

For each such query σ4 we can bound the probability that the response leads A to be able
to construct a valid signature.

As usual, we note that h3 must be the output of a query to H3 — if the adversary
decided to come up with the h3 value in some other way, then after they have queried it
to H4 no input that they provide to H3 will lead to h3. Similarly, we can work our way
backwards to the original query to H1.

Assume that in a given round e we have that e /∈ G3(h2, σ3, h3). Then it is the case that

at least one of the associated γ
(k)
e or ωe values is not equal to zero. In this case, the only

way that we can end up with a valid signature is if exactly N − 1 of the parties behave
honestly. If all parties behave honestly, then the final signature will not validate because
the γ

(k)

e,ie
or ωe,ie values will not be correct. If more than N − 2 parties misbehave then the

verifier will not replicate that misbehaviour. With exactly N − 1 parties misbehaving, then
for any round, the probability that that party is chosen to stay concealed by the protocol is
clearly 1/N . As a result, we can give our final bound on the probability that the adversary
winning.

The reduction simulates all oracles correctly, except that it does not return collisions or
allow the adversary to cheat at commitments to the random oracles. In [34], the authors
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establish that the probability that an adversary notices this inconsistency is at most

MN(qsd + q1 + q2 + q3 + q4)
2

22λ
. (2.4)

And given that the adversary does not notice this incongruence we have that the probability
that they are able to find a signature is less than

Pr[X + Y + Z +W = M ],

whereX, Y , and Z are distributed according to Lemmas 11, 12, and 13, andW is distributed
as max(W1, . . . ,Wq4) with each Wi distributed i.i.d. as B(M −X − Y − Z, 1/N).

EU-CMA implies key-only security and signing with oracle reprogramming

In order to simulate signatures with oracle reprogramming, we can define our Forge function
as follow.

1. To cheat in the first round, the simulator simply samples the values ∆Ke and ∆Te

uniformly at random, rather than calculating them using T . The simulator also aborts
if a salt is reused from an earlier round. The reduction queries the random oracle
(which is also managed by them) to obtain h1, which is expanded to the I

(j)
e , J

(j)
e

values.

2. For the second part of proving, rather than genuinely generating the o
(j)
e values, the

simulator will sample them uniformly and then post select so that Lℓ(o
(j)
e )− s

(j)
e =

blpk
I
(j)
e ,J

(j)
e

(since this can be done independently for each j and Lℓ(o
(j)
e ) takes on one

of ℓ values this is not hard). Then they again query this to the random oracle to

obtain the λ
(j)
e values.

3. For prover part 3, simply select each ∆z
(k)
e value to be uniformly random. Set σ3 in

the usual way and query for the ϵ
(k)
e values.

4. For the simulation of prover part 4, the simulator will need to cheat so the openings
can be provided for the requested parties that look correct, and the overall proof
lines up. To do this, they will decide which parties will be opened in advance, and
then later program the random oracle to provide this output. So for each e ∈ [M ],
the simulator samples ie ∈ {1, . . . , N} at random. Then it behaves entirely honestly
except for when working with the values for the ieth party in round e. This party
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is calculated last, and we set the γ and ω values according to how they are set in
verification, rather than how they are set in an honest signing instance. That is, we
set

γ
(k)

e,ie
←−

∑
i ̸=ie

γ
(k)
e,i ωe,ie ←−

∑
i ̸=ie

ωe,i.

Then σ4 is prepared accordingly. Rather than querying the random oracle H4, we
instead reprogram it so that (h3, σ4) maps to the desired (ie)e∈[M ] values.

5. Finally for part 5, the simulator can generate the seeds as desired and return the
signature as expected.

Simulation Indistinguishability. The random oracles are all simulated perfectly. The
programmed output is chosen uniformly at random, and so as long as it has not been
previously queried, the programmed output is indistinguishable from a real one. As the
oracle H4 is reprogrammed on the point (h3, σ4), this is the output of the Ext function.
That is, Ext takes in the signature σ, uses it to reconstruct h3 and σ4 according to the
Verify function, and returns them as the reprogrammed point.

The min-entropy of this point is quite high. We need to consider the min-entropy of
this input from the beginning of the signing routine. All of the α, β, and γ values are
derived in part from the a, b, c, and z values. These in turn are derived be expanding the
seeds, which are chosen from the uniformly sampled root seed sde. Therefore the entropy of
the programmed point is bounded by the entropy of the sampled root vector. As a root
vector is sampled for each round, the min entropy of the overall programmed point can be
bounded by 2λ·M .

We must consider the distribution of the reprogrammed point and the returned signature.
Most of the parts of the signature are exactly the same as what they would have been
without any cheating (just possibly calculated a different way), except for the ∆ correction

values: ∆Ke, ∆Te, and ∆z
(k)
e are all chosen uniformly at random rather than calculated

based on K, T , and the output values. But, this does not actually change the overall
distribution of the signatures. Since the unknown shares Ke,ie , Te,ie , z

(k)

e,ie
are never seen

by verifier, and are generated uniformly from Expand(sde,ie), they just as easily could have
been the values such that the ∆ values are calculated correctly. Therefore the distribution,
conditioned on what a verifier sees as part of the signature, is exactly the same, and we can
sign with oracle reprogramming.
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We are being slightly duplicitous in the above statements about indistinguishability. In
general, the output of Expand has been considered to be a collection of elements in Fp, but
in actuality it would be instantiated by a pseudo-random generator, and thus, be a string
of bits. The reason we are lax about distinguishing these two sets is because in practice, we
can choose our parameters so that the two are nearly identical. LegRoast takes p as the
Mersenne prime 2127 − 1, and instantiates Expand by taking the output of a PRNG sixteen
bytes at a time and interpreting the result as an integer and reducing modulo p. So, if
we are given a uniform element x in Fp and want to convert this into a nearly-uniform bit
string, we can simply sample a bit b and take the bit-representation of x+ b · (2127−1). This
distribution is identical, except that we cannot get the all-one bit string with this method.
As this bit string is only ever part of the output of Expand with negligible probability, we
need not worry.

The distribution of the programmed output, yforged is entirely unchanged from yreal,
as both are taken uniformly from {1, . . . , N}M , and independent of anything else in the
signatures. So we can conclude that the statistical distance δ between our real and forged
σ and y is in fact 0.

For the complete details on how signing with oracle reprogramming shows that an
adversary attacking the existential unforgeability can be used to construct an adversary
attacking the key-only security, we refer to the LegRoast paper [34], which shows exactly
this in their Lemma 3.

2.8 A Generic Zero-Knowledge Key-Blinding Scheme

In this section we explain how one of the most unique submissions to NIST’s post-quantum
standardization effort, Picnic [50], can also be transformed into a key-blinded signature
scheme. Picnic improves upon techniques introduced in [93, 80] to construct a signature
scheme out of the generic zero-knowledge proof system ZKB++. A secret key in Picnic is
the secret key to a symmetric key encryption function, k ∈ {0, 1}λ. The public key is a pair
of values (x, y) ∈ {0, 1}2λ such that y = Enck(x) for some suitable encryption function Enc.

To sign a message msg, the signer constructs a generic zero-knowledge proof, dependent
on msg that they know a key k under which x is encrypted to y. The hash of msg is then
mixed into the randomness used to generate this zero-knowledge proof in such a way to
result in an existentially unforgeable signature scheme. The zero-knowledge proof itself is
based on the ‘MPC in the head’ methodology proposed in [93], which noted a fundamental
connection between zero-knowledge proofs and multi-party computation (MPC).
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We present a rough outline of the signature scheme Picnic, and refer to [50] for full
details. Consider three separate parties, A, B, and C, who possess private values a, b, and
c, respectively. They are using multi-party computation to compute y = Enck(x) for some
fixed value x and k = a ⊕ b ⊕ c. In the end, no party will learn k. Indeed, for certain
configurations of multi-party computation, even if two out of the three parties collaborate,
they cannot learn k.

We can consider the views of each of these parties, consisting of all incoming and
outgoing messages as well as all intermediate values in the computation. Because parties
can collaborate and still not learn k, the views of two out of the three parties similarly
do not contain enough information to decide k. However these views also attest—to a
certain extent—to the validity of the computation: One can examine the transcript of the
parties views to ascertain that all computations and incoming and outgoing messages were
computed correctly.

This realization allows the authors of [93] to show that a secure MPC scheme can be
transformed into a zero-knowledge proof. Someone who knows the secret key k can split it
up into three parts, a, b, and c, and then run the MPC protocol ‘in their head’, with each
party having a part of k. The respective transcripts of each parties view of the protocol
can be committed to, after which a verifier can challenge the prover to reveal the views
of two out of the three parties. For a prover to cheat, they must make at least one of the
parties misbehave, which can be detected by the verifier with constant probability. But
the scheme is actually zero knowledge, as transcripts can easily be simulated by having
the party who is not revealed misbehave. By applying the Fiat–Shamir transform, one can
obtain a signature scheme: this is Picnic.

Adding a key-blinding functionality to Picnic can be done by encrypting the public
key a second time, this time under information derived from the nonce τ . Then the
signature will be a zero-knowledge proof of the statement “I know the keys k, kτ such that
Enckτ (Enck(x)) = yτ”. It’s easy to see that this simple mechanism gets us most of the way
towards key-blinding functionality. Anyone who knows τ and the previous public key y
can derive the new public key yτ simply by encrypting. Furthermore, the new yτ is entirely
disconnected from y under standard assumptions on the security of the encryption scheme.
Anyone who knows τ and y will be unable to sign messages, even though this gives them
kτ as they do not have k and thus cannot construct the signature.

One issue with this system is that while y may be entirely changed by the blinding
process, x does not change. If we keep the current system of having the public key system
consist of both x and y, with x generated randomly by each user, then the unlinkability of
the system is trivially broken, as the x component will not change. To fix this, we must rely
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blPicnic.KeyGen()

1 : k←$ {0, 1}λ

2 : y ← Enck(x)

// x is a system parameter

3 : return (pk, sk) = (y, k)

blPicnic.BlindPk(y, τ)

1 : kτ ← KDF (y∥τ)
2 : yτ ← Enckτ (y)

3 : return pkτ = yτ

Figure 2.18: Key generation and blinding algorithms for blinded Picnic (blPicnic) signature
scheme.

on the same technique that we did in the lattice case: x must be a fixed system parameter
shared by all users.

In Figure 2.18 we describe key generation and signing in blPicnic. The general idea
behind the blPicnic Sign and Verify algorithms does not substantially change from Picnic’s
sign and verification functions. The difference is that the circuit for security is twice as
long to perform two encryption functions. As MPC-in-the-head protocols like ZKB++
can handle arbitrary circuits and inputs, this does not change what is possible, just the
efficiency.

2.8.1 blPicnic Proof Outline

Here we outline the proof of unlinkability for blPicnic. For the independent blinding
property, we need to show that

RandBlind(pk0; r1), . . . ,RandBlind(pk0; rn)

is indistinguishable from

RandBlind(pk1; r1), . . . ,RandBlind(pkn; rn),

where for a public key y = Enck(x), we define RandBlind(y, r) as just Encr(y). From this it
is clear why the proof of unlinkability applies. To distinguish the two distributions is to
distinguish many encryptions of the same plaintext versus many encryptions of different
plaintexts. This reduces to the indistinguishability of the encryption scheme used. We can
proceed by a simple game-hopping argument, where in game i we swap RandBlind(pk0; ri)
for RandBlind(pki; ri). As long as the ciphertexts are indistinguishable, the hop is justified,
and we get that the advantage in breaking the independent blinding property is less than n
times the advantage in breaking the indistinguishability of the ciphertext.
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The proof of the signing with oracle reprogramming is similar to all Fiat–Shamir schemes.
While we do not include all of the details (because we do not explicitly describe the signing
protocol), we note that it is essentially the same as the proof for blLegRoast. Proceed
through the protocol, but choose which parties will ‘cheat’ in advance. Then, set the
outputs of those parties accordingly so that all checks pass. Reprogram the oracle so that
those parties internal states stay secret. All checks will pass and the distribution of the
signatures and reprogrammed points is identical.

The proof of the unforgeability of the scheme is similarly largely unchanged. The
zero-knowledge protocol is meant to work for arbitrary circuits, so it is still the case that
signatures do not leak any information about the secret keys.

Note however, that the statement that is being proven has changed. Before, signatures
proved knowledge of just a k such that Enck(x) = y, but now we are encrypting twice, that
is, proving knowledge of two keys (kτ , k) such that Enckτ (Enck(x)) = ytau. This is a subtly
different underlying problem, and its difficulty must be properly analyzed. Indeed, it is an
easier problem to solve, as double encryption opens the possibility of meet-in-the-middle
attacks.

If the length of the block is ℓ bits, then an adversary can create a list of 2ℓ/2 keys k′ and
the associated value Enck′(x). By then sampling k′τ values and seeing if Deck′τ (yτ ) appears
in the list, an adversary can find a secret key that allows them to construct forgeries in time
roughly O(2ℓ/2). Thus, double encryption impacts the security of the underlying one-way
function, and the block length ℓ may need to be proportionally increased as a result.

2.9 Implementation Discussion

We implemented the blDilithium-QROM, the blCSI-FiSh, and blLegRoast schemes; code for
each is available at http://github.com/tedeaton/pq-key-blinding. The code for blCSI-
FiSh and blLegRoast is forked from the CSI-FiSh and LegRoast code respectively [37, 35]
and is written primarily in C. The code for blDilithium-QROM is written in Sage. Results
can be seen in Table 2.1 at the beginning of the chapter. Our performance metrics indicate
that the increase over the unblinded version of schemes is quite reasonable.

blDilithium-QROM. For blDilithium-QROM, key generation and verification are in fact
faster since a fixed parameter A is used for all users and can be pre-generated, rather than
being pseudorandomly generated each time. The signing procedure of blDilithium-QROM
is three times slower than that of Dilithium-QROM. We caution that, since our blDilithium-
QROM implementation is written in Sage, the implementation is non-optimized and results
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not be used an absolute measure of performance, but can still give insight when compared
to a similar Sage implementation of non-blinded Dilithium-QROM.

blLegRoast. Blinded LegRoast’s performance is compelling both in absolute terms (under
1ms for key generation and blinding, under 20ms for signing and verifying) and comparative
terms (no worse than 1.5× slower than unblinded LegRoast).

blPicnic. We leave an implementation of blPicnic as future work. New advancements to
the zero knowledge protocol that Picnic uses are still being made [19], so the performance
of the scheme, and any blinded version, will change. We can summarize what we expect
to see in a blPicnic implementation however. Public keys could keep the same size. The
block size needs to be doubled to account for the meet-in-the-middle attack mentioned in
Section 2.8.1, but the plaintext is a fixed value and does not need to be communicated. We
do not have exact calculations for the signature size, but the circuit being used is twice as
large (for two encryptions), so combined with the larger block size we might expect roughly
four times as large. In practice it may not be quite this large however, as some of the values
sent are independent of the length of the circuit.

blCSI-FiSh. Our blCSI-FiSh implementation achieves sizes and performance effectively
matching that of CSI-FiSh-unMerkleized. The CSI-FiSh and blCSI-FiSh implementations
use the CSIDH-512 parameter set. This parameter set aims to achieve NIST level 1 security
(comparable to the security of AES-128 against a quantum adversary), though whether
it achieves this level of security has been a matter of contention [123]. Unfortunately,
increasing the parameters in CSI-FiSh is a matter of great difficulty. It is essential to
CSI-FiSh that the structure of the class group be known. Calculating the order N of the
group was a subexponential computation that took the CSIDH authors 52 core years. If
the parameters are increased, then a new computation must happen, which will almost
certainly be infeasible. Quantum computers could calculate the structure of the class group
much more easily, so by the time CSI-FiSh is needed, there may also be the ability to use it
by computing the class group number.2

2.10 Chapter Conclusion

We have considered the problem of building post-quantum key blinding schemes. We
have shown that the unlinkability property can be reduced to two properties that are

2Crucially, this is because CSI-FiSh is an authentication protocol and thus using a quantum computer to
decrypt past messages isn’t a concern. In the next chapter we’ll look at using CSI-FiSh for key establishment,
where this poses more of an issue.
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often relatively easy to establish: that blinding properly re-randomizes the public key
(independent blinding) and that the distribution of signatures is only dependent on the
public key (signing with oracle reprogramming). We have shown four different ways that
post-quantum key blinding can be achieved: with supersingular isogenies via CSI-FiSh,
lattices via Dilithium-QROM, with only symmetric primitives via Picnic, and by a number
theoretic construction via LegRoast. We implemented blDilithium-QROM, blCSI-FiSh,
and blLegRoast, and saw small performance impact compared to the unblinded versions.

Each of these four schemes is built out of the Fiat–Shamir paradigm. We did not
consider any schemes built out of other ways to build signature schemes, such as hash-
based signatures like SPHINCS+ [31], or the hash-and-sign paradigm like Rainbow [62] or
Falcon [127].

It is difficult to envision a hash-based key blinding scheme. As public keys are the
root of a Merkle tree, the only simple operation to blind a public key would be to hash it
again. This could satisfy independent blinding, but not signing with oracle reprogramming:
hash-based signatures work by providing paths up to the root, so the identity public key
would be revealed on that path.

Hash-and-sign algorithms appear to have the opposite problem. A blinded version would
almost certainly satisfy the signing with oracle programming property. If the trapdoored
function is F , then by choosing a point x in the domain of F and programming the hash
function so that H(msg) = F (x), we obtain a signature; this is how hash-and-sign signature
schemes often prove security. But it is not clear how to justify the independent blinding
property. The most simple blinding mechanism would be to compose the trapdoor function
F with another mapping G based on the blinding factor. This requires the range of F
to match the domain of G, which makes it an interesting problem to be used with a
hash-and-sign scheme. As well, to ensure the independent blinding property, we need
that F ◦G cannot be decomposed into the two mappings, which is a more novel security
assumption. Because RSA is a trapdoor permutation, the structure of its mapping may
allow for key-blinding, but it is not clear if any post-quantum primitive immediately does.

For these reasons, signature schemes that follow the Fiat–Shamir paradigm appear to
admit key blinding much more readily. While homomorphic properties over the key space
are certainly useful for key blinding (as in Dilithium and CSI-FiSh), they are not actually
necessary, as the Picnic construction shows.

What this means for key-blinding in Tor. Recall that the motivation for this chapter was
to provide a post-quantum alternative to key-blinding as it is used in Tor’s onion service
rendezvous protocol. For onion services, identity public keys are the URL for .onion

addresses. This means that, unless the onion service lookup process changes, users directly
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interact with an onion service’s public key, whether by clicking on it as a link or copying
and pasting it into a browser window. This motivates keeping public keys as small as
possible. For this purpose, blPicnic and blLegRoast are the most attractive of the schemes
considered. In the context of Tor, the process for connecting to an onion service is quite
lengthy (several seconds, usually). This is due to the numerous intermediate connections
that must be resolved to build a connection. As a result, there may be less sensitivity to
increased computation time.
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Chapter 3

Post-Quantum Updatable Public-Key
Encryption

3.1 Introduction

Secure communication protocols are quickly evolving [17, 111, 112], driven by the need to
meet simultaneous usability and security requirements, such as asynchronous communication,
forward secrecy, and post-compromise security for conversations that may last months, if
not years. Key-updatable public-key encryption (UPKE) schemes have been proposed as a
solution to improve weak forward secrecy properties of continuous key agreement schemes
that underpin existing secure messaging protocols such as the Message Layer Security
(MLS) protocols [9, 15, 95, 101, 125, 126]. In addition to standard public-key encryption
functionality, UPKE schemes allow encryption and decryption keys to be asynchronously
updated with fresh entropy. This can have the potential to heal the protocol by restoring
security even after exposure of secret values. Unfortunately, the security of all UPKE
schemes proposed to date relies on the hardness of the discrete logarithm problem.

Chapter Contributions and Structure. In this chapter, we perform the first assess-
ment of the viability of quantum-secure UPKE schemes. We focus on the functionality
of symmetric UPKE 1, and assess the extent to which the isogeny-based cryptosystem
CSIDH [49] can be used to instantiate it. We model symmetric UPKE after a construc-
tion by Alwen et al. [9] to improve the forward-secrecy and post-compromise security of

1Symmetric here refers to the requirements of how the update operation is performed, not the style of
encryption.
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TreeKEM [39], the group key-exchange primitive used by MLS, where both encryption and
decryption keys are updated using the same secret update value. Further, we introduce the
notion of IND-CPA-U security, a generalization of a security model by Alwen et al. [9] for
UPKE constructions.

We then present a CSIDH-based symmetric UPKE construction which can be used
today with the existing CSIDH-512 parameter set, or any CSIDH parameter set where the
class group structure is fully known. Knowing the class group structure ensures unique
group element representation and uniform sampling of secret key material. Taken together,
these properties ensure that knowledge of a secret key prior to an update will not leak
information about the key after an update operation, thereby fulfilling forward secrecy
and post-compromise security. We prove that our CSIDH construction fulfils IND-CPA-U
security.

Related Work The most closely related work to our own is the already mentioned work
of Alwen et al. [9] as a mechanism to improve forward secrecy and post-compromise security
of TreeKEM [39]. Our symmetric UPKE primitive is modelled after their construction,
and our work is an effort to define a post-quantum UPKE variant suitable for similar use.
Further, we prove security in a more robust model that models the adversary’s capability
to both adaptively choose update values for the victim as well as corrupt their local state.
The work by Alwen et al. was in turn based upon work by Jost et al. [101], which relies on
a notion of ‘asymmetric’ UPKE.

Both secure messaging protocols and post-quantum protocols are still in active devel-
opment. Efforts to combine the two into post-quantum secure messaging are so far rare
in the literature, although we refer to [45] as a recent example of exactly this. Their
work constructs a version of Signal’s X3DH protocol out of the (ring)-learning with errors
problem.

More recently, work by Dodis et al. [63] has directly constructed two UPKE schemes,
based on the learning with errors problem (making it another example of a post-quantum
construction) and the decisional Diffie-Hellman problem. A key focus of their work was to
prove the security of their schemes in the standard model, as opposed to the random oracle
model.

Alternative (Unrelated) Notions of UPKE. There exists a separate notion of ‘up-
datable encryption’ in the literature [41, 100]. In these schemes, a ciphertext is updated
using an update token such that the encrypted message becomes an encryption under a
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new public key without decrypting the message. These schemes should not be confused
with key-updatable UPKE schemes.

3.2 Background

3.2.1 CSIDH and CSI-FiSh

We have previously discussed CSIDH and CSI-FiSh in this thesis (Section 2.6). To reiterate,
CSIDH instantiates a free and transitive group action, with the group being the class group
Cl(O), with O being the endomorphism ring EndFp(E), the ring of endomorphisms from
an elliptic curve E to itself defined over Fp, which is an order in the imaginary quadratic
field Q(

√
−p). CSIDH chooses p to be of the form 4 · p1 · p2 . . . pℓ − 1, with each pi a small

distinct prime. This means that supersingular curves over Fp, having p + 1 points, will
have many Fp-rational subgroups with order pi. In CSIDH, computing with the group is
done via a set of canonical generators {gi}i∈ℓ, where gi is an ideal of the form ⟨pi, π − 1⟩,
where π is the Frobenius endomorphism. To apply a generator gi is to find the subgroup
of order pi defined over Fp and use Vélu’s formulae to calculate the action of the isogeny
whose kernel is that subgroup.

In CSIDH, secret keys are represented by a vector of ℓ integers. For efficiency reasons,
the integers are usually chosen to be within a bound B, for example, B = 5 so that all
entries are between −5 and 5. Then the secret key [e1, e2, . . . , eℓ] represents the group
element

ge11 ge22 . . . geℓℓ .

Since the group is commutative, we have that if g is represented by [e1, . . . , eℓ] and h is
represented by [f1, . . . , fℓ] then g · h can be represented by [e1 + f1, . . . , eℓ + fℓ]. Note as
well that since the group operation works by applying the gi one at a time, the cost of
applying a secret key is dominated by the ℓ1-norm of the secret key.

It has always been known that this representation of group elements does not preserve
distinctness. The gi generators are ‘overkill’ in that they are sufficient but likely not necessary
to generate the entire group. But the exact structure of the group is not easily calculated
from the parameters of the system. It is a subexponential calculation to understand the
precise structure of the group. In CSI-FiSh [38], the authors performed this calculation to
find this structure for the CSIDH-512 parameter set. They found the value N such that
|Cl(O)| = N . It is the product of 5 primes, the smallest being 3, and is approximately 2257.
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As the group is abelian and its order is a product of distinct primes, it is cyclic and the
group is isomorphic to ZN . This means that it has a single generator, and in fact g1 is such
a generator. This representation buys us two key aspects: first, we now do have a unique
or ‘canonical’ representation of group elements, and second we can sample uniformly over
the group. These properties are very nice for cryptographic purposes where secret material
needs to be masked and then released, such as in zero-knowledge proofs.

The problem with using the ZN representation of the group is that it is inefficient to
use directly. This is another major contribution of CSI-FiSh. The authors establish a way
to efficiently switch between the representation of a secret key as an element in ZN and one
in Zℓ. Their observation is that finding an efficient representation is essentially solving a
lattice problem. The vectors v ∈ Zℓ that correspond to 0 in ZN form a lattice. Finding a
short representation in Zℓ means finding some representation (which is easily done), and
then finding the closest vector in the lattice, so that the difference between the two has
small norm. Thus, the authors use a closest vector problem (CVP) solver to try and find a
suitable representation.

Thus the overall group action is instantiated as follows:

1. Convert the representation in ZN to one in Zℓ.

2. Use a CVP algorithm to find an equivalent representation [e1, . . . , eℓ] with small ℓ1
norm.

3. For i ∈ {1, . . . , ℓ}, apply the gi ideal ei times by finding the subgroup of order pi over
Fp and iteratively applying Vélu’s formulae.

3.2.2 TreeKEM and UPKE

TreeKEM is a recent protocol to instantiate continuous group key agreement (CGKA) in a
way that communication scales logarithmically, rather than linearly or quadratically, with
the number of group participants. The main data structure in TreeKEM is a binary tree,
where participants in the group are situated as the leaf nodes and the shared group secret
lies at the root. Every node other than the root has a public and secret key pair associated
with it. Each participant knows the secret keys on the path from their leaf node to the
root, and the public keys on the co-path (the siblings to the nodes on the direct path). This
is where TreeKEM gets its logarithmic efficiency from—encrypting a message under the
public key of a node ν allows for any participant in ν’s subtree to decrypt the message.
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Two of the desired security properties of a CGKA are forward secrecy (FS) and post-
compromise security (PCS). Informally, forward secrecy ensures that future compromises do
not allow for messages sent now to be decrypted, and post-compromise security similarly
ensures that past compromises do not allow for current messages to be decrypted (so long
as an uncompromised ‘refresh’ of key material has occurred). TreeKEM achieves both of
these properties through an ‘update’ process that allows any user to replace the group
secret at the root, as well as all of the keys on their direct path to the root. The update
process works as follows:

1. The user samples a seed s0, from which they generate (via a pseudo-random generator)
another seed s1 and a secret key sk0. They calculate the corresponding pk0 and set
the keypair for their node to be (sk0, pk0).

2. From s1 they generate the seed s2 and secret key sk1. The user can replace the key
pair of their parent node with the new (sk1, pk1). They then also need to send s1
to their sibling node (the first node on the co-path) so that the sibling node can
generate sk1, as well as pk0, the user’s new public key.

3. From here, the user can continue up the direct path to the root, replacing key pairs
and sending seeds and public keys to users who fall under the co-path so that they,
too, can replace key pairs.

4. Eventually the user will replace the root with the seed sd, where d is the length of
the path to the root. The root does not need a keypair associated with it.

Note that TreeKEM also includes methodologies for adding and removing users, but as
these discussions do not relate to UPKE, we do not discuss them here.

It is fairly easy to characterize TreeKEM’s post-compromise security properties. If an
adversary obtains the secret state of a user, they obtain that user’s secret key, and all the
secret keys up to the root, and the group shared secret. But as soon as that user performs
an update operation, all of those keys are replaced with entirely fresh keys. As long as the
user is not compromised during this update process, the adversary loses their advantage.

Analyzing the forward secrecy guarantees are somewhat more subtle. In an analysis
by Alwen et al. [9], the authors considered the notion of ‘epochs’ as the number of times
any user has performed an update. Naturally, for each epoch, the root group secret has
changed. For the scheme to be optimally forward secure, it should be the case that as soon
as any user has performed an update (thus replacing the root secret), a compromise of any
user does not allow for the decryption of messages under the previous epoch.
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a updates

a b c d

c updates

a b c d

Figure 3.1: A minimal example to demonstrate how previous version of TreeKEM were not
optimally forward secure.

Unfortunately, this is not the case. If the adversary captures all (encrypted) network
traffic, then by compromising certain critical private keys the adversary can recover root
nodes from previous epochs.

We consider an example in Figure 3.1. We begin with a tree with four parties, a through
d. User a then performs an update action, replacing keys on their direct path to the root
(in red) and encrypting seeds capable of generating parts of their direct path to the co-path
(orange). Next, c performs an update, doing the same. We denote c’s direct path in blue
and their co-path in green. Then note that if party b’s secret state is compromised in the
second session, then the group secret in the first epoch can be recovered. This is simply
because their own (leaf) keypair has not changed between the first and the second epoch,
and as part of generating the first epoch, party a sent b a seed that generated the root
secret under that keypair.

In Alwen et al.’s analysis [9], they show that in general, roughly half of the keys need
to be updated before the forward secrecy property actually ‘kicks in’ for a given epoch.
Their solution to this problem is that when an update occurs, both the direct path and the
co-path are updated. This poses a problem however, as the updater is only meant to know
the secret keys on the direct path.

The solution they propose is to use a construction they refer to as updatable public key
encryption (UPKE). Their construction takes a CPA-secure KEM (with corresponding key
generation, encapsulation, and decapsulation procedures) and adds an update procedure.
The update procedure allows anyone to sample an ‘update value’ and apply it to the public
key to generate an updated public key. With the same update value, anyone who has
possession of the secret key can similarly update it to the new corresponding secret key.
Critically, knowing (or even controlling) the update value still does not let you decrypt
messages.

It is now clear how UPKE solves the problem of updating the co-path. When an update
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occurs, the user now replaces the direct path, and updates the co-path. They then know
the secret keys on the direct path, but not the co-path. Since this corresponds to just a
small amount of additional work for the co-path, the logarithmic scaling of TreeKEM is
preserved, but forward secrecy is repaired.

3.2.3 Security

We now present a generalization of IND-CPA (Indistinguishability under Chosen Message
Attack) security for UPKE schemes described by Alwen et al. [9], which we define as
indistinguishability under chosen plaintext attacks with updatability, or IND-CPA-U. We
present this notion of IND-CPA-U security in Figure 3.2. Our notion assumes a symmetric
UPKE construction, but extends to the Asymmetric UPKE setting by simply allowing the
adversary to learn public update values.

In Alwen et al.’s definition, the adversary is given the public key pk0 and provides a
sequence of updates µ1, . . . , µτ . The public and private keys are updated accordingly and
the adversary is issued an IND-CPA challenge under pkτ . The public and secret key are
updated again, this time with a secret update, and the adversary is given the resulting
public and secret key. They then must respond to the IND-CPA challenge.

Their model illustrates the fundamental idea behind how security works for updatable
encryption: the adversary may learn (or even control) either the update value or the
secret key, but as long as they do not have both, the updated secret key remains secure.
However they have the restriction that the adversary controls the updates prior to the
IND-CPA challenge, and receives the secret key afterwards. We generalize this by allowing
the adversary to adaptively choose whether they want to control the update or learn a
secret key, with the restriction that the IND-CPA challenge can only be issued on a public
key that has not been compromised in a straightforward way.

In Figure 3.2, we define the game. We first generate a keypair (pk0, sk0) and sending
pk0 to Adv. We initialize i← 0 (the most recent version of the keypair will be (pki, ski)).
After this we let the adversary decide how the key will be updated. To this end, we provide
our adversary with the following oracles:

• The GiveUpdate(µ) oracle corresponds to an update that the adversary controls. They
get to pick the update value µ, which is used to update the key pair. We keep track
of the fact that the adversary provided the update so that if pki−1 or pki becomes
corrupted, the other does as well. While pki is provided to the adversary, note that
they could also generate it themselves.
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IND-CPA-U Game:

// Derive starting keypair

1 : (pk0, sk0)← KeyGen(λ); i = 0

2 : U ← ∅, C ← ∅
// Adversary queries oracles, eventually

// returns a challenge index

3 : j ← AdvGiveUpdate,FreshUpdate,Corrupt()

// Generate challenge ciphertext

4 : K0←$ KeySp

5 : (c,K1)← Enc(pkj)

6 : b←$ {0, 1}
// The adversary outputs a guess for b

7 : b′ ← AdvGiveUpdate,FreshUpdate,Corrupt(c,Kb)

8 : if not IsFresh(j) return f ←$ {0, 1}
9 : else return b′ = b.

GiveUpdate(µ)

1 : i← i+ 1

2 : pki ← UpdatePublic(pki−1, µ)

3 : ski ← UpdatePrivate(ski−1, µ)

// Keep track of which updates Adv provided

4 : U ← U ∪ {i}
5 : return pki

FreshUpdate()

1 : i← i+ 1

2 : µ← GenUpdate()

3 : pki ← UpdatePublic(pki−1, µ)

4 : ski ← UpdatePrivate(ski−1, µ)

5 : return pki

Corrupt(j)

1 : C ← C ∪ {j}
2 : return skj

IsFresh(j)

1 : if j ∈ C return false

2 : i← j

3 : while i ∈ U

4 : if i− 1 ∈ C return false

5 : i← i− 1

6 : i← j + 1

7 : while i ∈ U

8 : if i ∈ C return false

9 : i← i+ 1

10 : return true

Figure 3.2: IND-CPA-U game definition.

• The FreshUpdate() oracle corresponds to updates happening that the adversary does
not control or know the update value for. It generates a random µ←$ GenUpdate()
and then calls GiveUpdate(µ), providing the new pki to the adversary.

• The Corrupt(j) oracle provides skj for an index j ≤ i, and notes that j was corrupted.

Eventually, the adversary requests a challenge on an index j ≤ i. A random key K0 is
sampled and a genuine key and ciphertext is generated from Enc(pkj). A bit b←$ {0, 1}
is sampled and (c,Kb) is provided back to the adversary. After making further queries to
the update and corruption oracles, the adversary must issue a guess b′. They are said to
win if b = b′ and the index j is fresh. The freshness requirement ensures that the adversary
cannot trivially win.

An index j is considered fresh if:
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FreshUpdate

GiveUpdate

pk0 pk1 pk2 pk3 pk4 pk5 pk6

Figure 3.3: Visualizing how blocks of public keys become compromised depending on
whether the adversary controls the update.

• The adversary has not called Corrupt(j), and

• There is not a sequence of adversary-provided updates (in either direction) that
connects the index j to a corrupted index k.

In Figure 3.3 we visualize how the queries that the adversary has performed cause a
given index to be considered fresh or not. When an adversary issues a GiveUpdate query,
the new public key can be thought of as being in the same ‘block’ as the previous key,
meaning that should one become compromised, the other will as well. FreshUpdate queries
on the other hand result in a new block, disconnected from previous ones.

To emphasize, this definition means that if the adversary does not know the secret key
associated with an index i, but then provides an update themselves and corrupts index
i + 1, the index i is corrupted and ski can be easily calculated. One could hope for a
system without this property, where corruption can only be propagated in the forward
direction. This would be a notable improvement in the security of the system, but we leave
it as an open question whether a scheme can be made to accomplish this property without
weakening other parts of the security model.

Let Adv wins denote the event that the result of the IND-CPA-U game in Figure 3.2
outputs 1, that is the index is fresh and the adversary’s guess for b was correct. We define
the advantage of an adversary Adv against a UPKE scheme as

∣∣Pr[Adv wins]− 1
2

∣∣.
Definition 13. A UPKE scheme is IND-CPA-U secure if for any polynomial-time adversary
Adv, their advantage in the experiment in Figure 3.2 is negligible.

Unlike IND-CPA games for plain PKE schemes, the IND-CPA-U definition presented
in Definition 13 captures the notion of forward secrecy and post-compromise security by
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allowing Adv to learn any secret key material and provide whatever update values that
it wishes, with conditions preventing the adversary from trivially winning the IND-CPA
game.

3.3 UPKE Construction

3.3.1 CSIDH UPKE, first attempt

A basic design for a symmetric UPKE scheme would then be for the update value to be
a random group element, to update the public key by applying the group action, and to
update the secret key by adding the group elements together.

Unfortunately, this simple design is not secure. If each entry for the update value is
drawn uniformly from −B to B, then the distribution of each entry of the new public key
is centred at the old public key. This leaks a certain amount of information about the old
secret key. For example, if only one update has occurred, and an entry is 2B, then the
adversary immediately knows that the corresponding entry before the update must have
been B.

One fix may be to increase the bound B in an attempt to show that leaking the secret
key between certain updates still doesn’t reveal enough of the secret key to allow a break.
Such an analysis must be done carefully, but reveals another fundamental problem. As
more updates occur, the size of each entry in the vector is likely to grow. The efficiency
of CSIDH is directly dependent on the ℓ1-norm of this vector, and so allowing it to grow
with updates will result in a slower and slower decryption process, eventually becoming
unacceptable.

Note that this is almost exactly the same problem that a first attempt at a lattice-based
scheme would run into. If one were to define a scheme based on the LWE problem, then
updates could be generated by sampling an LWE secret. The secret key would then be
updated by adding the update value to the old secret. But as described for CSIDH, this will
cause the error term to grow over time, eventually causing the system to fail. Furthermore,
because errors are not chosen uniformly, the distribution of a secret will always be dependent
on the previous secret, meaning some information about previous keys is leaked in the event
of a compromise.

One technique to circumvent this problem that has been to employ rejection sampling,
as in the signature scheme SeaSign [60]. However, rejection sampling only works when we
can reject the group elements that would leak information on the secret key. Since the
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party selecting the update value is not the owner of the public key, rejection sampling is
not an option in our scenario. Instead, we will need the group elements to be represented
in a way that has better properties.

As mentioned in Section 3.2.1, the signature scheme CSI-FiSh uses a different rep-
resentation for group elements. Let N denote the order of the group. To compute the
group action (i.e., apply the isogeny to an elliptic curve) one converts an element of ZN

(represented simply by an integer) to an ideal in Zℓ and then applies the action as in CSIDH.
Representing group elements as an integer in ZN gives a unique representation. It is also
still very easy to apply the group operation in this representation — it is just addition
modulo N .

3.3.2 Our Construction

To prevent leakage from secret key updates described above, our construction requires a
class group structure that is fully known, so that the secret key and update value can
both be represented in ZN . The calculation of this value N as well as the methodology to
convert the representation was a major contribution of the CSI-FiSh paper [38]. To update
a public key, we apply the group action, and to update the secret key we add modulo N .
Because we can sample uniformly over ZN , we have that the updated secret key leaks no
information about the previous secret key, as desired.

We now describe the scheme in full, relying heavily on group action notation. Let N be
the order of the class group Cl(O) ∼= ZN . To apply the group action onto a supersingular
elliptic curve E (denoted g ⋆ E), we first need to convert the element to a representation in
Zℓ with a low ℓ1 norm, and then apply the action as in the original CSIDH paper.

• KeyGen(): Sample gsk←$ ZN and set Epk := gsk ⋆ E0. Output (sk, pk) = (gsk, Epk).

• Enc(pk): Sample genc←$ ZN and compute K ← KDF(genc ⋆ Epk), Ect ← genc ⋆ E0.
Return (Ect, K).

• Dec(sk, Ect): Calculate and return K ′ ← KDF(gsk ⋆ Ect).

• GenUpdate(): Sample µ←$ ZN .

• UpdatePrivate(sk, µ): Output sk′ ← sk + µ (mod N).

• UpdatePublic(pk, µ): Output pk′ ← µ ⋆ pk.
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Theorem 5. Let Adv be an adversary capable of winning the IND-CPA-U game with
advantage ϵ that makes qgen queries to the FreshUpdate oracle. Then there exists an adversary
capable of winning an IND-CPA game in time approximately equal to the running time of
Adv with advantage ϵ/(qgen + 1).

We demonstrate that our construction attains IND-CPA-U security, by showing a
reduction from an adversary capable of winning the IND-CPA-U game to one that can win
a plain IND-CPA game. By a plain IND-CPA game, we mean a game in which no calls to
the GenUpdate, GiveUpdate, or Corrupt oracles are made. This corresponds to the IND-CPA
security of CSIDH, except with secret key and encryption values drawn directly from ZN

and then converted to a vector to apply the group action. We present our complete proof
in Section 3.3.3.

3.3.3 Proof of CSIDH-Based UPKE

We now present the proof of Theorem 5, the IND-CPA-U security of the CSI-FiSh-based
construction.

Proof. As we are showing a reduction to a plain IND-CPA game, we will start by being
given a public key pk∗. To begin, select a uniformly random index i←$ {0, . . . , qgen}. The
idea of the proof is to set the public key after the ith FreshUpdate query to be pk∗, and
hope that the adversary requests the IND-CPA-U challenge to be issued on a public key
that occurs before the next FreshUpdate. If we are correct, then the adversary’s ability to
distinguish which message was encrypted under pk∗ (or a related key) will allow us to win
the IND-CPA game.

At the start of the game, if i = 0 then we set pk0 → pk∗. Otherwise, we sample a
new uniform pk0 from KeyGen. From here we proceed as normal. If the adversary makes
a corruption query, then we provide them with the corresponding private key. When a
GiveUpdate(µ) query is made, we update the secret and public key and make note of the µ
value.

When the ith query to FreshUpdate is made, we set the resulting public key to pk∗. We
carry on, and when the next FreshUpdate query is made we sample a fresh public key from
KeyGen. We refer to the block of public keys (with their associated indices) between the ith
and the i+1st FreshUpdate query as the target block. If the adversary ever makes a Corrupt
query on any of the keys in the target block, or requests a challenge for an index outside
the block, we abort. Because updates are sampled uniformly over ZN , the resulting
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public key is uniformly random over the public key space (this follows from the fact that
the group action is regular). So after a FreshUpdate has occurred, the adversary has no
information on the distribution of the secret key, and we can thus replace the public key
with the challenge public key pk∗. The adversary has no advantage in distinguishing that
we have done this. So the distribution of which block of public keys the adversary chooses
to corrupt, and which one they may choose to issue a challenge for, is unchanged. There
are qgen + 1 blocks of public keys, so for the adversary to have any advantage over 1

2
, they

must leave at least one uncorrupted and make their challenge query within that block. This
means the chance that we abort is at most qgen/(1 + qgen).

Eventually, the adversary requests the IND-CPA-U challenge on a public key with index
j, which by assumption is within the target block.

We then query for an IND-CPA challenge of our own, and receive back (C,K), with
C = g ⋆ E0 for a random g, and K either a random key or KDF (gsk∗ ⋆ C), depending on
the unknown bit b. Let µ1, µ2, ..., µk be k queries to GiveUpdate after the ith FreshUpdate
query. We provide the adversary with (−µ1 − µ2 − · · · − µk) ⋆ C and K.

Note that if b = 1, thenK = KDF(g⋆pk∗) = KDF((−µ1−· · ·−µk)⋆g⋆(µ1+· · ·+µk)⋆pk
∗),

which means that the K we provide to the adversary has the right format. So, when the
adversary submits a guess for b, we can guess the same value, and if the adversary is correct,
so are we.

Our advantage in winning the IND-CPA game is thus the adversary’s advantage in
winning the IND-CPA-U game times the probability we do not abort, which is ϵ/(1 + qgen),
as desired.

We note that the techniques in this proof can also be applied to the classical construction
of Alwen et al. [9]. While they couple together the public key update and encryption
functions, the same general strategy can be used to show that the stronger IND-CPA-U
notion can be satisfied by their construction.

3.3.4 Implementation

Because uniform sampling and unique representation requires the structure of the class
group to be known, our CSIDH-based scheme can only be instantiated with parameter sets
for which that structure is known. At the present time, this requirement limits us to the
CSIDH-512 parameter set, which claims 64 bits of post-quantum security. Peikert [123] has
questioned this security claim, and more recent analysis [51] indicates that CSIDH-4096
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is necessary for NIST level 1 security. Computing the structure of the class group is a
sub-exponential computation, and so becomes feasible with the availability of a quantum
computer to perform the computation. As such, the scheme may not be able to be
instantiated until it is most needed.

Other than computing the class group, the main challenge in an implementation is in
computing the group action. To compute the group action, the element of ZN is converted
to a vector in Zℓ, which represents the group element

∏ℓ
i=1 g

ei
i for a vector e⃗ and set of

generators {gi}i. This vector is then applied to the elliptic curve as is done in CSIDH.

Thus the additional complication over any other CSIDH implementation is in converting
the element of ZN to a vector of integers. This process is described in the CSI-FiSh paper,
and the authors have provided code to do this (for the CSIDH-512 parameter set). The
authors of CSI-FiSh found that the process of converting to a vector only makes a key
negotiation 15% slower. Using their implementation of CSI-FiSh, we have a proof of concept
script that illustrates the process of updating the secret and public keys. Our script is
available at https://github.com/tedeaton/CSIDH-UPKE.

3.4 Chapter Conclusion

The post-quantum key-exchange protocol CSIDH instantiates a group action. In this
chapter we have shown how a group action can be used to instantiate key-updatable public
key encryption, a primitive used in continuous group key agreement protocol TreeKEM. We
made use of several properties of this group action, most notably that it was free, transitive,
that we could sample uniformly from the group and that we could give group elements a
unique representation. CSIDH itself cannot provide all of these properties (it is missing
unique group element representation), and so we needed to use the additional structure
provided by calculating the size of the class group, as in the signature scheme CSI-FiSh.

In ‘Cryptographic Group Actions and Applications’ [6], the authors present a framework
of group actions for cryptography, characterizing actions by the properties they provide.
In their terminology, our construction for UPKE requires a ‘Known-order Effective Group
Action’, or KEGA. Such group actions are among the strongest and hardest to instantiate
because of the large amount of structure they require. CSI-FiSh in particular is difficult
because it requires the size of the class group to be known. There is no efficient classical
algorithm known for determining this size for a given parameter set. This is problematic,
especially considering recent research that argues that the CSIDH-512 parameter pro-
vides insufficient protection against quantum computers compared to other post-quantum
schemes [123].
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One should note however that there are efficient quantum algorithms for determining
the size of the class group. This places the scheme in a somewhat unique position: it can
be instantiated securely, but only after large scale quantum computers already exist. The
parameters require a quantum computer to generate, but once generated, the scheme can be
efficiently run on any classical computer. This does not help with a ‘pre-quantum’ period
of time, when quantum computers are imminent and quantum-secure cryptography should
be used to prevent later retroactive mass decryption, but it may be part of a solution suite
in a truly post-quantum era.

89



Chapter 4

Collision Finding in Non-Uniform
Functions

4.1 Introduction

Hash functions are central and prominent in modern cryptography, and there have been
many ingenious designs of cryptographic hash functions [120, 122, 32, 129]. One significant
property of a cryptographic hash function H, backed with intensive tests in practice, is
collision resistance. Namely, it should be computationally infeasible to find a collision,
which is a pair of distinct input strings (x, x′) with H(x) = H(x′). Because of this and
other nice features, hash functions are used in numerous cryptographic constructions and
applications, e.g., protecting passwords, constructing message authentication codes and
digital signature schemes, as well as various crypto-currencies exemplified by Bitcoin [118].

Theoretical analysis of a hash function H often refers to generic security, where one
ignores the internal design of H and views it as a black box. Moreover, the output of
H is assumed to have been drawn uniformly at random from some codomain of size N .
The complexity of finding a collision is then measured by the number of evaluations of
H, i.e., queries to the black box. By the well-known birthday bound, Θ(

√
N) queries

are both sufficient and necessary to find a collision in H. These principles are extended
and formalized as the random oracle model, in which a hash function is treated as a
truly random function that is publicly available but only through oracle queries [24]. This
heuristic has been widely adopted to construct more efficient cryptosystems and facilitate
security reduction proofs which are otherwise challenging or unknown [25, 75].
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But as with other areas of cryptography, quantum computers challenge long-standing
results on the abilities of adversaries to compromise security. As discussed in Section 1.2,
if H is treated as a black box, it is reasonable to allow a quantum adversary to query
H in quantum superposition:

∑
x,y αx,y|x, y⟩ 7→

∑
x,y αx,y|x,H(x) ⊕ y⟩. In a 2015 paper,

Zhandry [150] built on previous results to show that Θ(N1/3) quantum queries are both
sufficient and necessary to find a collision in a uniformly random function. This establishes
the generic collision resistance of uniformly random hash functions. But strict uniformity
shouldn’t be a necessary condition for security. Classically it is straightforward to show that
any function with a large enough codomain and high enough entropy can still be collision
resistant. Relaxing the condition of uniformity allows us to establish security for a wider
range of functions, and understand how changes from uniform to non-uniform functions
affect the abilities of quantum adversaries.

This motivates the question we study in this chapter: what is the complexity of finding
a collision in a non-uniform random function, under quantum attacks in particular?
Specifically we consider a distribution Dk on set Y which has min-entropy k, i.e., the
most likely element occurs with probability 2−k. We want to find a collision in a function
H : X → Y where for each x ∈ X, H(x) is drawn independently according to Dk. We call
it a rand-min-k function hereafter. Note that if Dk is uniform over Y (hence |Y | = 2k),
this becomes the standard uniformly random function. Given H as a black-box, we are
interested in the number of queries needed by a quantum algorithm to find a collision in
H. As a result, this will establish the generic security of hash functions under a relaxed
condition where the outputs of a hash function are drawn from a distribution of min-entropy
k rather than a strictly uniform distribution. This condition might be a more realistic
heuristic for a good hash function. Roughly speaking, a hash function designer will only
need to make sure that there is no single value y ∈ Y that has a large set of preimages
(i.e., f−1(y) := {x ∈ X : f(x) = y} with |f−1(y)| ≤ |X|/2k). In contrast, modelling a hash
function as a uniformly random function would require certain regularity such that the
preimage set of every codomain element has roughly the same size, which may be difficult to
justify and test in practice. We also note that a concrete application of collision finding in
rand-min-k functions appears in the famous Fujisaki–Okamoto transformation [75], whose
quantum security has been studied in [137].

As noted, classically it is not difficult to derive a variation of the birthday bound, which
gives Θ(2k/2) as the query complexity in typical cases. In the quantum setting, Targhi
et al. [136] prove that Ω(2k/9) queries are necessary for any quantum algorithm to find a
collision with constant probability. Compared to the tight bound 2k/3 in the uniform case,
the bound is unlikely to be optimal and the gap seems significant. In addition, no quantum
algorithms are described or analyzed formally. Overall, our understanding of finding a
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collision in non-uniform random functions is far from satisfying as far as quantum attacks
are concerned.

Chapter Contribution and Structure In this chapter, we characterize the complexity
of finding collisions in a rand-min-k function when it is given as an oracle to a quantum
algorithm. We are able to prove matching upper and lower bounds in many cases. The
results are summarized in Table 4.1. In this table, β := 1

Pr[x=y:x,y←D]
is the collision variable,

which equals 2k for flat-distributions (i.e., uniform on a subset of size 2k), and lies in [2k, 22k]
for δ-min-k distributions (i.e., peak at one element, and uniform elsewhere), as well as for
general min-k distributions. As well, M refers to the size of the domain and N refers to
the size of the codomain. Bounds for all cases except when M = o(β1/2) are original to this
work. As well, these bounds are made with the assumption that the adversary has exact
knowledge of the distribution Dk, except where otherwise stated.

Dk M N Upper bound Lower bound Upper
?
= Lower

All M = o(β1/2) N ≥ 2k ∞ (Lemma 15) ∞ (Lemma 15) ✓

All M = Ω(β1/2) N ≥ 2k β1/3 (Thm. 11) 2k/3 (Cor. 3) ✗

flat-k M = Ω(2k/2) N ≥ 2k 2k/3 (Thm. 11) 2k/3 (Cor. 3) ✓

δ-min-k M = Ω(N1/2) 2k ≤ N < 23k/2 N1/3 (Thm. 11) N1/3 (Cor. 4) ✓

δ-min-k M = Ω(2k) 23k/2 ≤ N < 22k 2k/2 (Thm. 12) 2k/2 (Cor. 4) ✓

δ-min-k M = Ω(2k) N ≥ 22k 2k/2 (Thm. 12) 2k/2 (Cor. 4 and 5) ✓

Table 4.1: Summary of quantum collision finding in rand-min-k functions.

A simple special case is the flat distribution, which is uniform on a subset of size
2k. In this case, not surprisingly, the same bound 2k/3 for the uniform random function
holds. Another special case, which represents the hardest instances, concerns the δ-min-k
distributions, where there is a mode element with probability mass 2−k and the remaining
probability mass is distributed uniformly throughout the rest of the codomain. Here we
show that 2k/2 queries are both sufficient and necessary. For general min-k distributions,
the complexity is characterized by the collision variable β(D) for a distribution D, which
is the reciprocal of the probability that two independent samples from D collide. We prove
a generic upper bound β1/3, and a lower bound 2k/3. For comparison, classically one can
show that the (generalized) birthday bound Θ(β1/2), which equals Θ(N1/2) for uniform
distributions, precisely depicts the hardness of finding a collision.

For the generic lower bound 2k/3, in Section 4.3 we follow the natural idea of reducing from
collision finding in uniform random functions (Theorem 8). We show that finding a collision
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in a uniformly random function of codomain size 2k reduces to that in flat distributions, and
then to general min-k distributions. Therefore the 2k/3 lower bound follows. This approach
is in contrast to that in [136], where they basically extract close-to-uniform bits from the
output of a rand-min-k function f by composing f with a universal hash function h. Note
that a collision in f is also a collision in h◦f . In addition, h◦f can be shown to be quantum
indistinguishable from a uniformly random function by a general theorem of Zhandry [149],
which relates sample-distinguishability to oracle-distinguishability. Therefore any adversary
for rand-min-k can be turned into an adversary for h ◦ f , contradicting the hardness for
uniformly random functions. However, the discrepancy between h ◦ f and a uniformly
random function gets accumulated and amplified in the sample-to-oracle lifting step, and
this may explain the slackness in their lower bound 2k/9.

Instead, given an oracle f whose images are distributed according to a distribution D,
our reductions employ a redistribution function to simulate an oracle f ′ whose images are
distributed according to another distribution D′ on Y ′. A redistribution function r maps a
pair (x, f(x)) to an element in Y ′, and r is sampled from a proper distribution such that
f ′(x) := r(x, f(x)) is distributed according to D′, taking into account the random choice of
f as well. We show algorithms for sampling appropriate redistribution functions, called
redistribution function samplers, for the distributions we are concerned with. As a result, we
can use an adversary for the collision-finding problem in D′ to attack the collision-finding
problem in D. To complete the reductions, we show that a collision found in the simulated
oracle for f ′ will indeed be a valid collision in f with probability at least 1/2.

Along the same lines, it is possible to demonstrate that collision-finding in δ-min-k
distributions is the hardest case. In fact, we are able to establish rigorously a strengthened
lower bound in this case (Theorem 9). Our proof proceeds by showing indistinguishability
between a random δ-min-k function on a codomain of size N and a uniformly random
function on the same codomain. Then the lower bound in the uniform case translates to a
lower bound for the δ-min-k case. The exact bounds vary a bit for different relative sizes of
N and k.

In Section 4.4 we consider upper bounds. Establishing upper bounds is relatively easy
(Theorem 11). We adapt the quantum algorithm of [150] in the uniform case. Basically we
partition the domain of a rand-min-k function f into subsets of proper size, so that when
restricting f on each subset, there exists a collision with at least constant probability. Next,
we can invoke the collision finding algorithm by Ambainis [10] on each restricted function,
and with a few iterations, a collision will be found.

Moreover, we give alternative proofs showing the lower bound for δ-min-k distributions
(Theorem 10) and upper bound for all min-k distributions (Theorem 12). They are helpful
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to provide more insight and explain the bounds intuitively. Specifically, we reduce an
average-case search problem, of which the hardness has been studied [92], to finding a
collision in a δ-min-k random function. On the other hand, when the mode element of a
min-k distribution is known, we show that applying Grover’s quantum search algorithm
almost directly will find a collision within O(2k/2) queries. This actually improves the
algorithms above in some parameter settings.

Finally, in Section 4.5 we consider what happens when we apply our redistribution
algorithms to (second-)preimage resistance. Doing this allows us to also show lower bounds
for the number of queries needed to find a (second-)preimage of a general min-k function.
This shows the flexibility and strength of the redistribution technique in proving results
about non-uniform functions.

Discussion Collision finding is an important problem in quantum computing, and a
considerable amount of work in this context exists. Brassard et al. [44] give a quantum
algorithm that finds a collision in any two-to-one function f : [M ] → [N ] with O(N1/3)
quantum queries. Ambainis [10] gives an algorithm based on quantum random walks
that finds a collision using O(M2/3) queries whenever there is at least one collision in
the function. Aaronson and Shi [1] and Ambainis [11] give an Ω(N1/3) lower bound for a
two-to-one function f with the same domain and co-domain of size N . Yuen [146] proves
an Ω(N1/5/poly(logN)) lower bound for finding a collision in a uniformly random function
with a codomain at least as large as the domain. This is later improved by Zhandry [150]
to Θ(N1/3) for general domain and codomain as we mentioned earlier.

We stress that, typically in quantum computing literature, the lower bounds are proven
for the worst-case scenario and with constant success probability. This in particular does
not rule out adversaries that succeed with an inverse polynomial probability which is
usually considered a break of a scheme in cryptography. Hence a more appropriate goal in
cryptography would be showing the number of queries needed for achieving any (possibly
low) success probability, or equivalently bounding above the success probability of any
adversary with certain number of queries. Our results, as in [150, 136], are proven in the
strong sense that is more appropriate in cryptographic settings.

Our work leaves many interesting possible directions for future work. One immediate
unsatisfying feature of our reductions is that they may take a long time to implement. Can
they be made time efficient? We have been mainly concerned with finding one collision; it
is interesting to investigate the complexity of finding multiple collisions in a non-uniform
random function. There are other important properties of hash functions such as preimage
resistance and second-preimage resistance, which are both weaker than and implied by
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collision resistance. Hence, our lower bound results also demonstrate the hardness of
finding a preimage and second preimage, though the bounds are not necessarily tight. In
Section 4.5 we extend the techniques for collision resistance and prove tight bounds for
preimage- and second-preimage resistance against quantum generic attacks. Finally, we
note that a stronger notion for hash functions called collapsing has been proposed which
is very useful in the quantum setting [143]. Roughly speaking, for a hash function to be
collapsing means that if an adversary prepares a quantum register of a superposition of
inputs to a hash function that all evaluate to the same output, then that adversary cannot
tell when a measurement in the computational basis has been applied to that register. Can
we prove that rand-min-k functions are collapsing? Note that a uniform random function is
known to be collapsing, and more recently it has been shown that the sponge construction
in SHA-3 is collapsing (in the quantum random oracle model) [57].

Independent work. In a concurrent and independent work by Ebrahimi and Unruh [72],
they give twelve bounds for quantum collision finding of min-k random functions. They
frame their results somewhat differently to ours, organizing their bounds according to how
they are quantified (e.g., for all adversaries, there exists a distribution such that at least so
many queries are needed). They also characterize, for each case, bounds in terms of both the
min-entropy k and the collision variable β. Our bounds in Table 4.1 on the other hand, are
arranged according to distribution. Translating between the two, one sees that our results
match closely with theirs, and indeed, in most cases a similar proof approach was employed.
An exception to this is in the lower bound in terms of the min-entropy, where we achieve
a tighter 2k/3 compared to their 2k/5. This difference is due to a different approach—our
redistribution function technique is able to achieve a tighter reduction compared to the
‘levelling approach’ they use.

4.2 Chapter Background

Here we introduce a few notations and definitions. We also discuss basic results concerning
the collision probability and birthday bound in min-k distributions.

Let D be a discrete probability distribution on set Y defined by probability mass
function D(y) := Prz←D[z = y]. The support of D is {y ∈ Y : D(y) > 0}. We denote
Y X := {f : X → Y } the set of functions for some domain X and codomain Y . The notation
f ← Y X indicates that f is a function sampled uniformly from Y X .
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Definition 14 (Min-Entropy). Let D be a distribution on set Y . D is said to have
min-entropy k if k = − log2(maxy∈Y {D(y)}). We refer to a distribution of min-entropy k
as a min-k distribution or simply a k-distribution.

Definition 15 (Flat-k-Distribution). We call a k-distributionD on set Y a flat-k-distribution,
denoted Dk,♭, if the support S of D has size exactly 2k. It follows that ∀y ∈ S, D(y) = 2−k.

Definition 16 (δ-k-Distribution). We call a k-distribution D on set Y a δ-k-distribution if
there is a unique mode element m ∈ Y such that ∀y ∈ Y

D(y) =

{
2−k if y = m ;
1−2−k

|Y |−1 otherwise .

We denote such a distribution Dk,δ. It is implicit that |Y | > 2k. The support of D is the
entire set Y , and remaining probability mass 1− 2−k is distributed uniformly among all
elements in Y other than the mode.

Definition 17 (Function of min-entropy k). Let D be a min-k distribution on set Y . We
define DX to be the distribution on Y X such that for every x ∈ X, its image is sampled
independently according to D. f ← DX denotes sampling a function in this way, and we
say that f is a function of min-entropy k.

Definition 18 (Collision problem). Let f ← DX be a function of min-entropy k. A pair of
elements x1 ∈ X and x2 ∈ X such that x1 ≠ x2 and f(x1) = f(x2) is called a collision in f .
We refer to the problem of producing such a pair as the collision finding problem in D.

Definition 19 (Quantum oracle access). A quantum oracle O for some function f imple-

ments a unitary transformation:
∑

αx,y|x, y⟩
O7→
∑

x,y |x, y ⊕ f(x)⟩. An algorithm A that
makes (quantum superposition) queries to O is said to have quantum oracle access to f ,
and is denoted Af .

4.2.1 Collision probability and non-uniform birthday bound

Definition 20. The collision probability of a probability distribution D is defined to be
the probability that two independent samples from D are equal. Namely

CP(D) := Pr
y1,y2←D

[y1 = y2] =
∑
y∈Y

D(y)2 .

We call β(D) := 1
CP(D)

the collision variable of D.
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β(D) will be an important variable determining the complexity of collision finding. In
fact we can derive a birthday bound for collisions in an arbitrary distribution D in terms of
β(D), analogous to the case of uniform distributions, using a key lemma by Wiener [145].

Lemma 14. ([145, Theorem 3]) Let RD be the random variable denoting the number of
i.i.d. samples from a distribution D until a collision appears for the first time. Let q ≥ 1 be
an integer and γq :=

q−1√
β(D)

Pr(RD > q) ≤ e−γq(1 + γq) .

Corollary 2. Let y1, . . . , yq be i.i.d. samples from D, and let Colq(D) be the event that

yi = yj for some i, j ∈ [q]. There is a constant c > 2 such that if q ≥ c
√

β(D), then
Pr(Colq(D)) ≥ 2/3 .

Proof. Let E be the event that yi = yj for some i, j ∈ [q]. Then

Pr[E] ≥ 1− Pr[RD > q] ≥ 1− e−γq(1 + γq) ≥ 2/3 ,

when q ≥ c
√

β(D) because 1+γq
eγq

< 0.3 whenever γq =
q−1√
β(D)

> 2.

We can also derive an upper bound on Pr[Colq(D)] in a straightforward manner.

Lemma 15. Pr[Colq(D)] ≤ q2

β(D)
.

Proof. For any pair i ∈ [q] and j ∈ [q], let Colij be the event that yi = yj. Then
Pr[Colij] = CP(D). Therefore by the union bound, we have

Pr[Colq(D)] = Pr[∪i,j∈[q]Colij] ≤
(
q

2

)
· CP(D) ≤ q2

β(D)
.

As a result, when q = o(
√

β(D)), essentially no collision will occur. Namely q needs to

be Ω(
√

β(D)) to see a collision, which is also sufficient by Corollary 2. This is summarized
below as a birthday bound for general distributions.

Theorem 6. Θ(
√

β(D)) samples according to D are sufficient and necessary to produce a
collision with constant probability for any classical algorithms.
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Finally, we characterize β(D) for min-k distributions.

Lemma 16. Let Dk be a min-k distribution on Y with |Y | = N ≥ 2k and k ≥ 1.

• For a flat-k distribution Dk,♭, β(Dk,♭) = 2k.

• For δ-min-k distribution Dk,δ, β(Dk,δ) ≈

{
N if N < 22k ;
22k if N ≥ 22k .

• For a general min-k distribution Dk, β(Dk) ∈ [2k, 22k].

Proof. For flat-k Dk, Dk(y) = 1
2k

for all y ∈ Y ′ ⊆ Y with |Y ′| = 2k. Hence β(Dk) =
1∑

y∈Y ′ 2−2k = 2k. For the Dk,δ distribution,

β(Dk,δ) =
1

CP(Dk,δ)
=

1

2−2k + (1−2−k)2

N−1

=
22k(N − 1)

N − 2 · 2k + 22k
≈ 22k ·N

22k +N
.

Different ranges of N give the estimation for β(Dk,δ). For general Dk, it is easy to see that
2−2k ≤ CP(Dk) ≤ 2−k and hence β(Dk) ∈ [2k, 22k].

4.3 Lower bounds: finding a collision is difficult

We prove our quantum query lower bounds for min-k collision finding by security reductions.
Recall the hardness result for uniform distributions by Zhandry [150].

Lemma 17 ([150] Theorem 3.1). Let f : [M ]→ [N ] be a uniformly random function. Then
any algorithm making q quantum queries to f outputs a collision in f with probability at
most C(q + 1)3/N for some universal constant C.

We show that collision finding in any min-k distribution is at least as difficult as collision
finding in a uniform distribution on a set of size 2k. We begin by demonstrating a reduction
of collision finding in a uniform distribution to collision finding in a flat-k distribution.
Then we show a reduction of collision finding in a flat-k distribution to collision finding in
a general k-distribution. Therefore we prove the following results.
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Theorem 7. Let f♭ ← DX
k,♭ be a random function whose outputs are chosen independently

according to a flat-k-distribution Dk,♭. Then any quantum algorithm making q queries to f♭
outputs a collision with probability at most O((q + 1)3/2k).

Theorem 8. Let fD ← DX be a random function whose outputs are chosen independently
according to a distribution D of min-entropy k. Then any quantum algorithm making q
queries to fD outputs a collision with probability at most O((q + 1)3/2k).

Corollary 3. Any quantum algorithm needs at least Ω(2k/3) queries to find a collision with
constant probability in a random function fD ← DX whose outputs are chosen according to
a distribution D of min-entropy k.

Each of the proofs describes an algorithm (i.e., a reduction) attempting to find a collision
in a random function f to which it has oracle access. The reduction will run, as a subroutine,
another algorithm which finds a collision in another random function g when given oracle
access to g (these random functions are not necessarily sampled from the same distribution).
To adapt the subroutine which finds collisions in g for the task of finding a collision in
f , the reduction simulates an oracle for g by building an oracle converter from the oracle
for f and a suitable redistribution function. In general the redistribution function must
be random, sampled from a particular distribution so that the distribution of its images
equals that of g. Given some distributions from which the images of f and g are sampled,
only some special sampling procedures will produce a redistribution function suitable for
building the oracle converter needed. We formalize the concept of a redistribution function
sampler as a generally randomized algorithm that performs such a sampling procedure
specific to the oracles the reduction has access to and needs to simulate.

Definition 21 (D → D′ Redistribution Function Sampler). Suppose f : X → Y is
a random function whose images are distributed according to a distribution D. Let
D′ be a distribution on Y ′. We call an algorithm S a D → D′ redistribution function
sampler if it returns a function r : X × Y → Y ′ such that for all x ∈ X and y ∈ Y ′,
Prf,r

[
r(x, f(x)) = y

]
= D′(y) and this probability is independent for each x.

We use the term redistribution function to refer to a function returned by a redistribution
function sampler, explicitly stating the distributions when necessary. The redistribution
function naturally induces an oracle converter.

Definition 22 (Oracle Converter). Suppose f ← DX is a random function whose images
are distributed according to a distribution D on Y . Let D′ be a distribution on Y ′, and
r : X × Y → Y ′ be a D → D′ redistribution function. An algorithm C, having oracle access
to f and r, is called an oracle converter from f to g if C computes a function g : X → Y ′

defined by g(x) := r(x, f(x)).

99



We may denote g = Cf,r. We can immediately observe that g is distributed as if the
images were sampled independently according to D′, when f and r are sampled according
to the above definition.

Lemma 18. The oracle converter defined above computes a function g that is distributed
identically to D′X , i.e., its images are independently distributed according to D′, if f ← DX

is chosen randomly and r is generated by a D → D′ redistribution function sampler.

We will be concerned with finding collisions in f and g. In particular, we are interested
in whether a collision of g constitutes a collision of f . We define the collision-conversion
rate to capture this property of an oracle converter.

Definition 23 (Collision-conversion rate). Let C be an oracle converter from f to g. We
say that it has collision-conversion rate p if for any x, x′ ∈ X, and g′ ∈ Y ′X we have that

Pr
f,r

[
f(x) = f(x′) | g(x) = g(x′) ∧ g = g′

]
≥ p.

With these notions available, our reduction proofs basically sample a redistribution
function (with the correct distributions), and then simulate a correct oracle g distributed
according to D′X using an oracle converter accessing the given oracle f ∼ DX . Then we
run a collision-finding adversary on D′ with oracle g. Whenever it outputs a collision, we
can conclude that a collision is also found in f with probability p by the collision-conversion
rate, which will lead to the desired contradiction. For each of the reductions, we will
describe a suitable redistribution function sampler and show that it has at least constant
collision-conversion rate. To do so, we assume that the reductions have full information
about D and D′, as well as sufficient randomness. This is fine as far as query complexity
is concerned, and it is an interesting open question to make them time-efficient. We also
remark that, for the sake of clarity, the distribution of images of our redistribution function
is defined to be exactly matching distribution D′. It suffices to approximate distribution D′

up to some negligible statistical distance.

Now we provide a generic formal description for all of our reductions, leaving the
redistribution function sampler as a modular component which we can describe individually
for each collision finding problem (for now we assume that each reduction has access to
an adequate redistribution function sampler in each case). We do this in part to formally
demonstrate how our reductions are compatible with quantum adversaries, allowing them
to submit queries in quantum superposition and receive the oracle responses in quantum
superposition. We will show that the oracle converters can be implemented as quantum
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Let f ← DX be a random function whose images are sampled according to D on a set Y .

Let D′ be a distribution on a set Y ′. Let S be a D → D′ redistribution function sampler.

Let A be an adversary for collision-finding in D′.

1 : Run S and store its output as r. Implement an oracle for r.

2 : Construct an oracle converter C using the oracles for f and r. The responses of C are

now distributed according to D′. Refer to the function implemented by C as g.

3 : Initialize A. For each query made by A, forward the query to C and return the

response to A.
4 : When A returns a collision (x1, x2) in g, output (x1, x2).

Figure 4.1: Generic Reduction via Oracle Converter

UC

x
f(·)

r(·)
f(·)

x

|0⟩ |0⟩
y y ⊕ r(x, f(x))

Figure 4.2: Quantum circuit that implements function g = Cf,r using two oracle calls to f .

oracles, so that the reduction can simulate the collision-finding problem for a quantum
adversary who submit quantum queries. As usual, we consider a reduction solving collision-
finding in D using an adversary for collision-finding in D′. The process is summarized in
Figure 4.1.

We emphasize that the functions f and r are random functions sampled before the
adversary begins the attack (the attack referring to the query-response phase in which
interaction with the oracle occurs), as f is simply a model for what would be a fixed,
publicly known hash function in a practical security setting, and r would be chosen by the
adversary according to some procedure specific to the hash function (this is the role played
by redistribution function sampler). Implementing the converter as a quantum-accessible
oracle is straightforward as shown in Figure 4.2. Note that the function r can be turned
into a unitary operator by standard technique |x, x̃, y⟩ r7→ |x, x̃, y ⊕ r(x, x̃)⟩. f is given as a
quantum oracle, which we just need to query twice to answer each query to g.

Now that we have a generic construction for our reductions, we will show a simple
reusable general result that will allow us to quickly construct reductions and extend
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query complexity lower bounds by simply demonstrating the existence of a satisfactory
redistribution function sampler for use in each reduction. In this context we say that a
reduction algorithm succeeds if the output pair indeed forms a collision in the given oracle
function.

Lemma 19. Suppose there exists an algorithm A which solves collision finding in a
distribution D′ with probability at least PA, using q queries to an oracle for a function
g whose responses are distributed according to D′ 1. Suppose there exists a D → D′

redistribution function sampler S such that the induced converter has collision-conversion
rate at least p. Then the process in Figure 4.1 initialized with S and A, denoted RS,A,
solves collision finding in D with probability at least p · PA using 2q queries to an oracle for
f whose images are distributed according to D.

Proof. Lemma 19 follows from the suppositions stated, from Lemma 18, and from the
definition of the collision-conversion rate (Definition 23). Let g = f(x, r(x)), and let Ag

denote the adversary instantiated with g. We then need to consider, over the randomness
in f , r, and A, the probability that the output that A provides is a collision in f .

Pr
f,r,A

[f(x1) = f(x2) | (x1, x2)← Ag]

= Pr
f,r,A

[f(x1) = f(x2) | g(x1) = g(x2), (x1, x2)← Ag] · Pr
f,r,A

[g(x1) = g(x2) | (x1, x2)← Ag]

=
∑

g′∈Y X′

(
Pr
f,r,A

[f(x1) = f(x2)|g(x1) = g(x2), g = g′, (x1, x2)← Ag]

× Pr
f,r,A

[g = g′ | (x1, x2)← Ag]

)
PA

Here we have used Lemma 18 to reduce Pr[g(x1) = g(x2) | (x1, x2)← A] to PA. For the
first probability in the summand, note that the definition of collision conversion resistance
means that for each g′, for all x1, x2, this conditional probability is at least p. So the fact
that (x1, x2) was generated by Ag is irrelevant, and we can reduce this to be simply p. Then
we recombine the summand and get the result p ·PA. The observation that RS,A uses twice
the number of oracle queries as A proves the lemma.

1The probability PA reflects the randomness of oracle’s responses and of A.
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Therefore to prove Theorem 7 and 8, all that is left is to show suitable redistribution
function samplers.

Lemma 20. Let U2k be a uniform distribution on a set Y of size 2k. Let Dk,♭ be a flat-k
distribution on a set Y1, which has support Sk,♭ ⊆ Y1, and Dk a general min-k distribution
on a set Y2. There exist U2k → Dk,♭ and Dk,♭ → Dk redistribution function samplers, and
the induced oracle converters have collision-conversion rates at least 1/2.

Proof. We describe the two samplers below.

U2k → Dk,♭ sampler. In this case the redistribution function sampler is nearly trivial
because a simple relabeling of samples from the distribution U2k will suffice to simulate
samples from the distribution Dk,♭. Let f be a function f : X → Y whose images are
distributed according to U2k , to which oracle access is available. Let m : Y → Y1 be any
bijection onto Sk,♭. Define S1 as a one-step algorithm that returns a function r1(x, y) = m(y).

By the definition of r1, Pr[r1(x, f(x)) = y′] = Pr[m(f(x)) = y′] for all x ∈ X and
y′ ∈ Sk,♭. Since m implements an injective mapping from Y to Sk,♭, Pr[m(f(x)) = y′] =
Pr[f(x) = m−1(y′)]. Since, by the definition of f , Pr[f(x) = y] = U2k(y) for all y ∈ Y ,
Pr[f(x) = m−1(y′)] = U2k(m

−1(y′)) = 2−k. Hence Pr[r1(x, f(x)) = y′] = Dk,♭(y
′) for all

x ∈ X and y′ ∈ Sk,♭, since Dk,♭(y
′) = 2−k for all y′ ∈ Sk,♭. Anything not in the support of

Dk,♭ is also not in the range of m, and is returned with probability 0. It follows that S1 is a
U2k → Dk,♭ redistribution function sampler. We now show that the collision-conversion rate
of the induced oracle converter is exactly 1. Let (x1, x2) be a collision in g, the function
implemented by the oracle converter. Then r1(x1, f(x1)) = r1(x2, f(x2)), from which it
follows that m(f(x1)) = m(f(x2)). Since m is an injective mapping,we can conclude that
f(x1) = f(x2), which shows that (x1, x2) is necessarily a collision in f .

Dk,♭ → Dk sampler. We provide an overview of the Dk,♭ → Dk redistribution function
sampler in the following few paragraphs. The complete redistribution function sampler is
given in Section 4.3.1, along with a detailed explanation of the reasoning behind it. We
reiterate that the redistribution function can be prepared before oracle access to the hash
function under attack is obtained, allowing the query-response phase of the attack to be
implemented as a quantum algorithm without concern for the quantum implementation of
the redistribution function sampler.

The basic challenge that must be solved by the redistribution function sampler is
to provide a mapping from the support of one distribution to the support of another
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distribution in such a way that the output is actually distributed according to the second
distribution, which we call Dk, when the input is distributed according to the first, which we
call Dk,♭.

2 In order to maximize the probability that Algorithm 4.1 succeeds, the mapping
must maximize the probability that two identical outputs correspond with two identical
inputs, i.e., the collision-conversion rate. Our construction for this redistribution function
sampler, which we call S2 (and which returns a function which we call r2), ensures that
this probability is no less than one half by allowing at most two elements of the support of
the Dk,♭ be mapped to each element of the support of Dk. To provide intuition for how
this is achieved, we recommend visualizing each distribution as a rectangle divided into
‘bins’ representing the elements of its support, with each bin’s width proportional to the
probability mass of the corresponding element under the distribution. We refer to this as
the rectangular representation of the distribution. An example is shown below. We let Dk,♭

be a flat distribution of min-entropy 2, and Dk be a (non-flat) distribution of min-entropy
2. We label each bin with a number indexing the elements of the support in each case.

1 2 3 4 5 Dk

1 2 3 4 Dk,♭

For each of the elements of the support of Dk,♭, we must decide what the probability
mass corresponding to that element in Dk,♭ should ‘be sent to’ by the redistribution function,
in the sense that whatever that element is mapped to will occur with the same probability
as that of sampling the element from Dk,♭. A natural solution that would correctly produce
the distribution Dk is to in some sense ‘project’ the distribution Dk,♭ onto Dk, so that
each ‘location’ in the rectangular representation of Dk,♭ is mapped to a ‘location’ in the
rectangular representation of Dk (by ‘location’ here we refer to horizontal position a
rectangular representation, selecting some specific probability density). We illustrate this
sort of projection by drawings lines between the two rectangular representations that show
where the boundaries between the elements of each distribution’s support fall in the other
distribution, shown below.

2A redistribution function formally is also provided the query x that is associated with the sample from
the first distribution, which is (in Algorithm 4.1) the response from an oracle whose output is distributed
according to the first distribution. This is necessary in cases where the second distribution has a larger
support than the first, since the image of the redistribution function cannot be larger than the domain. It
can safely be ignored otherwise (as in the construction for r1).
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1 2 3 4 5 Dk

1 2 3 4 Dk,♭

From the fact that the width of each bin is proportional to the probability mass
associated with each element of each distribution, it follows that, if, for a given sample from
Dk,♭, we sample an element from the support of Dk according to the available probability
mass inside the projected bin from Dk,♭, the sampling result will be distributed exactly
according to the distribution Dk. This is difficult to communicate verbally, but visually,
one can imagine receiving a sample from Dk,♭ as ’selecting’ the bin associated with the
sampled value in the rectangular representation of the distribution. Then, following the
lines bordering that bin, we find that the probability mass associated with the sample from
Dk,♭ is mapped to probability mass corresponding to several elements of the support of
distribution Dk. If we now sample from these elements according to their share of the
probability mass corresponding to the sample from Dk,♭, our samples will be distributed
according to Dk. For example, with reference specifically to the graphic above, suppose
that we receive element 2 as a sample from Dk,♭. Following the lines down from the bin
corresponding to element 2 in the rectangular representation of Dk,♭, we see that elements
2 and 3 in the support of Dk both partially reside in the space corresponding to bin 2
in the rectangular representation of Dk,♭. In particular, element 2 in the support of Dk

consumes much more of the space than element 3. Hence we sample either 2 or 3, with a
bias toward 2 exactly equal to how much more of the space element 2 consumes (recall that
space in these rectangular representations corresponds to probability mass). Similarly, had
we received element 3 as a sample from Dk,♭, we would have sampled from elements 3 and
4 in the support of Dk with little or no bias, since these seem to roughly evenly split the
space inside the boundaries of the bin corresponding to element 3 in the support of Dk,♭.

In Section 4.3.1 we show a proof that the process in Figure 4.1 initialized with S2 succeeds
with probability at least one-half given that the adversary it runs as a subroutine succeeds—
this proof derives and relies on a property of the redistribution function generated by the
sampling procedure just described—that an apparent collision in its output corresponds
with a collision in its input (which, recall, in Algorithm 4.1 is the output of an oracle whose
images are distributed according to Dk,♭) with probability at least one-half. In Section 4.3.2
we prove that the redistribution function sampler S2 has a collision-conversion rate of at
least one-half. The intuition behind this property is that a sample from Dk produced by
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the redistribution function could have been generated by, at most, 2 distinct samples from
Dk,♭, since each bin in the rectangular representation of Dk resides within the boundaries
of, at most, 2 bins in the rectangular representation of Dk,♭.

We have shown that S1 and S2, as just described, are U2k → Dk,♭ and Dk,♭ → Dk

redistribution function samplers, respectively. Finally, Theorem 7 and 8 follow easily. Note
that we write some of the constant factors in the probabilities with the common notation
C, even though they will not all take the same numerical value, in recognition that they
are not interesting for the study of asymptotic query complexity.

Proof of Theorem 7 & Theorem 8. By Lemma 20, there exists a U2k → Dk,♭ redistribution
function sampler S1 for which the induced collision-conversion rate is at least one-half.
Therefore Lemma 19 implies that our reduction algorithm is an collision-finding adversary
making 2q queries to a uniformly random function f with success probability at least PA/2.
However, Lemma 17 tells us that any 2q-query adversary can succeed with probability at
most C(2q + 1)3/2k. Therefore the success probability PA of any q-query adversary A is
O((q + 1)3/2k), which proves Theorem 7.

Theorem 8 is proved in the same fashion by invoking the Dk,♭ → Dk redistribution
function sampler S2 in Lemma 20 and with Theorem 7 taking the place of Lemma 17.

4.3.1 Details relating to Lemma 20: Dk,♭ → Dk redistribution
function sampler

In this section we describe the redistribution function sampler S2 in complete detail.
Annotated pseudocode for S2 is found in Figures 4.3 and 4.4. Because the algorithm is
quite long and dense, we use this section to also explain the intuition behind the algorithm,
before proving that collision-conversion rate in Section 4.3.2.
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Let Dk be an arbitrary k-distribution on support Sk. Let Dk,♭ be a

flat-k-distribution on support Sk,♭. Let f♭ : X → Sk,♭ be an oracle for a function

whose images are distributed according to Dk,♭

1 : Prepare to store a lookup table for a function c : Sk × Sk,♭ → [0, 1]

2 : Sort and label the elements yi of Sk in order of decreasing probability mass under

distribution Dk, so that Dk(y1) = 2−k (by the definition of min-entropy, there must

be one or more yi ∈ Sk with Dk(yi) = 2−k)

3 : Arbitrarily label the elements zj of Sk,♭ with index j = 1, 2, . . . , 2k.

4 : for i ∈ 1, 2, 3, . . . , 2k do

5 : if Dk(yi) = 2−k then

6 : Set c(yi, zi) = 1.

7 : Set c(yi, zj) = 0 for all j ̸= i.

8 : endif

9 : if Dk(yi) < 2−k then

10 : Compute

i−1∑
j=1

Dk(yj) (here j is a dummy-index for the sum and is unrelated to

the labeling of the elements of Sk,♭).

11 : Save the result as the image of i under a function g : [|Sk|]→ [0, 1].

12 : if 2−k divides g(i) then

13 : Set c(yi, z((g(i)/2−k)+1)) = 2kDk(yi) and c(yi, zj) = 0 for all j ̸= (g(i)/2−k) + 1.

14 : else

15 : Set c(yi, z⌈g(i)/2−k⌉) = 2kmin(⌈g(i)/2−k⌉ − g(i), Dk(yi))

16 : Set c(yi, z⌈g(i)/2−k⌉+1) = 2k(Dk(yi)−min(⌈g(i)/2−k⌉ − g(i), Dk(yi)))

17 : Set c(yi, zj) = 0 for all remaining zj ∈ Sk,♭

18 : endif

19 : endif

20 : endfor

Figure 4.3: Redistribution Function Sampler S2, Part 1.
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21 : for zj ∈ Sk,♭

22 : Construct the set Wj containing all yi ∈ Sk for which c(yi, zj) ̸= 0.

23 : Store the set Wj as the image of zj in a function b : Sk,♭ → P(Sk).

24 : endfor

25 : for each combination of one x ∈ X and one z ∈ Sk,♭ do

26 : Fix some mapping from an index t to each element in b(z).

27 : Compute mx(yt) = c(yt, z) for each yt ∈ b(z).

28 : Sample a← [0, 1].

29 : Iterate through i = 1, . . . , |b(z)| until
i∑

t=1

mx(yt) ≥ a.

30 : Define r2(x, z) = yi.

31 : endfor

32 : return r2

Figure 4.4: Redistribution Function Sampler S2, Part 2.

To facilitate intuitive understanding of why S2 is a suitable redistribution function
sampler for use in reducing collision finding in Dk,♭ to collision finding in Dk, we visualize a
distribution Dk as a rectangle divided into disjoint regions, each region representing one
element of the support Sk. The total area of the rectangle is 1, representing the total
probability mass in Dk. For simplicity, consider momentarily a distribution of min-entropy
2 on a set of size 5, whose elements we label with the first 5 positive integers. In the
distribution represented below, the 1 element has 25% of the probability mass, while the
others share the remaining 75%. Thus 1 is the mode element and its probability mass
determines the min-entropy of the distribution.

1 2 3 4 5 Dk

Denote the oracle simulated by the oracle converter (which we denote C as fk. In
order to be used in Algorithm 4.1, the redistribution function’s output must be distributed
according the distribution Dk when given a query x ∈ X and a response from an oracle for
f♭. Clearly, in order to satisfy this requirement, there must be additional randomness ‘built
in’ to the way the redistribution function is sampled because the distribution Dk may, in
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general, have higher Shannon entropy than the distribution Dk,♭, as |Sk| ≥ |Sk,♭|. We can
accomplish this by treating the elements of Sk,♭ as ‘bins’, each associated with one or more
elements of Sk. In order to generate a sample from Sk, a sample from Sk,♭ first selects a ‘bin’,
and then one of the elements of Sk associated with that bin is chosen randomly according
to a conditional probability distribution such that the marginal probability of sampling
that element (across all of the bins) is equal to the probability associated with that element
under distribution Dk. This process can be visualized intuitively by vertically aligning
rectangular representations of the distributions Dk,♭ and Dk. The conditional probability
of sampling each element in Sk given a bin in Sk,♭ can be illustrated by projecting the
dividers between elements in the rectangle representing Dk into the space between the two
rectangles. We show a trivial example below, using distributions of min-entropy 1.

1 2 3 Dk

1 2 Dk,♭

c(1, 1) = 1 c(2, 2) = 0.5 c(2, 3) = 0.5

The diagram above also illustrates the role played by the function c : Sk × Sk,♭ → [0, 1].
This function specifies the conditional probability that r2 returns a sample of a certain
element of Sk given that the response of f♭ to a certain query is a certain element from
Sk,♭. Formally, c(y, z) = Pr[r2(x, f♭(x)) = y|f♭(x) = z], where x is a query produced by the
adversary in algorithm 4.1. Then the output of r2 on input (x, z) is simply determined
by sampling from the chosen bin according to the conditional probabilities that c(y, z)
specifies—this sampling step is where algorithm 4.3 injects the additional randomness that
will be needed to convert an oracle for f♭ to an oracle for fk. The values encoded into the
function c therefore make up the non-trivial part of algorithm 4.3.

In the example above, the elements 2 and 3 have a total probability mass of 0.5 in Dk,
so they can be ‘binned’ into element 2 in Dk,♭. Supposing that element 2 is returned by the
oracle f♭, a single uniformly random bit would determine whether C will return 2 or 3 as
the response of fk, since each are equally likely under Dk. If element 1 is returned by f♭,
no additional randomness is needed, as c(1, 1) = 1. This is always the case for the mode
element, because its probability mass under Dk must exactly equal the probability mass of
any of the elements of Dk,♭, since Dk and Dk,♭ have equal min-entropy.
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This procedure will ensure that the output of r2 is distributed according to Dk when the
2nd input is distributed according to Dk,♭, since the marginal probability of sampling each
element in this fashion exactly replicates the associated probability in Dk. In this simple
case, any collision found in fk will necessarily be a collision in f♭. However, this is not true
in general. If the elements of Sk cannot be grouped into bins each with total probability
mass under Dk equal to 2−k, then some elements of Sk must have their probability mass
split among multiple bins. An example of such a case is shown below.

1 2 3 4 5 Dk

1 2 3 4 Dk,♭

In cases like these, it is possible that a pair of identical outputs from r2, constituting
an apparent collision in fk from the perspective of the adversary in algorithm 4.1, do not
actually originate from identical responses from f♭, and therefore do not constitute an
actual collision in f♭, the function which 4.1 attacks. Luckily, it is possible to construct the
function c such that the probability that a collision in fk corresponds to a collision in f♭ is
bounded below by one half (giving C a collision-conversion rate of at least one half), so
that Algorithm 4.1 instantiated with S2 can preserve the query complexity of the adversary
it leverages, from which Theorem 8 follows. Algorithm 4.3 contains a general method for
constructing such a function, which we explain now.

The first step is to sort the elements of Sk in order of decreasing probability under
distribution Dk. The utility of this is that it guarantees that any elements of Sk which can
be trivially associated with an element in Sk,♭, because they have a probability mass equal
to 2−k, are mapped to a single element in Sk,♭ with probability 1.

Next, Algorithm 4.3 iterates over the elements yi of Sk, setting the value of c(yi, zj) for
all elements zj of Sk,♭ for each. This may be visualized as moving across the rectangular
representations of Dk and Dk,♭ from left to right, determining the values of the function
c along the way. If the probability mass of yi under Dk is 2−k, then all of its probability
mass is associated with the element in Sk,♭ with the same index, so c(yi, zi) = 1 (and of
course zero for all other zj). If the probability mass corresponding to yi in Dk is less than
2−k, then the probability mass from yi will not ‘occupy’ an entire bin in Dk,♭, so it must
share a bin with other elements of Sk. But if the current bin is already partially occupied,
it may be the case that the probability mass of yi has to be split between the current bin
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and the next bin, where the ‘current bin’ and ‘next bin’ refer to the elements of Sk,♭ which,
at this point in execution of Algorithm 4.3, have the highest index out of the elements for
which c has already been assigned and the lowest index out of the elements for which c has
not already been assigned, respectively.

To check whether this is the case, Algorithm 4.3 computes the total probability mass in
Sk that has already been assigned, which it saves as g(i), and checks whether this value
is a multiple of 2−k. If it is, then the current bin must be completely occupied, and the
probability mass corresponding to yi will fit completely inside the next bin. The next bin
will in this case be indexed by (g(i)/2−k) + 1. If g(i) is not a multiple of 2−k, then the
probability mass from element yi may need to be split between the current bin and the
next bin. In this case, the index of the current bin will be ⌈g(i)/2−k⌉, because for example
if g(i)/2−k = 2.1 then the first two bins are completely occupied, and one tenth of the third
bin is completely occupied, making the index of the current bin 3. The index of the next bin
will thus be the index of the current bin plus one. The value of c(yi, z⌈g(i)/2−k⌉), representing
the conditional probability of sampling yi given the current bin has been sampled from
Dk,♭, is set to 2kmin(⌈g(i)/2−k⌉ − g(i), P (yi)). The minimum function guarantees that if it
is possible to fit all the probability mass from yi into the current bin then this is done, and
if not, whatever probability mass can fit into the current bin is assigned to the current bin.
Naturally, whatever probability mass is not assigned to the current bin must be assigned to
the next bin, to conserve marginal probability. The factors of 2k come from the denominator
of 2−k in the conditional probability. It should be clear that the procedure just described
would lead to a c function like the one illustrated below, for the example distribution Dk

which we introduced earlier. In general, the c function that results from this procedure can
be visualized by projecting the dividers between elements in both rectangles into the space
between the two rectangles.
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1 2 3 4 5 Dk

1 2 3 4 Dk,♭

c(1, 1) = 1 c(2, 2) = 0.75

c(3, 2) = 0.25

c(3, 3) = 0.5

c(4, 3) = 0.5

c(4, 4) = 0.25

c(5, 4) = 0.75

In the next step, for each element in Sk,♭, Algorithm 4.3 saves the set of all elements in
Sk which are associated with it via the c function. These sets are saved in a function b and
will be used to ‘invert’ (using the term loosely) the c function for the purpose of simulating
the responses of an oracle fk whose responses are distributed according to Dk.

Now that the appropriate conditional probability distributions are calculated (in the c
function), all Algorithm 4.3 has to do is sample from the conditional distribution specified
by c for each possible combination of a query x ∈ X and a response z ∈ Sk,♭ of oracle
f♭. Essentially, the steps before this point were defining the distribution over the set of
all functions needed to sample a suitable redistribution function, and the remaining steps
sample the function from this distribution, one image at a time. It is simple to verify that
the last few steps in Algorithm 4.3 do exactly this via inverse transform sampling.

4.3.2 Proof that the oracle converter induced by S2 has a collision-
conversion rate of at least 1

2

Let Dk,♭ denote the flat-k-distribution on support Sk,♭, and Dk denote a k-distribution on
support Sk. Let f♭ be a function f♭ : X → Sk,♭ whose images are distributed according
to Dk,♭, to which oracle access is available. Let r2 : X × Sk,♭ → Sk be defined as it is in
algorithm 4.3. Let fk be an arbitrary function in Y ′X , and g the oracle simulated by
the oracle converter induced by f and r. To provide a bound on the collision conversion
rate, take any x1 and x2. We then need to consider the probability that f♭(x1) = f♭(x2),
conditioned on the fact that g = fk and g(x1) = g(x2).
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Let y denote fk(x1), this oracle’s response to query x1, and likewise let y′ denote fk(x2).
Let z denote f♭(x1) and z′ denote f♭(x2). Then the oracle converter’s collision-conversion
rate can be expressed as Prf♭,r2 [z = z′|g = fk ∧ y = y′]. To help prevent confusion, we
stress that the probability here is taken over the random choice of f♭ ← Dk,♭

X and the
randomness in 4.3 when preparing r2.

We rewrite the constraint g = fk ∧ y = y′ as g = f y=y′

k , i.e., fk is a function where
fk(x1) = fk(x2). Then by Bayes’ theorem

Pr[z = z′ | g = f y=y′

k ] =
Prf,r2 [z = z′]

Prf,r2 [g = f y=y′

k ]
Pr
f,r2

[g = f y=y′

k | z = z′] (4.1)

Applying the law of total probability, we may write

Pr[z = z′] =
2k∑
j=1

Pr[z′ = zj|z = zj] · Pr[z = zj]

=
2k∑
j=1

Pr[z′ = zj] · Pr[z = zj] (z & z′ independent)

=
2k∑
j=1

(2−k)2 = 2−k (definition of a flat-k-distribution) .

From Lemma 18, we also have that

Pr
f,r2

[g = f y=y′

k ] =
∏
x∈X

Dk(f
y=y′

k (x))

Then equation (4.1) can be rewritten as

Pr[z = z′ | g = f y=y′

k ] =
2−k∏

x∈X Dk(f
y=y′

k (x))
Pr[g = f y=y′

k |z = z′] (4.2)

Now we turn our attention to the conditional probability on the right. Applying the
law of total conditional probability, we decompose the conditional probability into a sum
over all possible values of the random variable z, so

Pr[g = f y=y′

k |z = z′] =
2k∑
j=1

Pr[g = f y=y′

k |z = z′ ∧ z = zj] · Pr[z = zj|z = z′]
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Applying Bayes’ Theorem again, this time to the conditional expression on the far right,
inside the summand, we get

Pr[g = f y=y′

k |z = z′] =
2k∑
j=1

Pr[g = f y=y′

k | z = z′ ∧ z = zj] ·
Pr[z = zj]

Pr[z = z′]
· Pr[z = z′|z = zj].

Using our prior result for Pr[z = z′], and the fact that all samples according to Dk,♭

have probability 2−k, we can see that the ratio in the above equation must be exactly one.
Hence we get

Pr[g = f y=y′

k | z = z′] =
2k∑
j=1

Pr[g = f y=y′

k | z = z′ = zj] · Pr[z′ = zj]

=
2k∑
j=1

Pr[g = f y=y′

k |z = z′ = zj] · 2−k

Again thanks to Lemma 18 we can break apart Pr[g = f y=y′

k |z = z′ = zj] into the
product for each x ∈ X, as all are independent, except for x1 and x2. So we can rewrite
this probability as

2−k

 ∏
x∈X\{x1,x2}

Dk(f
y=y′

k (x))

 2k∑
j=1

Pr[y = y′ = f y=y′

k (x1)|z = z′ = zj]

For convenience, set f y=y′

k (x1) = y′′. Then we can rewrite the summation as

2k∑
j=1

Pr[y′ = y′′|z′ = zj] Pr[y = y′′|z = zj] (4.3)

This step is only possible because y′ and z are independent, so the presence of z′ in
the conditional involving y′ can be ignored. The same goes for y and z′ in the second
conditional.

Now, recall that the function c is defined in algorithm 4.3 by c(y, z) = Pr[fk(x) =
y|f♭(x) = z]. It follows, by the definitions of y, y′, z, and z′, that each of the factors in the
summand are equal to c(y′′, zj). Hence we may write equation 4.3 as

2k∑
j=1

c(y′′, zj)
2.
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From the details of how the values of c are assigned in algorithm 4.3, the number of j values
for which c(y′′, zj) is non-zero is either one (if all of y′′’s probability mass is associated
with a single bin), or two (if the probability mass is split over two bins). If only one
value of j corresponds to a non-zero c(y′′, zj), then c(y′′, zj) must be 2kDk(y

′′). But we
are interested in the worst case, in order to establish a lower bound. If two values of j
correspond to a non-zero c(y′′, zj), then we know that the two values of c must sum to
2kDk(y

′′). In this case, the sum of the squares of these values will be less than 2kDk(y
′′).

We can express this sum as c21 + c22 = c21 + (2kDk(y
′′)− c1)

2. The minimum value for this
parabola is 22k−1Dk(y

′′)2, when c1 = 2k−1Dk(y
′′). Therefore we may write,

Pr[g = f y=y′

k | z = z′] ≥2−k
 ∏

x∈X\{x1,x2}

Dk(f
y=y′

k (x))

 22k−1Dk(f
y=y′

k (x1))Dk(f
y=y′

k (x2))

=2k−1

∏
x∈X

Dk(f
y=y′

k (x))


Finally, plugging this into equation 4.2 we get the result

Pr[z = z′|g = f y=y′

k ] ≥ 2−k∏
x∈X Dk(f

y=y′

k (x))
2k−1

∏
x∈X

Dk(f
y=y′

k (x))

 .

Therefore we conclude that the oracle converter induced by S2 has collision-conversion
rate at least 1

2
.

4.3.3 Stronger lower bound for δ-min-k distributions

Note that following the same strategy, one can show a reduction of collision finding in an
arbitrary min-k distribution D to collision finding in a δ-k-distribution. This is interesting
because it affirms that the δ-k-distribution case is the most difficult out of all k-distributions.
Clearly, if no elements in the support of D are associated with a probability mass less
than 1/N , the proof of Theorem 8 can be adapted by replacing all references of 2−k as the
probability of sampling each element from the flat distribution with a general probability
D(x), and replacing the general distribution D with a δ-k-distribution Dδ. The general
case where D has elements associated with smaller probability mass than 1/N may be
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resolved by considering the distribution removing these elements and showing that it is
computationally indistinguishable from the original.

In this section we give further evidence and establish an even stronger bound for finding
collisions in the δ-k-distribution case.

Theorem 9. For any q-query algorithm A,

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′)← Af ()] ≤ O

(
q2

2k
+

q3

N

)
.

We give two proofs. The one presented here relies on a technique by Zhandry (Lemma 21).
We give an alternative proof in Section 4.3.4 based on a reduction from an average version
of a search problem which is hard to solve from the literature. This may serve as an
intuitive explanation of the hardness of non-uniform collision finding. It also connects to
the quantum algorithm we develop in Sect. 4.4.1 based on Grover’s search algorithm.

Lemma 21. [149, Theorem 7.2] Fix q, and let Fλ be a family of distributions on Y X indexed
by λ ∈ [0, 1]. Suppose there is an integer d such that for every 2q pairs (xi, yi) ∈ X × Y ,
the function pλ := Prf←Fλ

(f(xi) = yi, ∀i ∈ {1, . . . , 2q}) is a polynomial of degree at most d
in λ. Then any quantum algorithm A making q queries can only distinguish Fλ from F0

with probability at most 2λd2.

This lemma enables us to prove another lemma in turn.

Lemma 22. For any q-query algorithm A,∣∣∣∣∣ Pr
f←Dk,δ

X
(Af (·) = 1)− Pr

f←Y X
(Af (·) = 1)

∣∣∣∣∣ ≤ 8q2/2k + 1/N .

Proof. For every λ ∈ [0, 1], define Dλ on Y such that there is an element m ∈ Y with
Dλ(m) = λ and for any y ̸= m Dλ(y) =

1−λ
|Y |−1 . Then define a family of distributions Fλ on

Y X where Fλ := Dλ
X , i.e., the output of each input is chosen independently according to

Dλ.

For any {(xi, yi)}2qi=1, pλ := Prf←Fλ
(f(xi) = yi,∀i ∈ [2q]) = λt( 1−λ

|Y |−1)
2q−t , where t is the

number of occurrences of m in {yi}2qi=1. Clearly pλ is a polynomial in λ with degree at most
2q.
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Notice that F2−k is exactly δ-min-k distribution Dk,δ, and F0 is uniformly random on

Ŷ X , where Ŷ := Y \{m}. Therefore by Lemma 21,∣∣∣∣∣ Pr
f←Dk,δ

X
(Af (·) = 1)− Pr

f←Ŷ X
(Af (·) = 1)

∣∣∣∣∣ ≤ 2(2q)2 · 2−k = 8q2/2k .

Since Y X and Ŷ X has statistical distance 1
2
(N − 1)( 1

N−1 −
1
N
) + 1

2
( 1
N
− 0) = 1/N , we

get that
∣∣∣Prf←Dk,δ

X (Af (·) = 1)− Prf←Y X (Af (·) = 1)
∣∣∣ ≤ 8q2/2k + 1/N .

We are now ready to prove the stronger complexity for finding collision in a δ-min-k
random function.

Proof of Theorem 9. Suppose that there is an A with

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′)← Af (·)] = ε

using q queries. Then construct A′ which on input oracle f , runs A and receives (x, x′)
from A. A′ then output 1 if and only if f(x) = f(x′). By definition, we have that
Prf←Dk,δ

X (A′f(·) = 1) = ε. Meanwhile, note that A′ makes q + 2 queries. Therefore by

Zhandry’s lower bound on finding collision in uniform random function (Lemma 17), we

know that Prf←Y X (A′f (·) = 1) ≤ O( (q+3)3

N
). Then Proposition 22 implies that

ε ≤ O(
(q + 3)3

N
) + 8(q + 2)2/2k + 1/N = O(

(q + 2)2

2k
+

(q + 3)3

N
) .

Corollary 4. Any quantum algorithm needs min{2k/2, N1/3} queries to find a collision

with constant probability. Specifically we need Ω(N1/3) if 2k ≤ N < 2
3k
2 , and Ω(2k/2) when

N ≥ 2
3k
2 .

4.3.4 Alternative proof of lower bound

Theorem 10. Suppose |X| = M = o(
√
N). Any q-query quantum algorithm finds a

collision in f ← XDk,δ with probability O(q2/2k).
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We prove this by reducing a variant of Grover’s search problem in [92] to finding a
collision here. Define the following distribution Eλ on F : X → {0, 1}: if F ← Eλ, then for
any x ∈ X

F (x) =

{
1 with prob. λ ;
0 with prob. 1− λ .

It has been shown in [92] that searching for a preimage of q in a function drawn according
to Eλ is difficult. More precisely, for any quantum algorithm A making q queries, we define
its success probability as

SuccλA,q := Pr
F←Eλ

[F (x) = 1 : x← AF (·)] .

Lemma 23. ([92, Theorem 1]) SuccλA,q ≤ 8λ(q + 1)2 holds for any quantum algorithm A
making at most q queries.

Proof of Theorem 10. Let A be any quantum algorithm that makes at most q queries to
f ← Dk,δ

X and finds a collision in f with probability ε. We show how to construct B that
solves the above search problem for λ = 1/2k making 2q queries with probability ε′ = ε− γ
and Lemma 23 then implies that ε ≤ O(q2/2k).

B is given quantum access to F ← Fλ, and the mode m of Dk,δ. Let h : X → Y \{m}
be a random function.3 It simulates f̂ : X → Y which answers the queries from A:

f̂(x) =

{
m if F (x) = 1 ;

h(x) otherwise.

After A has made q queries to f̂ , A outputs x and x′. B outputs one of them, e.g., x.

Note that B can implement each evaluation of f̂ by two queries to F . Therefore B
makes 2q queries to F at most. Next observe that f̂ is distributed identically as f ← XDk,δ ,
because Pr[f̂(x) = m] = PrF←Fλ

[F (x) = 1] = 1/2k and the rest of f̂(x) is uniform over

Y \{m}. Therefore we know that f̂(x) = f̂(x′) with probability ε. Finally notice that when
M = o(

√
N), h will be injective except with probability negligible in k. Therefore the

collision only occurs at the mode, which implies that F (x) = 1 and B successfully finds a
marked element in F .

3This can be efficiently simulated by a 2q-wise independent hash function as justified by [150, Theorem
6.1] and [96, Lemma 2].
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Corollary 5. Any quantum algorithm needs Ω(2k/2) queries to find a collision in XDk,δ

with constant probability even if the mode m of D is known, when M = o(
√
N).

This result is basically subsumed by Theorem 9. When N < 22k, β(D) = N . Therefore
M = o(

√
N) = o(

√
β(D)), and the function drawn is almost always injective. Hence the

lower bound trivially holds. When N ≥ 22k, Corollary 4 gives the same lower bound 2k/2.

The same proof strategy also works for general M , but then the probability that the
collision occurs elsewhere other than the mode will introduce error, and it will match the
bound we obtain from Theorem 9.

4.4 Upper bounds: (optimal) quantum algorithms

We derive a generic upper bound for finding collision in any min-k random functions.
We adapt Ambainis’s algorithm (Lemma 24) and describe a quantum algorithm NU-ColF
(Figure 4.5).

Lemma 24. ([10, Theorem 3]) There exists a quantum algorithm ColF that makes O(|X ′|2/3)
quantum queries to any function f : X ′ → Y with at least one collision that finds a collision
with constant bounded error.

Theorem 11. Let β := β(Dk). Let X be a set with |X| = M = Ω(
√
β). Algorithm 4.5

NU-ColF finds a collision in f ← XDk within O(β1/3) queries with constant probability.
Moreover with O(kβ1/3) queries the algorithm succeeds except with probability negligible in
k.

Proof. Since f is generated according to the min-k distribution, when restricting to any
subset Xi, we can think of drawing each function value independently from Dk. Namely
fi ∼ Dk

Xi holds for all i. Therefore, by Lemma 2, we have that when s ≥ c
√

β(D) for
some c > 2, fi contains a collision with constant probability. If that is the case, Ambainis’s
algorithm will find a collision with constant probability using O(|Xi|2/3) = O(β(D)1/3)
queries. We only need to repeat t = O(k) times to succeed except with error negligible in
k.

Note that our algorithm NU-ColF is generic, and needs no additional information about
Dk except for the value of β. By our characterization of β(Dk) in Lemma 16, we obtain
specific bounds for the two special distributions.
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Require: f ← Dk
X as an oracle. Let s, t be parameters to be specified later.

1 : Divide X into subsets Xi of equal size (ignoring the boundary case) |Xi| = s.

2 : Construct fi : Xi → Y as the restriction of f on Xi.

3 : for i ∈ {1, . . . , t} do
4 : Run Ambanis’s algorithm ColF on fi and get candidate collision (xi, x

′
i).

5 : if f(xi) = f(x′
i) then

6 : return (xi, x
′
i)

7 : endif

8 : endfor

9 : return ⊥

Figure 4.5: Collision Finding in Non-uniform Function.

Corollary 6. There exists a quantum algorithm that finds a collision with constant proba-
bility using the following numbers of queries:

• flat-k: O(β1/3) = O(2k/3) and it is tight when M = Ω(2k/2).

• δ-min-k: O(β1/3) =

{
O(N1/3) 2k ≤ N < 22k, tight when N ≤ 23k/2

O(2
2k
3 ) N ≥ 22k

4.4.1 Quantum algorithm for min-k distribution with a mode
known

We design an alternative collision finding algorithm (Algorithm 4.6), which performs slightly
better in some settings. It is based on a version of Grover’s algorithm [42, 83] for multiple
marked items stated below.

Lemma 25. Let f : X → {0, 1} be an oracle function and let Zf = |{x ∈ X : f(x) = 1}|.
Then there is a quantum algorithm QSearch using q queries that finds an x ∈ X such that
f(x) = 1 with success probability Ω(q2

Zf

|X|).

Theorem 12. NU-ColF-Mode finds a collision using O(2k/2) queries with constant proba-
bility.
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Require: f ← Dk
X as an oracle. A mode element m of Dk.

1 : Run Grover’s algorithm QSearch on f to find x with f(x) = m.

2 : Run Grover’s algorithm QSearch on f to find x′ with f(x) = m and x′ ̸= x.

3 : if Either run of Grover’s failed then

4 : return ⊥
5 : else

6 : return (x, x′)

7 : endif

Figure 4.6: Collision Finding in Non-uniform Function with a mode known.

Proof. Let Zf := |f−1(m)|. Let pf be the probability that f is chosen, when drawn from

Dk
X . Since we invoke QSearch twice, we find (x, x′) with probability Ω

(
(
q2Zf

|X| )
2
)
. Then

algorithm NU-ColF-Mode succeeds with probability

∑
f

pfΩ

(
q4

M2
Z2

f

)
= Ω

 q4

M2

∑
f

pfZ
2
f

 = Ω(
q4

M2
E[Z2

f ]) .

To compute E[Z2
f ], we define for every x ∈ X an indicator variable Zx =

{
1 if f(x) = m;
0 otherwise.

,

where f ← Dk
X , and clearly Zf =

∑
x∈X Zx. Since each output of x is drawn independently

according to Dk,δ, E[Zx] = ε := 2−k for all x, it follows that E[Zx] = E[Z2
x] = ε, and

E[Zx · Zx′ ] = E[Zx] · E[Zx′ ] = ε2 for any x ̸= x′ by independence. Therefore

E[Z2
f ] =

∑
x

E[Z2
x] +

∑
x ̸=x′

E[ZxZx′ ] = Ω(M2ε2) .

Hence the algorithm succeeds with probability Ω(q4ε2) = Ω(( q
2

2k
)2). As a result, with

q = O(2k/2) many queries, we find a collision with constant probability.

Note that we still need M = Ω(2k) to ensure there is a collision on m in f . When
N ≥ 23k/2, Theorem 12 gives a better bound (2k/2) than Theorem 11 (N1/3 when 23k/2 ≤
N < 22k and 22k/3 when N ≥ 22k).
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Require: Let f ← Dk,♭
X be a random function whose images are sampled according

to Dk,♭ on a set Y . Let D′ be a distribution on a set Y ′ with min-entropy k. Let S2

be the Dk,♭ → D′ redistribution function sampler from Algorithm 4.3. Let A be an

adversary for (second-)preimage-finding in D′. Let y be the preimage target, or let x

be the second-preimage target.

1 : Run S2 and store its output as r. Implement an oracle for r.

2 : Construct an oracle converter C using the oracles for f and r. The responses of C are

now distributed according to D′. Refer to the function implemented by C as g.

3 : For the second-preimage problem, provide x as the second-preimage target. For the

preimage problem, sample a uniform x ∈ X and provide y′ = r(x, y) as the target.

4 : Initialize A. For each query made by A, forward the query to C and return the

response to A.
5 : When A returns a (second-)preimage x′ in g, return x′.

Figure 4.7: Preimage converter via oracle converter

4.5 Preimage- and second-preimage resistance of non-

uniform random functions

In this section we sketch out a proof that the same redistribution function sampler S2 from
Algorithm 4.3 can be used to demonstrate similar results to Theorem 8, but relating to
(second) preimage-resistance. First we give a formal definition for the problem of finding a
(Second) Preimage:

Definition 24 ((Second-)Preimage finding problem). Let f ← DX be a function of min-
entropy k. For any y ∈ Y , we call x ∈ X a preimage in f of y if f(x) = y. We refer to
the problem of finding a preimage of y which has been generated by sampling a uniformly
random x ∈ X and computing y = f(x) as the preimage finding problem in D. We refer
to the problem of being given a uniformly sampled x ∈ X and finding a x′ ∈ X such that
x ̸= x′ and f(x′) = f(x) as the second-preimage finding problem in D.

The reduction algorithm will then be similar to that of Figure 4.1, but specified to the
problem of (second-)preimage resistance, and using Redistribution Function Sampler S2

from Figure 4.3.

We then show a similar lemma to that of Lemma 19.
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y1 y2 y3

z1 z2 z3

Y :

Y ′:

δ ϵα β γ

Figure 4.8: Visualizing how distributions line up for preimage problems.

Lemma 26. Suppose there exists an algorithm A which solves (second-)preimage finding in
a distribution D′ with probability at least PA, using q queries to an oracle for a function g
whose responses are distributed according to D′. Then the process in Figure 4.7 initialized
with S2 and A, denoted RS2,A, solves (second-)preimage finding in Dk,♭ with probability at
least PA/2 using 2q queries to an oracle for f whose images are distributed according to
Dk,♭.

Proof. We have already shown that the function g presented to A in the algorithm in 4.7
will exactly have the distribution D′. Next we need to ensure that the target for the
(second-)preimage problem has the same distribution. For the second-preimage problem,
this can be seen to be the case, because the target is simply a uniformly random x ∈ X, as
required.

For the preimage problem things are slightly more complex. Only the point y is provided
to RS2,A, and so to sample a point y′ ∈ Y ′, we choose a uniformly random point x ∈ X and
set y′ = r(x, y). We must show that the distribution of y′ is exactly D′. Note that this is a
stronger requirement than what is guaranteed by Definition 21, which only states that the
distribution of r(x, f(x)) is exactly D′, and does not specify what happens for r(x, y) when
y ̸= f(x). However, S2 does in fact satisfy this stronger property, because r is constructed
for each (x, y) ∈ X × Y , not just (x, f(x)) for x ∈ X.

So our remaining task is to show that RS2,A succeeds with probability at least PA/2.

At the end of the execution of RS2,A, with probability PA, A produces a x′ ∈ X such
that g(x′) = r(x′, f(x′)) = y′ = f(x, y). For the second preimage problem there is the
further restriction that x′ ̸= x and that y = f(x).

We then have solved the (second-)preimage problem, as long as f(x′) = y. So we need
to consider the probability that f(x′) = y, given that r(x′, f(x′)) = r(x, y).

We show that with probability at least 1/2, it is the case that f(x′) = y. Consider the
following case. The ‘target point’ y that we are trying to find a (second) preimage to is y2.
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Our redistribution function, with the second half of the output being y2, may return
many possible outputs. For simplicity, and without loss of generality, we consider the case
where there are three possible outputs: z1, z2, or z3. We will explain in more detail in a
moment why we may do this without loss in generality. While z2 = r(a, b) means b = y2, if
r(a, b) = z1 then b = y1 or y2, and if r(a, b) = z3 then b = y2 or y3.

We define the following probabilities, taken over uniformly random a and b (visualized
in Figure 4.8):

δi := Pr[r(a, b) = zi ∧ b = y2], i = 1, 2, 3 ;

α := Pr[r(a, b) = z1 ∧ b = y1], β := Pr[r(a, b) = z3 ∧ b = y3] .

Then we can perform the calculation of the probability that f(x′) = y2 (conditioned on
the fact that y = y2) as follows:

Pr[f(x′) = y2] =Pr[f(x′) = y2 ∧ y′ = z1] + Pr[f(x′) = y2 ∧ y′ = z2]

+ Pr[f(x′) = y2 ∧ y′ = z3]

=Pr[y′ = z1] Pr[f(x
′) = y2|y′ = z1]

+ Pr[y′ = z2] Pr[f(x
′) = y2|y′ = z2]

+ Pr[y′ = z3] Pr[f(x
′) = y2|y′ = z3]

=2kδ1
δ1

α + δ1
+ 2kδ2 + 2kδ3

δ3
β + δ3

=2k

(
δ2 +

δ21
α + δ1

+
δ23

δ3 + β

)
.

We can see that we additionally constrained by the facts that α+δ1 ≤ 1
2k

and β+δ3 ≤ 1
2k
.

So we can see that this equation is minimized by setting: δ2 = 0, α = β = δ1 = δ3 =
1

2k+1 .
In this case we get

2k

(
0 +

1/22k+2

1/2k
+

1/22k+2

1/2k

)
= 1/2.

The reason that this is without loss of generality is because the equation was minimized
by having β = 0. In other words, the probability of finding a correct second preimage was
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minimized when there was no z ∈ Y ′ such that f(a, b) = z guaranteed that b = y. Then
because there are at most two z ∈ Y ′ such that there are multiple b ∈ Y with f(a, b) = z,
we have that this case with β = 0 does indeed minimize the probability of recovering a
(second-)preimage.

Using this lemma, we can then compose and prove a formulation of Theorem 8, but
with respect to (second-)preimage resistance.

Theorem 13. Let fD ← DX be a random function whose outputs are chosen independently
according to a distribution D of min-entropy k. Then any quantum algorithm making q
queries to fD solves the (second-)preimage problem with probability at most 16 · 2−k(2q+1)2

Proof. We have shown that an adversary A that can solve the (second-)preimage problem
on a distribution D in q queries with probability PA implies the existence of a way to
solve the (second-)preimage problem on a flat distribution function fDk,♭

in 2q queries with
probability PA/2.

We can then reduce the hard average-case search problem in Lemma 23, to finding
preimiage and second-preimage in a flat distribution, following similar analysis for uniform
random functions as in [92]. As a result, any adversary’s success is at most 8 · 2−k(q + 1)2

in q queries.

We have shown that if a quantum algorithm exists that can solve the (second-) preimage
problem on fD in q queries with probability PA, then there exists an algorithm that can
solve (second-)preimage resistance on a flat distribution in 2q queries with probability PA/2.
This tells us that

PA/2 ≤ 8 · 2−k(2q + 1)2,

from which the result follows.

Next, we apply (generalized) Grover’s search algorithm to solve the preimage and
second-preimage problems in min-k distributions.

Theorem 14. Let β := β(Dk). Let X be a set with size Ω(β). Then in q quantum queries
the QSearch algorithm referred to in Lemma 25 solves (second) preimage problems with
probability Ω(q2/β).
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Proof. Given x ← X, f ← Dk
X , let Zf,x :=

∣∣{z ∈ X : f(z) = f(x)}
∣∣ be the size of the

preimage of f(x). By Lemma 25, QSearch will succeed in finding a preimage of f(x) with
probability ∑

f,x

pf,xΩ(q
2Zf,x

|X|
) = q2

1

|X|
Ef,x(Zf,x) .

We can estimate Ef,x(Zf,x) = |X| ·
∑

y Dk(y)
2 = |X|/β. Therefore, we find a preimage with

success probability Ω(q2/β)n. The same analysis works for finding a second preimage.
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Chapter 5

Instantiating the Quantum Random
Oracle

5.1 Introduction

In this chapter, we show that there exist digital signature schemes that can be proven secure
against any poly-time quantum adversaries in the quantum random-oracle model [40], but
they can be broken by a classical poly-time adversary when the random oracle is instantiated
by any poly-time computable hash function family. This extends to the quantum setting
the impossibility of instantiating a classical random oracle [21, 46, 47, 81, 113, 119].

Given the classical result (e.g., [46]) that there exists a secure signature scheme in the
random oracle model but insecure under any efficient instantiation, the first doubt to clear
up is probably why it does not immediately follow that a quantum random oracle cannot
be instantiated as well. The reason is that the signature scheme in the classical result may
as well get broken in the quantum random oracle model. In other words, all one needs to
do is to prove quantum security of these classical constructions in the quantum random
oracle model. This is exactly what this work does: we show that three examples in the
classical setting [46, 47, 113] can be proven secure in the quantum random oracle model,
and hence they demonstrate that the quantum random oracle model is unsound in general.

We dive into an overview of the proofs right away, so that those who are familiar with
this subject can quickly digest the gist and walk away satisfied (or disappointed). If you
are a more patient reader, you can come back here after enjoying the (more conventional)
introduction.
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Let us first review the classical examples [46, 47, 113] to be analyzed in the quantum
random oracle model, and we present them under a unified framework which we hope
will be easy to grasp. They all start with a secure signature scheme Σ and a function
F , and Σ is “punctured” so that the signing algorithm would simply reveal the signing
key when the function F is “non-random” (e.g., instantiated by a concrete hash function).
To break it, an adversary just needs to convince the signing algorithm that F is indeed
non-random. Therefore, it boils down to designing a proof system where a prover (adversary
in the signature setting) proves “non-randomness” of a given function to a verifier (signing
algorithm); whereas if the function is indeed random, no prover can fool the verifier to
accept. The natural approach to such a proof system is based off the intuition that it is
difficult to predict the output of a random oracle on an unknown input. The three classical
examples nurture this intuition in two variations: predicting on a single input or multiple
inputs.

1. The basic idea in [46] is to have the prover provide an input where the output is
predictable and can be efficiently verified by the verifier. For starters, suppose we
want to rule out a specific hash function H, then the prover can pick an arbitrary x
and the verifier just checks if F (x) = H(x). The verifier always accepts when F is
instantiated by H, but accepts only with negligible probability if F is random. This
immediately implies that for any function family, in particular the family of poly-time
computable functions H = {Hn = {Hs}s∈{0,1}n}1, we can construct a signature scheme
following the idea above, where a (random) member in H is chosen as implementation
of F , and the signing algorithm reveals the signing key whenever the “non-randomness”
verification passes. Note that, nonetheless, the construction depends on the function
family, which is weaker than the goal of establishing a signature scheme that is secure
in the random oracle model, but insecure when implemented with a function from
the function family H.
Diagonalization comes in handy to reverse the quantifiers. The prover will provide a
description s of a function Hs, which purportedly describes the function F . Then the
verifier runs Hs on s and checks if it matches F (s). Clearly, when F is implemented
by a member Hs ∈ H, the description s is public (i.e., part of the verification key),
and it is trivial for the prover to convince the verifier. Nonetheless, if F is a random
oracle O, the event O(s) = Hs(s) occurs only with negligible probability for any s
that a prover might provide.

1We assume a canonical encoding of functions into binary strings, under which s is the description of a
function. Complexity is measured under security parameter n.
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A technicality arises though due to the time complexity for computing Hs(s) for all H.
Loosely speaking, we need a universal machine for the family H that on a description
s computes Hs(·). Such a machine exists, but would require slightly super-polynomial
time, which makes the verifier (i.e., signing algorithm) inefficient. This final piece
of the puzzle is filled by CS-proofs introduced by Micali [116]. A CS-proof allows
verifying the computation of a machine M , where the verifier spends significantly
less time than the time to run M directly. This naturally applies to the problem
here. Instead of running the universal machine to check Hs(s) = F (s) by the verifier,
the prover generates a CS-proof on the input ⟨M, s⟩F (relative to F ) certifying the
statement M(s) := Hs(s) = F (s), which the verifier can check in poly-time. When
F = O is a random oracle, ⟨M, s⟩O (relative to O) is almost always a false statement,
and the soundness of the CS-proof ensures that verifier will reject with high probability.
Micali proved in general the soundness of CS-proofs in the random oracle model (to
avoid confusion, in CS-proofs think of a random oracle independent of F ).

2. Another strategy for proving “non-randomness”, as employed in Maurer et al. [113]
and Canetti et al. [47], is to predict on multiple inputs. This offers a direct information-
theoretical analysis without relying on CS-proofs.

In essence, a prover provides a machine π that allegedly predicts the output of F on
sufficiently many inputs, and the verifier can run π and compare with the answers
from F . This is easy for the prover when F is instantiated by F where the description
s is given. On the other hand, by tuning the parameters, a counting argument would
show that the randomness in a random oracle is overwhelming for any single machine
(even inefficient ones!) to predict. Specifically, the “predicting” machine π needs to
match with F on q = 2|π|+n inputs (i.e., the number of correct predictions has to be
significantly more than the length of the description of the machine). Suppose that F
is a random oracle O ← {f : {0, 1}∗ → {0, 1}} that outputs one bit (for the sake of
simplicity), then for any π the probability that it will match O on q inputs is at most
2−(2|π|+n). A union bound on all machines of length n shows that pn, the probability
that some length-n machine is a good predictor, is at most 2n · 2−(2n+n) = 2−n−k.
Another union bound shows that regardless of their length, no machine can be a good
predictor, since p :=

∑∞
n=1 pn = 2−n

∑
n 2
−n ≤ 2−n−1 is negligible. To get around

the issue of the run-time of the machine π, the prover also has to provide an upper
bound t on the run-time of π encoded in a unary representation. If π fails to complete
after t steps, then a random output is returned. In this way, the runtime of signing
procedure is guaranteed to be polynomial in the size of the input. However, this
naturally implies that the signatures to be signed are quite long.
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3. Both examples above suffer from an artifact. Namely the signature schemes need to
be able to sign long messages or otherwise maintain states of prior signatures. This
is rectified in [47], where a stateless scheme that signs only messages of polyloga-
rithmic length is proven secure in the random oracle model but insecure under any
instantiation.

At the core of this construction is an interactive counterpart of the non-interactive
proof system in part 2 above. It can be viewed as a memory delegation protocol,
where a verifier with limited (e.g., poly-logarithmic) memory wants to check if the
machine provided by the prover is a good predictor. Roughly speaking, it will execute
the machine step by step and use the prover to bookkeep intermediate configurations
of the machine. However, the configurations may be too long for the verifier to
store and transit to the prover. Instead, the verifier employs a Merkle tree and
only communicates an authentication path of the configuration with the prover. In
particular, the verifier will memorize only a secret authentication key in between
subsequent rounds. The security of the “punctured” signature scheme reduces to
essentially a stronger unforgeability of a valid authentication path in a Merkle tree
with respect to a random oracle, which is proven classically.

All of these examples rely on a Turing machine representation of the description of the
function F . The fact that we cannot a-priori determine the run time of F when presented
with this description is what leads to requiring complications such as CS-proofs or stating
the run-time in unary. Different ways to describe F can lead to different consequences
however. The circuit representation of a function means that the run time is inherently
embedded in its description. While this solves the issue of ensuring the signing protocol
runs in polynomial time in its input, it denies the function the ability to contain an arbitrary
loop, and so we focus on a Turing machine representation.

Proving security of separation examples in QRO. Once the constructions and
classical analysis are laid out, proving their security in the quantum random oracle model
becomes more or less mechanic, given the techniques developed for QRO so far [12, 13, 68,
141, 149].

1. (Example in [46] with CS-proofs.) Following the classical proof, we first show that the
quantum security reduces to one of three cases: 1) hardness of a Grover-type search
problem, which ensures that an adversary cannot feed the CS-proof a true statement
in the case of a random oracle; 2) security of the original signature scheme; and 3)
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soundness of CS-proofs against quantum adversaries. A precise query lower bound for
the search problem follows by standard techniques. And thanks to a recent work [53],
CS-proofs are proven sound against quantum adversaries.

2. (Example in [47, 113] based on information-theoretical analysis.) It is easy to verify
that the information-theoretical argument sketched above holds regardless of the kind
of adversaries, and as a result the “punctured” signature scheme remains secure in
the quantum random oracle model (and against quantum adversaries).

3. (Example in [47] that only needs to sign short messages.) Our proof follows the
classical one, where we first carefully verify and lift the reduction to the (stronger)
unforgeability of Merkle tree against quantum adversaries, and then prove this property
in the quantum random oracle model.

Specifically, we can model the unforgeability game as follows. Think of two cor-
related random oracles O : {0, 1}∗ → {0, 1}ℓ(n) and O′ := O(ak, ·) where ak is
a random authentication key kept secret. Given quantum access to O and clas-
sical access to O′, the adversary needs to come up with an authentication path
(⟨σ1, . . . , σd⟩, ⟨(v1,0, v1,1), . . . , (vd,0, vd,1)⟩, t) where σi ∈ {0, 1}, t = O′(d,O(0, v1,0, v1,1))
and vi,σi

= O(i, vi+1,0, vi+1,1) for every i = 1, . . . , d−1. We prove that this is infeasible
by reductions from a randomized decisional search problem and collision finding in
random functions [42, 92, 150].

Background and motivation. The random oracle model, since its introduction [24], has
proven a popular methodology for designing cryptographic schemes. Basically a construction
is first described and analyzed in an idealized setting where a random function is available
as a black-box. To implement it in the real-world, one substitutes a cryptographic hash
function for the random oracle. This methodology often leads to much more efficient schemes
than alternatives. Examples include digital signatures by the Fiat–Shamir transform [74],
hybrid public-key encryption following Fujisaki–Okamoto-type transforms [25], as well as
succinct non-interactive zero-knowledge arguments that rise with the trending technology
of blockchain and cryptocurrencies [28]. Its popularity is also attributed to the fact that
one can often prove security in the random oracle model which is otherwise much more
challenging or simply unknown.

It is, however, exactly the latter advantage that stirred considerable debate. What does
a security proof in the random oracle model mean? To be pragmatic, a random-oracle proof
at least serves as a sanity check that rules out inherent design flaws. Indeed, in practice
most constructions that are instantiated from ones proven secure in the random oracle
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model have stood up to extensive cryptanalysis. More formal pursuit, however, arrives at
an irritating message. There are separation examples which show secure constructions in
the random oracle model, but will be trivially broken whatever “nice” functions we use to
instantiate the random oracle. Namely, the methodology is unsound in general. This does
not mean all schemes following this approach are insecure. In fact, some random-oracle
scheme can be instantiated under strong but reasonable assumptions and achieve desirable
security in the real-world [104]. To say the least, a question mark lingers on schemes
developed under this methodology.

Quantum computing adds another layer of complication to the issue here (and the overall
landscape of cryptography). Because of the threats to widely deployed cryptosystems [132], a
growing effort is undertaken to design and transition to so called post-quantum cryptography
– a new set of cryptosystems that hopefully resist quantum attacks. In particular, the
random oracle model has been re-examined in the presence of quantum adversaries. Since
eventually a scheme (designed in RO) will be realized via a cryptographic function, whose
specification is known in public, a quantum adversary can in principle construct a coherent
quantum circuit that evaluates the hash function in quantum superposition. Consequently,
when analyzing the scheme in the idealized setting, it seems necessary to grant quantum
superposition queries to the random oracle by a quantum adversary. This brings about the
quantum random oracle model [40]. The rationale is, very informally, good cryptographic
functions are lacking structures for a quantum computer to exploit (aside from generic
speedup due to quantum search), and hence realizing a scheme proven secure relative to a
quantum random oracle this way is a fine practice.

Formally analyzing security in the quantum random oracle model turns out to be
challenging. Many classical proof techniques, such as simulating and programming a random
oracle on-the-fly or recording the queries, seem to fail due to unique features of quantum
information. Thanks to a lot of continued effort, in recent years, researchers managed to
develop various techniques for reasoning about the quantum random oracle model, and
restored the security of many important constructions against quantum adversaries [13, 64,
68, 89, 92, 141, 150, 151]. This just adds more at stake regarding “what does it mean that
a scheme is proven secure in the quantum random oracle model?”

How to interpret this result? Our work shows that in general, security in the quantum
random oracle model could be vacuous in a real-world implementation. There seems a
dilemma, probably more puzzling than the classical situation. On the one hand, since a
quantum adversary is given more power (e.g., quantum computation and superposition
access), security in the quantum random oracle provides more justification that the con-
struction is solid. And this indeed explains the difficulty in establishing security in the
quantum random oracle. Hence it might occur that security in QRO would be sufficiently
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strong to imply security in the plain model and rule out separations. Our work nonetheless
shows otherwise, and it reveals the other side of the dilemma. Any bit of success in restoring
proof techniques in the quantum random oracle model just casts another bit of shadow
on this methodology, since the seemingly stronger quantum security does not promise the
security of real-world implementations, not even their security against classical adversaries
only.

On the other hand, many cryptosystems that have been proven secure in the random
oracle model have fared well in retrospect [105]. The use of the random oracle model to get
a proof can allow for schemes that are simpler and more efficient than those in the standard
model. While proofs in the quantum random oracle model appear more difficult, every
year new techniques, more general and user-friendly, are developed to establish quantum
random oracle model security [64, 87, 92, 151]. This has led researchers to question what
guarantees security in the quantum random oracle provides versus the classical random
oracle model. In this line, our results can be taken as further justification that the difference
between these models does not appear to be a large one. If one hopes to show that security
in the classical and quantum oracle model provide a similar set of assurances, then it seems
natural that the same instantiability problems exist in the classical random oracle model as
well as the quantum counterpart.

5.2 Chapter Background

5.2.1 The (Quantum) Random Oracle Model and Notation

The random oracle model, originally devised in [24], replaces a cryptographic hash function
with an entirely random oracle. The reduction algorithm is often allowed to manage this
oracle, and can perform operations like looking up the queries that the adversary makes to
it, or programming the oracle on inputs of interest. Using the random oracle model can
often greatly simplify a proof or even enable a proof where otherwise not known or possible.

The intuitive idea behind the soundness of the random oracle methodology is that an
adversary interacting with a scheme is unlikely to take advantage of the structure of the
hash function. For most cryptographic schemes, even the adversary is likely to treat the
hash function as a ‘black box’, and so by treating it as such, we can derive proofs for
schemes that otherwise may not exist.

However, as we discussed in the previous chapters, a full consideration of a quantum
adversary means that we should allow superposition queries to the random oracle. In the
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quantum random oracle model, the reduction algorithm still manages the oracle, but now
the adversary must be allowed to make a superposition query to this oracle. For an oracle
O : D → R, the reduction provides access to a unitary UO which performs the action

UO :
∑

x∈D,y∈R

αx,y|x⟩|y⟩ 7→
∑

x∈D,y∈R

αx,y|x⟩|y ⊕O(x)⟩,

where the input must be a valid quantum state, i.e., the sum of the square amplitudes of
the αx,y’s must be 1.

For clarity, we will denote a random oracle as O, while actual instantiations of random
oracles (e.g., typically hash functions) are denoted H. When describing a scheme where a
function may replaced with a random oracle in the proof, or with a hash function in the
real world, we will denote this function with F . The security parameter of a scheme is
denoted by λ, while the output length of a hash function is denoted n. While in general
these are two separate but related parameters, throughout this work it is the case that
λ = n, and we do not distinguish between the two.

5.2.2 Computationally Sound Proofs

Computationally sound proofs, introduced by Micali in 2000 [116], allow extremely efficient
verification of a problem L with the help of a prover. In our context, CS-proofs are useful
for showing the validity of a computation without having to run the computation. Imagine
a description of an arbitrary function f , which may take super-polynomial time to run on
an input x, but will result in f(x) = y. A CS-proof system allows us to generate a proof π
that f(x) = y. Even though f may take a super-polynomial amount of time to run, the
CS-Proof verification system allows a verifier, on input of f , x, y, and π to verify that
f(x) = y in only poly-logarithmic time.

For concreteness in our work, a CS-proof system consists of two algorithms: CSProve
and CSVerify. Both algorithms implicitly take a security parameter n. CSProve also takes
in a function f and an input x, and returns a value y and a proof π. The CSVerify function
takes in a function f , an input x, an output y, and a proof π. It returns either accept or
reject, based on the validity of the proof. Crucially, the CSVerify function runs in time
poly-log in the security parameter n, and not in relation to the time it takes f to run.

The correctness property states that for an honestly generated proof π, the CSVerify
function will always accept. The soundness property ensures that if f(x) ̸= y, then it is
computationally infeasible to find a proof π that will cause CSVerify(f, x, y, π) to return
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accept. The soundness of CS-proofs was originally shown in the random oracle model. Very
recently, Chiesa et al. [53], proved the soundness of CS-proofs in the quantum random
oracle model, which we will rely on in this work.

In this work, while the function f is arbitrary, it is not allowed to depend on calls to
external oracles, and in particular, cannot depend on the random oracle. This is intended
to reflect the fact that f is meant to be an instantiation of the random oracle, and thus
should not depend upon it. However, recently this approach has been questioned. In a
recent paper by Zhandry [152], the author considers what happens to model separations
like these when f can depend on the random oracle.

5.3 Instantiating a Quantum Random Oracle

In this section we define three signature schemes, Σ1, Σ2, and Σ3, such that:

• Σ1 is secure in the quantum random oracle model, but insecure if that random oracle
is instantiated with some specific hash function H.

• Σ2 is secure in the QROM, but insecure when the random oracle is instantiated with
any of a pre-defined set of hash functions {H1, . . . , Hm}.

• Σ3 is secure in the QROM, but insecure if the random oracle is ever instantiated with
any polynomial-time function.

These signature schemes lift the results in [46] to the quantum random oracle model.
In all cases, the only assumption we require is that we have a signature scheme Σ0 =
(KeyGen0, Sign0,Verify0) which is existentially unforgeable in the quantum random oracle
model. Examples of schemes secure in the quantum random oracle model with no addi-
tional assumptions include the stateful LMS signatures [66] and the stateless SPHINCS+
framework [31] (both hash-based signatures). If one is willing to accept a computational
assumption such as ring-LWE, many other signature schemes, including several of those
under consideration in the NIST standardization process serve as examples [103]. It is
a notable complication of Σ0 is that we require it to be secure against a slightly super-
polynomial adversary. It must not be compromised by an adversary running in time nlog(n).
Security bounds for generic attacks against SPHINCS+ (relevant for the quantum random
oracle model) require on the order of

√
2n quantum hash function evaluations in order to

compromise the security with constant probability. Thus by setting Σ0 as SPHINCS+, we
satisfy all requirements.
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KeyGen1(1
λ)

1 : (pk, sk)← KeyGen0(1
λ)

2 : return (pk, sk)

Verify(pk,msg, σ1)

1 : parse σ1 = σ0||x
2 : return Verify0(pk,msg, σ0)

Sign1(sk,msg)

1 : σ0 ← Sign0(sk,msg)

2 : if F (msg) = H(msg) then

3 : return σ1 = σ0||sk
4 : else

5 : return σ1 = σ0||0lsk

6 : endif

Figure 5.1: Signature scheme Σ1

5.3.1 Warm up — schemes Σ1 and Σ2

The first step in considering the instantiation of a random oracle is to consider instantiation
with a single hash function, H. Then we can define the scheme Σ1 in Figure 5.1. Clearly
this scheme satisfies the correctness property, as Σ0 does.

This scheme is existentially unforgeable under chosen message attack (eu-cma) secure
in the (quantum) random oracle model, where F is replaced with an oracle O. This is
intuitively because in this case, the security reduces to that of Σ0 unless an adversary is
able to find a msg such that O(msg) = H(msg) (which occurs for every possible input
with uniform and independent probability 1/2n).

Furthermore, this scheme is insecure if it is instantiated with H replacing the random
oracle. Then the adversary is able to trivially break security, as the condition H(msg) =
H(msg) is always satisfied and σ1 = σ0||sk will be returned for any message.

The next step is considering a finite collection ofm hash functions,H = {H1, H2 . . . , Hm}.
Then we can define Σ2 similarly to Σ1, but change the condition to first check if msg ∈
{1, . . . ,m} (in some encoding of the integers 1 through m) and if so, further check if
F (msg) = Hmsg(msg).

The analysis in the (quantum) random oracle model is again fairly straightforward.
For any random oracle O, the probability that O(i) matches Hi(i) is 1/2n, and so a
straightforward union bound establishes that the probability O(i) matches Hi(i) for any i
in {1, . . . ,m} is at most m

2n
. When m is small (e.g., polynomially sized in λ), this is small

enough that it is likely to not be possible that an adversary can make a query that provides
them with sk. Even for a large m, each i ∈ {1, . . . ,m} will have the property that O and
Hi match with probability 1/2n, and so an adversary must perform an unstructured search
to find such an i. By the optimality of Grover’s algorithm [43], an adversary’s ability to
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break Σ2 in the (quantum) random oracle model reduces to their ability to break Σ0 unless
the adversary makes a subexponential number of queries to the hash function.

However, as before, if F is actually replaced by any one of the Hi’s, an adversary can
easily break the scheme by querying i to the signing oracle.

5.3.2 Signature scheme Σ3

Schemes Σ1 and Σ2 are only to gain an intuition for the full result, Σ3, which is a signature
scheme that is secure in the quantum random oracle model, but insecure when the oracle
is instantiated with any polynomial-time function as the hash function. Following the
strategy for Σ2, we would like to fix some enumeration of all algorithms that one may use
as a hash function, say H = {H1, H2, . . . }, with Hi : {0, 1}∗ → {0, 1}n. Then as before, we
would modify an eu-cma secure scheme Σ0 to introduce a check in the signing algorithm
to interpret msg as a non-negative integer, and check if F (msg) = Hmsg(msg). However,
there are several issues that must be resolved to make this fully rigorous. Such a set of
functions cannot simply be defined and used in the signature scheme, as the signature
scheme requires that on input i, hash function Hi is actually run.

To fix this, we start with an enumeration of all algorithms, A = {A1, A2, A3, . . . }. We
make no assumptions about this enumeration except that we can efficiently swap between
the index i and some standard description of Ai (as a Turing machine). Changing between Ai

and i should not be seen as a computational task to carry out, but rather a reinterpretation
of the same data. Algorithms are encoded, using some standard encoding depending on the
computational model, into bit strings, which can then easily be interpreted as an integer.
To think of a construction that achieves this, it is helpful to think of quantum circuits. If
we are working with l registers, then we can interpret the index i as a value in {0, 1}∗ which
specifies which gates are applied to which registers in what order. From a description of a
quantum circuit, it is easy to convert this into a binary string, and then an index, and vice
versa. To be reversible and match the format of a hash function, we can then consider all
circuits that perform the mapping |x⟩|y⟩ 7→ |x⟩|y ⊕ Ai(x)⟩.

Note that not all of these algorithms necessarily run in polynomial-time in the security
parameter. It is of course impossible to tell which algorithms will even terminate. We would
like to assume that when a random oracle is instantiated, the function it is instantiated
with will run in polynomial time in the security parameter. As well, these algorithms do
not necessarily have the correct output length of n bits.

To fix this, we modify each algorithm in the following way: For each algorithm, stop
after taking nlogn steps, and pad or truncate the output (in an arbitrary way) so that each
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KeyGen3(1
λ)

1 : (pk, sk)← KeyGen0(1
λ)

Verify3(msg, pk, σ3)

1 : parse σ3 = σ0||x
2 : return Verify0(msg, pk, σ0)

Sign3(msg, sk)

1 : σ0 ← Sign0(sk,msg)

2 : Interpret msg as a non-negative integer

3 : Compute Hmsg(msg)

4 : if F (msg) = Hmsg(msg) then

5 : return σ3 = σ0||sk
6 : else

7 : return σ3 = σ0||0lsk

8 : endif

Figure 5.2: Signature scheme Σ3, first attempt

algorithm always outputs n bits. The value nlogn is chosen so that asymptotically it bounds
all polynomial-time algorithms. We enumerate our modified algorithms H = {H1, H2, . . . }.
Notice that any algorithm that is polynomial time, and outputs n bit binary strings is
unmodified. So, any function that would be used as a hash function is not affected by this.

We can then make a first attempt at defining Σ3. Given an eu-cma (in the quantum
random oracle model) signature scheme Σ0 and an enumeration of hash functions H as
described above, we define a first attempt at Σ3 in Figure 5.2.

There is a very noticeable problem in this scheme. We bounded the run time of the
Hi’s by nlogn, in order to make sure that we could leave every polynomial-time algorithm
unaffected. However, any algorithm Ai that runs in ≥ nlogn steps will be modified to run
in nlogn steps. If a message msg is signed which corresponds to such an algorithm, the
signer will have to evaluate Hmsg(msg). This means that the signing algorithm does not
run in polynomial time in the security parameter, and so it does not fit a valid definition of
a signing algorithm.

To resolve this issue, CS-proofs are employed.

Rather than directly checking to see if F (msg) = Hmsg(msg), we can instead accept
a CS-proof π that F (msg) = Hmsg(msg). This scheme is still trivial to break when F
is instantiated, but we are now guaranteed that the signing algorithm always runs in
polynomial time, no matter what is queried. We describe this in Figure 5.3.

This allows us to state the main theorem of this chapter.

Theorem 15 (Security of Σ3). Let g : {0, 1}∗ → {0, 1} be a random function such that for
each x, Pr[g(x) = 1] = 1

2n
and all outputs of the function are independent.
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KeyGen3(1
λ)

1 : (pk, sk)← KeyGen0(1
λ)

Verify3(msg, pk, σ3)

1 : parse σ3 = σ0||x
2 : return Verify0(msg, pk, σ0)

Sign3(msg, sk)

1 : σ0 ← Sign0(sk,msg)

2 : parse msg as i||π, for an index i and a string π

3 : if π is a CS-proof that Hi(i) = F (i) then

4 : return σ3 = σ0||sk
5 : else

6 : return σ3 = σ0||0lsk

7 : endif

Figure 5.3: Signature scheme Σ3, corrected with CS-proofs

Let Q be a quantum adversary capable of breaking the existential-unforgeability of Σ3 with
probability p in the quantum random oracle model. Then there exists a reduction algorithm
R that, in slightly super-polynomial time, is capable of either breaking Σ0, breaking the
computational soundness of the CS-proof system, or finding an x ∈ {0, 1}∗ such that
g(x) = 1.

5.3.3 Proof of Theorem 15

Proof. To prove that Σ3 is secure in the quantum random oracle model, we reduce its
security to the adversary’s ability to do one of three things:

• Break signature scheme Σ0 in the quantum random oracle model in slightly super-
polynomial time.

• Find a marked item with respect to a random oracle g.

• Break the computational soundness of a CS-proof in the quantum random oracle
model.

The reduction algorithm has two main components: How it answers random oracle
queries and how it answers signature queries.

For handling a random oracle, we will need to construct a pseudo-random function
f that takes in two parameters: x and y. This function must satisfy that for each x, y
f(x, y) is indistinguishable from a uniform random element from the set {0, 1}n \{y} . Such
a function can be quickly constructed on a quantum accessible circuit by using 2q-wise
independent hash functions.
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Then consider the following oracle:

O(i) =

{
Hi(i) if g(i) = 1

f(i,Hi(i)) otherwise.
(5.1)

By creating the proper quantum-accessible circuits, we can create such a circuit that
implements such an oracle in super-polynomial time. We will give the adversary Q access
to this oracle.

We also need to show that the adversary cannot distinguish between this oracle and a
truly random oracle. In fact, we can show something stronger than this, that this is in fact
a truly random oracle. To see this, take any y ∈ {0, 1}n, and any i ∈ {0, 1}∗ and consider
Pr[O(i) = y].

Pr[O(i) = y] =Pr[g(i) = 1] Pr[O(i) = y|g(i) = 1] + Pr[g(i) = 0] Pr[O(i) = y|g(i) = 0]

=
1

2n
Pr[O(i) = y|g(i) = 1] +

2n − 1

2n
Pr[O(i) = y|g(i) = 0].

Then note that

Pr[O(i) = y|g(i) = 1] =

{
1 if y = Hi(i)
0 otherwise

Pr[O(i) = y|g(i) = 0] =

{
0 if y = Hi(i)
1

2n−1 otherwise.

In either case, putting these values into the equation gives that Pr[O(i) = y] = 1
2n
.

Furthermore, we can see that as long as g and Hi are each 2q-wise independent, the overall
hash function is 2q-wise independent, and so we have that this gives us an oracle that is
indistinguishable from a truly random one, even by a quantum adversary.

We next describe how the reduction algorithm R handles the signature queries. On
input of a query msg, our reduction does the following:

• Parse msg as i||π, an index i and a string π.

• Run the CS-verification procedure, with π as the potential proof that Hi(i) = O(i).
If it accepts, check if Hi(i) = O(i).
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– If it is, then by construction, g(i) = 1 and we have successfully found such an i,
and may stop.

– If it isn’t, then we have a CS-proof of a false fact, and may stop.

• If it did not accept, then query the challenger for a signature on msg under the
scheme Sign0 and return the signature σ0||0lsk to Q.

If we never stop on any signature query, then eventually the adversary would submit a
forgery (msg∗, σ∗3), where msg∗ was never submitted to the signing oracle. We may then
parse σ∗3 as σ∗0||x. If this forgery is accepted by the verification procedure Verify3, then
msg∗, σ∗0 will form a forgery with respect to Σ0.

5.4 Extending to Short-Message Signatures

In this section we describe the scheme that appears in [47] and argue that the proof of
security that appears in that work translates to the quantum random oracle model. This
scheme has the same restrictions as the one that appears in the previous section — we want
a scheme that is secure in the quantum random oracle model, but insecure when the scheme
is instantiated with any polynomial-time function. At a high level, this is accomplished in
the same way as before. The signing algorithm will interpret all submitted messages as
a potential description of a hash function, and check to see if this hash function matches
the random oracle in such a way that proves that the random oracle is in fact, the hash
function. The main distinction is that the signing algorithm will only accept messages of
length poly-logarithmic in the security parameter. This means that the usage of CS-proofs
is no longer a possibility. To overcome this, the authors of [47] devised a proof system for
an NP-language in which the verifier need only accept multiple, short messages.

This proof system can then be turned into a signature scheme, and the adversary (who
acts as the prover) will submit a proof that the random oracle is not random by making
multiple signing queries. At first glance, it may seem that it is not hard to construct a
proof system that can take multiple short messages — all we need to do is to take a proof
system that requires one, large message and send that message in multiple rounds. However,
such a strategy would require the verifier to be stateful. The verifier would need to “save”
the messages that the prover sends them to be verified against future messages. When
translated to the context of a signature scheme, this makes the signer stateful as well. To
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rule out stateless signature schemes as well, the verifier in the proof system devised in [47]
needed to both accept only short messages and be stateless.

In this section we show that this proof system remains secure in the quantum random
oracle model. To do this, we first restate the proof system as it appears in [47], and then
discuss how it is used in a signature scheme similar to section 5.3. Finally, we show how
the security of the system remains unchanged in the quantum random oracle model.

5.4.1 A stateless interactive proof system with short messages

As mentioned, the proof system introduced in [47] is an interactive proof system with the
following goals:

• It must only require short messages, so that the signing algorithm only needs to
accept short messages.

• It must be stateless so that the signing algorithm also is.

• It must be unconditionally secure in the (quantum) random oracle model, again so
that the signature scheme may be as well.

At a high level, these goals are accomplished with the following strategy: the proof that the
verifier needs to process is modelled as a Turing machine. The initial state to this Turing
machine is “fed” to the verifier, one block at a time. Each time a block of the initial state is
fed to the verifier, they authenticate the current configuration, and send an updated tag to
the prover. This authentication tag is submitted to the verifier as part of each subsequent
update.

Remember however, that the verifier is completely stateless. While we may describe
this process as the verifier learning the configuration of the Turing machine, what is really
happening is that the verifier is incrementally authenticating each part of the configuration,
without ever knowing the whole state.

Once the initial state is ‘loaded’ the prover then proceeds by having the verifier execute
the Turing machine, one step at a time. The prover needs to tell the verifier the parts of
the machine that they need to know, as well as the authentication tags for those parts. The
verifier can then execute one step, update the authentication tags, and send these back to
the prover so that they may repeat the process. Since the authentication tags are small
(more on this later) and the prover only needs to communicate the parts of the Turing
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Non-randomness machine MO(1k, π)

1 : parse π as the description of a Turing machine.

2 : Let n = |π|
3 : for i ∈ {1, . . . , 2n+ k} do
4 : yi ← O(i)
5 : zi ← π(i)

6 : if The first bit of yi and zi disagree then

7 : return reject

8 : endif

9 : endfor return accept

Figure 5.4: Describing a machine that verifies O is non-random.

machine that are necessary to execute one step, the communication in each round is small.
Because the authentication tags cannot be forged, the only way for the prover to get the
Turing machine to be in an accepting state (authenticated by the verifier) is to have to walk
the verifier through each step of the computation, having them authenticate the process
along the way.

We now expand on this sketch, starting by describing (Figure 5.4) the machine that
the verifier will be executing to establish that the oracle is non-random.

The configuration is described in four tapes — the security parameter tape sp, the
oracle query tape q, the oracle reply tape r, and the worktape w initially containing π. The
security of M when O is a random oracle is shown in [47]. To reiterate, while M is able to
access the random oracle through the tapes q and r, π is not permitted to depend or make
calls to the random oracle. The encoding for π cannot affect these tapes.

Lemma 27 ([47], Proposition 2). If the oracle O is chosen uniformly, the probability that
there exists a description of a Turing machine π such that MO(1k, π) returns accept is less
than 2−k.

Note that this lemma refers to the existence of a Turing machine π. This property
holds just as well when O is quantum-accessible. Also note again that if O is not a random
oracle, and is described by the Turing machine τ , then we can simply set π = τ and have
that M τ (1k, π)→ accept with certainty.
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To iteratively load and run the machine M , we need a mechanism for the verifier to
authenticate the current state of the machine, which is described by the four work tapes
(sp, q, r, w), the heads of the tapes h1, . . . , h4, and the finite control F . These eight values
describe entirely the state of the machine M . Using some standard encoding method, they
may be encoded as a binary string. It is this string, denoted c that the verifier will be
authenticating.

Say the oracle O returns values in {0, 1}n. Then we will pad the string c to one of
length n · 2d, where d is the smallest positive integer such that n · 2d ≥ |c|. This allows us
to construct a Merkle tree out of the string c, with the leaf nodes consisting of bit strings
of length n, and the tree having height d. The Merkle tree is constructed out of the oracle
O by setting, for level i of the tree, the value of each node to be O(i, left, right), where left
and right are the values (in {0, 1}n) of the two nodes in the tree directly below.

Note, in particular, that domain separation is used to separate the different levels, but
not for the calculations within a level. This is done to speed up the process of creating a
Merkle tree when the configuration c is homogeneous. For the parts of the work tapes that
entirely blank (as they will be in the initial configuration), when converted into a binary
string, and then a Merkle tree, their will be many repeated leaf values, which means that
the entire tree can be constructed in time polynomial in the security parameter, k.

The verifier V will possess an authentication key ak, which is used to authenticate
the root of the Merkle tree as in a MAC scheme. The authentication tag for the tree is
computed as O(d, ak, root). The loading and execution machine then proceeds as follows
(Full details of this process are described in [47]).

1. The prover sends a message indicating that they wish to initialize the process. In
response, the verifier loads up a blank configuration c in which the tapes are all empty,
the heads are at a starting position, and the finite control is empty. They compute
the root of the Merkle tree where this blank configuration forms the leaf nodes, and
authenticate the root of the tree, sending the authentication tag back to the prover.

2. The prover loads the initial state of the machine M leaf-node-by-leaf-node. For any
leaf node i they wish to update, they send a message to the verifier with the position
they want to update, the Merkle tree verification path for that leaf node, the new
value they want that position to take on, and the authentication tag for the most
recent root node. The verifier uses the Merkle tree verification path to reconstruct the
root node, which it verifies with the authentication tag and its key ak. Once checked,
the verifier produces an authentication tag for the tree with the desired update, by
swapping out the leaf node value, computing the new resulting root node (again, by
using the Merkle tree verification path) and constructing a tag for the root node.
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3. When the initial state of M has been loaded, the prover can then get the verifier to
begin executing M . To execute a step of M , the prover must send any leaf nodes
involved in one step of the computation (e.g., the leaf node the header is pointed
to, the values of the headers) and the Merkle tree verification paths for those leaves,
as well as the authentication tag. The verifier V computes one step of the Turing
machine, recomputes the root node for the new state, and sends the authentication
tag for the new state to the prover. If the machine reaches the accepting state, then
the verifier accepts the state as valid.

We now proceed to prove a lifting of Proposition 4 in [47] to the quantum random oracle
model.

Lemma 28. Let ak be chosen uniformly at random in {0, 1}n, then for any prover P it
holds that

Pr
O,ak

[
V O(1k, ak)→ accept

]
≤ 1

2k
+O(q3/2n), (5.2)

where q is the number of (quantum) oracle queries made by P.

Proof. As noted in Lemma 27, the probability over the randomness in O that there exists
an accepting machine π is less than 2−k. Assuming there does not exist such a machine,
a dishonest prover must somehow manage to trick the verifier into reaching an accepting
state. Because an accepting machine cannot be loaded into the configuration, it must be
the case that some machine which should not accept was instead loaded, and the execution
of this machine is then tampered with by the prover. To tamper with the execution of the
machine, the adversary must, at some point, provide the verifier with a leaf node that was
not in the configuration that was just authenticated.

In order to load in a falsified leaf node, the adversary must still submit a correct
authentication tag. There are two cases: either the associated authentication tag was
provided by the verifier, or it was not.

First we consider the case where the authentication tag was provided by the verifier.
We consider the first time the adversary submits a leaf node that corresponds to an invalid
machine configuration. We know that the authentication tag matches a previously issued
one, but the corresponding leaf node was not part of how the previous authentication tag
was generated. There are two possibilities for how this may happen. It may be the case that
(i) at some point along the verification path we have values left, left′, right, right′ and i such
that O(i, left, right) = O(i, left′, right′). Of course, at most one of the left and right values can
be equal. The other possibility is that (ii) the root values of the resulting Merkle trees are
different, but we have a collision in the authentication tag: O(d, ak, root) = O(d, ak, root′).
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Because an adversary who is able to break the soundness of the proof system must
provide enough classical information to be able to construct a collision in the quantum
random oracle O, we can bound the success probability simply by the probability of being
able to find such a collision. This can be asymptotically bounded by a O(q3/2n) term.

The second case happens when the authentication tag for the invalid machine configura-
tion was never previously issued. This means that the adversary was able to submit a tag t,
a value d, and a Merkle tree path that leads to a value root such that t = O(d, ak, root)
when the value t was never before returned by the verifier.

Intuitively, this is a structureless search problem on the part of the adversary: in order
to provide a valid authentication tag, they must perform an unstructured search to find
the ak value that causes authentication tags to accept. To formally show this, we provide
a reduction from an adversary who can create a new authentication tag to one that can
distinguish between to functions, g0 and g1, both mapping {0, 1}n to {0, 1}. The function
g0 simply returns 0 for all inputs x, whereas for g1 there is precisely one random input on
which g1 will return 1.

We are given quantum access to one of the two functions, gb, and asked to determine b.
To do this, we first construct two independent quantum-accessible random oracles O0 and
O1. We then construct the oracle O as follows:

O(d, x, y) =

{
O0(d, x, y) if gb(x) = 0
O1(d, y) if gb(x) = 1.

(5.3)

Note that since there is at most one x for which gb(x) = 1, O is itself a random oracle, for
anyone who does not have direct access to O0 and O1.

When the verifier needs to produce an authentication tag on an input (d, root), this
can simply be done by computing t = O1(d, root). Then note that these tags will be valid
authentication tags with respect to some authentication key only when b = 1, in which case
the valid authentication tag will be the value x such that g(x) = 1.

When b = 1, the authentication tags that are issued by the verifier will be correctly
correlated with the oracle O, but when b = 0, the tags will be entirely uncorrelated with O.
In this case, the adversary’s ability to produce a forgery is bounded by a simple random
guess, which corresponds to a probability of 1/2n. This is because in this case the oracle O
can tell the adversary no information about correct authentication tags. To try and guess
an authentication tag for a configuration (d, root∗) would mean trying to guess the value of
O1(d, root

∗) without ever having queried it (and having made no quantum queries to it).
Any non-negligible difference in the success probability of the adversary P can be used in
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KeyGen4(1
λ)

1 : Sample authentication key ak←$ {0, 1}n

2 : (pk0, sk0)← KeyGen0(1
λ)

3 : return (pk4, sk4) = (pk0, (sk0, ak))

Verify4(msg, σ4, pk4)

1 : parse σ4 = σ0||x, pk4 = pk0

2 : return Verify0(pk0,msg, σ0)

Sign4(msg, sk4)

1 : parse sk4 = (sk0, ak)

2 : σ0 ← Sign0(msg, sk0)

3 : parse msg as an input to verifier V
4 : Run V(ak;msg) to get output t and whether the

machine M reached the authenticating state

5 : if M reached authenticating state then

6 : return σ4 = σ0||sk0
7 : else

8 : return σ4 = σ0||t
9 : endif

order to determine which function we are dealing with, and thus leads to a determination
of the unknown bit b.

The probability of determining such a bit in q queries to g is bounded above by O(q2/2n)
from known result [92]. Note that each quantum query P makes to O corresponds to
exactly one quantum query to gb. Because the other case is bounded by a O(q3/2n) term,
we can drop this term entirely.

5.4.2 Signature scheme Σ4

With the interactive, stateless, short messaged proof system fleshed out, we can now discuss
the signature scheme Σ4, built out of this proof system.

Theorem 16 (Security of Σ4). Let Q be a quantum adversary capable of breaking the
existential-unforgeability of Σ4 with probability p in the quantum random oracle model, with
q queries to the quantum random oracle O. Then there exists a reduction algorithm R that,
with probability (over the coins of R and the random choice of O) at least p−O(q3/2n) is
capable of either breaking Σ0 or finding an x, x′ ∈ {0, 1}∗ such that O(x) = O(x′).

Proof. It is easy to see that

Pr[Q wins eu-acma ∧ ∄π : MO(1λ, π)→ accept] ≥ p− 2−λ,

where the probability is taken over the randomness in the oracle O and the randomness of
the adversary, as well as whatever randomness is needed in the signature scheme Σ0.
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There are then two cases: either the adversary submits a signing query that causes the
proof system to move into an accepting state, or they do not. If they do, then since we
know there is not a π such that MO(1λ, π), the only way for an adversary to do this is to
have found a collision in O, which can be found by looking at the (classical) signing queries
made by the adversary. We can bound the probability this happens by a O(q/2λ) term.
Assuming that the adversary does not submit such a message, then whatever forgery is
submitted by the adversary will work as a valid forgery to the signature scheme Σ0.
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Chapter 6

Quantum Annoying Security

6.1 Introduction

Password-authenticated key exchange protocols, or PAKEs, are used in scenarios where
public key infrastructure is unavailable, such as client-to-server authentication. Without
public keys, authentication comes from a password provided by the user. This puts the
security of PAKEs in an interesting place. These passwords are assumed to have low
entropy, so it is possible for a malicious adversary to perform brute-force searches over the
password space. The challenge in designing PAKEs is to obtain the maximum amount of
security possible, despite the fact that authentication comes from low-entropy passwords.
One important property of PAKEs is resistance against offline dictionary attacks: if a
passive adversary observes an honest session, they still should not have enough information
to break security via a brute-force search through the password space. Moreover, for an
online adversary sending messages to a target session, each interaction should allow for
only a single guess of the password. Thus, despite relying on low-entropy secrets, a secure
PAKE can only be compromised with many online interactions, which would hopefully be
noticed and stopped by a participant.

In 2019, the Crypto Forum Research Group (CFRG) issued a call for candidate password-
authenticated key exchange protocols to be recommended for use in IETF protocols [135].
The goal was to recommend one balanced PAKE (where both parties share a password) and
one augmented PAKE (where one party only has information derived from the password).
Four balanced and four augmented PAKEs were considered, and in early 2020 the balanced
PAKE CPace and the augmented PAKE OPAQUE were selected as recommended for usage
in IETF protocols [134].
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As PAKEs inherently can only be as secure as the entropy of the password space allows,
extremely detailed and fine-grained security analysis of each scheme was a focus of the
selection process. In discussing potential security properties, Thomas proposed the notion
of a PAKE being “quantum annoying” [140]. If a scheme is quantum annoying, then despite
being based on a quantum-vulnerable assumption such as discrete logarithms, a quantum
adversary does not have an immediate ability to compromise a system; instead, each discrete
logarithm an adversary solves only allows them to eliminate a single possible password.
Essentially, during an offline dictionary attack the adversary must guess a password, solve
a discrete logarithm based on their guess, and then check to see if they were correct. This
property became a topic of frequent discussion throughout the process.

CPace tries to be quantum annoying by having the base used for the Diffie–Hellman
key exchange be a group element derived from the password: the parties exchange U = gupw
and V = gvpw, and the shared secret is (roughly speaking) guvpw. Seeing U and V does not
yield any information about the password, since in a prime order group for every pw′ there
exists a u′ such that gupw = gu

′

pw′ . For a quantum adversary to check a password against a
transcript, it could pick a password guess pw, compute u = DLOG(gpw, U), then check if
V u matches the session key. CPace would be quantum annoying if this is the best way to
check passwords. (The other PAKE recommended by CFRG, OPAQUE, is known to not
be quantum annoying.)

Current estimates for how long quantum computers will take to solve a cryptographically
relevant discrete logarithm problem vary depending on factors such as the error rate and
the number of coherent qubits available. In a recent analysis, Gheorghiu and Mosca [79]
estimated that, to solve a discrete logarithm on the NIST P-256 elliptic curve, it would
take one day on a quantum computer with 226 physical qubits, or 6 minutes on a 234-
physical-qubit quantum computer. With early quantum computers taking hours or days,
and even mature ones taking minutes for a single discrete logarithm, brute-forcing passwords
in a quantum-annoying scheme is probably infeasible for all but the most dedicated and
resourceful adversary, so long as Gheorghiu and Mosca’s estimates remain accurate. For
well-chosen passwords from high entropy spaces, considerable quantum resources would be
needed to compromise a single password. In such a scenario it would of course be best to
replace PAKEs with a suitable post-quantum primitive, but quantum annoyingness is still
appealing.

However, there has thus far been little formal discussion or analysis of this property.
The perceived quantum annoyingness of each PAKE candidate was evaluated as part of
the recommendation process, but no proof for any scheme was provided. In fact, there
have been no efforts to even provide a formal definition. Quantum security models are
notoriously tricky to define and use in security proofs, especially when trying to consider the
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cost of using Shor’s algorithm [132]. Clarifying what quantum annoyingness really means
and establishing how the property can be assessed for a real scheme has thus remained an
open problem.

Chapter Contribution and Structure. In this chapter, we take the first steps towards
putting the quantum annoying property on solid theoretical foundations. There are many
difficulties in working within a fully quantum security model. Besides the typical challenges
in proving security in the quantum random oracle model [40], it is not even clear what
problem we could reduce to, or how that reduction would work, since we are considering an
adversary that can solve discrete logarithms.

Instead, we consider a classical adversary in the generic group model [114, 133] who has
access to a discrete logarithm oracle. This allows us to consider how ‘quantum annoying’ a
scheme is by considering how many queries to the discrete logarithm oracle are needed in
order to compromise security.

Part of the challenge in working with a discrete logarithm oracle is that the adversary
can freely mix together group elements to prepare an oracle query of their choosing. For
example, say we do not want the adversary to learn the discrete logarithm between group
elements A and C. If the adversary queries the oracle to get the discrete logarithm between
A and B, and then between B and C, they can calculate the target discrete logarithm
without querying it directly. One of the main technical difficulties we overcome in our
proof is to construct a system that allows us to carefully account for exactly how much
information the adversary has been able to extract from their discrete logarithm queries. We
show that no matter how the adversary prepares their queries to the oracle, the information
they get can be modelled as a linear system. In this view, questions about whether the
adversary is ‘aware’ of the discrete logarithm between any two group elements can be
reduced to questions on whether certain vectors appear in the rowspan of a matrix. The
probability of certain events can in turn be reduced to question about the rank of this
matrix. To our knowledge, this is the first time a generic group model proof has been
extended with a discrete logarithm oracle, and we think that the resulting system has an
interesting structure that illuminates questions about how solutions to discrete logarithms
help (or don’t) with the calculation of additional discrete logarithms.

Admittedly, a classical adversary in the generic group model with a discrete logarithm
oracle is from a perfect model of a quantum adversary. An innovative quantum adversary
could try to invent some new quantum algorithm inspired by Shor’s algorithm which
does not directly take discrete logarithms. For example, one can imagine using Grover’s
algorithm [83] to search for the correct password, where the function f that marks a password
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as correct or not relies on Shor’s algorithm. Because our model insists on using the discrete
logarithm oracle classically, our model does not allow for this approach. Asymptotically,
using Grover’s algorithm will require fewer applications of Shor’s algorithm. For a password
space of size N , if Shor’s algorithm takes time tS then combining with grovers gives an
overall asymptotic performance of O(

√
N · tS). In comparison, the difficulty of classical

search grows as O(N · tS).
Nonetheless, we claim that this approach is likely outperformed by a classical search

combined with Shor’s algorithm. Grover’s algorithm introduces an additional burden of
maintaining a coherent quantum state throughout the computation (as opposed to only
for each execution of Shor’s). This means that Grover’s algorithm may not outperform
classical guess-and-check unless passwords are chosen from a high-entropy space. We
leave as an open question a precise accounting of the cost of using Shor’s algorithm inside
Grover’s algorithm, similar to the costing in [79].

Parallelization also affects the comparison between classical and quantum search. With
P quantum computers, the search space can be divided so that each computer searches

a space of size N
P
, resulting in a quantum search taking time O(

√
N
P
· tS) and a classical

search time of O(N
P
· tS). As this effectively lowers the size of the search space, it means

larger values of N are needed to make quantum search beneficial.

Early quantum-enabled adversaries will want to compartmentalize quantum compu-
tation to short instances that still make progress towards compromising security. Such
a compartmentalized, useful computation may well be a single discrete logarithm. So
while the model does not completely characterize the abilities of a quantum adversary, it
provides a simplified approximation of one, and allows for at least some formal assessment
of quantum annoyingness.

We leave invalidating the assumptions of this model as an interesting open problem. If
there is a quantum computation that can be performed, that is not significantly larger than
Shor’s algorithm, but that makes better progress in compromising the security of a quantum
annoying PAKE, this is very interesting. Such a computation would greatly impact the
understanding small amounts of quantum computation can have on cryptosystems.

Security analysis of CPace. To make use of our techniques, we focus on the protocol
CPace, which was selected by the CFRG as the balanced PAKE recommended for use in
IETF protocols. We prove that CPacebase, an abstraction of the protocol that focuses on
the most essential parts, is secure in a variant of the BPR model [23].

Our analysis proceeds as follows. We begin in Section 6.3 with an informal discussion
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on some of the limitations of the quantum annoying property. Small design decisions can
easily invalidate the property, and in this section we explain some of these pitfalls. For the
central proof, we design in Section 6.4.1 a cryptographic problem called CPacecore which in
some sense captures the cryptographic core of CPacebase. Next, we calculate the probability
that an adversary can solve in the CPacecore problem in the generic group model with a
discrete logarithm oracle; the success probability is measured in terms of the number of
online interactions with a protocol participant and the number of group operations and
discrete logarithms performed. An outline of the proof is provided in Section 6.4.2 and the
full proof is given in Section 6.5. Finally, we show in Section 6.6 that CPacebase is a secure
PAKE in our variant of the BPR model by relating it to CPacecore.

As a preview of our theorem, the probability that an adversary manages to win the
game is dominated by a (qC + qD)/N term, where qC is the number of online interactions,
qD is the number of discrete log oracle queries, and N is the size of the password space. This
lines up exactly with the intuitive guarantees we would expect a quantum annoying system
to have: guess a password and try using it in an active session, or guess a password and take
a discrete logarithm based on it to see if it was the password used in a passively-observed
session.

6.2 Background

6.2.1 The CPace Protocol

CPace is a balanced PAKE with a simple and effective design, based on earlier protocols
SPEKE [94] and PACE [29, 73]. It can (optionally) be used as a subroutine for the augmented
PAKE, AuCPace [86]. The fundamental structure is for the parties, sharing a password,
to hash that password to a group element G and then perform a Diffie–Hellman-like key
exchange with G acting as the generator. We describe it in full in Figure 6.1.

We will focus on CPacebase, a theoretical variant introduced by Abdalla, Haase, and
Hesse [3] that distills CPace to its most essential elements. The changes between CPacebase
and the full CPace protocol are that CPacebase uses a (multiplicatively written) group with
prime order p (instead of composite order), and assumes that the random oracle H1 maps
onto the group. This variant allows us to focus on the parts of the protocol relevant to
an adversary capable of solving discrete logarithms. Aspects of the security related to
the process of hashing a password to a group element have been extensively covered in
analysis by Abdalla et al. [3], who also give a security proof for CPacebase in the universal
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Client C Server S

Input: sid, S Input: sid, C

G← H1(sid∥pwC,S∥oc(C, S)) G← H1(sid∥pwC,S∥oc(C, S))
u←$ Zp v←$ Zp

U ← Gu U V ← Gv

K ← V u V K ′ ← Uv

Abort if K = IG Abort if K ′ = IG

sk ← H2(sid∥K∥oc(U, V )) sk′ ← H2(sid∥K ′∥oc(U, V ))

Output sk Output sk′

Figure 6.1: The CPacebase protocol.

composability framework. While their proof does not have any consideration of quantum
annoyingness (i.e., without considering an adversary who can compute discrete logarithms),
one benefit of their proof is that it does not rely on the stronger generic group model we
use here.

In a CPacebase session, the client C and server S both have a copy of the shared password
pwC,S. They receive as input a session identifier sid, and the identifier of their peer. The
session identifier is assumed to come from a higher-level protocol; in some contexts, the
initiator is meant to choose an sid and provide it with the first message. We will assume
that the mechanism that distributes the sid to protocol participants always distributes
unique values; see Section 6.6.1 for details. The parties hash the session identifier, password,
and a channel identifier (which is the ordered concatenation oc(C, S) of the identities of
the parties sorted by a canonical order) to obtain a group element G, which they then use
as the base in a Diffie–Hellman key exchange. The final session key is generated from the
hash of the session identifier, the completion of the Diffie–Hellman key exchange, and the
ordered concatenation of the ephemeral public keys.

6.2.2 The Generic Group Model

The generic group model (GGM) [114, 133] is a cryptographic model that idealizes groups,
similar to how the random oracle model idealizes hash functions. In the random oracle
model, the adversary must ask the challenger to answer all hash function queries; in the
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generic group model; the adversary must ask the challenger to carry out all group operations
using oracle queries. Group elements are represented as random strings in {0, 1}n; these
representations give the adversary no information about the structure of the group, except
what they can learn by querying for it.

The generic group model was first used to provide a lower bound on the number of
queries needed to solve the Diffie–Hellman problem [133] and establish bounds on reducing
the discrete logarithm to the Diffie–Hellman problem [114]. As an idealization, proofs in
the generic group model justify the security of these problems against an adversary who
attacks them generically, regardless of the group. In the real world schemes can fall prey
to better attacks, such as the number field sieve attacking the discrete logarithm problem
over finite fields. However, analyzing a cryptographic scheme in the generic group model
can provide some understanding of security where there otherwise none may be available.

More recently, the generic group model has been used by Yun to consider the security of
the multiple discrete logarithm problem [147]. Yun showed that solving N distinct discrete
logarithm problems requires at least O(

√
Np) group operations, which matched known

generic algorithms. The question of how much harder it is to solve N instances of the
discrete logarithm problem on a quantum computer, which is relevant to the quantum
annoying property, remains open.

6.3 Limitations to Quantum Annoyingness

6.3.1 Forward Secrecy

Providing a discrete logarithm oracle to an adversary makes them incredibly strong, and it
is impressive that some PAKEs can still achieve some manner of security in such a model.
But it is important to note that not all security properties we expect a PAKE to have
hold against an adversary capable of solving discrete logarithms. One such notion is that
of forward secrecy. In most PAKE security models, we would expect that if two honest
parties engage in a properly executed session, and then at some point later, the adversary
compromises the password used, this should not impact the security of previous sessions.

This is does not necessarily hold when the adversary has access to a discrete logarithm
oracle. For example in CPace, if an adversary holds the transcript U = gupw, V = gvpw for a
previous session and later compromises the password pw used for that session, then they
can easily calculate the generator gpw used, make a single discrete logarithm calculation to
compute say u, and then easily recover the session key.
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This limits the types of statements we can make about quantum annoyingness. When
analyzing PAKE security, we need to change the definition of a fresh session that the
adversary can try to defeat. In the adapted version of the BPR model [23] as described
in Section 6.6.1, we restrict the adversary from trying to win on sessions where they have
ever corrupted the user. Contrast this with the traditionally desired property of forward
secrecy in the original BPR model, where the adversary is restricted from targeting sessions
where they had corrupted the user’s password before the session started and then actively
participated in the session, but is allowed to target sessions where a user’s password is
corrupted after the session completed.

Of course, forward secrecy is a desirable property. CPace has fortunately been shown
to have forward secrecy against a classical adversary [3]. The attack above shows it does
not have forward secrecy against an attacker with discrete logarithm powers, but our proof
shows that it is at least non-forward-secret secure against such attackers (in the generic
group model).

6.3.2 Session and Channel Identifiers

While in this text, we restrict ourselves to the specific CPacebase protocol, CPace has a more
general design with various options for how different parts of the scheme can be configured.
In particular, the current CPace specification [85] is intentionally flexible about where the
session ID comes from and what information is included in the channel identifier. While this
is needed in order to allow the protocol to be used in more situations, it means that not all
instantiations of CPace may provide the same level of quantum annoyingness. Degenerate
session or channel identifiers may result in a loss of multi-user security: the more sessions
that take place, the fewer discrete logarithms needed to compromise at least one session.

It has been noted by participants on the CFRG mailing list that the uniqueness of the
sid affects the quantum annoying property in CPace [144]. Consider a situation where both
the session ID and the channel identifier are not used. For a set of N passwords {pwj}j∈[N ],
all sessions and users will share the same set of generators determined by H1(pw1), H1(pw2),
etc. An adversary can then calculate the discrete logarithm of each generator with respect to
a global generator g, obtaining the p1, p2, . . . such that H1(pw1) = gp1 , H1(pw2) = gp2 , . . . .
This allows the adversary to perform an offline dictionary attack on each user with a single
Send query as follows. The adversary begins a session with a target, and receives a group
element U ; they respond with a group element gx, for a random x←$ Zp; after receiving a
message encrypted under the session key, they can check if the session key equals Ux/pi for
one of the pi values, enabling password recovery.

156



This is prevented by having unique session identifiers for each session. In this case, the
set of candidate generators for each session is unique, so the discrete logarithm computations
do not carry over from one session to another. There remains an interesting question on
what happens if the session identifier is not necessarily unique, but the channel identifier is.
If this happens, then for any given pair of users, the channel identifier, and thus the set of
candidate generators, is unique. But this pair of users always uses the same password in all
of their sessions. Thus, an adversary’s precomputation advantage would be restricted to one
pair of users. In our analysis, however, we consider the case where the session identifiers
are all unique.

6.3.3 Hashing Session Keys

In CPacebase, the session key is computed as sk ← H2(sid||K||oc(U, V )). The BPR model
(described in full in Section 6.6.1) allows an adversary to obtain session keys by the Reveal
query. While such a query marks that session as ‘not fresh’, and invalidates it for a test
challenge, other sessions involving the same parties can still be considered fresh.

This makes the hashing of K critical for the quantum annoying property. If instead,
the Reveal query were to provide K itself to the adversary the scheme can be broken
with a single discrete logarithm. An adversary can compute DLOG(U,K) to recover v,
then compute V v−1

to recover gpw and perform an offline dictionary attack to obtain the
password.

It is perhaps not surprising that hashing the Diffie–Hellman completion to generate
the session key improves the security of the scheme, but it does show a clear difference
between what is possible for a classical vs. quantum adversary. When a classical adversary
obtains K it does not immediately provide an offline dictionary attack. For a password
guess pw, trying to determine if gpw, U , V , K is a valid Diffie–Hellman quadruple is exactly
the decisional Diffie–Hellman problem.

For an implementor interested in making the scheme as quantum annoying as possible
this is an important lesson: hash K and eliminate it from memory as soon as possible to
minimize an attack surface area.

6.4 Generic group model proof of CPacecore

We now define the CPacecore game, and prove an upper-bound on winning this game in the
generic group model. The CPacecore game is highly customized to go hand-in-hand with the
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task of proving security of the CPacebase protocol, but the basic idea of adding a discrete
logarithm oracle to the generic group model as a way to capture quantum-annoyingness
may have applications beyond this specific scenario.1

6.4.1 CPace Core game definition

Overview. The game takes place over a collection of instances, each indexed by an
integer i. For each instance i, there are N generators gi,j . One of these generators is picked
at random (represented by a target index ti), and a Diffie–Hellman session is initiated,
picking random integers ui, vi←$ Zp, and calculating Ui ← gui

i,ti
, Vi ← gvii,ti . All of this is

set up by calls to a NewInstance oracle. We keep track of a counter variable ctr that is
incremented every time NewInstance is called to keep track of the number of instances.
When NewInstance is called, the adversary can optionally provide an index ℓ ≤ ctr. This
indicates that they want the new instance to be linked to a previous instances; linked
instances use the same target index ti. When we interface with a PAKE adversary, this will
represent sessions being instantiated with the same password, since they are between the
same parties. Note that even though the index is repeated, the set of generators is distinct.

At the beginning of the game, a challenge bit s is drawn uniformly. Eventually the
adversary may call a Challenge oracle with an instance i, a group element W , and a bit b
indicating if they want to challenge the U half or the V half. If the challenge bit s = 0,
then we provide H(i,W ui ,oc(Ui,W )) or H(i,W vi ,oc(Vi,W )) depending on which half the
adversary chose to challenge. If the challenge bit s = 1, then the response they receive is
drawn uniformly from the set of confirmation values instead. The adversary is allowed to
query Challenge twice per instance, once each for the U and V halves. The main challenge of
the adversary is to determine the challenge bit s by trying to figure out the Diffie–Hellman
completion without knowing which target index was used.

The interface with the Challenge oracle may seem somewhat arbitrary at first, with two
Diffie–Hellman halves provided, and then the adversary allowed to use them separately
when querying the Challenge oracle. When we interface with a real PAKE adversary in our

1We initially started out with a much simpler game in the generic group model with a discrete logarithm
oracle, and planned to put most of the complexity into the AKE proof. However, as we developed the
AKE proof, we frequently encountered steps where the only way we could see to proceed was to extend
the generic group model game. Interestingly, the proof of the generic group model game often did not
change very much as a result: the core idea of the proof—maintaining a linear system and checking for
certain events based on the rank of a consistency matrix—was robust for the many features we added to
the CPacecore problem.
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proof of CPacebase, this simply reflects the fact that some sessions may have one or both
endpoints not controlled by the adversary.

The adversary has access to a few other sources of information. The group operation (·)
and DLOG oracles are how the adversary can find new information about group elements
and the relationships between them. The GetGen oracle gives the adversary a representation
of a generator for an instance and index, and the GetTarget oracle tells the adversary the
target index for an instance i. In order to not make the game trivial, when GetTarget is
called, we change the behaviour of the oracle H, so that whatever information the adversary
was provided before is made to be consistent with H.

Details. For a positive integer m, [m] represents the integers 1 through m. If m = 0
it represents the empty set. Define the set G ⊆ {0, 1}n to be the representation of group
elements provided to an adversary, for some suitably large n. Define C = {0, 1}λ to be a set
of confirmation values.

Parameters of the game are N , the size of the password space and thus the number
of relevant generators; and p, the (prime) size of the group. The state of the game is
maintained by a non-negative integer ctr and a bit s, with ctr initially set to 0 and s sampled
uniformly from {0, 1}. The adversary is given (a representation of) a generator g of G, as
well as the identity element. The adversary has access to the following oracles:

• · : G × G → G: The group operation oracle.

• DLOG : G × G → Zp: A discrete logarithm oracle.

• H : [ctr]×G ×G ×G → C: A confirmation value oracle. This acts as a random oracle,
taking in a counter, a Diffie–Hellman completion K, and the ordered concatenation
of two group elements, and returns a uniformly random confirmation value.

• GetGen : [ctr]× [N ]→ G: On input (i, j), returns gi,j.

• NewInstance : [ctr]∪ {⊥} → G ×G: This oracle creates a new instance of the problem.
If the input is ⊥, a new instance independent from all previous instances is generated:

1. Increment ctr.

2. Sample fresh generators gctr,j ←$ G for j ∈ [N ].

3. Sample a uniform target index tctr←$ [N ].

4. Sample uniform uctr, vctr←$ Zp and compute Uctr ← guctr
ctr,tctr , Vctr ← gvctrctr,tctr .
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5. Return Uctr, Vctr.

If the input is ℓ ≤ ctr, the instance has the same target index as instance ℓ. The same
steps are repeated but the same target index as that of session ℓ is used: step 3 is
replaced by tctr ← tℓ. This instance is said to be linked to instance ℓ, as well as all
other instances that instance ℓ is linked to.

• Challenge : [ctr]×{0, 1}×G → C: On input (i, b,Wi,b), if b = 0 we calculate K ← W ui
i,0,

and if b = 1, K ← W vi
i,1. If K is equal to the identity element, return ⊥. Otherwise

if the challenge bit s = 0 or GetTarget has been called on this or a linked instance,
then return H(i,K,oc(Ui,Wi,b)) or H(i,K,oc(Vi,Wi,b)) depending on b. If s = 1
and GetTarget has not been called on a linked instance, return a randomly sampled
hi←$ C. This oracle can only be called twice per instance i, once with b = 0 and once
with b = 1.

• GetTarget : [ctr]→ [N ]: Returns the target index ti for instance i. If s = 1, then for
each instance linked to instance i, we reprogram H to behave correctly: modify H
so that H(i,W ui

i,0,oc(Ui,Wi,0)) = hi,0, and H(i,W vi
i,1,oc(Vi,Wi,1)) = hi,1, where hi,b

is the value that was previously provided for the challenge. If Challenge has not yet
been called for one of the linked instances, but later is, H will skip the check for
the value of s and always return the output determined by H (so that responses are
consistent).

The adversary wins if any of three conditions is met:

1. The adversary queries H(i,W ui
i,0,oc(Ui,Wi,0)) after making a Challenge(i, 0,Wi,0)

query, but before making a GetTarget query on a linked instance.

2. The adversary queriesH(i,W vi
i,1,oc(Vi,Wi,1)) after making a Challenge(i, 1,Wi,1) query,

but before making a GetTarget query on a linked instance.

3. At the end of the game, the adversary guesses s correctly.

We want to determine the probability of the adversary’s success in terms of the number
of queries they make. We count the number of queries as follows:

• qG, the number of queries to the group operation oracle.

• qD, the number of queries to the discrete logarithm oracle.
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• qN , the number of queries to NewInstance (i.e., the total number of instances).

• qC , the number of queries to Challenge where the adversary did not submit (i, 0, Vi)
or (i, 1, Ui). In other words, the number of instances for which the adversary actively
participated in the Diffie–Hellman session, rather than passively observed one.

• qG, the number of queries to GetGen.

While there are three conditions under which the adversary wins, in truth, there is
only one event that leads them to gaining an advantage in winning. The only way to
find information on the challenge bit s is to detect if the output of H is correct or not
for a given instance. If a GetTarget query is made, then the output of H changes to no
longer depend on s for that or any linked instance, and so the relevant query must be
made prior to a GetTarget query. Thus the advantage of the adversary is entirely quantified
by their ability to query Challenge(i, b,Wi,b) and then either H(i,W ui

i,0,oc(Ui,Wi,0)) or
H(i,W vi

i,1,oc(Ui,Wi,1)) before ever making a GetTarget(i) query.

The heart of the proof comes from the fact that even though NewInstance gives the
adversary Ui = gui

i,ti
and Vi = gvii,ti , it does not actually leak any information about what

index ti was used for instance i. We can write the elements of G in terms of the generator
provided to the adversary, g. The N generators for instance i can be rewritten as

gi,1 = gpi,1 , gi,2 = gpi,2 , . . . , gi,N = gpi,N .

In this view, choosing a random generator corresponds to setting Ui = gpi,ti ·ui , for a random
ui and ti. But note that each generator and corresponding pi,ti value is equally possible,
as pi,ti · ui = pi,j · (p−1i,j pi,tiui). Thus the only way for the adversary to proceed is to guess
the generator, compute the W ui

i,0 value and query it to H. However each guess requires
the adversary to know the discrete logarithm of either Ui, Vi, or Wi,b with respect to the
generator gi,j. This requires either a discrete logarithm query to be made, or for the Wi,b

value to have been crafted so that the discrete logarithm between gi,ti and Wi,b is known to
the adversary. We will therefore establish that each query to DLOG and each customized
query to Challenge essentially provides one guess for the target index ti, so in expectation
an adversary must make roughly N such queries.

Other than this, there are small terms in the upper bound that are related to the
adversary finding collisions in the generators (and thus being able to make a single DLOG
query relevant to multiple instances) and the adversary calculating discrete logarithms
by making group operation, rather than DLOG, queries, both of which are divided by the
group order p, which is cryptographically large.

161



Theorem 17. Let A be an adversary in the CPacecore game. The probability that A wins
the game is at most

1

2
+

qD + qC
N

+O(q2G/p) +O(qDq
2
G/p).

6.4.2 Proof outline

As is typical for generic group model proofs, we will maintain a table T that translates
between the (additive) secret representation of elements as numbers in Zp and the (mul-
tiplicative) public representation provided to the adversary, which are random unique
elements of {0, 1}n. The secret representation of the identity element is 0, and the secret
representation of the generator g is 1.

For an instance i and bit b, let Wi,b be the group element that the adversary submitted
to the Challenge oracle for the bit b, and let wi,b be the discrete logarithm between gi,ti
and Wi,b). To provide an upper bound on the adversary’s ability to guess s, we need to
determine their ability to query g

uiwi,0

i,ti
or g

viwi,1

i,ti
to H. Except where it is relevant, for ease

of notation, we will focus on the b = 0 case for the adversary’s challenge queries, with the
understanding that an implicit ‘and similarly for b = 1’ follows.

If gpi,ti = gi,ti , then this would mean that the adversary would be unable to make a
relevant query until the secret representation pi,tiuiwi,0 of g

uiwi,0

i,ti
is added to T . However,

rather than maintaining a specific pi,j ∈ Zp as the secret representation of gi,j, we will
instead maintain a variable Xi,j . For example, say the adversary queries g1,1 · g to the group
operation oracle. With a specific p1,1 in mind such that g1,1 = gp1,1 , the secret representation
of such an element would be p1,1 + 1. Instead, we write the secret representation as the
linear combination X1,1 + 1, and, if we have not seen this linear combination before, choose
a new public representation for it and return that to the adversary.

Similarly, the adversary may query g1,1 · g1,1 to the group operation oracle. We would
record 2X1,1 in the table, and assuming that this term has not appeared before, give it a
random unused representation. Other generators have corresponding variables Xi,j. By
making group operation oracle queries combining these terms, arbitrary linear combinations
of these variables can be added into the table T . This allows us to precisely quantify the
information that the adversary has obtained through the discrete logarithm oracle, which
in turn will allow us to precisely calculate the probability that the adversary is capable of
causing certain events to happen, like making relevant queries to H.

On the other hand, the discrete logarithm oracle informs the adversary of the relationship
between those linear combinations. For example, if the adversary has used the group
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operation oracle to figure out the representation of gc and gd, and queries these to the
discrete logarithm oracle, they must be provided with c−1d mod p. Of course such a query
provides no additional information to the adversary as they could compute it themselves.
Useful queries to the discrete logarithm oracle involve group elements given to the adversary
from the NewInstance or GetGen oracles. If the query DLOG(g, gi,j) is made, then a value
for the corresponding Xi,j must be decided and provided as a response.

In order to query H with the completion of the Diffie–Hellman-like session, the discrete
logarithm between at least one of (gi,ti , Ui), (gi,ti , Vi), or (gi,ti ,Wi,b) must be defined. If all
are undefined, the completion is undefined as well, and not possible to query. In our table T ,
the secret representation of Ui should be uiXi,ti . However, we will instead choose a constant
µi ∈ Zp and set that to be the secret representation of Ui (the secret representation of Vi

will be νi). This means that until the adversary makes a DLOG query that causes Xi,ti to
become defined, ui will not be defined.

When the adversary makes a Challenge query for an instance i, they choose a bit b
and submit a group element Wi,b. In our table T , Wi,b will have a secret representation
of some linear combination of the Xi,j variables, plus a possible constant. We must also
consider the adversary’s ability to cause DLOG(gi,ti ,Wi,b) to become defined. Essentially,
the adversary will get one guess per challenge query. The adversary can select an index j
and hope that j = ti. Then they can construct the challenge so that they know the wi,b

such that Wi,b = g
wi,b

i,ti
, in which case the discrete logarithm is defined and the adversary

can complete the challenge. We will establish however, that the adversary will only get
one such guess out of the Challenge queries that they craft themselves to try to make the
discrete logarithm defined.

So, the overall idea of the proof is that queries to the group operation oracle populate the
table T with linear expressions and the discrete logarithm oracle enforces linear relationships
between those expressions. With enough queries to the discrete logarithm oracle, the
adversary can force enough relations between the various Xi,j values that each one is
entirely decided. But unless the value of Xi,ti has been defined by making the proper
queries to the discrete logarithm oracle, or the adversary manages to guess ti when making
a challenge oracle query, there is no way for the adversary to query g

uiwi,b

i,ti
to H, as that

value is undefined, and thus has not been given a public representation.

Each query to the DLOG oracle imposes at most one linear constraint on the Xi,j

variables. Since any given j is not more likely than any other from the adversary’s
perspective, we need to consider the expected number of linear constraints that need to be
put on the X variables before Xi,ti is defined. We will show that the probability Xi,ti is
defined after qD queries to the discrete logarithm oracle is at most qD/N , which corresponds
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exactly to picking one session and performing a brute force search of computing the discrete
logarithm of gi,1, gi,2 . . . . (Viewed as a PAKE, this matches the quantum annoying property
exactly: the adversary guesses the password, computes the generator that corresponds to
that password, and finds the discrete logarithm with respect to that generator to make a
guess towards the secret key.)

The remaining terms in the theorem’s bound, O((qDq
2
G+q2G)/p) come from the adversary’s

ability to distinguish that the oracle has been managed with unknown Xi,j variables, rather
than ‘real’ secret representations. The O(q2G/p) term comes from the fact that we will
provide each generator with a unique representation, while in the real world, we would
expect there to eventually be collisions in the representation of the generators.

The numerator in the other term, qDq
2
G, is asymptotically the same as the number of

queries to the group operation oracle required to calculate a discrete logarithm (e.g., using
the baby-step giant-step algorithm). So in our model, if the adversary uses the group
operation oracle to calculate a discrete logarithm, rather than the provided discrete logarithm
oracle, then they may notice that the discrete logarithm oracle is not behaving entirely
faithfully. This happens because, when calls to the discrete logarithm oracle are made,
the values of the Xi,j can become defined. If enough group elements have been added
to the table T , then it is possible that when an Xi,j becomes defined, two of the linear
polynomials in T will take on the same value in Zp, even though the adversary was given
different representations in the generic group. However for large p, roughly

√
p values need

to be added to the table T in order to expect a collision to occur (the birthday paradox
has come into effect).

Hence, the adversary’s advantage in distinguishing how the discrete logarithm and group
operation oracles are managed grows as O((qG + qDq

2
G)/p).

6.5 Proof of Theorem 17

We now get into the specifics of the proof: how is the table T managed, what exactly are
the linear relations imposed by the discrete logarithm oracle, and proofs of the bounds.
Algorithms in Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 provide a reference for how all of
the algorithms are simulated.

The main technical points of the proof consist of: how group operation oracle queries
add entries to T , how the NewInstance, GetGen, and Challenge oracles allow the adversary
to begin interacting with the group, how discrete logarithm oracle queries are answered,
and how we guarantee that responses to the oracles are consistent with each other and with
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Simulating New Instance queries in GGM

Input: Integer ℓ ≤ ctr or ⊥
1 : Increment ctr

2 : if input was integer ℓ then

3 : Set the target index tctr ← tℓ

4 : Mark instance ctr as linked to instance ℓ as well as all instances ctr is

linked to, and vice versa.

5 : else

6 : Sample a uniform tctr←$ [N ]

7 : endif

8 : Sample a uniform µctr, νctr←$ Z2
p

9 : Sample public representations Uctr, Vctr

10 : Add (µctr, Uctr) and (νctr, Vctr) to table Treturn Uctr, Vctr.

Figure 6.2: Simulating New Instance queries in the generic group model.

past responses. With this in hand we bound the probability that the discrete logarithm
between gi,ti and Ui, Vi, or Wi,b is defined after qD queries to the discrete logarithm oracle
and qC modified queries to the Challenge oracle.
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Simulating DLOG queries in GGM

Input: Query (ga, gb) ∈ G × G, table T , matrix D, and row r⃗.

1 : Use table T to look up secret representations ga ↪→ a0 +
∑
i,j

ai,jXi,j

and gb ↪→ b0 +
∑
i,j

bi,jXi,j

2 : if either secret representation doesn’t appear in T then return ⊥ endif

3 : Select a uniform s⃗ such that Ds⃗ = r⃗.

4 : Compute δ = (⃗a · s⃗)−1(⃗b · s⃗).

5 : Compute the row δa⃗− b⃗ and the value b0 − δa0

6 : Append the row to D and the value to r⃗.

7 : return δ,D, r⃗.

Figure 6.3: Simulating DLOG queries in the generic group model.

Simulating Challenge queries in GGM

Input: Instance i ∈ [ctr], bit b ∈ {0, 1}, group element Wi,b ∈ G.
1 : if challenge query starting with i and b has been made before then return ⊥ endif

2 : if Instance i or a linked instance has had a GetTarget query issued then

3 : if b = 0 then return H(i,W ui
i,b , oc(Ui,Wi,b))

4 : else return H(i,W vi
i,b, oc(Vi,Wi,b))

5 : endif

6 : else

7 : hi,b←$ C, return hi,b

8 : endif

Figure 6.4: Simulating Challenge queries in the generic group model.
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Simulating GetGen queries in GGM

Input: Instance i ∈ [ctr], index j ∈ [N ], table T

1 : if Xi,j already appears in the table T then

2 : return Corresponding public representation gi,j .

3 : else

4 : Sample a new public representation gi,j

5 : Add (Xi,j , gi,j) to the table T

6 : return gi,j

7 : endif

Figure 6.5: Simulating GetGen in the generic group model.
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Simulating GetTarget queries in the GGM

Input: Instance i ∈ [ctr].

1 : if GetTarget has never been called before on i or a linked instance then

2 : for each instance j linked to instance i (including i) do

3 : Mark that instance has had a GetTarget query called on a linked instance.

4 : Query DLOG(gj,tj , Uj) and DLOG(gj,tj , Vj) to cause Xj,tj , vj,tj to become

defined (if not already defined).

5 : Calculate uj ← X−1j,tj
µj , vj ← X−1j,tj

νj .

6 : if Challenge(j, 0,Wj,0)has been called then

7 : if H(i,W
uj

j,0, oc(Uj ,Wj,0)) has been called then

8 : Adversary has won game, abort.

9 : else

10 : Program oracle H so that H(i,W
uj

j,0, oc(Uj ,Wj,0)) returns hj,0, the

response to the Challenge query.

11 : endif

12 : endif

13 : if Challenge(j, 1,Wj,1) has been called then

14 : if H(i,W
vj
j,1, oc(Vj ,Wj,1)) has been called then

15 : Adversary has won game, abort.

16 : else

17 : Program oracle H so that H(i,W
vj
j,1, oc(Vj ,Wj,1)) returns hj,1, the

response to the Challenge query.

18 : endif

19 : endif

20 : endfor

21 : endif

22 : return ti

Figure 6.6: Simulating GetTarget queries in the generic group model.
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Simulating group operation oracle queries in GGM

Input: query (ga, gb) ∈ G × G, table T , matrix D, and row r⃗.

1 : Use table T to look up secret representations ga ↪→ a0 +
∑
i,j

ai,jXi,j

and gb ↪→ b0 +
∑
i,j

bi,jXi,j .

2 : if either secret representation doesn’t appear in T then return ⊥ endif

3 : if C(X⃗) = a0 + b0 +
∑
i,j

(ai,j + bi,j)Xi,j appears in T then

4 : Return corresponding secret representaiton.

5 : else

6 : for each secret representation F (X⃗) in table T do

7 : Compute row g⃗ = [c1,1 − f1,1, c1,2 − f1,2, . . . , cqN ,N − fqN ,N ]

and value e = f0 − c0.

8 : if g⃗ is linearly independent from the rows of D then

9 : continue

10 : else

11 : Find the h⃗ such that h⃗ ·D = g⃗.

12 : if h⃗ · r⃗ = −e then

13 : return public representation of F (X⃗).

14 : endif

15 : endif

16 : endfor

17 : Sample a new public representation gc for C(X⃗).

18 : Add C(X⃗), gc to the table T .

19 : return gc

20 : endif

Figure 6.7: Simulating group operations in the generic group model.
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Simulating H queries in GGM

Input: Instance i ∈ [ctr], group element K ∈ G,
ordered group elements A,B ∈ G2, hash table

1 : if Query has been previously made or programmed then

2 : return the same response h.

3 : else Sample h←$ C
4 : Record query and h into hash table

5 : return h

6 : endif

Figure 6.8: Simulating the random oracle in the generic group model.
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The group operation oracle and the table T . The table T is used to convert between
the public representations provided to the adversary and the secret representation of
the element in the additive group Zp. To begin with, the table has just 2 elements in
it: a generator g and the identity element. The public representation of each of these
elements is chosen at random from {0, 1}n. Note that it is common in generic group model
proofs to choose n large enough so that we do not need to worry about collisions in our
representations, or the adversary ‘guessing’ a group element that has not been added to
T . Since new public representations are added to T by queries to the group operation and
GetGen oracles, choosing n≫ log2(qG + qG + p) is sufficient. It is also easy to check and
see if a representation has already been used and, if so, re-sample. Since it is easy to choose
a large enough n, and it impacts no other parts of the proof, we omit a term that considers
the probability of picking the same representation twice.

The secret representation of g is naturally 1, the identity element 0, and the secret
representation of each gi,j from GetGen is represented by a variable Xi,j. When the group
operation oracle is queried on elements ga and gb, the public representations are queried
in the table to find the corresponding secret representation. If no such representation
exists, then the query is considered invalid, and returned as such2. Otherwise, the secret
representation of ga and gb will be two linear combinations of the Xi,j variables as well as

a possible constant, which we can write as ga ↪→ a0 +
∑

i∈[qN ]

∑
j∈[N ] ai,jXi,j = a0 + a⃗ · X⃗

and gb ↪→ b0 +
∑

i∈[qN ]

∑
j∈[N ] bi,jXi,j = b0 + b⃗ · X⃗, with ai,j, bi,j ∈ Zp. We can then compute

the secret representation of ga · gb ↪→ (a0 + b0) +
∑

i,j(ai,j + bi,j)Xi,j. Once the secret
representation has been computed, we can check to see if this new linear combination
already exists in the table. If it does, then use the already existing representation of the
group element. If not, then we can generate a new random public representation for this
new linear combination and provide it to the adversary.

This simple check will only work until the adversary begins to make discrete logarithm
oracle queries. As queries to the discrete logarithm oracle impose linear relationships
between the Xi,j variables, we need to check if that linear combination modulo the relations
defined already exists in the table. We will discuss more on this point when we explain
how linear relationships between the Xi,j variables are defined by queries to the discrete
logarithm oracle. As a preview, these linear relations will be encoded into a matrix D. To
check and see if two secret representations a⃗ and b⃗ actually encode the same group element,
we see if a⃗ − b⃗ is linearly independent from the rows of D. If it is, then its value is not

2This is correct behaviour so long as the representation does not later become valid. Since representations
are randomly chosen, the probability that this happens is negligible in n, the bit length of the representations.
As discussed, we assume n is chosen to make this probability negligible.
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dependent on the linear relations that have been defined, and we can conclude that these
represent distinct group elements.

Note as well that the group operation oracle can be extended to allow for inverses
to be calculated as well. This simply means calculating −a0 −

∑
i∈[qN ]

∑
j∈[N ] ai,jXi,j and

otherwise performing the same sequence of steps.

Oracles NewInstance, GetGen, and Challenge. The game begins with the adversary only
aware of a single generator element and the identity element. In order to begin meaningfully
interacting with the game, NewInstance must be called. When this happens, we increment
ctr, and if the instance is not linked to another instance, then we sample a new target index
tctr from [N ].

Rather than earnestly generating a Diffie–Hellman-like instance from gctr,tctr , we instead
sample values µctr, νctr←$ Zp. We will set Uctr ← gµctr , Vctr ← gνctr . We calculate the public
representation of these elements (which may be entirely new, requiring new entries into T ),
and return the public representation to the adversary.

We do this, rather than sending honestly generated Ui and Vi values in order to allow the
discrete logarithm between gi,ti and Ui or Vi to remain undefined. Note that this does not
affect the distribution of Ui or Vi. Since ui and vi are chosen uniformly at random, choosing
the products µctr and νctr uniformly matches the distribution exactly. But until Xi,ti becomes
defined, the discrete logarithm between gi,ti and Ui and Vi is similarly undefined.

After having created an instance, the adversary can access generators through the GetGen
oracle. When GetGen(i, j), where i ≤ ctr, is called, we sample a new public representation
and add it and Xi,j to T . We always sample unique representations, and this does create
a small incongruity with the real game. In the real game, after sampling roughly

√
p

generators, an adversary would expect to see repetition in the public representations. But
we will always provide unique representations, no matter how many times the oracle is called.
This results in a O(q2G/p) term in the theorem statement, representing the adversary’s
ability to cause a collision in the generators.

The challenge oracle is how the adversary is able to gain an advantage in winning the
game. When Challenge(i, 0,Wi,0) is called, we are expected to respond with either a random
hi←$ C or H(i,W ui

i,0, oc(Ui,Wi,0)). We will always respond with a random hi, so long as
GetTarget(i) has not been called on a related instance i. This is indistinguishable as long
as the adversary does not query W ui

i,0 without having previously made a GetTarget(i) query.
If such a query is made, we consider them to have won.
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The discrete logarithm oracle and the linear relationship matrix D. For queries
to the discrete logarithm oracle, we need to define what linear relations are imposed, and
how future oracle responses are managed for consistency. When group elements with secret
representations α and β ∈ Zp are queried, the response should be a value δ ∈ Zp such that
α · δ ≡ β (mod p). So when a group element with secret representation α = a0 +

∑
ai,jXi,j

and β = b0 +
∑

Xi,j are queried, by returning a value δ ∈ Zp we are declaring that

δ
(
a0 +

∑
i,j

ai,jXi,j

)
= b0 +

∑
i,j

bi,jXi,j,

or equivalently, ∑
i,j

(δai,j − bi,j)Xi,j = b0 − δ · a0. (6.1)

When a discrete logarithm oracle query is made, we thus need to choose a value δ consistent
with all previous δ values provided. To do this we maintain a matrix D and a vector r⃗ that
encodes all previous responses. That is, when a linear equation (6.1) is defined, we append
the row

[δ · a1,1 − b1,1 δ · a1,2 − b1,2 . . . δ · aqN ,N − bqN ,N ] (6.2)

to D and extend r⃗ by the entry b0 − δ · a0. Thus the set of responses provided to the
adversary so far imposes the linear constraints DX⃗ = r⃗, where

X⃗ = [X1,1, X1,2, . . . , X1,N , X2,1, . . . , XqN ,N ]
T .

With this linear system in place, when a new query comes in, we can pick an arbitrary
s⃗ such that Ds⃗ = r⃗, i.e., an arbitrary solution. This can be done by, for example, finding
one solution and then choosing an arbitrary point in the kernel of D. Then to respond to
the query (a0 + a⃗ · X⃗, b0 + b⃗ · X⃗, we can replace the Xi,j values with the random si,j values,

and respond with δ = (a0 + a⃗ · s⃗)−1(b0 + b⃗ · s⃗). We then add the row from (6.2) to D and
append b0 − δ · a0 to r⃗. Our new answer is guaranteed to be consistent with all previous
responses as it is consistent with s⃗, which was chosen from the solution space.

This also allows us to tell if a given a0 + a⃗ · X⃗ has a value determined by D and r⃗,
and if so, what that value is. If we can construct a linear combination of the rows of
D that add up to a⃗, then the value of the linear combination is determined. Let w⃗ be
the linear combination of rows, so that w⃗TD = a⃗T . Then the matrix D is telling us that
a⃗ · X⃗ = (w⃗TD)X⃗ = w⃗T (DX⃗) = w⃗T r⃗ = w⃗ · r⃗. Thus the value (in Zp) of a0+ a⃗ · X⃗ is a0+ w⃗ · r⃗,
where w⃗ is the linear combination of the rows of D that add up to a⃗. If there is no such
linear combination, i.e., a⃗ is not in the rowspace of D, then the value of a0 + a⃗ · X⃗ is not
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yet determined by D and r⃗. When D and r⃗ do determine a secret representation’s value in
Zp, we will write it as ∼=. So if w⃗TD = a⃗T , then a0 + a⃗ · X⃗ ∼= a0 + w⃗ · r⃗.

Now we may discuss how we check if a linear combination modulo the linear constraints
has already appeared in the table T . When a group operation oracle query is made that
will add the secret representation a0 + a⃗ · X⃗ to the table T , we consider the difference a⃗− b⃗
between a⃗ and the coefficients of every other linear combination of Xi,j values in the table

T , b⃗. For each difference a⃗− b⃗ we need to check to see if the linear relations set forth by D
mean that the new group element a0 + a⃗ · X⃗ is actually the same as b0 + b⃗ · X⃗.

To do this, we check to see if the rank of the matrix D is increased by appending a⃗− b⃗
as a row. If the rank does increase, this tells us that the relation between a⃗ and b⃗ is not
defined by D. But if the rank does not increase, then the relation is defined. This means
we can find the value c ∈ Zp such that a⃗− b⃗ ∼= c.

If c = b0 − a0, then we know that these two group elements with secret representations
a0 + a⃗ · X⃗ and b0 + b⃗ · X⃗ must be the same given the relations provided to the adversary
by the discrete logarithm oracle. In this case, a new entry does not need to be added to
the table T , and instead the public representation for the element already provided can
be given. If c ̸= b0 − a0, then the matrix D is telling us that a⃗ and b⃗ differ by a constant
factor, but they are not the same element, and so the next b⃗ can be checked.

One counterintuitive aspect is that the group operation oracle is being simulated in a very
expensive way. Each time a query is made, the simulator checks against each previous query
made, resulting in quadratic expense. But this is not relevant to the bounds in the proof.
We are not reducing CPacecore to another problem, but providing an information-theoretic
bound in terms of the number of oracle calls being made. Thus, it does not matter how
efficient the simulator is, only that it counts the number of queries to the various oracle
properly.

At this point, we have guarantees that (i) when a response to a discrete logarithm
query is provided, it is consistent with all previous responses to the discrete logarithm
oracle, and (ii) when a response to a group operation query is provided, it is consistent
with all previous responses to both the group operation oracle and the discrete logarithm
oracle. The remaining question is whether responses to the discrete logarithm oracle are
consistent with the previous responses to the group operation oracle. In fact, they are not
guaranteed to be so. Consider the case where the adversary enumerates through the entire
group to get the representation of g, g2, g3, . . . , gp−1. These will all be given different public
representations, but the representations will also be different from those given to all of
the generators returned from GetGen. If a discrete logarithm query of the form (g, gi,j) is
made, a specific pi,j ∈ Zp will be provided. But we will have already given gpi a different
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representation than gi,j, causing an inconsistency.

Since the discrete logarithm oracle responds with random answers from the solution
space, these inconsistencies require the adversary to make an enormous number of group
operation oracle queries to happen: it is only if O(

√
p) queries to the group operation oracle

occur that we must worry about this inconsistency. We provide a full justification for this
claim after briefly discussing the adversary’s success probability.

We now return to the analysis of this game: what is the probability that the adversary
succeeds after making discrete logarithm queries, and what is the difference between
managing the group operation and discrete logarithm oracles in this way and a ‘proper’
way?

As discussed, the adversary must have done one of two things in order to possibly win.
For a session i not linked to a session where a GetTarget query has been made, they must
either know the discrete logarithm between gi,ti and either Ui, Vi, or Wi,b. We need to
characterize when it is possible for an adversary to learn this based on the matrix D, and
then provide an upper bound on the adversary’s success probability in triggering that event.

Lemma 29. Let e⃗i,ti be the standard basis vector in ZqN ·N with a 1 in position (i, ti) and 0
everywhere else. Let w⃗ be the vector representation of Wi,b, the row vector whose entries
are the coefficients of the Xi,j variables in the corresponding secret representation. Let D be
the matrix of linear relations defined by the queries to the discrete logarithm oracle. Then
the discrete logarithm between gi,ti and Ui, Vi, or Wi,b is only defined if e⃗i,ti appears in the
rowspan of

[
D
w⃗

]
.

Proof. Recall that the secret representation of gi,ti is Xi,ti , and for Ui and Vi it is a randomly
chosen pair µi, νi←$ Z2

p. For the discrete logarithm between these two to be defined, the
value Xi,ti must be forced to have a specific value from the linear constraints of D. If it
is not entirely constrained, then it can still take on any value in Zp. For it to take on a
specific value, it must be the case that there is a linear combination of the rows of D that
add up to e⃗i,ti .

Similarly, for Wi,b we consider its vector representation w⃗. For the discrete logarithm to
be defined, we must be able to rewrite this vector as a multiple of Xi,ti . We can assume
that Xi,ti is undefined, since it being defined was already covered by the previous case. So,
it must be possible, modulo the linear relations defined, to rewrite w⃗ as a multiple of e⃗i,ti .
But ‘zeroing out’ the other entries of v⃗ like this means that e⃗i,ti is in the rowspan of

[
D
w⃗

]
,

as expected.
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Corollary 7. Let W be the matrix whose rows consist of the vectorizations of each Wi,b

submitted to the Challenge oracle not equal to Ui or Vi. Then the instances i for which W ui
i,b

can be queried to H are restricted to those where e⃗i,ti appears in
[
D
V

]
.

This corollary allows us to calculate the overall probability of having the relevant discrete
logarithms defined, and thus the probability of querying a Diffie–Hellman completion and
winning the game. The rank of the matrix

[
D
W

]
is at most the number of rows of D plus the

number of rows of W , which is qD+ qC , the number of Challenge queries where a customized
Wi,b was submitted. The rank also limits the number of basis vectors that can appear in
the row span to the same number, so at most qD + qC basis vectors can appear there.

This is how we can bound the probability that the adversary can submit the relevant
group element to H. To do this, they need to have an instance i for which no GetTarget
query has been made for any linked instance, and e⃗i,ti is in the rowspan of

[
D
W

]
. Since no

GetTarget query has been made for this instance, the distribution of which e⃗i,j basis vectors
appear in the rowspan is independent of ti. Thus the adversary has qD + qC chances for a
target basis vector to appear in the rowspan. So the overall probability that one appears
can be upper-bounded as (qD + qC)/N .

Next we consider the question of whether the adversary can detect that we are not
managing the group operation and discrete logarithm oracles perfectly. As mentioned, we
do not ensure that responses to the DLOG oracle are perfectly consistent with all previous
group operation oracle queries. With enough entries in T it is possible for the adversary
to notice a discrepancy in how queries were handled. For example, say the adversary has
queried for group elements with secret representation X1 and d, and in the process of making
discrete logarithm queries, the value of X1 is set to be d. Since that happens after having
queried X1 and d, the two group elements will be given different public representations.

To determine the probability that any inconsistency occurs, we consider each pair of
linear combinations in the table T , (a0 + a⃗ · X⃗, b0 + b⃗ · X⃗). For a given pair, we want to
check to see if a new linear constraint added to D has made these two previously distinct
elements take on the same value. This occurs if, before the discrete logarithm oracle query,
a⃗ − b⃗ was linearly independent from the rows of D, but after updating to D′, it is now
linearly dependent, and furthermore we have that a⃗− b⃗ ∼= b0 − a0.

For every pair of elements, the probability that this happens is at most 1/p. To see this
we will discuss the geometric structure of how linear constraints are added to D and what
two intersecting elements means in this geometry.

Each row of D and r⃗ adds a linear constraint to the system. If the first row of D is d⃗
and the first entry of r⃗ is r then the solution space is constrained so that d⃗ · X⃗ = r. We can
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view this as an affine hyperplane, an (N − 1)-dimensional subspace of ZN
p . When a new

row is added, this corresponds to adding another affine hyperplane. The solution space is
the intersection of all hyperplanes.

The process of adding a new row to D is to select a random point in the solution space,
and then construct a response to the adversary’s query. The adversary’s query can be seen
as determining the direction of the affine hyperspace (i.e., the linear subspace that goes
through zero), but the response is determined by choosing a random point in the solution
space and offsetting the submitted linear subspace so that it goes through that random
point, constructing an affine space.

Meanwhile, pairs in our table T collide if a⃗− b⃗ is linearly independent before a row is
added, but linearly dependent after. The vector a⃗− b⃗ and value b0 − a0 also can be viewed
as a hyperplane H. So the geometric interpretation of the linear relations (D, r⃗) forcing

(⃗a− b⃗) · X⃗ to be equal to b0 − a0 is that the solution space S is contained entirely within
the hyperplane H.

This case occurs if, before a new hyperplane is added to the linear constraints, the
solution space is not entirely within the hyperplane H, but, after the discrete logarithm
oracle query, it is. As discussed, the process of adding a new hyperplane involves picking
a random point in the solution space and making sure the new hyperplane goes through
that point. For the resulting solution space to be entirely within H, it must be the case
that the random point that is chosen is also within H. So the question becomes, how many
points in the solution space S are also in H? Since it is not the case that S is entirely
contained within H, it cannot be all of them. Since S is generated by the intersection of a
series of affine hyperplanes, the intersection between that and H must be either empty, or
is at most a fraction 1/p of the space S, as desired. This is because the intersection of such
hyperplanes is an affine subspace with smaller dimension. Our base field is Zp, and so the
subspace must have a size a power of p.

So each time a new linear constraint is added to D and r⃗, for every two entries in
the table T there is at most a 1/p chance that these two entries now represent the same
group element, modulo these constraints. Since this happens for each pair in the table,
we can upper bound the overall probability of any collision happening as O(q2G/p), and
the probability of a collision happening on any of the qD queries to the discrete logarithm
oracle as O(qDq

2
G/p).

Thus the probability that the adversary notices the oracles misbehaving is at most
O(qDq

2
G/p), the probability that it is noticed that generators are always unique is at most

O(q2G/p), and the probability that they win assuming they do not notice misbehaviour is at
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most (qD + qC)/N . So the overall probability of winning is at most

1

2
+ (qD + qC)/N +O((qDq

2
G + q2G)/p).

6.6 PAKE security of CPacebase

In this section we show that CPacebase is a secure password-authenticated key exchange
protocol in a variant of the Bellare–Pointcheval–Rogaway (BPR) model [23], assuming the
difficulty of the CPacecore problem from Section 6.4. Our BPR′ security model differs from
the BPR model in that it does not provide forward secrecy, assumes a balanced PAKE
(i.e., the server stores the client’s password directly, not a transformation thereof), and
accommodates externally specified session identifiers, in addition to providing generic group
model oracles.

6.6.1 The BPR′ Model

Participants and passwords. Fix a non-empty finite set C ∪ S of participants; each
participant is either a client or server, but never both. For each client-server pair (C, S), a
password pwC,S is chosen uniformly at random from a set P ; each client and server has a
copy of the passwords relevant to them.3

Sessions and state. Each participant P can execute multiple instances of the protocol
simultaneously, each of which is called a session; sessions within a party are numbered
sequentially, and the ith session at participant P is denoted πi

P . For each session i,
participant P maintains the following state variables:

• acciP ∈ {true, false}: whether the instance has successfully accepted a session key

• termi
P ∈ {true, false}: whether the instance has terminated, meaning no more incoming

or outgoing messages

• stateiP : private state of the protocol execution

• sidiP : the session identifier

3When CPace is run inside of AuCPace [86], the CPace password is output from an earlier phase of
AuCPace.
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• pidiP : the partner identifier (who U believes they are communicating with)

• ski
P : the session key

Adversarial interaction. The adversary in the security model has full control over the
network. The adversary initiates all actions, controls delivery of all protocol messages, and
can create, modify, delay, repeat, or delete messages. The adversary interacts with honest
participants via calls to the following oracles. In square brackets at the end of each query’s
description is the symbol we use to denote the number of queries made to that oracle.

• Send(P, i,M): Captures an active attack. An adversary-selected message M is
sent to instance πi

P , which processes it based on its current state and returns any
response message to the adversary. The first call to Send for each instance may
include additional context information in M , such as the identity of the intended peer.
[Number of Send queries: qS]

• Execute(C, i, S, j): Captures the adversary’s ability to passively observe honest sessions.
If both πi

C and πj
S have not yet been used, this query executes the protocol between

those two instances. The adversary is provided a transcript of the messages sent by
each party. [qE]

• Reveal(P, i): The session key ski
P is revealed, if it has been set. [qR]

• Corrupt(C, S): Reveals pwC,S to the adversary. [qCo]

• Test(P, i): Issues the challenge for the adversary. Uniformly samples a bit b. If b = 1
the session key ski

P is revealed to the adversary. If b = 0 a uniformly random session
key is drawn and returned. This query can be called only once.

• ·(A,B): The group operation oracle. [qG]

• DLOG(A,B): The discrete logarithm oracle. [qD]

• Random oracles H1, H2. [qH1 , qH2 ]

The adversary’s goal in the security experiment is, for a sufficiently uncompromised
target session, to distinguish the real session key from a random one. At the end of the
experiment, the adversary outputs a bit, which is its guess as to whether it was given the
real session key or a random one.

179



Partnering and freshness. Since the adversary can compromise some values and
impersonate users, we have to restrict which sessions count as a win for the adversary.

Let πi
C be a client instance and πj

S be a server instance with acciC = accjS = true. We
say that πi

C and πj
S are partnered if pidiC = S, pidjS = C, ski

C = skj
S, sid

i
C = sidjS, and there

is no other accepting instance with the same sid.

Further, an instance πi
P is considered fresh if all of the following conditions are satisfied:

• a Reveal(P, i) query has not been made;

• if a partnered instance πj
P ′ exists, then a Reveal(P ′, j) query has not been made;

• no Corrupt(C, S) query has occurred, where C and S are the client and server among
P and pidiP .

Since we are aiming for security in the quantum-annoying model, we cannot hope to
achieve forward secrecy as noted in Section 6.3.1: in CPacebase, an adversary with a discrete
logarithm oracle could Execute a session, Test its session key, then Corrupt the password,
hash it to get the corresponding generator, then use its discrete logarithm oracle to find one
party’s ephemeral shared secret and compute the session key. Thus, our freshness condition
above (specifically the third bullet point) does not capture forward secrecy.

Advantage. For a PAKE protocol Π, we say that the adversary succeeds if they make
a single Test query to an instance that has accepted and terminated and remains fresh
throughout the game, and the adversary returns a bit b′ that is equal to the bit b that was
sampled in the process of answering the Test query. The advantage of the adversary A is
defined as

AdvΠ
BPR′(A) = 2Pr[A succeeds]− 1.

6.6.2 Security of CPacebase

The CPacecore problem defined in Section 6.4 is somewhat unnatural and rather complex, but
the benefit of that complexity is that it captures in a single problem all of the characteristics
needed to prove the security of CPacebase in the BPR′ model.

In CPacebase, session identifiers are externally provided. For example, when CPacebase
is run as a sub-protocol of AuCPace [86], an earlier stage of AuCPace establishes the a
session identifier. For the purposes of the proof, we will assume that session identifiers are
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provided by the adversary to sessions, with the constraint that, for any session identifier,
the adversary may initiate at most one honest client session and at most one honest
server session with that session identifier. (This corresponds to the idea that each honest
party contributes something fresh and unique-within-that-party to the identifier of each
session they participate in, which is the case with how session identifiers are established in
AuCPace.)

Theorem 18. Let G be a cyclic group of prime order p, and let H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → {0, 1}λ be random oracles. Let P be a password space of size N . If the
CPacecore problem is hard in the generic group model (with a discrete logarithm oracle)
for G, then the CPacebase protocol is secure. In particular, if A is an adversary against
CPacebase in the BPR′ model, then there exists an adversary B against CPacecore such that

AdvBPR′

CPacebase
(A) ≤ 4qH2

p
+AdvCPacecore(B) ,

where A makes at most qH2 queries to H2. Moreover, the running time of B is about the
same as that of A, and the number of queries B makes to its CPacecore oracles, in terms of
the number of queries A makes to its CPacebase oracles, is as follows:

• · (the group operation oracle): qBG = qAG

• DLOG: qBD = qAD

• H: qBH ≤ qAH2

• GetGen: qBG ≤ qAH1

• NewInstance: qBN ≤ qAE + qAS + qACo + qAH1

• Challenge queries of type 1:4 qBC1 ≤ qAE

• Challenge queries of type 2: qBC2 ≤ qAS

• GetTarget: qBT ≤ qACo.

Combining Theorem 18 with Theorem 17 yields:

4We distinguish Challenge queries that do submit either (i, 0, Vi) or (i, 1, Ui) and Challenge queries that
do not submit either of those as type 1 and type 2, respectively. This is because the bounds in Theorem 17
about CPacecore only care about type 2 Challenge queries.

181



Corollary 8. In the generic group model (with a discrete logarithm oracle) for a group G
of order p, for any adversary A making qH1 H1 and qH2 H2 random oracle queries, qS Send
queries, qG group operation queries, and qD discrete logarithm queries, the advantage of A
in breaking the security of CPacebase with a password dictionary of size N is at most

AdvCPacebase
BPR′ (A) ≤ qD + qS

N
+

4qH2 +O(q2H1
+ qDq

2
G)

p
.

of Theorem 18. We give a reduction B that, using a CPacecore challenger, simulates the
BPR′ security experiment for CPacebase to A.

The idea behind the simulation B is as follows. B maintains a mapping ctr of how
CPacebase user pairs (C, S) and matching sessions (C, S, sid) map on to CPacecore instances.
Recall that calling CPacecore.NewInstance with a previously used counter will cause the
CPacecore instance to re-use the same target index; this will correspond to sessions between
the same pair of users using the same password; and calling CPacecore.GetTarget will allow
B to answer password Corrupt queries. B will use the CPacecore.NewInstance oracle to
simulate message generation and the CPacecore.Challenge oracle to compute session keys.
One significant difference in B’s simulation is that all session keys – even those returned
by Reveal, not just the one returned by Test – are either real or random depending on the
hidden secret s of the CPacecore game. But this will not be a problem, as detecting this in
the random oracle model requires a query to the random oracle H2 which is forwarded to
the CPacecore.H oracle, and would lead to a win in the CPacecore game.

Initialize ctr∗ ← 0. Define the following subroutine:

• getUV(C, S, sid):

1. If ctrC,S,sid is defined: return (UC,S,sid, VC,S,sid).

2. Else if ctrC,S is defined: set (UC,S,sid, VC,S,sid) ← CPacecore.NewInstance(ctrC,S),
increment ctr∗, and set ctrC,S,sid ← ctr∗. Return (UC,S,sid, VC,S,sid).

3. Else: Set (UC,S,sid, VC,S,sid)← CPacecore.NewInstance(⊥), increment ctr∗, and set
ctrC,S and ctrC,S,sid to ctr∗.

B answers queries from A as follows:

• Execute(C, i, S, j, sid): We use the NewInstance (via getUV) and Challenge ora-
cles of the CPacecore challenger to generate a transcript and session key, and re-
ceive a session identifier from the adversary, which must be previously unused
by C and S. Set sidiC , sid

j
S ← sid. Set (U, V ) ← getUV(C, S, sid). Set ski

C ←
CPacecore.Challenge(ctrC,S,sid, 0, V ) and skj

S ← ski
C . Return transcript (U, V ).
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• Send(C, i,M = (sid, S)) to a client C: We use the NewInstance oracle of the CPacecore
challenger (via getUV) to generate the message for the client side of a session. Set
sidiC ← sid. Run getUV(C, S, sid). Return outgoing message U i

C .

• Send(S, j,M = (C, sid, U)) to a server S: We use the NewInstance oracle of the
CPacecore challenger (via getUV) to generate the message for the server side of a
session, and the Challenge oracle to generate the session key. Set sidjS ← sid. Run
getUV(C, S, sid) and set skj

S ← CPacecore.Challenge(ctrC,S,sid, 1, U). Return outgoing
message V j

S .

• Send(C, i,M = V ) to a client C: We use the Challenge oracle of the CPacecore
challenger to complete the session. Set ski

C ← CPacecore.Challenge(ctrC,S,sidiC
, 0, V ).

• Reveal(P, i): Return ski
P , if it has been set.

• Corrupt(C, S): We use the GetTarget oracle of the CPacecore challenger to let the
CPacecore challenger pick which password is being used for this client-server pair. If
pwC,S is set, return it. If ctrC,S is not defined, run getUV(C, S, sid) for a random,
unused sid. Let t ← CPacecore.GetTarget(ctrC,S). Set pwC,S ← P[t] (i.e., the tth
password in password dictionary P). Return pwC,S.

• Test(P, i): Return ski
P .

• ·(A,B) (the group operation oracle): Return CPacecore. · (A,B).

• DLOG(A,B): Return CPacecore.DLOG(A,B).

• H1(sid∥pw∥oc(C, S)): Separate out oc(C, S) into C, S (recall that the set of clients
and servers is distinct so this is possible). If ctrC,S,sid is not defined, then run
getUV(C, S, sid). Let t be the index of pw in the password dictionary P. Return
CPacecore.GetGen(ctrC,S,sid, t). We assume that the adversary does not elect to make
queries of this form, as they have no bearing on the protocol.

• H2(sid∥K∥oc(U, V )): If this query has already been asked, answer as before. Other-
wise:

– If there is no C, S such that ctrC,S,sid is defined, we maintain the random oracle
ourselves using a tableH. IfH[sid∥K∥oc(U, V )] is not defined, select it uniformly
at random from the set CPacecore.C. Return H[sid∥K∥oc(U, V )].

– If there exists C, S such that ctrC,S,sid is defined: Return
CPacecore.H(ctrC,S,sid, K,oc(U, V )).
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B runs A until either B wins the CPacecore game, or A terminates and outputs a bit, in
which case B uses that bit as its guess of s in the CPacecore game.

In most ways, B correctly simulates the execution of CPacebase to A. The password
pwC,S for a client-server pair corresponds to the tth password in the dictionary, where t is
the target index of all sessions between C and S (since they use the same ctr = ctrC,S in calls
to CPacecore.NewInstance). The messages in the Execute and Send queries are distributed
exactly as in CPacebase. The responses to Corrupt, ·, DLOG, and H1 are also all distributed
correctly.

Assuming the Test session πi∗
P ∗ remains fresh means that the adversary has not made a

Corrupt(C∗, S∗) query for the client C∗ and server S∗ in the test session prior to the Test
query. Therefore, B has not made a GetTarget(ctrC∗,S∗) query to CPacecore prior to the
Challenge query being issued for the instance corresponding to the Test session, and thus
the session key in the test session is real-or-random, depending on the secret bit s of the
CPacecore game. Thus the response to the Test query is properly distributed.

The session keys set during Execute and Send queries are not perfectly simulated; in
the BPR′ experiment for CPacebase, only the response to the Test query should be real-
or-random, but in B’s simulation, all session keys are real-or-random (since they all are
generated by a call to CPacecore.Challenge) and thus all responses from Reveal are real-or-
random. Additionally, responses to H2 are not simulated correctly when called with a sid
which has not been already passed to a client or server instance via Execute or Send. The
rest of the proof focuses on why these inconsistencies are not a problem.

First we consider whether an adversary can detect that responses from a Reveal(P, i)
query are real-or-random, not real. Since session keys are the output of the random
oracle H2, this would mean that the adversary has to query H2 on sidiP∥K∥oc(U, V ) where
K = DH(U, V ) and U, V are the messages used by instance πi

P ; call this E1. Let C and
S be the client and server instance respectively among P and pidiP . If the adversary has
called Corrupt(C, S) or Corrupt(S,C) prior to this Reveal query, then B will have called
GetTarget(ctrC,S), and CPacecore is defined such that a subsequent call to Challenge for
any instance linked to ctrC,S returns real session keys, regardless of the hidden bit. If the
adversary has not called Corrupt(C, S) or Corrupt(S,C) prior to this reveal query, then
B will not have called GetTarget(ctrC,S). Since πi

P is a session at a party simulated by
B, either U = UC,S,sidiP

(if P = C) or V = VC,S,sidiP
(if P = S). Either way, at least

one of U, V was the output of a call to NewInstance for ctrC,S,sidiP
. By construction, B

relays an H2 query for a defined sidiP to CPacecore.H. Hence, B queries CPacecore.H
with either (i∗,W ui∗

i∗,0,oc(Ui∗ ,Wi∗,0)) (in the case where P = C, taking i∗ = ctrC,S,sidiP
,

Ui∗ = U = UC,S,sidiP
, Wi∗,0 = V ) or (i∗,W vi∗

i∗,1,oc(Vi∗ ,Wi∗,1)) (in the case where P = S,
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taking i∗ = ctrC,S,sidiP
, Vi∗ = V = VC,S,sidiP

, Wi∗,1 = U), both of which are immediately
winning queries to CPacecore. In other words, Pr[E1] ≤ ϵ, where ϵ is the probability of
winning CPacecore with the number of queries made by B.

Now we consider whether an adversary can detect that responses to H2 are not simulated
correctly when called with a sid which has not been already passed to a client or server
instance via Execute or Send; call this E2. We permitted the adversary to choose sids for
sessions, so we will not assume that sids are unpredictable before used in an session at an
honest party. However, when a session is activated at an honest party using either Execute
or Send, a fresh U or V value (depending on whether it is a client or server session) will
be chosen by the simulator. The chance that a U or V value used in an H2 query for an
undefined sid is the same as one of the U or V values chosen when an honest party runs on
that sid is at most 4/p, where p is the order of the group. If A makes qH2 H2 queries, then
the probability the simulation is invalid is at most Pr[E2] ≤ 4qH2/p.

Note that when a Corrupt query is made, the induced GetTarget query in CPacecore
causes the oracle H to be reprogrammed, which in turn reprograms H2. Thus we must
consider the adversary’s ability to notice such a reprogramming. However the only way
to notice a reprogramming is to already have queried H2 on a point that will induce a
query to H on a reprogrammed point. The reprogrammed points are those which will
eventually be used to induce session keys, queries of the form H(ctr,W ui

i,0,oc(Ui,Wi,0)) or
H(ctr,W vi

i,1,oc(Vi,Wi,1)). But these are precisely the points that, if queried to H before a
Corrupt query, then the reduction B wins the CPacecore game. As a result, any advantage
the adversary has in noticing reprogrammed points is exactly conferred to an advantage B
has in winning CPacecore, and we need not be concerned with the probability this happens.

Assuming neither E1 nor E2 occur, there is no inconsistency in B’s simulation of the
BPR′ security game to A. If A’s output changes based on whether the answer to the Test
query was real or random, then B’s output will change based on whether the secret s in
CPacecore is 0 or 1. Combining these two statements yields

AdvBPR′

CPacebase
(A) ≤ 4qH2

p
+AdvCPacecore(B) .

The runtime of B is the same as the runtime of A, plus a small bookkeeping overhead for
each query. Moreover, B makes a number of queries to oracles in correspondence with the
statement of Theorem 18.
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Chapter 7

Conclusion

In this thesis, we have addressed a series of open questions in the study of post-quantum
cryptography. We have shown the flexibility of several post-quantum signature and key
establishment schemes, by establishing how they can be adapted to support features that
have been designed with the structure of the discrete logarithm problem.

In Chapter 2 we considered the primitive of key-blinding and how it could be made
post-quantum. We show how it could be constructed with four different post-quantum
signature schemes. These used different methods to accomplish the task of key-blinding.
CSI-FiSh was amenable to key-blinding because it instantiates a group action. DILITHIUM-
QROM was similarly amenable, because of the additive homomorphic structure between
the secret and public key space. Picnic and LegRoast supported key-blinding because they
both are built out of generic zero-knowledge proof systems, which can be adapted to the
needs of key-blinding. We also presented a generic proof framework for thinking about
the unlinkability property of key-blinding schemes and put it into action with each of the
schemes presented.

We also have considered the primitive of Updatable Public Key Encryption in Chapter 3,
and similarly shown how it can be instantiated with the key-exchange scheme CSIDH. More
specifically we borrowed techniques from the signature scheme CSI-FiSh, which provided
enough mathematical structure to instantiate a provably secure UPKE scheme.

As well as establishing how to extend post-quantum schemes, we have shown several
results that inform how we can model and reason about quantum adversaries. In Chapter 4,
we investigated and proved several results about the ability of quantum adversaries to
find collisions in non-uniform functions. We were able to characterize (usually tightly) the
number of queries necessary and sufficient in many configurations.
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In Chapter 5 we established a fundamental result on the instantiability of the quantum
random oracle model: that there exist signature scheme secure in the QROM that are
insecure when the random oracle is replaced with any real-world hash function. This extends
existing, similar results on the ROM [46] that have been highly influential in changing how
researchers view these proof models.

Finally, in Chapter 6, we considered a limitation of quantum computation. For an adver-
sary restricted to using quantum computation to solve discrete logarithms, we showed certain
password-authenticated key exchange protocols can remain somewhat secure, requiring
many discrete logarithms to be solved.

7.1 Future Work

While this thesis has solved many problems in the development of post-quantum cryptogra-
phy, many more remain. More complicated protocols, such as PAKEs [99], zero-knowledge
proof systems [20], group signatures [36, 131], threshold schemes [56, 106] and more are
seeing increased usage, especially as secure messaging protocols like Signal and advanced
usages of cryptography in blockchains are becoming more commonplace. Work on the devel-
opment of suitable post-quantum replacements for these is still early, and standardization
is even further off.

In addition to constructing primitives, work on quantum adversarial models in ongoing,
especially developing proof techniques in such models. There have been tremendous new
techniques and results in recent years [12, 54, 64, 107]. However many of these techniques
are only comprehensible to those who have expertise in quantum information theory, and
making them more accessible to cryptographers without such expertise is important ongoing
work.

The concept of quantum annoyingness also leaves many potential future research
directions. The first is in the model itself. The model we used for quantum annoyingness is
restrictive, as it only allows the usage of quantum computers for solving discrete logarithms.
There is a great need to either validate this model, and provide better evidence that
solving individual discrete logarithms is all an adversary would want to do, or expand the
model, showing the security of the protocol under more realistic assumptions of quantum
computation. Quantum annoyingness can also be shown for other schemes. We established
it for the PAKE protocol CPace, but there are other PAKE protocols that are plausibly
quantum annoying. It is an open question whether other schemes, such as continuous key
agreement protocols, can be argued to be quantum annoying.
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Post-quantum cryptography is in somewhat of a race against the physicists and engineers
working on developing scalable quantum computers. With proper research and development,
we can be prepared for a post-quantum world, and enjoy the benefits of quantum computation
without the general public ever having noticed the security disaster that was neatly avoided.
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Measure-rewind-measure: Tighter quantum random oracle model proofs for one-way
to hiding and CCA security. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes in
Computer Science, pages 703–728. Springer, Heidelberg, May 2020.
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