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Abstract
Let Q ipp be any quantifier such that FO (Q IFP ), first-order logic enhanced with Q IPP and its vectorizations, equals
inductive fixed point logic, IFP in expressive power. It is known that for certain quantifiers Q, the equivalence
FO(QIFP) = IFP is no longer true if Q a added on both sides. Rather, we have FO(QiFp,Q) < IFP(Q) in
such cases. We extend these results to a great variety of quantifiers, namely all unbounded simple cardinality quan-
tifiers. Our argument also applies to partial fixed point logic, PFP. In order to establish an analogous result for
least fixed point logic, LFP, we exhibit a general method to pass from arbitrary quantifiers to monotone quantifiers.
Our proof shows mat the tree isomorphism problem is not definable in C ^ , (Qi ) u , infinitary logic extended with
all monadic quantifiers and their vectorizations, where a finite bound is imposed to the number of variables as well
as to the number of nested quantifiers in Qi . This strengthens a result of Etessami and Immerman by which tree
isomorphism is not definable in TC + COUNTING.
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1 Introduction

We study two well-known mechanisms of increasing the expressive power of logics in the
context of finite model theory: adding additional quantifiers as opposed to the adjunction of
recursive mechanisms (realized by fixed point operators). The following is known about the
interaction of these two concepts. For any two logics, C\, £2, we write C\ < £2 to indicate
that each <p € £1 is equivalent to a V> € £2 on all finite structures. Derived from this, £ 1 = £2
means that both £1 < £2 and £ 2 < £1 hold.

• There is a class QIFP of structures such that FO(QJFP) = IFP. Here we regard classes
of structures as quantifiers. FO(QJFP) and IFP denote the extension of first-order logic
by QIFP and its vectorizations, and inductive fixed point logic, respectively. Such classes
QIFP can be found in [3,7, 11, 14].

• By adjunction of further quantifiers one can make this equivalence break down. More pre-
cisely, one can find a class Q with FO(QIFP,Q) < IFP(Q). This is possible even for
linearly ordered structures [14]. For these structures, IFP, and hence FO(QIFP) captures
PTIME. Moreover, IFP(Q) captures PTIMEQ, the class of queries that are computable
in polynomial time with access to the oracle Q (i.e. a string encoding of Q). However, for
Q as above, FO(QIFP , Q) does not capture all of PTIMEQ. This illustrates the impor-
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tant role of fixed point logic in descriptive complexity theory, and shows that it cannot be
replaced by quantifier extensions of first-order logic in some cases.

The class Q given in [14] for the latter statement was obtained by a diagonal argument. It
is easy to see that this Q is not in PTIME. However, if the assumption on the structures of
being ordered is dropped, the phenomenon FO(QIFP,Q) < IFP(Q) occurs for quantifiers
of very low complexity, for instance for the even cardinality quantifier [13].

There is a simple intuitive explanation as to why it can happen that IFP(Q) is strictly more
expressive than FO(QIFP , Q). In IFP(Q), the quantifier Q may occur in the scope of a fixed
point operator, so that the next stage of an /FF-iteration may depend on Q-definable proper-
ties of the previous stage. This means that the resulting fixed point may have used an arbitrar-
ily large number of nested references to Q. On the other hand, any FO(QIFP, (J)-formula
contains only finitely many occurrences of the quantifier Q, and so there is a fixed finite bound
on the number nested references to Q needed during its evaluation on any finite structure.

In this paper, we show that the phenomenon FO{QIFP , Q) < IFP(Q) can be regarded as
the usual case, in that it holds for a great variety of quantifiers Q. Indeed, we have FO(QIFP ,
Q) < IFP(Q) for any unbounded simple cardinality quantifier (the definition is given be-
low), and, in a probabilistic sense, almost all simple cardinality quantifiers are unbounded.
The same holds if IFP is replaced with partial fixed point logic, PFP. In order to transfer
the results to least fixed point logic, LFP, we pass from each Q to a monotone version Qmon.
As quantifiers, Q and Q m o n can be regarded as equivalent, since they will be first-order de-
finable from each other. If, as above, Q is an unbounded simple cardinality quantifier, we get
FO(QLFP,Qmon) < LFP(Qmon).

2 Basic definitions

Throughout this paper, we consider finite structures, only. Q will always denote a class of
finite structures (that is closed under isomorphisms) over a finite relational vocabulary a =
{R\,..., R,}. The arity of each relation Ri will be denoted r,. Regarding Q as a quantifier
allows extension of logics in a natural way [18]. We give a definition that adds to a logic £
not only the capability of defining Q itself (as it was done by Lindstrom in [18]), but also a
uniform sequence of quantifiers derived from Q by means of vectorization. This approach has
proved useful in the context of finite model theory, where quantifiers provide a mechanism of
creating logics that capture certain complexity classes.

DEFINITION 2.1

Let £ be a logic the syntax of which is given by a collection of certain formation rules (involv-
ing first-order variables x\, x 2 , . . . ) . Then, for each vocabulary r, £(Q)[T"] is the smallest set
of formulas that is closed under the formation rules for £ enhanced, for each r > 1, with the
following clause:

If x, is an rr,-tuple of distinct variables (1 < t < s) and * = ^1(^1), •••. ^P$(x,) is a
tuple of formulas of C(Q)[T], then Qxi,..., x,; ipi,..., ip, is again a formula in C(Q)[T].

A r-structure A satisfies this formula if and only if the c-structure

belongs to Q. Here, A is the universe of the structure A, and ipf denotes the relation {a G
Arr< I A (= tpi[a]} for 1 < i < s. This set is viewed as a set of r,-tuples over Ar rather
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than rr.-tuples over A. Thus A* is indeed a cr-structure. Note that in the above formulas ipi
there can occur further free variables. They play the role of parameters. Extending the usual
definition, a variable t; is said to be free in Qx\,..., x,; V"i, • • •, 4>> if for some t it is free in
ipi but is not contained in x,-.

In the sense of LindstrSm [18], we have added to £ not only the class Q itself but also the
following classes Qr, which are derived from Q by vectorization:

DEFINITION 2.2

Given r > 1, relation symbols 5, (1 < t < s) of arity rrt, let

Qr:={(A;S1,...,S,)\(Ar;Su...,S.)eQ},

where, on the right side, Si is viewed as an r,-ary relation on AT.
As an example, let cr = {E,S,T} with unary S, T, and binary E, and take for Q those

directed graphs B that have two nodes u, v, contained in the relations 5, and T respectively,
such that there is an .E-path from u to v. Then, Q can be defined in transitive closure logic,
TC, namely by the formula

(p = 3uv(Su A Tv A [TCx,yExy]uv).

(For a definition and basic properties of TC, see [5], Section 7.6.) On the other hand, each
formula [TCr,yX]uu of transitive closure logic is equivalent to the /Y)(Q)-formula

Qxy, J,w; \, ~z = ", u> = «•

Here, vectorization was used to assert connectivity of a graph the vertices of which are tuples
rather than single elements.

Enriching first-order logic, FO, by one or several classes Q according to Definition 2.1
leads, in a sense, to a minimal logic making the classes Qr expressible. To make this well-
known principle more precise, we consider regular logics £ (cf. [4]), which are closed under
first-order operations and under substitutions of the form R/\x<p(x) (with z and R of the same
arity). That is, in any £-formula involving a relation symbol R, one can replace R by a relation
which is given by any other £-formula tp. In general, regularity also includes closure under
relativization but we will not use this property here.

As usual, we say that a class (or a quantifier) Q is definable in a logic C if there is a sentence
ip of £ such that for all <r-structures A, A € Q if and only if A =̂ *p.

LEMMA 2.3 (MINIMALITY LEMMA)

Let £ be regular such that Qr is definable in £ for all r > 1. Then FO(Q) < £, that is,
every FO(Q)-fornuila is equivalent to an £-formula. Also, if several quantifiers (and their
vectorizations) are adjoined to FO, this leads to a minimal logic in this sense.

PROOF. We restrict consideration to the case where one quantifier is added to FO. The proof
is by induction on the formulas of FO(Q). In the Q-step, if Q occurs with arity r in a formula
Qx\,..., x,; ip\,..., ip,, take an £-formula defining QT and substitute the relations S i , . . . ,
5 , (see Definition 2.2) by their 'definitions' ipi,.. -,ip,, more precisely by £-translations of
these formulas. I

It is straightforward to prove that any logic of the form FO(Q) is closed under vectoriza-
tion, i.e. if a class Q' is definable in FO(Q), then so are the classes Q1'', r > 1.
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Next, we recall the definition of fixed point logic Inductive fixed point logic, IFP, allows
for second-order variables X, Y,..., which may be bounded by fixed point operators accord-
ing to the rule:

If x is an r-tuple of distinct variables, A" is an r-ary relation variable, 0(x, X) is a formula,
and t is an r-tuple of terms, then [IFPx,xO(*> X)]i is a formula.

The meaning of [IFPg x0(z, X)]i is i e Xoo, where we set X0 := 0, Xj+X := Xj U {x \

Partial fixed point logic, PFP, is defined similarly, setting however Xj+\ := {x \ 6(x,
Xj)}, and letting X^, := Xj for the smallest j such that Xj = Xj+i if such a j exists, and
Aoo := 0 otherwise.

Least fixed point logic, LFP, is obtained by restricting the application of fixed point oper-
ators to the case where 6{x, X) is positive in X.

It is easy to see that LFP < IFP < PFP. Gurevich and Shelah [8] proved that IFP =
LFP. In the presence of linear order, IFP captures PTIME [15, 19] and PFP captures
PSPACE [\,\9].

We refer to Chapters 6 and 7 of [5] for a thorough treatment of these fixed point logics and
their role in descriptive complexity theory.

FACT 2.4

[3, 7, 11,14] There is a class QlFP such that FO(QiFp) = IFP (= LFP).1 Similarly, there
is a class QPFP such that FO(QPFP) = PFP.

It is known that these equivalences do not survive the extensions with further quantifiers.
That is, FO(QIFP, Q) = IFP(Q) fails for certain classes Q [13, 14]. Note that FO(QIFP,
Q) < IFP(Q) holds for any class Q since, by Lemma 2.3, the logic FO(QiFP,Q) is minimal
(and does, in particular, not depend on the choice of QiFP). However, for the logic IFP(Q)
the interplay of fixed point operators with quantifiers may result in an increase of expressive
power. In this paper, we show that for cardinality quantifiers this is the usual case, that is, it
occurs with probability one.

To make the problem more transparent, we characterize FO(QjFP,Q) as a fragment of
IFP(Q), thereby exhibiting the role of second-order variables in fixed point logics.

REMARK 2.5

[14] Let QIFP be a class of structures such that IFP = FO(QiFP) holds. Then for any
class Q, we have FO(QiFP,Q) = IFP(Q)~, where IFP(Q)~ denotes the fragment of
IFP(Q) which is obtained by allowing the formation of Qx\,..., x,; ipi,..., ip, only in case
ipi,..., V>, have no free occurences ofsecond-order variables.

Analogous results hold for PFP and LFP (in the latter case one has to restrict to a mono-
tone Q, cf. Section 5).

3 Cardinality quantifiers and infinitary languages

If the signature a of a quantifier Q consists of monadic relation symbols, only, then we refer
to Q as a cardinality quantifier. This is because the Q-membership of a <r-structure B depends
only on the cardinality of the Boolean combinations of these relations (respectively of |B| , if
<r = 0). We write Qi for the collection of all cardinality quantifiers.

1For example, QiFP can be taken to be the class of all structures (A; E, U, S, T), E C A2, U, S, T C A, such
that 5 x T is contained in the alternating transitive closure A TC(E, U) (see, for example, [5], Section 8.4).
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Given Q G Qi, we are going to embed the logic FO(QIFP, Q) into an infinitary language
and define a game which respects the nesting of Q. This will enable us to establish queries that
are not definable in this infinitary logic, but can be expressed in IFP(Q), where bounded nest-
ing can be overcome by storing information in the second-order variable. Remember that, by
Remark 2.5, it is exactly the possibility of making this information available to the quantifier
Q which separates the two logics.

Let Coow denote the extension of first-order logic that allows for conjunctions and disjunc-
tions over arbitrary sets of formulas. As each finite structure can be characterized up to iso-
morphism by a single first-order formula, £000, can express all queries on finite structures,
and hence is too strong to be of interest in finite model theory. However, the restriction £ ^ u ,
consisting of all formulas that involve only a finite number of distinct variables, has interest-
ing model theoretic properties, and is still strong enough to simulate fixed point operations.
Indeed, Kolaitis and Vardi [17] proved that PFP < ££,„. In accordance with Definition 2.1,
^TOCKCQI) denotes the extension of this logic with all cardinality quantifiers and their vec-
torized versions. However, it makes no difference whether we allow vectorization or not, as
we will see below. To adapt this infinitary logic to our needs, we impose a restriction on the
nesting of quantifiers.

DEFINITION 3.1

(i) Let, for / > 0, £SL,(Qi)' denote the collection of /^ (QO-formulas in which there
occur at most / nested applications of (possibly vectorized) quantifiers in Qi . Here, the nest-
ing (or the quantifier rank) is defined by induction so that the nesting of a formula Qx; $ (for
( j £ Q i \ {3, V}) is n + 1, where n denotes the maximum nesting in the tuple the formulas
<b, regardless of the arities of Q in its occurrences.
(ii) Let CZcuiQ?)' be defined as ^ ^ ( Q i ) ' apart from the fact that only at most m-ary vec-
torizations are allowed (that is to say, in Definition 2.1, the arity r is restricted to be at most
m).

Let C be the class of all counting quantifiers Qi := {(A; Ft) \ \R\ > t}, i: > 1. Replac-
ing the class Qi by C in the definition above, we obtain the corresponding bounded nesting
versions €"£,„(€)" and ££3 w(Cm)u l of the infinitary counting logic C^

PROPOSITION 3.2

(i) For all cardinality quantifiers Q, FO(QiFp, Q) < J C ^ C Q I ) " -

PROOF. The inclusion (i) is obtained from the Minimality Lemma. Therefore, note first that
^oow(Qi)" ' s a regular logic. The crucial point for this observation is the closure under sub-
stitution of predicates. In fact, substituting a predicate A in an ^ ^ ( Q ^ ' - f o r m u l a with an
££w(Qi)' '-formula results in an ££,w(Qi)'+( '-formula.

Furthermore, by definition, all Qr (r > 1) are £^JU,(Q1)
a>-definable, as well as all vector-

izations of QIFP are (since IFP < PFP < £^,w). Hence the Minimality Lemma applies.
Clearly ^ ( C 1 ) " < C^u(Q\r < ^ ( C h ) " - Thus, to see (ii), it suffices to show

that all the vectorizations Qr of quantifiers Q G Qi are £^,U)(C
1)u'-definable. To this end,

we argue as was done in [16], Proposition 2.18. For each structure B over the vocabulary of
Qr there is a sentence V>B of ££3 w(C1) r containing r distinct variables that describes B up to
cardinalities of Boolean combinations of its relations. Since membership in Qr depends only
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on these cardinalities, we conclude that VeeQ r ^B iS a 'Cmu.CC^-sentence2 which defines

Qr. •
To establish non-definability results for C1^, (Q} ) u , and hence for each logic FO (QIFP , Q)

where Q is a cardinality quantifier, one can apply the bijective games defined in [9, 10]. We
adapt the definition for the case of bounded nesting.

DEFINITION 3.3

Let A =t,i B denote the equivalence of two structures, A and B, with respect to J Q ^ Q } ) ' -

formulas that involve at most k distinct variables.

To prove this equivalence for two given structures we will use the Jfc, /-pebble game defined
as follows.

DEFINITION 3.4 (THE k, / -GAME)

The board consists of a copy of each of the structures .4 and B, and there are k pairs (ui ,«i) ,
. . . , (ufc, vjfc) of pebbles available which are off the board in the beginning. The u,- always
have to be placed on A, the v,- on B. There are two players, spoiler and duplicator. In each
round of the game, the spoiler may choose between a pebble move and a bijective move, but
he is not allowed to make more than / bijective moves during the whole game.

In a pebble move, he may pick up a pebble from either structure and place it elsewhere on
this structure, or take an unused pebble from the supply and put it on the appropriate structure.
Then, the duplicator picks up the corresponding pebble and places it on the other structure.

In a bijective move, the duplicator must choose a bijection / : A —• B. Then the spoiler
picks up a pebble u, and places it on an element a € A. The game continues with the pebbles
Ui and t;, placed on a and / (a ) respectively. If there are no bijections A —• B, i.e. if \A\ ^
|B| , then the spoiler wins at this point.

In thecase |v4| = |5|,thespoilerwinsif,atany stage, the mapping a \-+ 6, where a consists
of the pebbled elements in A and 6 consists of the corresponding pebbled elements in B, is not
a partial isomorphism A —• B. Otherwise, the game goes on for infinitely many rounds, and
the duplicator wins.

We write A c^tj B if the duplicator has a winning strategy in the k, /-game on A and B.

THEOREM 3.5

Let A and B be two structures of the same vocabulary. A=k,i B if and only if A ~t,i B.

PROOF. It is clear that the proof in [10], given for vC^^Q}), the extension of ££,w with all
cardinality quantifiers (without vectorizations), can be carried over to the case of bounded
nesting. I

We now turn our attention to so called simple cardinality quantifiers that have a vocabulary
consisting of only one relation symbol. So, assume a — {R} for a monadic R, and let Q be
a class of a-structures. Observe that we can identify Q with an infinite sequence of strings,
to?, w$,..., over the alphabet {+, —}, defined as follows. w% is of length n + 1, and in
w% = d0 .. .dn, the symbol dm is a + just incase the structure .4 of size n with \R*\ = m
is in Q (for 0 < m < n).

2Note thai C^, (C 1 ) r is closed under disjunctions of sentences with a uniform bound on the number of variables
occurring in them; il is not closed under arbitrary disjunctions.
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DEFINITION 3.6

Let Q be a simple cardinality quantifier. For s > 0, we say that Q is s-bounded, if for all
n > 2s, the string w% is of the form

w% = a i . . . a, v(Q, n ) n + 1 ~ 2 ' &i. . . 6,, for some v(Q, n) G {+,-}.

In that case, we call v(Q, n) the n-value, and p(Q, n, s) := a i . . . a , 6 i . . . 6, the n, s-pattern
ofQ.

We call Q bounded if it is s-bounded for some s > 0, unbounded otherwise.

The notion of unboundedness was first defined in [ 16] for monotone simple cardinality quan-
tifiers. In [12], it was proved that it is a key property for the definability of certain polyadic
lifts of monotone simple cardinality quantifiers: the branching Br(Q, Q) and the jfc-ary Ram-
seyfication Ramk(Q) of Q are definable in FO(Q\) if and only if Q is bounded (see [12] for
definitions of the lifts Br and Ram).

Note that a simple cardinality quantifier Q is unbounded if and only if for every s there are
n and t such that

(1) s < t < n — s, and

(2) dt ^ d t+i. where w% = dQ ... dn.

We say that Q is (—(-)-unbounded ((-I—)-unbounded) if the inequality dt ^ dt+i in (2)
can be replaced with the condition: dt = — and dt+\ = + (dt = 4- and dt+\ = —,
respectively). Clearly every unbounded quantifier Q is either (—h)-unbounded, or (-1—)-
unbounded (or both). Moreover, Q is (—h)-unbounded if and only if its complement ->Q is
(H—)-unbounded.

A simple cardinality quantifier, Q, can be chosen at random by tossing a coin infinitely
many times so as to determine the symbols in the infinite string uijti)^ . . . . For each s > 0,
the probability of Q being s-bounded is zero because

Prob[u# = a 1 . . . a , t / l + 1 ~ 2 ' & 1 . . . 6 , for some a x . . . a , 6 : . . .6, and v] = ( l / 2 ) n ~ 2 ' .

So we get:

THEOREM 3.7

Almost all simple cardinality quantifiers are unbounded.

Popular examples of unbounded quantifiers are the even cardinality quantifier, QE VEN '•=
{(A; R) | \R\ is even}, and the majority quantifier, QMAJ •= {(A; R) | \R\ > 1/2|A|}. But
being bounded does not amount to being first-order definable or being trivial. For instance,
QEVENDOM •= {(A;R) \ \A\ is even} is bounded. Similarly, any cardinality property of the
domain can be represented this way. This includes nonrecursive properties.

THEOREM 3.8

If Q is a bounded simple cardinality quantifier, then FO(QIFP,Q) = IFP{Q).

PROOF. Since FO(QIFP,Q) < IFP{Q) holds for any quantifierQ.it is enough to prove that
every formula of IFP(Q) is equivalent to a formula of FO(QIFP , Q)- We will prove that, in
fact, every formula of IFP(Q) is equivalent to a Boolean combination of FO(Q)-sentences
and .F0(Q/Fp)-formulas.

Choose an s such that Q is s-bounded. P :— {+, — } 2 ' is the set of all possibly occur-
ing n, s-patterns. For each p £ P, d G {+, —} and r > 1 there is a sentence Xp.d.r G
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FO(Q) that holds in a structure of size n just in case p(Q, nr,s) = p and v{Q, nr) — d.
For p = ( p i , . . . , pr) 6 PT and d — (d\,...,dr) £ {+, — } r we denote the conjunction

Let now <p be any //7J(Q)-formula. Consider the subformulas of tp of the type Qxtf>{z~),
where rp may contain parameters different from i . For a given p E. P, this subformula is
true in a structure A with p(Q, \A\r, s) = p and v(Q, \A\r) = d if and only if either <f = +
and the number m of r-tuples over A that satisfy ip is in { s , . . . , |.4|r — s}, or m is in the
subset of {0 , . . . ,s— 1, |>l|r — « + 1 , . . . , |>l|r} that is given by the symbols + in p. Clearly
this condition can be expressed by using only first-order quantification over the formula t/>.
Let r is the maximum length of x in the occurrences of the quantifier Qx~ in tp. Replacing
all occurrences of Q in tp with the corresponding first-order quantification we obtain for each
p £ P* and <f € {+, - } r a formula <p- j € / F P which is equivalent to y> in all structures A
with p(Q, |>1|*, s) = pi and t;(Q, \A\r) = </,-, for 1 < t < r.

If we now replace the formulas ip-~ j with their translations <p' - in FO{QIFP ), we find that
tp is equivalent to the formula

which is a Boolean combination of FO(Q)-sentences and FO(QIFP )-formulas. I

Our main result, to be proved in the next section, is the converse of the previous theorem.

THEOREM 3.9

Let Q be an unbounded simple cardinality quantifier. Then FO(QJFP,Q) < IFP(Q).

The so called random oracle hypothesis [2] says that two classes of queries are different if
they are separated by almost all oracles. If one restricts to simple cardinality quantifiers then
Theorem 3.9 together with Theorem 3.7 can be seen as a counterexample to a logical variant
of that hypothesis.

4 Proof of the main result

This section is devoted to the proof of Theorem 3.9. We will first show that for all natural
numbers k and / there are non-isomorphic trees A and B such that A =t,i B. By a tree we
mean a directed graph C = (C; E°) such that the edge relation E° is cycle-free and every
element of C, except one (the root of C), has exactly one E? -predecessor. The subtree gener-
ated by an element a € CisC a = (C^E0'), where Ca = {a}u{6 G C \ there is a directed
£^-path from a to 6} and £?• = E0 n {Ca)2.

The =t,i -equivalent trees will be obtained by iterating the following basic constructions:

DEFINITION 4.1

Let k be a natural number, and let A = {A; EA) and B = {B; EB) be trees.
(i) For each i and j , H'J{A, B) is a tree which consists of a new root that is connected by an
IT-edge to the roots of»isomorphic copies of A and j isomorphic copies of B, all mutually
disjoint.
(ii) Fk{A, B) is a tree which is obtained by connecting a new root by an £-edge to the roots
of one copy of Hk>t+3{A, B) and one copy of Hk+2-k{A, B).
(iii) Gk{A, B) is similar to Fk{A, B), except that instead of the copies of Hk-k+i{A, B) and
Hk+7'k{A, B) it has two copies of Hk+l-k+1{A, B).
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Fk(A,B)

k k + 2 k + 2 k

Note that both Fk (A, B) and Gk (A, B) contain 2k + 2 copies of A and the same number of
copies of B. Furthermore, it is easy to see that Fk(A, B) and Gk(A, B) are non-isomorphic
if A and B are non-isomorphic.

In the next two lemmas we will consider a slightly modified version of the Jb, /-game. The
rules of this modified k, /-game are as given in Definition 3.4, except that in addition the spoiler
always has to start with a bijective move. We write C ~J , V if the duplicator has a winning
strategy in the modified Jfc, /-game on C and V. Note that clearly C ~J / + 1 V implies C ~t,i V.

LEMMA 4.2

For any trees A and B, Fk(A, B) ~£ x G
k(A, B).

PROOF. For the sake of simplicity, we denote Fk(A, B) by C and Gk(A, B) by V. Let a and
a' be the roots of C and V, respectively. Furthermore, let b and c be the roots of the copies
of Hk-k+2(A, B) and Hk+2*(A, B) in C, and similarly, let 6' and d be the roots of the two
copies of Hk+1<k+l(A, B) in V.

As observed above, C and V contain an equal number of copies of both A and B: in Cj
there are k copies Ai,. • •, At of A and k + 2 copies B\,..., Bt+2 of B, and in Cc there are
k + 2 copies Ak+i, • • -,-42t+2 of A and k copies B t + 3 , . . .,^24+2 of B. Similarly, in Pi-
there are k + 1 copies A'i,.. -,A'k+1 of A and k + 1 copies B^, . . . , # i + 1 of B, and in I>c»
there are k + 1 copies A'k+2,..., ^'2t+2 o f -^ md * + 1 copies 5 i + 2 , • •, B'2k+2 of B. Thus,
the duplicator can start the modified k, /-game with a bijection / which maps a to a', 6 to 6',
c to d, and, for each 1 < i < 2Ar + 2, .4, and B; isomorphically to A\ and B,', respectively.

Let e 6 C be the first move of the spoiler. If e is in neither of the subtrees Ak+i andBt+2.
then the duplicator can play after the first round in such a way that a, b and c are always mapped
to a', 6' and c7, respectively, and each copy of A in d (Ce) is always mapped isomorphically
to a copy of AinVy {Ve<), and similarly for copies of B. This is possible, because there are
no more bijective moves, and whenever the spoiler picks up a pebble to play a pebble move, in
each of the subtrees Cj,Cc,ZV andX>c' there are always at least one copy of.4 and one copy of
B not containing any pebbles. On the other hand, if e € At+iUBt+i, then the duplicator has
to map b to d and c to b' in the continuation of the game, but otherwise he can play exactly as
described above, since I V and Z>c< are isomorphic. In both cases it is clear that the duplicator
wins the game. I

LEMMA 4.3

If A and B are trees such that A ~J , B, then Fk(A, B) ~J / + 1 Gk(A, B).

PROOF. We use the same notation as in the preceding proof: C = Fk(A,B),V = Gk(A,B),
a (a') is the root of C (X>), and 6 and c (6' and d) are the ^-successors of a (a1).
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Assume that .4 ~J , B, and consider the modified it, / + 1-game on C and V. The duplicator
can use exactly the same strategy as in the proof of Lemma 4.2, until the spoiler chooses to
play a bijective move for the second time. At that point the duplicator can choose a bijection
g such that g(a) = a', g(b) = b' and g(c) — c1 (or g(b) = d and g(c) — b', depending on
the first move of the spoiler as explained in the proof of Lemma 4.2), and which still maps all
copies of A and B in C\, (Ce) that contain pebbles isomorphically to the corresponding copies
of A and B in Vb> (2>c/). Note that g has to map Cj to Vv and Cc to Ve>, whence there is one
copy Ai of A in C that is mapped to a copy B'j of B in V, and vice versa. However, since Ai
does not contain any pebbles, the duplicator can use the first bijection of his winning strategy
in the modified k, /-game on Ai and B'j in defining g on Ai. Thus, for the rest of the game
the duplicator can play in such a way that subtrees of C are mapped to subtrees of V either
isomorphically, or according to a winning strategy in the modified ifc, /-game. It is clear that
with this strategy the duplicator is guaranteed to win the modified k, 1+ 1-game on C and V. I

We define now for each k > 1 and / > 0 a pair Ak.i, Bk,i of trees by induction on / as
follows:
DEFINITION 4.4

(i) Ak,o is a tree which consists of a root a and a single leaf a': Ak,o = {a, a '}. EAh-° =
{(a, a')}. Bk,o is the trivial one-element tree: Bt,o = {b}, £B*° = 0.
(iiM*,/+i = Fk(Ak,i,Bk,i) and Bk,i+i = Gk(AkihBk,i).

Since Ak,o and Bk.o are non-isomorphic, an easy induction shows that At.i and Bk,i are
non-isomorphic for all /. On the other hand, using Lemmas 4.2 and 4.3 it is straightforward
to prove by induction on / > 1 that Ak.i ~J , Bt,i- Hence, we have

PROPOSITION 4.5

For all k > 1 and / > 0,«4jt,/+i =k,i Bk,i+i-

The next step in the proof of Theorem 3.9 is to show that there is an inductive property that
separates the trees Ak,i and Bk,i- In order to make this property definable in logics of the form
IFP(Q) we will adjust the cardinalities of Ak,i and Bt,i by adding sets of new elements (the
same trick was also used in [12]):

DEFINITION 4.6

Let p and q be natural numbers.
(i) C'i = (C; P) is a structure such that P C C, \C\ = p + q and \P\ = p.
(ii) A^'J is the {E, P}-structure which is obtained by taking the disjoint union of C | ? and
Ak.i- Similarly, B^'] is the disjoint union of CPiV andSt,/.

It is easy to see that Proposition 4.5 remains valid for the extended structures Ap
k']+l and

Bjt'f+i • Indeed, the duplicator can extend his winning strategy in the k, /-game on Akj+i and
Bk,t+i to a winning strategy on ^ ' * + i a n c ' &11+1 J1151 by "S'ng the identity function idc on

c'
PROPOSITION 4.7
For all k> land p,q,!> O,A™+1 =tt, Bp

t'J+1.

Let Q be an unbounded simple cardinality quantifier. We may assume without loss of gen-
erality that Q is (—h)-unbounded; otherwise its complement -<Q is (—|-)-unbounded, and
we can just replace Q by -<Q in what follows. Let 6(x, X) be the formula

1>(x)V3yx(x,y,X),
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where ip(x) and x(z, y, X) are the formulas

3y(Exy A Vz(Exz — z = y))

and
Exy A 3z(Eyz A Xz) A <3*(.Pz V (£y* A Xz)),

respectively. Note that tp(x) says that x has a unique ^-successor. Furthermore, the first two
conjuncts of x(z, y, X) say that y is an ^-successor of x which has at least one .E-successor
in the set X, while the third conjunct gives a condition for the number of E'-successors of y
in X (the subformula Pz is needed for adjusting this number).

For V = Ap
k'j, Bj ' j , let X(X>)co be the inductive fixed point in V of the operator corre-

sponding to the formula 6(x,X); that is, X(2?)oo = \Jj>0X(V)j, where X(T>)0 = 0 and
X(V)j+i = X(V)j U {a G D \ V (= 0[a, X(D)j]}. Ourium is to show that for every k and
/ there are p and q such that the root of the tree At,i is in X(Ap

k'1)oo, but the root of the tree
Bk,iisnotinX(Bp

kj)00.
Let k and / be given, and let m be the cardinality of the trees At,i and Bk,i- Since Q is

(—(-)-unbounded, we can choose n and t such that

(1) it + 1 < t < n - m + k + 1, and

(2) dt = — and d (+i = +, where tuj? = d0 ... dn.

We set p = t - (k + 1) and 9 = n - m - < + (it + 1). Note that by condition (1) above,
p, q > 0. Note also that the cardinality of the structures Ap

k'] and B9.'] is m + p + 9 = n.
Let Z> be either of the structures Ap

k'] ,Bp
k'], and consider the stages X(V)j of the induction

that corresponds to the formula 6(x, X). We prove by induction on j > 1 that

X(V)j = {a£ D \3i < j :Va is isomorphic to .4*,,}.

(i) From the definition of 0(x,X) we see that a 6 X(T>)i if and only if V \= ip[a], i.e. if and
only if a has exactly one i?-successor. Clearly this holds if Va is isomorphic to .4^0, but
in all other cases a has either 0, 2 or 2A; + 2 .E'-successors. Hence the claim holds in the
case j = 1.

(ii) Assume that the claim holds for j . Suppose first that Va is isomorphic to Ak,i for some
i < j + 1. If» < j , then, by induction hypothesis, a e X(V)j C X(V)j+x. Hi = j ,
then, by the definition of At,i = Fk(Ak,i-i,Bt,i-i), a has an ^-successor 6 (the root of
a copy of Hk+2>k(Atii-i,Bt,i-i)) which has k -f 2 ^-successors c such that Vc is iso-
morphic to .4jfc,i_i, and k ^-successors d such that Vc> is isomorphic to Bk,i-i- Hence,
the induction hypothesis implies that 6 has exactly A: + 2 ^-successors in the set X(V)j.
Since p + t + 2 = f + l a n d dt+1 = +, we conclude that V |= \[a,b, X(V)j], and
consequently a 6 X{V)j+\.
Assume next that Va is isomorphic to Bt,i for some t < j + 1. Then a has two succes-
sors b and 6', and bothX>j and 2V are isomorphic to Hk+1'k+1(Ak,i-i,Bk,i-i). Thus,
by the induction hypothesis, b (and 6') has exactly k + 1 ^-successors in ^ ( I* ) ; . Since
p + it + 1 = t and df = - , we have V £ xfa. &> X(V)j], and so a £ X(X>);+i.
Finally, if X>a is not isomorphic to either Ak,i or Bk,i for some » < j + 1, then no
^-successor c of any ^-successor b of a is in X{V)j, that is, the second conjunct of
X[a, b, X(V)j] fails for every b such that (a, b) £ Ev. Hence, a £ X(D)j+l.
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In particular, we have u G X{Ap
k'j )<». but v £ X{B™ )«>. where u and t; are the roots of the

trees At,i and Bk,i, respectively. Thus, Ap
k'

q, \= f but B^'f )fc <p, where <p is the sentence

3z(3yEzy A Vy->Eyz A

It follows now from Proposition 4.7 that y? is not equivalent to any sentence of the logic
^ ( Q i ) 1 " - Since FO(Q,FP,Q) < ^ ( Q i ) " , we conclude that IFP(Q) £ FO(QIFP,
Q). This completes the proof of Theorem 3.9.

The same proof applies also to the case of partial fixed point logic, PFP: for any quantifier
QPFP such that FO(QPFp,Q) = PFP we have

THEOREM 4.8

If Q is an unbounded simple cardinality quantifier, then FO(QPFP,Q) < PFP{Q).

PROOF. AS in the case of IFP, we have FO(QPFP,Q) < PFP(Q) (by the Minimality
Lemma). Since IFP(Q) < PFP(Q) (see [10]), the sentence ip used in the proof above is
in PFP{Q). On the other hand, F0{QPFP, Q) < £%>u(Qi)u, w h i c h can be proved by the
same argument as claim (i) in Proposition 3.2. Hence ip is not equivalent to any sentence of
FO(QPFP,Q). I

5 Making quantifiers monotone

Let Q be a quantifier. We are going to define a monotone class Qmon such that Q and Qmon

are first-order definable from each other. This will enable us to translate our results about
extensions of IFP into results on extensions of LFP.

Note that Definition 2.1 only states the Q-clause for the extension of a given logic. It does
not say how to deal with restrictions in the other formation rules. In the case of LFP the notion
of positivity has to be adapted to the case of extensions with quantifiers. We do this in the usual
way, that is we define LFP(Q) only for the case of monotone Q, and we assume positivity, and
negativity respectively, to be left unchanged by applications of Q. In this framework, one can
rely on the known monotonicity properties of the least fixed point operator and hence extend
many results on LFP to the presence of quantifiers. Especially, noting that the proof of the
equivalence LFP = IFP does not depend on the type of occurring subformulas as long as
the least fixed point operators are well defined, we see that the corresponding extension of the
theorem of Gurevich and Shelah holds.
REMARK 5.1

For each monotone quantifier Q, we have LFP(Q) = IFP(Q).

In order to extend LFP with an arbitrary quantifier Q, we pass to the following equivalent
monotone version Qmon. We get Qmon by introducing new relation symbols for the comple-
ments of the relations in a = {.Ri.../?,} (the vocabulary of Q, as in Definition 2.1).

DEFINITION 5.2

For each Ri G o let R~ be a relation symbol of the same arity as iZ,. Let <x~ := a U {RJ \
\ < i < s}.\n\he following FO[a"]-formulas, z, denotes a tuple of distinct variables that
matches the arity of Ri. Let Qmon be the class of all models of the sentence

<Pn V (<PPART A Q x i , . . . , x , ; R i X i , . . . , R , x , ) ,

where
:= \J
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and

THEOREM 5.3

(i) Qmon is monotone.
(ii) Q and Qmon are first-order definable from each other, i.e. Q is definable in FO{Qmon)
and Qmon is definable in FO(Q). Consequently, Qr is definable in FO{Qmon) and ( Q m o n ) r

is definable in FO(Q) for each r > 1.

PROOF. (i)Let.4 G Qmon and consider a o~ -structured' with A' = ,4 and .ft, C R\ for all:.
We have to show A' G C?m<m. If A |= v?n, then also >!' |= y>n. If A (= ->v?n and >t' |= ->v?n,
then we have A \= <PPART and the relations cannot have been properly extended. Hence
A' = A and the claim follows.

(ii) Clearly, Qmon is definable in FO(Q). On the other hand, we show that the sentence

defines Q.
To see this, note first that a cr"-structure A which is a model of <PPART belongs to Qmon if

and only if its o--reduct belongs to Q. Now, let B = (B; Si,..., 5,) be a c-structure, and set
A := (B;Si, ...,S,,Si,...,S,), where, for each 1 < » ' < « , 5, denotes the complement of
the relation 5,. Then A \= PPART and B is the o--reduct of A. Hence A G Qmon iff B G Q,
concluding the proof. I

COROLLARY 5.4

For each unbounded simple cardinality quantifier Q, we have

FO(QLFp,Qmon) < LFP(Qmon).

PROOF. The left side coincides with FO(QiFp,Q), the right side with IFP(Q'non) (by Re-
mark 5.1) and hence with IFP(Q). I

6 The tree isomorphism problem

Recall that C denotes the class of all counting quantifiers Qi := {(A; R) \ \R\ > i}. These
Lindstrom versions of counting quantifiers do not increase the expressive power of TC or
IFP since they are first-order definable. But they do increase that of the infinitary logic ££,„,
even if their nesting is subject to a finite bound (for example, the simple cardinality quantifiers
QEVEN and QMAJ are definable in Z ^ J C 1 ) 1 . but not in C%J).

Another way to add counting to logics is given by the following two sorted approach. We
explain it for the case of TC.

Associate with each structure A a copy of the set {0 , . . . , \A\ - 1} assumed to be disjoint
from A. This second sort of elements is equipped with the natural order, <, of numbers. In
addition to the individual variables x, y,... (running over the elements of A) there are now
variables i, j , . . . running only over elements of the second sort. This gives rise to new atomic
formulas t < j and to quantifications like 3iip. Similarly, in TC-operators one may use tuples
mixed from both sorts. The counting comes in via the new clauses
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meaning that there are at least i elements x such that ip(x). Note that this quantifier binds
x whereas it introduces i as a free variable. We write TC + COUNTING for the class of
queries (over the first sort) definable in this way. In its fragment TC + (I - COUNTING)
the nesting of counting quantifiers 3- 'x is bounded by /. It should be clear how C^, + (/ —
COUNTING) is defined.

PROPOSITION 6.1

TC+ COUNTING < C^C1)".

PROOF. We show that the inclusions

TC + (I - COUNTING) < C"^ + (/ - COUNTING) < C^JC1)'

hold for all / > 1. For the first inclusion one can argue in exactly the same way as without the
presence of counting. For the second inclusion one can associate with each formula ip(i) 6
£«u, + (' - COUNTING) and each tuple of numbers r = (ru.. .,rm) of the length of i
another formula <pf G ^ ^ ( C 1 ) ' such that the following holds: For all structures A of size
at least max{f} we have the equivalence

A £<p[r] iff A \=Vr.

This is a well-known argument and has been used, for instance, in [5], Chapter 7.4. The defini-
tion of ff is by induction on <p, simultaneously for all tuples f. We sketch the most important
steps. If <p — i\ < in, we can set ipr := TRUE for r\ < r2, or ipr := FALSE for rx > r2,
respectively..

For (p = 3?oip note that there are formulas <pn 6 ^ ^ ( C 1 ) 1 saying that the size of the
domain is n. We can then restate <p as

<Pf := \/(<PnA \ / ^(.o.r,,.. ,rm))-
n>l »o<n

The counting case, <p — 3-'lxip, is now covered by

<pr := Qr,*; V'Cr,,...,,•„)•

On the right side, only the Lindstrom version of counting occurs and the nesting of counting
quantifiers remains unchanged. Note further that the above rules of translation do not increase
the number of distinct variables, whence <pr is indeed a formula of C^ (C1)' for each <p(i) €
£»« + (' -COUNTING). •

Observe that the inclusion of the last proposition is strict. In fact, one can easily find non-
recursive cardinality statements in / ^ ^ ( C 1 ) 1 .

Although the two sorted counting is a considerable increase in expressive power for
TC there are still LOGSPACE computable problems which are not definable in the logic
TC + COUNTING. This has recently been proved by Etessami and Immerman [6] who
studied the tree isomorphism problem. It can be presented, with binary E and unary P, as
the class

QTI •= {{A; E, P) | (P; E D P7) and (A \ P; E n (A \ Pf) are isomorphic trees}.
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THEOREM 6.2

[6] QTI is not definable in TC + COUNTING.

Using the trees Ak,i and Bk,i constructed in Section 4, we are able prove that tree isomor-
phism cannot even be defined in infinitary logic with monadic quantifiers of bounded nesting
and with a finite bound on the number of variables.

THEOREM 6.3

QTI is not definable in £^Ja,(Qi)u ' .

PROOF. Given two r-structures A and B, their disjoint sum , 4 © B i s a r U { P } -structure such
that the universe of A®B is the disjoint union of A and B,PA®B = A,anARA®B = RAURB

for each relation symbol RE T. Using the k, /-game, it is easy to show that = t /-equivalence
is preserved by disjoint sums: if A =k,i A' and B =*,; B', then A ®B =k,i A' © B'.

In particular, by Proposition 4.5 we have -4t,/+i © -4*,t+i =*,; At,i+i © #*,/+!• Since
At i+ I © Ak i+ I £ QTI and Ak i+i © Bk i+ I & QTI. we conclude that Q 77 is not definable
inC^Chr. ' I

By virtue of Proposition 6.1, Theorem 6.3 implies the result of Etessami and Immerman. As
a matter of fact, it implies that Q TI is not definable in FO(Q)+ CO UNTING for any C^w-
definable quantifier^, includingall quantifiers QIFP and QPFP such that FO(QIFP) = IFP
and FO{QpFP) = PFP.
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