383 research outputs found

    A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

    Full text link
    A new modified Galerkin / Finite Element Method is proposed for the numerical solution of the fully nonlinear shallow water wave equations. The new numerical method allows the use of low-order Lagrange finite element spaces, despite the fact that the system contains third order spatial partial derivatives for the depth averaged velocity of the fluid. After studying the efficacy and the conservation properties of the new numerical method, we proceed with the validation of the new numerical model and boundary conditions by comparing the numerical solutions with laboratory experiments and with available theoretical asymptotic results

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    On the nonlinear dynamics of the traveling-wave solutions of the Serre system

    Get PDF
    We numerically study nonlinear phenomena related to the dynamics of traveling wave solutions of the Serre equations including the stability, the persistence, the interactions and the breaking of solitary waves. The numerical method utilizes a high-order finite-element method with smooth, periodic splines in space and explicit Runge-Kutta methods in time. Other forms of solutions such as cnoidal waves and dispersive shock waves are also considered. The differences between solutions of the Serre equations and the Euler equations are also studied.Comment: 28 pages, 20 figures, 3 tables, 33 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Extension of the 2DH Saint-Venant hydrodynamic model for flows with vertical acceleration

    Get PDF
    Cette étude présente le modèle bidimensionnel horizontal (2DH) de Serre qui constitue une extension de celui de Saint-Venant (SV) auquel des termes supplémentaires d'accélération verticale sont ajoutés pour tenir compte de la présence de pression dynamique dans l'écoulement. Ses hypothèses sont exposées puis ses équations constitutives sont clairement développées en vue de faciliter sa compréhension. Afin d'éliminer la principale source de difficulté justifiant son manque de popularité et le rendre compatible avec la plupart des schémas numériques, un nouveau format est ensuite établi en séparant les dérivées spatiales de celles temporelles. Partant d'une expansion en séries de Taylor de deuxième ordre, des termes de diffusion artificielle sont ajoutés aux équations dynamiques puis à celle de continuité. Le système résultant est alors résolu à l'aide de la méthode standard des éléments finis utilisant des éléments triangulaires dits non-conformes en raison de leurs intéressantes propriétés d'orthogonalité. La simulation d'un bassin en eau calme puis d'un écoulement permanent uniforme à l'aide du code Matlab® correspondant aboutit exactement aux résultats analytiques escomptés. Le test de propagation d'onde solitaire est également satisfaisant (phase et amplitude). De plus, le modèle simule également bien l'écoulement de rupture de barrage. Cependant, les ondes prédites par le modèle de SV avancent plus vite que celles de Serre. La pression dynamique retarde donc la propagation de ces ondes. L'augmentation de la pente du fond accélère les ondes aussi bien pour Serre que pour SV mais réduit l'écart entre les fronts correspondant aux deux modèles. Un comportement inverse est observé lorsque le fond devient davantage rugueux ainsi que quand le ratio des niveaux d'eau aux deux extrémités du domaine s'accroît. La méthode de diffusion ajoutée s'est également révélée efficace pour la capture des ondes de rupture de barrage sans détérioration de la qualité des résultats numériques. Enfin, après avoir éliminé l'hypothèse de fluide non visqueux selon la verticale posée par Serre, le modèle 'Saint-Venant Plus' (SVP) est développé pour pouvoir tenir compte des contraintes visqueuses verticales significatives dans certains écoulements naturels. Cependant, la resolution numérique de SVP ne fait pas partie des objectifs de cette dièse qui présente seulement une comparaison théorique de la formulation mathématique de SVP avec celles des deux autres modèles (Serre et SV)

    On the multi-symplectic structure of the Serre-Green-Naghdi equations

    Get PDF
    In this short note, we present a multi-symplectic structure of the Serre-Green-Naghdi (SGN) equations modelling nonlinear long surface waves in shallow water. This multi-symplectic structure allow the use of efficient finite difference or pseudo-spectral numerical schemes preserving exactly the multi-symplectic form at the discrete level.Comment: 10 pages, 1 figure, 30 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    High order ADER-DG schemes for the simulation of linear seismic waves induced by nonlinear dispersive free-surface water waves

    Full text link
    In this paper, we propose a unified and high order accurate fully-discrete one-step ADER Discontinuous Galerkin method for the simulation of linear seismic waves in the sea bottom that are generated by the propagation of free surface water waves. A hyperbolic reformulation of the Serre-Green-Naghdi model for nonlinear dispersive free surface flows is coupled with a first order velocity-stress formulation for linear elastic wave propagation in the sea bottom. Cartesian non-conforming meshes are defined and the coupling is achieved by an appropriate time-dependent pressure boundary condition in the three-dimensional domain for the elastic wave propagation, where the pressure is a combination of hydrostatic and non-hydrostatic pressure in the water column above the sea bottom. The use of a first order hyperbolic reformulation of the nonlinear dispersive free surface flow model leads to a straightforward coupling with the linear seismic wave equations, which are also written in first order hyperbolic form. It furthermore allows the use of explicit time integrators with a rather generous CFL-type time step restriction associated with the dispersive water waves, compared to numerical schemes applied to classical dispersive models. Since the two systems employed are written in the same form of a first order hyperbolic system they can also be efficiently solved in a unique numerical framework. We choose the family of arbitrary high order accurate discontinuous Galerkin finite element schemes. The developed methodology is carefully assessed by first considering several benchmarks for each system separately showing a good agreement with exact and numerical reference solutions. Finally, also coupled test cases are addressed. Throughout this paper we assume the elastic deformations in the solid to be sufficiently small so that their influence on the free surface water waves can be neglected
    • …
    corecore