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Résumé 

Cette étude présente le modèle bidimensionnel horizontal (2DH) de Serre qui constitue une 
extension de celui de Saint-Venant (SV) auquel des termes supplémentaires d'accélération 
verticale sont ajoutés pour tenir compte de la présence de pression dynamique dans 
l'écoulement. Ses hypothèses sont exposées puis ses équations constitutives sont clairement 
développées en vue de faciliter sa compréhension. Afin d'éliminer la principale source de 
difficulté justifiant son manque de popularité et le rendre compatible avec la plupart des 
schémas numériques, un nouveau format est ensuite établi en séparant les dérivées spatiales 
de celles temporelles. Partant d'une expansion en séries de Taylor de deuxième ordre, des 
termes de diffusion artificielle sont ajoutés aux équations dynamiques puis à celle de 
continuité. Le système résultant est alors résolu à l'aide de la méthode standard des 
éléments finis utilisant des éléments triangulaires dits non-conformes en raison de leurs 
intéressantes propriétés d'orthogonalité. La simulation d'un bassin en eau calme puis d'un 
écoulement permanent uniforme à l'aide du code Matlab® correspondant aboutit 
exactement aux résultats analytiques escomptés. Le test de propagation d'onde solitaire est 
également satisfaisant (phase et amplitude). De plus, le modèle simule également bien 
l'écoulement de rupture de barrage. Cependant, les ondes prédites par le modèle de SV 
avancent plus vite que celles de Serre. La pression dynamique retarde donc la propagation 
de ces ondes. L'augmentation de la pente du fond accélère les ondes aussi bien pour Serre 
que pour SV mais réduit l'écart entre les fronts correspondant aux deux modèles. Un 
comportement inverse est observé lorsque le fond devient davantage rugueux ainsi que 
quand le ratio des niveaux d'eau aux deux extrémités du domaine s'accroît. La méthode de 
diffusion ajoutée s'est également révélée efficace pour la capture des ondes de rupture de 
barrage sans détérioration de la qualité des résultats numériques. Enfin, après avoir éliminé 
l'hypothèse de fluide non visqueux selon la verticale posée par Serre, le modèle 'Saint-
Venant Plus' (SVP) est développé pour pouvoir tenir compte des contraintes visqueuses 
verticales significatives dans certains écoulements naturels. Cependant, la resolution 
numérique de SVP ne fait pas partie des objectifs de cette dièse qui présente seulement une 
comparaison théorique de la formulation mathématique de SVP avec celles des deux autres 
modèles (Serre et SV). 



Abstract 

This study presents the horizontal two-dimensional (2DH) Serre equations, which include 
supplementary vertical acceleration terms in the Saint-Venant (SV) model to take into 
account the presence of dynamic pressure within die flow. For a better understanding of 
this model, its theory has been explained and its constitutive equations have been clearly 
developed. In order to eliminate the principal reason for its lack of popularity and to make 
it compatible with the usual numerical schemes, a new mathematical formulation has been 
established by separating the spatial derivatives from the temporal ones. Based on a 
second-order Taylor series expansion, artificial diffusion terms were added to the dynamic 
and continuity equations to upwind the model. The resulting system is solved by the 
standard finite element method (FEM) using triangular nonconforming elements because of 
their interesting orthogonality properties. The corresponding Matlab® computer program 
simulates well calm water basin and permanent uniform flow, leading exactly to their 
respective, expected analytical solutions. A good agreement is obtained for the simulation 
of the solitary wave propagation (phase and amplitude). The dambreak flows are also well 
simulated with the Serre numerical model. However, the SV waves outrun the Serre' s. As 
such, dynamic pressure is truly present in a dambreak flow and it delays the propagation of 
the dambreak waves. On one hand, it was noted that as the bed slope increases, the celerity 
for the Serre wave (bore) traveling downstream increases more rapidly than the SV one. 
Consequently, the amount of the outdistancing of the SV bore decreases with increasing the 
bed slope. On the omer hand, as bed roughness and water depths ratio increase, 
outdistancing increases. Moreover, by adding artificial diffusion terms, the shocks are 
captured more efficiently. Finally, by eliminating the Serre assumption of inviscid flow 
over the vertical, the 'Saint-Venant Plus' (SVP) model was developed to take into account 
the significant vertical viscous frictions encountered in some natural flows. However, its 
numerical solution is not presented here because it is not the focus. Thus, a theoretical 
comparison of the SVP mathematical formulation with the Serre and SV equations is 
simply proposed. 
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CHAPTER 1 

Introduction 

1.1.- Context and literature review 

The horizontal two-dimensional (2DH) shallow water (SW) equations are several decades 
old and are used to describe fluid hydrodynamics (water velocity and water level) for free 
surface flows. Those equations are also conventionally called 2DH Saint-Venant (SV) 
equations in order to pay homage to Jean-Claude Barré de Saint-Venant who is the first 
to write a one-dimensional version (Barré de Saint-Venant 1871; Viollet et al. 1998). The 
SV equations result from the vertical integration of the three-dimensional (3D) Partial 
Differential Equations (PDE) of incompressible and Newtonian fluid motion in a gravity 
field. When integrating over the depti% the SV core assumption is that the vertical 
acceleration of the motion of the fluid in the flow is negligible. For the flows that are 
inviscid over the vertical, ignoring the vertical acceleration is equivalent to stating that 
the pressure is hydrostatically distributed (zero at the free surface and increasing in a 
linear fashion down to the bed). Physically speaking, this implies that there is no sudden 
variation in the flow over the vertical and that the vertical curvature of the streamlines is 
small (i.e., negUgible convective and normal components of the vertical acceleration). 

For many applications, the SV assumptions do not lead to significant errors. However, in 
other cases, many natural flows do have non-linear pressure distributions as, for example, 
when waves meet obstacles; at free overfalls; in sharp meanders; in curved open 
channels; at sudden changes in slope; after abrupt channel closure near a gate; at a 
depression or rise in the river bed; etc. Sometimes, the dynamic nature of the pressure is 



small but at other times, it may be surprisingly large. For example, Zarrati et al. (2004) 
claim to have observed experimentally shock pressures reaching 25 times their 
hydrostatic value near the location of the sudden change in slope. Also, a significant 
characteristic of the free overfalls is that there is a strong departure from hydrostatic 
distribution of pressure in the vicinity of the drop because of the strong accelerated down 
flow (Hager 1983; Montes 1992; Marchi 1993; Khan and Steffler 1996; Rubin 1997). In 
the same light, Basco (1989) demonstrated the weakness of SV for modeling dambreak 
flows since he showed that the vertical acceleration could be quite significant. In effect, 
for this type of flow, movement varies rapidly in time and the vertical curvature of the 
streamlines is significant. Based on a Lagrangian resolution of the vertical two-
dimensional version (2DV) of the Navier-Stokes (NS) equations for dambreak 
simulations, Pohle (1952) and Strelkoff (1986) established that pressure distribution is 
significantly non-hydrostatic immediately after rupture. Dressier (1954) observed 
experimentally that the flow depth and the breach discharge do not instantaneously reach 
constant values at the dam location but, because the pressure is non-hydrostatic, they 
gradually establish themselves over time. In addition, Kosorin (1983) demonstrated that 
non-hydrostatic pressure reduced the celerity of the dambreak wave by as much as 30 % 
when compared to Ritter's analytic solution based on me hydrostatic pressure hypothesis. 
In all of these conditions, the hydrostatic pressure hypothesis severely limits the use of 
the SV model. 

To model dynamic pressure situations, many authors have resorted to using the NS 
equations (Stansby and Zhou 1998; Jankowski 1999; Casulli and Zanolli 2002; Nam in et 
al. 2001; Stelling and Zijlema 2003). Their direct resolution can fully account for vertical 
accelerations in the flow but the complexity of the equations and the associated 
computing cost lessen the models' feasibility (Xia and Jin 2006). Subsequent to SV, the 
Boussinesq model was established. However, the main limitation of me most common 
Boussinesq equations is that they are only valid for shallow water (Meftah et al. 2004). 
For example, in order to get a phase velocity difference smaller than 5 %, water depth 
must be less than 1/5* of the equivalent wavelength in deep water (McCowan 1987). 
Thus, some extended and higher order versions were developed to extend the validity 
domain to deep water or more commonly, to improve the wave dispersion property of the 



model (Madsen and Sorensen 1992; Nwogu 1993). Some comparisons with a number of 
practical problems (e.g., weirs, contractions, flumes and overfalls) were made in the 
literature. In many applications, good agreement between the numerical results from 
those Boussinesq-type models and experiments was noted (Law 1997; Zerihum 2004; 
Zerihum and Fenton 2006; Zerihum and Fenton 2007; Fenton and Zerihum 2007). 

There have also been some attempts to modify the SV equations directly by adding a 
dynamic pressure correction. Ghamry and Steffler (2002) chose to impose different 
vertical profiles for bom pressure and horizontal velocity components onto the SV model. 
Even if this approach has been successful for some applications, it remains that the 
precision of this type of model depends largely on the complexity of the assumed 
pressure profile. When resolving the equations, many coefficients must be evaluated and 
often become so numerous that the added effort significantly increases computing time. 
Moreover, the different imposed profiles are arbitrary and do not necessarily have any 
physical significance. In one application (free overfall simulations), the assumed 
quadratic pressure distribution is limited in predicting the measured pressure profile 
accurately at the brink section (Khan and Steffler 1996). Another attempt to overcome the 
hydrostatic pressure hypothesis has been to introduce layered 2DH models. An initial 
application of this type assumed a linear distribution of pressure in each layer while a 
more recent application assumes a quadratic profile (Xia and Jin 2006). This approach 
offers no more physical justification pertinent to the different supposed profiles and the 
precision of these models require many layers of small depths. As a result, computing 
time becomes very significant. 

The need to account for the dynamic pressure effects also led to the proposal of the Serre 
model (Serre 1953). Its principal assumption is that there is a linear variation in the 
vertical velocity component from the bottom through to the free surface. This vertical 
acceleration can result from rapid changes in flow depths or from highly-curved flow 
paths (local and convective vertical acceleration). Assuming this gradient in vertical 
velocity necessarily implies that the pressure deviates from its linear (hydrostatic) 
distribution. In its mathematical formulation, the Serre model resembles that of SV with 
the principal difference being that the two dynamic (momentum) equations carry 



additional terms to account for the effects of the resulting dynamic pressure. The 
presence of higher derivatives in those additional terms is also a mathematical difference 
that will require additional computational effort. 

The Serre equations are little known in the hterature and have very rarely been exploited. 
The reason is that they are very difficult to resolve numerically since the PDE contain (1) 
higher order terms and (2) mixed (spatial-temporal) derivative terms. For example, at 
present, despite the very many SV FEM versions available, to our knowledge, there is not 
a single Serre FEM available (Hervouet 2003) although there is (i) a finite difference 
version using a MacCormack type scheme (Antunes Do Carmo et al. 1993); (ii) a finite 
volume version (Cienfuegos et al. 2005); and (iii) there is a Serre-Boussinesq version 
solved by FEM using a Lax-Wendroff non-diffusive scheme (Dufresne 1997). It may also 
be possible that the Serre equations have not been widely applied because they are so 
poorly documented and/or so poorly understood. 

1.2.- Objectives of the thesis 

The principal objectives of this thesis are: 

S To present a detailed step-by-step mathematical development of the Serre model 
so as to eliminate some of the confusion about it 

S To propose a new formulation of the Serre PDE in which, the spatial-temporal 
derivatives are separated for solid bed applications so that it can be compatible 
with the usual numerical schemes. 

S To solve that new formulation by using the FEM and to validate the resulting 
numerical model by simulating some chosen hydrodynamic flow types. 

S To propose an extended version (the SVP equations) by omitting the assumption 
of inviscid flow over the vertical as done in the Serre model (i.e., by including the 



friction forces over the vertical). However, only the mathematical development of 
the SVP is presented and its resolution and its vaUdation are not included in the 
scoops of this thesis. 

1.3.- Plan of the thesis 

The next chapter presents the step-by-step mathematical development of the Serre 
equations and the separation of the time derivatives from the spatial ones. Before their 
presentation, the Serre assumptions are quantified; the physical significance of the SV 
hypotheses are explained and the governing equations are recalled. Subsequently, the 
new formulation of the Serre model is solved in the third chapter by using the FEM based 
on the second-order Taylor-Galerkin approach. In the fourth chapter, some preliminary 
validation tests are proposed, which consists of simulating a calm water basin, a 
permanent uniform flow and a solitary wave propagation. The fifth chapter analyzes 
some dambreak flows. Finally, the mathematical development of the SVP is presented in 
the last chapter. 



CHAPTER 2 

Mathematical Development of the 2D Vertically-Averaged 
Serre Hydrodynamic Model 

Introduction 

The Serre model was first proposed by François Serre as an alternative to the SV since 
the dynamic pressure within the flow had to be taken into account (Serre 1953). The 
mathematical development of the Serre PDE follows the same procedure as the SV, thus 
leading to a very similar formulation. The main difference is that the two dynamic 
equations contain some additional terms due to the vertical acceleration, which is still the 
principal cause of the dynamic pressure, according to Serre. However, that model is little 
known in the literature and has very rarely been exploited. Consequently, the 
corresponding PDE are very poorly documented and/or very poorly understood. 

This chapter presents the first objective of the thesis through a detailed step-by-step 
mathematical development of the Serre PDE for the purpose of eliminating some of the 
confusion surrounding the model. Additionally, the spatial-temporal derivatives of the 
Serre PDE are separated for solid bed applications and are therefore now available for 
FEM efforts. 

In the rest of this chapter, the physical significance of me SV basic assumptions is 
explained. Then, the Serre main hypomesis is presented as well as the general equation 
for pressure and for its gradients within flow. Subsequently, the step-by-step 
development of the two Serre dynamic equations follows. After which, the mathematical 



formulation of the resulting equations is compared to those of SV. Finally, the separation 
of the mixed spatial-temporal derivative terms is demonstrated. 

2.1.- Recalling the basic equations 

The 3D PDE of fluid motion in a gravity field, the so-called NS equations and the 3D 
continuity equation serve as the basis for the development of the Serre model. The NS 
equations are applied to real fluids (non-null viscosity) and translate, by me momentum 
conservation principle, the equilibrium of forces brought to bear on an elementary portion 
of fluid, called the control volume (Shames 1962; Van Rijn 1994). To establish this 
equilibrium, it is sufficient to consider a control volume in parallelepipedic form, being 
dx, dy and dz as dimensions of the sides, and to create an inventory of forces present, 
which results in this vector equation: 

F^ + F ^ F ^ p d x d y d z a (1) 

In (1), Fg,, represents external forces; Fp designates pressure forces while Fvis 

symbolizes forces of viscosity or friction; a designates the total acceleration while p is 

the fluid density. The product pdxdydza represents the inertial forces. 

Generally, the different forces in (1) are expressed in a unitary form, giving: 

F F F 
—?—+ p— + **— = pa (2) 
dxdydz dxdydz dxdydz 
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Coriolis' acceleration caused by the rotation of the earth on itself has little effect on rivers 

(Hervouet 2003) and is ignored in this study. Additionally, the fluid is assumed 

incompressible and Newtonian. 

The two members of equation (2) are divided by the fluid density p and the resulting 

expression is then projected in an orthonormal point ii j £1 in which, the vertical axis 

positively upwards, giving the Cartesian formulation of the NS equations with the 

continuity one as foUows (Shames 1962; Van Rijn 1994): 

du dv dw _ 

1 dp 1 — i : + ~ 
pdx p 

1 dp 1 
pdy p 

dt dr„ dr A 
*y 

dx dy + 

( d r dr 
y yy 

dz 

dt ^ 
___. dx dy dz 

du du du du 
= — + w— + v —- + w — 

dt dx dy dz 

dv dv dv dv 
= —- + u— + v—+ w— 

dt dx dy dz 

1 dp 1 
pdz p 

{ * . * * * . . \ 

dx dy dz 

dw dw dw dw 
= — + u — + V—- + W - -

dt dx dy dz 

(3a) 

(3b) 

(3c) 

(3d) 

In this system, (x, y, z ) represent Cartesian coordinates with z upwards; the triplet 

(«, v, w) designates the three velocity components; p designates the pressure 

whereas / designates time and f„ represents the viscous stresses with / = 1,..,3 and 

7 = 1,..,3. 

Equation (3a) is an expression of the 3D continuity equation (conservation of mass) while 

the last equations (i.e., 3b, 3c and 3d) represent the 3D dynamic equations (conservation 

of momentum). 



The Stokes' law models the viscous stresses yielding (Shames 1962): 

T = u v ^ 
(du du.^ 

dx dx 
v J • 

(4) 

where the fluid dynamic viscosity coefficient is p ; the velocity components are w, = u, 

u2 = v and u. = w; and the Cartesian coordinates are represented by (x, = x, x. = y , 

x3 = z). 

However, an eddy viscosity concept is usually applied to account for the turbulent shear 
stresses leading to the Boussinesq approximation (see, Boussinesq 1877; Van Rijn 1994): 

ry=p(v + v . ) 

( d u d u ^ —L+- J -
. dx dx, , 
V J ' J 

(5) 

where v = p /p represents the cinematic viscosity of the fluid and v. is the turbulent or 

eddy viscosity. For a more complex form of the shear stresses t . , the reader can refer to 

(Levermore and Sammartino 2001). 

Before starting the development of the Serre model, it is also necessary to recall the 2DH 
SV equations in their generalized form (Van Rijn 1994): 

dH d(HU) d(HV) 
- r - + — - + —* - = 0 

dx dy 
dt 

dU r r dU dU 
dt dx dy pH 
_d/ 

dy 

UT/_r*)- d_ 
dx 

f 

V 
du 
dx 

)( du^ 
Vxy dy dx V 

» dx ) dy{ » dy J * d x 

(6a) 

(6b) 
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dv T1dv „dV 
^r- + U—- + V^— + 
dt dx dy pH , H \ y y) dx[ dx ; 

d ( dV^ v 
dx V o>J 

dy y* 

dv_ 
dx 

\ d_ 

dy 

r 
yy 

dv_ 
dy = ~g dy 

(6c) 

In this system, gis the gravitational acceleration; (/and V represent the vertically-

averaged values of u and v respectively; x[ and xs
y designate the friction stresses at the 

free surface of the flow (due, for example, to wind or ice), in the x and y directions 

respectively, while x[ and xy are the friction stresses on the bottom boundary. The 

diffusion coefficients, denoted v_, v„ , vvr and vm , are used to take into account overall 
xx xy yx yy 

diffusion phenomena (molecular viscous diffusion and that due to the flow turbulence) in 

the flow (Van Rijn 1994). All the other variables have been defined previously. 

Remember mat the SV equations result from the vertical integration of me NS, simplified 

by neglecting the vertical acceleration of the fluid motion and by assuming that the flow 

is inviscid over the vertical. For the sake of conciseness, the significance of each term in 

equations (6) is not presented here; however, the reader can refer to the previous 

references where they are fully explained. 

The first equation of (6) represents the 2DH continuity equation (i.e., conservation of 

mass) while the two following equations represent the 2DH SV dynamic equations (i.e., 

conservation of momentum). The principal unknown variables are the mean velocities 

( U and V ), the position of the free surface of me flow (n ) and/or the water depth ( H) . 
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2.2.- Physical significance of the SV assumptions 

According to SV, pressure distribution over the vertical is hydrostatic. Noting that the 

tangential acceleration a, and the normal one an do constitute the two components of 

the total vector acceleration, whereupon me vector form of NS becomes: 

1 F~ 1 F l W — — 
- i—£s—1-- p — + - - ^ - = a,+a„ (7) 
p dxdydz p dxdydz p dxdydz 

The normal acceleration an that appears in equation (7) does exist if only the flow path is 

curved. To obtain the hydrostatic pressure distribution, it is first necessary to simplify the 
third NS equation (3d) and then to integrate it vertically. The three requisite 
simplifications correspond to the true SV hypotheses, which are the following: negligible 
vertical component of (1) local acceleration, (2) convective acceleration, and (3) 
negligible vertical viscous frictions. Physically speaking, the first and the second 
assumptions are due to vertical flow varying gradually (i.e., no rapid change in the flow 
depth) and to me vertical curvature of streamlines of the current tiiat is negligible. Sudden 
variations over the vertical (e.g., just after a dambreak event) are not addressed by SV. 
Moreover, free overfalls, non-uniform flow resulting from a dambreak, flow at a sudden 
change in slope, and flow at the point of flooding or at an obstruction in the river bed 
cannot be represented with SV since, in these cases, the vertical curvature of the 
flowlines cannot be ignored. Finally, the third hypothesis implies that the viscous friction 
effects in the vertical can be ignored (inviscid flow over the vertical). The viscous shear 
stresses terms in the third NS momentum equation are then neglected. 
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2.3.- Serre assumptions 

The Serre equations rest fundamentally upon the hypothesis that the horizontal velocities 

are assumed constant over the vertical (i.e., u = Uandv = V). Consequently, the vertical 

velocity component varies linearly from the bottom through to the free surface (Serre 

1953). This will be demonstrated further in the next section. 

Additionally, the flow is assumed inviscid over the vertical. 

Although one could impose anomer vertical profile for horizontal velocities (e.g., linear, 

quadratic, logarithmic, power, etc), the development of the subsequent equations would 

be complex and would lead to a different model than Serre's (which is the subject of this 

study). In addition, for some non-hydrostatic flow simulations, Ghamry and Steffler 

(2002) have tested the effect of applying different distribution shapes for velocities, and 

the predictions of overall flow characteristics suggest that the results are not very 

sensitive to different approximations of the presumed velocity shapes. 

Contrary to the SV hypothesis, vertical acceleration is no longer negfigible in the Serre 

model context and consequently, the distribution of pressure is no longer hydrostatic. 

Therefore, pressure gradient terms in the first two dynamic NS (3b) and (3c) cannot be 

simply reduced. Rather, they generate additional Serre terms that account for the impact 

of dynamic pressure on the flow. 

Because of that Serre assumption, the third NS (3d) is simplified and it becomes: 

1 dp dw TTdw ..dw dw ._. 
—-JL = g + — + U — + V — + w — (8) 
p dz dt dx dy dz 

Once this simplification is made, the procedure to develop the Serre equations is identical 

to that used to establish the SV model. It consists of calculating the vertically-averaged 

expression of the continuity equation (3a) and of the three resulting NS (3b, 3c and 8). 

This leads to a system consisting exactly of the standard SV equations (6) but with some 
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additional terms due to the vertical integration of the dynamic pressure gradients. The 
overall procedure to develop the SV model is fully described by Tossou (2004), Hervouet 
(2003), Viollet et al. (1998) and Van Rijn (1994). However, this study will simply focus 
on the vertical integration of the gradient pressure terms and the resulting expressions 
must be added to the SV equations in order to form the Serre model. 

2.4.- General expression of the vertical velocity 

Given the following scheme (Figure 2.1), 

Figure 2.1: Conceptual scheme of the flow 

the first step to obtain the general expression of the vertical velocity is to vertically 

integrate the continuity equation (3a), from the bed elevation (z ) to an arbitrary level 
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( z ) within the flow taking into account the Serre approximation of horizontal velocities 
constant over the vertical: 

(dU dV_ dw\ 
dx dy dz dz = 

(dU d V \ \ 
^ + ̂ } ( " Z f ) + W ' W ^ ° (9a) 

z f 

where w represents the vertical velocity at the bottom of the flow. 

For the sake of conciseness, the term (dU/dx + dV/dy) which is independent of z, will 

be renamed L\U, Vj to give: 

L(V, r)-f G± . . m 

However, the variable L\U, Vj will be simply denoted L for the sake of simplicity. 

Then, equation (9a) is reformulated and it leads to the general expression of the vertical 
velocity: 

w = wf-(z-zf)L (10) 

According to (10), the vertical velocity varies linearly from the bottom of the flow 
through to the free surface. 

In the following developments, w will be used to designate the vertical velocity 

calculated at the position j] of the free surface of the flow. 
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2.5.- General expression of Serre pressure field 

The first step here is to expand the simplified NS third dynamic equation (8) using the 

general expression of the vertical velocity, i.e., equation (10). Thereby considering the 

fact that w and z are constant over the vertical and whereas z is independent of x, y 

and t , gives 

d w _ ^ L _ ( \dL tef r 

dt~ dt lz 2 ' h t + dt 

dw dw. i \dL <*z. 

w 

dw dw f i \ d L fcf 
G - = V — ^ - V { z - z f ) ^ + V — L L 
dy dy v ' ' d y dy 

^ = -w fL + [ z - z f ) l } 

(lla) 

( l ib) 

(l ie) 

(l id) 

Adding (1 la), (1 lb), (1 lc) and (1 Id) gives, 

dw TTdw Trdw dw 
— + U — + V — + w — = 
dt dx dy dz 

dw. dw. 
dt 

+ U-ZG- + V 
dw. 

dx dy -H')(f "♦irïtrl 
dx dv 

+ L 
dz, dz, 

+ U—J- + V 
dz. 

dt dx By) 
-wfL + (z-zfJL2 

(12) 

Next, taking into account the fact that, 

Dw, dw. dw. dw. 
L = - J - + U—^-+V—^ 

Dt dt dx dy 
DL dL TTdL dL 

= — + U—- + V— 
Dt dt dx dy 

(13a) 

(13b) 
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Dz, dz, dz. dz. 
w, = — l - = —l- + U—L+V—l-f Dt dt dx dy 

(13c) 

the expression (12) gives, 

dw TTdw I rdw dw Dw i \ ( T2 DL 
— + U — + V - - - + w — - = J- + [ z - z , ) \ L2  

dr dx dy dz Dt V f \ Dt 
(14) 

and equation (8) becomes, 

I dp DL 
S - " > + . - ; 1 * - T ; pdz 

(15) 

where the variable R is defined as follows, 

Dw, D2z, 
B = — f - = f-H Dt Dt2 (16) 

The second step to establish the general expression for the pressure field is to vertically 

integrate (15) from an arbitrary surface (z ) within the flow to the position of the free 

surface (rj ). 

Therefore, the vertical integral of the left hand side (LHS) of (15) is calculated by taking 

into account the fact that me free surface pressure ( p ) is equal to atmospheric pressure, 

which is zero. This results in: 

f7/ 

P 
dp 
dz ^ K + ^ H (17) 
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Next, the vertical integral of the right hand side (RHS) of (15) is calculated by taking into 

account the fact that B as well as L and its derivatives (temporal and spatial) are 

independent of the variable z. This results successively in: 

ff 

z 

Z 

ff 

gdz = g( f i -z ) 

Bdz=B{r\-z) 

(18a) 

(18b) 

(-4*-£ ^ ( 
dz = L2-™ 

Dt v 

*7 

(z-z /)flz = | 
2 2 

n - 2 z f{r]-z) 
(L2 £ > 
V D t j (18c) 

The sum of equations (18a), (18b) and (18c) gives the vertical integral of the RHS of 

(15), which is put together with equation (17) to lead to the general expression of the 

Serre pressure field: 

( r \ 2 - z 2 

p(x, y, z, t) = p(g + p)( r j -z) + p ±— z f {i ) -z ) 
V

r 2 D L ^ 
E -

v " * J Dt 
(19) 

This general expression of the Serre pressure field must be simplified by reformulating 

the expression of DLJDt. 

Consider the following equation of the total water depth: 

i / = 7 î - Z / (20) 
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The material derivative of (20) gives: 

DH Dt] Dz 
= —=w —w, 

Dt Dt Dt " f 
(21) 

The evaluation of the vertical velocity at the free surface of the flow, using (10) gives: 

w = w, - LH (22) 

The substitution of equation (22) into (21) leads to 

L = - 1 DH 
H Dt 

(23) 

By setting, 

a = 
D2H 
Dt2 (24) 

The material derivative of equation (23) yields: 

PL _ L2 a 
D t ~ H 

(25) 

Finally, the substitution of (25) into (19) gives the general equation for the Serre pressure 

field: 

(G.1 2 
TJ - Z p(x, y, z, t) = p(g + p)(ri-z)+pjj ^ - Y - - z f ( r \ - z ) (26) 
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2.6.- General equations for pressure gradients 

Having estabUshed the equation describing the Serre pressure field, it is now necessary to 

characterize the Serre pressure gradients. One obtains the pressure gradient along the x-

axis by deriving each of me terms of equation (26) with respect to x. This derivation 

gives successively: 

d vt . „w \ l /_ \dfi i flxdn 
dx 

dx 

[(Z + Ph-*) ] = (V-Z)%+(S + P) 

a i t f - z 2 

H[ 2 'A*-*) d_ 
dx y f f j 

dx 

( 2 2 

' r f - z 2 zA*-z) a 
~H *3-MÏ dx 

(27a) 

(27b) 

and the sum of (27a) and (27b) gives the pressure gradient expression in the x direction 

±|.(M|+(g+/,,|+£(f j 
(
l f - z

2 

- z f ( n - z ) a 
+ — 

H - Î H « - * (28a) 

The same procedure establishes equation (28b) that represents the pressure gradient 

expression in die y direction: 

&*- '«*♦♦£ 
2 _2 

77 - z 
zf{r]-z) a 

+ — 
H 

dt] * fa) 
(28b) 
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2.7.- Vertically-averaged pressure gradients 

Having characterized the pressure field and the pressure gradients, it is now required to 

integrate them over the vertical to establish mean expressions for a 2DH application. 

Therefore, each pressure gradient term will be considered individually and its integration 

over the vertical will be presented: 

H 

1 

1 ' > dx Hdx 

1 
/ ' \ . 1 dP( \2 dp H 
{T1-z)dz = — - ( r 1 - z f ) = - - (29a) 

H 

n (^4^1 *=iï*+p)&i-',H*+i>) dx 
(29b) 

H 
d_ 
dx 

f a } { r f - z 2 \ 
-z f{ri-z) 

3dx 
' a } 2 H d a a dH 

H = — —— 
3 dx 3 dx 

(29c) 

H 
SL 
~H 

» % - . " - > ) __i 
dx 

ff 

dz = 
J 

1 a 
H H 

. z, 

i f i l _ dzf i z
d z f 

dx dx dx 
dz = a 

drj 1 dzf 

dx 2 dx 
(29d) 

The sum of (29a), (29b), (29c) and (29d) by taking into account, zf = t ) - H , yields: 
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H 

n 

;|—ff-(-")|-pdx 
'H_da 
^3 dx 

a d H 
3 dr - a 

BV \ d ( n - H ) 
dx 2 dx 

(30) 

After expansion, simpfification and rearrangement, equation (30) results in (31a) which is 
the final mathematical formulation of the vertically-averaged pressure gradient in the x 
direction: 

ff 

H pdx dx dx 
(a p^ 
13 2 , dx 

( 

V2 P j 
> d H r 

dx 
a 
~6 

(31a) 

Similar ly, equat ion (31b) is the mathemat ica l formulation o f the vert ical ly-averaged 

pressure gradient in the y direction: 

ff 

H pdy dy dy 
a p 
—+ — 
3 2 ^ J " j 

djn 
dy 7 dy 

<a> (31b) 

On the RHS of (31a) or (31b), the first term represents that of the hydrostatic pressure 
gradient while the other terms account for dynamic pressure forces on the flow (due to 
either rapid vertical flow variations and/or vertical curves in the flow paths). 
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2.8.- Mathematical formulation of the Serre equations 

The 2DH Serre model is obtained by adding the dynamic pressure terms to the standard 

SV equations. Therefore, the hydrostatic pressure gradients terms (i.e., -gdrj/dx 

and-gdt]/dy) on the RHS of the two SV dynamic equations (6b and 6c) are simply 

replaced with the RHS of (31a) and (31b) respectively. Adding the 2DH continuity 

equation to close the resulting system and rearranging yield: 

dH d(HU) ^ ( H V ) ^ 
dx dt 

d U { d U 
dt dx 

dy 

dy 

dV 

y 

„ d U \ I f A d 
+ V — - + — \ x ] - T M - — 

dv p / / v x *' dxv 

dx J dy[V» dy ) + 8 d x d: 

dU 
dx j dx 

dU 

V 
*y 

(a p 

dV TTdV r , d V \ i f , \ d 
—- + U—- + V—-+ [x1 -X s - — 
dr dx dv p H \ y y> d x 

d ( dv \ d 
— v —— -—-
dy\ w dx ) dy 

V 

dv^ 

+ 
3 2 

dt] 
By 
r 

v dx 

< d V ) drj u d 
dy J dy dy 

_d_ 
dx 

dx 

d V } 

-+P 
2 

\ dHfa 
dxU 

v dy 

a p 
—+ — 
3 2 2 H dy V 

dH 
dy 

(a) 
<6, 

(32a) 

(32b) 

(32c) 

In this system, all the variables have been previously defined. 

The first equation in (32) represents the 2DH continuity equation (i.e., conservation of 

mass) while the two following equations represent the 2DH Serre dynamic equations 

(i.e., conservation of momentum). The principal unknown variables are the mean 

velocities (C/and V), the position of the free surface of the flow (r/) and/or the water 

depth ( / / ) . 

These Serre equations can model the flows with dynamic pressure at a solid bottom, as 

well for the case where the bottom is also a free surface as in a free overfall (e.g., weirs). 

In the latter case, the bottom level z / also becomes an unknown variable, which would 

require a fourth supplementary equation to close the system. For solid bed applications, 
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the Serre equations could be useful to simulate high-amplitude waves propagating in 
shallow water. They could also be used for many applications related to highly unsteady 
flows (e.g., dambreak simulations) or to highly non-uniform flows (e.g., spillway, 
transition flows). 

The RHS of the two dynamics equations (32b) and (32c) are the supplementary terms that 

are added to the traditional SV equations to form the Serre equations and they translate 

the effects of dynamic pressure on flow. They are characterized by the presence of 

Serre's formulation of the vertical accelerations expressed as a (total water depm 

increase acceleration) and /3 (vertical acceleration of the bottom flow). If the effects of 

vertical accelerations are neglected or are negligible (i.e., if a — P = 0 ), the RHS of the 

two dynamic equations (32b and 32c) become zero and they are reduced to me classic SV 

dynamic equations. 

It should be noted that, at the mathematical level, the inclusion of the vertical acceleration 
terms on ttie RHS of equations (32b) and (32c) does increase the complexity of their 
resolution particularly since there is the presence of higher order derivatives. At the 
application level, this may result in additional computational effort. In the following 
section, a method to simplify their resolution is presented leading to a new formulation 
for the Serre PDE. 

2.9.- Reformulating the Serre equations 

The dynamic pressure terms in the RHS of equations (32b) and (32c) are very difficult to 

discretize because (1) they are mixed spatial-temporal terms (because a and p contain 

both temporal and spatial derivatives) and (2) they are higher order (since a and p are 

second order derivatives, the combined effect is third order). The objective of this section 

of this study is to separate variables and reduce the order of the derivatives. The resulting 
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n e w formulation o f the Serre equat ions will then be amenable to be used in any given 

number o f numerical schemes. 

Al though the separation of the variables is possible for free overfall types of flow (i.e., 

w h e n the bot tom of the flow is also a free surface), it is quite complex . Furthermore, 

because mos t applications entail flow with a known channel bot tom (e.g. , spi l lways and 

dambreak applications), only the solid bot tom boundary condit ion will be treated in this 

section; even if the moving bot tom boundary case is also possible, it is omitted. 

For the solid bed case, after developing, simplifying and rearranging equat ions (32b) and 

(32c) , the system of Serre equat ions can be put into the following form: 

dH d(HU) d(HV) 
df dx dy 

dU TTdU T,dU l ( f A d 
+ U^—+V—— + (xJ - x ) - — 

7.., nM\ * *l ax dt 

dJ 
dy 

dy p W 
dU_ 
dx 

d_ 
dx V 

xy 

d u 
dy 

d U 
dx J 

d f d u } drj H da H dp adr \ 0dr\ a d H 
dy yy dx 3 d x 2 d x 2 d x dx 6 d x 

d V T J d V d V 1 / f , \ d 
—- + U^—+V—- + \xJ - x ) - — 
dt dx dv p H \ y y ' dx 
dV wrdV „BV_ 

dy pH 

) ( d V \ d ( d v } _ dr] 

dV_ 
dx j 

d ( d V ^ 
v 

dx V d y ) 

dy y* dx dy 
H da H dp adr \ 0drj a d H 

V \ + g •-- mmm. -— y3  
n dy ) dy 3 d y 2 d y 2 d v dy 6 d v 

(33a) 

(33b) 

(33c) 

T h e first step in reformulating the Serre equations consists of creating two vertical 

velocity variables defined as : 

DH dH TTdH j r d H 
wff=—~- = — + U — + V — 

" Dt dt dx dy 

dH H t i U ) d(HV) 
w = = —i L - i—s '-

dt dx dy 

(34a) 

(34b) 
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For the general conditions, the vertical velocity at the bed was w f . To avoid confusion, 

for the solid bed applications, it is renamed wfi. 

Taking into account the continuity equation and the fact of the immobility of the bottom, 

from (13c), the vertical velocity at the bed becomes: 

dz, dz, 
w . = U — L + V — L 

fi dx dy 
(35a) 

and, from equation (34), the vertical velocity of the water column becomes 

w = - H — H — -
H dx dy 

(35b) 

In addition, the Serre accelerations a and P must be reformulated using w and wH, 

which leads to the following equations: 

a = 
dt 

+ U—JL 

dx 
.,dwH 

dy 

P = dt 
dw, 

+ U _ / 
dx 

dw. 
+ v — £ 

dy 

(36a) 

(36b) 

With the operation of the partial derivative being commutative, by taking into account 

equations (36a) and (36b), the five additional Serre terms of (33b) become respectively: 

H da _ 
3 dx ~ 

KA 
" 3 dt 

H dp H d 
2 dx 2 dt 

r̂ ... \ dw H 

dx 
J 

r-_r... \ dw, 
J± 

v d x , 

KA. 
3 dx 

KA. 
2 dx 

\ dx 

dw 
U ___ 

dx 

KAL 
3 dx 

KfL 
2 dx 

( 

dwu 

dy 

dw 
fs 

dy 

(37) 

(38) 



26 

a d f ] 1 dt] dwH 1 dt] 
2 dx 2 dx dt 2 dx 

( 

dw_, dwu 
U - z ^ + V—*-

dx dy 

d r } ^ dr\dwf i ay, 

dx dx dt dx 

dw, dw. 
U— f - + V— A 

dx dy 

a d H \dHdw H 1 dH 
6 dx 6 dx dt 6 dx 

dwu dwu 

u—^+v—y-
\ dx dy 

(39) 

(40) 

(41) 

The first term of the RHS of equations (37) and (38) consists of a mixed spatial-temporal 

derivative and therefore a second step is required to separate them into distinct parts. 

By using the general principle to calculate the derivative of a product, the first term of the 

RHS of (37) gives: 

KA 
3 dr 

d»>H 

dx 
d_ 
dt 

H d w H 

3 dx 
\dHdwH 

3 df dx 
(42) 

The substitution of equation (34b) into (42) yields: 

KA 
3 df 

r d w H ^ _d_ 
df 

r H d w ^ 
3 dx 

W H L d W H 

3 dx 
(43) 

Similarly, the first term of the RHS of equation (38) can be rewritten into the following: 

KA 
2 dt 

fe 
dx 

d_ 
dt 

Hdw f i 

2 dx 

w dw, 

2 dx 
(44) 

It is now necessary to reformulate the first term of the RHS of equations (39), (40) and 

(41) respectively. They consist of a product of a spatial derivative and of a temporal 

derivative. By using the general principle to calculate the derivative of a product, the first 

term of the RHS of equation (39) gives: 
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1 dt] dwH _ d 

2 dx df dt 
w^djl 
2 dx 

wH d 

2 dt y d x j 
(45) 

With the operation of the partial derivative being commutative, equation (45) becomes: 

1 dr] dwH _ d 
2 dx df df 

^ I Ï \ _ ^ J L A 
I 2 dx j 2 dx K d t j 

(46) 

Also, because of the immobility of the bottom, relation (47) is true: 

dH_=dji 
dt ~ dt 

(47) 

and equation (46) becomes: 

\ d r \dw H _ d f wH dr\ | wH d ( dH 
2dx dt ~ d t { 2 dx ) 2 d x \ d t 

(48) 

The continuity equation is then introduced and the resulting equation (49) constitutes the 

reformulated version of the first term of the RHS of equation (39): 

1 drj dwH _ d 

2 dx df df 2 dx 2 dx 
(49) 

The same procedure applies also to the first term of the RHS of (40), which becomes: 

dT\A^jL_d( dji 
dx dt dt fsdx + w 

dw HL 

\ " * J * dx 
(50) 
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As for the first term of equation (41), it becomes: 

1 dH dwH d < w
H d H ) 

{ 6 dx j 
w„ a faff] d 

" d f 
' w H d H ^ 
{ 6 dxj 

W
H d (dH} 

{ d t ^ 6 dx dt dt 

< w
H d H ) 

{ 6 dx j 6 dt 
faff] d 

" d f 
' w H d H ^ 
{ 6 dxj 6 dx 

(dH} 
{ d t ^ (51) 

Thereafter, the substitution of the 2DH continuity equation into (51) leads to the 

reformulated version of the first term in the RHS of equation (41): 

1 dH dwH d 
6 dx dt dt 6 dx 6 dx 

(52) 

Finally, the equations (43), (44), (49), (50) and (52) are substituted respectively into 

equations (37), (38), (39), (40) and (41), giving: 
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(53) 

After creating the following intermediate variables defined below, 
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(54b) 
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equation (53) becomes: 

H da H dp adt] dry a d H _ 3(7 
3 dx 2 dx 2 dx P dx 6 dx ~ df °a (55) 

Therefore, the first of the dynamic Serre equations (33b) becomes: 
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(56) 

Similarly, the second dynamic Serre equation (33c) becomes: 
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where, 
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(58a) 

(58b) 

The new condensed formulation of the Serre model for solid bed applications is 

therefore: 
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(59a) 

(59b) 

(59c) 

where all me intermediate variables have been previously defined. 

This system of three equations inter-relates the three principal variables (U, V, H ) 

and thereby describes me 2DH hydrodynamic field subject to boundary and initial 

conditions. The effects of total vertical acceleration 

yi£.,Dw/Dt = dw/dt + Udw/dx + Vdw/dy+wdw/dz} and therefore the effects of non-

hydrostatic pressure are accounted for by the supplementary Serre terms (i.e., Uz, V. 

a^and a ) appearing in the two dynamic equations. 

f 
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Conclusion 

In this chapter, the 2DH Serre model has been developed, step-by-step, from the 3D PDE 

of fluid motion in a gravity field. The basic hypothesis of the Serre equations is that the 

horizontal velocity components are constant over the vertical. Consequently, the vertical 

component of the velocity is linearly distributed over the depth (i.e., the vertical 

acceleration is constant over the vertical). The Serre equations are identical to the ones 

used in die SV model except for the addition of supplementary terms appearing on the 

RHS of equations (33b) and (33c) that account for the effects of dynamic pressure. 

Unlike the SV equations, which assume that there is no significant vertical acceleration in 

the flow, the Serre model can simulate flows that have significant vertical acceleration. 

Given that when the vertical flow acceleration exists, the fluid pressure is no longer 

hydrostatic; the Serre equations can be used to simulate those flows having a dynamic 

pressure component. The Serre model formulation shows the presence of higher 

derivatives that have mathematical implications and could require additional 

computational effort. Moreover, for applications wherein the bottom boundary is solid 

(i.e., no free overfalls), me additional highly non-linear Serre terms have been reduced 

from 3 to 2nd order and have been separated into their spatial and temporal components 

(equations 59). This system of equations can be easily integrated into various numerical 

schemes (finite difference, finite volume, finite element, etc.). Applications include 

highly transient flows, such as a dambreak, or highly non-uniform flows, such as those 

over a spillway (be they transient or steady-state). 



CHAPTER 3 

Finite Element Solution of the 2DH Serre Model 

Introduction 

The new mathematical formulation of the Serre model is solved here by using the Finite 

Element Method (FEM), which is a numerical technique for finding approximate solution 

of a given PDE. Indeed, the FEM is a technique in which a given domain is represented 

as a collection of simple domains, called finite elements. Consequently, it is possible to 

systematically construct the weighted-residual approximation of the solution of a problem 

over each element (Reddy 1984). In other words, the FEM transforms the whole domain 

into a sum of several pieces and thus, allows calculating the solution of the given PDE on 

each of them. The most attractive feature of the FEM is its ability to handle complex 

geometries (and boundaries) with relative ease. Elements can change size and shape 

readily, allowing complex boundaries to be traced, as well as allowing refinement of the 

mesh in particularly important or rapidly varying areas. This method is fully described in 

(Reddy 1984, Dhatt and Touzot 1981) and it is widely used to solve the PDE of a large 

variety of physical phenomena. 

The FEM equations are derived by using the Galerkin weighted method. In its most 

traditional implementation, commonly known as the Bubnov-Galerkin method, the 

weight functions are simply set equal to the basis functions. This results in a central 

approximation scheme. In open channel flow applications, the Bubnov-Galerkin method 

has been shown to be useful for modeling relatively flat waves, but it performs poorly in 

the vicinity of the steep gradients in the solution (Katopodes 1984). Instabilities appear 
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and the solution rapidly deteriorates (Hicks and Steffler 1994). For this reason, the 
Taylor-Galerkin (TG) scheme of second order is chosen in this study because it has some 
properties that make it possible to overcome the weakness of the most traditional 
Bubnov-Galerkin approach. For example, me TG solution approach is appropriate to 
correctly model some particular flow situations (e.g., dambreak flows) in which the 
advection is dominant and/or where the hydraulic parameters of the flow can vary 
suddenly (shock-capturing). It is also well known that the TG schemes provide a good 
compromise between the accuracy and speed of computations (Mabssout and Pastor 
2003b). 

In the rest of this chapter, me TG technique is presented as a special feature to add 
artificial diffusion terms in order to upwind the numerical scheme. Subsequently, the 
integral formulation of the weighted-residuals of the resulting Serre equations is 
calculated as well as its weak form. The triangular nonconforming element is described 
and is used for the spatial discretization of the weak form yielding the semi-discrete finite 
element model. Next, the temporal derivatives are approximated and the nonlinearity is 
solved leading to me finite element formulation of the Serre model in the form of an 
iterative scheme. Finally, the general initial and boundary conditions are investigated as 
well as the stability criterion, followed by hie conclusion. 

3.1.- The Taylor-Galerkin method 

The basic TG approach, also known as the characteristic-Galerkin scheme, is an explicit 
formulation in which the unknown variables are written in terms of a Taylor series 
expansion in time (Donea 1984; Donea et al. 1984; Lohner et al. 1984; Selmin et al. 
1985). That method was established for the study of transient stability problems but it can 
also be used to upwind the first order discretized spatial derivative (Robert 2008). 
Concretely, the main objective of the TG method is to define a scheme, which 
harmonizes the space and temporal precisions respectively (Robert 2008). The Taylor 
time series expansion is used to introduce numerical diffusion (Selmin et al. 1985). 
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Based on the Donea et al. (1984) approach, which consists of a Taylor series expansion 

of second order of the time derivatives, Robert (2008) made some simplifications and 

found the following artificial viscosity tensor that adds artificial diffusion terms to the S V 

equations: 

U2 UV 
VU V2 (60) 

The parameter k is given by: 

up 2 (61) 

where Af is die time step and Cu is an upwinding factor between 0 and 1. 
up 

The total diffusion coefficients in the SV dynamic equations become: 

V 
XX 

V 
xy = V 

1 l" 
+k ~U2 UV 

V V 1 1 VU V1 
L y W j J 

(62) 

In this study, the same tensor given by (60) is also used to add artificial diffusion terms to 

the Serre dynamic equations as well as to the continuity one. Additionally, the friction 

stresses at the free surface of the flow are neglected (i.e., xs
x = 0 and Xs = 0) for the sake 

of simplicity and the Chézy formulation is chosen to model the friction resistance force at 

the bed (see, Molls and Chaudhry 1995): 

x f = pgU W^] 

rf -x J=pgV 
yJu2 + V2 

(63a) 

(63b) 
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where Cc is Chézy's coefficient. 

However, when using the Strickler's roughness coefficient Ks, the following 

approximation should be used to estimate the Chézy' s: 

C = K R „ 
c s H 

1/6 (63c) 

where RH is the hydraulic radius. 

Consequently, me implementation of the second-order TG for the Serre model is 

equivalent to die Bubnov-Galerkin formulation (i.e., by using die standard FEM rule) of 

the following modified equations: 
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(64a) 

(64b) 

(64c) 

The TG algorithms have already been successfully applied to a wide variety of flow 

situations where the advection phenomenon is significant; such is the case for dambreak 

flow problems (Safjan and Oden 1995; Tamma and Namburu 1988; Zhang and Tabarrok 

1999; Quecedo and Pastor 2003; Mabssout and Pastor 2003a). It was found that the TG 
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finite element schemes provide a good compromise between accuracy and speed of 

computations (Mabssout and Pastor 2003b). Finally, me TG algorithm described here is 

the basic one even if some other refined versions are available (Donea et al. 1987; 

Bottura and Zienkiewicz 1990; Donea et al. 1992). 

3.2.- Integral formulation of the weighted-residuals 

The next step is to calculate the integral formulation of the weighted-residuals of the 

resulting Serre equations (64), yielding: 
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(65a) 

(65b) 

(65c) 

In (65), D represents the global domain of study whereas /Î,, R2 and R3 are the integral 

formulation of the weighted-residuals of the two dynamic equations and of the continuity 

one respectively. The weight functions ç>y and q>p are those for the first and for the 

second dynamic equations respectively whereas <pH is used for the continuity one. 
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To reduce die order of some derivatives in (65), the weak form of the integral formulation 

of the weighted residuals is dien calculated and yields: 

* , = %jA u + u ^ d D ' 

( J T dU dU drt^ 
U—-+V——+g 

% 
dy dx 

+gU 
\ 

yjU2 + V 
C2H + a 

d% dU 
dx dx 

d% dU dç,. dU dÇy dU 
{ ^ dx dy » dy dx » dy dy 

dD 

( f 

-°<Pu du du 
dx ' + V x y dy n + 

( dU du) \ v ——+v —— 
< " dx » dy j n dr 

(66a) 

^ 2 = % j A V + V - ) d D + 

r
T TdV dV dr]^ 

% 
dx dy dy 

+gV 
V 

ylu2 + v 
C2H + a 

+ v. 
d% dV 
dx dx 

J 
d% dV d<py dV d<py dV 

" dx dy » dy dx " dy dy 

( ( 
- < > ? , 

dv dv \ 
T ~ + V -r— dx " dy n + 

X 

dD 

dV dV 
v ——+v —— 

" dx » dy 
n aT = 0 

J 

J r 

(66b) 



38 

* , = d H j r . 
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(66c) 

The notation n represents the unit normal vector, with nx and n being its two 

components in the x and y directions respectively. The symbol T is the boundary of the 

domain and q is the unit discharge of the flow through me boundary. 

3.3.- Spatial discretization 

The mesh (Figure 3.1) to be used for the spatial discretization of the system (66) consists 
of the triangular nonconforming elements (see Figure 3.2). 

Flow direction 

Figure 3.1: Typical mesh configuration 
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(n, zf) 

(U,V)Q 

in, zf) (U,V) (n, zf) 

Figure 3.2: Triangular nonconforming element 

For such elements, the total water depths are calculated at the vertex nodes whereas the 

velocity components are approximated at the mid-side nodes. 

Indeed, it is a common feature of the finite element treatment of shallow water equations 

that small noise is produced by the spatial discretization, when both the water depth and 

the horizontal velocity components are approximated identically (Hua and Thomasset 

1984). Shoenstadt (1980) and Williams (1981) have analyzed the solutions for one-

dimensional meshes and they have recommended to staggering the variables for the 

shallow water equations variables. In other words, this means that the water depths 

(scalar quantities) are evaluated at me vertices of the triangle while the horizontal 

velocities (vector quantities) are evaluated at mid-sides of the triangle giving die 

nonconforming elements. This class of elements is preferred because they present several 

advantages. First, the mass matrix of the element is diagonal because of the orthogonality 

property of the basis functions. This means that exact calculation of some integrals is 

possible without lumping (which causes a loss of accuracy). Second, the continuity of 

diffusion fluxes between the element interfaces is automatically enforced without the 

need of any additional treatment, which is rather convenient for the discontinuous FEM 

(Hanert et al. 2004). Indeed, the grid points are also located at the mid-sides of each 

triangle, for boundary nodes, the direction of the normal to the boundary is defined 



40 

without ambiguity and therefore, circumvents the difficulty of satisfying exactly the no-
normal flux condition at every boundary vertex (Pinder and Gray 1977). Consequendy, 
the accuracy of the numerical solutions is improved and the time computation is reduced 
(Tossou 2004; Le Roux et al. 2008; Le Roux 2005). 

Generally, the integrals are first calculated on a reference element after which, a Jacobian 
transformation is used to transpose the results obtained to the real domain. The reference 
element corresponding to the triangular nonconforming element is well described in 
(Dhatt and Touzot 1981) with the following basis functions: 

NH={l-C-if, Ç ¥ ) (67a) 

N = (l-2y/ - l + 2£ + 2v l-2£) (67b) 

Where NH represent the basis functions associated respectively to each of the three 

vertex nodes while N are the basis functions associated to the mid-side nodes. The 
natural abscissa on reference element is yr and the natural ordinate is F . 

Consequendy, equations (67a) and (67b) lead respectively to the following discrete 
expressions for the principal variables: 

7=1 

^ = \tNHjHj (68b) 

7=1 

7=1 

c/ = 5>.<y; (68d) 
7=1 

K = i> / ; (68e) 
7 = 1 
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The symbols rj, H, z , U and V represent the discrete expressions of 77, H, z , U 

and V respectively while the notations rf ,H e , z°, Ue and Ve are tiieir respective 

element nodal values. 

In addition, the weight functions are set equal to the basis ones, according to the Bubnov-

Galerkin approach, which is used here to solve the modified Serre equations. This means 

that, <pu=<pv = N for the two dynamic equations and <pH - NH for the continuity one. 

It is now possible to spatially discretize the weak form of the integral formulation of the 
weighted-residuals by substituting the discrete expressions (68) into the system (66) and 
by taking into account the appropriate weight functions. 

For the sake of conciseness, the intermediate calculations are omitted and the operation 
leads to the following equation in matrix form, which corresponds to the element semi-
discrete (spatially discrete) formulation of the Serre model: 

dae M=K]f dFe 

s 
dt >+ MM-M (69) 

In (69), ÏM" J is the element mass matrix; [^'1 is the element stiffness matrix; | F" \ is 

the element force vector while \ F ' \ is the element force vector due to the Serre 

supplementary terms. 

The vectors \Re\ and JQe\ are defined respectively as follow: 

w- (70a) 
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M-
W 
M 
IMJ 

(70b) 

Rf, RH. and iÇ are the respective discrete expressions of Rl, R-, and /?3 defined 

previously while W e j , \Ve\ and j He \ are the vectors of the element nodal values of 

U, F and H respectively. 

The terms of tiiose different matrices and vectors are defined in the appendix. 

3.4.- Time derivatives integration and solution to the 
nonlinearity 

To obtain the final finite element scheme, it is now necessary to discretize the time 
derivative in equation (69) and to solve the nonlinearity. Indeed, the global (assembled) 
version of (69) must be considered. Therefore, a general temporal scheme is applied for 
the time derivative discretization while the substitution method is used to solve the 
nonlinearity (Tossou 2004; Robert 2008). This method is chosen instead of the Newton-
Raphson's because the calculus of the first variation of the weighted-residuals is difficult 
enough and would lead to a complex expression. 

The resulting numerical formulation (spatially and temporally discrete) of the Serre 
model gives the following iterative and incremental expression: 

(71) 



NCFL = MAX 
Af i A f l t — I U±4gH, —\v±4gH\ 

Ay I Ax 

3.5.- Initial conditions 

The initial conditions describe the state of the flow at the beginning of the simulation. 

Therefore, the characteristics of the flow must be known and imposed. Generally, the 

primary output variables of the model (i.e., the initial flow depth and the velocity 

components) in the whole domain must be specified for each flow situation. However, 

(72b) 
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where, 

M=[MW*(°U]] < 72a> 

In (72), [A/J, L^J» \ F S } and [FJ are the global (assembled) versions of the element 

matrices and vectors defined previously. The superscripts refer to the level of iteration 

whereas the subscripts refer to the time step. The symbol 6 represents the coefficient that 

defines the temporal scheme to be considered. The most usual values are: 0 = 1 for the 

backward difference scheme; 0 = 0 for the forward difference scheme; 6 = l/2 for the 

Cranck-Nicolson scheme and 0 = 213 for the Galerkin scheme. 

Finally, it should be noted that the choice of the time step value (i.e., Af ), must be made 

in reference with the size of each element of the domain mesh (i.e., Ax and Ay ). 

Therefore, this is subjected to the following stability condition characterized by the 

Number of Courant-Friedrichs-Lewy (NCFL) (see, Liska and Wendroff 1999): 

<1 (73) 
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those initial conditions depend on the flow situation at hand so that they will be presented 
individually for each test of validation investigated in the next chapter. 

3.6.- Boundary conditions 

For the overall flow simulations in this study, a rectangular channel is used. Thus, the 
upstream, the downstream and the two sidewalls are the boundaries of the domain. As 
boundary conditions, the water level or the total water depth is known and imposed at the 
upstream whereas the sidewalls are assumed impermeable in each test. For the 
impermeability condition, the velocity component that is normal to the walls, is set equal 
to zero and the tangential component is let free. For the downstream, the condition to be 
imposed must be chosen delicately. Indeed, the definition of the boundary conditions at 
the open boundaries remains an old problem in Regional Ocean modeling so that in the 
past decade, there has been much interest in the development of such conditions for use 
in numerical models. 

The purpose of the open boundary conditions is to permit the passage of outward 
propagating disturbances with a minimum of reflection. Many different schemes have 
been proposed in the literature and the principals are listed as follows: 

S The Sommerfeld approach, which is the basis of the radiation methods 
(Sommerfeld 1949); 

S The Orlanski method, which is an adaptative version of the previous one 
mentioned (Orlanski 1976); 

S The Flather technique, which is a temporal integration of the Sommerfeld 
conditions (Flather 1976); 

S The periodic boundary conditions for which, the flow hydrodynamics (velocity 
and water depth) are assumed cyclic or periodic (Brechler 1992); 
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V The characteristic boundary conditions for which, the incoming characteristic 
variable is specified while leaving the outgoing one free (Nycander et al. 2008); 

J The sponge (relaxation) conditions, which have been found to have a robust 
performance in a variety of situations (Palma and Matano 1998; Nycander and 
Dôôs 2003). 

Despite the numerous methods being available, none have been found to perform entirely 
satisfactorily (Nycander et al. 2008). Indeed, to avoid reflection, it is necessary to 
separate the gravity waves from the underlying geostropbic flow (Nycander and Dôos 
2003). This is a problem, since the geostropbic flow at the boundary depends on' the 
distribution of the potential vorticity outside the boundary, which is unknown. 

The objective of this study is not to find a consensus for the different methods available. 
Consequendy, a very simple approach is adopted here. It consists to extend the channels 
to be long enough so that the flow does never reach the downstream region. Therefore, a 
zero flux is imposed as boundary conditions at the downstream and no Dirichlet 
conditions are needed (i.e., the total water depth and the velocity components are not 
specified). The weakness of this approach is that the simulations take too much time and 
computer space memory to run. However, it has the advantage of avoiding the numerical 
error due to bad imposition of such boundary conditions. 
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Conclusion 

The FEM based on the second-order TG scheme is used to solve the Serre hydrodynamic 

model in this chapter. The initial system of PDE is then transformed into an algebraic 

equation in matrix form. Those matrices are functions of the unknown variables. 

Consequently, the substitution method is applied to solve the nonlinearity. The Serre 

finite element scheme obtained is coded into algorithms (the terms of the different 

matrices generated are calculated by numerical integration). The resulting Matlab® 

computer program is used in the next chapter to simulate some chosen hydrodynamic 

flow types in order to validate this new model. 



CHAPTER 4 

Preliminary Validation of the Serre Numerical Model 

Introduction 

The validation of the numerical scheme, described in the previous chapter, is presented in 
this chapter. The performance of the Serre model is tested for some test cases with a 
known analytical solution before applying it to complex situations. Three different flow 
situations are then considered for validation: a calm water basin, a permanent uniform 
flow (aJca., Chézy flow) and a soUtary wave propagation with permanent form. For the 
overall simulations, the relative value 1E-6 of the Root Mean Square Error (RRMSE) was 
used as a stop critérium. 

The first and the second tests (the calm water basin and the Chézy flow) are some basic 
tests for which the physical expected results are known without ambiguity. Thus, if there 
are any errors within the computer program, these tests can help to detect them. Finally, 
for the third test, a permanent wave form is expected since the nonlinear and dispersive 
effects counterbalance each other (Gobbi et al. 2000). Additionally, tiiis test is interesting 
as the streamlines are highly curved for the solitary wave. 

In the rest of this chapter, each test is described and the numerical results are presented. 
Then, they are compared with the corresponding analytical solution and commented 
upon. 
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4.1.- Calm water basin 

This situation resembles a lake without both the wind effects and the free surface 
gradient. Such a validation test is used to check for possible programming errors. For this 
purpose, a rectangular closed basin with calm water serves as the control in this 
experiment. The expected physical solution is such that, without wind and a free surface 
gradient, the water will always stay calm (i.e., having no velocity) in the basin even after 
a long period of simulation. The basin is 40 m wide and 100 m long and the domain is 
meshed with 400 nonconforming triangular elements (see Figures 3.1 and 3.2) for a total 
of 900 nodes. The initial water level is t] = 4 m throughout the domain. The velocity 
components are set to zero initially everywhere and the four boundaries are assumed 
impermeable (zero normal velocities). An upwinding factor of C„p = 0.5 is used. The 
algorithm is run at a time step increment of At = 30 s and the results are presented after 
r=600s . 

Figures 4.1 and 4.2 present the computed Serre solution (water level and flow velocity 
field) throughout the domain for a flat bottom condition (i.e., Sx = 0) and for the case 
where a bed slope Sx = 0.001 is imposed. 
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Figure 4.1 : Water level and velocity field for calm water basin simulation (£,==0) 
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Figure 4.2: Water level and velocity field for calm water basin simulation (5X=0.001) 
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It should be noted, as expected, that there is no flow (calm water) in the two cases, 
meaning that the horizontal velocity components are zero everywhere. Additionally, the 
water level does not change and it maintains its initial position until the end of the 
simulation. These numerical results lead to the conclusion that the numerical algorithm is 
well implemented and that there is no error within the corresponding computer program. 

4.2.- Permanent uniform flow (the Chézy flow) 

The permanent uniform flow test is also devoted to the validation of the quality of the 
computer program. It simulates an open channel flow for which the analytical solution is 
known. The principal characteristic is that there is a uniform bed roughness (i.e., a 
constant value of Chezy's coefficient) throughout the domain. A channel 2 m wide and 
10 m long is used and it is meshed with 80 nonconforming triangular elements (see 
Figures 3.1 and 3.2) for a total of 189 nodes. The Chézy's coefficient is set to Cc ~ 50 
mm/s and a negative bed slope of Sx = -0.001 is applied. The initial total water deptii is 
set to H = 0.10 m throughout the domain and the horizontal velocity component is set to 
zero everywhere initially. The flow depth is kept at H = 0.10 m for the upstream 
boundary as well as for the downstream whereas the two sidewalls of the channel are 
assumed impermeable (zero normal velocity everywhere). An upwinding factor of C ,̂ = 
0.5 is used. The algorithm is run at a time step increment of At =30 s and the results are 
presented after T =600 s. 

Figure 4.3 gives the computed Serre solution (water level and flow velocity field) 
throughout the domain. 
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Figure 4.3: Water level and velocity field for Chézy flow simulation 

Additionally, Figures 4.4 and 4.5 present the profile of the water level and that of the 
longitudinal component of the velocity through the centerline of the channel in 
comparison to the analytical solutions. 
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Figure 4.4: Water level profile from Chézy flow simulation 
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Figure 4 3 : Profile of the longitudinal velocity from Chézy flow simulation 
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In the situation described above, the flow is one-dimensional in the direction of the slope 
of the channel bed. Consequendy, the Serre model reduces itself to its first dynamic 
equation. Furthermore, the regime becomes permanent and uniform after the flow reaches 
its stabitity (after a short period of simulation). 

Therefore, all the temporal and spatial derivatives of velocity become zero in the first 
Serre dynamic equation that remained. The flow is forever described by the following 
reduced and simplified version of the Serre model: 

dr] ^ y f U 2 
g ^ + gUi^^O (74) 

Also, the bottom of the flow becomes parallel to the free surface (the bed slope is equal to 
the gradient of the free surface of the flow) so that the following equation is true: 

ï=s- <75> 
Therefore, equation (74) becomes: 

Up\ = -SC2
cH (76) 

where the notation \U\ equals the absolute value of the longitudinal velocity component. 

It is now possible to deduce the analytical positive solution for the velocity U giving the 
following mathematical formulation of the Chézy equation: 

\u\ = CcfsH (77) 
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The application of the previous equation to the present flow situation gives: 

\u\ = CcyJ-SxH =50>/-(-0.00l)*0.1 = 0.5 mis (78) 

The expected analytical solutions are therefore, U = 0.5 mis for the velocity and 
H = 0.10 m for the total water depth, throughout the domain. 

According to the previous numerical results, a total water depth of H = 0.10 m and a 
longitudinal velocity of U = 0.5 m/s are truly obtained throughout the domain. It should 
be concluded that the Serre model perfectly simulates the Chézy flow giving exactly the 
expected analytical solutions. 

4.3.- Solitary wave with permanent form 

The purpose of this section is to verify how accurately the Serre numerical model, solved 
by the TG FEM, can compute the solitary wave propagation traveling without distortion. 

Indeed, the phenomenon known as the solitary wave consists of a wave form with a 
single crest, which propagates in fairly shallow water of constant depth, and where the 
nonlinear and dispersive effects counterbalance each other yielding a permanent form 
solution (Gobbi et al. 2000). 

Many authors have found approximate solutions for the solitary wave, including the early 
works of Boussinesq (1871), Korteweg and de Vries (1895) and Laitone (1960). Fenton 
(1972) developed a model based on a perturbation expansion around the basic shallow 
water wave theory. However, his expansion led to a Boussinesq-type model of higher 
order. Later, Longuet-Higgins and Fenton (1974) used the conservation of integral 
quantities, such as mass and energy, to arrive at extremely accurate relationships between 
several solitary wave properties, such as the wave height, energy, mass, and the wave 
Froude number. They also proved that the solitary wave with maximum wave height does 
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not correspond to the one with maximum fluid velocity at the crest, or maximum mass. 

Additionally, in a study on the stability of solitary waves, Tanaka (1986) developed an 

accurate solution scheme for the full boundary value problem of solitary waves. 

Throughout this section, the following known analytical solution is used to compare with 

the Serre numerical results (Antunes et al. 1993): 

H = H0+Sech2 

V-
38 

AHl 1 + H_ 0 / 

U = gH0 1 - ^ 

gf*o 1 + -
H o j 

y. 
t -x . (79a) 

(79b) 

where ô is the wave amplitude, Ho is the undisturbed water depth for T = 0, and xQ is the 

initial position of the crest. All the other variables in (79a) and (79b) have previously 

been defined. 

The theoretical celerity c of the solitary wave is calculated by using the formula below: 

c = ^ g ( H 0 + 5 ) (80) 

It should be kept in mind that when die computed celerity is superior to the theoretical 

value, the solitary wave is said to be supersonic. 

For this validation test, a solitary wave traveling in a horizontal rectangular channel 

1500 m x 2 m is used. Such a channel is meshed with 600 nonconforming triangular 

elements (see Figures 3.1 and 3.2) for a total of 1505 nodes. The Chézy's coefficient is 

set equal to a very large number (Cc = 1E17 mI/2/s) corresponding to a flow with virtually 

no frictional resistance. The wave amptitude is S = 0.40 m and the undisturbed water 
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depth is Ho = 10 m. The initial water depth profile throughout this simulation is given by 
the analytical equation (79a) and the initial position of the crest coincides with the origin 
of the channel centerline (i.e., xo = 0 for T = 0). This profile has already been used by a 
number of authors as an approximate initial condition for the numerical approximation of 
the dispersive shallow water equations (Peregrine 1967; Antunes et al. 1993; Kato et al. 
1994). Additionally, die associated equation (79b) is also used to derive the initial profile 
of the longitudinal velocity. The flow never reaches the downstream since the channel is 
long enough. Therefore, a zero flux is imposed as boundary conditions at the 
downstream. However, the analytical equation (79a) is used to generate flow depth 
boundary conditions for the upstream whereas the two sidewalls of the channel are 
assumed impermeable (zero normal velocities). A zero upwinding factor (i.e., Cup = 0) is 
used so that the artificial diffusion terms cancel themselves. The algorithm is run at a 
time step increment of At =0.1 s and the results are presented successively for the time 
periods T =10 s, T =20 s, T =30 s and T =40 s. 

Figures 4.6 and 4.7 show the computed results (the free surface elevation and the velocity 
along the centerline of the channel respectively) of the soUtary wave simulated in 
comparison to the corresponding analytical solution profiles. 
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Figure 4.6: Water level profiles from the simulation of solitary wave propagation 
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Figure 4.7: Profiles of the longitudinal velocity from the simulation of solitary wave propagation 
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Figure 4.8: Position of the crest of the solitary wave versus the time 

For such a solitary wave, the results from the Serre numerical model are very close to the 
expected solution since the profiles of the water depth and of the velocity coincide well 
with those analytical. The amplitude and phase accuracy is very good for the water depth 
as well as for the velocity. In all cases, the calculated wave celerity is c = 10.1 m/s which 
corresponds exactly to the theoretical value. However, it should be noted that for the time 
period of T = 40 s, the Serre numerical model overpredicts the position of the crest with 
approximatively 4 % of relative error in comparison to the theoretical expected position. 
Therefore, the wave crest tends to deviate forward slightly. We can conclude that the 
Serre model is appropriate when simulating the solitary wave propagation. This 
conclusion confirms the results obtained eariier by Antunes et al. (1993) for solitary wave 
by using the Serre equations solved by a completely different numerical approach (a 
MacCormack finite difference scheme). In their case, there was good phase accuracy. 
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However, the amplitude of the wave decays about 6-8% and the resulting loss of energy 

was supposed to be responsible of the generation of a small numerical dispersive wave. 

Conclusion 

In this chapter, the Serre model solved by the second-order TG FEM is used to simulate 

three chosen hydrodynamic flow types for the purpose of validation. The numerical 

results match exactiy the known analytical solutions as well for die simulation of a calm 

water basin as for a permanent uniform flow analysis (the Chézy flow). For die overall 

simulations, the minimum value 1E-6 of the RRMSE was achieved with a variable total 

number of iterations. 

The Serre model is also found to be suitable for die simulation of the solitary wave 

propagation. The water depth and velocity profiles that are obtained numerically show a 

good accuracy when they are compared to those analytical. Only the position of the wave 

crest after 40 s slightiy deviated forward from the theoretical one. Given that for a 

solitary wave, the nonlinear and dispersive effects counterbalance each other, the 

artificial diffusion terms were not used in this last simulation. The analysis of dambreak 

flows is presented in the next chapter to complete the Serre model application. 



CHAPTER 5 

Dambreak Flows Analysis with the Serre Numerical Model 

Introduction 

Dambreak events are not frequent, but when they occur the consequences are usually 
disastrous. In order to prevent such situations or to understand how the process will 
develop when it actually happens, knowledge of die physical phenomena involved is of 
fundamental importance for many practical situations in hydraulics, for environmental 
engineering and for the safety of many people who may be at risk. Inundation maps are 
generally produced to make risk analyses for civil protection. Of importance on these 
maps, are the elevation of the peak water level and the time required for the peak to reach 
the locations of interest. They are currently based on the numerical simulation of the 
wave propagation process and, therefore, the appropriate governing equations must be 
used to adequately simulate the flow conditions. 

Research to understand the dambreak flow processes have been of interest for quite some 
time. Indeed, Ritter (1892) established the analytical solution for the particular situation 
of a flow flooding from a basin to a rectangular, horizontal, frictionless and dry (empty) 
channel after the sudden failure of the wall between them. In his application, the basin 
and the channel have infinite lengths. Later, Dressier (1952) and Whithman (1955) 
included the effects of the bed roughness in the Ritter solution. Hunt (1982 and 1987) 
also reformulated the Ritter solution for the specific case where the basin and the channel 
have finite lengths. Stoker (1957) extended the solution to the initially wet channel bed. 
Wu et al. (1999) broadened Stoker's approach to the rivers with trapezoid sections. 
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Exceptionally, to simulate the dambreak flow situations, some authors have resorted to 
solving the NS PDE (Pohle 1952; Strelkoff 1986; Mohapatra et al. 1999). More usually, 
the assumption of hydrostatic pressure is made, and the NS equations are transformed 
into the well-known SV or SW equations, which are then applied (Katopodes and 
Strelkoff 1978; Savic and Holly 1991; SouUs 1992; Betamio de Almeida and Franco 
1993; Lauber and Hager 1998a; Lauber and Hager 1998b; Garcia-Navarro 1999; 
Hervouet and Petitjean 1999; Brufau and Garcia-Navarro 2000; Aureli et al. 2000; Wang 
et al. 2000). Even if this approach has been relatively successful in certain applications, it 
remains that the assumption of a hydrostatic pressure distribution does not seem realistic 
nor very satisfactory. 

Indeed, Basco (1989) demonstrated the weakness of the SV for dambreak modeling 
since, for this case, vertical acceleration could be quite significant. For this type of flow, 
the discharge varies rapidly in time and the vertical curvature of the streamlines 
(indicative of vertical acceleration) is non-negligible. Moreover, based on a Lagrangian 
resolution of the 2DV NS equations, Pohle (1952) and Strelkoff (1986) established that 
the pressure distribution is significandy non-hydrostatic immediately after the rupture of 
the dam. Dressier (1954) also experimentally observed that the flow depth and the breach 
discharge do not instantaneously reach constant values at the dam location. Because the 
pressure is initially non-hydrostatic, they gradually establish themselves over time. In 
addition, Kosorin (1983) demonstrated that non-hydrostatic pressure reduces the celerity 
of the dambreak wave by as much as 30 % when compared to Rider's analytical solution 
(based on the hydrostatic pressure hypothesis). Fraccarollo and Toro (1995) 
experimentally investigated the pressure behavior at the position close to the dam 
location immediately after its sudden rupture for a horizontal bed case. They found that 
the pressure at the bottom was up to 60 % higher than hydrostatic during the first two 
seconds. 

Therefore, and in this analysis of the dambreak flow, the Serre model is selected to 
overcome this SV weakness, since the dynamic pressure is taken into account in Serre's 
mathematical formulation. 
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However, for a correct representation of the dambreak phenomenon, the numerical 

schemes used must be able to model the sudden variations of the hydraulic parameters 

without introducing spurious oscillations. For this purpose, different methods have been 

proposed in the hterature (see for e.g., Katopodes and Strelkoff 1978; Katopodes and 

Strelkoff 1979; Donea 1984; Katopodes 1984; Akanbi and Katopodes 1988; Shu and 

Osher 1988; Alcrudo and Garcia-Navarro 1993; Fraccarollo and Toro 1993; Hirsch 1995; 

Zhao et al. 1996; Louaked and Hanich 1998; Brufau and Garcia- Navarro 2000; Jha et al. 

2000; Kurganov and Tadmor 2000; Wang and Liu 2000; Wang et al. 2000; Tseng and 

Chu 2000; Toro 2001). In this study, the TG approach, which was described previously, 

is used, since this scheme has already been applied successfully to dambreak problems 

(Quecedo and Pastor 2003) and to a wide variety of other situations where advection 

phenomenon is significant (Satjan and Oden 1995; Tamma and Namburu 1988; Zhang 

and Tabarrok 1999; Mabssout and Pastor 2003a). 

For the overall dambreak flows simulated in this chapter, the relative value 1E-6 of the 

Root Mean Square Error (RRMSE) was used as a stop critérium. 

The rest of this chapter is structured as follows: first, the basic test case and the Stoker 

(1957) analytical solution are described. Then, the numerical results are presented and 

discussed in light of the tradional SV solutions. Finally, the influence of the variation of 

the principal variables (bed slope, bed roughness and ratio of the water depths upstream 

and downstream respectively) is investigated before the conclusion. 

5.1.- Description of the basic test case 

The first test case simulates the flow in a horizontal frictionless 100 m x 1000 m channel, 

after the instantaneous failure of a dam situated at xo - 500 m. The domain is meshed 

with 800 nonconforming triangular elements (see Figures 3.1 and 3.2) for a total of 2005 
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nodes. The initial bed slope is set equal to zero and the Chézy's coefficient is set equal to 
a very large number (Cc = 1E17 ml/2/s) corresponding to a flow with virtually no 
frictional resistance. The initial flow depth is Hu = 6 m for the upstream half and 
Hd = 2 m for the downstream half. The velocity components are equal to zero initially 
everywhere. The total water depth Hu = 6 m is imposed as boundary conditions at the 
upstream and the two sidewalls of the domain are assumed impermeable (zero normal 
velocities). In addition, the flow never reaches the downstream since the channel is too 
long. Therefore, a zero flux is imposed as boundary conditions at the downstream. 
Figure 5.1 presents a plot of the initial state of the system. An upwinding factor Cup = 0.5 
is used for the artificial diffusion. The algorithm is run at a time step increment of 
At = 1 s and the results are presented after T = 30 s. 
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Figure 5.1: The initial state of the dambreak flow situation 
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5.2.- Analytical solution 

For this basic test case, the Stoker (1957) analytical solution can be applied with the 
following mathematical formulation: 

H(x, t) = 

Hu if x/tZ-JgH. 

9g 
2 > / i ^ " 7 if -y[g^<x/t<(um-rJglT) 

t ) ^ i 

Hd if x/t>sb 

U(x, f) = 

0 if x / t < - J g l 7 

f(f+>/i^) '/ -^<ïh±{vm-4gX) 
Vm if {u m -^ ÏT)<xl t<s b 

0 // x/t>s. 

(81a) 

(81b) 

where, x = x-x 0 , with x0being the location of the discontinuity. The water depth Hm 

and the velocity U at the middle of the domain are two constant values, given below: 

H =■ i+ii-i 
« f l -

H_ 
J 

« f l . 
U = s -

m " 4s, 
1 + J1 + -

gHd 

(82a) 

(82b) 
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The bore celerity sb is determined by calculating the positive real root of the following 

equation after the substitution of (82a) and (82b) into (83): 

Um + 2jg~iT-2jgH u=0 (83) 

5.3.- Numerical results 

Figures 5.2 and 5.3 present respectively the computed Serre water level and flow velocity 
profiles along the centerline of the channel, and they are compared to the Stoker (1957) 
analytical solution and to the results from the classic SV model. 
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Figure 5.2: Dambreak water level profiles at T=30 s 
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Figure 53 : Dambreak flow speed profiles at T=30 s 

Those results show that there are two waves: one traveling upstream, called a rarefaction 
wave (or depression) and one traveling downstream, called a bore. For this test, the shape 
of the profiles (water level and longitudinal velocity) simulated by the Serre model and 
those given by the SV are both in a good agreement with the Stoker analytical solution 
although there are some small differences in both wave amplitude and particularly wave 
celerity. As predicted by Stoker (1957), the flow is permanent and uniform in the bore 
region for the SV model. On one hand, the total water depth predicted by Serre is 
superior to that predicted by SV in the rarefaction region and inferior in the bore region. 
On the other hand, the celerity of both the positive and negative waves predicted by the 
Serre model is smaller than that predicted by the SV model. For example, at T - 30 s, an 
approximate value of St - 8.5 m/s was obtained for the SV bore celerity whereas 
si, = 7.5 m/s for the Serre's. Thus, the hydrostatic SV model has overpredicted the bore 
celerity by as much as 13.33 % when compared to Serre's nonrhydrostatic solution. This 
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observation is consistent with what was found earlier by Kosorin (1983) who 
demonstrated that the non-hydrostatic pressure reduces the celerity of the dambreak bore 
predicted by the hydrostatic SV model. 

Figure 5.4 shows the temporal overprediction (i.e., outdistancing) of the SV bore on 
Serre's. 
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Figure 5.4: Outdistancing of the SV bore compared to Serre's 

An approximate outdistancing of 47.5 m was observed after 30 s of simulation. The value 
of that outdistancing increases in time although its rate decreases. Thus, the dynamic 
pressure is truly present in a dambreak flow and it is caused by the vertical acceleration 
(due to the rapid variation of the flow over the vertical and to the significant vertical 
curvature of the flow path). 
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Additionally, the water depth profile predicted by SV crosses the Serre's in the bore 
region and the value of the wetted section passing there is the same for both models (see 
Figure 5.2). Since the positive horizontal pressure gradient does exist for the Serre model 
because of the dynamic pressure taken into account in its formulation (such gradient is 
always zero for SV), the flow rate must be greater through such a wetted section. 
Consequently, the flow speed must be superior for Serre man for SV at that position, 
which is consistent with the numerical results (see velocity profiles at Figure 5.3). 

This simulation revealed also that the shock wave (the bore) is well resolved without 
post-shock oscillations evident in the solution. The upwinding technique that consists of 
adding artificial diffusion terms by using the second-order Taylor series expansion is 
efficient for shock-capturing in dambreak situation without decreasing the quality of the 
numerical results. 

5.4-- Influence of the bed slope 

The simulations presented here are devoted to the study of the channel bed slope 
influence. For this purpose, two other bed slopes (Sx = 0.001 and Sx = 0.005) were 
considered successively in addition to the first test case where Sx = 0. 

Figure 5.5 presents the plots of the water level profiles for the Serre model for the 
different values of the bed slope. For the sake of conciseness, the velocity profiles are 
omitted. 
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Figure 5.5: Influence of the bed slope (Sx) on the dambreak solution according to Serre 

The numerical results show that the celerities of the dambreak waves (bore and 
rarefaction) increase when the bed slope is greater. This behavior is principally due to the 
fact that, when there is a bed slope, the total vertical forces within the flow, generate 
some additional horizontal components that contribute to accelerating the fluid 
downwards. For the Serre model, such total vertical forces are caused both by the 
hydrostatic and dynamic pressures. Therefore, the resulting horizontal forces are greater. 
Consequently, the celerity increases both for the bore and for the rarefaction. Such 
observations are true for the Serre model as well as for the SV. 

Figure 5.6 presents a plot of the resulting outdistancing progression curves for the three 
bed slopes being investigated (Sx= 0, &= 0.001 and Sx= 0.005). 
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Figure 5.6: Influence of the bed slope on the outdistancing of the SV bore compared to Serre's, 

The outdistancing does decrease with the increase of the bed slope. As such, the celerity 
increases more for the Serre bore than for that of the SV. Indeed, the dynamic forces 
become greater due to the vertical accelerations that are taken into account in the Serre 
model. Consequendy, the bore and the rarefaction move more quickly for the Serre 
model than for the SV such that the outdistancing is reduced. 
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5.5.- Influence of the bed roughness 

The purpose of this section is to evaluate the influence of the domain bed roughness 
variation. Indeed, the Chézy's coefficient is successively set to Cc= 60 m05/s and to 
Cc= 30 m°'5/s. The particularity of the Chézy's coefficient is that a smaller value of this 
parameter means that the bed is rough, whereas a great value would signify a smooth bed. 
For the sake of conciseness, the velocity profiles are omitted. 

Figure 5.7 presents plots of the water level profiles respectively for the Serre model for 
the different values of the bed roughness. 
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Figure 5.7: Influence of the bed roughness for T=30 s 
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The numerical results show that the increase of the bed roughness does not affect notably 
the celerity of the dambreak waves (bore and rarefaction) when the Chézy's coefficient 
changes from Cc - 1E17 m / s to Cc = 60 m°'5/s. However, for the case where 
Cc=30 m°'5/s is imposed, a significant decrease of wave celerities is observed. Therefore, 
it should be concluded that the increase of the bed roughness, delays the speed of the 
dambreak waves. Physically speaking, the frictional stresses become important and they 
reduce the velocity of the flow throughout the domain. Such behavior is observed for 
both the Serre model as for the SV. 

Figure 5.8 presents a plot of the resulting outdistancing progression curves, for the three 
values of the bed roughness. 
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Figure 5.8: Influence of the bed roughness on the outdistancing of the SV bore compared to Serre's 



73 

The outdistancing increases with the significant increase of the bed roughness. As such, 
the bore is more delayed for the Serre model than for the SV. Indeed, it is well known 
that the forces of friction are proportional to those that are normal to the sheared surface. 
As such, the SV model considers only the hydrostatic pressure force as normal force; 
whereas in the Serre model, the normal force is generated both by the hydrostatic 
pressure and by the dynamic one. Consequently, in a dambreak flow, the forces of 
friction are greater for Serre than for SV and this situation results in a greater reduction of 
the celerity of the Serre bore. 

5.6.- Influence of the water depths ratio 

In this section, the impact of the variation of the ratio HJH^ of the two water depths 
upstream and downstream respectively is assessed for & = 0 and Cc = IE 17 mm/s. 
Therefore, the pair (Hu, HJ) is successively set to (6 m, 4 m) and (6 m, 3 m) for two 
additional simulations. It results in three different values for the water depths ratio left to 
be investigated: 6/4=1.5,6/3=2 and.6/2=3. 

Figure 5.9 presents the plots of the water level profiles for the Serre model for the 
different values of the water depths ratio. For the sake of conciseness, the velocity 
profiles are omitted. 
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Figure 5.9: Influence of the water depths ratio for T=30s 

The numerical results show that the increase of the water depths ratio HJHj reduces the 
celerity of the dambreak waves especially for the bore because when that ratio becomes 
smaller, the intensity of the shock is weaker. The total force, normal to the bed, becomes 
more important when the ratio is greater and consequently, the flow speed is reduced. 

Figure 5.10 presents a plot of the resulting outdistancing progression for the three values 
of the water depths ratio (H„/Hd =1.5,2 and 3). 
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Figure 5.10: Influence of the ratio HJH_ on the outdistancing of the SV bore compared to Serre's 

The outdistancing increases with the increase of the water depths ratio. The principal 
explanation could be that the supplementary dynamic pressure in the Serre model 
contributes to generate some additional forces, which delay the wave celerity. 
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Conclusion 

In this chapter, the finite element solution of the 2DH Serre hydrodynamic model is 
applied to simulate some dambreak flow situations. In each case, the minimum value 
1 E-6 of the RRMSE was achieved with a variable total number of iterations. 

The overall dambreak flow simulations considered here lead to the conclusion that the 
Serre additional terms delay the celerity of the bore (i.e., the dambreak wave traveling to 
the downstream). Consequently, the SV bore outruns that simulated by Serre. For the 
basic test case described firstiy and after 30 s of simulation, the hydrostatic SV model has 
overpredicted the bore celerity by as much as 13.33 % when compared to Serre's non-
hydrostatic solution yielding an approximate outdistancing of 47.5 m. Indeed, the Serre 
terms translate the presence of some vertical acceleration within the dambreak flow, 
which delays the flow speed. As a result, the celerity value is reduced as well for the bore 
as for the rarefaction (i.e., the dambreak wave traveling to the upstream). Physically 
speaking, the rapid variation of the dambreak flow and the significant curvature of the 
streamlines over the vertical cause some dynamic pressure whose impacts cannot be 
ignored. 

Additionally, it was noted that as the bed slope increases, the celerity for the Serre bore 
increases more rapidly than the SV one. Consequently, the amount of the outdistancing of 
the SV bore decreases with increasing the bed slope. Furthermore, as bed roughness and 
water depths ratio increase, outdistancing increases due to the greater importance of 
pressure in the hydrodynamics and Serre's ability to correctly account for that effect. 

From a technical point of view, the shock wave (the bore) was well resolved without any 
significant post-shock oscillations evident in the solution. It is concluded that the 
upwinding technique, which consists of adding some artificial diffusion terms using the 
second-order Taylor series expansion, is then efficient means for shock-capturing in 
dambreak situation without decreasing the quality of the numerical results. 



CHAPTER 6 

Extension of the Serre Model for Fully Non-Hydrostatic Flows 

Introduction 

The 2DH Serre hydrodynamic model has been used in the previous parts of this thesis to 
take into account the dynamic pressure, which could be significant in some types of free 
surface flow. In the Serre model, such dynamic pressure is caused only by the total 
vertical acceleration. Therefore, an assumption of inviscid flow over the vertical is also 
made, which leads to the cancellation of the viscous shear stresses terms in the third NS 
momentum equation, while they are retained in the two others. Consequently, the Serre 
model does not represent a generalized solution applicable to all types of non-hydrostatic 
flow situations. 

This chapter presents the development of a new 2DH model called the "Saint-Venant 
Plus" (SVP). It describes the hydrodynamic characteristics of free surface flows while 
specifically accounting for the total dynamic pressure effects. In SVP, the dynamic 
pressures are induced both by the viscous shear stresses over the vertical and by the total 
vertical acceleration. The SVP is similar to the Serre, but the pressure is entirely non-
hydrostatic. The dynamic component is established in a much more generalized manner 
by including the vertical viscous frictions. Even if the physical water viscosity is small, a 
number of factors make the Serre and SV assumption of inviscid flow over the vertical 
invalid in many cases. The effect of even a small amount of viscosity cannot be neglected 
near vertical fluid boundaries because of the presence of a boundary layer. For example, 
the viscous shear stresses on rough walls could become significant for many open-
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channel flows particularly when the flow varies rapidly over the vertical. As such, the 
SVP aims to be an accurate representation of 2DH flows that truly account for both local 
and convective vertical accelerations as well as for the inner viscous frictions over the 
vertical. 

In the rest of this chapter, the basic SVP hypothesis is presented as well as the general 
equation for pressure and its gradients within flow. Subsequendy, the step-by-step 
development of the two dynamic SVP equations follows. Finally, a discussion of the 
equations derived is presented, with a mathematical comparison to the SV and Serre 
models. 

6.1.- SVP model assumption 

The SVP equations rest fundamentally upon the hypothesis that the horizontal velocities 
are constant over the vertical (i.e., u = f/and v = V ). This means that the deviations, over 
the vertical, of the horizontal velocity components from their averaged value, are 
negligible as it was assumed previously for the development of the Serre equations. 
However, contrary to Serre and S V, the assumption of inviscid flow over the vertical is 
not made. As such, the vertical viscous shear stresses are not simplified and the overall 
terms in the third NS momentum equation are considered for the development of the 
SVP. However, only the physical water viscosity is used to calculate the friction shear 
stresses in the third NS momentum equation. 

The procedure to develop the SVP equations is exactiy identical to that used to establish 
the Serre model. It consists of calculating the vertically-averaged expression of the 
continuity equation (3a) and of the three resulting NS equations (3b, 3c and 3d). This 
leads to a system consisting exactly of the standard SV equations (6) but with some 
additional terms due to the vertical integration of the dynamic pressure gradients. The 
overall procedure to develop the SV model is fully described by Tossou (2004), Hervouet 
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(2003), Viollet et al. (1998) and Van Rijn (1994). However, this work will simply focus 

on the vertical integration of the gradient pressure terms, and the resulting expressions 

must be added to the SV equations in order to form the SVP. The first step of the 

procedure is to establish the general expression of the vertical velocity. This leads exactiy 

to the same equation (10) obtained for the Serre model and it will be considered for the 

following development. 

6.2.- General expression of the pressure field 

Starting with the mathematical expression of the vertical velocity, i.e., equation (10), it is 

possible to establish the general equation of the pressure field. To proceed, it is necessary 

to calculate the material derivative of the vertical velocity and then replace the expression 

obtained into the third NS momentum equation, i.e., equation (3d). 

From equation (10), the material derivative of w gives: 

Dw Dw DL, \ i \ 
= [ z - z . \—L\w- w.) 

nt nt n t \ n \ f ) 
(84) 

For the sake of conciseness, the total acceleration of the bottom of the flow, i.e., the 

variable Dw /Dt that is independent of z will be renamed P\x, yjdefined as follows: 

/ x Dw. P(x, y )= -£ (85) 

However, the variable p(x, yj will be simply denoted P for the sake of simplicity. 

The substitution of the general expression (10) of the vertical velocity into (84) taking 

into account equation (85) yields: 
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%->+[",) 
DL 

V -
Dt 

(86) 

The vertical velocity w calculated at the position t] of the free surface of the flow gives: 

w = w , - LH 
i f (87) 

The vertical velocity wH of the water column gives: 

DH Dr] Dz 
= —'- J -=w -

Dt Dt Dt ■ w f 
(88) 

The substitution of equation (87) into (88) gives: 

DH 
Dt 

= -LH (89) 

Moreover, the material derivative of equation (89) yields: 

ITH DL 
= - — H - L 

Dt1 Dt 
DH 
Dt 

(90) 

For the sake of conciseness, the acceleration of the total flow depth, i.e., the variable 

D2H/Dt , which is independent of z will be renamed a(x, y J defined as follows: 

a(x , y) = D
2H 

Dt2 (91) 

However, the variable a ix , y) will be simply denoted a for the sake of simplicity. 
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Substituting (89) and (91) into (90) and rearranging the resulting equation yield: 

DL 
Dt 

= L 2 - ^ 
H 

(92) 

The substitution of (92) into (86) yields the final expression of the derivative of the 

vertical velocity: 

Dw 
Dt -'♦(«"/)§ (93) 

In addition, by using the physical water viscosity to calculate the friction shear stresses, 

the third term in the LHS of the third NS momentum equation (3d) becomes: 

dx__ dx dx 
dx dy dz 

= V 
(d 2 w d_w d_y] 

d x 2 + d y 2 + dz2 (94a) 

Thereby substituting the general expression of the vertical velocity, i.e., equation (10), 

into the tenn v( d2w/dx2 + d2w/dy2 + d2w/dz2 j , it is reformulated and yields: 

' ( d 2 z 
( d 2 w d2 O'w d2w 

dx2 dy2 dz2 = V 

* 
dx2 dy2 

d2wf 

17 
d V dL dz dL dz 

+ }- + 2 L + 2 -
dy2 dx dx dy dy J 

fz.2 
- v 

d2L d2L 
+ a*2 dy M«-«/) (94b) 

For the sake of conciseness, two intermediate variables A\x, y J and Byx, yj are 

created and defined as follow: 

A(x, y) = v 
f # L # L } 

d x 2 + d y 2 (95a) 
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B(x, y) = v 
( ( d 2 z , d-2_ ^ 

/ 
[dx2 dy2) 

d2w d2w dLdz d L d z } 
H J- + J— + 2 —+ 2 — 

dx2 dy2 dx dx dy dy 
(95b) 

However, the variables A\x, y j and B\x, y j will be simply denoted A and B 

respectively for the sake of simplicity. 

The substitution of (95a) and (95b) into (94b) gives: 

' d2w d2w (Fw 

"rV+a7+a? 
= - A ( z - z f ) + B (96) 

.After those preliminary transformations, (93) and (96) are substituted into the third 

simplified NS momentum equation (3d) to give: 

. i | = ( , . f l + / , ) + 1 + A y Z f ) (97) 

Finally, the last step to establish the general expression for the pressure field is to 

vertically integrate (97) from an arbitrary surface (z ) within the flow to the position of 

the free surface (j) ). 

Therefore, the vertical integral of the LHS of (97) is calculated by taking into account the 

fact that free surface pressure ( p ) is equal to atmospheric pressure, which is zero. This 

results in: 

ff 

P 
ï à a i L B + B ) B £ 
dz p \ " ' p 

(98) 
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Next, the vertical integral of the RHS of (97) is calculated by taking into account the fact 

that, except z, the other variables (i.e., a , P , A , B , H , z and g ) are independent of z. 

This results successively in: 

ff 

z 

ff 

( g - B + p ) d z = ( g - B + p)( r ] -z) 

± + A ) (z -z f ) ikJ±+A 
/ „ 2 2 "\ 

(99a) 

(99b) 

The sum of equations (99a) and (99b) gives the vertical integral of the RHS of (97): 

/ \ \ 
( g - B + p)+ 2 - + A \ ( z - z f ) dz = ( r ] - z ) ( g - B + p) + (r]-z) 

\ n J J 
0 1 4 — +A 
H 

r n+z 
— z 

V 2 / 
(100) 

Finally, the vertical integral of the third NS momentum equation (3d) is formed by using 

equations (98) and (100) and yields the general expression of the SVP pressure field: 

p(x, y, z, t) = pg(r]- 'z) + p ( -B+p) ( r ] - z ) + — +A 
/ 2 2 
1 r \ r -z - zAv-z ) (101) 

The first term in the RHS of (101) represents the equation of the hydrostatic pressure 

distribution whereas the other terms represent the expression of the SVP dynamic 

pressure due to the total vertical acceleration as well as to the viscous frictions within the 

flow over the vertical. If the vertical viscous frictions are neglected (i.e., if A = B = 0 ), 

the RHS of (101) is reduced to the Serre pressure field equation. 
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6.3.- General equations for pressure gradients 

Having established the equation describing the SVP pressure field, it is now necessary to 

characterize the SVP pressure gradients. 

One obtains the pressure gradient along the x-axis by deriving each of the terms of 

equation (101) with respect to x. This derivation gives successively: 

| [ p ( g + , . B ) ( n . z ) ] = p ( | . | ) ( l , . 2 ) + p ( g + / J ^ ) : | 
dx 

d^ 
dx 

a A 

— + A 
H 

( 2 2 \ 
1 r \ r - z 

2 ~ ~ 
z f ( r ] - z ) J_\ 

= P dx 
— + A 

V " J 

77 - z 

M*-2). 
+ P 

a 

— + A 
H . ' dx ) 

(102a) 

(102b) 

and the sum of the equations (102a) and (102b) gives the pressure gradient expression in 

the x direction: 

1 dp (dp d B \ x / a 

pdx 

d 
+ dx~ 

f a 
H 

+ A 
^ « 2 ~2 

r] - z 

\ " J 
-zf{n-z) 

dx 

H + A 
\ " J 4H"-^ 

(103a) 

The same procedure establishes equation (103b) that represents the pressure gradient 

expression in the y direction: 

1 dp dp dB 
pdy [dy dy, 

A 

(i-*W*+*-*)f 
+ |(#+4^,(-H 

v 
±+A " r»*R I & i ) 

(103b) 
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6.4.- Vertically-averaged pressure gradients 

Having characterized the SVP pressure gradients, it is now required to integrate them 

over the vertical to establish mean expressions for a 2DH application. Therefore, each 

pressure gradient term will be considered individually and its integration over the vertical 

will be presented: 

J_ 
H 

V 
r d p _ d B ^ 
ydx dx J 

(r]-z)dz = -
1 ( d p _ d B " 

vdx dx j 
(r]-z)dz = — ' d p _ d B y 

^dx dx j 

f 

ff 

J_ 
H 

(*+/.-*)£*->/,-*)£ 
ff 

*-(.♦*-*£ 

(104a) 

(104b) 

J_ 
H dx 

a + A 
V * * J 

f 1 1 
' r ] 2 - z 2 

- z f ( t ] - z ) \ d ( a \ 
3 d x \ H 

„ 2 H d a a d H IdA „ , 
H 2 = — — + - — H2 

3 or 3 dx 3 doc 

(104c) 

H 

V 

n 

+ A 
K " J 

H ^ r ] - z ) ^ \ d z = {a + AH) 
V 

An. 
dx dx 

dr] 1 d z / 
L 

dx 2 dx 
(104d) 

The sum of (104a), (104b), (104c) and (104d) by taking into account the fact that, 

z f = t ] - H , yields: 
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ff 

J_ 
H 

\ d p , 
~ \ i : d z 

pdx 

H_ 
2 

d p d B 
dx dx 

-U+/Mf dr] 
dx 

H da a d H loM 2
N 

K 3 dx 3 dx 3 dbc 

- ( a + AH) 
' dy \ d ( r ] - H y 

dx 2 dx 

(105) 

After expansion, simplification and rearrangement, equation (105) results in (106a), 

which is the final mathematical formulation of the vertically-averaged pressure gradient 

in the x direction: 

ff 

_l_ 
H 

]_d£ 
pdx 

dz = 
dx dx 

P - B a 
— + — 

2 3 

dn 
dx 

(a + AH) 
2 ~ 

HP-B) 

dH/ 
d x y 

a AH 
—+ 
6 2 

i f d A 
3 dx 

(106a) 

Similarly, equation (106b) is the mathematical formulation of the vertically-averaged 

pressure gradient in the y direction: 

ff 

H pdy 
dz = 

dy dy\ 
- B a 

+ — 
2 3 

Br/ 

dy 

z . 

(a + AH) 
2 ~ 

\+(P-B) dy 
a AH 
—+ 
6 2 

I f d A 
3 dy 

— (106b) 

On the RHS of (106a) or (106b), the first term represents that of the hydrostatic pressure 

gradient while the other terms account for dynamic pressure forces on the flow (due to 

the sudden vertical flow variations, the vertical curves in the flow paths and the viscous 

friction over the vertical). 
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6.5.- Mathematical formulation of the SVP equations 

The 2DH SVP model is obtained by adding the dynamic pressure terms to the standard 

SV equations. Therefore, the hydrostatic pressure gradients terms (i.e., -gdrf/dx 

and-gdri/dy) on the RHS of the two SV dynamic equations (6b and 6c) are simply 

replaced with the RHS of (106a) and (106b) respectively. Adding the 2DH continuity 

equation to close the resulting system and rearranging yield: 

dH d(HU) d(HV) 
— + — '- + -+ ^ = 0 
dt dx dy 

dU TTdU TrdU 1 
-—- + U-— + F - — + 
dt dx dy pH ( * - < ) " dx 

dU W \ 
v —— + v 

V abc dy dy 
dU d U \ 

v —— + v —— 
" dx » dy J 

df l = _ H dJ 
dx dx 

P - B a ] dr, 
2 3 ax 

' ( a + AH) . ' 
i -—l+(f i-B) 

)H(a AH^ H2 dA 
6 + 2 J 3 dx dx V 
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(107a) 

(107b) 

(107c) 

In this system, all the variables have been previously defined. 

The first equation (107a) represents the 2DH continuity equation (i.e., conservation of 

mass) while the two following equations represent the 2DH SVP dynamic equations, i.e., 

conservation of momentum). The principal unknown variables are the mean velocities 

( U and V ), the position of the free surface of the flow (TJ ) and/or the water depth ( H) . 

These SVP equations can model the flows with dynamic pressure at a solid bottom, as 

well for the case where the bottom is also a free surface as in a free overfall (e.g., weirs). 

In the latter case, the bottom level zf also becomes an unknown variable, which would 

require a fourth supplementary equation to close the system. 
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For solid bed applications, the SVP equations could be useful to simulate high-amplitude 
waves propagating in shallow water. They could also be used for many applications 
related to highly unsteady flows (e.g., dambreak simulations) or to highly non-uniform 
flows (e.g., spillway, transition flows). 

The RHS of the two dynamic equations (107b) and (107c) are the supplementary terms 
that are added to the traditional SV equations to form the SVP ones and they translate the 
effects of dynamic pressure on flow. They are characterized by the presence of Serre's 
formulation of the vertical accelerations expressed as a (total water depth increase 
acceleration) and P (vertical acceleration of the bottom flow). Moreover, the SVP 
dynamic pressure consists of the Serre's with some additional terms caused by the 
vertical viscous frictions. Then, SVP model puts into evidence the variable A (the 
increase of the acceleration a per unit of flow depth due to the vertical viscous frictions) 
and the variable B (the increase of the acceleration )3 due to the vertical viscous 

frictions). If the flow is assumed inviscid over the vertical (i.e., if A = B = 0 ), the effects 
of the vertical viscous frictions on dynamic pressure become zero and the SVP equations 
reduce themselves to the classic Serre model. Moreover, if the effects of vertical 
accelerations are neglected or are negligible (i.e., if a = P = 0 ) and the flow assumed 

inviscid over the vertical (i.e., if A= B = 0), the RHS of the two dynamic equations 
(107b and 107c) become zero and they reduce themselves to the classic dynamic 2DH SV 
equations. 
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Conclusion 

The 2DH SVP model is established to describe the hydrodynamic characteristics of free 
surface flows under dynamic pressure effects due both to the total vertical acceleration 
and to the vertical viscous frictions. The only assumption about the horizontal velocity 
components constant over the vertical is used to simplify the 3D NS and the resulting 
equations are then integrated vertically to generate the SVP. The system obtained consists 
of a 2DH continuity equation and two dynamic 2DH equations. This model is an 
extended version of the SV equations in which, the effects of both the total vertical 
acceleration and the vertical viscous frictions are included. It can also be considered as a 
more general formulation of the Serre model. Indeed, if the flow is assumed inviscid over 
the vertical, the viscous shear stresses in the third NS are cancelled and the SVP is 
reduced to the Serre model. Moreover, the SVP equations contain the same terms as those 
found in the SV and Serre formulations but they also contain supplementary terms that 
correctly account for dynamic pressure, which allows for the simulation of a number of 
very diverse natural flows. Thus, the SV, Serre and SVP all exploit the same types of 
entry variables, boundary conditions and exit variables but the SVP also outputs a more 
general formulation of the total pressure profile than that provided by Serre. In the SVP 
supplementary terms, there is the presence of higher order derivatives, which particularly 
increases the complexity of their resolution. Consequently, at the application level, this 
may result in additional computational effort. However, its numerical solution is not 
presented here because it is not the focus. 



CHAPTER 7 

Conclusion and perspectives 

The Serre equations (Serre 1953) that describe the horizontal two-dimensional (2DH) 
hydrodynamics (water velocity and water level) of free surface flows are presented in this 
study. They are proposed as an alternative to the 2DH shallow water (SW) equations, i.e., 
the Saint-Venant (SV) model, for non-hydrostatic free surface flows modeling. 

The mathematical formulation of the Serre model is very similar to the more traditional 
2DH SV equations except, in the latter, a hydrostatic pressure distribution is assumed 
whereas Serre includes some additional terms in the momentum equations to account for 
some types of non-linear pressure dynamics due to the water having some important 
vertical acceleration. Thus, the effects of the sudden variations in flow over the vertical 
and the significant vertical curvature of the streamlines are taken into account in the 
resulting equations. To develop such formulation, the main assumptions were that the 
vertical velocity component of the flow varies linearly from the bottom of the flow to the 
free surface and that the flow is inviscid over the vertical. However, the presence of 
higher order and mixed (spatial-temporal) derivative terms in the Partial Differential 
Equations (PDE) makes the model very difficult to resolve numerically making it so 
poorly documented and/or so poorly understood. Therefore, this work allows the model 
to be more widely used by clearly explaining its assumptions and by deriving its 
equations step-by-step. Subsequently, the mixed spatio-temporal derivatives in the PDE 
are separated for solid bed applications (i.e., no free overfall) so that the principal 
difficulty is eliminated. 

For the numerical resolution of the new formulation of the Serre PDE, the second-order 
Taylor-Galerkin (TG) scheme is used. Thus, under some simplifications and based on a 
Taylor series expansion of the time derivatives, some artificial numerical diffusion terms 



91 

are introduced both in the continuity and two dynamic equations. Subsequentiy, the more 
traditional finite element procedure is applied to the resulting modified model, which is 
suitable for the simulation of the flow situations with dominant advection phenomenon. 
The triangular nonconforming elements are used for the spatial discretization since they 
have some interesting orthogonality properties that improve the accuracy of the 
numerical results and also reduce the duration of the computations. Therefore, the water 
depth is calculated only at the vertex nodes while the velocity components are estimated 
at the middle nodes. Thus, the Serre system, which initially consists of some PDE, is 
transformed into an algebraic equation in matrix form. The resulting computer program is 
implemented with Matlab® to simulate some chosen flow situations. However, the 
imposition of the unknown open downstream boundary conditions was the principal 
difficulty encountered since there is no consensus in the literature about the methods 
being used. Consequently, in our applications, the channels are chosen to be long enough 
so that the flow never reaches the downstream region. Thus, only a zero flux is imposed 
as boundary conditions. The weakness of this approach is that the simulations take too 
much time and computer space memory to run. However, it has the advantage of 
avoiding the numerical error due to bad imposition of such boundary conditions. 

For the preliminary validation, a calm water basin, a permanent uniform flow (the Chézy 
flow) and a solitary wave propagation are simulated before applying the model to a 
complex situation (i.e., dambreak flow). In each case, the analytical solution is known 
and is compared to the numerical results. For the two first tests, the boundary conditions 
are adequately imposed at the overall limits of the domain since they are known. As 
numerical results, the calm water basin, still without flow (zero velocity and no change to 
the flow depth throughout the domain) for the case where the bottom of the channel is flat 
as well as for the case where a constant bed slope is imposed. This means that there is no 
error within the computer program. Also, the simulation of the Chézy flow showed that 
the water depth is constant throughout the channel; the flow is one-dimensional and the 
velocity is uniform in the direction of the flow. The corresponding constant value of the 
velocity is equal to the amount estimated by means of the Chézy theoretical equation. It 
was deduced that even with some additional artificial diffusion, the Serre numerical 
model can adequately simulate the permanent uniform flow. The third test is the solitary 
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wave propagation with the particularity that the artificial diffusion terms are neglected 
since for this flow situation, the nonlinear and dispersive effects counterbalance each 
other. The analytical solution is also available. The downstream boundary conditions are 
unknown, thus the zero flux approach is imposed at that open downstream limit of the 
domain. The water depth and the velocity profiles that are obtained numerically with the 
Serre model are consistent with the analytical ones. 

.After successfully completing the three preliminary tests, dambreak flows are simulated, 
given that they are characterized by the presence of non-hydrostatic pressure distribution 
and the fact that the advection phenomenon is dominant. On one hand, a horizontal and 
frictionless channel is used for the basic test case so that the Stoker (1957) analytical 
solution can be applied. On the other hand, the additional tests are devoted to the study of 
the influence of some important parameters (i.e., bed slope, bed roughness and ratio of 
the water depths upstream and downstream). Once again, a zero flux is also imposed at 
the downstream as open boundary conditions in overall cases. The simulations underline 
two dambreak waves: one traveling upstream, called a rarefaction wave (or depression) 
and one traveling downstream, called a bore. For this basic test, the shape of the profiles 
(water level and longitudinal velocity) simulated by the Serre model and those given by 
the SV are both in a good agreement with the Stoker analytical solution although there 
are some small differences in both wave amplitude and particularly wave celerity. The 
celerity of both the positive and negative waves predicted by the Serre model is smaller 
than that predicted by the SV model. Consequently, the SV bore outruns that simulated 
by Serre. This observation is consistent with what was found earlier by Kosorin (1983). 
For example, the SV bore celerity was up to 13.33 % higher than what was predicted by 
the Serre non-hydrostatic model after 30 s yielding an approximate outdistancing of 
47.5 m. Thus, dynamic pressure is truly present in a dambreak flow and it is caused by 
the vertical acceleration (due to the rapid variation of the flow over the vertical and to the 
significant vertical curvature of the flow path). Additionally, it was noted that as the bed 
slope increases, the celerity for the Serre bore increases more rapidly than the SV one. 
Therefore, the amount of the outdistancing of the SV bore decreases with increasing the 
bed slope. Furthermore, as bed roughness and water depths ratio increase, outdistancing 
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increases due to the greater importance of pressure in the hydrodynamics and Serre's 

ability to correctiy account for that effect 

It was also remarked that when the Serre dynamic equations and the continuity one are 

upwinded by using the second-order Taylor series expansion, the resulting system 

becomes efficient for shock-capturing in a dambreak situation (any oscillations) without 

decreasing the quality of the numerical results. 

From a technical point of view, the Serre model is suggested to replace the SV one when 

a great accurateness is needed for a dambreak project. Even if many other models that 

take into account the dynamic pressure effects are available, the Serre formulation is still 

directly the SV one to which, some supplementary terms are added. Both models use the 

same types of entry variables and boundary conditions and they produce the same types 

of exit variables so that it will be easy to modify the more usual computer programs 

based on the SV equations. 

This study is completed by the development of the 'Saint-Venant Plus' (SVP) equations 

that are proposed to extend the Serre model. The particularity of the SVP is that the flow 

is not assumed inviscid over the vertical. However, the horizontal velocity components 

are supposed constant over the vertical similarly to the Serre model. Even if the physical 

water viscosity is small, a number of factors make the Serre and SV assumption of 

inviscid flow over the vertical invalid in many cases. The effects of even a small amount 

of viscosity cannot be neglected near vertical fluid boundaries because of the presence of 

a boundary layer. For example, the viscous shear stresses on rough walls could become 

significant for many open-channel flows particularly when the flow varies rapidly over 

the vertical. The resulting mathematical formulation contains the same terms as those 

found in the SV and Serre models but it also contains some supplementary terms that 

more adequately account for dynamic pressure. In the SVP, the dynamic component is 

established in a much more generalized manner by including the vertical viscous, which 

allows for the simulation of a number of very diverse natural flows. 
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The main contributions of this thesis are listed below: 

S The Serre model is now well documented and understood; its assumptions, the 

procedure for its development and its real mathematical formulation are presented 

and the link to the more traditional SV equations. 

•f The spatial derivatives are separated from the temporal ones and a new 

formulation of the Serre equations is available, which is amenable to be used in 

any given number of numerical schemes. The spatial derivatives can be 

discretized separately from the temporal ones. Therefore, the principal difficulty 

when using this type of model is eliminated. 

S The Serre model is solved with the finite element method (FEM) and the resulting 

numerical formulation is validated by simulating a number of chosen flow 

situations. This contribution can also be considered as a reply to the need to have 

a FEM solution of the Serre model so as that it could be compared not only to the 

SV but also to the non-hydrostatic Navier-Stokes (NS) model, which have already 

been investigated by using the FEM (Hervouet 2003). 

S The importance of the dynamic pressure effects is demonstrated. for flow 

situations where the vertical acceleration is significant such as a dambreak flow. 

Thus, the Serre model is recommended for a more accurate design process when 

the flow is non-hydrostatic. 

S The upwind technique based on the second-order Taylor series expansion of the 

time derivatives to add some artificial diffusion terms is shown to be efficient for 

shock-capturing and the quality of the numerical results is not decreased. 

S Finally, an extended version of the Serre model (i.e., the SVP) was established for 

the fully non-hydrostatic flows without making the assumption of inviscid flow 

over the vertical. The resulting equations constitute a generalized solution 

applicable to a number of very diverse natural flows. 
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Despite these numerous contributions, this Serre model developed here should be 
improved. Thus, in a further work, the drying-wetting phenomenon should be considered 
and a more efficient technique for open boundary conditions imposing should be 
implemented. Subsequentiy, the resulting scheme could be applied to simulate a real 
dambreak case study especially with progressive breach. Thereafter, the Serre numerical 
results will be compared to those from the same simulations by using both the non-
hydrostatic Navier-Stokes (NS) model and a higher-order Boussinesq equation. Also, it 
should be mentioned that the Serre numerical model does not succeed in simulating the 
propagation of a wave over-passing an asymmetric trapezoid underwater bar (the 
Dingemans test) because the FEM scheme was not suitable for such a flow situation. 
Therefore, it is suggested to solve the new formulation of the Serre model by means of 
some other numerical schemes like the 'Total Diminish Volume' (TVD) method and to 
simulate the Dingemans test for validation purpose. Additionally, the time-space 
derivatives separation formulation of the Serre model could also be established for the 
cases where the bottom of the flow is also a free surface (i.e., free overfalls). Finally, the 
resolution of the SVP model with the FEM will be useful in comparing it with the Serre 
model, principally for the flow situations where the vertical viscous frictions are 
important 
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APPENDIX 

Integral terms of the element matrices and vectors 

Consider the equation (69) established previously, i.e., 

dQe 

M-Mf ■ + < 
dFe 

dt MM-M (69) 

The expanded expressions of the two element matrices (i.e., | Me 1 and \ Ke | ) and of the 

two element vectors (i.e., I F ' \ and j Fe >) give respectively: 
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The integral terms of the different intermediate matrices and vectors are defined as 
follow. 
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Ill 

The symbols â a , â Û_, Vz, v a , v , v and v are the discrete expressions of a a , 

a U , V, v , v , v and v respectively. 
zy z ' z ' xc ' xy * j a JT" r 

Those integral terms are calculated automatically by Matlab® computer programming 
using the numerical Gauss-Legendre method, which is fully described in (Dhatt and 
Touzot 1981). 


