11 research outputs found

    Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

    Full text link
    This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word ``line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.Comment: 10 page

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner

    Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges

    Full text link
    Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant optimization challenges. Besides a huge variety of different evolutionary and metaheuristic optimization algorithms, also a large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms, in the context of global, continuous, and black-box optimization. For many of the commonly used synthetic benchmark problems or artificial fitness landscapes, there are however, no methods available, to relate the resulting algorithm performance assessments to technologically relevant real-world optimization problems, or vice versa. Also, from a theoretical perspective, many of the commonly used benchmark problems and approaches have little to no generalization value. Based on a mini-review of publications with critical comments, advice, and new approaches, this communication aims to give a constructive perspective on several open challenges and prospective research directions related to systematic and generalizable benchmarking for black-box optimization

    Inferential Modeling and Independent Component Analysis for Redundant Sensor Validation

    Get PDF
    The calibration of redundant safety critical sensors in nuclear power plants is a manual task that consumes valuable time and resources. Automated, data-driven techniques, to monitor the calibration of redundant sensors have been developed over the last two decades, but have not been fully implemented. Parity space methods such as the Instrumentation and Calibration Monitoring Program (ICMP) method developed by Electric Power Research Institute and other empirical based inferential modeling techniques have been developed but have not become viable options. Existing solutions to the redundant sensor validation problem have several major flaws that restrict their applications. Parity space method, such as ICMP, are not robust for low redundancy conditions and their operation becomes invalid when there are only two redundant sensors. Empirical based inferential modeling is only valid when intrinsic correlations between predictor variables and response variables remain static during the model training and testing phase. They also commonly produce high variance results and are not the optimal solution to the problem. This dissertation develops and implements independent component analysis (ICA) for redundant sensor validation. Performance of the ICA algorithm produces sufficiently low residual variance parameter estimates when compared to simple averaging, ICMP, and principal component regression (PCR) techniques. For stationary signals, it can detect and isolate sensor drifts for as few as two redundant sensors. It is fast and can be embedded into a real-time system. This is demonstrated on a water level control system. Additionally, ICA has been merged with inferential modeling technique such as PCR to reduce the prediction error and spillover effects from data anomalies. ICA is easy to use with, only the window size needing specification. The effectiveness and robustness of the ICA technique is shown through the use of actual nuclear power plant data. A bootstrap technique is used to estimate the prediction uncertainties and validate its usefulness. Bootstrap uncertainty estimates incorporate uncertainties from both data and the model. Thus, the uncertainty estimation is robust and varies from data set to data set. The ICA based system is proven to be accurate and robust; however, classical ICA algorithms commonly fail when distributions are multi-modal. This most likely occurs during highly non-stationary transients. This research also developed a unity check technique which indicates such failures and applies other, more robust techniques during transients. For linear trending signals, a rotation transform is found useful while standard averaging techniques are used during general transients

    Statistical mechanics, generalisation and regularisation of neural network models

    Get PDF

    On the computational complexity of ethics: moral tractability for minds and machines

    Get PDF
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative ethics through the lens of computational complexity. First, we introduce computational complexity for the uninitiated reader and discuss how the complexity of ethical problems can be framed within Marr’s three levels of analysis. We then study a range of ethical problems based on consequentialism, deontology, and virtue ethics, with the aim of elucidating the complexity associated with the problems themselves (e.g., due to combinatorics, uncertainty, strategic dynamics), the computational methods employed (e.g., probability, logic, learning), and the available resources (e.g., time, knowledge, learning). The results indicate that most problems the normative frameworks pose lead to tractability issues in every category analyzed. Our investigation also provides several insights about the computational nature of normative ethics, including the differences between rule- and outcome-based moral strategies, and the implementation-variance with regard to moral resources. We then discuss the consequences complexity results have for the prospect of moral machines in virtue of the trade-off between optimality and efficiency. Finally, we elucidate how computational complexity can be used to inform both philosophical and cognitive-psychological research on human morality by advancing the moral tractability thesis

    Grid-enabled adaptive surrugate modeling for computer aided engineering

    Get PDF

    Pharmacovigilance Decision Support : The value of Disproportionality Analysis Signal Detection Methods, the development and testing of Covariability Techniques, and the importance of Ontology

    Get PDF
    The cost of adverse drug reactions to society in the form of deaths, chronic illness, foetal malformation, and many other effects is quite significant. For example, in the United States of America, adverse reactions to prescribed drugs is around the fourth leading cause of death. The reporting of adverse drug reactions is spontaneous and voluntary in Australia. Many methods that have been used for the analysis of adverse drug reaction data, mostly using a statistical approach as a basis for clinical analysis in drug safety surveillance decision support. This thesis examines new approaches that may be used in the analysis of drug safety data. These methods differ significantly from the statistical methods in that they utilize co variability methods of association to define drug-reaction relationships. Co variability algorithms were developed in collaboration with Musa Mammadov to discover drugs associated with adverse reactions and possible drug-drug interactions. This method uses the system organ class (SOC) classification in the Australian Adverse Drug Reaction Advisory Committee (ADRAC) data to stratify reactions. The text categorization algorithm BoosTexter was found to work with the same drug safety data and its performance and modus operandi was compared to our algorithms. These alternative methods were compared to a standard disproportionality analysis methods for signal detection in drug safety data including the Bayesean mulit-item gamma Poisson shrinker (MGPS), which was found to have a problem with similar reaction terms in a report and innocent by-stander drugs. A classification of drug terms was made using the anatomical-therapeutic-chemical classification (ATC) codes. This reduced the number of drug variables from 5081 drug terms to 14 main drug classes. The ATC classification is structured into a hierarchy of five levels. Exploitation of the ATC hierarchy allows the drug safety data to be stratified in such a way as to make them accessible to powerful existing tools. A data mining method that uses association rules, which groups them on the basis of content, was used as a basis for applying the ATC and SOC ontologies to ADRAC data. This allows different views of these associations (even very rare ones). A signal detection method was developed using these association rules, which also incorporates critical reaction terms.Doctor of Philosoph
    corecore