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Abstract 

There has been much recent interest in obtaining analytic results for rule learning 
using a neural network. In this thesis the performance of a simple neural network 
model learning a rule from noisy examples is calculated using methods of statis-
tical mechanics. The free energy for the model is defined and order parameters 
that capture the statistical behaviour of the system are evaluated analytically. 
A weight decay term is used to regularise the effect of the noise added to the 
examples. The network's performance is estimated in terms of its ability to gen-
eralise to examples from outside the data set. The performance is studied for 
a linear network learning both linear and nonlinear rules. The analysis shows 
that a linear network learning a nonlinear rule is equivalent to a linear network 
learning a linear rule, with effective noise added to the training data and an ef-
fective gain on the linear rule. Examining the dependence of the performance 
measures on the number of examples, the noise added to the data and the weight 
decay parameter, it is possible to optimise the generalisation error by setting the 
weight decay parameter to be proportional to the noise level on the data. Hence, 
a weight decay is not only useful for reducing the effect of noisy data, but can 
also be used to improve the performance of a linear network learning a nonlinear 
rule. 

A generalisation of the standard weight decay term in the form of a general 
quadratic penalty term or regulariser, which is equivalent to a general Gaussian 
prior on the network's weight vector, is considered. In this case an average over 
a distribution of rule weight vectors is included in the calculation to remove any 
dependence on the exact realisation of the rule. As a simple example, the case 
where the rule weight vector is drawn from a spherical distribution is considered. 
In this case it is shown that the best performance (lowest generalisation error) 
for noisy data is achieved with the standard weight decay; the prior distribution 
of network weights matches the distribution from which the rule weight vector is 
drawn. 



The model is extended to consider different distributions of the rule weights. It 
is expected that when the penalty matrix models the rule weight distribution, 
the network's performance is optimised and this is demonstrated for a number 
of simple examples and is shown to be true analytically for the Gaussian priors 
under consideration. Hence, more complicated penalty terms can enable the 
network to take advantage of any known fine structure of the target rule. 

A general distribution of input patterns is also considered. This alters the calcu-
lation so that the order parameters measure the overlaps between weight vectors 
weighted by the input distribution. The performance measures are then evalu-
ated in terms of these rescaled order parameters. The optimal penalty matrix is 
unchanged by the novel input distribution. Some simple extensions of the noise 
model are also considered, it turns out that these do not alter the form of the 
optimal penalty matrix either. 
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Chapter 1 

Introduction 

A neural network model is a computational machine that consists of a collection 

of simple processing units each of which simulates a biological neuron to some 

extent. There has been much recent interest in "neural networks" both within 

the physics community and beyond. Neural networks were initially motivated as 

models of brain function and may be studied as such [1]. However, nowadays there 

is at least as much interest in the application of networks to computational tasks; 

this aspect of neural networks is usually called neuro- or neural computation, 

for a good physicist's review see [37]. Neural networks have been applied very 

successfully to some difficult computational tasks, e.g., [68, 46]. In order to solve 

a problem, an algorithm is used to fix the network parameters such that the 

network performs the desired task. The algorithm itself has additional parameters 

(sometimes called hyperparameters) associated with it, which are often set by 

ad hoc methods that are based on empirical observations. It would be useful to 

be able to specify the hyperparameters for a particular task by rigorous criteria 

1 



CHAPTER 1. INTRODUCTION 	 2 

such that the performance of the generated network is optimised. 

Analysing the capabilities and performance of a neural network is an extremely 

difficult problem and many different approaches have been explored. Some of 

them are more empirical, e.g., cross validation [51], Bootstrap, Jackknife [17], 

whilst others are more theoretical in approach, e.g., the Bayesian formalism 

[49, 50], PAC [35], VC dimension [69]; another general approach is to use some of 

the methods of statistical physics [70]. The insights gained by these methods can 

be used to formalise rules of thumb as well as to suggest novel algorithms and 

networks. In order to be able to quantify how well a particular network has solved 

a task, it is necessary to have a measure of the network's performance. There 

are many possible performance measures that may be used; the actual measure 

chosen is dependent on the type of task under study. It may be that a network is 

being used as an associative memory (see e.g., [37]): in this case one possible per-

formance measure is the number of patterns the network can "memorise" without 

losing information, another might be the proportion of a corrupted pattern that 

can be recalled correctly. Another possible task could be to learn a hidden rule 

from a set of examples. A performance measure could be whether the network 

could generate the correct response for a new example. This ability (or lack) to 

perform on a novel example is called generalisation. Generalisation is a broad 

concept. that covers many different tasks including regression and classification 

problems, therefore there are many different generalisation measures. 

In this thesis, the performance of a simple network model is studied in terms of 

its ability to generalise. The formalism used to study the model is based on the 

standard statistical physics replica method [15] and follows the work of Seung et 

al [64]. This formalism is then used to investigate the effect of different hyper-

parameters on the generalisation capability of a simple network. The task is made 
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more complicated by the addition of noise to the data in the problem. A specific 

performance measure is chosen and optimal hyper-parameters are identified that 

give the best generalisation. The remainder of this chapter contains a brief history 

of the field of neural networks, an introduction to a neural network model and 

an outline of the rest of the thesis. 

1.1 Historical background 

The initial motivation for neural network models was to use them as models 

of brain function. The brain is made up of approximately 10 10  nerve cells [6] 

(called neurons) of many different types that are connected together in large 

clusters. In 1943 McCulloch and Pitts [52] proposed a simple nonlinear model of 

a neuron. Any number of these simple neurons could then be connected together 

by modifiable parameters to produce large networks. The essential feature of this 

model was the nonlinearity of the neurons and the modifiable parameters which 

could be set by some algorithm. 

The "Hebb rule" (so called because it is based on a hypothesis of Hebb [36] that 

postulated how a brain learns) is an algorithm whereby a simple network can 

store or memorise a set of patterns, that is given a pattern as an input to the 

network, the corresponding output is produced. This algorithm is successful up 

to a limiting number of patterns [3, 4] after which the quality of the recalled pat-

terns degrades rapidly. Since this algorithm is not trying to learn the underlying 

structure of the data it cannot be expected to perform well on rule learning prob-

lems. In 1962 Rosenblatt [59] presented an algorithm that could set the network 

parameters (train the network) to solve a simple two class classification problem 
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and proved that if it was possible to separate the two classes in input space using 

a hyperplane, i.e., the task was linearly separable, the algorithm would solve 

the problem in finite time. Provided the task was solvable, the network could 

perform well on novel examples - it had good generalisation. 

In 1969 Minsky and Papert examined the capabilities of simple networks; their 

study [55] suggested that simple neural network models have poor classification 

capabilities for all but the simplest of problems. This slowed research into the 

use of networks as classifiers and hence the field of neural computation. The 

invention (and reinvention) of back propagation [73, 61, 60, 57] meant that 

there existed a systematic algorithm for setting network parameters for networks 

of arbitrary configurations. This negated some of the criticisms Minsky and 

Papert had leveled at simple networks since these larger networks were able to 

solve more complicated tasks. Since then there have been other algorithms that 

are better at training, some new, e.g., Quickprop [18]; some more traditional, 

e.g., conjugate gradient [20, 28], etc.. 

Physicists first became interested in neural networks when Hopfield [39] pointed 

out that a particular model of memory could have an energy function defined for 

it, this meant that the methods of statistical physics could be used to optimise 

its performance in terms of the number of patterns it could store [2]. This branch 

of research was pushed forward by Gardner who used methods from the study of 

spin glasses to gain additional insights into the behaviour of this type of network 

[25, 26]. Recently physicists have become interested in using the methods of 

statistical physics to study the rule learning problem [70]. A formalism for 

studying a simple network learning a rule based on the methods used by Gardner 

was first introduced by Györgi and Tishby [31] and further developed in Seung ci 

al [64]. For simple network models, a different formalism was developed by Hertz, 
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Krogh, and Thorbergsson [38] which uses the spectrum of eigenvalues. These 

formalisms based on the methods of statistical physics along with other more 

probabilistic methods have allowed theoretical results for network performance 

to be obtained. These results can be useful for selecting appropriate networks 

and training algorithms for real world applications [37]. 

1.2 A brief introduction to neural networks 

A "neural" network can be defined as a collection of simple processing units 

connected by a set of modifiable parameters. The simple processing units are 

modelled on biological neurons. There are many different types of neuron; a 

schematic diagram of a typical neuron is presented in Fig. 1.1(a). The neuron 

consists of a set of dendrites connected to the cell body which extends into 

an axon. The axon subsequently branches into smaller strands which interact 

with dendrites from other neurons. At the interaction, there are synapses which 

transmit a signal to other cells. The transmission of a signal through a synapse 

is a very complicated chemical process, the action of which is to raise or lower 

the electrical potential of the dendrite. The potential from all the dendrites 

is accumulated in the cell body or soma. If this potential reaches a certain 

threshold, the cell "fires" and transmits an electrical pulse down the axon. The 

pulse is a nonlinear function of the cell potential and may in turn be passed 

through synapses to other cells. The brain is assumed to "learn" through the 

process of adapting the synapses between neurons which then transmit more or 

less of the pulse to the next cell. 



Ieights 

ssing 

Synapse 
/ 

Dendrites 

L1S 

CHAPTER 1. INTRODUCTION 

(a) real 	 (b) model 

Figure 1.1. Schematic diagram of a real and model neuron. 

The two main characteristics of a biological neural network are the high adap-

tive connectivity between neurons and the nonlinearity present in a neuron. A 

schematic diagram of of a simple model of a neuron is presented in Fig. 1.1(b). 

Here a set of inputs, corresponding to the signals arriving at the synapses, is 

connected by a series of modifiable weights corresponding to the synapses them-

selves to a processing unit. The processing unit takes the weighted sum of the 

inputs to give the potential or activation of the unit. If this activation is greater 

than some threshold, the cell fires and transmits a pulse, if the activation is below 

threshold, the cell does nothing. Mathematically, this may be written as 

- 0), 

where a is the output of the unit, W is a vector of the weights, s is the vector 
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of inputs, 0 is the threshold of the unit and 0(x) is the Heaviside step function, 

that is 0(x) equals one if x > 0 and zero if x < 0. The behaviour for x = 0 

is undefined. The size of the pulse has been renormalised to one to make the 

equation simpler, but a pulse of arbitrary size could be included in the model. 

The components of the weight vector W 3  may be positive or negative. This 

simple unit was the network for which Rosenblatt produced his learning rule and 

is known as a perceptron or binary perceptron to distinguish it from the models 

discussed in the next paragraph. 

A simple generalisation of the perceptron is to replace the Heaviside step function 

0(x) with some arbitrary activation function g(x). If g(x) is simply a linear 

function, the network may be called a linear perceptron. A set of generalised 

perceptrofls can be connected together to produce a powerful network that may 

be used for many diverse computational tasks. It can be shown that any arbi-

trary input/output mapping may be approximated by a network with a sufficient 

number of units and a particular architecture [40], [23]. 

The architecture of a network is the number and type of units and the structure 

of the connections between them. The parameters of the network are the weights 

between units and the thresholds of these units. Tithe architecture of the network 

can be redrawn such that the connections between nodes are unidirectional from 

inputs to outputs, the network is said to be feed forward, as in Fig. 1.2(a), if 

no such redrawing is possible, the network is called recurrent, as in Fig. 1.2(b). 

If the units in the feed forward network are perceptronS, then this network is an 

example of a multi-layer perceptron (MLP). In a MLP, there may be some 

nodes that are not inputs and are not directly connected to the output, these 

nodes are often referred to as hidden nodes. 
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I Outputs 

(0O 	Inputs PO 
(a) Feed—forward 	 (b) Recurrent 

Figure 1.2. Feed-forward and recurrent networks 

MLPs are much more useful than single layer perceptrons; as an example, consider 

a mapping that cannot be learnt by a simple perceptron, but may be solved using 

a 2 layer perceptron; the logical XOR function (table 1.1). A network that is 

capable of solving the XOR problem is presented in Fig. 1.3. Since the weights are 

continuous, there is an infinite number of different weight and threshold settings 

that would also solve the task for the architecture used. There is also an infinity 

of other network architectures that may be used to solve the problem. 

When using a network to solve a problem, the number of inputs and outputs is set 

by the data, however, as mentioned before, there are an infinite number of possible 

networks that may be placed between the inputs and outputs. It is very important 

to select a network with a suitable architecture (correct number of hidden nodes, 
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Inputs  11  Output 

00 	0 
10 	1 
01 	1 
11 	0 

Table 1.1. The logical XOR function. 

layers, etc) for the problem. At present the selection of a network architecture 

is something of a black art, although there do exist systematic algorithms for 

selecting a network architecture for some tasks. Some of these start from a 

simple network and generate a network that is capable of solving the problem 

by adding nodes and weights as needed, e.g., upstart, [22], cascade-correlation 

[19], These methods are known as constructive since they construct a network 

to solve the problem. One possible drawback with these methods is that there is 

no reason to believe that the solved network will be the "best" solution in terms 

of simplicity or training time etc. Another group of methods are the destructive 

or pruning methods, e.g., optimal brain damage [47], etc. These methods start 

with a network that is larger than needed and remove those parts of it that are 

unnecessary. Since the algorithms remove the least used parts of the network, it 

is reasonable to suppose that the final network will be close to optimal in terms 

of its connections and training times etc. Both the constructive and pruning 

methods contain an intuitive preference for simpler models (Occams razor). 

The behaviour of the network depends on the settings of the weights between 

the nodes as well as the architecture. There are many possible algorithms for 

fixing the weights of a network which depend on the task the network is being 

used to solve. Some algorithms used for simple tasks are able to determine the 

network parameters directly, e.g., the Hebb rule and the pseudo inverse solution 
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Figure 1.3. Network to solve logical XOR. The units have a step-function 
activation and output a 1 if the activation is greater than the threshold (the 
value inside the unit) and 0 otherwise. The weights connecting the units are the 
values beside the connections. 

[37]. However, for the majority of tasks it is not possible to set the weights a 

priori. In these cases it may be possible to train the network to perform the 

desired task through iterative updates of the weights. There are two main classes 

of algorithm: If the task is presented as a set of data that gives the "correct" 

network response for a particular input, then the weight modifications may be 

done using a direct comparison between the actual and desired response, this is 

known as supervised learning [37]. If on the other hand, the task is presented 

as a set of inputs and the task of the network is to extract whatever correlations 

between the inputs it can, this is known as unsupervised learning e.g., [42]. 

A third class of algorithm that sits between the two main classes mentioned 

above is that of reinforcement learning where the training algorithm receives 
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limited feedback during training, e.g., whether the networks output is correct or 

incorrect. 

During training it is useful to know how well the network is doing, either relative 

to its previous performance or absolutely for unsupervised and supervised training 

respectively. A cost function which gives a measure of the networks performance 

can be defined. Training is then simply the process of finding a minimum of this 

cost function. Ideally for the "best" performance, the minimum should be global, 

though this is not always possible and almost always cannot be identified. 

There are an enormous number of possible tasks to which neural networks may 

be applied. Broadly, these may be split up into; 

• Associative memory - the task is to learn a set of examples or patterns 

and be able to recall a particular pattern when the corresponding input 

is presented or (more usefully) when a corrupted input is presented. A 

useful cost function or performance measure may be the overlap between 

the retrieved memory and that stored. 

• Control - learn a mapping from some initial state to a final state. There 

may be many possible paths between the two states. The inputs may be 

the state variables for a complex process and the outputs are the control 

variables. The path between the initial state to the desired final state is 

unimportant. The cost function could measure how close the process is to 

the desired state [58]. 

• Prediction - given a series of data predict the next term(s) in the series. If 

the next term in the series is known a cost function may be defined that 

gives a measure of the difference between the actual prediction and the 
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desired prediction [72]. 

Classification - given a set of inputs, decide into which of k classes the input 

belongs. A data set consisting of inputs and the correct classes can then 

be used to define a cost function for the network. The cost function could 

be simply the number of misclassified patterns which can then be used to 

train the network [45, 46]. 

• Regression - fit a model to a set of data. The model may then be used for 

interpolating or extrapolating to new data points. A possible cost function 

is the difference between the predicted point and the actual position [49]. 

For all these learning problems, it is possible that the data set is corrupted by 

some noise process making the task of training the network harder. A regulariser 

on the network parameters can help to counteract the effect of noise. 

Evaluating the theoretical performance of a network is a very complicated task, 

a number of different approaches have evolved. One of the more successful is 

the Bayesian approach [49]. Simple statistical arguments are used to evaluate 

probability distributions for weights and models given a data set and any other 

prior information. The Bayesian method can be shown to include Occams razor 

[49]. The PAC (Probably Almost Correct) method [35] looks at the worst case 

scenario of a learning task and uses this result to provide an upper bound on the 

performance of the network. The VC dimension approach [69] uses counting 

arguments to specify a measure of the number of possible functions the network 

can model. This can then be used to specify upper bounds on the error measures. 

The statistical mechanics approach is to calculate the average performance by 

first calculating the average free energy for the problem and using this to evaluate 
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order parameters that capture the statistics of the model. This method will be 

used in the thesis. 

1.3 Outline of Thesis 

Theoretical results for the performance of networks are useful for selecting appro-

priate networks and algorithms for specific problems. It is possible to calculate 

the performance of simple networks, [48, 64, 38], by making some assumptions 

about the model being studied. In chapter 2 the statistical mechanics formalism 

[64] that will be used is introduced. The network model is a simple perceptron 

that is trained on a set of data generated from a known perceptron rule. This 

enables comparisons between the network that is learning the task and the rule 

that produced the data to be drawn. 

It is likely in a real world situation that the data used to train the network 

has become corrupted by some noise process. Chapter 3 extends the formalism 

developed in the previous chapter to allow for a data set which has been corrupted 

by noise. One possible method of counteracting the noise on the data is a weight 

decay which adds a regularising component to the training process. This has 

been studied previously by Krogh and Hertz [43] using a different method. In this 

chapter, the performance of the network is calculated using the formalism outlined 

in the previous chapter allowing some additional insights into the behaviour of 

the network to be gained. A prescription for fixing the optimal regularising 

parameter in terms of the networks generalisation ability is presented. Chapter 

4 presents the behaviour of the model for various limits of the hyperparameters 

of the training algorithm. 
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A weight decay is shown to be equivalent to a penalty term added to the cost 

function. Since the effect of the weight decay is to improve the performance 

in the case of noisy data, a generalised penalty term may be able to increase 

the performance further. The calculation developed in chapter 3 is extended in 

chapter 5 to consider a general regularising term added to the training process. 

An average over a distribution of teachers is included to remove a dependence 

on the explicit teacher being used. The behaviour of the network is calculated 

for an isotropic teacher distribution and some simple regularisers. In chapter 6, 

the model used to calculate the performance is extended to include anisotropic 

Gaussian teacher distributions and anisotropic distributions of inputs. The effects 

of the different teacher and input distributions are discussed in terms of how well 

the general penalty terms perform. Finally, different noise models and the effect 

of general penalty terms are discussed briefly. Chapter 7 gives a short summary 

and presents the main conclusions of the thesis. 

As an aid to the reader the notation used in the thesis is listed in Appendix A. 



Chapter 2 

Statistical mechanics of learning 

It would be useful to know how a particular network architecture is likely to per-

form on different problems. This knowledge could then be used to pick the class 

of network that would give the "best" performance without having to experiment 

and waste time training sub—optimal nets. A network performs a mapping from 

its inputs to its outputs that depends on the architecture, the activation func-

tions of the "neurons" and a set of network parameters - the weights. For rule 

learning problems, the weights may be evolved using some algorithm (trained) so 

that the network approximates a target mapping. Training usually tries to opti-

mise a cost function that describes how well the model approximates the target 

mapping. There are many possible methods of minimising the cost function with 

respect to the weights; some perform a search through state space for a minimum 

of the cost function, e.g., genetic algorithms [29], simulated annealing, [41] , etc. 

Others use some sort of gradient descent to find a minimum, e.g., backpropa-

gation [37]. In this chapter, cost or error functions that measure a network's 

15 
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performance on a rule learning problem are introduced; a training algorithm that 

generates a distribution of networks is defined, this allows the concept of average 

performance measures to be introduced. Following Seung et al [64] the average 

performance for a simple network is calculated using terminology and methods 

from statistical mechanics. 

2.1 Errors 

Consider a network, .iVw with a particular architecture and a set of weights 

denoted by the vector, W. The network maps a vector of inputs, s, to a single 

output node, o. The case where the output is more than one node can be 

split up into a number of different networks with the same inputs and different 

outputs. The mapping defined by the network can be written as, 

aw(s) = Nw(s). 	 (2.1) 

For a particular network and an example consisting of an input t, and corre-

sponding output, (,it is possible to measure how well the network approximates 

the example by comparing the network's output with the example output. This 

measure is a function of the network's architecture and weight vector and the ex-

ample. In the simplest case, the error is defined to be zero if the network correctly 

models the example and one if the network's output disagrees with the example 

output. The error measure may also be defined in such a way as to represent a 

distance between the network's output and the example output, 

= f(Iaw() - ( l) 



CHAPTER 2. STATISTICAL MECHANICS OF LEARNING 	 17 

where °w is the network output parametrised by W. The measure •. I gives 

a distance between the example output and the network output and f is some 

monotonically increasing function. The function e(.AIw; , () is then a measure 

of the error of a given network, AIw, for a particular example and is called the 

error measure. It is natural to set 1(0) equal to 0 so that when the network 

and the target agree, the error measure is zero. Since f(x) is defined in terms 

of a distance, the error measure is an even function, one simple choice for f is 

f(x) = x 2 , this choice has the advantages that it is continuous and differentiable 

everywhere which can be essential for some training algorithms. Other choices 

are possible and have been studied [66]. Using the quadratic form of f gives the 

error measure as, 

e(Vw; , () = (cT() - 	 ( 2.2) 

This definition of the error measure will be used in later calculations. Since one 

particular architecture of network will be considered, the error measure may be 

written as e(W; C (). 

Given a set of examples which define the target mapping, the error measure may 

be summed to give a total error for the whole example set. This data set, often 

called the training set, e, contains p examples 0 consisting of input output 

pairs. In this case the total error on the training set is termed the training 

error, E, 

Et (A1w;8) = 	f(./Vw;0) . 	 (2.3) 
GE® 

This error gives no indication of how the network would perform on examples 

which are not members of the training set, this could be obtained using a data 

set consisting of examples drawn from outside the training set and would measure 

how well the network was able to generalise to novel examples. In this case, the 
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error measure is summed over a test set, to give the test error, which is defined 

in a similar manner to the training error. 

Etest(.AIw; ) = i: €(JVw; 0) 
OE OD  

The test error gives a measure of the network's performance on examples drawn 

from the test set. If the test set was a subset of the training set, the test er-

ror would give no new information about the network's performance on unseen 

examples (its generalisation ability). Hence for the test error to give useful in-

formation about a network's generalisation ability, the test set should not be a 

subset of the training set, [ 751. 

The network is trained to approximate the mapping from the inputs to the output 

described by the training set using an algorithm that minimises a cost function 

defined on the training set. The examples in the training set may only partially 

describe the full mapping. However, it is hoped that by minimising the cost 

function the network will be able to learn the target mapping and hence give 

a low test error. It could be that the mapping described by the training set 

is a random mapping, i.e., there is no correlation between the inputs and the 

corresponding output. In this case, the network may be able to store all the 

examples in the training set giving a training error of zero, however it would 

not be able to learn anything about novel examples and would thus have a non-

zero test error. The task of storing a random mapping in a network has been 

extensively studied as a model of memory [1]. 

If the mapping or rule connecting the inputs to the output is non-random, it 

would be of more interest to know how well the network has learnt the mapping. 

In this case, if the test set were the whole of example space a test error error of 
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zero would imply that the network had learnt the rule exactly. The network's test 

error on the whole of example space is known as the generalisation error. A 

test error for a finite test set gives a sampled approximation to the generalisation 

error which improves as the size of the test set increases. 

A finite set of data could be partitioned into a training set and a test set. There 

is a trade off between the number of examples used to train the network which 

may give a "better trained" network and the number of examples in the test set 

which give a better estimate of the generalisation error. There are a number of 

methods which can be utilised to improve the performance on a finite data set, 

e.g., cross validation [34], bootstrap and jack-knife [16, 17]. 

2.2 Training 

The process of training a network is an algorithmic method of minimising some 

cost function, E, with respect to the network parameters, the weights W. For a 

particular architecture of network the cost function can be defined in terms of the 

network weights, W, and the training data set e ;  a simple cost function could 

be the training error, E, defined in equation (2.3). There are many possible 

methods of minimising the cost function [37]. One of the simplest is gradient 

descent. The weight vector is modified according to, 

ow 
-b-- oc—VE(W; 0) . 	 (2.4) 

This equation updates the weight vector in the direction of steepest descent of 

the cost function. Depending on the initial conditions of the weight vector and 
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the form of the cost function there may be a situation where the weight vector 

becomes stuck in a local minima of the cost function. This can give a sub-optimal 

solution to the learning problem. 

If noise were added to the update equation, there is a finite probability that 

a network will be able to escape local minima and possibly find the optimal 

solution, by the same token, it will not however necessarily remain in the global 

minimum. It has been shown that adding noise to the update equation can 

increase a network's performance in terms of its ability to generalise [27]. This is 

known as stochastic training which is now considered in more detail. 

During stochastic training, the weights are evolved by following a standard gra-

dient descent of the cost function, E and perturbing the updates with additive 

zero mean noise. In this case, the weight vector updates are given by a Langevin 

equation, 
ow 
at cx —VE(W; 0) + 71(t), 	 (2.5) 

where i7(t) is zero mean dynamic noise with variance given by 

= 2T65(t - t') 

where T is a measure of the amount of noise. Ideally, to get to the global mini-

mum, training is initiated with a large value of T and the amount of noise is then 

slowly reduced to zero using an annealing schedule so that finally, the network 

parameters are globally optimal [41]. 

Asymptotically, as time t—*oo, for a fixed amount of noise added to the updates, 

the stochastic update rule results in an equilibrium probability distribution for 
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the weights [12] given by, 

P(W) = 	 (2.6) z 

where 0 = . This distribution is well known in statistical physics and is called 

the Gibbs distribution; by analogy with thermodynamic terminology, T is called 

the temperature. It can be seen from equation (2.5) that the effect of T is to 

blur the trajectory of the network's weight vector through weight space. If the 

network is stuck in a local minima, the noise enables the weight vector to jump 

out of the local minima and possibly reach a lower minimum of the cost function. 

The partition function, Z, is given by, 

Z = JdWexp[—/3E c(W)], 	 (2.7) 

and normalises the equilibrium probability distribution, P(W) so that the inte-

gral over weight space is equal to one. 

The Gibbs distribution may also be motivated by appealing to information theo-

retic methods. Consider an observable, O(X), which depends on a random vari-

able, X, drawn from a state space, Il, and has an average value (0). One wishes 

to calculate the distribution of X which gives this average value, denoted P(X). 

The standard information theoretic method to calculate P(X) is the Maximum 

Entropy method [65] where the entropy, 8, defined by 

S = - 	P(X) In P(X), 	 (2.8) 
XEO 

is maximised with respect to P(X), subject to the constraints that the probabil- 

ities sum to one and the distribution gives the average value of the observable. 
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The constraints may be written as: 

>P(X)-1=0 = f(X), 
XEO 

P(X)O(X)—(0)=O = g(X). 
XEO 

The entropy is maximised by introducing Lagrange multipliers a and 0 for the 

constraints f and g respectively. For the entropy to be a maximum, 

dS + c df + 3 dg = 0 

Substituting the entropy and constraints into equation (2.8) and taking out a 

factor of dP(X) leads to, 

P(X) cc exp[o - 1 + 06(X)]. 

Absorbing the factor e 1  into the normaliser for the probability and assuming 

that the observable is an energy gives the Gibbs distribution. Equation (2.6) can 

therefore also be interpreted as an information theoretic form of the posterior 

weight distribution given a value of the cost function. The asymptotic post-

training distribution of network parameters is known and hence averages over 

this distribution may be calculated. 

2.3 Average performance measures 

For a particular architecture of network it would be useful to give an estimate of 

its performance that was independent of the network parameters and the training 
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set used to evolve the parameters. Using the stochastic training rule eq. (2.5) a 

Gibbs distribution of weights is generated asymptotically eq. (2.6); if the training 

error eq. (2.3) is averaged over this posterior distribution, the result is an average 

error for an ensemble of networks trained on the same example set. The averages 

over the Gibbs posterior distribution are called thermal averages, denoted 

because they are averaging over the thermal noise introduced in the stochastic 

training. 

Once a quantity has been averaged over the posterior distribution of weights, 

it still contains a dependence on the training set, e, since all instances of the 

posterior weights are generated from the same training set. This dependence may 

be removed by performing a second average over the training set. This average 

is over parameters that are "frozen" during training, hence the average is known 

as a quenched average and is denoted (( ... )). The exact form of the quenched 

average depends on the parameters used to generate each training example. If 

each example input output pair, (, () is denoted 0 and the training set contains 

p such examples, the quenched average of a quantity K(®) is 

((K (0))) = Jfld(01 ) K(0). 

where d1i(01 ) contains the distribution of the quenched parameters used to gen-

erate the 11h  example in the training set. 

The quenched average of a posterior averaged quantity then gives an average 

quantity that is independent of the example set used, but dependent on the 

training algorithm, the distribution of examples in the training set and the size 
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of the training set. The average training error, e t  can be defined as 

Ct = 1- (( (Et (W; O))T )) 
P 

where p is the number of examples in the training set 0. The average training 

error gives an expected error for the network on an example drawn from a typical 

training set. In the absence of any other information, it is one possible perfor-

mance measure. However, it does not give any information on the expected error 

for an unseen example. The average training error may be useful if one is only 

interested in storing patterns in the network. The average cost function c c  may 

be similarly defined as the quenched average of the thermal average of the cost 

function. 

The generalisation error introduced earlier is the network's test error on the whole 

of example space, that is the test set 1 is taken to be the complete example space. 

The measure on example space, dp(0), that was used for the quenched average 

can be used to define the generalisation function 

(W) = 10, d(0) 4W; 0), 	 (2.9) 

where 0 = (, ) is an example input—output pair and 01' is the complete example 

space. The generalisation function gives the expected error of a particular net-

work for a random example picked from example space according to the measure 

d (0). 

If there exists a weight vector, W*,  such that 4W*) = 0, the network is capable 

of learning the underlying rule exactly. In this case the problem is said to be 

realisable. If 4W) > 0 for all possible W, the problem is said to be unrealisable. 
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The average generalisation error, c can be defined from the generalisation func-

tion in a similar manner to the average training error. It is defined by 

= (( (e(W))  )) , 	 (2.10) 

This error gives an estimate of the network's performance that is independent of 

the actual training set used. Like the average training error it depends on the 

training algorithm, the distribution of examples in example space and the size 

of the training set. Other forms of average generalisation error are possible, e.g. 

that used by Bruce and Saad [9]. 

The essential difference between the generalisation error defined above and that 

used by Bruce et al is the position of the thermal averaging over the posterior 

ensemble of weight vectors. Explicitly for a quadratic error measure, the average 

generalisation error, eq. (2.10) is, 

=(( (((w() 
() 2 )0 )T 

))' 

where the inner average ( - ) 0  is over the distribution of examples and (, () is an 

example input—output pair. This can be compared to that used by Bruce et al 

BS(( ((aw()_)2 )). 
	

(2.11) 

The two generalisation errors also differ by a factor of a half due to different 

conventions in the definition of the errors. Thus f g  measures the average error 

of the posterior rules, whereas CBS  measures the error of the average posterior 

rule. In statistical terminology, f g  measures the mean square error (MSE) and 

CBS measures the bias squared (MSE = bias 2  + variance). This difference will 
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affect the behaviour that each performance measure favours (see §3.8) 

The average training error and the average generalisation error give performance 

measures for a network that are dependent only on the architecture of the net-

work, the training algorithm and the distribution of training examples. A method 

of calculating these errors will now be presented. 

2.4 The free energy 

The network's performance measures defined in the previous section are average 

measures, the question arises as to whether these averages are typical for any 

instance of the system, i.e., whether the variance of the quantities is small. This 

can be related to the question of self averaging in statistical physics [7], in this 

case, the self averaging quantity studied is the free energy F defined by, 

F = —T(( In  )) , 	 ( 2.12) 

where Z is the partition function. It can be shown that the free energy has 

fluctuations °(*) for large N [7]. 

The free energy is related to the performance of the network by, 

F = Pt - TS , 	 (2.13) 

where the entropy S has been introduced; 

S=_((JdWP(W)lnP(W))). 
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Equation (2.13) is identical to the standard thermodynamic identity of statistical 

physics, [44], with the average energy replaced by p, the number of examples, 

times the average training error. From the free energy the average training error 

t can be calculated. 

Using eq. (2.13) the average training error is related to the free energy by, 

= 1 8 (OF) 
p8/3 

A similar result holds for the entropy. 

The calculation of the free energy is a well known problem of statistical mechanics 

and there are many possible methods available. Amongst these are: 

• The high temperature limit. The exponential in the partition function 

may be expanded as a power series in 3. It gives the correct behaviour 

of the system for high temperatures (small 3) but breaks down at low 

temperatures. This limit has been used in the study of learning, although, 

in most cases of interest, the noise level (temperature) is small and this 

method is inappropriate. 

• The annealed approximation. Make the approximation, F = —Tin (( Z  )). 

This approximation gives a lower bound on the free energy and gives accu-

rate results for high temperatures. It has been used with some success in 

the study of simple multilayer perceptrons [63]. The method does however 

break down for lower temperatures. 

• The replica method [15]. This method is rather more complicated then 
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either of the previous two approximations, however it is valid for low tem-

peratures. The complexity of the replica method may introduce more prob-

lems than it solves, since in order to simplify the calculation assumptions 

about the symmetry of the solutions have to be made. It turns out that 

the symmetry assumptions are inappropriate for some models [21]. 

The replica method will be used in this thesis since it gives analytic expressions 

for network performance at low levels of dynamic noise. Before the replica method 

is outlined, the network model used in the calculation will be defined. 

2.5 The model 

In order to simplify the calculations greatly, the simplest type of network, a single 

layer perceptron will be studied. The distinction between single and multi-layer 

perceptrons (see §1.2) will not be needed as only the former are under study 

and so the term perceptron will be taken to mean single layer perceptrons. The 

inputs, s, and parameters of the network, W, are assumed to be continuous 

valued variables. The mapping described by a perceptron, .iVw, can be written 

as, 

a(s) = g .  s 
( V rN__ I 

' 	 ( 2.14) 

where a is the perceptron output, s is a vector of inputs, W is a vector of the 

network parameters and g(•) is known as the activation function. The number 

of inputs is equal to the number of weights, N. The product W s is sometimes 

called the activation of a unit. 
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The training or example set is assumed to have been generated from an 

seen" teacher network. The teacher network is another network, V, that is 

parametrised by a weight vector W ° . The output of the teacher, (, for an input 

e is 

(Vwo(), 

where the teacher rule has been modelled by an architecture V, parametrised by 

a set of weights W ° . Using a teacher network each example can be generated 

from an input, hence the example space can be generated from the input space 

alone. The measure on example space, d,a(0) is now equal to the measure on 

input space di(s). 

Following the analogy of the teacher, the network trying to learn the rule, .Ar, is 

called the student. The student is trained on a set of examples generated from 

the teacher and randomly generated inputs picked from the input distribution. 

The only knowledge the training algorithm and hence the student has of the 

teacher is through the example set. However, when the performance of the stu-

dent is evaluated, it is useful to compare the final student network with the 

teacher. In order to keep the comparisons simple, the teacher will also be as-

sumed to be a perceptron of the same size as the student. This means that direct 

comparisons between the student and teacher weight vectors may be made. The 

training example set is made up of input output pairs, where the outputs, (,have 

been generated from the inputs using, 

(()= 
go( 

	

W0.) 

The vector W° is the teacher weight vector and g(.)  is the activation function 
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of the teacher. 

A further assumption about the training set will be made; the components of 

the examples are assumed to be drawn from independent zero mean Gaussian 

distributions of unit variance , d,a(s3 ) = .1V(0, 1)ds 3 . The same distribution will 

be assumed for the distribution of test examples which is used in the calculation 

of the generalisation function. It is well known that in the thermodynamic limit, 

the distribution of binary inputs (±1) becomes the same as continuous zero mean 

Gaussian variables of unit variance, hence the results are also applicable for the 

binary input case. The assumption that the distributions are of unit variance 

is reasonable since any rescaling of the components of the input vector can be 

absorbed by a simple renormalisation of the weight vectors, this assumption will 

be looked at further in chapter 6. The error measure that will be used is the 

quadratic one introduced in eq. (2.2). From the error measure and the distribution 

of examples, the generalisation function may be calculated. 

2.5.1 Generalisation function 

Using the definition of the error measure and the distribution of examples as-

sumed above, it is possible to calculate the generalisation function. From eq. (2.9) 

and using the quadratic definition of the error measure, eq. (2.2), the generalisa-

tion function may be written as, 

2 
E (W) = Jdia(s) [g  (W.$)  —go (__w0.s\s')l

I' 
where the integration is taken over the whole of input space. There are two pos- 

sible methods of proceeding: One is to say that the activations are zero mean 
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random variables and appeal to the central limit theorem [8]; the other is to intro-

duce delta functions explicitly for the activations [64]. If integral representations 

for these delta functions are also introduced, it is possible to evaluate the integral 

over the examples. This is the procedure that will be followed 

After introducing the delta functions for the activations of the student and teacher 

(x and ij respectively) and their integral representations (appendix B), the gen-

eralisation function, f(W), can be written as, 

1 ;dxddyd 
E(W) = 	J 2 ir 2 	

d,a(s) [g(x) - go(y)] 2  
\ 1 

- 	
s
)+ (- 	

s

)j xexp[i(x 

W.  

Unless otherwise stated, integrations are taken to be over the complete range of a 

variable. Thus in the above equation, the integration is taken over x, i, y, from 

-oo to oo and s E input space. 

The integral over input space has factored out. Using the assumed distribution 

for the input components (AI(O, 1)) this integral can be evaluated yielding, 

1 rdxddyd 	 2 €(W) = 	
i 2 r 2 ir [g(x) - MY)?  

x exp ixi + iy - 1 q0 i2 - 	- R] 

where the following order parameters have been introduced; 

qo = i w.w, 	 (2.15) 

R = 	W.Wo, 	 (2.16) 

	

11 2  = 1Wo . Wo  . 	 (2.17) 
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In general order parameters reduce the complexity of a system, instead of having 

to keep track of N components, it is only necessary to consider a number of 

simple order parameters that capture the statistics of the system. In the above 

case, /j is the length of the student weight vector, Q is the length of the teacher 

weight vector and R' = R/(1/) is the cosine of the angle between the student 

and teacher weight vectors. 

The integrals over both the conjugate variables, 5, can be evaluated. If x, y 
R-)// 	R2  are rescaled such that y = y/ and x = (x - 	- ), the generalisation 02 

function is given by, 

c(W) = f Dy Dx [g  ({x1 - R'2  + yR'}) - go(y)] 2 	(2.18) 

where the notation Dx = dx exp[_x2]//  has been used. 

The generalisation function is dependent on the student through the order pa-

rameters, qo  and R'. The effect of the length of the student and teacher is to 

multiply the activation inside their respective activation functions. When the 

angle between the student and teacher is zero, R' = 1. In this case, if the 

activation functions of the student and teacher are identical and binary, i.e., 

g(x) = go (x) = sgn(x), the generalisation function will be zero for any length of 

the student. To learn a binary teacher using a binary student it is sufficient to 

generate a student weight vector in the correct direction with arbitrary length. 

However, if the activation functions have some other form, the length of the stu-

dent gives an effective gain of the student activation function. That is, if the 

activation function is of the form g(t' x), then the length of the student gives 

an effective gain of 1 = Similarly, for the teacher, the effective gain is 

= thi0 . The generalisation function can only be exactly zero if the activations 
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of student and teacher are of the same form and the effective gain of the student 

is the same as the effective gain of the teacher. The average generalisation er-

ror is simply the quenched average of the thermal average of the generalisation 

function. 

2.5.2 The cost function 

In the section on training the network (2.2) the posterior distribution of weights 

was defined in terms of the cost function, E. If generalisation is the quantity 

of interest, it might be hoped that minimising the training energy would lead to 

good generalisation ability. In this case, the cost function could be taken to be 

the training energy plus a potential term which is independent of the training 

data e, 
E, (W, 0) = E t  (W, 0) + V(W), 

where V(W) is the potential term which depends on the weight vector and not 

the data set. The partition function defined for the Gibbs distribution, eq. (2.7) 

may now be written explicitly as, 

Z = I du(W) exp [—OEt (W, 0)] , 	 (2.19) 

where, the potential term V(W) has been incorporated into the a priori measure 

on weight space, i.e., d1i(W) = P0 (W)dW, and P0 (W) is the prior distribution 

on student weight vectors that depends on the potential, V(W). The prior dis-

tribution is used in the training algorithm to renormaiis or otherwise constrain 

the weight vectors by including any knowledge about the expected form of the 



CHAPTER 2. STATISTICAL MECHANICS OF LEARNING 	 34 

student weight vectors. The simplest distribution is to assume a spherical con-

straint for the weight vectors, that is renormalise the weight vector after each 

update step to be of fixed length. More complicated distributions will be looked 

at in the following chapters. 

2.6 The replica method 

In this section, the free energy and hence the performance of the network is 

calculated using the replica method introduced in [15]. The formalism follows 

that developed by Seung et al [64], based on work by Gardner [25]. 

The basis of the replica method is the identity, 

In  = urn 
1
—(z' —1). 

n-40 fl 

From equation(2.12) and using the identity above, the free energy may be written 

 OF - 	= urn ln(( Zn)) . 	 ( 2.20) 
n-*O j 

The free energy is evaluated for arbitrary integer n and then analytically contin-

ued to n = 0. The annealed approximation is equivalent to setting n = 1. 

It is necessary to calculate (( 2"  )) for integer n. This is equivalent to replicating 

the system n times and then training the systems in parallel (hence "replica"). 
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The systems interact through the quenched average over the training set. Intro-

ducing an index for each replica and using equation(2.19), 

((Z)) = fd(®)H If dy(W') exp [_Ec(W;0)] 
}. 	

(2.21) 

This replicated partition function contains a dependence on the distribution of 

the training set, e, used. This distribution may be expanded in terms of the 

individual examples in the training set. That is dj(e) = fl d,a(0') (0' refers to 

an input - output pair), p is the number of examples in the training set. 

The product over the replica index becomes a sum in the exponential. The order 

of integration may be rearranged to give, 

Zn
= J 111 dy (Wor ) I  j {J di (0') exp[- 

	
c (Wa ;  0 1 )D  or 	 I 

The dependence on the training set is through the distributions of each individual 

training example. In the simplest case the examples are drawn from independent 

identical distributions, that is d,a(0') = d(0) V 1. The product over the example 

index becomes p (the number of examples) copies of the same function. The 

integral over the example distribution is a function of the complete set of repli-

cated weights, {W}. Using the definition of the number of examples per weight, 

= p/N, the replicated partition function may be written as, 

((Zn)) = f fl {d(W)} exp {—NG[W}}, 	(2.22) 

where Gr[W]  is known as the replicated Hamiltonian and is given by 

Gr [Wa] = _1nJd(0)exp[_i;0] . 	(2.23) 
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The training set dependence of the replicated Hamiltonian has been reduced to 

an integral over the distribution of a single example and a factor depending on 

the number of examples in the training set. The replicated Hamiltonian is related 

to the average performance of the replicated networks on a single input example, 

0, its form is controlled by the distribution of the examples in the training set, 

d1(0). 

2.6.1 The replicated Hamiltonian 

The replicated Hamiltonian can be calculated by making use of the example 

distribution. In this model, the outputs of the training examples are assumed to 

be generated from a teacher network. This means that an example only depends 

on its input, s, hence dz(0) = dt(s). Substituting the quadratic error measure, 

eq. (2.2), into eq. (2.23) gives 

GrEW] = —In Jdp(s)exp[_ 
	

(g (*w . s) - go (vNw° . 
(2.24) 

In order to calculate the replicated Hamiltonian, delta functions will be intro-

duced that pick out the activations, W . s of all the networks (the ii replicated 

students and the teacher). Integral representations of these delta functions facil-

itate integration over the input space. This integration yields order parameters 

that describe the behaviour of the system. The integrations over the variables 

introduced in the integral representations can be evaluated for particular types 

of network. 
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The dependence of the error measure on the input, s, is removed by introduc-

ing auxiliary variables for the activations of the networks; W . s = x for the 

replicated networks and W °  s = y for the teacher. The auxiliary variables are 

linked to the activations by delta functions. Using the integral representation of 

the delta function (appendix B), the integral over the input space can be factored 

out to yield, 

exp(—G[W]) = 

	

2ir 	27r 

1- 2
x exp (g(x) - 90(y)) 2 +i 	x 	+iy 

• Jdit(s) exp[—iN (>W  + w°) s] (2.25) 

It is now possible to perform the integral over the input vector, s. The distribution 

of input vectors is assumed to be a zero mean unit variance multivariate Gaussian 

distribution, i.e., dp(s) = ds (27r)*e 2 . Considering the integral over the 

input vector space in eq. (2.25) and using the distribution assumed above gives, 

I
r ds 

	

	' 12 

(2ir) exp 
	- iN(W + W ° ) s] = 

exp
{- ( 	

QcTIP + 
ç 22  +2 	 , (2.26) 

 Cr j 

where the following order parameters have been introduced: 

	

Qc7p =W 01  . WP ' 	 (2.27) 

	

Rol = 	Wo . war, 
	 (2.28) 

	

= I WO  . wo. 	 (2.29) 
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Qorp is the overlap between replicas, Ra is the overlap between a replica and the 

teacher weight vectors, and 1 is the length of the teacher as before, eq. (2.17). 

These order parameters characterise the statistics of the system, as well as re-

ducing the number of free parameters from Nn to 0(n2 ) for integer n. 

The replicated Hamiltonian, Gr, now depends on the replicated student weight 

vectors only through the order parameters Q and R. Using eq. (2.25), the 

replicated Hamiltonian can then be written as, 

exp(—Gr[Qap,Ra]) = JH 1 dXadal dyd 
2ir 	J 2'r 

• exp (g(xa) - go(y)) 2  + 	X 	+ 

• exp [_'( QPI 1P + çl22  + 2 	R)] (2.30) 
 or 

The behaviour of the system is now described in terms of the order parameters 

defined above. Returning to the quenched average of the replicated partition func- 

tion, equation (2.22), and extracting the order parameters using delta functions 

allows the integral over the replicated student weights to be factored out. The 

quenched average of the replicated partition function eq. (2.22) can be written as 

((Z)) = ff1 {dp(W)}exp{—NaGr[Qap,Rc]} 
Cr 

• fl {N dR5(NR - W °  . W)} 
or 

• fi {NdQ5(NQ_Wa.WP)} 	(2.31) 

The second product of delta functions is only over o ,  < p since from eq. (2.27), 

Q is symmetric in the replica indices. Hence the product is over a complete set 
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of independent values of Q. Integral representations for the delta function are 

introduced (and hence the conjugate order parameters, Q and R ), yielding, 

dRadR.y 	
j 

{ 

dQupdQcrp) 
((Zn)) = N-21 2 

	

2iri 	 2iri 

X exp {N(G 0 [Q, Oorp l  R, 	] - cxGr [Qcp, R, 1l])} , (2.32) 

where 

G0  [Qcyp, Qp, Ra, Ia] = - 	 Ru ulcT - 	 Qcrp QUP 

or 	 a<p 

4 In  rJ {;(W)} 

exp 	R,(W° W°) + E ((Wa 
. W) (2.33) 

a 	 a!~ P 

The function C0  is constrained by the prior distribution on the replicated weights, 

dj4Wa) and will be called the prior constrained Hamiltonian, G 0  is also the 

logarithm of the density of networks which have order parameters Ru and 

2.6.2 The free energy per weight 

The free energy F, defined in eq. (2.12), is extensive in the number of weights 

N, i.e., it scales with N. A non-extensive quantity, the free energy per weight, 

f = , may be defined, which is finite in the thermodynamic N—oo limit. In 

the thermodynamic limit the integrals over the order parameters in eq. (2.32) 

can be evaluated using the saddle point method [11], in which the integral of 

an exponential of an extensive quantity is replaced with the exponential of the 

extrema of the exponent. Using this method, the definition of the free energy per 
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weight and eq. (2.32) and (2.12), the free energy per weight may be written as, 

urn 	extr--- {G o  - aGr }} , 	 (2.34) 
n-40 Q 	t

I 
pyp R o  a   nN 

where extr 
{. . .} 

indicates that the function in the braces is extremised over 
parameters 

the parameters. The factor of N'' 3 ' 2 in the partition function eq. (2.32) gives 

a term like n(n + 3) ln(N)12N in the free energy per weight which tends to zero 

in the thermodynamic limit. 

The calculation of the free energy and hence the average errors has been reduced 

to extremising the function in eq. (2.34) with respect to the order parameters. 

The order parameters are still rather complicated. In order to simplify the cal-

culation somewhat, an ansatz for the order parameters is made. The simplest 

approximation to make is the replica symmetric ansatz. 

2.7 The replica symmetric ansatz 

In order to evaluate the free energy per weight, it is useful to reduce the com-

plexity of the order parameters. It seems reasonable as a first approximation 

to assume that the order parameters are the same for all the replicas, although 

generally, the ground state of a system is not symmetric under symmetries of the 

Hamiltonian. This assumption is known as the replica symmetric (RS) ansatz 

and may be written explicitly as, 

QP = qo  bop  +qi(1 -&) , 	 (2.35) 

Ra = R, 	 (2.36) 
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Qap = 4O&7+ql( 1  ö p ) , 	 (2.37) 

'a = 
	

(2.38) 

Referring to the definitions of Q and Ra, equations(2.27) and (2.28), the mean-

ing of the RS order parameters can be identified. The average length squared of 

a replicated weight vector is qo.  The parameter qi  is the average unnormalised 

overlap between two different replicas. This can be normalised by qo  to give q, the 

average cosine of the angle between replica weight vectors. This average cosine 

is related to the volume of student weight space that contains possible solutions. 

The average unnormalised overlap between a replicated student weight and the 

teacher is given by R. This can be normalised by the length of the teacher and 

the average length of a student to give the average cosine of the angle between 

the student and teacher weight vectors. The order parameters, q, R are the aver-

aged versions of those introduced in the calculation of the generalisation function 

eq. (2.15), (2.16). The meaning of the conjugate order parameters is less clear, 

but some insight may be gained; this is discussed in section (2.10). 

By defining the replica symmetric ansatz, the complexity of the problem has 

diminished, since the number of free parameters has reduced from 0(n 2 ) to 0(1). 

The free energy per weight, equation (2.34), is given by extremising over the RS 

order parameters, that is, 

urn extr 1_ {G0 - CCr }} . 	 ( 2.39) 
0 qo4oq i 1 Rk lnN 

It is not unreasonable to question whether the RS ansatz is valid. This problem 

has been studied for other statistical mechanics models [54]. The problem of 

replica symmetry breaking can manifest itself as a negative entropy for discrete 
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systems, another criterion used is the Almeida - Thouless line [13]. There exists 

a hierarchy of approximations that can introduce replica symmetry breaking into 

the order parameters [54]. The stability of the replica symmetric solution of 

perceptron learning has been previously studied, [64]. Replica symmetry breaking 

as applied to networks can be thought of in terms of the weight space. If the 

weight space is connected, the average value of the replicated student weight 

vectors will lie within the weight space. Therefore, the RS order parameters may 

accurately describe the system. However, if the weight space is disconnected, for 

example in the case of binary weights, the average value of the replicated student 

weight vector does not necessarily lie within the weight space. In this case the 

RS order parameters may not correctly describe a typical system. Thus the RS 

ansatz may not be valid for some weight distributions. It is widely believed that 

RS is valid for connected weight spaces. 

2.8 The replica symmetric Hamiltonian 

The replica symmetric Hamiltonian can be calculated by substituting the RS 

ansatz defined in equations (2.35) and (2.36) into equation (2.30). This enables 

the integrals over the conjugate variables i and to be performed, again reducing 

the complexity. The RS Hamiltonian is given by, 

exp[—G ] = fri 	
27r 

{dXud5a} -
27r

dYd 
exp [_I3((xa) _go(y))2] 

X exp 	 - 	+ 
,op 	 a 

X exp 1_
22  + iy - R E 	. 	( 2.40) 
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The integral over the conjugate variable may be factored out and evaluated. 

The sum 	can be split up into E,p  - 	. The notation is simplified by 

rescaling y such that, y' = . The double sum, in the exponential may be 

removed using a Hubbard - Stratonovitch (HS) transformation (see appendix B). 

This transformation linearises the exponent at the expense of introducing another 

Gaussian integral over a new variable, t. Explicitly, the HS transformation gives, 

1-2 R2
exp 	(qi - = Dtexp itJ i  - . 	( 2.41) 

After this term is substituted into the RS Hamiltonian, the summations over 

the replica index can be factored out of the exponent to give an integral over a 

product, 

exp[—Gr] = J Dy'Dt HJcr , 	 (2.42) 

where 

rdx , di, 	1 
= I 	27r 

exp 	 - go(Ily'))2 - ( qo - q, 
)j2 

01 

R, 	
Jqi 

R2l 
- y ) + ztx, 	

- 	
(2.43) 

The integral above is now independent of the replica index a, and the replica index 

may be dropped. This means that now the individual replicas each contribute the 

same factor to the replicated Hamiltonian. This agrees with the introduction of 

the RS ansatz where the replicas were explicitly assumed be identical on average. 

The replicated Hamiltonian may be rewritten as, 

G = —in 
I 

 Dy' DtJ' , 	 (2.44) 
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with 3  given by eq. (2.43) without the replica index o. 

Consider the contribution from each of the replicas. The integral over the conju-

gate variable can be evaluated. Rescaling x such that 

1' 
R2  \ (x_Y'+t(ql_) ) 

\/(qo — ql) 

gives, 

I 	R 2 \ 
3 =fDxlexp 1- Ng ( i)x 1 + 	' tqi - 

	
— go(y')) 2 

 

—) 

(2.45) 

This is similar to the expression for the generalisation function derived earlier 

eq. (2.18). The introduction of the normalised order parameters, R' = 

and q' = qi/qo simplifies-the notation. 

In order to evaluate the free energy, the limit as n—O of 1/n times the replicated 

Hamiltonian is taken. Define = lim_-, o  'Gr. For small ii, J' = 1 + nlnJ + 

0(n 2 ); substituting this result into the logarithm of equation (2.44) and using 

ln(1 + a) = a + 0(a2 ) for small a, gives, 

cr [qo ,qi , R] = _JDyDt lnJDx 

g.(Qy) )2] 
X exp 	

2 
0 (g (,/—qo { 	-7) x + R'y - tq' - R2}) - 

(2.46) 

The replicated Hamiltonian now depends on the weight vectors only through 

the order parameters qo, qi and R. As discussed earlier, the order parameters 
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R' = R/(QV) and q' = ql lqo  are average cosines of angles between weight 

vectors. The length of the teacher becomes a multiplier in the activation function 

go(y). The average length of the student, ,.,/?ijj also becomes a multiplier in the 

student activation function, g(x). The replica symmetric Hamiltonian cannot 

be evaluated analytically for a general student activation function, however the 

calculation may be done for a linear student activation function. 

The replica symmetric Hamiltonian can be calculated for a linear student, whilst 

the teacher may use any activation function at this stage. From eq. (2.46), and 

assuming the student activation is linear with gain v, that is g(x) = vx, the 

integral over x may be evaluated, giving, 

ln(1 + 3v2(qo - qi)) 

+ tu/qi - 	- go (Ily)) 

	

+JDyDt 	
(1 +v2 (qo —q j )) 

The remaining integral over t may be evaluated without difficulty. However since 

there is no exact form for the activation function of the teacher, the notation 

(g) = fDxg(1lx) and (go x) = fDxxg o (11x) is introduced following Bös et al 

[81 and the final result may be written as, 

	

cr= 1n(1 +/3v2(qo—qi)) + 	
v2 

 (i+fi()) 

(g)) 	
(2.47) 

The gain of the student activation function, v can be absorbed into the order 

parameters by a simple renormalisation of the weights, thus in the subsequent 

analysis, the gain need not be considered. 
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2.9 RS prior constrained Hamiltonian 

The RS ansatz may be applied to the prior constrained Hamiltonian G0  in the 

same manner as the previous section. From equation (2.33) and substituting in 

the RS ansatz, 

G0 = —nRf - nqo0 - 	 - n)q11 + lnT, 	(2.48) 

where, 

I =  jnfdp(W-)Iexp[.~ l:(W-.Wo)+(4.-141)1:(W'.W') 
Cr 	 or 	 or 

+i (W . WP)] 

up 

(2.49) 

Using an HS transformation the the sum over ap may be linearised at the expense 

of introducing a Gaussian integral over a vector z. The replica index can be 

factored out since the contribution from each replica is the same. As before, the 

contribution from all the replicas may be expanded as a power series in n for 

small n. Defining c0 = lim_+0  G0  yields, 

go  = —RR - qoo + 

+ 1  f Dz In f d(W) 

x exp [(o - 1)W2 + ](W . W°) + T41 Z . w] . (2.50) 

The prior constrained Hamiltonian depends on the prior distribution of student 
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weights through the measure, d(W) and the complete set of RS order param-

eters, qo,o, qi, , R, R. In order to evaluate the integral over weight space, it is 

necessary to assume some prior on the student weight vectors. The meaning of 

the non-conjugate order parameters has already been given, the meaning of the 

conjugate order parameters is discussed in the next section. 

2.10 The conjugate order parameters 

The results obtained for the replicated Hamiltonian and the prior constrained 

Hamiltonian can be substituted into the free energy per weight given by eq. (2.34). 

In order to extremise this function, the differentials with respect to the order 

parameters are set to zero. Considering the differentials with respect to the 

conjugate order parameters leads to the following set of equations: 

R = 	J Dz ( W) . W ° , 	 (2.51) 

qo = 	fDz(W-W) Z  , 	 (2.52) 

qi = 	I Dz (W), - (W) , 	 (2.53) 

where the average (W) is defined by, 

fd1i(W) W exp [_w 2 (1 - 2) + (/z + 1W 0 ) w] 
fdJL(W) exp {_W2(1 - 2  + (z + W0) . w] 	(2.54) 

The average ( ... ) can be written in terms of a probability distribution for the 
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weight vectors given by, 

P(W) = exp [NeffJ 

Where the effective Hamiltonian is given by 

fleff(W) = 	- 2) - ( Jz + 	kW°) . W. 

The Hamiltonian is made up of two terms, the first simply measures the length of 

the weight vector, W. The second is a field term that looks at the overlap of the 

weight vector with another vector given by /z + RW ° . The first term in this 

vector is a Gaussian random field with variance 41 , the second is a bias towards 

the teacher with magnitude R. The ground state of the Hamiltonian is achieved 

when the weight vector is the shortest vector that lies parallel to + RW ° . 

2.11 A simple prior - the spherical constraint 

The expression for the prior constrained Hamiltonian, eq. (2.50), contains the 

prior distribution on the weights, d(W). The integral over the weights may 

be evaluated if an explicit form for this distribution is assumed. The spherical 

constraint assumes that the weight vectors are drawn from the surface of a hyper-

sphere. This is equivalent to renormalising the weight vectors after each update 

step. Much previous work has been done using the spherical constraint, [24]. In 

this section, the spherical constraint will be introduced and the order parameters 

calculated. 

The spherical constraint is of particular use if a binary activation function is 
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used, since only the direction of the weight vector is important. The length of 

the weight vector can be taken without loss of generality to be one, since any 

renormalisation in the length of the weight vectors can be absorbed into the 

binary activation function. 

The spherical constraint reduces the number of order parameters needed. In this 

case, the length of a replicated student weight, Q is constrained to be 1. The 

integrals over Q, and  Q, are no longer needed, within this formalism this is 

equivalent to setting the conjugate order parameter Q = 0 Vo and Q 1 Vcr 

in the replica equations. 

2.11.1 Prior constrained Hamiltonian 

Again assuming the replica symmetric ansatz, the prior constrained Hamiltonian 

is given by equation (2.50). The spherical constraint demands that qo = 1 and 

0. substituting these values into equation (2.50) gives, 

go = —RR +q1q1 

41   Dz In  d1i(W) 

	

x exp1_1W 2  + f(W W°) +r4 l z  . W] . 	(2.55) 

The spherical constraint is equivalent to making the a priori assumption that the 

weight vectors are selected from a hypersphere of radius N. The prior distribution 

of weights may then be written explicitly as, 

d(W) = 6(W 2  - N)dW 
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dW dA 
= 	N I exp[A(W W - N)] 

(2ir) 	2rz 

where the parameter A arises from the integral representation of the delta func-

tion. 

Substituting this into equation(2.55) and evaluating the Gaussian integral on the 

weight vector gives, 

= —RR+q1 1  

-- 
j Dzln  {J --(A + 

N 	 2iri 

[1 (N1 + z2) (k/W°  z) 
x exp 

[ 	A + 	
+ 	A + 	

+ AN }(2.56) 

Since z 2  = 0(N) and W° z = 0(N) then the A integration may be performed 

by the saddle point method giving a saddle point A*  independent of z. Hence 

after performing the integral over z the prior constrained Hamiltonian may be 

written as, 

Go = —R + 	+
{- 

ln(A* + ) + A* 
 + A* + f 	

(2.57) 
2 	2 

2.11.2 Replicated Hamiltonian 

If a spherical linear student is assumed, the replica symmetric Hamiltonian is 

given by equation (2.47). Substituting in qo = 1 and 1 = 1, yields, 

= ln(1 +19 ( 1 
 —q')) + /3(q' —2R'(xg o ) + (g02 )) 

2 	(1+ /9(1 - q'))2 	
(2.58) 
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The normalised order parameters are used: q' = q and R' = R, this is because 

the lengths of the weight vectors are constrained to be one, the overlaps are 

cosines. 

2.11.3 Free energy 

The free energy per weight for a linear student may now be calculated from cr 
and go , 

	

= —RR + 	- ln( + ) + + — Of
(2 + ) 

2 	2 (A+) 

—ln(1+/3(1—q))— 
cx/3(q-2R ( xgo)+(g)) 
2 	(1+/9(1—q)) 	2

(2.59) 

where all the parameters q, 4 , R, E and \ are to be extremised over. Finding the 

saddle points and eliminating A, gives, 

	

R = 	(1 - q) 	 (2.60) 

q = (k 2  + )( 1 - q) 2 	 (2.61) 

a/3 (xgo ) 

	

= 	 (2.62) 
(1+/(1—q)) 
a32 (q-2R (xgo)+(g)) 

	

= 	 (2.63) 
(1+/3(1—q)) 2  

These equations are the saddle point equations for a linear student learning a 

teacher whose activation is given by g o (x) where all the weight vectors are subject 

to a spherical constraint. Since the spherical constraint has been used, the student 

is not able to alter its effective gain, through alteration in the length of its vector. 



R = I(1—q) 

q = (f1 2 +)(1q)2  

R = 
(1+)J(1—q)) 
cfi 2  (q - 2Rv0  + zi) 

(1+fl(1 —q)) 2  
q= 

(2.64) 

(2.65) 

(2.66) 

(2.67) 
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2.11.4 Linear teacher 

The simplest form for the teacher activation is to assume that it is linear like the 

student. In this case, the averages (xg o ) and (g) are simple to calculate and give 

the results, 

(xgo) = lb 	 (g4 ) = 

This gives the results for the saddle point equations as 

From these results the average training and generalisation errors may be calcu-

lated for various limits [64]. 

Since the saddle point equations (2.64 - 2.67) are written in terms of the averages 

of the teacher activation function, (xg o ) and (gfl,  the performance measures 

may be calculated for a linear student learning a nonlinear teacher. The evalu-

ation of (xgo ) and (g' ) can be done analytically for some activation functions. 

However in general it must be done numerically. 
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2.12 Other realisable problems 

As pointed out by Bös et al [8], in the zero temperature limit, the exponential of 

the error in the Gibbs distribution behaves like a delta function, that is, 

exp[- 2 0(g(h) - go (ho )) 2] cx S(g(h) - g o (ho )) 	as 

where h and h0  are the activations of the student and teacher respectively. Hence 

the free energy has a term which is proportional to 8(g—g o ). Provided  = go  and 

the inverse function g 1 () exists, the free energy is independent of the activation 

function in the zero T limit. Thus the order parameters for the realisable case 

linear - linear are the same for all realisable cases which have the same student and 

teacher activation functions, hence the performance measures can be calculated 

for other realisable rules. 

2.13 Concluding remarks 

To summarise, this chapter introduces some theoretical aspects of training a net-

work to approximate a mapping between a vector of real valued inputs and a 

single output. The network is trained to model the mapping by minimising a 

cost function with respect to the network parameters, the weights. The cost 

function is defined on the training set as the mean square difference between the 

network output and that given by the example set plus a potential term and is 

minimised by stochastic gradient descent. Stochastic gradient descent produces 

a posterior Gibbs distribution of network parameters that is dependent on the 

noise level (temperature) used in the stochastic update procedure. The posterior 
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distribution defines an ensemble of networks that is dependent on the tempera-

ture used in the training algorithm. Averaging over this ensemble removes the 

dependence on the specific noise process used to generate a particular network. 

The posterior distribution is dependent on the examples in the training set. An 

average that is independent of the training examples can be calculated be aver-

aging over the example set, a quenched average. The average training error is 

defined as the quenched average of the training error averaged over the thermal 

ensemble of networks. 

If the mapping from inputs to output is described by a rule, it is reasonable 

to expect the network to be capable of extrapolation to unseen examples from 

outside the training set. If the correct output for every single input were known, 

a useful performance measure would be the mean square error of the model 

calculated over the set of all possible examples. Practically it would be impossible 

to calculate all possible example pairs without having detailed knowledge of the 

mapping itself. Theoretically the examples are assumed to have been generated 

by a known teacher mapping, this mapping can be used to calculate an average 

error for the network over the set of all possible examples, which is known as 

the generalisation function. A generalisation error that is independent of the 

specific network and the training data used can be calculated in a similar manner 

to the average training error. The average generalisation error is defined as the 

quenched average of the thermal average of the generalisation function. 

The average quantities described above are related to the quenched average of 

the free energy of the system. The replica method of statistical physics is used to 

calculate the free energy. This method considers n copies of the system simulta-

neously and then takes the n—*O limit analytically. The statistical behaviour of 

the system is captured by order parameters which describe the overlaps between 
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the weight vectors of different replicas as well as the overlap between replicas and 

the teacher. The complexity of the problem is considerably reduced by assuming 

the replica symmetric (RS) ansatz. Using the RS ansatz, the free energy can be 

calculated exactly for a linear student in the thermodynamic limit and hence, the 

average order parameters are evaluated. 

In the following chapters, the formalism introduced in this chapter will be used 

to calculate the performance for networks with different prior distributions for 

the weights. 



Chapter 3 

Noisy data and weight decay - 

Calculation 

In many real world problems, the data set that is used to train the network has 

been corrupted by some unknown noise process. This may cause the network to 

model the noise on the data rather than the underlying mapping and hence, the 

network may generalise poorly on unseen examples. If generalisation ability is 

important, it would be useful to be able to alter the cost function so that the 

effects of noise are minimised, i.e., to try to ensure that the network only learns 

the underlying mapping. The noise that is added to the training data is static 

throughout the training process. In this sense, it differs from the noise that is 

added to the stochastic training algorithm which is dynamic. There are now two 

different sorts of noise to be considered; the fixed static noise that has corrupted 

the training data and the dynamic noise that is used in the training algorithm. 

'Part of the work in this chapter has been published in [14] 

56 
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The training set is used to constrain a network's degrees of freedom, if the training 

set does not contain enough information about the underlying mapping, some of 

the degrees of freedom may be constrained by the noise on the data. Consider a 

curve fitting problem as an analogy: Given a set of noisy data points generated 

from some "true" curve, the object is to fit a polynomial curve through the data 

points using least squares regression. The model parameters are the coefficients 

of the interpolation polynomial, the number of degrees of freedom of the model 

can be considered as the order of the polynomial curve that is being fitted. The 

training error of the network is the mean square error on the training data points 

and the generalisation error is the error for a random point picked from the 

"true" curve. If the order of the interpolated polynomial is greater than that 

of the "true" curve, then the interpolated polynomial may fit the noisy training 

data well, but give poor generalisation for a relatively small number of examples 

(e.g., a cubic fitting a noisy linear etc). This leads to the principle of "Occam's 

razor" that simpler models are preferred over unnecessarily complex ones. The 

problem is how to formally include this principle into an algorithm. 

There are many techniques that can be used to counter the problem of learning 

the noise rather than the data. Some involve starting from a model with a 

small number of degrees of freedom and adding more as necessary. This class 

of algorithms are known as constructive (e.g., Upstart [22], cascade correlation 

[19], Tiling [53]). Another methodology is to start with a model that has a high 

number of degrees of freedom and remove those that are not needed - pruning a 

model (e.g., optimal brain damage [47], optimal brain surgeon [33] etc.). There is 

a less severe method that is related to pruning; regularisation. In this case a term 

is added to the cost function that penalises complex models, e.g., in the curve 

fitting problem it is possible to regularise the model by penalising high curvature. 
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The formalism developed in the previous chapter enables a prior on the student 

weight vectors to be chosen. Using a regulariser is equivalent to choosing a model 

from a distribution that disfavours those configurations that are penalised. Thus 

the prior distribution can be used to implement a regulariser on the student 

distribution. In the previous chapter, the prior distribution was chosen to be a 

spherical constraint that fixed the lengths of the weight vector to be unity. In 

this chapter the effect of using a weight decay [37] prior will be studied and the 

performance measures calculated. In the subsequent chapter, the performance 

measures calculated in this chapter will be evaluated for various limits. 

3.1 Weight decay 

Weight decay is a dynamic algorithm that can be used to regularise a network. 

At each update step, the weights are reduced by a small amount, this may be 

written mathematically as, 

Wnew =( 1 - 

where W, is a component of the student weight vector and f is a small constant. 

This update rule on its own would cause all the weights to decay to zero. However, 

used in conjunction with standard gradient descent training and suitable values of 

€, only those components of the student weight vector that are not well specified 

by the training data are reduced. Practically, after training is completed all those 

weights that are close to zero may be pruned. 

If the network is trained using gradient descent of a cost function, weight decay 
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can be interpreted as adding a quadratic term to the training energy to give a 

new cost function, since when the cost function is differentiated, the quadratic 

term gives a decay term in the weight update equation. The new cost function 

is, 

Er (W;  E) = Et  (W; ®) + 
I 
 AW . W, 	 (3.1) 

where Et  is the training error defined in chapter 2, that is the sum of the error 

measure over the training set. The weight decay parameter \ is linked to the 

amount the weights decay, c, by c = \r, where T is the size of the update step. 

The quadratic term in the cost function penalises large weights and is known as 

a penalty term. 

The weight decay term may also be motivated by using a well known method of 

statistics, ridge regression. This method is an extension to the usual parameter 

fitting technique of least squares. A least squares analysis is similar to the pseudo 

inverse [37] solution of neural networks. For linear regression, a simple model to 

be fitted to the data is defined as, 

y=XW, 

where y is a p dimensional vector containing the outputs of the training data, X 

is a p x N matrix containing the inputs of the examples and W is the vector of 

model parameters. The data is rescaled so that is has zero mean and variance 

one. The training error is minimised by the Moore - Penrose inverse [74], 

W = (XTX) 1 XTy 

The problem of setting the model parameters has been reduced to inverting the 

pattern correlation matrix, XTX.  If the data is ill-conditioned, (e.g.there is 
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a linear dependence in the inputs or p < N), the matrix XTX  is near singular 

and has some eigenvalues that are close to zero. In this case, the estimated 

parameters are dominated by the smallest eigenvalues of XTX.  Ridge regression 

[741 is used by statisticians to get around the problem of having small eigenvalues 

in the correlation matrix. The technique adds a constant to the diagonal part of 

XTX and then the least squares estimate of the model parameters are given by 

solving 

(XTX + k I)W = XT y , 

where the parameter k is equivalent to the weight decay parameter and causes 

the disproportionate effect of the small eigenvalues to be removed. 

The weight decay can be motivated as a pruning method or as a regularising 

prior on the student distribution. These motivations are equivalent to performing 

gradient descent on a cost function that is the sum of the training error and a 

penalty term. It has been shown that a weight decay is useful for reducing the 

effect of noisy data [43]. In order to investigate the effect of weight decay on 

noisy data, it is necessary to have a model of the static noise on the data. 

3.2 Static noise model 

In the previous chapter it was assumed that the training set e was generated 

from a teacher perceptron. This enabled useful comparisons to be drawn between 

the final average student and the teacher. The problem of studying the effect of 
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noise' added to the training set could be modelled by using a noisy teacher, i.e., a 

teacher rule that is corrupted by some noise process. A noisy teacher was studied 

in the context of a linear perceptron by Krogh and Hertz [43] using an analysis of 

the training dynamics based on the eigenvalue spectrum of the input correlation 

matrix. A noise process is added to the teacher so that the distribution of training 

examples depends on the noise process as well as the input vector. The replica 

method assuming the replica symmetric ansatz will then be used to calculate the 

average performance of the network. 

The network is assumed as before to be a single layer perceptron with N weights, 

W, connecting the inputs to the output. The training set, 0, consisting of p 

examples 0 1 , is assumed to be produced by a teacher network that has been 

corrupted by a noise process. The output of the noisy teacher, o, is given by, 

o(s, i; W0 ) = go (Wo  . S + ) , 	 (3.2) 

where i  is zero mean additive random noise. The distribution of a training 

example, 0, is now related to the distribution of noise as well as the distribution 

of the input vectors. 

d(0) = dy(s) d1t(ij) 

This means that the quenched average over the distribution of examples contains 

an extra integral over the noise distribution. The quenched average of the free 

energy may be calculated as in chapter 2. 

'The distinction between static noise on the data and dynamic noise on the training should 
be clear from the context, if it is not, noise shall refer to static noise and dynamic noise will be 
labeled as such 
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3.3 Stochastic gradient descent 

Stochastic gradient descent (2.2), gives a Langevin equation for the weight up-

dates of the form 

aw 
at = — VE(W; ) - VV(W) + i7(t) 

where V(W) is a data independent potential term. The weight decay penalty 

term is then equal to this potential term, V(W) = 	W. This update rule 

gives an asymptotic Gibbs distribution of student weights with partition function, 

Z = Jdii(W)exp {_/3 	(W; s)} , 	 (3.3) 
SE9 

where d,a(W) is an a priori measure on the student weight space and /9 is related 

to the variance of the dynamic noise, (t) (see §2.2). The measure may be related 

to the potential term; for a weight decay this gives, 

d(W) = ( - J exp( _/3w2 )dW , 	 (3.4) 

where the factor outside the exponential normalises the measure so that 

fd1t(W) = 1. The measure di(W) is equivalent to a Gaussian prior on the 

student weights. The free energy may be evaluated for this prior distribution and 

the effect on the average performance of the network calculated. 

The Bayesian formalism, [49], introduces the prior on the student weights as an 

Gaussian distribution with the variance controlled by a single parameter. The 

temperature is introduced to measure the variance of the noise model postulated 

for the student. It turns out that the Bayesian generalisation error used by 
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Bruce ci al eq. (2.11), is only dependent on the ratio of the variances of the two 

distributions [9], i.e., /3\ is a natural parametrisation of the Gaussian prior for 

studying the generalisation error. 

3.4 Free energy for noisy perceptron with weight 

decay 

The free energy and hence the performance measures for a simple perceptron with 

weight decay learning a corrupted or noisy teacher may now be evaluated. The 

free energy is calculated using the replica method, assuming replica symmetry, 

which gives from eq. (2.39), 

(1 
extr 	- { co - c}}. 	 (3.5) 

qo o q,c,Rf .N 

where qo,  4o , q1 , 41, R, R are the replica symmetric order parameters introduced in 

§2.7. The free energy per weight is calculated by extremising f with respect to 

the replica symmetric order parameters. The replicated Hamiltonian cr  (2.8) is 

constrained by the architecture of the student and teacher networks being mod-

elled. The prior constrained Hamiltonian g o  (2.9) is dependent on the student 

prior chosen (in this case the weight decay or Gaussian prior). 

The Gaussian prior distribution on the student weights is equivalent to the canon-

ical distribution of statistical mechanics. In the thermodynamic limit, the a priori 

student distribution is equivalent to a microcanonical distribution with the weight 

vector constrained to be of length ///3A. This suggests there is some scale in-

variance associated with scaling of the student weights,W, the temperature, 3 
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and the weight decay A. lithe training error is independent of the length of 

the student weight (as for a hard threshold), then a scale transformation in the 

student weights can be absorbed by a renormalisation of the weight decay param-

eter, A. This is not the case for the linear perceptron; in this case, the training 

error depends on terms quadratic in the student weights and a rescaling of the 

student weights can be absorbed by a rescaling of the training data outputs and 

the training temperature 0. This would leave the posterior student distribution 

and hence the free energy unchanged. 

The teacher weight vector is assumed to have fixed length, this is equivalent to 

a microcanonical distribution. This means that in the thermodynamic limit, the 

student and teacher weight vectors are chosen from the same type of prior distri-

bution. Intuitively this seems to be a good idea for good generalisation with small 

numbers of examples, since if the student and teacher priors are poorly matched, 

the prior student distribution will be giving incorrect hints to the training. For a 

large number of patterns, the data swamps the prior student distribution and the 

importance of matching the prior distributions is lessened. Matching the student 

and teacher distributions is discussed in more detail in chapter 6. 

3.4.1 Replicated Hamiltonian 

The replicated Hamiltonian eq. (2.23) now contains the integration over the dis-

tribution of noise on the teacher. Substituting the new example distribution into 

eq. (2.23) and taking the n--+O limit gives, 

cr[w] = - urn 
1

lnJd(s)d[L()exp [_/3(wa;s)] , 	(3.6) 
n-30 Nn 
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where the quadratic error measure, 

1 
= (g(w.s/v'i) _go(w0.s/\/W+77))2 

will be used. 

After extensive calculation following similar steps as in 2.8, introducing the order 

parameters and assuming replica symmetry, the replica symmetric Hamiltonian 

is 

cr[qo ,qi ,R] = _JDyDtd/2(7i)lnfDx 

[_/3 (g 
(r(q~~— 

 qi) + 	- tJqi 
- 	

- 
o (Ily + 71)) 

2]() 

This equation is similar to the replica symmetric Hamiltonian for uncorrupted 

data eq. (2.46). The static noise dependence has introduced an integral over the 

noise distribution. The function 9, eq. (3.7), may be evaluated analytically for 

a linear student as before. 

Assuming the activation function of the student is linear, g(x) = x; introducing 

the notation (g),7  = fDxd,t(71)g(1lx+71) and (xgo ) = fDxd 1a(q)xgo(Ilx+ 

77) and evaluating the remaining integrals, the replica symmetric Hamiltonian for 

a linear student learning a noisy teacher with arbitrary activation function is, 

cr (qo ,qi ,R) = 	1n(1+/3(qo—qi)) 

,8 	 ______ 

2(1 +(qo—qi))  (q, 
 -2R 	+(g)). (3.8) 

The only difference between this and the RS Hamiltonian for a clean teacher 
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is the average over the noise that takes place in (x go ), and (g ),. A linear 

student with a finite gain, i.e., g(x) = vx could be considered. Since the effect is 

to rescale the order parameters, to keep the analysis simple, the gain is absorbed 

into the order parameters. 

3.4.2 Prior constrained Hamiltonian 

The weight decay term introduced in §3.1 can be written as a Gaussian prior 

distribution on the student weights; this gives the prior measure of the student 

weights in eq. (3.4). The replica symmetric prior constrained Hamiltonian, is 

given by eq. (2.33). The measure, d1t(W) eq. (3.4), can be substituted, which 

after some calculation gives, 

1 	1 
go = 

—ln( + 41 - 2) + ( + (3.9) 
2(f\+ 41  —2) 

This prior constrained Hamiltonian is similar to that calculated for the spherical 

constraint eq. (2.57), however, in this case there is a dependence on the diagonal 

order parameters, qo  and 4o , since the length of the student is not renormalised 

at each update. 
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3.4.3 Saddle point equations 

The free energy for a linear student learning a corrupted teacher using a weight 

decay is given by, 

	

1 	1 	 1 

	

-/3f = —RR - qo'o + qii - 1n(/3) - 2 o + 	+ ln(/3)) 

1 J 2 Il 2 +i 
+22 + —ln(1+9(qo—q1)) 

1 	c/3  

+ 	- 	( 	
+ 	 (3.10) 

with the order parameters given by their saddle point values. The free energy is 

simplified if the order parameters corresponding to the overlap between student 

and teacher and its conjugate are rescaled: r = R/l and = Rft The saddle 

point equations are, 

1 
qo 	q, + /

3\ + ti - 	
( 3.11) 

qi = ( 2 +1)(qo — qi) 2 	 (3.12) 
1  (41- 
	) 	 (3.13) 

2 	(xgo ), 

(1+(qo—qi))2 (qi_2rxgo+(g
o )) 	(3.14) 

r = i(qo — qi) 	 (3.15) 
a/3 

r = 
1 +/3(qo  —qi) (xg

o ),7 	 (3.16) 

where it is assumed that the number of training examples scales as a times the 

number of weights, that is a = p/N. 

The saddle point equations are for a linear student learning any nonlinear per- 

ceptron teacher. It is straightforward to check that these equations reduce to 
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those presented by Seung et al [64] for a spherical constraint and a linear teacher 

by setting qo = 1 and Q = 1 corresponding to a spherical normalisation on the 

student and teacher weights. This result will be discussed in more detail in §4.1. 

3.5 Solving the saddle point equations 

The saddle point equations eq. (3.11) - (3.16) can be solved to give the behaviour 

of a linear student using a weight decay learning an arbitrary teacher from noisy 

data. From eq. (3.11,3.12), define Q = qo - qi. Consider Q' = /3Q, the saddle 

point equations give a quadratic equation for Q' that has roots given by, 

= 	(1 - a - A) + 	/(1 —a - A) 2  +4A, 	(3.17) 
2A 	 2A 

In the replica symmetric ansatz qo  is identified with the average length squared 

of a student weight vector. Thus q' = qi/qo is the average cosine of the angle 

between replica weight vectors. This quantity is independent of the gain of the 

student. The overlap between replicas varies from zero corresponding to the 

replicas spanning the whole of weight space, to one, corresponding to a single 

student solution. Since q' < 1, Q = (qo - qi) > 0. Thus only the positive root 

of Q is needed. The function Q' is identical to the static limit of the response 

function for uncorrelated patterns as calculated by Hertz et a! [38]. 

After calculating Q, the remaining order parameters may be evaluated in terms 

of 0 = 1 + , detailed calculation (appendix C) yields; 

T 
qo = q1+ 1 	 (3.18) 
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a 
(3.19) 

a (x go) 
r = (3.20) 

qo  = 	
(q, - ( xgo),) 	

(3.21) 

a,62  
q= (2 

 - ) 	

)2 A + 	90 
2 
	- ( xgo)) (- 1)) 	(3.22)77 	 77 

r = afl(x o )(1_) 	 (3.23) 

The parameter 0 is independent of the temperature and the teacher activation 

used. 

The normalised overlap between student and teacher, R' = R/(QV) may be 

written as, 

(3.24) 

The normalised overlap between replicas may be written in terms of the order 

parameters, q' = q i /qo 

3.6 General teacher activation functions 

The actual form of the teacher activation function appears in the order parameters 

through the averages, (xgo ) and (g ),. The averages are defined by, 

(g) = JDxdg(vo(fx+)) 	 (3.25) 

(xgo ) 	= J Dx d(i)xg o (vo (lx + ii)) 	 (3.26) 
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where the gain on the teacher function v0  has been introduced explicitly. The 

noise may be renormalised by the length of the teacher weight vector, 1 to give 

= 71/ft The averages are now in terms of a single gain parameter, = 

i/oil, which means that the teacher gain, v 0 , can be set to unity without loss of 

generality. The actual distribution of the noise has variance, y2 = il22 , where 

.52  is the variance of the renormalised noise. For the remainder of the thesis, the 

static noise considered will be the renormalised noise i. 

Consider the average square difference between a nonlinear teacher activation 

and a linear model, 

S = J Dxd(i)(g o (il(x + ,q)) - ax)' 

This is minimised by a = (xgo ), thus the average (xg o  ),7  is the gradient/ gain 

of an effective linear teacher which models the nonlinear activation function. The 

effective renormalised noise level of the linear model may be written as 

yeff =(go )/(xgo )_1. 	 (3.27) 

This effective noise level will be useful for studying nonlinear teachers. The 

averages can be evaluated numerically for any arbitrary activation function. For 

some specific activation functions, the integrations may be done analytically. 

3.6.1 Linear teacher 

In this case, the activation function of the teacher is given by g o (x) = x. The 

averages are given by, (x go ), = il and (g ) = il 2 (1 + 52) 
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3.6.2 Binary teacher 

The activation function of the teacher is g o (x) = sgn(x). This gives for the 

averages, 
1  

(g (xgo)
=

F-2 

 +2) 	
(3.28) 

These results are independent of the length of the teacher Q as expected for a 

sgn(.) activation function. These results may substituted into the order parame-

ters. 

3.7 Calculating the order parameters 

The averages evaluated above may be substituted into the solved saddle point 

equations to further simplify the equations for specific teacher activation func-

tions. Since the quantities of interest are average quantities, the student weight 

vector will refer to the average student weight vector, unless otherwise indicated. 

Similarly, generalisation and training errors will be average quantities. 

3.7.1 Linear teacher 

With a linear teacher, the form of the free energy presented in equation (3.10) is 

similar to that given by Seung et al [64] for a linear perceptron learning a linear 

teacher with an unrealisable threshold, that is a 1  = (W°  . s 1  + 0), where 0 is the 

teacher threshold/bias. The free energies are identical if the spherical constraint 

is assumed and /3A - 0, that is zero weight decay. In this case the threshold is 
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identified with the standard deviation of the noise on the teacher. Thus in this 

limit, an unrealisable threshold on the teacher is actually equivalent to adding 

noise to the teacher, which is then averaged. 

The overlap between the average student and teacher weight vectors, r, is, 

aQ 	
(3.29) 

Returning to the average inter-replica overlap, equation (3.19), and substituting 

the results, using the quadratic equation for q  and rearranging gives, 

all2 	
2`Q2 (3.30) 

- 

q= (2 	
(2\) 

 a) 

The average overlap between the replicas is made up of two terms, one of which 

depends on the difference between the noise level on the data set and the weight 

decay parameter. The second term is proportional to the average overlap between 

student and teacher weight vectors. 

The results for the linear teacher may be substituted back into equation (3.14), 

&/32 11 2  
q - (2 - a) (A 

2 + 2( - 1) 2 ) 

These results will be used in the next chapter to calculate the network's perfor-

mance for various limits. They also suggest a useful way of rewriting the order 

parameters for arbitrary teacher activation function. 
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3.7.2 Nonlinear teacher 

The saddle point equations for a nonlinear teacher are given in eq. (3.18) - (3.23), 

the overlap between replicas and its conjugate can be rewritten in terms of an 

effective noise level, Yeff'  eq. (3.27) and the effective gain of the teacher, (x go 
77 1  

2 c(xgo), 
'2 	

cx(xgo, 	
(3.31) q= (2_) 	eff)+ 

2  (x go 
) ( 2 + 	- 1)2) . 	 (3.32) (52 _&) '\ 

The remaining order parameters are the same as for the linear teacher case up to 

factors of the effective gain of the teacher, (x go ),. Thus a linear student learning 

a nonlinear teacher is equivalent to a linear student learning a noisy linear teacher 

with a gain given by the effective teachergain, (x go ) and the effective noise 

level given by 

3.8 Generalisation error 

The average generalisation error, fg = (( (( W) )T )), is a measure of a network's 

inability to solve a problem averaged over the entire data set. Assuming ran-

dom, Gaussian distributed test patterns the generalisation function, €(W), has 

been calculated generally in chapter 2, §2.5.1. The generalisation error is simply 

the quenched average of the thermal average of the generalisation function. In 

the replica symmetric case, the average generalisation error for a linear student 
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learning an arbitrary teacher is given by 

1 
g (qo+(go )_2r(xgo)) ' 	 (3.33) 

where the order parameters are the replica symmetric ones. 

The generalisation error, eq. (3.33), measures the network's performance in learn- 

ing the uncorrupted teacher. If the student weight vector exactly equals that of 

the teacher and the activation functions of student and teacher are identical, 

= 0. The student could, however, be compared with the corrupted output of 

the teacher; this would make the averages of the teacher output, (g) and (xg o ) 

averages over the noise distribution as well, that is (g ), and (xg o  respectively. 

The average over the noise takes account of the student's inability to learn the 

uncertainty in the teacher. Hereafter, Cg  will refer to the network's generalisation 

error for learning the "clean" teacher. When the generalisation error in com-

parison with the corrupted teacher is referred to, the notation Eg ' will be used. 

The generalisation error compared to the clean teacher measures how closely the 

network has learnt the teacher rule, however, this performance measure may be 

rather hard to evaluate in practice since it requires knowledge of the uncorrupted 

rule that may not be available. Hence the corrupted generalisation error may be 

a more useful performance measure in certain situations. 

For a linear teacher, 

= 	+02 
	+ 	. 	

(3.34) 

The generalisation error depends on the gain of the teacher, Q, representing the 

square length of the teacher weight vector. This is as expected, since a linear 
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perceptron is used, the error is an absolute error and therefore the larger the 

weight vectors, the bigger the errors. The corrupted generalisation error for a 

linear student learning a linear teacher is given by 

2 

	

I 	7 
= 2 

6   

where 72 = 22 is the total noise level on the teacher. Hence for a linear teacher 

it is only necessary to look at the uncorrupted generalisation error since it is 

related very simply to the corrupted generalisation error. For non-linear teachers, 

there is in general no such obvious relationship between the two generalisation 

errors. The corrupted generalisation error for an arbitrary teacher activation 

function may be written as, 

fg' 	
(x go) ,

(1 + 7eff + (2 	
) ( 
	

- A) 	
) + 2(0-1) 	

(3.35) 

where the effective noise, 	, eq. (3.27), has been used. This gives a corrupted 

generalisation error that is similar to that for a linear teacher with the variance of 

the noise replaced by the effective noise and the teacher gain 11 replaced by the 

effective gain (x go ). The generalisation error has an additive component due 

to the training temperature, thus the generalisation improves as the temperature 

is decreased. 

Other forms of the generalisation error were discussed in §2.3. The generalisation 

error of Bruce et al [9] eq. (2.11), for a linear student and teacher is given by, 

BS = q - 211r + c 2 (i + 72)  

up to a factor of 72•  This generalisation error is temperature independent and 
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hence optimising this generalisation error with respect to the temperature is 

meaningless. The difference between the errors fg  and CBS  is due to the differ-

ence between the conventional statistical mechanics view of measuring the error 

for a single solution from the posterior distribution and the Bayesian view of 

using the complete posterior distribution [64, 9]. From the Bayesian perspective 

optimal performance is achieved when the posterior distribution models the data 

distribution, i.e., the variance on the posterior is equal to the variance of the 

noise on the data, the generalisation error is then measured as the squared bias 

of the posterior. The statistical mechanics view favours training to a single so-

lution that is the MAP estimate of the student weight vector. For the Gaussian 

posterior under study, it turns out that the MAP estimate and the mean of the 

posterior are the same which means that both Eg ' and CBS  are optimised by the 

same value of the weight decay parameter. 

3.9 Training error 

The average training error e is defined as 

Et 	
- 18(3f) 

(3.36) = (( ( E )T )) c 190 

where f is the free energy per weight with the prior distribution on the student 

weight vectors kept fixed when the derivative with respect to 0 is taken. This 

is an average measure of how badly the network does on its training data set. 

The free energy calculated in §3.4 is the free energy related to the cost function 

which consists of the sum of the training energy and a term related to the prior 

distribution. The average training error may be calculated by differentiating /3f 



CHAPTER 3. NOISY DATA AND WEIGHT DECAY - CALCULATION 77 

with the temperature dependence in the prior kept fixed. That is, 

ft = 1 
	

/3fI,3A=COflS) 
a 8/3 

After differentiating eq. (3.10) and rearranging, the average training error for a 

linear student learning an arbitrary teacher may be written as, 

1 (xgo ) 	 T 
= 2 (ç52  - a) (A2 + yff(q - 1) 2) + 	. 	 ( 3.37)

20  

The first term is in fact equal to T 2 1 /2a which is a temperature independent 

quantity. This gives a meaning to the conjugate order parameter 	this conju- 

gate order parameter is a times the temperature independent part of the average 

training error divided by the square of the training temperature. The second term 

gives the temperature dependence of the training error, this term is independent 

of the teacher activation used and only depends on the weight decay parameter, 

A and the number of patterns per weight, a through the function 0. 

The average value of the cost function c, may also be calculated by a similar 

process, giving, 

= L + I  Aq0 	 (3.38) 

This simply adds the average of the penalty term to the average training error. 

The average training error is related to the corrupted generalisation error (ap-

pendix D) by, 
1 

Ct 

______ 	
TQ'2\ 

= (1 + i2 
(g' + 2 ) ' 
	 (3.39) 

where Q' = /3Q is the response function. This equation agrees with the result 

of Hansen [32] in the appropriate limit. The result suggests that the assumption 
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the minimising the training error will lead to better generalisation is not unrea-

sonable. The function 1/(1 + Q')2  is a monotonically increasing function that 

tends to one as either a or ,\—oo. This means that the training error is always 

less than the corrupted generalisation error for any learning problem. The func-

tion 1/(l + Q') 2  is only dependent on the number of patterns per weight and the 

weight decay parameter through the response function Q'. The response function 

is dependent on the student architecture and independent of the teacher. 

3.10 Optimal weight decay parameter 

It has been shown by Krogh and Hertz[43] that there exists an optimal weight 

decay A pt  which minimises the generalisation energy. This can be found by 

differentiating Cg  at finite A. 

Given the generalisation error from equation (3.34), 

I aqo 	9r  0969  

aA - 28 	
8(xgo) 

For a linear teacher, (xgo ) = (xg o ) =Q and (g ) = l2(1 + .52), thus the 

equation above reduces to, 

_ aq5 	aO ÔQ 
-(2 - a)2 	 + _5_• 	 (3.40) 
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For zero T, 12  = 0 and putting aA   = 0 yields 

- 

"opt — ')'
2 
 (3.41) 

which agrees with the result of Krogh and Hertz [43]. This result states that in or-

der to get optimum generalisation, the width of the Gaussian prior on the student 

weights (the weight decay parameter A) should be the same as the uncertainty 

(noise) in the training data 

Now consider the linear teacher case for finite T. At finite temperature the 

condition, 
8€
- 	= 0 gives aA 

4aA 2 1l2  (.A - 2) + T&(ct - 1) - T?I,(& - A(1 + a + A)) = 0, 

where ib= ((1+a+A) 2 -4o). 

This equation may be solved numerically and the results for 11 = 1 are presented 

in Fig. 3.1. The solutions tend to infinity as c/3 - 0.5 from below; above this 

temperature, the optimum A is infinite. This value of the weight decay parameter 

corresponds to having a prior weight distribution of zero weights. The large A 

limit studied in the next chapter, eq. (4.15) agrees with this result since above 

o/3 = 0.5 the generalisation error degrades. Thus an initial temperature for an 

annealing schedule may be postulated as Ti n it  = 2cr. 

For the larger values of T, the optimum generalisation error is not significantly 

less than the surrounding values and therefore training at A, pt  is not strictly 

necessary. The effect of the noise on the training set is to increase the optimal A 

at low values of T/c. 
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Figure 3.1. Optimal weight decay against temperature for effective gain one 
= 1.0, and two different noise levels, ,2 = 0.2 , (lower curves) 	= 0.8 (upper 

curves) 

For an arbitrary teacher the optimum weight decay for the corrupted generalisa-

tion error may be considered since this gives a much simpler expression. The 

derivative of ' with respect to the weight decay, ), gives, 

ô4 '9Q _ a 
- (2_)2 

which at zero T gives the solution, 

- 

Opt - 	2 

_____ 
- 1 = 

xgo ) 	
7Cff 	 (3.42) 

( , 

This condition sets the weight decay equal to the effective noise level on the 

teacher, (g ) - (xgo ) divided by the effective gain of the teacher squared, 

(xgo ) 2 . This is similar to the condition for the linear teacher found previously. 
77 

For nonlinear teachers, the optimum weight decay may be evaluated numerically. 

The optimum weight decay for a linear student learning a tanh(.) teacher for 
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different gains and additive noise are presented in table (3.1). It can be seen 

Gain ci 
Noise ,,2 	0.5 I 1.0  I 2.0 

0.0 0.016 0.075 0.194 
0.2 0.225 0.305 0.454 
1.0 1.075 1.257 1.527 

Table 3.1. Table of optimum weight decays A.pt  for linear student learns tanh(.) 
teacher. 

from the table that the effect of the nonlinearity in the teacher is to increase the 

optimum weight decay by an amount that is related to the gain of the tanh(.) 

function. This can be explained, since the input examples are drawn from a 

uniform Gaussian distribution, the smaller gains mean that the teacher activation 

function is linear across more of the region from which the examples are selected, 

and hence the linear student is able to learn more of the teacher. For a linear 

student learning a binary teacher, the optimal weight decay is given by, 

opt=! /2(1+ 2 )_1, 

which has a value "-j  0.25 for zero noise. Hence the generalisation of a linear 

student learning a binary teacher can be improved by using a weight decay set 

to this value. 

3.11 Concluding remarks 

In this chapter, the formalism developed by Seung et al [64] and outlined in the 

previous chapter is extended to enable static noise on the data set as well as a 
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weight decay to be studied. The model considered is a linear student learning 

both linear and nonlinear noisy teachers. The main performance measure used 

is the generalisation error. This comes in two forms, the clean generalisation 

error which compares the student to the uncorrupted teacher and the corrupted 

generalisation error. The corrupted generalisation error may be of more use in a 

practical situation since it is closer to the performance measure readily available. 

The average generalisation error Eg  is a rather artificial performance measure, 

since the test set consists of the complete example space, hence the test set 

contains the training set and so the error is not an error on novel examples, it is 

an error on a novel example plus the training set. 

The case of a linear student learning a nonlinear teacher turns out to be the same 

as a linear student learning a linear teacher with an increased amount of noise 

and a different gain on the teacher. 

There is an optimum weight decay parameter that minimises the generalisation 

error for a given training temperature and noise level on the data. This may be 

used to improve the performance of a network where the data has been corrupted. 

The prescription for setting the optimal weight decay parameter needs knowledge 

of the amount of noise on the data. Alternatively, this could be used as a method 

of estimating the noise on the data. Find the weight decay parameter that gives 

the optimal generalisation performance and the noise level on the data may be 

calculated. In the case of an unrealisable rule (linear student learning nonlinear 

teacher) the optimal weight decay contains a part that is reducing the error due 

.to the non-linearity of the teacher. This shows that even when the student is 

poorly matched to the teacher, performance can be improved by using a weight 

decay. 
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The generalisation error studied in this thesis is that suggested by the standard 

statistical mechanics view; the mean square error. This is optimised by min-

imising both the bias and the variance of the posterior student distribution with 

respect to the training parameters (hyperparameters), which favours training at 

zero. temperature, i.e., selecting the MAP student weight vector. The Bayesian 

view says that the whole ensemble of students should be used with the variance 

of the posterior optimally equal to the variance of the noise on the data [9, 491. 

The Bayesian generalisation error is then simply the squared bias. For the Gaus-

sian distributions studied, it turns out that the MAP estimate and the average 

over the posterior distribution are the same, hence the two methods agree on the 

optimal weight decay parameter. 

The performance measures calculated in this chapter will now be evaluated for 

certain limits of the main parameters. The limits considered will correspond to 

different training regimes. 



Chapter 4 

Noisy data and weight decay - 

Limits 

In this chapter, the performance measures calculated in the previous chapter 

are evaluated for a number of different limits of the main parameters; the num-

ber of patterns per example, &, the weight decay parameter ) and the training 

temperature, T. The limits that will be looked at are, 

• The zero weight decay limit, which is identical to the pseudo inverse solu-

tion. This enable comparisons between the weight decay and the pseudo 

inverse solution to be drawn. 

• The zero temperature, 3—oo limit. This limit is characterised by a single 

student weight vector. In this limit, the generalisation error is minimised 

with respect to the temperature. 

'Part of the work in this chapter has been published in [14] 
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• The large c limit. Here the number of examples per weight tends to infinity 

and so the network is able to use the data to overcome, either the noise on 

the data or an unsuitable prior. 

. The large weight decay limit considers the effect of having a high degree of 

belief in the prior. 

• The zero noise limit will be studied to enable comparisons between the 

weight decay prior and a spherical constraint to be drawn, as well as study-

ing the effect of noise. 

Both the case of a linear student learning a linear teacher and a linear student 

learning a nonlinear teacher will be examined under these conditions. The non-

linear teacher is chosen to have a hyperbolic tangent activation function. 

4.1 Linear student, Linear Teacher 

The simplest problem is where the teacher has a linear activation function with 

gain 1, the student is also linear and has gain one. 

4.1.1 Zero T, Zero A 

The ) - 0 limit corresponds to training with an infinitesimally small weight 

decay term. However with ,\ = 0, the integration over the weights performed 

in the evaluation of the partition function eq. (3.3) is undefined. Thus the limit 

T, A - 0 is taken with A' = flA constant giving a finite distribution of weights. 
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The zero weight decay limit is equivalent to the pseudo inverse solution. In this 

limit, the difference between the overlaps, Q eq. (3.17), gives two solutions 

0 

where ,\' = /3A. Using these solutions in the solved saddle point equations (3.29), 

(3.30) and (3.18) to evaluate the physical order parameters gives; 

a<1 
(4.1) qo(T, 	O) 	

= 
2  (i + 	 a> 1 

I a1l2(1+ j ) cl I (4.2) qi (T, 	0) 	

= 
2  (i + 	a > 1 

a<1 
r(T, .\—+0) 	

= 

(4.3) 
Q a> 1 

Substituting these values into the generalisation error, eq. (3.34) yields 

f (1 - a)(l 2  + ) + 
aO 	fora < 1 2(1—cr) 	(4.4) Eg (T, A--+O) 

= l 
02i2 	 for a > 1 2(c-1) 

The average training error is given by eq. (3.37): 

{ 	 1< 
f(T, )— 	

0 	cr 
.0) 

= 	ai( - 1) a 1 	
(4.5) 

2c 

It can be seen from eq. (4.1) that the effect of the noise added to the training set 

is to increase the average length of the student vectors, this in turn means that 
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the generalisation error is expected to be higher since, for a linear perceptron, the 

student can only generalise perfectly when it has the same direction and effective 

gain as the teacher. This cannot occur since from eq. (4.1), the noise draws the 

effective student gain away from the effective teacher gain Q. This is confirmed in 

eq. (4.4) which shows noise degrading the generalisation error. The effect of noise 

can be reduced by presenting more patterns, that is increasing a. For a < 1 the 

parameter A' may be increased to reduce the generalisation error. Since A' = J9A, 

in the zero T, A limit, this corresponds to taking T to zero faster than A, that 

is, training with an infinitesimally small but finite weight decay. This solution is 

the pseudo inverse solution [37]. 

For a finite noise level, there is a discontinuity at a = 1 in the average generali-

sation error. For this value of a, the examples specify the weights, however, the 

noise causes the student weight vector to be arbitrarily far from the correct solu-

tion on average. As more patterns are presented, the student weights approach 

the teacher and so the errors decrease. Above a = 1 the training error for noisy 

data is increased from zero, as seen in eq. (4.5). This is because as a increases 

above one, the network cannot learn the random noise present on the data and 

hence cannot learn the examples exactly 

Some of the results presented by Krogh and Hertz [43] are equivalent to taking 

the zero T,\ limit with A' -f oo and normalising the teacher vector to be of length 

one, that is 112 = 1. Since in this limit Q = 0, the average overlap between replicas 

is always one, q' = 1; this means that there is only one actual student solution to 

the learning problem (the pseudo inverse). The average overlap between student 
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Figure 4.1. Average overlap between student and teacher weight vectors, R' 
against c for zero temperature and weight decay. 

and teacher is given by 

f 1+2/(1_a) 	 1 
R'(T, A-0) = 	 . 	 (4.6) 

1 	c>1 I ,/1+2/(a_1) 

The function R' is presented in Fig. 4.1 for a number of different noise levels. 

Inserting the limits into eq. (4.4), gives the generalisation error for T, )—O and 

Il = 1,'-400, 

f (1—c)+ 2(1-a) 	
- 	 (4.7) 

= ' 2(a-1) 	
c > 1 

which is in exact agreement with the generalisation error calculated for a lin-

ear perceptron by Krogh and Hertz [43] apart from the factor of two due to a 

difference in definition. 
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4.1.2 Zero T, finite A 

Here, the temperature is held at zero whilst the effect of a finite weight decay is 

investigated. Zero temperature corresponds to learning with no dynamic noise 

on the weight updates. In this limit, Q = 0, =q' = 1, i.e., there is only one 

solution in the student weight space and hence all the replicas have the same 

student weight vector. 

The training and generalisation errors at zero temperature are given by 

e(T — 0) 
- 

(4.8) - 	
- 2 	(2_a) 

eg (T =0) = 	(1 
a 	a 	- 2)) 	 (4.9) 

2 

where, = (1 + a + A + 	+ a + A)2  - 4a). Since the gain of the teacher, 

Il appears as a scale factor, a teacher of unit length will be studied, i.e., Q = 1 

for the plots in this section. The effect of a weight decay is to increase the 

initial training error above zero. This is because a non zero weight decay term 

takes the student's weight vector away from that which gives zero training error. 

Asymptotically, as the number of patterns per weight a tends to infinity, the 

training and corrupted generalisation errors are given by, 

= 0,a) = I22(1 + I) + O(a 2 ), 	 (4.10) 

= 0, a-4 oo) = Q22(1 - 
-) + 0(& 2 ) .  (4.11) 

The result of Seung et al [64] that the training and corrupted generalisation error, 

Eg ', approach the same value from below and above respectively for large a can 

be seen to hold for all A. The equivalence of the average training and corrupted 



CHAPTER 4. NOISY DATA AND WEIGHT DECAY - LIMITS 	90 

generalisation errors as c—+oo is expected, since as the number of examples per 

weight tends to infinity the example set spans input space, this implies that the 

average error on the training set is the same as the expected error on a random 

input: the generalisation error. The \ independence of the asymptotic value is 

due to the large amount of data overwhelming the prior and hence for large c, 

the student is independent of the prior. The asymptotic form of the cosine of the 

angle between the student and teacher weight vectors is, 

R'(T = 0,a—*oo) = 1— 'Y 

Thus as the number of examples increases, the student becomes collinear with 

the teacher, again the prior is not present in the asymptotic form for the same 

reason as above. 
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Figure 4.2. Training and generalisation error for zero temperature, noise 	= 

0.2 added and different weight decays A. 

The average cost function can also be evaluated for zero temperature, it is given 
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by, 
AQ2 (\_2) (  
2 (' (2_a) 

= 0) = 

A plot of this is presented in Fig. 4.3 for noise 	= 0.2 and different values of 

the weight decay parameter. For optimum temperature and weight decay (in the 

minimum generalisation error sense, see §3.10), T = 0, ). = the cost function 

is constant and equals half of the actual noise level on the teacher, y2/2.  This 

constant is the asymptotic training and corrupted generalisation error, i.e., the 

error due to the noise on the data. This suggests that if the cost function is 

below this value, the network may not be regularised sufficiently, causing over-

fitting and if the cost function is above to this value, the network may be "over 

regularised" causing the prior to disrupt the data. 
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Figure 4.3. Average cost function for zero temperature , noise ,2 = 0.2 added, 
plotted for different values of A. 

If the noise level added to the training data is increased the effect of an inappro- 

priately small weight decay may be investigated. The generalisation error and 

the average overlap between student and teacher are shown in Fig. 4.4 for a large 
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Figure 4.4. Generalisation error q and the average overlap, R' plotted for zero 
temperature, noise 2 = 1.0 and different weight decays, A. 

noise level, 2 = 1.0. The effect of a weight decay that is too small is more appar-

ent on the generalisation error than the cosine of the angle between student and 

teacher weight vector. This is because the generalisation error has an additive 

component dependent on the length of the student weight vector, which is also 

affected by the noise. 

The smaller weight decays in Fig. 4.4 are not large enough to regularise the high 

noise level and a peak in the generalisation error is present for the smaller values 

of the weight decay parameter A. The peak is related to the divergence that 

appears at c = 1 for the pseudo inverse solution, A-0, and occurs when the 

student is most sensitive to noise. The actual location of the peak is obtained by 

solving a quartic equation in c. A plot of the location of the generalisation error 

peak 0max  versus the value of the weight decay parameter is presented in Fig. 4.5. 

There is a value of the weight decay parameter (denoted ) above which there 
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is no peak in the generalisation error. Thus if ) > A(-y), the generalisation 

error decreases as the number of examples in the training set increases for all 

a > 0. For ) < A P  the generalisation error can increase as more examples are 

presented for a <amax , this suggests that the weight decay should be larger than 

AP  to get continual improvement as the number of examples is increased. For 

2  3 Ap = ( 2 - 1)/2 and amax(Ap) = 0. If Zy2 < 3, the expression for A p  is 

less simple but still depends on the noise level -y. The location of the peak for 

= A, and 2 < 3 is at nonzero a, this can be seen in Fig. 4.5 for the curves 

corresponding to 52 = 1.0 and 2.0. This is because for 2 < 3, there is a local 

minimum in the generalisation error at 0 < a < amax and as )— from below, 

the local minimum and the maximum combine at amax(\p) > 0. For i2 > 3, the 

local minimum does not exist for a > 0, so as the location of the peak 

tends towards 0. As the noise level tends to infinity, the location of the peak is 

given by amax = 1 + ,\ for ,\ << 2, as \ increases, however, the height of this 

peak decreases. The peak in the generalisation error implies that the network 

overfits the data, i.e., it is under-regularised. 

The peak in the generalisation error is related to a peak in the length of the 

student, the location of this peak may also be calculated. The smaller values of 

the weight decay allow the student vector to grow larger than the teacher causing 

a degradation of the generalisation error. This may be seen in Fig. 4.6 where the 

average length squared of the student is plotted for noise 52 = 1.0 and different 

weight decay parameters; in this case, a peak does not appear if \ > 2 /2 .  As 

2 /2 — A becomes small the location of the maximum tends to infinity, whilst the 

height of the peak becomes smaller. Again as 2*00,  the peak is at amax  = I+ A. 

As the number of examples per weight, a tends to infinity, the asymptotic form 
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ama 
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Figure 4.5. Location of maximum as a function of c of the generalisation error 
plotted against the weight decay parameter A for different noise levels on the data 
in the zero temperature limit. 

of the average student length squared at zero T is, 

qo(T = O,00) = 2 Ii - ( 2A - 2) + 0(a_2)} 

This shows that for A > 5 2 /2, the average length squared of a student is less 

than one and thus there is not a peak in the length of the student; forA < 2 /2 

the average length of the student weight vector is able to increase above one, as 

c—oo, the length returns to that of the teacher. 

The generalisation error plotted as a function of the weight decay parameter 

A is presented in Fig. 4.7. The optimum weight decay parameter estimated in 

section 3.10 can be picked out. For the smaller values of c, the minimum is 

not significantly lower than the surrounding generalisation error, here the data 

is not able to specify the weights fully. As the number of examples becomes 

comparable to the number of weights, c 1, the minimum at A. pt  becomes more 
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Figure 4.6. The average length squared of the student plotted against a for 
noise 2 = 1.0 added and different weight decays, A. 

pronounced, since here the network is most sensitive to noise. As a tends towards 

infinity the minimum is again not significantly lower than the surrounding values, 

since as a—oo the choice of prior is less important The asymptotic expansion 

of the corrupted generalisation error for large a, eq. (4.10), shows the lack of 

dependence on the prior for larger a with the first order correction independent 

of A. 

4.1.3 Zero noise, 'y 2  = 0 

The zero 'y limit corresponds to having an uncorrupted data set. This was stud-

ied by Seung et al [64] using a. spherical constraint on the weights and hence it is 

possible to draw some comparisons between a weight decay term and a spherical 

constraint on the weights. For the weight decay case, the additional order pa-

rameter qo  is associated with the mean length of a student weight vector. Using 
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A 

Figure 4.7. The generalisation error, Eg  against the weight decay parameter, A 
for different values of a and noise variance 0.5 added to the data. 

a spherical constraint, the length of the student weight vector, qo,  as well as the 

length of the teacher vector, Q are constrained to be one. 

In the zero T, A limit with -y2 = 0, from eq. (4.1) 

Ia1l 2 + 	cr<1 
qo(T,A-0)=1 

ç2 	a>1 

Therefore having a Gaussian distribution of weights such that A' = ?A = 02 

will result in qo = 112 for all a. This means that the average length squared of 

the student vector is equal to the length squared of the teacher, which is similar 

to a spherical constraint but not identical, since it is the average rather than 

actual length of the student weight vector which lies on the sphere. To mimic 

the spherical constraint of Seung et at, 11 is set to be one. 

From equations (4.1) and (4.2) with zero y,  T, A and assuming the distribution of 



CHAPTER 4. NOISY DATA AND WEIGHT DECAY - LIMITS 	97 

weights above, that is A' = 

1 1 

	

= 1/112) 	
a a< 

= 	- 

11 a>1 

Hence for a > 1, the average overlap between replicas is one and therefore all the 

replicas tend towards the same vector and so there is only one solution within 

the student weight space. For a < 1, the number of possible student solutions is 

greater than one due to the fact that there are less than N equations specifying 

N unknowns, therefore the system has some freedom to find a solution. The same 

distribution of weights gives, from eq. (4.3), the average overlap between student 

and teacher, 

<1 

	

= 1/112) 	
a a

-  
1 a>1 

The average overlap with the teacher tends towards one as a increases through 

1. This then makes the generalisation error e g  = 0 for a > 1, as can be seen 

from eq. (4.4). For a > 1 the training set more than specifies the student and 

so there can only be one solution, namely the teacher. In the region, a < 1, 

f  = (1 - a)11 2 . The above results again agree with Seung et al for 11 2  = 1. 

At zero temperature, zero A and zero 7 2
,1E, is zero for all a. This is as expected, 

since in this case the student can always learn the data set exactly, that is, the 

problem is realisable. At finite values of A, with zero static noise, the training 

and generalisation errors are increased from their values at A = 0, as can be seen 

in Fig. 4.8. At finite temperature, the errors are also increased. The presence 

of the weight decay in the cost function means that the learning algorithm no 

longer enforces Et  = 0 and thus the training error and generalisation error are 

non-zero. 
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(a) Training error 	 (b) Generalisation error 

Figure 4.8. The generalisation error,c g  and training error Ct  for zero noise on 
the data set(y = 0) and zero temperature plotted for different weight decay 
parameters A. 

4.1.4 FiniteT 

At finite temperature the performance measures are altered slightly. The tem-

perature dependence adds a term to the generalisation and training errors as in 

eq. (3.37) and (3.34). The difference between the overlaps (T times the response 

function Q'), Q is temperature dependent and may be written in terms of the 

parameter 0 as Q = T/(ç5 - 1) which grows linearly with the temperature. The 

temperature dependent contribution to the generalisation error is equal to Q12, 

hence better generalisation error is achieved at zero temperature. The measure of 

the overlap between student solutions is q' = q/qo. As the number of examples 

tends to infinity, this is given by, 

T 
q' = 1 - 	+ 0(2). 
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The temperature increases the number of possible student solutions by not en-

forcing zero training error, this reduces the average overlap between solutions as 

seen above. 

The training error for a linear student learning a linear teacher is given by 

eq. (3.37), 

= 	
( 

+ 	
- i)) + 

). 	

(4.12) 

The effect of the training noise is to increase the training error. When the tem- 

perature divided by the effective gain on the teacher T/11 2  and the weight decay 

are equal to the optimal weight decay parameter, A. Pt = 2,  the training er-

ror is constant for all a with value 2/2,  i.e., the error due to the noise. These 

parameter values are identified with the optimal case of the network minimising 

the variance of the student output [9]. 

The asymptotic behaviour of the training and generalisation errors at finite tem-

perature are given by, 

=
2 	

+ 22 ) + 0(a 2 ) 	 (4.13) 

Et 	

a 

= 1  J Q2~2 + -(T - 1l22)} + 0(a 2 ). 	 (4.14) 

These results are in agreement with those presented by Seung et al for large a. 

The large a behaviour of the perceptron using a weight decay is identical to that 

predicted using a spherical constraint. The prior has no influence on the large a 

behaviour as expected since in this limit, the data is able to swamp the prior. 
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4.1.5 Large A 

The large ) limit corresponds to penalising weight vectors heavily or alternatively 

to narrowing the Gaussian distribution from which the student weight vectors are 

drawn. The generalisation error in this limit is 

eg  = { 92 + (T -22) - (32(a + 1) - 2 + T) + O( 3 )} . 	( 4.15) 

Thus for large weight decays, the amount of noise in the data set has little effect on 

the generalisation error since it appears at Q(A_2).  The order A' term increases 

the error for T > 2 c1l2  which suggests that with large weight decays, better 

results can be obtained by training at temperatures less than 2Al 2 . See §3.10 

4.2 Linear student, Nonlinear teacher 

The performance measures may be calculated for nonlinear teachers. The av-

erages (x go ), and (g ) for an arbitrary teacher activation function can be 

calculated numerically. The order parameters and performance measures may 

be rewritten in terms of the effective linear gain of the teacher, (xgo ), and the 

effective noise on the teacher, = (g ) - (xgo ) by using eq. (3.31) and (3.32). 

Hence the results for a linear student learning a nonlinear teacher can be written 

in terms of a linear student learning an effective linear teacher with some effective 

noise added to the training data. 

The gain of the teacher activation function is controlled by the length of the 



CHAPTER 4. NOISY DATA AND WEIGHT DECAY - LIMITS 	101 

teacher vector 1, this in turn controls the gradient of the teacher activation 

function around the origin. Since the examples are chosen from a Gaussian 

distribution centred on the origin, if the teacher activation is predominantly linear 

in this region, the linear student will be relatively successful at generalising since 

the student will have a similar response for similar activations. This corresponds 

to using a small teacher gain, ft However, if the teacher gain is large, the 

teacher activation function will be nonlinear in most of the region from which 

the examples will be chosen; in this case the linear students generalisation ability 

will be poor. 

Using the saddle point equations eq. (3.18) - (3.23), the learning curves and the 

average overlaps between student and teacher may be calculated for similar limits 

as in the previous section. A typical nonlinear activation function is the tanh(.) 

function. In the remainder Of this section, curves will be presented for a linear 

student learning a nonlinear teacher with a tanh(.) activation function in the 

presence of noise using a weight decay. 

4.2.1 Zero T, Zero ) 

As for the linear teacher, for this limit the difference between the overlaps, Q is 

given by eq. (3.17). That is, Q = (1 - o)/\', where )' = ,@\ for a < 1 and Q = 0 

for a > 1. If the )V-400 limit is considered, this is equivalent to the pseudo inverse 

solution, in this limit, Q = 0 for all a. The normalised average overlap between 

student and teacher, R', plotted against the number of patterns per weight, a, is 

presented in Fig. 4.9 for two noise levels. As a--+ 1, the normalised overlap in both 

cases tends towards zero. This means that the student weight is moving away 
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from the teacher vector. The fact that the overlap reduces to zero is an artifact of 

the infinite system, one would expect that for a finite system, the overlap would 

reduce to a non zero value. This singularity at a = 1 is similar to that found for 

a linear teacher when noise was added to the training data. However the effect 

is present in this case even when there is no noise on the training data. In the 

zero weight decay limit, the uncorrupted generalisation error is, from eq. (3.34), 

I 	 a((g) _cy(xg o )2'1 
) 	(g)—a(xgo)(xgo),+ ' 	2(1—a) 	

" 	a < 1 
g 	 2 	2 (-2)(xgo),7 +ç 0  

t. 	(gg)—a(xgo)(xgo),7+ 	2(a-1) 	 a > 1 

The generalisation error compared to the noisy teacher is given by replacing the 

averages (xgo ) and (gfl with their noisy equivalents in the equation above. The 

asymptotic value of the corrupted generalisation error, fg ' , for large a is given 

by the effective noise level of the teacher, )2 = ( xgo ) 7eff = ( g ),, - (xgo ). 

In the zero noise limit, the generalisation error will always have a singularity at 

a = 1 as long as (xgo )2 0  ( g2 ), for a linear teacher the equality holds and thus 

the singularity disappears as was seen in the previous section. In the zero noise 

limit, the discontinuity is due to the fact that the linear student is modelling a 

nonlinear teacher. As a approaches one, each component of the student vector 

is fixed by an example. The examples that give an activation in the nonlinear 

region of the teacher activation function move the average student weight vector 

away from the solution that is correct on the linear part of the teacher activation 

function causing a singularity as in the case of the noisy linear teacher. 

Noise added to the nonlinear teacher increases the effective noise level and hence 

reduces the overlap between student and teacher weight vectors for a particular 

number of examples presented as well as increasing the generalisation error. 
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(a) No added noise. 	 (b) Noise 2 = 0.2 added. 

Figure 4.9. Normalised overlap between student and teacher, R', plotted against 
a for zero temperature and weight decay. The three curves correspond to three 
different effective gains, ci (0.5,1.0,2.0). 

The zero )., pseudo-inverse limit of the average generalisation error, e, plotted 

against the number of examples per weight, a, is presented in Fig. 4.10. There is 

a divergence at a = 1 that corresponds to the drop in R' as seen in the previous 

figure. This discontinuity again shows that as a—+1, the student is learning the 

effective noise due to the nonlinear part of the teacher activation. The effect of 

noise is to spread the peak around the discontinuity at a = 1. 

4.2.2 Zero T, finite A 

A finite weight decay term is now considered. In the zero temperature limit, Q 
is always zero and the average overlap between solutions is one, i.e., there is only 

one student solution. The average generalisation error Cg  is plotted against a for 
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(a) No added noise. 	 (b) Noise 52 = 0.2 added. 

Figure 4.10. Average generalisation error c. against c for zero temperature and 
weight decay. The three curves correspond to three different effective gains, ft 

different noise levels and different values of the effective weight decay parameter, 

A in Fig. 4.11. This should be compared to the zero weight decay limit in Fig. 4.10. 

In the present figure Fig. 4.11, the divergence at o = 1 has been removed. This 

is due to the weight decay constraining the effective noise. For the larger values 

of noise shown in the figure there is a residual part of the divergence present as a 

peak in the generalisation error due to the noise overwhelming the weight decay. 

The actual location of the peak in the generalisation error may be calculated 

as for the linear student learning a linear teacher, giving the same qualitative 

behaviour. 

In Fig. 4.12 the average training error, c t  is plotted against c for zero temperature. 

The training error for nonzero weight decay tends towards the asymptotic value 

for zero weight decay. The weight decay parameter increases the training error 

above the value it has when no weight decay is present. 
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Figure 4.11. Average generalisation error Eg  against a for zero temperature and 
finite weight decay. Effective gain of teacher 1.0. 

4.2.3 Large a limit 

As for the linear teacher case, the asymptotic expansion of the performance mea-

sures may be calculated. The expansions for the average overlap between student 

and teacher, R', the average overlap between replicas, q', the corrupted gener-

alisation error, fg '  and the training error, e t  are the same as the linear teacher 

case with the noise and gain replaced by the effective noise 5' and effective gain 

(xgo )eff  respectively. 

The asymptotic value of the uncorrupted generalisation error, Cg  as a—too, is 

given by 

((g)+ (xgo ) _2(xgo )(xgo )). 

This compares to the simpler asymptotic value for the corrupted generalisation 

error, 1 
((g) -  (xgo  ) 2 ),which is equal to the asymptotic training error. This77  
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Figure 4.12. Average training error e t  against c for zero temperature and finite 
weight decay. Effective gain 1.0 

may be an argument for using the corrupted generalisation error as the perfor-

mance measure: not only is it possible to calculate in practice, it also gives the 

same asymptotic value as the training error for large numbers of patterns. 

The asymptotic values of the generalisation and training errors are independent 

of the weight decay parameter chosen, they are dependent solely on the activa-

tion function and gain of the teacher, i.e., the architecture of the teacher. The 

asymptotic value of the training error also gives an indication of how well the 

student should be expected to do, since it is equal to the residual error due to 

the noise on the teacher. 
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4.3 Other realisable rules 

It is possible to to evaluate the performance for a student with an invertible 

nonlinear activation function, provided that the teacher has the same form of 

activation function, i.e., g(x) = go (kx) for some k (see §2.12). At zero tempera-

ture, the order parameters for these other rules are identical to those calculated 

for the linear teacher and student, the generalisation error can be calculated nu-

merically. Plots for a student with tanh(.) activation function learning a teacher 

with tanh(.) activation function are presented in Fig. 4.13. 

The graphs show the same form as those calculated for the linear student learning 

a linear teacher, as expected since the order parameters are the same, the per-

formance must be qualitatively similar. The tanh(.) activation function provides 

a squashing of the peaks seen in the linear case. 

The generalisation error of the system at zero a tends towards 0.5 as the effective 

gain of the teacher increases. This is because when a = 0, the weight decay is not 

used, and the solution picked is the pseudo inverse, which gives an average student 

length of zero. In this case, the generalisation error is simply the average of the 

teacher activation function over the activation distribution, that is, the average 

of the square of a tanh(.) function with gain Il over a Gaussian distribution of 

variance one; as 1 increases this tends to 0.5. It is not possible to use this method 

to calculate the performance of a binary student learning a binary teacher because 

the sgn(.) function is not invertible. 
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(c) Non zero weight decay 

Figure 4.13. Average generalisation error f5  against c for zero temperature 
and weight decay with a nonlinear student (represented by a tanh(.) activation 
function) learning a nonlinear teacher with the same activation function. The 
three curves correspond to three different gains of the teacher. 
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4.4 Concluding remarks 

In this chapter, the performance measures calculated in the previous chapter for 

a linear perceptron plus weight decay learning a noisy teacher are evaluated for a 

number of different limits of the parameters. The results show that the behaviour 

for a linear student learning a nonlinear teacher is qualitatively similar to a linear 

student learning a noisy teacher. For the linear student and teacher case and noisy 

data, there is a divergence in the generalisation error around a = 1 in the zero 

weight decay limit. This is caused by the noise pulling the student solution away 

from the true rule. The divergence is present in the zero weight decay limit for 

a linear student learning a noise free nonlinear student, again emphasising the 

equivalence of a nonlinear teacher to a noisy linear teacher. 

The divergence in the generalisation error could be controlled by using a finite 

weight decay parameter. However if the weight decay parameter was too small, 

the divergence could appear as a peak in the generalisation error meaning that 

there was not a continual improvement in performance as more examples were 

presented to the network. 

The weight decay parameter and temperature that optimise the generalisation 

error, causes the cost function to be constant with the value of the error due to 

the noise. This implies that if the parameters are set such that the cost function 

is reduced below the error due to the teacher (noise on teacher or nonlinear 

teacher or both) the generalisation error is not optimised. This may be used as a 

method of selecting appropriate parameters for training a network. The training 

error was constant at the level of the error due to the noise/nonlinear teacher 

when the temperature and the weight decay parameter were proportional to the 



CHAPTER 4. NOISY DATA AND WEIGHT DECAY - LIMITS 	110 

optimum weight decay parameter. These parameter values minimise the variance 

of the student outputs. The results show that the cost function consisting of a 

penalty term plus the training error does indeed improve a networks performance 

in terms of its ability to generalise. The question arises as to whether a different 

penalty term may improve the networks performance further. This will be studied 

in the next chapter. 



Chapter 5 

A general penalty term 

In the previous chapter, the effect of a weight decay term added to the train-

ing algorithm was studied for a simple network. Weight decay is equivalent to 

gradient descent on a cost function including the quadratic length of the stu-

dent weight vector as a penalty term. The penalty term could be generalised to 

be any quadratic form of the student weight vector using some penalty matrix, 

A. Quadratic penalty terms have been used in general additive models of statis-

tics [34] as a method of regularising multivariate linear regression; the generalised 

penalty term is related to a penalised least squares regression analysis in a similar 

way to weight decay and ridge regression. 

This chapter will introduce the general penalty term and then calculate the free 

energy for a simple network trained using a general penalty term. From this 

free energy, the order parameters may be identified and hence the performance 

measures of the network calculated. The behaviour of the performance measures 

can then be studied for different penalty matrices. 

111 
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5.1 Introducing the general penalty term 

The basic calculation is similar to that performed in the previous chapter. How-

ever, in this case, the penalty term is written as a matrix term which allows 

correlations between components to be included. 

The cost function is now defined as the usual sum of the error measure over the 

training set (the training error) plus a general penalty term, 

WTAW 	 (5.1) 

where the penalty matrix A is a positive definite symmetric N x N matrix and 

the superscript T  denotes a transposed vector. The previous case of a standard 

weight decay term is reached if the matrix A is a multiple A of the identity matrix, 

I. 

With no information from the training data and using a gradient descent update 

rule, the general quadratic penalty term produces a weight decay term like, 

WP" = (1 - rA1)W'' - TW0A 
'3 (5.2) 

.7 	, 

30i 

where 7-  is the update step size, and A ij  are the components of the penalty matrix 

A. The decay term includes the standard weight decay as well as a bias term that 

depends on the other components of the student weight vector. If the off diagonal 

terms of the penalty matrix are all negative the bias term tends to force the new 

student component towards the weighted average value of the other components. 
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As in the previous calculation, the model is a simple linear perceptron stochas-

tically trained giving a posterior Gibbs distribution of student weights. The 

training data is generated from a known teacher network and may be corrupted 

by additive noise. The strategy adopted is to calculate the free energy of the 

system via the quenched average of the logarithm of partition function using the 

replica method. Returning to eq. (3.5) the free energy per weight f is given by, 

—Of = cocr, 

where gr  is the RS Hamiltonian which depends on the architecture of the student 

network being considered and g o  is the RS prior constrained Hamiltonian. For the 

linear student being studied, cr is given by eq. (2.33). For an arbitrary student 

prior go  is given by eq. (2.50), 

go  = — RR - qoo + 	+ 3, 	 (5.3) 

where 3  is, 

3 = J Dz  In   d1i(W) exp [(do - 1)WTW + WT(IWO  + r4i Z)] 

The notation Dz = fl1 Dz 2  has been used. As in the calculation for the standard 

weight decay, the penalty term is considered as a prior on the student weight 

vectors, giving a prior distribution of weights, 

d(W) = (27r)*I/3AIexp 
(_

O WT
2 	

AW) 

This distribution may be substituted into the equation for 3 above. The integral 

over the weight vector W may now be evaluated using the general formula for 
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multivariate Gaussian integration [30], giving, 

J = lnI/3AI - lnICI+ f Dzexp {rTC_ir] 

where 

c= (' —2 0 )I+/3A , 	 (5.4) 

and r = RW°  + The vector r is identical to the field term in the effective 

Hamiltonian introduced in §2.10. The integral over the Gaussian random field, 

z, may be evaluated to give the result, 

1 	1 
go = 2 	2N 	2N 

+ti2W0TC1W0 + 
I  4i Tr C' 

2N 	 2N 

The free energy for the standard weight decay was dependent on the teacher 

vector only through its length Q. This meant that the teachers were implicitly 

assumed to be drawn from a distribution with fixed length (the micro-canonical 

ensemble). However, in the general case calculated above the Hamiltonian con-

tains a dependence on the explicit form of the teacher weight vector through 

Th C -1  WO , the term 
-

1 
RR  2 W OT W , thus it is necessary to select a specific form for the 

teacher. Since the teacher weight vector is constant throughout the generation 

of the training data, it may be considered a quenched parameter of the system. 

Hence, the quenched average could include an average over the teacher distribu-

tion, given by the measure, dji(W°). 
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5.2 Averaging over the teacher 

The dependence of the free energy on the actual teacher weight is removed by 

assuming a distribution of teacher weight vectors and averaging over this distri-

bution. This distribution of teachers can be thought of as a prior on the teacher 

weight vectors. There are many possible teacher priors the simplest being the 

spherical distribution used in the previous chapters. 

If the teacher vector is assumed to be drawn from a spherical prior, the replica 

symmetric Hamiltonian for a linear student is unchanged from eq. (3.8), since this 

equation only depends on the teacher through the length of the teacher weight 

vector, ci. The prior constrained Hamiltonian, however is altered to include the 

teacher average, 

1 	1 	 1 
co = —RR —q0q0+q1q1 +lnI/3AI—-1nICI 

2 	2N 	2N 
1' +- J dp ( W0)I2W0T C 1 W 0  + - iTr 

C-1 
. 	(5.5) 

2N 	 2N 

It is now necessary to evaluate the integral over the spherical teacher distribution, 

d1i(W°) = 6(W° . W °  - NQ') dW°/a, where a is a constant such that the 

integral f dfL(W ° ) = 1. The average over the teacher distribution is of the form, 

f d(W)WTAW where A is some matrix. Since WTAW  is a scalar, the trace 

of the average of this quantity is also a scalar. Consider 

m=Tr (.Jdw6(w2_Ncl2)wTAw) 

Since matrices commute under the trace, this is equal to the trace of the average 
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of WWTA.  Let, f dt(W)WWT = M, then M is symmetric and commutes with 

any rotation matrix. By Schur's lemma [10] M must be a multiple of the identity 

matrix. The trace of M is given by Tr (f d1t(W)WTW) = N1 2 , therefore, 

M = 1 2 I and m = 1 2 Tr A. Using this result in eq. (5.5) yields, 

1 	1 
co = 2 	2 	2N 	2N 

+(122 + i )Tr C -1 . 

This again reduces to the appropriate result of the previous chapter for a penalty 

matrix which is a multiple A of the identity matrix. 

5.3 Free energy for general penalty term 

The free energy per weight for a general penalty term may be calculated from the 

replica symmetric Hamiltonian and the prior constrained Hamiltonian as in the 

previous chapters. From the free energy, the order parameters can be derived. 

The replicated Hamiltonian cr has already been calculated for a linear student 

trained on noisy data generated by a spherical teacher and is given in eq. (3.8). 

Therefore the free energy may be written as, 

1 	1 
1 IAI — --1  -f = 	 n/3 	2N 

In ICI 

+ )Tr C - ln(1 + (qo - qi)) 2N 	 2 

(q, — 2 

	

2(1 +fl(qo—qi)) 	
xgo)+(g)) 	(5.6) 
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Generally the free energy for a teacher drawn from a spherical distribution de-

pends on the penalty matrix through the eigenvalues of the matrix C and hence 

the eigenvalues of the penalty matrix. Thus any off-diagonal penalty matrix is 

equivalent to its diagonalised form. This is only true for teacher weight vectors 

and example inputs drawn from isotropic distributions since the free energy is 

invariant under a rotation of the weight and a corresponding rotation of input 

space. 

Differentiating yields the saddle point equations for the order parameters. (See 

appendix E): 

qo = qi + Tr C 1 	 (5.7) 

(2  + i ) Tr C -2 	 (5.8) 

r = 	Tr C' 	 (5.9) 

qo 	
1 

= -( - 	) 	 (5.10) 
2 	(xg o ), 

a62  
=  

afi 
l+(qo—qi) (xg

o ) 	 (5.12)77  

where r = = RIZ. The order parameters are similar to those for the 

standard weight decay, the dependence on the penalty matrix arises through the 

inverse of the matrix C. 
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5.4 Solving the saddle point equations 

The saddle point equations eq. (5.7) - (5.12) may be solved to discover the be-

haviour of the system. As in the previous chapter consider the difference between 

the overlaps Q =qO -  qi. This is given by, 

Q = Tr C -1 . 	 ( 5.13) 

The parameter 0 may be defined as before as, 0 = 1 + This then means that 

the overlap r can be written as, 

r=(xgo ) 1  

where the effective gain of the teacher, (xgo ), has been used The equations for 

the remaining order parameters are simplified if the notation 

1 	2 	
1Tr C 2 , 	 ( 5.14) 

(1+Q')2 N 

is introduced. Using this equation the average overlap between replicas is, 

a(xgo )

2  / 2 
2) , ( 5.15) 

 
eff 

q1= q2a 

where the effective noise level, 5'eff,  eq. (3.27) has been used. This result may be 

substituted into 4 1  to give, 

_______ 	
2 

=2(2 - 
	

( xgo) (2(i + 
	

) + 2 -2 
 a 02 
	 (5.16) 

 ct) 	 0 ) 
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The average length of the student, qo  may be written as q + T/(q5 - 1). These 

results may be substituted into the equations for the generalisation and training 

errors to evaluate the performance of the network using different penalty terms. 

5.5 Generalisation error 

The generalisation error for the general weight decay in terms of the order pa-

rameters is given by the same formula as that for the standard weight decay case, 

eq. (3.33), since its dependence on the different prior weight constraint is only 

through the order parameters themselves. For completeness, it is included here, 

6 9 = 1 (qo+ (g) —2r(xgo )) . 	 (5.17) 

The values of the order parameters obtained from the saddle point equations 

may be substituted into this equation to give the uncorrupted generalisation 

error. The corrupted generalisation error, Eg ' , §3.8 may be written in terms of 

and as, 

(xg o ,1   

= 2( - ) 	
+ 7ff) + a2 

- 

2) + 2(0-1) 

The form of the uncorrupted generalisation error fg  is more complicated. Again 

the corrupted generalisation error for a nonlinear teacher is equivalent to a lin-

ear teacher with a different noise level and effective gain on the linear teacher. 

The generalisation error has a temperature dependent part that only depends 

on the hyperparameters through the function qS, which is related to the response 
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function. The temperature dependent part of the generalisation error is indepen-

dent of the noise level on the data or the distribution of teachers. This makes 

sense since the temperature arises as part of the training algorithm and is not 

correlated to the training data. 

5.6 Training error 

The average training error is calculated by differentiating the free energy divided 

by the temperature with respect to the inverse temperature, /3 whilst keeping the 

penalty term, /3A constant. This leads to the formula 

(_1)2( xg ) 
22(2_) (2(1+2)+a2 2 	+. 	(5.18)

0 ) 	20  

The first (temperature independent) term is given by i/2/32  and is changed 

from the standard weight decay case by the introduction of the function ç6.  The 

second term gives the temperature dependence of the training error. As in the 

standard weight decay case, the zero temperature training error is related to the 

zero temperature corrupted generalisation error by, c t  = 69 /(1 + Q') 2 . The factor 

is dependent on the response function which depends in turn on the penalty 

matrix used. 

The average cost function may also be calculated and is given by, 

= et + Tr (A(C' + (2  + 1)C_2)) 

The term added to the training energy is equivalent to the average value of the 
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penalty term that appeared in the average cost function for the standard weight 

decay eq. (3.38). 

5.7 Diagonal penalty matrix 

The simplest form of the penalty matrix is the standard weight decay, i.e., A = 

Al. The generalisation of this case is to consider a general diagonal matrix A 

given by, 

A ij = 

where Aij  are the components of the penalty matrix and the A, are the individual 

weight decays on the components of the student weight vector. Since the free 

energy eq. (5.6) is invariant under a transformation to the eigenbasis of A, the 

case of diagonal penalty matrix is general. 

The matrix C may now be written as 

Ci,, = {A, + 41  - 

The saddle point equations depend only on the trace of the inverse of C. Since 

the matrix is diagonal, the inverse is simple to calculate and its trace is given by, 

Tr C 	
1 

= 	
+ i - 2 	

(5.19) 

The difference between the intra-replica overlap, q O  and the inter-replica overlap, 

q1 , Q is given by Q = Tr C'. The average overlaps are given in terms of q 
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which is in terms of the trace of the inverse squared, hence Tr C 2  = 1 (/3A, + 

4 1 - 24o ) - 2 . If A i  = A Vi this simply reduces to the standard weight decay, where 

= . The response function for the standard weight decay is given by the 

solution to a quadratic equation. For rn independent weight decay parameters in 

the diagonal penalty matrix the response function is the solution to a polynomial 

of order m + 1. 

5.7.1 Two weight decay elements - Linear teacher 

In this case, assume that the weights are ordered such that the weight decay on 

the first kN components is ) and the weight decay on the remaining (1 - k)N 

components is A 2  (0 < k > 1). That is 

I  
A, = 

A 
 

[ 

for i < kN 

for i> kN 
(5.20) 

Substituting this assumption into eq. (5.13) and using eq. (5.19) and (5.12) gives, 

k 	1—k 

13A 1  
+ 1+f3Q 	1- 1+Q 

After defining the response function Q' = /3Q as before, this equation may be 

rearranged to give the cubic equation 

0 = 

- 2k) + Ai(a - 2(1 - k)) + A 1 A 2  + a 2 - 
—c—kA 2 —A i (1—k) 	 (5.21) 
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For the case, '\i = A 2  = A, the cubic equation factors into a linear term and a 

quadratic term that gives the response function for the standard weight decay. 

The limits, k = 0 and k = 1 also reduce to the standard weight decay. 

From eq. (5.21) above, the coefficients of the general cubic, x 3  + a2  x 2 a 1  x + a0 , 

are 

a 	k 1—k 
a0  =  

A 1 A 2 	A 1 	A 2  

	

a1  = 1 + 
1  
—(a-2k)+  1 
	 a

—(a-2(1—k))+ 	(a1) A 1 	 A2 	 A1A2  

a2  = 2+ 1 —(a—k)+ 
 1 
—(a—(1—k)) 

A 1 	A 2  

Appendix F gives the conditions that a positive cubic, x 3  + a2  x2  + a 1  x + a0 , has 

only one positive real root. These conditions may be written as: 

either a 0  < 0 and a 2  > 0 

or a 0 <O and a 2 <O and a 1 <0. 

For the integration over student weight space to be defined, A is assumed to be 

positive definite. This means A i  > 0 for all i. Thus since, A 1 , A 2 , a > 0 and 

0 < Ic < 1, a0  < 0 for all a, A and k. Now, if a 2  > 0, then there is only one 

positive root of the cubic equation. However, if a 2  < 0, this implies that a < 1, 

since if a > 1, then neither a - k or a - 1 + k could be negative and hence a 2  

would be greater than zero. Now a 1  = a 2  - 1 - k - 
A2 

- "(1-a). Hence for
AI A2 

a < 1, and a 2  < 0, a 1  < 0. Thus there is only ever one positive real root of the 

cubic equation. 
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Appendix F gives the roots of a cubic in terms of two parameters p = a/9—a i /3 

and P2 = aia2/6 - ao/2 - a/27. The positive root is then given by 

Q' = 2/cos 
19  
.. - a2 	 (5.22) 

where 19 = COS 
_1(p2/J) 

To evaluate the other saddle point equations, it is necessary to evaluate Tr C 2  

and hence 02.  

	

TrC_2 k 	 (1—k) 
- 	

= (i + 41 - 2o)2 + ()3A2  + 41 -2)24o 

	

Substituting this into the definition of and using 1 + Q' = 	gives, 

1 	k(q5-1) 2 	+ (1—k)(-1) 2  
- (A 1 0 + cE(4 - 1))2 	(\20 + ((q5 - 1)) 2  

The order parameters may now be evaluated in terms of 4 and using eq. (5.14) 

- (5.16). The parameter 0 is evaluated from the response function given by 

eq. (5.22). The behaviour of the network may be investigated for some limiting 

cases of the network parameters. 

Zero T, zero A, limit 

The limit as one of the weight decay parameters is reduced to zero may be 

investigated. It makes no difference which parameter is chosen since the equations 

are symmetric under the transformation )1-\2  and k—(1 - k), hence the limit, 
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.X 1 -40 will be investigated with ) << A2. As for the standard weight decay, the 

limit A,--+O is taken at the same time as taking the zero temperature limit and 

defining )' = 3A 1  as constant. 

As )—O, 9 = 0 for a < k and i9 = ir for a > k. The solution of the cubic 

equation for the response function, Q',  is given by, 

,{ (ka)+o(,\') a < k

Al 

O) a > k 

To discover the behaviour of the a > k root, it is necessary to return to the 

complete cubic equation. Since the solution is of 0()4) the terms in ) may be 

ignored, which leaves a quadratic equation with positive root, 

a—a2 +2kA2—aA2+a./7 
Q>k = 	2A 2 (a - k) 

where O= (1 + a + \2) 	4(a + 02 ). Hence for zero T, ), Q Q'//3 may be 

written. 
Iui ( k_a) a < k 

At  

	

10 	a>k 

The parameters 0 and may now be evaluated and substituted into the equations 

for the order parameters, hence the performance of the network may be calcu-

lated. From the response function it can be seen that the behaviour for a < k is 

independent of the second weight decay, A 2 . As a--+k, it can be postulated that 

the examples fix Nk components of the student weight and the nonzero weight 

decay parameters provide constraints on the remaining (1 - k)N components. In 

the presence of noise, it would be expected that the generalisation error would 
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have a similar discontinuity at a = k as was seen with the standard weight decay. 

However for zero noise it could be naïvely expected that the generalisation error 

will decrease smoothly and approach zero as a--+k. The performance measures, 

are plotted in Fig. 5.1 for zero noise and the A,--+O limit. 

A2 	k A2 	k 10 	0  

9 RI 

(a) Generalisation error (b) Overlap 

Figure 5.1. Generalisation error and R' for zero temperature and noise in the 
.\i—+O limit. 

Surprisingly, the curves in Fig. 5.1 show a discontinuity present in the perfor-

mance measures for zero noise. When a approaches k, the behaviour of the 

generalisation error for zero noise is, 

k(i— k) +0((0) 

where E = a - k. This result may be compared to the behaviour of the zero weight 

decay limit in the presence of noise studied in the previous chapter, eq. (4.4). If 

the number of examples is rescaled so that the discontinuity is at a' = 1, the 

behaviour is equivalent to the pseudo inverse solution with noise of variance 
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(1 - k) added to the training data. The fact that this behaviour is independent 

of the non-zero weight decay parameter is because the A2  is assumed to be >> 

than A. If A 2  is of the same order as ), the divergence becomes a peak that is 

reduced as A,, A2 4 0- 

The overlap between student and teacher, r, is simply a for a < k, for a> k the 

solution is more complicated. The divergence in the generalisation error and the 

reduction of the cosine of the angle between student and teacher is due to the 

length of the student growing to infinity. This in turn is due to zero eigenvalues in 

the pattern correlation matrix (see §3.1) and the zero weight decay components. 

The difference between the weight decays is acting like noise added to the data 

set. 

The generalisation error as a—*oo for zero noise is given by Cg  - ( 1 - k)A/u2  + 
O(a 3 ). Thus asymptotically, the behaviour depends on the values of both k 

and the non-zero weight decay, A 2 . Lower generalisation error is achieved with 

larger values of Ic, since this corresponds to training with a larger proportion 

of the weight decays set to zero. The asymptotic generalisation error may be 

compared to that for the standard weight decay under similar conditions, i.e., 

= A 2 /a2  + O(a 3 ); it can be seen that the effect of the second weight decay 

parameter is equivalent to a scaled standard weight decay parameter as a becomes 

large. Thus the more patterns that are presented the less the effect of the zero 

weight decay on the kN components. 

The average training energy for the case A,—+O is plotted in Fig. 5.2. Here the 

effect of the non-zero weight decay acting as noise is clearly seen. For a < k, the 

training energy is zero as would be expected, since the model has enough degrees 

of freedom to store the training examples exactly. However as the number of 
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patterns per weight increases above k, the training energy rapidly increases as 

the non-zero weight decay acts as noise on the examples. As the number of 

examples is increased, the effect of the weight decay noise is reduced and the 

training error tends to the standard asymptotic value, 2 /2 .  

0.10 

Et 0.05 

0.00 

72 = 0.2 

72 = 0.0 

0 	2 	4 	6 	B 	10 

0.2 
0.5 

1.0 

Figure 5.2. Training error A, —+0 k = 0.5, A 2  = 0.2,0.5,1.0. The upper three 
curves are for a noise level of 2 = 0.2 and the lower curves are zero noise added. 

The performance measures plotted in Fig. 5.1 may also be calculated for non-zero 

noise. This gives the curves seen in Fig. 5.3. These curves are similar to those 

for zero noise. This is a difference between this limit and that seen in the zero 

weight decay limit for the standard weight decay. The discontinuities at c = k 

are still present and the effect of the noise is to broaden the discontinuity peak. 

Around n = k, the generalisation can be expanded, fg  k('5' 2  + 1 - k)/(21E1), 

where c = a - k. This is equivalent to a rescaled number of examples having a 

discontinuity at a' = 1 due to noise of variance 2 + 1 - k. 
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(a) Generalisation error 	 (b) Overlap 

Figure 5.3. Generalisation error and R' for zero temperature in the )-O limit. 
The noise is 2 = 0.2. The curves correspond to different values of k and )¼2. 

Finite A,, '2 

In this case both weight decay parameters are given finite values. The perfor-

mance measures may be evaluated in terms of 0 and numerically; the results 

are shown for various values of the weight decay parameters. 

In the limit of no noise added to the linear teacher, optimum generalisation error 

is achieved in the zero weight decay limit, thus it is expected that lower gener- 

alisation error will be achieved with smaller weight decays. The generalisation 

error for a number of different combinations of the two.weight decay parameters 

is presented in Fig. 5.4. The graph presents the average generalisation error for 

= 1.0 and A 2  = 0.1 with different values of k. The minimum value of the 

generalisation error for these values of A 1  and A 2  is achieved when k = 0, this is 

as expected since this is the smallest weight decay possible given the two fixed 
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values of the diagonal elements of the penalty matrix. Again the effect of the 

interaction between the different decay parameters is to act like noise for smaller 

values of a. This means that networks with a lower linear average weight decay 

(k.\ 1  + ( 1 - can have a larger generalisation error than networks using a 

larger standard weight decay for smaller values of a. 

Eel 

k 
0.0 
0.2 
0.5 
0.8 
1.0 

Figure 5.4. Generalisation error for zero temperature and noise. The curves are 
for ) = 1.0 and A2 = 0.1. 

In Fig. 5.5(a), the average overlap between student and teacher is presented for 

the same parameter values as those used for the generalisation error in Fig. 5.4. 

Again as expected, the smallest weight decay gives the maximum overlap between 

student and teacher. However for small a, the next largest overlap is given by 

k = 1, this does not give a correspondingly good generalisation error, since the 

large weight decay produces a relatively small length of student weight and this 

adversely affects the generalisation error. The graph in Fig. 5.5(b) presents the 

average length squared of a student. Ideally if the student exactly modeled the 

teacher this would be one. The presence of the weight decay causes the length 

to be reduced from this value. For a < 1 - k the student has enough degrees of 
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freedom so that it is reduced by an amount that appears to be proportional to 

the smaller weight decay. As c '-' 1 - k, the length of the student grows more 

slowly as the larger weight decay becomes used. 

(a) Teacher overlap 	 (b) Length squared of student 

Figure 5.5. Average overlap between student and teacher and average length 
squared of a student for zero temperature and noise and fixed ) = 1.0 and 
A 2 = 0.1. The legend is the same for both graphs. 

The average training error for finite A 1 , A2  and zero temperature is presented in 

Fig. 5.6. The average training error is directly related to the weighted linear 

average weight decay, kA 1  + ( 1 - k)A 2  (unlike the generalisation error). The 

asymptotic values of the training error are as for the standard weight decay. 

Static noise is added to the training data and the effect on the generalisation error 

is plotted in Fig. 5.7 for a noise level of 0.2. The best generalisation error for these 

values of the weight decay parameters is achieved by the lowest weight decay, k = 

0 and A = 0.1. For small numbers of patterns, c <- 1, the difference between the 

weight decays acts as noise causing the generalisation error to increase above that 

for the standard weight decay. As c increases above ' 1, the generalisation error 
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(a) Zero noise 	 (b) Z,2 = 0.2 

Figure 5.6. Training error for zero temperature, two weight decays, A,= 
1.O,)2 = 0.1. 

using the larger standard weight decay becomes worse than using the mixture of 

weight decays. Here there is enough data to prevent the student from learning 

the noise on that data as well as that introduced by the difference between the 

two weight decays. 

The plot of the average overlap Fig. 5.7(b) has a different ordering of the curves 

for the same values of Ai, A 2 . The overlap between student and teacher is similar 

for both cases with a single weight decay (i.e., k = 0, 1) until c—*1. The seeming 

disagreement between the generalisation error and overlap can be explained by 

looking at the average length of the student. For the larger weight decay (in 

this case), the student is shorter than is necessary and thus the generalisation 

error is increased. It could be that for larger values of noise, the smaller weight 

decay would give a larger generalisation error and the larger weight decay could 

give the minimum generalisation error. This is shown in Fig. 5.8, which presents 
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Figure 5.7. Generalisation error and overlap for ) i = 1.0, \2 = 0. 1, noise of 
variance ,2 = 0.2 was added. 

the generalisation error for two weight decays, A, = 1-0,A2 = 0.1 and noise of 

variance j2 = 1.0, 10.0 added. This difference is due to the fact that for the 

smaller weight decays, the network sets an average weight vector that is longer 

than the teacher and this increases the generalisation error. The larger weight 

decays are needed to counteract the effect of the larger noise. 

A peak in the generalisation error that was observed for the standard weight 

decay, Fig. 4.5, can be seen in Fig. 5.8. The maximum is due to the network 

learning the noise For the standard weight decay case, k = 0 i.e., ) = 0.1 , the 

peak is around c = 1 + \ for both 52 = 1.0 and ,2 = 10.0. As the mixing 

between the two weight decays is increased, the location of the maximum shifts 

to lower values of & as k increases. For the smaller noise level, ,2 = 1.0, at 

k = 1, the weight decay parameter is optimal and there is no maximum in the 

generalisation error. For the larger noise level, the maximum is again at & ' 1+). 
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a' 	 a 

(a) Noise 2 = 1.0 	 (b) Noise 2 = 10.0 

Figure 5.8. Generalisation error for zero temperature and different weight de-
cays, Al = 1.0, A 2  = 0.1 and noise 2 = 1.0, 10.0. 

The height of the peak is reduced as the weighted linear average of the weight 

decay is increased. 

The effect of having large noise and two weight decays which bracket the noise 

may also be investigated. This is presented in Fig. 5.9, where the generalisation 

error for A 1  = 5.0, A 2  = 0.1 and ,2 = 1.0 is plotted. The peak in the general-

isation error is present as before for the smaller weight decays with the mixing 

shifting the peak to the right as k increases. The larger weight decay gives better 

generalisation for a < 2.5, here the curves cross and the smaller weight decay 

gives improved generalisation. 



, n 

Eg  

0 	1 	2 	3 	4 	5 

r.i 

CHAPTER 5. A GENERAL PENALTY TERM 	 135 
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Figure 5.9. Generalisation error for zero temperature and two component 
penalty matrix, ) = 5.0, A 2  = 0.1 and noise 52 = 1.0. 

5.7.2 Two weight decay elements - Nonlinear teacher 

As in the previous chapter, the performance may be evaluated for a linear student 

learning a nonlinear teacher. Since all that is required is the numerical evalua-

tion of the functions (xgo ), , (g  ), eq. (3.25) and (3.26) and their uncorrupted 

analogues. 

Zero T, zero 

The curves for zero ) and small gain look very similar to those produced for 

the linear teacher, apart from a difference in scaling. However for a larger gain 

of the teacher function, l = 10.0, the generalisation error for a teacher with a 

hyperbolic tangent activation function is as in Fig. 5.10. The discontinuity at 

a = k is still present, however, there is also a plateau appearing around a = 1 
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for the smaller value of the weight decay parameter. In this case, it appears that 

the nonlinearity is causing the performance of the network to degrade when the 

non-zero part of the weight decay is not large enough to cope with the nonlinear 

part of the teacher. 
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Figure 5.10. Generalisation error for zero temperature and noise. The curves 
are for a linear student learning a tanh(.) teacher gain 1 = 10.0. 

The generalisation error for a student learning a tanh(.) teacher in the presence 

of noise is presented in Fig. 5.11. This figure shows a similar form to the high 

gain example in the previous figure, An optimal weight decay parameter can 

be identified for a > k, since the generalisation is better for the weight decay 

parameter that matches the variance of the noise. 

Finite A,, A2 

When both weight decay parameters are finite and the teacher has a nonlinear 

activation function, the performance of the network may also be calculated. The 
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Figure 5.11. Generalisation error for zero temperature. Noise variance, 2  

0.5 added. The curves are for a linear student learning a tanh(.) teacher, gain 
c=1.0. 

graphs in Fig. 5.12 show the generalisation error for two weight decays, A, = 

1.01 '2 = 0.1. and two different noise levels. The curves correspond to different 

values of the parameter k. The curve for zero noise is similar to that for a 

linear teacher; the best generalisation error is given by the minimum average 

weight decay, that is, k = 0(\ = 0.1). In the case of the noisy teacher, the 

best generalisation is initially achieved with the higher weight decay on all the 

components of the weight vector. Above a 2, there is a transition where the 

generalisation is improved with the smaller weight decay. This can be explained 

as follows; initially, with a small number of patterns, the high weight decay is 

needed to deal with the nonlinearity of the teacher and the noise on the data. 

However as the numbers of examples increases, the need for the weight decay is 

diminished and thus there comes a point where the smaller weight decay is all that 

is needed. If a close to optimal standard weight decay is used, the generalisation 

is better than the combination of the weight decays. The average training error 
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for a nonlinear teacher is of the same form as that for the linear teacher plotted 

in the previous section. 

k 
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(a) Zero noise 	 (b) 2 = 0.5 

Figure 5.12. Generalisation error for ) = 1.0, A 2 	0.1. 

The main result of this section is that having two different eigenvalues of the 

penalty matrix acts like effective noise on the data for a spherical teacher and 

better performance is achieved with the standard weight decay. This is because 

the model has not included any fine structure of the teacher. The teacher was 

assumed to have been drawn from a simple spherical distribution, and thus the 

optimum student prior is to select a distribution that matches the teacher dis-

tribution. In the thermodynamic limit, a standard weight decay is similar to a 

spherical prior on the student and hence models the spherical teacher distribution. 

It might be expected that if the teacher were drawn from a more complicated dis-

tribution, a general penalty term would improve the performance, this is studied 

in the next chapter. 
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5.8 Off-diagonal penalty matrix 

Whilst the diagonal penalty matrix is general, more insight into the action of 

other penalty matrices can be obtained by considering an explicit off-diagonal 

form. The off-diagonal terms could be used to introduce correlations between 

the components of the student weight vector. One of the simplest off-diagonal 

penalty matrices is one with a constant parameter on the diagonal and another 

constant in all off-diagonal places, that is, 

A 1  A2 ... 

A2 
A= Al: 

ii 

A 2  A 2  ... A 1  

(5.23) 

This penalty matrix then gives a weight decay term that looks like (using 

eq. (5.2)), 

WV 	7- ( Al - A 2  ))W' - 7-A2> Wd 

J 

This is equivalent to a standard weight decay term of magnitude A 1  - A2  coupled 

with an additional term that reduces the size of the component by an amount 

that is proportional to the average size of a component of the weight vector. 

This could be used to implement a sort of soft weight sharing [56], where rather 

than prune the network by decaying some of the weights to zero, the complexity 

of the network is reduced by combining some of the weights, thus reducing the 

number of free parameters. For a particular component, W, the stable fixed 
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point of eq. (5.8) is given by, 

2 

1 -  2 

Hence if A2 = 	all components are equal to the average value, W, = (W) 

where (W) 	>J, W3 . In the thermodynamic limit, a general penalty matrix 

that contains this form of weight decay can be obtained with A 2  of order 0(11N). 

The off-diagonal penalty terms will be rescaled so that A 2  = A 2 /N in eq. (5.8); the 

penalty term that decays the components towards the average is then achieved 

by setting A 2  = — A 1 . 

With the off diagonal terms set to the appropriate value in the absence of any 

information from the training data, the components of the weight vector will 

all tend to their average value. In the general case of this penalty term (A 1  

on-diagonal, A 2 /N off-diagonal), the eigenvalues of the matrix C eq. (5.4) are 

then, 3(A 1  - A 2 /N) + 41  - 2, N - 1 times and /3(A 1  + A2 ) + 41 - once. 

With the spherical teacher prior this is equivalent to a diagonal penalty matrix 

with A = A 1  - A2 /N, A = A 1  + A 2  and k = 1/N where the prime, ', refers 

to the diagonal weight decay elements; this gives a 11N correction term to the 

standard weight decay behaviour. However, since the free energy is only exact 

in the thermodynamic limit, and the corrections to the free energy are of order 

N, it would be necessary to calculate these corrections before being able to 

observe a difference between the standard weight decay behaviour and the decay 

term introduced above using a spherical teacher prior. It is expected that using 

a different teacher prior may enable the student to use the information contained 

in the non-standard penalty terms, this is studied in the next chapter. 
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5.9 Concluding remarks 

In this chapter, the performance for a linear student network regularised by a 

general quadratic penalty term and trained on an arbitrary teacher is calculated. 

The performance measures are evaluated analytically for explicit forms of the 

penalty matrix. 

The performance of the system is invariant under a rotation of weight vector 

space and a corresponding rotation in input vector space. This means that the 

behaviour of the network only depends on the eigenvalues of the penalty matrix, 

hence a diagonal penalty matrix is considered without loss of generality. The 

simplest generalisation of the simple weight decay is considered, this is a diagonal 

penalty matrix with two different weight decays on the diagonal. In the case of 

one weight decay tending to zero, there is a discontinuity in the performance 

measures as the number of patterns per weight tends towards the fraction of 

weight decays that were zero. This can be understood in terms of the non-

zero weight decay introducing an effective noise on the data. With both weight 

decays non-zero, again effective noise is introduced due to the difference between 

the weight decays. A standard weight decay performs better than the more 

complicated weight decay. 

A penalty term that decayed the components of the student weight towards their 

average value is also considered. This penalty matrix introduces 1/N corrections 

to the standard weight decay free energy. It is not possible to calculate these 

corrections using the replica method, though other methods may yield the finite 

size results [67]. This penalty term will be considered in the next chapter for 

anisotropic teacher priors. 
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The behaviour of the system in this chapter shows that the student prior should 

describe any knowledge about the teacher as accurately as possible. If the student 

prior is too tightly constrained, this can adversely affect the performance. For a 

student learning a spherical teacher, the optimal penalty matrix is the standard 

weight decay, this can be understood as the student prior that matches the teacher 

prior. It is expected that the contribution of a generalised penalty term will be 

more significant when more detailed knowledge about the structure of the teacher 

is included. This will be studied in the next chapter. 



Chapter 6 

Extensions to the model 

The previous chapter has shown that a general penalty term when applied to 

the problem of learning a teacher chosen from a spherical distribution doesn't 

necessarily improve the performance of the network and in some cases it can 

degrade the performance. However, it can be postulated that if more information 

about the teacher were included into the model, then non-standard penalty terms 

would improve performance. There may be other information that could be 

included in the model through the distribution of inputs or the noise model. In 

this chapter the order parameters for the more general case where the teacher 

and input vectors are drawn from a general Gaussian distribution and the input 

distribution is anisotropic are calculated. The performance of the network in 

some limits of these distributions is then considered. Finally, different noise 

models are discussed in terms of the different input and teacher distributions. 

It will be shown that in some cases a particular penalty matrix improves the 

performance from the standard weight decay case. 

143 
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6.1 General teacher and input distributions 

The model is now extended to allow for the possibility that the teacher and/or 

the data has been drawn from an anisotropic Gaussian distribution. 

6.1.1 General teacher prior 

In the previous calculations, the teacher was assumed (either implicitly or ex-

plicitly) to be drawn from a spherical distribution. In a real world problem it 

is possible that some of the teacher components are correlated. To model these 

correlations, the teacher can be assumed to be drawn from a general Gaussian 

prior. The measure on the teacher weight vector space is, 

dp(W°) = (2ir)*oexp 1—W0T E_ jWo
2

J  y° 	(6.1) 

where E0  is the covariance matrix of the prior teacher distribution. The free 

energy per weight is averaged over this distribution to remove the explicit depen-

dence on the teacher weight vector. 

6.1.2 General input distribution 

Previously it was assumed that the components of the input patterns were inde-

pendently and identically distributed with unit variance (isotropic). A non-unit 

variance for the components of the input patterns may be absorbed by a renormal-

isation of both the student and teacher weights and the weight decay parameters. 
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However, if there are correlations between the components of the input patterns, 

there may be no simple renormalisation of the weights and the network param-

eters that removes the correlations without altering the free energy. This is the 

condition considered in this section. The measure on input space is written as, 

ds 
d,a(s) = 	 1  exp [_sT>3_1s] , 	 ( 6.2) 

(27r)II 

where E 5  is the covariance of the input distribution. 

6.2 Free energy calculation revisited 

As in the previous chapters a linear student perceptron learning a teacher per-

ceptron is considered. The quenched average of the free energy of the system 

is calculated by the replica method assuming replica symmetry. Returning to 

eq. (2.25), the replicated Hamiltonian is given by, 

exp(_G[W]) 
= 	2ir 	27r 

dxd I dydi 

1-2 
	

ixt+y]>< exp 	 /((xa) - go(y)) 2  + 

x f dj4s)exp[_iN 	 + W° ) . s]. 	( 6.3) or  

The general multivariate distribution of inputs eq. (6.2) is assumed and the in-

tegral over the input patterns may be evaluated. The definition of the order 

parameters is altered so that they are now measured in a different metric, 

Qcrp = JWOrTESWP, 	 (6.4) 
N 
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R,= ±WOT3Wa , 	 (6.5) 

These order parameters are weighted by the covariance matrix of the input pat-

terns. The introduction of the replica symmetric ansatz, averaging over the 

teacher distribution eq. (6.1) and subsequent calculation leads to the RS Hamil-

tonian for a linear student, 

= 	ln(1+fl(qo—qi)) 

(2R 

ql—   qi)) 	Tr 	
(xgo) 0  + 

where the order parameters are the replica symmetric versions of the weighted 

ones introduced above, eq. (6.4), (6.5) (c.f. §2.7) and the averages over the teacher 

are defined as, 

(xgo) 0 	= fDxd,(ri)xg o  (Tr EOE, x 

K 
 2 

= f Dx d(i7) (o  (Tr 0 E x + 	 ( 6.6) 

The calculation of the prior constrained Hamiltonian is altered, due to the differ-

ent definition of the order parameters and the general teacher prior eq. (6.1). The 

penalty term added to the cost function is assumed to be the general quadratic 

term introduced in the previous chapter. After some calculation the prior con-

strained Hamiltonian is, 

co 2 	2N 	2N 

+1 2 Tr E 3 C 1 30  + - 1 Tr E S C ' . 	(6.7) 
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where A is the penalty matrix eq. (5.1) and the matrix C is given by, 

C = /3A + ( - 2 0 )E 3  

The free energy may be obtained, using eq. (2.34), in terms of gr,  eq. (6.6), and 

co, eq. (6.7), this may be differentiated to give the saddle point equations, 

qo = qi + Tr D' , 	 ( 6.8) 

qi = 41  Tr D 2  + 2 Tr  D 2 3 > 0  , 	 ( 6.9) 

R = RTr D 1 30 , 	 (6.10) 

1 	 c/3 
qo =q, 

- 2(1 + /3(qo - qi)) 	
(6.11) 

qi= (i - 2R_ 
xgo )E0E. + (go 	, (6.12) 

(1 + /3(qo - qi))2 	V*Tr so 

c/3 	(xgo), 0  
= 	 (6.13) 

(1 + 13(qo - i)) V'*" EsE0 

with D = CE,- 1 . Writing the matrix D out in full, 

D = OAE,, - ' + 	- 24o )I. 	 (6.14) 

These equations are identical to the case of a linear student using a quadratic 

penalty term with matrix, AE, - ', learning a teacher chosen from a distribution 

with covariance E 3 E0  with inputs chosen from an isotropic distribution. Hence 

the effect of the anisotropic input distribution is to change the definition of the 

order parameters so that they measure the weighted overlaps between weight 

vectors as well as to renormalise the penalty term and the teacher distribution. 

It can be seen from eq. (6.8) and eq. (6.14) that the response function /3Q = 
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f3(qo - qi) for Gaussian input and teacher distributions and a penalty matrix 

A is the same as that for an isotropic input distribution with unit variance and 

penalty matrix AE S ', i.e., independent of the teacher distribution selected. This 

makes sense, since the response function measures the statistics of the student, 

and is not directly related to the teacher. 

The saddle point equations may be solved analytically for particular forms of 

the input and teacher distributions and the penalty term. If the penalty term is 

the standard weight decay (A = )J), the teacher chosen from a spherical prior 

(E0 = ç2J) and the covariance matrix of the input distribution, E,, is a multiple 

.2 of the identity matrix, then the saddle point equations are identical to the 

standard weight decay saddle point equations with a renormalised weight decay 

parameter, )' = )/a 2 . This result agrees with the scaling behaviour mentioned 

earlier in §3.4. 

The average generalisation error is given by eq. (5.17) in terms of the saddle point 

values of the order parameters. The average training error is obtained by differ-

entiating the free energy with respect to the inverse temperature whilst keeping 

the student prior constant and can be obtained from the corrupted generalisation 

error, 

Ct = ( 1 + 1 12 
(eg '  + TQ12) 

The performance of the network under different limits of the teacher and input 

distributions will now be considered. Initially, the input distribution will be fixed 

so that the effect of the novel teacher distribution can be studied. 
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6.3 Anisotropic teacher distribution 

The distribution of inputs is assumed to be uniform as in the previous calcula-

tions, i.e., E. = I, this means that the matrix D in the saddle point equations is 

$A + 41  - The response functions are independent of the teacher distribution 

used, and hence those calculated in the previous chapter may be used. The effect 

of different penalty matrices on a couple of teacher distributions will be studied. 

It has been shown in the previous chapters that the behaviour of some of the 

performance measures for a non-linear teacher are equivalent to a linear teacher 

with an effective gain and noise level, hence only noisy linear teachers will be 

considered, since a non-linear teacher will have qualitatively the same behaviour. 

6.3.1 Anisotropic linear teacher 

Consider a teacher prior that has a diagonal covariance matrix with one value, 

1l, for a fraction k of the components and a different value, 1, for the remaining 

fraction, i.e., 

I &12 

i>kN 

Since the penalty term is equivalent to the student prior, the penalty matrix is 

assumed to model the teacher prior, i.e., 

Aij - f ij1 i<kN 

&j\2 i>kN 
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this is the penalty term studied in §5.7.1, thus the response function is that calcu-

lated previously, eq. (5.22), and hence the saddle point equations and performance 

measures can be calculated. 

The average generalisation error for a linear student learning a teacher with a 

linear activation function is plotted in Fig. 6.1 for zero and non-zero noise and 

different values of the weight decay parameters. In the zero noise case, Fig. 6.1(a), 

the solid curve corresponds to the penalty matrix that captures the correct form 

of the teacher distribution. Initially this achieves better generalisation than the 

standard weight decay (dotted curve) then as alpha grows past a "-j  1.2 the 

standard weight decay gives better performance. This behaviour can be explained 

by the fact that as & increases the data is able to specify the teacher and hence 

the penalty matrix that gives smaller decays will give lower generalisation error. 

For the non-zero noise case, Fig. 6.1(b), the solid curve is the optimal standard 

weight decay for this noise level (A = = 0.2). The dotted curve can be 

numerically identified as the optimal weight decay parameters for this noise level, 

value of k and the form of the teacher covariance matrix, ) = -y 2/Q2  and A2  = 

where y 2  is the actual noise level on the teacher. The dashed curve 

indicates what happens when the optimal parameters are swapped. The optimal 

weight decays make sense, since where the variance of the teacher is large, the 

weight decay term is small to let the student model the teacher, and conversely, 

where the variance of the teacher is small the weight decay is large to keep the 

student close to the teacher weight vector. Where the teacher is longer, the 

weight decay parameter is smaller, thus implying that the effect of noise on these 

components is less and vice versa. 

If there is more information included in the teacher prior, the penalty matrix is 
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Figure 6.1. Generalisation error versus c for a diagonal teacher, 1 = 1.9, 11 = 

O.1,k=O.5 

able to use this information to improve the average generalisation error compared 

to the standard weight decay. There is an optimal form for the penalty matrix 

that sets the student prior to be equivalent to the teacher prior. Of more interest 

may be the case where the penalty matrix is close to the teacher prior but not 

exactly matched. 

6.3.2 Highly correlated teacher 

In the previous chapter, a penalty term was introduced that favoured correlations 

between the components of the teacher (5.8). Consider the extreme case where 

all the components of the teacher are correlated with one another. In this case, 
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all the elements of the teacher covariance matrix are equal, i.e., 

(Eo ) ij 	vi,j. 

(This matrix is not strictly invertible. However it may be made invertible by 

adding a small constant e to the diagonal. The results hold in the e—*O limit.) 

This teacher prior has only one degree of freedom, this means that there is only 

one parameter that the student needs to learn to model the teacher exactly. Using 

this teacher prior, the non-conjugate order parameters are given by, 

qo = qi + -jTr C-1 	 (6.15) 

q = 1 Tr C 2  + 	(C') , 	 (6.16) 
ii 

r 	>(C
-1  ) , 	 ( 6.17) 

where C = /3A + 41 - 	The conjugate order parameters are given by eq. (6.12) 

- (6.13). 

The penalty term is assumed to be that studied in §5.8, i.e., 

When A = 	2 this penalty term penalises differences between components of 

the student weight vector. The response function Q' is simply Tr PC - '.This 

can be calculated simply from the eigenvalues of C and in the thermodynamic 

limit is given by, 

2A, ( 1—a—A1+VF(l+a+Ai)2-4ce) 
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which is the same as for a standard weight decay term up to terms of order 

11N. This is because the response function is simply related to the sum of the 

eigenvalues of C and in this case, the off diagonal terms only add corrections of 

0(1/N) to the eigenvalues. The other physical order parameters may be obtained 

in terms of q = 1 + y = A, (I + Q') + a and qY = (1 + Q')/(>,c ' ) = 

+ A2)(1 + Q') + a. The order parameters, r and q1  are, 

T 
= a(xgo) 	

(6.18) 
0 1 

= a (xgo ) ((2 - 2) +1+ 
ff) 	 (6.19)  2—a \,qI2 

where r = R/IZ and y• = ( g) / (xgo ) - 1 has been used. The performance 

measures may now be evaluated for this teacher distribution and penalty term. 

The corrupted generalisation error is given by, 

2 '2 , 	(xgo ),p ((çt•'a)2  
=2(2 - a) 	i2 	+ ff) . 	 ( 6.20) 

When )q = —)' 2, qf/ =a and thus, €g '  = 02 ff /2(02  - a), in this case the 

generalisation error tends to zero as the weight decay parameter, ), tends to 

infinity independently of the noise level. 

The uncorrupted generalisation error, fg , is plotted for a linear teacher and a range 

of different penalty terms in Fig. 6.2. In the noise free case, the generalisation 

error for '2 = —A is equal to zero for all a > 0 (at a = 0 the generalisation 

error must be 0.5). This is because the teacher has a single degree of freedom 

and the student prior also has this form; the presentation of a single pattern 

is sufficient for the student to learn the teacher exactly. The case A 2  = — A is 
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Figure 6.2. Generalisation error for a highly correlated teacher and different 
amounts of noise. ) = 0.2, A 2  = — 0.2... 0.2 in steps of 0.05. The dotted line 
corresponds to )'2 = 0, i.e., the standard weight decay. 



CHAPTER 6. EXTENSIONS TO THE MODEL 	 155 

the case where the penalty matrix prefers the components of the student weight 

vector to be equal. This student prior obviously matches the teacher and so 

should give the optimum generalisation. As a increases, the curves tend towards 

zero, again showing that given enough information, the prior is unimportant; the 

data swamps the prior. 

For A 2  = —A 1  and non-zero noise, initially, the average generalisation error is 

small, then as the number of examples presented grows it increases up to a 

maximum at a = 1 + A. The height of the maximum is 2 /(4(A 1  + JA 1 (1 + )))). 
The position of the maximum matches the discontinuity at a = 1 for the pseudo-

inverse solution trained on noisy data. As A 1 —~ oo, the position of the maximum 

tends to infinity, but its height tends to zero. This means that the optimal penalty 

matrix is to take A 1 —'oo. 

The curves show that when the student prior is able to take advantage of more 

information about the teacher, the performance is improved over the standard 

weight decay (the dotted line in Fig. 6.2). It can be postulated that for a teacher 

selected from a prior that contains a number of correlations, the optimal penalty 

term will be some where between the standard weight decay and the decay to 

average penalty term. 

The average training may also be calculated. At zero temperature it is given by, 

2 
(xgo), 02 	

2 

2(—a) (
12 _1)2 ) 
 0/2 

which is similar to the standard weight decay case eq. (3.37). When A 2  = —A 2 , the 

average training error is the same as for the pseudo inverse solution. The training 

error is plotted for different weight decays in Fig. 6.3, again for A 1  = —A 2  and 
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zero noise, c c  = 0 V c > 0, since a single noise free pattern enables the student to 

learn the teacher exactly. The standard weight decay is the dotted curve plotted 

in Fig. 6.3. The off-diagonal terms improve the performance in the case of a 

highly correlated teacher prior from the standard weight decay. 
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Figure 6.3. Training error for ) = 0.2, A 2  = —0.2... 0.2 in steps of 0.05. The 
dotted line corresponds to '2 = 0. 

In a real world problem, it is possible that some of the input components are 

correlated, this has been dealt with previously by introducing weight sharing [56], 

where student weights that are close together in value are replaced with a single 

weight. This is what the off-diagonal penalty matrix achieves by introducing 

correlations between the weights. In the thermodynamic limit, the off-diagonal 

penalty term has the advantage that it does not degrade the performance when 

the teacher is drawn from a spherical distribution. 
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6.4 General input distribution 

The effect of a general Gaussian input distribution on the model is now dis-

cussed. If the renormalised teacher distribution is assumed to be isotropic, i.e., 

E3E0 = WI and hence Eo = then the model is equivalent to a linear 

student learning a spherical teacher with a quadratic penalty term parametrised 

by AE. -1 . In the previous chapter, it was suggested that the optimal penalty 

matrix for a spherical teacher is a standard weight decay, this implies that for 

optimal performance, A = AE, where A is a parameter that is determined by 

the noise level on the teacher and the length of the renormalised teacher, 112. 

This result agrees with matching the student and teacher priors, since both the 

student and teacher priors have covariance x ES. 

If the teacher is assumed to be drawn from a spherical distribution, i.e., E0 = 11 2 1 ,  

the optimum penalty matrix is suggested to be that which makes the covariance 

of the renormalised student prior, (AE 3 1 ) 1  model the covariance of the renor-

malised teacher prior, up to a factor that is dependent on the noise level 

present on the teacher. This is achieved with A x I, i.e., a standard weight 

decay. Thus in this case, the anisotropic input distribution has not affected the 

optimum penalty term. This can be explained by observing that the input dis-

tribution affects the student and teacher weight vectors equally and hence, the 

student gains no new information by modelling the input distribution. Hence 

the input distribution does not affect the optimal penalty matrix. It does, how-

ever, affect the interpretation of the order parameters for the Gaussian priors 

considered. 



CHAPTER 6. EXTENSIONS TO THE MODEL 	 158 

6.5 Optimal student prior 

The previous calculations have suggested that the optimal student prior is that 

which models the distribution of teacher weights. The optimal penalty matrix 

for a linear student learning a linear teacher may be obtained simply by using 

the optimal learning algorithm of Watkin, [71]. The optimal student weight 

vector is equal to the teacher weight vector averaged over the posterior teacher 

distribution (sometimes referred to as the version space [701). The posterior 

teacher distribution is the set of possible teachers that could have produced the 

data set, i.e., the probability distribution of the teacher given the data. The 

average of the teacher weight vector over the posterior teacher distribution can 

be evaluated, this solution can be matched to the student obtained asymptotically 

for the zero temperature Gibbs learning algorithm and the optimal penalty matrix 

obtained, 

A = 	, 	 (6.21) 

which is independent of the distribution of inputs. The optimal penalty matrix 

is obtained by matching the student prior to the teacher prior. For the case 

of the highly correlated teacher, the size of the optimal penalty term is infinite 

as observed earlier. This can be evaluated by considering a small multiple c of 

the identity added to the covariance matrix of the teacher distribution and then 

considering the limit as 

In the case of nonlinear teachers, it is likely that the optimal penalty term will 

be closely related to that identified above since a nonlinear teacher is simply a 

reparametrisation of the linear teacher case. 

For distributions other than Gaussian it is harder to show that it is optimal to 
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match the form of the student prior to that of the teacher prior, though it is likely 

that this is true for tasks using continuous weights. Problems could arise if the 

average of the teacher over the version space was not a member of the accessible 

student weight space, as happens for binary weights; the optimal student prior is 

less clear in this case. 

6.6 Different noise distributions 

The noise on the training data considered in the previous chapters was simply 

added to the activation of the teacher inside the teacher activation function. 

There are other possible noise models that could be considered. This section will 

examine some of the simpler noise models. 

6.6.1 Noise on teacher inputs 

In section 3.2 the noise was introduced as zero mean Gaussian random noise on 

the activation of the teacher. An alternative noise model is to introduce noise on 

the inputs of the teacher, that is the output of the teacher is given by, 

ao(s) = go (WT°  . (s + 77)), 

where 17 is a random vector drawn from a zero mean multivariate Gaussian distri-

bution with covariance matrix F. The quenched average now contains an average 

over this noise vector. Since the vector of noise is a Gaussian random vari-

able, then W°  . 17 is also a zero mean Gaussian random variable with variance 
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W0TFWO. After performing a teacher average, the variance of the noise be-

comes, N

W 

Tr FE0 , where the teacher has been drawn from a Gaussian distribution 

with covariance E 0 , eq. (6.1). Hence the noisy teacher inputs are equivalent to 

adding noise with variance Tr FE 0  to the teacher activation function, i.e., the 

simple noise model discussed in §3.2 with a variance dependent on the covariance 

of the teacher as well as the noise. This means that the results for the optimal 

penalty term discussed previously still hold for this noise distribution. 

6.6.2 Noise on data inputs 

Noise on the teacher activation or on the teacher inputs models an error within 

the teacher, i.e., the teacher is unreliable. Another possible noise model is to 

consider the case where the teacher itself is uncorrupted, but the inputs in the 

training set have been corrupted. In this case, the error measure is given by, 

c(W;s,) = (g(W. (s+ ))  —go (W. s)) 2  

where 17 is again a zero mean random vector drawn from a Gaussian distribution 

covariance F. Since both s and 17 are assumed to be Gaussian variables, the sum, 

S ' = s-f t is also a Gaussian variable with covariance I+F for the case of uniform 

inputs. The error measure may be rewritten in terms of the sum of the input 

and noise s'. This is equivalent to an error measure with inputs drawn from a 

distribution with covariance matrix I + F and noise of variance Tr F added 

to the teacher activation. This is again equivalent to the noise model in §3.2 

but the distribution of inputs has been altered. In the previous section §6.4 it 

was observed that for Gaussian priors a different input distribution didn't affect 
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the optimal penalty term which was set to model the teacher prior, hence the 

different noise model does not affect the optimal penalty term. 

The simple noise models introduced here do not affect the optimal penalty term 

that minimises the generalisation error. However in the case of noise added to 

the training data inputs, the distribution of examples is altered and this affects 

the interpretation of the order parameters. 

6.7 Concluding Remarks 

The calculations in the previous chapters assumed a simple isotropic distribution 

of inputs and a spherical teacher prior. The model used in the present chapter 

is extended to include a general Gaussian input distribution and teacher prior. 

The performance of a linear student learning a noisy teacher with a weight vector 

selected from an anisotropic distribution is considered. A diagonal teacher distri-

bution with two different variances is considered. The penalty term is assumed 

to be of the same form, i.e., not the standard weight decay. The optimal weight 

decay parameters are identified and these give lower generalisation error than the 

standard weight decay term. 

A teacher drawn from a highly correlated distribution is also considered. In 

this case, the penalty matrix minimised differences between the components of 

the student. With the optimal penalty term the student is able to learn the 

teacher with the presentation of a single uncorrupted pattern. Penalty terms 

that interpolate between the optimal and the standard weight decay are also 

considered. There is a gradual improvement in performance as the student prior 
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approaches the teacher prior. 

The effect of the general input distribution is to redefine the order parameters 

so that they are scaled by the covariance matrix of the input distribution. This 

means that the performance measures are dominated by the components with 

the largest variance. This is an argument for renormalising the input data to be 

of unit variance before training so that some components do not have a dispro-

portionate affect on the performance measures. 

The motivation for the standard weight decay term is to prefer models that have 

fewer weights, the motivation for minimising the difference between components 

is to prefer models that reduce the number of free parameters by sharing weights. 

Thus in practice the teacher prior is likely to be located somewhere between the 

spherical and highly correlated distributions. In this case, a penalty term that 

lies between the standard weight decay and the difference between components 

prior would give optimal generalisation. 

For Gaussian priors better performance in terms of the average generalisation 

error, E.,  is achieved by having a student prior that matches the teacher distri-

bution. The size of the prior in relation to the training error is related to the 

noise level on the data. It is an open question whether this result is true for 

non-Gaussian priors. 

Alternative noise models are introduced, which prove to be equivalent to the 

simple noise model introduced in §3.2. The case of noise added to the training 

set inputs means that the distribution of input examples is altered, which in turn 

means that the order parameters are weighted by the noise matrix. The optimal 

penalty matrix is still that which models the teacher prior. Thus the general 
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penalty term can improve the networks performance where it models the teacher 

distribution. If noise that affected the distribution of the teacher weights is added 

to the training data, then this could be countered by using a different penalty 

term. 



Chapter 7 

Summary and conclusions 

In this thesis a linear student network learning a rule or mapping defined by a 

set of noisy examples is studied where the rule to be learnt is of both linear and 

nonlinear forms. The average performance of the network in terms of its ability 

to generalise is calculated for different learning scenarios which are characterised 

by a regulariser or prior on the student's network parameters. The optimal 

regulariser in terms of the generalisation ability for each learning scenario is 

evaluated. Finally, alternative rule and data distributions along with extensions 

to the noise model are considered. 

The student is assumed to be a linear perceptron with continuous inputs and 

weights, and the data set is assumed to be generated by a known teacher network 

and a set of random inputs selected from an isotropic Gaussian distribution. 

The teacher is also taken to be a perceptron but with an arbitrary (linear or 

nonlinear) activation function. The similarity between the student and teacher 

networks enables direct comparisons to be drawn to discover how well the student 

164 
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models the teacher. Noisy data is modeled by adding zero mean Gaussian noise 

to the activation of the teacher network. The student is trained on the corrupted 

example set using a stochastic gradient descent algorithm parametrised by a 

training temperature. A cost function is defined as the standard training error 

plus a potential term, which regularises the student's network parameters. Using 

the cost function, a free energy for the system is defined and calculated using 

the replica method of statistical mechanics assuming replica symmetry. Order 

parameters which capture the statistics of the system are evaluated from the free 

energy, these are then used to study the performance of the student network. 

One facet of the student's performance is the ability to generalise to unseen 

examples, which is measured by the average generalisation error. There are two 

forms of the generalisation error studied; the corrupted generalisation error where 

the output of the student is compared to the corresponding noisy teacher output, 

or the uncorrupted generalisation where the student is compared to the "clean" 

teacher output. The corrupted generalisation error is a measure that is more 

likely to be calculated in practice, however the clean generalisation error gives 

more accurate information about how well the student has learned the teacher 

rule. The performance measures are used to compare the different penalty terms 

which are equivalent to selecting prior distributions of student weight vectors. 

The standard weight decay penalty term added to the cost function for a linear 

student learning both a linear and nonlinear teacher is investigated. This penalty 

term is equivalent to picking an isotropic Gaussian distribution for the student 

prior. The response function as calculated by Hertz et al [38] arises naturally 

from the order parameters and hence the formalism gives an alternative method 

of calculating the response function for different priors. The order parameters and 
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performance measures for a nonlinear teacher, with the exception of the uncor-

rupted generalisation error, are equivalent to those for a linear student learning a 

linear teacher with a different gain and effective noise level on the linear teacher. 

Thus a linear student learning a nonlinear rule can be expected to achieve some 

success at generalisation, with the degree of success bounded by the effective noise 

level. The correlation between the student and teacher weight vectors depends 

on the teacher activation function only through the effective noise level. Thus as 

the number of examples increases, the student will be able to learn the teacher 

weight vector even though both the corrupted and uncorrupted generalisation 

error will be non-zero since the student activation function does not match the 

teacher's. There is a simple relation between the corrupted generalisation error 

and the training error which agrees with the results of Hansen [321 and so the 

expectation that a lower training error will give a lower generalisation error is 

justified for this model. 

For both the linear and nonlinear teacher scenarios both the corrupted and Un-

corrupted generalisation errors are minimised with respect to the noise level on 

the training algorithm (temperature) when it is set to zero. The corrupted gener-

alisation error is optimised with respect to the weight decay parameter when the 

weight decay is equal to the effective noise level on the teacher for both linear and 

nonlinear teachers. At these values of weight decay and training temperature the 

average cost function, consisting of the training error plus the standard weight 

decay penalty term, is constant for any number of examples in the training set 

and equal to the residual error due to the noise on the data. If the cost function 

is reduced below this residual error the data is overfitted and the generalisation 

ability of the network starts to degrade. Conversely, if the cost function is not 

reduced to the level of the residual error the data is under-fitted. This gives a 
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possible check on the optimality of the order parameters, and in a real problem 

may be used to indicate whether the data is under- or overfitted. The average 

training error is constant and equal to the residual error when the weight decay 

parameter and the training temperature both equal the noise level. These values 

of the parameters are those identified by Bruce and Saad [9] that minimise the 

variance of the student network's output. If the training data is uncorrupted, the 

optimal weight decay parameter for the model is infinitesimally small, which is 

equivalent to the pseudo inverse solution. Thus it can be seen that a weight decay 

term is able to improve generalisation for the case of a linear student learning a 

noisy linear or nonlinear teacher. 

For a linear student learning a linear teacher, the optimum weight decay param-

eter for finite temperatures is calculated numerically. There is a temperature 

above which the optimum weight decay is infinite. This can be interpreted as 

the value of the temperature where the dynamic noise introduced in the stochas-

tic training algorithm swamps the information contained in the data and could 

suggest an initial temperature for an annealing schedule. 

Since the weight decay penalty term was seen to improve the generalisation abil-

ity of a network trained on noisy data, it can be postulated that there is a more 

general form of the penalty term that may give further improvements in the gen-

eralisation ability. A simple generalisation of the standard weight decay is to 

consider a generalised quadratic penalty term which is equivalent to a multivari-

ate Gaussian prior on the student weights. The free energy is averaged over a 

prior distribution of teacher weight vectors to remove an explicit dependence on 

the teacher weight vector. Initially a spherical teacher prior is assumed and it 

turns out that the free energy is invariant under a rotation of the weight space 

and a corresponding rotation of the input space, this means that any penalty 
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matrix is equivalent to its diagonal form. This invariance under rotation is due 

to the averaging over the spherical teacher distribution. For a specific form of 

the generalised penalty term the uncorrupted generalisation error is not improved 

over that achieved by the standard weight decay and hence it is postulated that 

optimal generalisation is achieved by choosing a student prior (and hence penalty 

term) that models the teacher prior. 

In order to investigate the effect of different teacher priors, the teacher is assumed 

to be drawn from a general anisotropic Gaussian distribution. The effect of 

different penalty terms can then be evaluated. When the penalty term models 

the teacher prior the performance is improved and it is shown analytically that 

for Gaussian priors on the student and teacher weight vectors and a linear student 

learning a linear teacher, the generalisation is optimised by selecting a student 

prior that models the teacher distribution up to a constant of proportionality 

that is equal to the noise level on the data. 

The effect of a general Gaussian distribution of inputs is also considered. The 

order parameters are now weighted by the covariance matrix of the input distri-

bution, this means that the order parameters no longer measure overlaps between 

weight vectors since components of the input that have large variance will dom-

inate the performance measures. The different input distribution does not alter 

the form of the optimal penalty matrix. This makes sense, since the different 

input distribution does not affect the teacher distribution, so as seen before, for 

a linear student learning a linear teacher the optimal penalty term is that which 

sets the student prior to be equivalent to the teacher distribution. 

It can be postulated that the novel penalty terms may be able to improve the 

performance for a different noise model added to the data. Gaussian noise added 
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to the inputs of the teacher is shown to be equivalent to simple noise added to 

the activation of the teacher. Noise added to the inputs of the training data 

is also considered and shown to be equivalent to training with a different input 

distribution along with the simple noise model. Hence the form of the optimal 

penalty matrix is not dependent of the noise distribution that is added to the 

data set. However, if the teacher weights are corrupted by some fixed noise, this 

would alter the distribution from which the teacher is selected and means that 

the optimal penalty term would include this noise distribution. Otherwise the 

optimal penalty term only depends on the noise through its effective variance. 

The distributions assumed in this thesis were Gaussian since it is simple to cal-

culate averages over these distributions, further work could be to consider other 

forms of distribution, though this would inevitably make the calculations more 

complicated. The results are exact in the thermodynamic limit, i.e., the number 

of weights and inputs, N, tends to infinity, numerical simulations could be carried 

out to check the results hold 'for finite N systems and the 0(11N) corrections 

could be calculated using other methods [67]. The formalism could possibly be 

extended to multilayer networks using some of the methods introduced recently, 

[62] to give results for networks that are of more practical use, however it is likely 

that this will make the calculation much more complicated and may in fact not 

be tractable. 
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Appendix A 

Notation 

This section lists the main notation that is commonly used. Some of the symbols 

also have other meanings, however the differences should be clear by context. 

	

a 	The number of examples per weight (p/N). 

1/T. 

	

f(W; s) 	The error measure. 

	

c(W) 	The generalisation function. 

	

69 	The average uncorrupted generalisation error. 

	

69 
1 	The average corrupted generalisation error. 

	

f t 	The average training error. 

The average cost function. 

	

F 	The free energy. 

	

f 	The free energy per weight, FIN. 

	

g(x) 	The activation function of the student. 
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go (x) 	The activation function of the teacher. 

	

Gr 	The replicated Hamiltonian. 

	

Go 	The prior constrained Hamiltonian. 

	

cr 	lim_ o  G,/n. 

	

go 	lim—+ o  Go/n. 

The variance of noise on the data. 

The variance of noise on the data normalised by the length of 
the teacher squared, -y 2/Q2. 

	

F 	The covariance matrix of a general Gaussian noise distribution. 

	

A 	The weight decay parameter. 

	

A 	The general penalty matrix. 

	

N 	The number of weights and inputs. 

	

ii 	The number of replicas. 

The squared length of the teacher, W °  W°. 

	

P 	The number of examples in the training set. 

1+1/Q'. 

	

qo 	The replica symmetric average intra-replica overlap, *W  .W. 

	

q 	The replica symmetric average inter-replica overlap, WC  W'°. 

	

40 	The conjugate order parameter to qo. 

	

41 	The conjugate order parameter to q1 . 

	

q' 	The average cosine between replica solutions qi /qo . 

	

Q 	The difference between overlaps, qo - qi. 

	

Q' 	The response function, 0Q. 

	

R 	The replica symmetric average overlap between student and 
teacher 	. W° . 

The conjugate order parameter to R, 
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r 	The average overlap between student and teacher divided by the 
length of the teacher, R11. 

The conjugate order parameter to r, R1l. 

R' 	The average cosine of the angle between student and teacher 

S 	An input vector. 

zo 	The covariance matrix of a general Gaussian distribution of 
teacher weight vectors. 

The covariance matrix of a general Gaussian input distribution. 

T 	The variance of noise added to the stochastic training algorithm, 
the temperature. 

B 	The training set. 

0 	An example consisting of an input-output pair. 

W 	A set of network parameters, the student weights. 

W° 	The weights of the teacher. 

The input of an example. 

The output of an example. 



Appendix B 

Integral Identities 

This appendix states a couple of useful integral identities. 

B.1 Delta function - integral representation 

A delta function may be written as, 

too  
s5(a—b) = / dx—exp[ix(a—b)] 

27r 

or 

- b) = 	—exp[—x(a - b)] 
°° dx 

f00 27r Z' 
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go 

B.2 Hubbard Stratonovitch transformation 

This is a useful trick for linearising quadratic exponential terms at the expense 

of introducing an integration over an additional variable. Explicitly it is, 

dx 	1 2  
00 

exp {b2I 
= J_ c,3 \/ 

exp [_x + bx] 

B.3 Gaussian Integration 

The notation, 

D 	
dx 

x =exp [_ x 2 I 
is commonly used. 



Appendix C 

Solving standard saddle point 

equations 

The saddle point equations for a linear student with a weight decay learning a 

noisy teacher are given by eq. (3.12 - 3.16) for completeness written here, 

1 
qo = 	+q2q 	

(C.1) 

qi = (I2+i)(qo—qi)2 	 (C.2) 

1  
( - (C.3) 

___ 
= - 2 	(g),1)  

32 	
2 )j q1= (C.4) 

(1 + )3(qo 
 — ql))' (q, — 2 r x g o ), + 90 

r = 	- qi) 	 (C.5) 

V = 
1+/3(qo—qi) (xgo) 
	 (C.6) 

From equations (C.1) and (C.2), define Q = qo - qi and using equation (C.6) 
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gives 
aL3 

-- 

Consider Q' = 8Q, the equation above leads to the quadratic equation, 

AQ 12 +Q(+,\1)10 	 (C.7) 

This equation only has roots, 

Q' = 1 - - + 	- - 
	

+ 4, 

where .A =, which gives eq. (3.17). 
1/ 2  

So having calculated, Q' and hence Q, may be evaluated, 

c/3 
r= 1QI (xo) ??  

Define 4 = 1 + 	and thus from equation (C.5), 

- c(xgo ),7  
r- 

Now, substituting the values obtained for r, i and equation (C.4) into equation 

(C.2) and using the definition of 0 gives, 

c 	/ 	" 
q = (

2 - ) 	

( xgo) 2 
 1 - 2" + (g)) 	 (C.8) 
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Substituting the definition of 0 into the quadratic equation for 0 gives a quadratic 

equation in 0, 
02 - (1 +a +  A) +a =  0 

Using this equation, 

/ 	2" 	( 2 U) 
—(1+ A) 

and thus eq. (3.19), 

77  
q1=(2) 

((g)_(xgo)(1+A))+71 

This result may be substituted into 4 1 , eq. (C.4), using U+aA—a2 / = 

and ( - l)(q - U) = A, gives, eq. (3.22), 

a/32  
(xgo)1 (_1)2) 

= (2_U) 
((xgo)A2+ ((g) - 	2 



Appendix D 

Relation between € and g '  

The corrupted generalisation error is given by eq. (3.35), 

2 

	

	
a " 	T a I ____________________ 	 _______________________ 	 ______________________ 

 eff 
(xgQ )( 2(2))  

fg 
= 	2 

Rearranging and using, 0 + .Aq5 - a = 	- aq yields, 

(xgo) 2 
__ 	 T 

Cg' 
= 2(2 - a) (22 + ( - 

a)) 
+ 2(0 - 1) 

This can be compared to the average training error, eq. (3.37), 

1 (xgo ) 2  

t= 2(2_a) (A2+2(1)2 	T )+_ 
20 

Since, (q' — 1)(—a) = 

(_1)2 (g'+ 

2(0 

T 	

) 
= 

—1) 2  
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Now, Q'= 1/( 0 — 1) and (1 + Q') = 	- 1), hence eq. (3.39), 

TQ'2  
ft_(l+Q)2 	 2 ) 

1 	

(g, 
 + 



Appendix E 

General weight decay, order 

parameters. 

For a linear student using a general quadratic penalty term learning a noisy 

teacher, the free energy per weight is written as, 

-f = — RR - q0   o + 	+ in 2 ir + 1l 2  - 	in ICI  

+(22 + 1 )Tr C 1  - ln(1 + (qo - qi)) 
2N 	 2 

00 	(qi_2(xgo)+(g)) 	(E.1) 
2(1 + (qo - qi)) 

Differentiating with respect to the order parameters, R, R, qi  and q, and setting 

the derivatives equal to zero gives, 

r = 
(1+fl(qo—q1)) (xgo) 
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r =  -1 Tr C 1  

_________ 	32 

2(1 +(qo—qi)) + 2(1 
+(qo—qi))2 (1 _2r(xgo)+(g))

02 	
—= (1(q0_q1))2 (120+( 0 ) fl) 

where, r = R/1 and = Ru. 

In order to calculate the remaining order parameter, we need the following results, 

Consider C = xA + yB, 
19 
 In ICI = Tr AC -1  

similarly 

Tr C' = —Tr A (c') 2  

Hence, the remaining order parameters are, 

qo = 
1 a 

in IC I + ( 2  + 1 ) Tr C 1  
2N NO 	 2N NO 

= qi+ 
1 
 Tr C - 1  

18 
qi = 

= (2 + 	Tr  C-2 



Appendix F 

Cubic equations 

In previous chapters, the roots of a cubic equation were needed, hence, consider 

the general cubic equation given by 

f(X) = x 3  + a2  x 2  + a 1  x + a0  

F.1 Number of positive roots 

Differentiating w.r.t. x gives 

f'(x) = 3 x 2  +2a2 x +a 1  
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Thus the maximum and minimum of f are given by the two points, 

= 

= (—a2 —/a-3a l ) 

Differentiating a second time gives 

f"(x) = 2(3x + a 2 ) 

Thus f"(x i ) = 2a - 3a1  >0 and f"(x 2 ) = —2/a - 3a 1  <0, therefore, x 1  is 

a minimum and x2  is a maximum. x 1  > x2  always. 

The maxima occurs on the left of the origin if x 2  < 0, this leads to the condition 

a 2  > 	- 3a 1  

For a 2  > 0 this condition is always true, for a 2  < 0 this condition is true if a 1  < 0. 

thus the conditions on the maximum lying on the left of the origin may be written 

<o if 	
a 2  > 0 

a 2  <0 and a 1  <0 

Now, f(0) = a0 , so if a0  < 0 and x 2  <0, then there is a maximum on the left of 

the origin and the value of f as it crosses the y axis is less than zero, thus there 
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is only one positive root if; 

a0  <0 and a2  > 0 

a0  <0 and a2  < 0 and a 1 < 0 

F.2 The roots 

The roots of f(x) = 0 can be given in terms of two parameters, P1, P2, 

1 2 	1 
P1 = 

1 	 1 3  
P2 = 	( a 1 a2  - 3a0 ) - a2  

There are three types of solution which are identified by 

.P 2 - 	> 0 One real root, pair of complex roots, 

• 	- 	= '0 All roots real, at least two equal, 

• 	- 	< 0 All roots real. 

The roots themselves are in terms of the further parameters, 

SI = [P2+P — P] 
1 

S2 = [p2 - (p - p)] 
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The roots are then 

1 
x i  = ( s1+s2) — a2 

= — 
1 
(s + 82) - 1 + 	- .92) 

= — 
1 	 1

(s 1  + .92) - -a 2  - i----(s1 - .9 2) 

Since the only roots of interest are positive real ones, the cases where p -  p > 0 

are easily solved, since in this case, S1, S2 are both real and x 1  is then the only 

real root. 

For the case 	- 	< 0, s, can be written in terms of polar coordinates as, 

'/{ 	/1 	_i(P2 
Si 	

\\ 	
. (-1 cos= 	cos 	cos 	==+zs'n 

Similarly for 82.  The largest angle that 0 = cos 1  (P2/\/)  can be is r, so 

cos(013) > 0 and s + s 2  > 0, hence the largest real root is again given by x1. 


