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ABSTRACT 
 

The calibration of redundant safety critical sensors in nuclear power plants is a 

manual task that consumes valuable time and resources. Automated, data-driven 

techniques, to monitor the calibration of redundant sensors have been developed over the 

last two decades, but have not been fully implemented. Parity space methods such as the 

Instrumentation and Calibration Monitoring Program (ICMP) method developed by 

Electric Power Research Institute and other empirical based inferential modeling 

techniques have been developed but have not become viable options. 

Existing solutions to the redundant sensor validation problem have several major 

flaws that restrict their applications. Parity space method, such as ICMP, are not robust 

for low redundancy conditions and their operation becomes invalid when there are only 

two redundant sensors. Empirical based inferential modeling is only valid when intrinsic 

correlations between predictor variables and response variables remain static during the 

model training and testing phase. They also commonly produce high variance results and 

are not the optimal solution to the problem. 

This dissertation develops and implements independent component analysis (ICA) 

for redundant sensor validation. Performance of the ICA algorithm produces sufficiently 

low residual variance parameter estimates when compared to simple averaging, ICMP, 

and principal component regression (PCR) techniques. For stationary signals, it can 

detect and isolate sensor drifts for as few as two redundant sensors. It is fast and can be 

embedded into a real-time system. This is demonstrated on a water level control system.  
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Additionally, ICA has been merged with inferential modeling technique such as 

PCR to reduce the prediction error and spillover effects from data anomalies. ICA is easy 

to use with, only the window size needing specification.  

The effectiveness and robustness of the ICA technique is shown through the use 

of actual nuclear power plant data. A bootstrap technique is used to estimate the 

prediction uncertainties and validate its usefulness. Bootstrap uncertainty estimates 

incorporate uncertainties from both data and the model. Thus, the uncertainty estimation 

is robust and varies from data set to data set.  

The ICA based system is proven to be accurate and robust; however, classical 

ICA algorithms commonly fail when distributions are multi-modal. This most likely 

occurs during highly non-stationary transients. This research also developed a unity 

check technique which indicates such failures and applies other, more robust techniques 

during transients. For linear trending signals, a rotation transform is found useful while 

standard averaging techniques are used during general transients.  
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 CHAPTER 1 
INTRODUCTION 

 

1.1 Background 

Empirical sensor validation techniques utilize the redundant information in the 

system measurements to judge the sensor status. It differs from sensor calibration in that 

such empirically based judgments often come from modeling the system versus 

artificially loading the sensor and calibrating it manually. In complex systems such as 

nuclear power plants, redundancy is an important strategy for maintaining safe and 

reliable operations. Redundant sensors are installed to increase the reliability of process 

measurements to assure that the operators and protection systems can maintain the plant 

in a safe operating condition. This redundant information makes the application of 

nuclear power plant on-line sensor calibration validation possible. 

The birth of current Nuclear Power Plant advanced monitoring and diagnostic 

techniques can probably be traced to the Three Mile Island (TMI) unit 2 nuclear power 

plant accident. The TMI-2 accident began with a valve malfunction, which may have 

been prevented or detected earlier by using current sensor validation and plant monitoring 

techniques. The negative impact of the TMI-2 accident is very significant. No new 

nuclear power plant has been ordered in the US since the TMI-2 accident. The TMI-2 

accident triggered the first generation of nuclear power plant sensor validation techniques 

based on parity space methods [EPRI, 1981].  Here, 25 years later, sensor validation 

technique research is still important and improved solutions are being developed. 
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The application of soft computing techniques; particularly neural networks, fuzzy 

logic, and genetic algorithms, to the surveillance, diagnostics and operation of nuclear 

power plants and their components is an area that still has great potential for exploitation 

[Uhrig, 1999]. However, practical application of these techniques is uncommon and not 

an easy task. For instance, many techniques can be shown to work using simulated data, 

but may not be suitable for actual application due to various non-Gaussian noise 

realizations and the difficulty to attain training data for off-normal events. Additionally, 

some techniques, such as those applying neural networks, may suffer from long training 

times and/or inconsistent results.  

Differing from these heuristic approaches, the theory of statistical learning 

[Vapnik, 1998] tries to approach the problem systematically to find the structure and 

capacity of a learning machine. Also, the No Free Lunch (NFL) theorem [Wolpert, 1992, 

1994, 1995a, 1995b] is derived to answer what cannot be learned from statistical learning 

processes. The conclusion states that if the training space doesn’t completely cover the 

prediction space, generalization may not produce suitable results. This reminds us that 

one should be very clear about the fundamental assumptions of empirical learning 

processes being applied. 

1.2 Problem Statement 

The redundant measurement of process variables is widely used in safety critical 

applications such as nuclear power, chemical processing and aerospace industries. 

Redundant sensors are used to provide independent measurements to guard against sensor 

channel failures.  Additionally, the redundant information can be utilized to consistently 
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check measurement integrity. This technique is defined as sensor validation or on-line 

calibration monitoring for redundant sensors. On-line calibration monitoring performs 

consistence checks automatically during process operation.  

Recently, the Office of Nuclear Reactor Regulation Application issued a safety 

evaluation report (SER) on topical report #104965: "On-Line Monitoring of Instrument 

Channel Performance".  This report focused on the generic application of on-line monitoring 

techniques to be used as a tool for assessing instrument performance.  It proposed to relax 

the frequency of instrument calibrations required by the Technical Specifications (TS) from 

once every fuel cycle to once in a maximum of 8 years based on the on-line monitoring 

results.  Implementation of the technique to relax the TS requires a license amendment. 

The report claims the following benefits: 

• Helps eliminate unnecessary field calibrations. 

• Reduces associated labor costs. 

• Limits personnel radiation exposure. 

• Limits potential for miscalibration. 

On line calibration monitoring constructs a parameter estimate that is derived 

from all the redundant sensor measurements. If all the measurements are good and the 

noise levels are similar, a simple average of the redundant sensors will provide an 

estimate with a minimum variance. For N channel measurements, the parameter variance 

will be reduced by a factor of N. However, the simple averaging algorithm is not efficient 

or robust in detecting a drifting channel due to what is commonly termed spillover.  

Spillover occurs when a single drifting or faulty sensor affects the parameter estimate. 

The averaging algorithm is not able to identify the faulty channel when only two 
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measurement channels are present because the sensor estimate drifts with half the 

magnitude of the faulty sensor. There are several commercial nuclear power plant 

applications when only two sensors are available.  These commonly occur when the 

variable is a controlled variable in which an operator must choose which of the two 

sensors to use for input to the controller.  In this case, the simple averaging method 

cannot be used to identify a faulty sensor.   

The Instrument Calibration and Monitoring Program (ICMP) algorithm [Wooten 

1993, Davis 1995] is a weighted averaging algorithm that is more robust than simple 

averaging. It assigns a consistency value to each channel. If all measurement are 

determined to be consistent, the measurements will be equally weighted and the 

algorithm is reduced to simple averaging. If one of the measurements begins to drift and 

differs from the others by more than a stated tolerance, the weight of that measurement 

will be reduced due to its inconsistency. Thus, the parameter estimate will be less 

affected by the drifting sensor due to its reduced weight.  This algorithm is also not able 

to detect which of two redundant sensors is drifting.  

Simple averaging and ICMP solve the redundant sensor validation problem 

directly while empirical inferential sensing techniques solve the problem indirectly. The 

learning process of an empirical sensor validation technique is based on two fundamental 

aspects: the physics governing the objects to be learned, and the proper mathematics to 

actually carry out the learning process. Physical foundations provide the scope and 

existence of a solution. In a nuclear power plant, mass, momentum and energy 

conservation ensure the existence of correlations between different measurements 

especially during quasiequilibrium operations. Thus, with measurement of other process 
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variables, a virtual sensor can be created that provides a reliable estimate of the process 

variable of interest. This virtual sensor is commonly termed an inferential sensor. The 

inferential sensor is immune to sensor drift due to the sensor of interest degrading. This 

results in the residuals between the inferential sensor and the real sensor containing 

information that can be used to identify a sensor fault. However, empirical-based 

inferential sensing is an ill-posed problem in which the solution may be unstable due to 

the collinearity of inputs and the ill-conditioned nature of the process data. Proper 

regularization techniques are required for successful implementation [Hines, 1999]. 

Inferential modeling usually employs what is commonly referred to as supervised 

learning in which the system model is constructed from plant data. The learning process 

follows two steps. In the first training step, a model is constructed from the training data 

forming a mapping between predictor (input) variables and the response (output) 

variables. An objective function is evaluated to measure and optimize the training 

process. Mean squared error (MSE) is most commonly used as the objective function. In 

the second step, termed model testing or validation, the model's performance is evaluated 

using new data, which was not used during training. One needs to prevent overfitting the 

data during training process, otherwise the generalization error on testing data will be 

high.  Commonly, regularization techniques are used to obtain reliable, repeatable, low 

variance results. 

This dissertation developed, tested, and optimized a new method for redundant 

sensor calibration validation using an unsupervised learning method: independent 

component analysis. Additionally, it compares the newly developed method's 

performance with past techniques. 
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1.3 Original Contributions 

 
The dissertation develops methods implementing independent component analysis 

(ICA) for redundant sensor calibration monitoring. ICA is a statistical technique in which 

the observed data are expressed as a linear transformation of latent variables 

(‘independent components’) that are mutually independent [Hyvarinen, 2001]. The ICA 

method is able to separate mixtures of independent sources in the dataset in order to 

predict the process parameter more accurately. ICA prediction is very robust in that the 

faulty component of a sensor measurement does not adversely affect the parameter 

estimate, even when there are only two redundant sensors. 

Independent component analysis is an unsupervised learning paradigm.  With 

supervised learning there is a clear measure of success (i.e., MSE) that can be used to 

judge adequacy in particular situations and to compare the effectiveness of different 

methods over various situations. In the context of unsupervised learning, there is no such 

direct measure of success. One must judge the results heuristically and more carefully 

[Hastie, 2001]. For the redundant sensor validation problem, we have a prior information 

to use to ease the judgment. This leads to the use of a reliability module in the ICA 

method for redundant sensor validation. 

Moreover, inferential modeling can detect common mode failures while 

independent component analysis provides channel estimate with less noise which can 

detect the drift faster. This research will investigate the merging of inferential modeling 

with independent component analysis for validating redundant sensors.  
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The original contributions of the dissertation are as follows: 

• The use of independent component analysis for redundant sensor validation that 

can monitor systems with as few as two redundant sensors. 

• The development of a reliability monitoring module using unity check for robust 

parameter estimation.  

• The demonstration of a real time controller utilizing independent component 

analysis. 

• The use of a rotation transform for linear nonstationary signals. 

• The development of a system that merges inferential modeling with independent 

component analysis to enhance the robustness and reduce uncertainties for 

redundant sensor validation. 

• The use of bootstrap for constructing prediction intervals for hybrid inferential 

modeling and the ICA method. 

1.4 Organization of the Dissertation 

 The dissertation is organized as follows.  Chapter 2 is a literature survey of 

current methods for redundant sensor validation such as parity space methods, the 

Instrumentation and Calibration Monitoring Program (ICMP) and empirical based 

inferential modeling. Chapter 3 provides the theoretical foundations of independent 

component analysis. A solution for scaling and permutation problem is also provided and 

a unity check for ICA robust monitoring is derived. Chapter 4 contains the results. First, a 

toy problem is solved with independent component analysis. Second, ICA is applied to 
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real nuclear power plant data for sensor monitoring and its results are compared with 

ICMP results. Robustness is tested by bootstrapping and noise reduction characteristics 

are presented. A linear relationship between the ICA prediction and measurement 

variance termed the selection rule is also developed. Next, a water tank level experiment 

demonstrates a real time application of ICA. It also shows the limitation of classic ICA 

on nonstationary signals. The reliability monitoring module guards the ICA solution from 

going out of the solution space. If the unity check does not pass, the ICA prediction 

automatically degrades to a reliable simple average. For a linear trending nonstationary 

signal, a rotation transform can be applied. The results of the ICA controller are also 

discussed. A hybrid method merging inferential modeling and ICA is applied to both 

drifting data and data containing nuclear power plant abnormalities. Chapter 5 develops 

an uncertainty analysis utilizing the bootstrap method. First, the bootstrap method for 

prediction interval estimation is reviewed. Next, a prediction interval for a least squares 

model is calculated. Last, the bootstrap prediction intervals are calculated for the ICA and 

PCR hybrid model. Chapter 6 concludes this dissertation and provides recommendations 

for future work. A summary of published articles based on this dissertation and Matlab 

code used for calculation is included in the appendix. 
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CHAPTER 2 
LITERATURE SURVEY 

 
       A review of the literature on redundant instrument channel monitoring indicated 

that there are three main approaches that have been developed: 

1. Parity Space methods 

2. Instrumentation and Calibration Monitoring Program (ICMP) method 

3. Empirical based methods 

  Much of the early work in sensor validation monitoring has been centered on 

Fault Detection and Isolation (FDI) techniques.   

2.1 Parity Space Approach 

 This section will review the parity space approach and present its theoretical 

derivation. 

2.1.1 Review 

Parity space approaches are rooted in the FDI schemes.  FDI techniques 

[Isermann 1997] for redundant instrument channels are often model-based methods 

[Frank 1990, Hall 1983, Jin 1997, Willsky 1976], or knowledge-based methods 

[Benkhedda 1996, Frank 1990].  Neural Networks have also been employed [Chowdhury 

1996, Chan 1998], as  well as a recently proposed Constrained Kohonen Network 

approach [Chan 2001].   

Parity space method requires three or more redundancies in the sensor 

measurements. When there are only two redundant sensors, direct comparison is not 
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possible. One can use analytic redundancy  [Ray 1983a, Simani, 2000, Desai 1979, Frank 

1990, Venkateswaran 2002, Patton 1997] to serve as an additional sensor. 

  The parity space approach is a very popular fault detection and isolation technique 

for use with redundant sensors.  The parity-space technique models the redundant 

measurements as the true value combined with a measurements error term.  Measurement 

inconsistencies are obtained by eliminating the underlying measured quantity from the 

data by creating linearly independent relationships between the measurements known as 

the parity equations.  The magnitude of the parity vector represents the inconsistency 

between the redundant measurements, and the direction of the parity vector indicates the 

faulty signal.  Patton and Chen reviewed redundancy management in fault detection with 

emphasis on the parity space approach [1991].  The parity space method is a two-stage 

process: (1) residual generation and (2) decision making.  Residual generation has been 

studied by many researchers [Frank 1997, Basseville 1997, Frisk 2001, Krishnaswami 

1995, Nyberg 1997, Gertler 1995, Gertler 1997], and was included under redundant 

channel monitoring work as reported by Ray, et. al. [1983a, 1983b, 1986, 2000].  The 

decision making stage has been approached in a number of ways including the sequential 

probability ratio test [Ray 1989, 1991], and an approach via multiple hypothesis testing 

[Ray 2002].  Without a third signal from analytical redundancy, parity space approaches 

cannot detect faults in the two-channel condition. 

2.1.2 Parity Space Approach Redundancy Management Procedure 

Theory of the redundancy management procedure is modeled by (2.1) [Ray 

1986]. 

)()()()]()([)( tettxtHtHtz ++∆+= β                              (2.1) 
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where:  is an (  vector of known measurements z )1×l

 H  is an (  a priori known measurement matrix of rank n  )nl × )( nl >

 H∆  is an (  matrix representing unknown scale factor errors )nl ×

 x  is the  unknown vector variable that is to be estimated )1( ×n

 β  is an (  unknown vector of bias errors )1×l

  is an (  vector of measurement noises with e )1×l 0)( =eE  

The effects of the scale factor errors and the bias errors can be combined [Ray 1984]: 

)()()()( ttxtHtc β+∆=                                                     (2.2) 

Calibrated measurements (unfaulted situation) are defined as: 

)()()()(ˆ)()( tetxtHtctztm +=−=                                   (2.3) 

where:  is the estimate of  )(ˆ tc )(tc

))())(ˆ)(()( tetctct +−=ε  is the additive noise and remaining error associated with 

the calibrated measurements 

Rewriting the equation for the calibrated measurements, dropping the time dependency: 

ε+= Hxm                                                                        (2.4) 

where:  is an l  vector of process measurements m 1×

 H is the measurement matrix 

 x  is the true value of the process variable 

 ε  is the measurement noise, such that for normal functioning of each 

measurement, | ii b≤|ε .  Where  is the error bound of the  sensor, 

. 

ib thi

l,...,2,1i =
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For scalar sensors, the measurement matrix can be chosen as [ ]TH 111 ⋅⋅⋅= . 

Any two measurements are declared consistent at sampling instant  if: k

)()(|)()(| kbkbkmkm jiji +≤−  li ,...,2,1= , and lj ,...,2,1=    (2.5) 

Consistency can be determined instantaneously, or via sequential testing to incorporate 

prior observations.  Sequential testing should limit the occasional inconsistency under 

normal operating conditions, and thus reduce the probability of false alarms.   

The consistencies among the measurements should be independent of x .  The 

variations in the underlying variable x  can be eliminated by projecting the vector of 

process measurements, , onto the left null space of the measurement matrix, leaving 

only the effects of the noise vector 

m

ε .  The projection of  on to the parity space of 

dimension , known as the parity vector, is given by: 

m

)1( −l

εVVmp ==                                                                              (2.6) 

V  is chosen so that its rows form an orthonormal basis for the parity space: 

0=VH          (2.7) 1−= l
T IVV TT

l
T HHHHIVV 1)( −−=

Under normal conditions when all sensors are operating properly, the parity vector p  is 

small.  If a failure occurs, the parity vector grows in magnitude in the direction associated 

with the failed measurements.  The increased magnitude of the parity vector indicates a 

failure, and the direction of the magnitude increase can be used to identify the failed 

measurement.   

This redundancy management procedure has been further enhanced in a recent 

publication [Ray 2000].  The enhancements have led to a calibration and estimation filter 

for redundancy management of sensor data that has the following features: 
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• All signals are simultaneously calibrated on-line to compensate for their relative 

errors. 

• The weights of individual signals for computation of a least-square estimate of the 

measured variable are adaptively updated as functions of the respective a 

posteriori probabilities of failure. 

The algorithm carries out FDI whereby for an abrupt change in a redundant signal in 

excess of its allowable bound, the respective signal is isolated and only the remaining 

signals are calibrated to provide an unbiased estimate of the measured variable.  For a 

gradual degradation (drift), the influence of the faulty signal is diminished as a function 

of its deviation from the remaining signals.  This is achieved by decreasing the relative 

weight of the drifting signal as its deviation from the estimate increases.  Additional 

enhancements have been added for multi-level hypothesis testing [Ray 2002].  Multi-

level hypothesis testing provides a more precise characterization of potential faults than 

the bi-level fail/no-fail hypothesis testing, and is often essential for early warning of 

drifting instrument channels.   

2.2 Instrument Calibration and Monitoring Program (ICMP) 

 
The Instrument Calibration and Monitoring Program (ICMP) algorithm is a 

simplified version of the parity space approach. The basis for the ICMP algorithm has 

been rigorously developed and its implementation has been tested [Wooten 1993, Davis 

1995].  The ICMP algorithm produces a parameter estimate using a weighted average.  

Weighting is performed based on the consistency values assigned to each redundant 

channel.  These consistency values are updated upon each new observation.  At the 
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limits, if all measurements are declared consistent, the parameter estimate is the simple 

average.  If all measurements are declared inconsistent, no parameter estimate is 

produced.  After obtaining a parameter estimate, individual deviations between each 

channel measurement and the estimate are computed and compared against specified 

acceptance criteria.  Deviations exceeding the acceptance criteria indicate a faulty sensor.  

ICMP cannot identify faults in two-channel case. 

The ICMP algorithm [EPRI, 2000] calculates a parameter estimate based on a 

weighted average of a set of redundant sensors.  Weighting of individual sensors is based 

on their consistency with the other sensors in the group.  Consistency is evaluated as the 

absolute difference between a given sensor, and the other sensors in the group.  The 

consistency value ranges from 0 to 1−n , where  is the number of sensors in the group.  

Each sensor is assigned a consistency for each data sample evaluated.  A sensor's 

consistency is calculated as follows: 

n

0=iC  

If  jiji mm δδ +≤− , then 1+= ii CC                                               (2.8) 

where:  the consistency value of the i=iC th signal 

  the output for signal i =im

  the output for signal j =jm

 =iδ  the consistency check allowance for instrument i 

 =jδ  the consistency check allowance for instrument j 
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The values for the consistency check allowances are dependent on the uncertainty present 

in the signals such as.   

δ2≤− ji mm                                                                                       (2.9) 

After the consistency values are calculated, the ICMP parameter estimate can be 

calculated as: 

            
∑

∑

=

== n

i
ii

n

i
iii

Cw

mCw
x

1

1ˆ                                                            (2.10) 

where:  = the ICMP parameter estimate for the given data sample x̂

  = the weight associated with the iiw th signal 

The weight values are included to allow the user to apply a greater weighting to 

more accurate or reliable sensors within a redundant group.  If there is no preference 

within the group, all weight values can be set to 1, reducing the equation to: 

               
∑

∑

=

== n

i
i

n

i
ii

C

mC
x

1

1ˆ                                                             (2.11) 

 

The consistency check factor controls the influence of an individual signal on the 

ICMP parameter estimate.  If all sensors are considered equally consistent, then the 

ICMP estimate is just the simple average of the redundant sensors.  If a sensor's 

consistency value is zero, then it will not influence the parameter estimate. 
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Once the parameter estimate is calculated, the ICMP algorithm evaluates the 

performance of each individual sensor relative to the parameter estimate.  This is done 

through the use of an acceptance criterion. 

If iimx α≥−ˆ , then  has potentially drifted beyond desired limits. im

where:  iα  = the acceptance criterion for the ith signal 

When the deviation between a sensor's measruement and the current parameter estimate 

exceeds the acceptance criterion, that sensor is considered to have drifted out of 

calibration.  At this point the sensor is assumed to have failed.  Note that failing the 

acceptance criterion does not necessarily disallow the failed sensors value to influence 

the ICMP estimate.  The consistency check factor must also be exceeded, and it is not 

indirectly related to the acceptance criterion.  

2.3 Empirical Based Methods 
 

Researchers at University of Tennessee have been pioneers in the inferential 

modeling approach for on-line sensor calibration verification systems.  Dr. Upadhyaya was 

one of the original investigators, in the 1980's [Upadhyaya, 1985], to investigate the 

application of artificial intelligence techniques to nuclear power plants. In the early 1990's, 

Dr. Uhrig continued this research using neural network techniques [Ikonomopoulos, Uhrig 

1992]. Major inferential modeling techniques used by researchers including autoassociative 

neural networks [Upadhyaya 1992, Hines 1998, Fantoni 1998], principal component 

analysis [Qin 1999], non-linear partial least squares [Qin 1992, Rasmussen 2000], and 

kernel based techniques such as Multivariate State Estimation System (MSET) [Gross 

1997]. A comparison of the three major techniques: Autoassociative Neural Networks, 
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Multivariable State Estimation Technique, and Non-Linear Partial Least Squares is given by 

Hines [2001]. 

  In order to get consistent, repeatable, and quantifiable results, regularization 

techniques [Hines 1999, 2000, Gribok, 2000, 2001] should be applied.    

2.3.1 Ordinary Least Squares Regression 

Ordinary least squares regression is a basic algorithm for illustrating inferential 

techniques. It is also useful for performance bench marketing. Its derivation can be found 

in [Hastie, 2001] and it is restated here. 

Given a linear model 

εβ += Xy                                                                      (2.12) 

where: y is a measurement with N observations 

            X is p vector of inputs, each vector has N observations 

  is the noise ),0(~ 2σε N

Estimate the coefficients  to minimize the residual sum of 

squares 

T
p )ˆ,...,ˆ,ˆ,ˆ(ˆ

210 βββββ =

 

2

1
0

1

2

1
)ˆˆ()ˆ()ˆ( j

p

j
ij

N

i
ii

N

i
i xyyyRSS βββ ∑∑∑

===

−−=−=                     (2.13) 

 

In matrix form, denote by X the N x (p+1) matrix with each row an input vector (with a 1 

in the first position), and similarly let y be the N-vector of outputs 

 

)ˆ()ˆ()ˆ( βββ XyXyRSS T −−=                                                           (2.14) 

The solution is derived by setting derivative of the cost function to zero. 

 

)ˆ(2ˆ β
β

XyXRSS T −−=
∂

∂                                                                      (2.15) 
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XXRSS T
T

2ˆˆ

2

−=
∂∂

∂
ββ

                                                                            (2.16) 

 

Assuming that X is nonsingular and hence XTX is positive definite, set the first derivative 

to zero to get minimum value. 

 

0)ˆ( =− βXyX T                                                                                (2.17) 

 

to obtain the unique solution 

 

yXXX TT 1)(ˆ −=β                                                                             (2.18) 

 

The predicted values at the training inputs are 

 

yXXXXXy TT 1)(ˆˆ −== β                                                                (2.19) 

 

The matrix  is called "hat" matrix because it puts the hat on y. TT XXXXH 1)( −=

Parameter uncertainties can be estimated using an estimate of the noise ε. 

 
21)()ˆ( σβ −= XXVar T                                                                          (2.20) 

2

1

2 )ˆ(
1

1ˆ i

N

i
i yy

pN
−

−−
= ∑

=

σ                                                                 (2.21) 

where: N are the number of observations. 

            p are the number of inputs. 

Assume the linear model is correct and the deviations of Y around its expectation are 

additive and Gaussian.  

 

εββ ++= ∑
=

j

p

j
jXY

1
0                                                                         (2.22) 
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),0(~ 2σε N                                                                                         (2.23) 

Then, 

))(,(~ˆ 21σββ −XXN T                                                                          (2.24) 

           (                1
222 ~ˆ)1 −−−− pNpN χσσ

β̂  and σ̂ are statistically independent. We use these distributional properties to form 

tests of hypothesis and confidence intervals for the parameters. 

Z-score is 

j

j
j v

z
σ

β
ˆ

ˆ
=   where vj is the jth diagonal element of (XTX)-1.                  (2.25) 

1-2α confidence interval for βj is 

 

)ˆˆ,ˆˆ( )1()1( σβσβ αα
jjjj vzvz −− +−                                                   (2.26) 

 

Here z(1-α) is the 1-α percentile of the normal distribution.  

For example, for α=0.025, z(1-α) =1.96. 

The confidence set for the entire parameter vector β is 

 

}ˆ)ˆ()ˆ(|{ )1(2
1

2 α
β χσβββββ −

+≤−−= p
TT XXC                          (2.27) 

 

The mean squared error of an estimator in estimating y is ŷ

 
22 ])ˆ([)ˆ()ˆ()ˆ( yyEyVaryyEyMSE −+=−=                               (2.28) 

 

Least squares estimates have the smallest variance among all linear unbiased estimates. 

However, there may well exist a biased estimator with smaller mean squared error. Such 
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an estimator would trade a little bias for a larger reduction in variance. Biased estimators, 

such as ridge regression, are commonly used. Any method that shrinks or sets to zero 

some of the least squares coefficients may result in a biased estimate.  

2.3.2 Principal Component Analysis 
 

Principal Component Analysis  (PCA) has been frequently reported in the 

literature for redundant channel monitoring applications.  An excellent introduction to 

PCA, and its applications, is provided by I.T. Joliffe [1986] in his book Principal 

Component Analysis.   

        There are a variety of ways the principal components can be exploited to monitor 

changes in an on-line monitoring approach.  The statistics of the principal components 

themselves, or the relationships between principal components, can be monitored for 

changes [Amand 2001, Doymaz 2001a, Kano 2000, 2001, Seiter 2001].  Many 

modifications to traditional PCA have also been reported [Doymaz 2001b, Vigneau 

2002].  Other approaches have used principal components for residual generation within 

the framework of the traditional parity space approach [Dunia 1998a].   

2.3.3 PCA for Redundant Sensor Monitoring 

 The basic PCA approach linearly transforms a data matrix,  of p columns 

(sensors) and n rows (observations), to an orthogonal principal components space of 

equivalent dimensions [Rasmussen, 2002; Ding, 2004] .  The transformation occurs such 

that the direction of the first principal component is determined to capture the maximum 

variation of the original data set.  The variance of subsequent principal components is the 

X
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maximum available in an orthogonal direction to all previously determined principal 

components.  The full set of principal components is an exact copy of the original data 

set, though the axes have been rotated.  Selecting a reduced subset of components results 

in a reduced dimension structure with the majority of the information available, in which 

information is assumed to be equivalent to variance.  Usually, small variance components 

that are not retained are assumed to contain unrelated information such as process or 

measurement noise.  In the context of redundant instrument channel monitoring, it is 

assumed that the first principal component can provide an estimate of the true measured 

parameter, and the smaller variance components are assumed to be negligible with 

respect to the estimation. 

To avoid ambiguities in the terminology, the set of orthogonal components 

derived from PCA, which are sometimes referred to as principal component scores, will 

be referred to herein as principal components and denoted in matrix form as .  The 

transformation of the data matrix to the principal component matrix is given by: 

Z

XAZ =        (2.29) 

where:  is the  principal component matrix Z )( pn ×

  is the  matrix of mean-centered measurement data with n observations    X )( pn ×

       and p redundant sensors 

  is the  matrix of eigenvectors of  A )( pp × XXT

The following notation is also defined: 

ja  is the j th eigenvector of , where XXT pj ,...,1= , of dimensions )1( ×p  

jz  is the j th principal component, where pj ,...,1= , of dimensions )1( ×n  
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ijz  is the scalar value of the j th principal component corresponding to the i th 

( ) redundant measurement vector ni ,...,1= ]ip[ 21:],[ iii xxx ⋅⋅⋅=x   

Due to the reasonable assumption that a set of redundant instrument channel 

measurements can be approximated by the first, or primary, principal component; an 

estimate of the mean-centered true value of the process at the i th sample is given by: 

1:],[ ax iiji zp ==       (2.30) 

For the full data matrix , we can write: X

11 Xazp ==        (2.31) 

where:  is a scalar mean-centered estimate based on  ip :],[ix

  is a vector mean-centered estimate based on , of dimensions  p X )1( ×n

Finally, we define the parameter estimate after mean-centered scaling, in scalar and 

vector form, as: 

w
i

f
i mpp X+=      (2.32) w

n

f mXpp ⋅



























⋅
⋅
⋅

+=

1

1
1

where: 
∑

=

⋅





















































⋅
⋅
⋅

⋅= p

j
j

p

Tw

a
m

1
1

][:,

]2[:,

]1[:,

1
1

x

x
x

aX  (the eigenvector weighted mean value) 
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=
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n

i
pip xn

1
],[

1
][:,x   (the mean value of the p th channel) 

 

An obvious result is that if the channels are identical, the first principal 

component will be an equal combination of each channel, i.e. if: 

][:,]2[:,]1[:, pxxx =⋅⋅⋅== ,  then 11 21 1
1

pa a a
p

= = ⋅⋅ ⋅ = . (2.33) 

In general terms, if an input channel's variance is higher than the remaining 

channels, its corresponding element in the eigenvector of the first principal component 

will also be higher.  Thus, the influence of a particular channel's measurements on the 

final parameter estimate can be related to that channel's sample variance. 

In an on-line monitoring approach, a set of measurement data would be used to 

calculate the eigenvector, a , the mean values of the redundant channels, and the 

weighted mean value, m .  Subsequent estimations could then be produced based on 

future observations via: 

1

w
X

w
k

f
k mp Xax += 1:],[       (2.34) 

where:  is a future observation vector :],[kx

f
kp  is the corresponding estimate 

In applying the PCA method for redundant instrument channel monitoring, it is 

important to keep in the mind the assumptions being made.  It is assumed that a sufficient 

parameter estimate is available in the first principal component, and that the variance of 

the redundant channel measurement vectors is related to the overall process in such a way 
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that higher variant measurements should be allowed a greater influence on the parameter 

estimate.  Due to the underlying importance of the sample variance calculations for this 

method, it should be verified that the data being used are free of outliers.   

The residuals between the resultant parameter estimate, shown in equation 2.34, 

and each redundant channel measurement are then evaluated for each observation in an 

on-line mode, or alternatively in a batch mode.  Sensor drifts are suspected when a 

channel's residual deviates from some nominal value determined during the calculation of 

the model parameters using a representative data set.   

The principal components of correlated sensors can be used to produce estimates 

of the sensors via Principal Component Regression (PCR), [Marbach 1990, Dunia 1998b, 

Martens 1989].  This is termed inferential modeling and is discussed in Chapter 3. 

2.4 Independent Component Analysis 
 
 Inferential modeling belongs to supervised learning paradigm. Learning is based 

on a training dataset. Independent component analysis (ICA) resolves a data structure 

directly based on the "independence" of different sources. ICA is used as a redundant 

sensor validation tool in this dissertation. 

2.4.1 Background on ICA 

Independent Component Analysis (ICA) was introduced in the early 1980s and 

attained wide attention and growing interest in the mid 1990s.  The technique attempts to 

identify original signals from a mixture of observed signals, which are a linear 

combination of sources, without knowing any information about the mixing matrix, or 
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having any prior information about the sources except that they are assumed to be 

independent and have non-Gaussian distributions.  Since the sources are assumed to be 

independent they are termed independent components (ICs).  One requirement for 

isolation of the ICs is that only one component can have a Gaussian distribution.  A 

detailed survey of ICA can be found in Neural Computing Surveys [Hyvarinen, 1999b].  

Hyvarinen, et al, [2001] also wrote a good introductory book on ICA. 

       ICA is rooted from the need to find a suitable linear representation of a random 

variable. The classic method to solve this problem is to use second order information in 

the covariance matrix such as principal component analysis and factor analysis [Harman, 

1967; Jolliffe, 1986; Kendall, 1975].  Rather than applying independence as a guiding 

principle, PCA attempts to linearly transform a data set resulting in uncorrelated variables 

with minimal loss of information [Hyvarinen 2001].  For Gaussian distributed variables, 

uncorrelatedness is identical to independence.  For non-Gaussian distributed variables, 

independence is a much stronger requirement than uncorrelatedness. For non-Gaussian 

data, higher order statistics are needed to obtain a meaningful representation. Projection 

pursuit is a technique for finding interesting features of data such as clusters using higher 

order statistics [Friedman, 1974, 1987; Huber, 1985; Jones, 1987; Sun, 1993; Cook, 

1993].  Projection pursuit uses a cost function such as differential entropy [Huber, 1985; 

Jones, 1987] rather than the mean-squared error used in the PCA transformation. 

Projection pursuit is interested in the non-Gaussianity of data. There are connections 

between ICA and these techniques. In the noise free case, ICA is a special case of 

projection pursuit. ICA also can be viewed as a non-Gaussian factor analysis. ICA must 

use higher order statistics while PCA only uses second order statistics.  
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 The properties of the ICA method [Hyvarinen, 1999b] is restated here: 

• " The statistical properties (e.g. consistency, asymptotic variance, robustness) 

of the ICA method depend on the choice of the objective function." 

• " The algorithmic properties (e.g., convergence speed, memory requirements, 

numerical stability) depend on the optimization algorithm." 

The ICA algorithm is described in detail in chapter 3. As a research application, 

the first property is investigated intensively in this work.  

2.4.2 ICA Applications 

ICA has found many successful applications in blind source separation [Jutten, C., 

1991], telecommunication, imaging processing (feature extraction), and brain imaging 

applications (EEG and MEG) [Lee 1998, Roberts 2001].  More applications are seen in: 

• Stock portfolio selection [Back, A.D., 1997]. 

• Audio separation [Torkkola, 1999]. 

• Text document analysis [Isbell, 1999]. 

• Rotating machine monitoring [Ypma, 1999]. 

• Seismic monitoring [Ham, 1999]. 

• Reflection canceling [Farid, 1999]. 

• Nuclear magnetic resonance spectroscopy [Nuzillard, 1998]. 

ICA for sensor validation was first developed by the author [Ding 2003a, 2003b, 2004] 

and his colleagues at the University of Tennessee.  

However, ICA is still not a mature technique. Many practical problems beyond 

the basic ICA model exist. Some of these include the nonlinear mixing problem [Burel 
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1992, Lee 1997, Taleb and Jutten 1997, Yang 1997], underdetermined ICA model, i.e, 

more sources than sensors [Lewicki and Sejnowski, 2000], noisy ICA [Nadal, 1994; 

Attias, 1999] and non-stationary problem [Matsuoka, 1995; Murata, 1997; Perra, 2000]. 

For a nonstationary time structure, alternative assumptions other than non-Gaussianity of 

ICs are needed. One can use different autocovariance functions [Molgedey, 1994] or 

nonstationary variances [Matsuoka, 1995] for a successful separation. 

The user should be very cautious at the application of statistical learning methods 

by fully understanding the basic underlying assumptions for any particular applications. 

This is also true for sensor validation using ICA. A major work of this dissertation 

focuses on the validation of these assumptions for the redundant sensor monitoring task.  

 In the next chapter, the method of classic ICA is discussed. For the task of 

redundant sensor validation, a prior information is used to identify a proper independent 

component. Moreover, a unity check is derived for ICA reliability monitoring.  
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CHAPTER 3 
METHODOLOGY 

 
3.1  Information Theory Preliminaries  

       The ICA model can be understood more easily from the viewpoint of information 

theory [Deco, 1996].  The concept of entropy is the basis of the information theory. For a 

given random variable X, with probability density p(x), the entropy H(X), is defined by 

Shannon [1948] : 

))
)(

1(log()))(log()(()( ∑ =⋅−=
xp

ExpxpXH               (3.1) 

 

where E(.) denotes the expectation operator. Entropy gives a measure of randomness for 

the given distribution. The measure of entropy for a rare event will be large and so a large 

amount of information is due to this event. For a continuous variable, the differential 

entropy is introduced by changing the summation to an integral [Girolami, 1999]. 

Consider a discrete histogram: 

 

))(log()(lim
1

∆∆−= ∑
=

∞→ i

N

i
iN

xpxpH
B

B

                 (3.2) 

 

for a continuous pdf that ∫   then the entropy is = 1)( dxxp
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 Omit the constant, differential entropy of a continuous random variable is 

 

∫−= dxxpxpxH ))(log()()(                                        (3.4) 

 

       For two distribution p(x) and q(x), the Kullback-Leibler entropy [Deco, 1996] is a 

measure of the difference between the two distributions and defined as: 

 

)
)(
)(log()(),( ∑=

xq
xpxpqpK                                          (3.5) 

 

Lemma 3.1.1: Entropy of uniform distribution [Deco, 1996] 

If a continuous random variable  is uniformly distributed between 0 and a, its entropy is 

given by: 

H(x) = log (a)                                                                   (3.6) 

 

Lemma 3.1.2: Entropy of normal distribution [Deco, 1996] 

For a normal distribution defined as: 
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the corresponding entropy is: 
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Theorem 3.1.1: Gibbs second theorem [Deco, 1996] 

Let X1, X2, … Xk be a vector of random variables distributed according to the density 

p(x1,x2,…xk) with zero mean and covariance matrix C, then 

            { CeXXH k
k )2(log

2
1),...( 1 π≤ }                                  (3.8) 

This theorem shows that the normal distribution maximizes the entropy over all 

distributions with the same covariance matrix. 

3.2 ICA Model and Algorithm 

      Independent component analysis is a statistical model in which the observed data (X) 

is expressed as a linear transformation of latent variables (‘independent components’, S) 

that are non-Gaussian and mutually independent.  We may express the model as 

X = A S                 (3.9) 

where: X is an (n x p) data matrix of n observations from p sensors 

S is an (p x n) matrix of p independent components 

A is an (n x p) matrix of unknown constants, called the mixing matrix  

      The problem is to determine a constant (weight) matrix, W, so that the linear 

transformation of the observed variables 

Y = W X      (3.10) 

has some suitable properties. In the ICA method, the basic goal in determining the 

transformation is to find a representation in which the transformed components, yi are as 

statistically independent from each other as possible. When random variables with 
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specific non-Gaussian distributions are combined, the central limit theorem shows that 

the sum is more Gaussian than the original variables. Therefore, to separate the original 

variables (S) from a sum (X), we want to choose a transformation (W) that makes them 

as non-Gaussian as possible. We then assume that the maximally non-Gaussian signals Y 

are estimates of the original independent components, one of which is the parameter 

value, and thus the parameter estimate. 

      Hyvarinen [1999], developed an ICA algorithm called FastICA as described below. It 

uses negentropy J(y) as the measurement of the non-Gaussianity of the components. 

)()()( yHyHyJ gauss −=    (3.11) 

H(y) is the differential entropy of a random vector y. 

∫−= dyyfyfyH )(log)()(    (3.12) 

where: f(y) is the density of the random vector y. 

Based on the maximum entropy principle, negentropy J(y) can be estimated: 

2)}]({)}({[)( νGEyGEcyJ ii −≈   (3.13) 

where: G is any nonquadratic function  

c is an irrelevant constant  

ν is a Gaussian variable of zero mean and unit variance 

E{} is the expectation  

One attempts to maximize negentropy so that a non-linear transformation of y is as far as 

possible from a nonlinear transformation of a Gaussian variable (v). This nonlinear 

transformation (G) is also called a contrast function. The following is a commonly used 

contrast function G and its derivative g: 
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The FastICA algorithm for estimating several independent components is described 

below: 

1. Center the data to make its mean zero. 

2. Whiten the data to give z with unit variance. 

3. Choose m, the number of independent components to estimate. 

4. Choose initial values for the wi, i=1,…,m, each of unit norm. Orthogonalize the 

matrix W as in step 6 below. 

5. For every i=1,…,m, let wi  ← E{zG(wT
iz)}-E{g(wT

iz)}w, where G and g are 

defined in (2.14) 

6. Perform a symmetric orthogonalization of the matrix W = ( w1, … wm)T by  

       W← (WWT)-1/2W. 

7. If matrix has not converged, go to step 5. 

       A concern with using ICA is that it has two ambiguities [Hyvarinen 2001]. One is 

that the variances (energies) of the independent components cannot be determined. The 

other is that the order of the independent components cannot be determined. These 

ambiguities are of concern when performing on-line instrument channel monitoring for 

two reasons: 1). the components must be scaled back to their original units and 2). the 

component containing the parameter estimate needs to be selected. 

       In order to scale the components back to their original units, we need to calculate the 

correct scale factor α by selecting the component corresponding to the parameter of 
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interest.  To do this, the mean of the measured parameter is estimated by taking the mean 

of the medians for each (i) of n channels (see equation 3.12).  Next, compute n scale 

factors by dividing the mean of the parameter by the mean of each component and use 

those scale factors to give the components the same mean as the measured parameter.  

The scaled component with the highest correlation coefficient to the raw signals (X) is 

the component of interest and is the parameter estimate. 

( (
( )i

i

mean median X
median IC

α =
))  i=1…n    (3.15) 

where: X is the matrix of n mixed signals 

ICi is the ith independent component  

mean and median are MATLAB functions  

       To calculate the correct transformation matrix, rescale the transformation matrix W 

to Wc: 

Wc = sign (α) * α * W      (3.16) 

where: α is the αi that maximizes the correlation between the scaled component and the  

parameter value 

The parameter estimate is now calculated with: 

Y= Wc X       (3.17) 

The residuals between this parameter estimate and the channel measurements are 

evaluated to assess the calibration status of the redundant instrument channel sensors.  

Sensor drifts are suspected when a channel's residual deviates from some nominal value 

determined using a representative data set. 
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       As stated by Perra [2000], and validated by our own research, many ICA methods 

are shown to work satisfactory in computer simulations but perform poorly in real 

environments. One reason is the actual signals found in practice are commonly 

nonstationary. For these cases, other separation principles should be used. Since U.S. 

nuclear power plant signals are usually stationary, the ICA algorithm is used in 

conjunction with a simple method to detect any non-stationary conditions called a unity 

check. 

For the model,  

i

n

i
i xwy ∑

=

=
1

       (3.18) 

 

Taking the expectation of both sides of equation 3.18 results in: 

)()ˆ(
1

i

n

i
i xEwyE ⋅= ∑

=

.      (3.19) 

Since xi are redundant sensor measurements and  is the parameter estimation, the 

expectations would give the same value resulting in: 

ŷ

1
1

=∑
=

n

i
iw .       (3.20) 

Since there are uncertainties in the estimation, a tolerance check is used: 

ε<−∑
=

1
1

n

i
iw        (3.21) 

where ε is a measure of uncertainty. For ε = 0.05, there is 10% uncertainty in the 

estimation. 
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       The unity check uses a prior information. It is used to determine whether the ICA 

algorithm is operating correctly and indicates when it fails: such as when the signals are 

non-stationary. If ICA fails to pass the unity check, direct averaging is used for parameter 

estimation. This results in the ICA algorithm being used when the signal is stationary and 

direct averaging being used during transients. 

3.3 Model Justification and Drift Detection 
 
       The measurements from each channel contain the process parameter, a common 

noise source and independent channel noise sources. These three components are most 

likely independent from each other. Except for the channel noise, the other two 

components are seldom a Gaussian distribution. Another assumption is that the transform 

matrix A is linear and time invariant. These assumptions are valid at most conditions, but 

are especially valid for fairly steady state measurements.  Since U.S. nuclear power plants 

operate most of the time at nearly 100% and steady state, this method is valid.  Even 

when the plant is not operating at steady state, more than one source is probably not 

Gaussian, and if they are, the method degrades towards simple averaging.  Recall that 

noise sources are commonly assumed to be Gaussian because when noise sources are 

added they tend towards Gaussian; this does not imply the original sources are Gaussian. 

       Moreover, during faulty conditions, the fault component is introduced into one or 

more redundant channels and is absolutely independent from the process parameter. 

Therefore, we can create the model not only from fault free data (regression), but we can 

also build the model using data when the drift is present because of the model's ability to 

separate the independent components. 
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       A given channel's residuals are defined as the differences between the parameter 

estimate and the channel measurements.  Each channel will have a unique residual with 

respect to the parameter estimate, which is an estimate of the independent channel noise 

source: the channel drift.  The mean values and standard deviations of the residuals will 

be used to identify out-of-calibration channels via the following rule: 

If jjkj
f

kjj xp σσ 22 +≤−≤− rr

j

, then the j th channel is operating within calibration, 

otherwise the th channel's calibration is suspect.   (3.22) 

where: 

jr   is the mean residual between the parameter estimate and the training data for the 

j th channel 

jσ   is the standard deviation of the residual between the parameter estimate and the 

   training data for the j th channel 

kjx  is the j th element of the k th observation vector not contained in the training data 

f
kp  is the parameter estimate corresponding to   kjx

       Detection of an out-of-calibration channel requires a method of determining when a 

given channel's residual exceeds some nominal value.  Methods such as the Sequential 

Probability Ratio Test (SPRT) can be used to identify when a drift has occurred, but we 

will employ a much simpler, and more robust, method in this research.  The chosen 

approach is to suspect an out-of-calibration alarm when a channel's residual falls outside 

of a σ2±  band surrounding the residual mean value.  A more practical criteria is to use  
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± 1.4% of the span to be consistent with the allowable drift [EPRI, 2000]. Both of these 

two values are used during this research and are specified accordingly.  

3.4 Inferential Sensing 

A portion of this research employs an inferential sensor to provide additional 

information during 2-channel monitoring. Principal Component Regression (PCR) was 

chosen as the inferential sensor model.  Several techniques could be used, but since the 

relationships in the data set we studied have such high linear correlations, a linear 

technique such as PCR performs well.  Principal Component Analysis is an unsupervised 

method that decorrelates the data. It attempts to reduce the dimensionality of the data 

while retaining the valuable information.  PCR is a robust method commonly chosen to 

perform regression when the inputs are highly correlated.  Simple linear regression is 

unsuitable for this type of problem due to the ill-conditioned nature of the fisher 

information matrix that is inverted during calculation of the pseudo inverse.  For a more 

in depth discussion on regularization methods for inferential sensing see Hines [1999].   

 Let X be an nxm matrix with n observations and m variables. The data matrix X 

can be written as the product of an nxm column orthogonal matrix U, an mxm diagonal 

matrix S with positive or zero elements (the singular values) and the transpose of an mxm 

orthogonal matrix V: 

'VSUX ⋅⋅=                                              (3.23) 

The columns of V are the eigenvectors associated with the eigenvalues of X’X,which are 

the square root of singular values.Let us use the first k eigenvectors in V to define an mxk  

matix P=[v1,V2,…,vk]. Calculate the T scores using P, T=XP. 
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The principal component regression model is written as a linear combination of the score 

vectors. 

α⋅= Tŷ                                                                               (3.24) 

       The inferential model designer has one major decision to make when developing a 

PCR model: which Principal Components to use in the regression model.  Several 

methods exist, but we chose to retain only the first PC because it contains about 99% of 

the data set variance.  

3.5 Merging Inferential Modeling with ICA  
 

The hybrid Redundant Sensor Estimation Technique (RSET) is a combination of 

inferential sensing and Independent Component Analysis filtering.  The method is 

illustrated by an example. Figure 3.1 presents a block diagram of the basic functional 

layout to predict first stage turbine pressure which is measured with two redundant 

sensors. 

Several correlated signals are used to predict the turbine pressure using an 

inferential model.  This prediction, along with the two redundant sensors, is processed by 

the ICA algorithm to produce an optimal estimate of the turbine pressure.  Each of the 

sensor values is then compared to the estimate and residuals are formed.  If the sensors 

are operating normally, the residuals should be fairly small random values near zero.  If a 

sensor begins to drift, its corresponding residual will grow. A logic module is used to 

determine if the residuals are normal or come from faulty sensors.  Several methods can 

be used including control charts or the more complex Sequential Probability Ratio Test 

developed by Wald [1947]. 
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Figure 3.1. Hybrid inferential modeling and ICA block diagram. 

 
 
 Results of above scheme are discussed in Chapter 4. In Chapter 4, ICA is applied 

to both a simulated data set and real nuclear power plant data sets. The robustness and 

effectiveness of the ICA method, as well as applicable conditions, are shown by 

comparison with other methods, computer simulation, and a water tank level control 

experiment.  
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  CHAPTER 4 
RESULTS 

 
 In this chapter, a thorough study of ICA sensor validation method is presented. 

First, we begin with a simulated toy problem to resolve a signal from several independent 

noise sources. Second, real data sets from nuclear power plant are used for a comparison 

study between PCA, ICA and a simple average. Next, a drift detection example is 

presented and several characteristics such as variance reduction, robustness, batch mode 

window selection and selection rule are discussed.  

 In section 4.8, an ICA controller experiment reveals more features about the ICA 

method especially on non-stationary signals. The necessities for a unity check are 

presented and the unity check algorithm is integrated into the ICA controller experiment.  

 In section 4.9, a hybrid system merging inferential sensing and ICA is tested 

using the nuclear power plant data. Both a drift detection example and a robustness to 

input anomalies example of the new system are presented. 

4.1 Simulated Data Sets 

For the simulated data set, consider a source signal  given by the following 

equation: 

s

 

]3,0[,2.0)2(8.0 2 ∈⋅+⋅⋅= tttSins π    (4.1) 

 

The measured signal is a combination of the actual signal (s) and both common and 

independent noise sources.  A common noise source (nc) is drawn from the laplacian 
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distribution (λ=0.7), and three independent noise sources are drawn from the normal 

distribution: ni ~ N (0,1).  These noise sources are added to each channel with differing 

weights in order to model a contaminated signal measured by a process sensor.  An 

example of a common noise source would be the high frequency boiling component of a 

signal measured by a steam generator level detector while an example of an independent 

noise source would be electrical noise contamination of the specific sensor signal.  Three 

data sets (c1, c2 and c3) are constructed using the mixture models given below:  

1 1

2 2

3 3

1 1

2

3 3

1 1

2 2

3 3

0.1 0.1
1: 0.1 0.1

0.1 0.1

0.3 0.1
2 : 0.3 0.1

0.3 0.1

0.01 0.3
3: 0.01 0.05

0.01 0.05

x s nc n
c x s nc n

x s nc n

x s nc n
c x s nc n

x s nc n
2

x s nc
c x s nc n

n

x s nc

= + ⋅ + ⋅
 = + ⋅ + ⋅
 = + ⋅ + ⋅

= + ⋅ + ⋅
 = + ⋅ + ⋅
 = + ⋅ + ⋅

= + ⋅ + ⋅


n
= + ⋅ + ⋅

 = + ⋅ + ⋅

                                            (4.2) 

Set c  represents fairly equal amounts of common and independent noise, set c  

represents a larger common noise contribution, and set  represents unequal amounts of 

independent noise with a minimal amount of common noise.  Figure 4.1 shows the three 

signals of c . 

1 2

3c

3
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Figure 4.1. Mixed signals of . 3c

 

The first step of the ICA algorithm is to decorrelate, or whiten, the signals.  This 

step is equivalent to performing PCA.  The principal components of set  are shown in 

Figure 4.2.  Note that the signal of interest is contained in the top plot, which is the first 

or primary principal component, while the bottom two plots contain mixtures of the noise 

sources. 

3c

Next, the ICA algorithm (FastICA) [Hyvarinen, 1999] is applied to separate the 

independent components.  Figure 4.3 presents the results of applying the ICA algorithm 

to set .  Note that the signal is contained in the top plot and the noise sources are in the 

bottom two plots.  Also note that the signal have less noise contamination when 

compared to the PCA results shown in Figure 4.2. 

3c
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Figure 4.2. Whitened signals (principle components) of . 3c
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Figure 4.3. Resolved independent components. 
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4.2 Real Data Sets 

Three sets of redundant channel data were obtained from a nuclear power plant at 

a sampling rate of 15 minutes.  Each data set contains approximately 37,000 samples 

covering operations from March 2001 to April 2002.  Five pressurizer pressure channels 

comprise the first redundant set, three pressurizer level channels comprise the second set, 

and three steam generator pressure channels comprise the third (see Figure 4.4). 

The mean and standard deviations for the ICA, PCA, and Simple Average (SA) 

parameter estimates are shown in Table 4.1.  Many ICA algorithms from the freeware 

ICA Toolbox [Cichocki, 2002] were used and show consistent results.  The results from 

two of the algorithms are presented. 

The results show that the ICA algorithm produces parameter estimates with 

standard deviations similar to those obtained via simple averaging.  Additionally, 

standard deviations are consistently higher for the PCA parameter estimates.  These 

results are consistent with those obtained for the simulated data sets.  The mean values of 

the parameter estimates are shown to indicate that the parameter estimates for all of the 

methods are varying at or around similar mean values.  The lesser varying ICA parameter 

estimates indicate a lesser uncertainty surrounding the estimations, and thus a more 

accurate result.  Table 4.2 presents the standard deviations associated with the residuals 

computed for each individual channel, based on the corresponding parameter estimate, 

for each method. The standard deviations shown in table 4.2 were computed from the 

residuals between the parameter estimate for the given data set and each of the individual 

channels of that set.  Changes in these residual signals are analyzed to determine the 

calibration status of the monitored channels.   

 44



 

 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

20

40

60

80
Pressurizer Level

P
er

ce
nt

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

2200

2220

2240

2260

2280
Pressurizer Pressure

P
si

G

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

950

1000

1050

1100
Steam Generator Pressure

P
si

G

Sample Number @ 15 minute sampling rate

 
Figure 4.4. Redundant channel data. 

 
 
 

Table 4.1 Parameter estimation results for redundant channel data 

Pressurize Level Pressurize Pressure SG Pressure Estimation 
Method Mean Standard 

Deviation 
Mean Standard 

Deviation 
Mean Standard 

Deviation 
Simple Average 60.7295 2.9635 2235.04 1.05 982.81 4.3645 
ICA_JADEop 60.6084 3.3952 2236.28 0.963 983.17 4.2625 
ICA_FPICA 60.5254 3.2351 2236.23 0.953 983.21 4.234 
PCA 60.7295 5.1330 2234.31 2.45 982.83 7.56 
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Table 4.2 Redundant channel parameter estimation residual standard deviations 
 
 Channel ICA_FPICA PCA SA 

1     0.3966     2.1707     0.0716 
2     0.5104     2.1722     0.1090 

Pressurizer 
Level (%) 

3     0.4775     2.1715     0.0958 
1     0.9906     1.2135     0.6459 
2     1.4434     1.1127     1.0812 
3     0.5015     1.6664     0.4520 
4     0.1760     1.7097     0.4203 

Pressurizer 
Pressure (PsiG) 

5     0.8088     2.2376     1.0482 
1     0.3387     3.4133     0.6187 
2     1.0292     3.1869     0.2907 

Steam 
Generator 
Pressure (PsiG) 3     1.3662     3.1213     0.6321 
 
 

The results indicate that the PCA residuals are consistently higher than the ICA 

residuals, while both are generally higher than the residuals determined when using the 

simple average of the channels as the parameter estimate.  It is important to note that it is 

not significant that the SA residual standard deviations are slightly lower than the ICA 

standard deviations.  The reason the residual standard deviations for the simple average 

are noticeably smaller, in most cases, is that the SA parameter estimate is more 

consistently centered within the data of the redundant channels due to the nature of the 

averaging process.  The slight increase in the standard deviations incurred for the ICA 

parameter estimates are not excessively large.  More importantly, the ICA estimation 

process is less influenced by individual channel variations than the simple average.  This 

more important feature is an indispensable attribute of a redundant channel monitoring 

approach because it must be robust to individual channel trends in order to realize out-of-

calibration conditions.   
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When designing a sensor calibration monitoring system, one of the most 

important considerations is the influence of the noise or drift component of an individual 

signal on the overall model.  In the case of the simple average, the influence is obvious.  

Under conditions when an observation occurs at a relatively large distance from the 

nominal process value (spike), each model behaves differently.  There are two different 

scenarios to consider: when the deviation exists in only one of the set of redundant 

channels (unique spike), and when the deviation exists in all channels (common spike).  

Under the unique spike scenario, the ICA parameter estimate residuals are modestly 

influenced, whereas the PCA parameter estimate residuals are more strongly influenced.  

Under the common spike scenario, the ICA parameter estimate residual shows no 

evidence of the occurrence due to the estimation closely matching the deviant channel 

measurements.  If all of the channels are reporting the same large deviation, ruling out 

common-mode failure, it is assumed that the measurements are accurately reporting the 

process conditions.  For PCA, under the common spike scenario, the parameter estimate 

over-emphasizes the deviation due to the variance maximization basis of the model.  

Thus, the PCA parameter estimate residuals show obvious evidence of the occurrence.  

Under both spike scenarios, the PCA parameter estimate residuals are more strongly 

affected and thus will exhibit a greater standard deviation in the parameter estimate 

residuals.  Noting that the standard deviations from the simple average parameter 

estimate residuals are lower, one might consider this technique.  However, due to the 

mutual dependence of the parameter estimate on each channel, the resultant influence of 

the drifting channel on the parameter estimate is much more pronounced when simple 

averaging is employed rather than ICA.  The drift identification example in the next 
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section gives evidence of the ICA model's ability to limit the influence of a drifting signal 

on the overall parameter estimate, thus leading to a more rapid identification of drift and 

subsequent out-of-calibration annunciation.   

 4.3 Drift Detection 

The redundant channel data for this case study was acquired from an highly 

redundant nuclear power plant.  The original data set had nine redundant channel 

measurements with one experiencing an actual channel drift during operation. As the 

number of redundant sensors is increased, the spillover in conventional techniques 

decreases and the drift detection problem becomes easier.  For this exercise, we select 

only three of the original nine redundant signals to simulate a U.S. system made up of 

three redundant channels. The drifting channel is included as channel #2. 

        An ICA transform was carried out on the selected window which range from 0 to 

800. The drift channel was included during model construction.  Figure 4.5 shows the 

original three sensor measurements and the ICA parameter estimate. From a visual 

inspection, the ICA estimate contains no drift.  The next three figures (Figure 4.6) show 

the residuals of three of the sensors with their drift detection error bands. 

The error bands for each channel are determined from equation (3.22). The 

variances are estimated from first 100 data points.  Figure 4.6 shows the drift detection 

results using the sensor residuals and calculated error bands. Channel 2 is clearly 

identified as a drifting channel with channels 1 and 3 remaining within their error bands.  

In actual application, the error bounds may be significantly larger because the sensor is 

allowed to drift before the calibration bounds are violated. 
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Figure 4.5. Redundant channel measurement and ICA estimate. 
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 t 

Figure 4.6. Drift detection from predicted residual and error band. 
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        In addition to the ICA results, ICMP results have been performed for comparison 

and are included as Figure 4.7. The ICMP algorithm identifies channel 2 as a drifting 

channel. Unfortunately, it also identifies channel 3 as a drifting channel. The reason for 

the incorrect identification of the drifted channel is that the ICMP estimate is drifting due 

to spillover.  The ICA method has the advantage of being resistant to spillover, thus 

making it a robust technique.   

Next, we construct a more difficult case. The same nuclear power plant data is 

used but only two redundant measurements are retained, one of which is the drifting 

channel. Figure 4.8 shows the original sensor signals, the parameter estimate, and the two 

residuals with their drift bands. Since ICA parameter estimate is accurate and drift free, 

residual plots for channel 1 and channel 2 show the drift components in each channel. 

The drift channel (Ch#1) is clearly identified.   

4.4 Variance Reduction 

The second application is to use ICA as a pre-processor to estimate the process 

parameter more accurately.  The redundant channel data is five pressurize pressure 

channels obtained from a nuclear power plant at a sampling rate of 15 minutes. The data 

set contains approximately 37,000 samples covering operations from March 2001 to 

April 2002. Figure 4.9 shows the data set and ICA parameter estimate. 

In this case, ICA estimate contains less noise than simple average and even each 

individual channel. The results are shown in Table 4.3. ICA estimate weighted noisy 

channel less while simple average equally weighted each channel. The non-Gaussian 

noise has been filtered by ICA; thus, ICA is ideal as a pre-processor to filter noise.  
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Figure 4.7. ICMP results for drift detection. 
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Figure 4.8. Two redundant channel case and drift detection. 
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Figure 4.9. Pressurizer pressure measurements and the ICA-based parameter estimate.  
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Table 4.3 Compare variance of ICA prediction and individual channels 

 Variance 
Channel 1 1.8915 
Channel 2 3.0477 
Channel 3 1.1434 
Channel 4 0.9522 
Channel 5 1.5604 

Simple Average 1.1058 
ICA Prediction 0.8796 

 

4.5 Robust Testing 

These results show the ICA applicability for drift detection and variance 

reduction.  In order to test the robustness of the method, bootstrap sampling is used.  

Bootstrap is a method, related to Monte Carlo analysis, that applies the technique many 

times and analyzes the variability of the predictions.  This section presents experimental 

evidence to quantify the robustness of the ICA method. 

First, a drift case was artificially created. A linearly increasing drift of 2% is 

inserted into the first channel of the five-channel pressurize pressure data set beginning at 

time stamp 15000.  This drift is a linear increase in the pressurizer sensor value.  Figure 

4.10 shows the simulated result. 

Next, a 1000 sample bootstrap experiment is simulated. For each bootstrap 

sample, a slightly different observation set is chosen. An ICA transform vector is 

calculated for each sample and the resulting ICA weights are shown in figure 4.11. The 

statistics of 1000 ICA vectors are shown in Table 4.4. The standard deviations shown in 

the table are less than 1% of the weights.  
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Figure 4.10. A simulated drift case in the redundant measurement. 

 

Figure 4.11. ICA weights from bootstrap results. 
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Table 4.4: Statistics of ICA weights from 1000 bootstrap 

 Mean Standard Deviation 
w1 0.0983 0.0043 
w2 0.0414 0.0056 
w3 -0.1016 0.0136 
w4 0.8928 0.0093 
w5 0.0686 0.0084 

 

This sensitive test shows the ICA transform vector changes little for the little change of 

the training data. This means the technique is stable and repeatable.  

 

4.6 Batch Mode Processing 

On-line sensor calibration monitoring is not required to be performed in real time. 

"on-line" is referred in the sense that the monitoring is performed while the process is 

operating. There is always a certain time delay for the calibration monitoring system to 

determine the sensor status. The reason is two fold: 1. for some sensor fault types, i.e. a 

slow drift, it takes a certain amount of time for the drift to become statistically significant 

and be detected, and 2. it always takes a finite amount of data to build the model. 

Generally speaking, as more data is incorporated into the model, the model becomes 

more accurate.  Therefore, the time resolution for on-line monitoring cannot be 

instantaneous. One can refer to this as batch mode processing. 

Two types of batch mode processing are studied. One is to fix the starting point of 

the training data and increase it as new data are acquired. The second is to fix the window 

size, and move the window at each step. Both of these methods are examined in the 

following example. 
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The two-redundant sensor case from a nuclear power plant data in Figure 4.8 is 

given below for illustration. The first channel contains a drift. Since the parameter 

estimate is a linear combination of the first channel measurement and the second channel 

measurement, for drift detection purposes, one can simply look at the weight coefficients 

of the corresponding channels. As the drift occurs, the first channel weight becomes 

smaller, signifying that channel is drifting and its information is not included in the 

prediction. 

We use 100 data points as the window size. Tables 4.5 and 4.6 contain the model 

coefficients. The first table contains coefficients corresponding to the first sensor while 

the second table corresponds to the second.  If both sensors are operating properly, the 

coefficients should equally weigh the sensors with coefficients equal to 0.5.   

The rows of the table correspond to the starting point of the window and the 

columns correspond to time in increments of 100 points.  For the first row, the starting 

point is 1 and each column increments the window by 100 points. The model 

corresponding to the first row and the second column of the coefficient matrix, the 

training data contains 200 points. For the second row and the second column data, the 

starting point is 101, and so on. The matrix diagonal is simply a moving window with the 

window size of 100. The results are shown below with very small coefficients 

corresponding to drift detections highlighted. 

This exercise shows that an anchored beginning point is a better method.  Note 

that the first row detects the drift in the 4th column corresponding to 400 data points. The 

moving window does not detect the drift until time step 500 and thereafter, the drift 

detection is uncertain as shown by the poor prediction at the 700 time step.  
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Table 4.5. Channel 1 ICA weight coefficients 
 
Start 
with 

Window 
size 

100 200 300 400 500 600 700 800 

1     0.4622   0.5338    0.3274    -0.0926    0.0613    -0.0589    -0.0090 0.0048 
100 0 0.6833    0.4511    0.0372    0.1323    -0.0322     0.0017    0.0212 
200 0 0 0.8400    0.6661    0.1843    -0.1358    -0.0008   -0.0260 
300 0 0 0 0.4725    0.0304    0.1153 -0.0034    0.0606 
400 0 0 0 0 0.1414    0.2464     0.2534    0.1016 
500 0 0 0 0 0 0.1756     0.3822    0.5567 
600 0 0 0 0 0 0 0.4667    0.5592 
700 0 0 0 0 0 0 0 0.2445 
 
 
 
 
Table 4.6. Channel 2 ICA weight coefficients 
 
Start 
with 

Window 
size 

100 200 300 400 500 600 700 800 

1 0.5381  0.4657    0.6747 1.0995   0.9436    1.0647     1.0140    0.9996 
100 0 0.3144    0.5494    0.9681    0.8717    1.0375     1.0029    0.9828 
200 0 0 0.1560    0.3321    0.8190    1.1419     1.0051    1.0301 
300 0 0 0 0.5278    0.9741    0.8881     1.0073    0.9425 
400 0 0 0 0 0.8618    0.7557     0.7484    0.9008 
500 0 0 0 0 0 0.8266     0.6185    0.4429 
600 0 0 0 0 0 0 0.5334    0.4404 
700 0 0 0 0 0 0 0 0.7562 
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 The difficulty in implementing this method is to know when to anchor the 

window starting point. This requires detecting the drift, then anchoring the window 

starting point. One solution is to apply different detecting sensitivities on drift detection 

and window size selection by setting a narrower band for the first purpose. 

4.7 Selection Rule 

Another feature of ICA modeling is termed the "selection rule".  This rule states 

that the correlation coefficient between the ICA estimate and the individual measurement 

versus the measurement variance holds a linear relationship.  A lower measurement 

variance produces a higher correlation coefficient. Thus, ICA selects the lowest variance 

channel as the most heavily weighted channel. This is illustrated in the following 

example. 

The pressurizer pressure data set again is used to illustrate this example. The data 

is plotted in Figure 4.12. A linear regression line between these correlation coefficients is 

plotted in Figure 4.13. The standard deviation and mean of each channel and the 

correlation coefficients with the ICA prediction are listed in Table  4.7. One should notice 

that the correlation coefficient for the first channel is about 0.69. In the next example this 

channel will be artificially drifted. 

Next, the drift case is tested. A linearly increasing drift of 2% is inserted into the 

first channel of the same data set beginning at sample 15000. It is plotted in Figure 4.14. 

A new ICA parameter estimate is calculated from the drift case. 

The correlation coefficient for the drift channel (ch#1) goes down to 0.39. A 

linear relationship still holds and it is plotted in Figure 4.15.  Table 4.8 shows the  
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Figure 4.12. Pressurizer pressure data set. 
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Correlation between ICA prediction and 
measurement variance
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Figure 4.13. Correlation between ICA prediction and measurement variance. 

 

Table 4.7 Statistics of pressurizer pressure data 

 Mean Standard Deviation Correlation with 
ICA Prediction 

Channel 1 2235.5 1.3753 0.6937 
Channel 2 2230.0 1.7458 0.5628 
Channel 3 2236.6 1.0693 0.8833 
Channel 4 2237.2 0.9758 0.9836 
Channel 5 2235.9 1.2491 0.7621 
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Figure 4.14. Drift case for pressurizer pressure. 

Coorelation between ICA prediction and 
measurement variance (drift case)
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Figure 4.15. Correlation between ICA prediction and measurement variance (drift case). 
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Table 4.8 Statistics of pressurizer pressure data (drift) 

 Mean Standard Deviation Correlation with 
ICA Prediction 

Channel 1 2239.4 2.2194 0.3912 
Channel 2 2230.0 1.7458 0.5643 
Channel 3 2236.6 1.0693 0.8842 
Channel 4 2237.2 0.9758 0.9835 
Channel 5 2235.9 1.2491 0.7616 

 

 

calculation results. The selection rule reveals the fundamental reason that why the ICA 

model works well for both drift detection and variance reduction. The ICA estimate 

weighs the higher variance channel less giving it less importance in the final parameter 

estimate.  

4.8 ICA Controller 

A water level measurement and control system using ICA was developed for real-

time experimental studies. The experimental setup up was a very important portion of this 

research because it provided the ability to examine several different application line-ups.  

In previous sections, actual reactor data was examined.  Although one would assume this 

type of data to be optimal in this study, it is very limited in that nuclear power plants 

usually operate at steady state conditions.  To assure the methodology is robust, it must 

be tested in all condition in which it may be applied.  The conditions consist of the 

number of redundant sensors plus whether the signals are steady state (stationary) or 

transient (non-stationary). The setup has three sensors in which two or three can be used.  
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Additionally, the state can be steady state with use of a controller, or transient if manually 

controlled as such.   

Second, when the sensor is used for control purpose, the system will be drifting if 

a drift sensor is selected as the controller input. Conventional FDI scheme cannot identify 

the drift sensor under this condition. The use of ICA estimate as controller inputs solved 

this problem and it is tested in the experiment. 

4.8.1 Experiment Setup 

        The experimental setup consists of a water tank, three Rosemount differential 

pressure transducers, an air-operated control valve, a National Instrument DAQ system 

and a laptop computer. Three differential pressure sensors [Rosemount 3095, 3051] are 

used for redundant level measurement. One of the sensors has an RTD for mass flow rate 

temperature compensation and is used to inject simulated drifts by heating the RTD 

during measurements. A NI LabView 7.0 program was developed for collecting the real-

time data collection, analysis, and control. The basic system block diagram is shown in 

Figure 4.16. 

       Since the system to be controlled is non-linear (flow is a non-linear function of water 

level), a standard PID controller performs poorly; therefore, a fuzzy logic based 

controller was developed that used rules based on level error.  This resulted in better 

response characteristics, which allowed for steady state operating characteristics at all 

water levels. A picture of the experimental setup is provided as Figure 4.17. 
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Figure 4.16. Experimental setup block diagram. 

 

 

Figure 4.17. Experiment setup picture. 
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This section presents the results of applying the ICA algorithm to several 

experiments in real time.  The results presented in the figure use a different method of 

displaying the fault condition.  In the Figure 4.18, a measurement uncertainty is roughly 

estimated from residual variance of the first 100 points. It is shown as a band around the 

residual, and the re-calibration set point is shown as control tolerances.  When the 

uncertainty band crosses the tolerance set point, the sensor is determined to be a faulty 

sensor.   

4.8.2 Steady State Measurements 

The first test was developed for the test of steady state response characteristics. 

Both the inlet and outlet valves were opened and the water level was allowed to reach a  

 

 
t 
 
 

Figure 4.18. Tolerance bands incorporating residual uncertainty. 
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steady state condition.  Two fault types were then injected into one sensor: a step change 

fault and a slow drift fault. The step change fault was injected by changing the position of 

one sensor suddenly while maintaining water level. The slow drift fault is injected by 

heating the RTD temperature compensation.  

Figure 4.19, presents the results for the step change case using three redundant 

sensors. The model covers data from three sensors when a step change is injected into 

channel 1. The first plot shows the three sensor signals.  Note that the sensors are not 

precisely calibrated at the beginning of the experiment but are considered to be correct.  

The next three plots show the three channel ICA residuals with 3σ error bands. Channel 

one is easily determined to be the faulty channel.  Note the spillover into the other 

channels is very small.  The tolerance bands were set at 1.5%. 

Figure 4.20 presents the results of an experiment using only two redundant 

sensors. The drift is injected into channel 2 by heating RTD with the total drift being 

about 1%.  Again the first plot is the two sensor signals operating at steady state. The 

next two plots are the residuals of the two sensors.  The control charts easily indicate that 

channel 2 is the drifting channel. Comparing with ICA, simple average residuals contain 

spillover and drift channel cannot be isolated. The result is shown in the last plot of 

Figure 4.20. 
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Figure 4.19. Step change fault detection. 
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Figure 4.20. Slow drift fault detection of two sensors: ICA and simple average. 
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4.8.3 Non-stationary Measurements 

The ICA algorithm was originally developed for stationary signals.  It is a method 

to separate mixtures of independent signals and uses a method to maximize the non-

Gaussian nature of the signals.  Recall that when signals are mixed, the result is more 

Gaussian than the original signals, so one method of unmixing may be to find an 

unmixing matrix that maximizes the non-Gaussian nature.  When we discuss the type of 

distribution being non-Gaussian, we are assuming the statistical nature is stationary.  This 

is more stringent than specifying the type of noise as being Gaussian or having other 

characteristics that are stationary.  In actuality, no process signal is going to be perfectly 

stationary, but under what conditions can the ICA based technique be used?  In this 

section we test its application to non-stationary signals with different degrees of 

redundancy.  We also test methods to transform non-stationary signals into stationary 

signals. 

When originally testing the system on non-stationary measurements, we 

determined that the ICA algorithm did not perform correctly and the sum of the ICA 

coefficient is not equal to unity. It was also determined that this non-unity can be used to 

detect when the ICA system is operating outside its assumption of stationarity. Normally, 

before the process achieves steady state and during the time it changes from one state to 

another, the measurements are non-stationary. We will first examine a transformation 

method to make the signals more stationary.  An example of a non-stationary 

measurement and the residuals are shown in Figure 4.21. 
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Figure 4.21. Non-stationary measurement and ICA residual. 
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We see that the ICA method is not applicable.  Moreover, we also note that the 

sum of the ICA coefficient does not pass the unity check: an indication of a failure of the 

ICA method.  

We can divide the above signal into several regions. The non-stationary regions 

are the ramp up region and ramp down region. In these two regions, the change is almost 

linear. We find that a rotation can transform the signal into a stationary signal. This gives 

basis for piecewise treatment of non-stationary signals. 

Figure 4.22 presents the linearly increasing portion of the non-stationary signal.  

We see that if we apply the ICA algorithm only to that portion, the algorithm still fails.  

The transformation needed is to determine the slope (equation 4.3) and remove it from 

the signal (equation 4.4). 
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Figure 4.22. Linear region of non-stationary measurements. 
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For a linear transform, y = Mx 
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For a rotation transform, the rotation matrix satisfies the conditions of orthonormality 
 

IMM T =                                                                             (4.6) 
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We see differential entropy is invariant under an orthogonal change of co-ordinates. The 

negentropy will also be unchanged under a rotation transform. This is the reason we can 

apply a rotation transform and still can find independent components. 

Applying the transformation results in the signals plotted in Figure 4.23. After the 

transformation, we also notice that a slow drift was injected into channel 3 by heating the 

RTD.  Then we perform ICA on the transformed space. Once the ICA estimate is found, 

an inverse transform is performed and the signals are plotted in their original space. This 

is shown in Figure 4.24. 

From Figure 4.24 we see the ICA estimate contains less noise and no drift 

component. Thus, we are able to detect the drift using the residual plot in Figure 4.25. 

This example shows that we can transform a linear non-stationary problem to a 

stationary problem. And ICA is applicable on the stationary signals.  However, the on-

line, real-time application of the transformation algorithm increases the complexity of the 

monitoring system significantly and is probably not practical. 
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Figure 4.23. Rotated linear signal. 

 

Figure 4.24. ICA parameter estimate and original measurements. 
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Figure 4.25. Residual of each channel. 

4.8.4 Drift in a Controlled Variable 

There are several cases in which only a redundancy of two is used in Nuclear 

Power plants.  This case usually occurs when a process variable is very important but 

may not be a safety critical Technical Specification variable.  In these cases, the variable 

is usually used for control and the user must choose which of the two sensors to use for 

control.  An example of this is turbine first stage pressure in a pressurized water reactor. 

In this case there are two situations that can occur when one of the two sensors 

starts to drift. When drift occurs in the sensor selected for control, the control system will 

change the actuator to keep the sensor reading constant.  This will cause the actual 

process variable to change, but the signal used for control seems to be constant.  The drift 
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–free sensor will change along with the process parameter.  This is the unwanted 

situation. In the second case the drift can occur in the sensor not being used for control.  

Then the process variable will not be affected.  

When a monitoring system is applied that creates its own estimate of the process 

parameter, a third case can exist.  The system may be controlled by the best estimate, i.e., 

ICA estimate.  If the ICA estimate correctly predicts the process parameter, the system 

will not be allowed to drift and the drifting sensor can be detected. This is investigated 

from SIMULINK modeling and through the water tank level control experiment.  

4.8.4.1 SIMULINK Modeling 

As a first experiment to investigate the application of ICA based prediction to a 

controlled variable, a PI controller was constructed using MATLAB's SIMULNK 

program (Figure 4.26). Two redundant sensors were used to measure a controlled process 

parameter undergoing a step response. One is then injected with a 1% ramp up to 

simulate a drift.  If we select the non-drifting sensor as the control variable, the system 

response is as shown in Figure 4.27.  The system quickly moves the system parameter to 

the desired level. If we select the drifting sensor as the control variable, the system 

response is shown in Figure 4.28. 

In case 3, we use the ICA prediction as the controlled variable. This estimate 

dynamically calculates the weights of the drift and non-drift sensors.  Therefore, the 

control variable is the best estimate of the true system parameter. The system response is 

as desired and is shown in Figure 4.29.  In this example, the weight of sensor 1 is 0.95 

and the weight of sensor 2, the drifting sensor, is 0.05.  
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Figure 4.26. Simulink model for PI controller. 

 

 

Figure 4.27. System response of non-drift control variable. 
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Figure 4.28. System response of drift control variable. 

 

 

Figure 4.29. System response of the best estimate. 
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4.8.4.2 Experiment Using the ICA Controller 

The above problem was then investigated in real time using the level control 

experiment. The graphical user interface of this experiment is shown in Figure 4.30. This 

interface allows one to choose which signal to use for control: 

a). Sensor 1. 

b). Sensor 2. 

c). ICA Best Estimate. 

 

   

Figure 4.30. Labview ICA controller graphical interface. 
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In the user interface (Figure 4.30), the measured signals and their residuals are 

plotted on the left side, and the ICA estimate is plotted in the upper right corner. The 

interface allows the user to choose the controller set point. That is, it allows the user to 

select the desired tank level. Since we will inject the drift during steady state conditions 

by heating the RTD, a different set point implies a different drift rate.  

The variables c1 and c2 are the ICA weights calculated by the Matlab dll for 

certain window sizes of the data. The system uses these two variables to calculate a unity 

check, which is simply the sum of the ICA weights.  When the ICA algorithm is 

operating reliably, the two variables sum to one: the unity check passes. If the unity 

check does not pass, the ICA weights will automatically revert to a simple average.  

Additionally, the interface allows the user to choose the control variable to be the 

best estimate or either of the two channels. A fuzzy controller is used to control the water 

level. 

4.8.4.3 Experimental Results 

        In this example, sensor drift is injected into channel 3 at time 1240 and grows. 

The residuals (Figure 4.31) show that the drift is properly identified to be in Channel 3. 

The drift did not affect channel 1: the good channel. 

 In the second case, Channel 3 was selected as input to the controller with the 

results shown in Figure 4.32. Note that there was some bias between the two sensors 

before the experiment began.  This bias was due to the sensors not being perfectly 

calibrated before the experiment.  The drift is injected in channel 3 beginning at time 500.  
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Figure 4.31. ICA controller with f=10 Hz, drift = 5% and window size = 50. 

       

 

Figure 4.32. Ch#3 Controller with f=10 Hz, drift = 5% and window size = 50. 
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However, since the controlled sensor is drifting, the water level follows the 

drifting sensor. Additionally, the value of channel 1, the good channel, also increases. 

The measurement value of channel 3 combines the result of the drift (down) and true 

water level (up), and thus does not change. Finally, the residual of channel 1 goes up and 

the residual of channel 3 goes down. In this case, one cannot determine which channel is 

drifting.   

4.8.5 Experiment Summary 

 The ICA experiment tested the ICA redundant sensor validation technique in both 

steady state and non-stationary conditions. During steady state, a step change fault and a 

slow drift fault are both detected. The fault sensor is identified even there were only two 

sensors. During non-stationary conditions, the ICA method is not directly applicable 

when the distribution in the ICA transform window becomes multi-modal. A unity check 

algorithm indicates the failure of ICA method. Thus, the ICA technique can still be used 

even when there are transients between stationary stages. The unity check works as a 

watchdog and it can prevent false alarms. A rotation transform algorithm was developed  

for linear trending signals. It could lead to a piecewise solution for general non-stationary 

signals. 

 Second, the ICA-based control strategy is demonstrated on a water level control 

experiment. Redundant sensors are often used to measure critical process variables that 

are controlled. When double redundancy is used, one must choose which of the two 

sensors to use for input to the controller. If a drifting or faulty sensor is chosen to be the 

controller input, the system will be incorrectly operated.  ICA provides a solution to this 
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problem. The ICA prediction is robust in that the faulty component of a sensor 

measurement does not adversely affect the parameter estimate; even when there are only 

two redundant sensors. A new control strategy is presented that uses the ICA estimate as 

the controller input, so that drift in one of the sensors will not cause the controlled system 

to drift. The ICA controller is compared to a classical controller during normal and 

drifting conditions. The results demonstrate that in the event of sensor drifts, the system 

is correctly controlled and the drifting sensor is correctly identified. 

4.9 Hybrid System 
 A hybrid system described in figure 3.1 is used by merging inferential modeling 

and Independent Component Analysis. The reasons to develop a hybrid system are: 

1) Increase robustness, 

2) Increase sensitivity, 

3) Provide for common mode failure detection. 

4.9.1 Data Set With Sensor Drift 
 
        The hybrid redundant sensor system is applied to data collected at a nuclear 

power plant that covers about one year of operation and sampled at 15 minute intervals.  

This data contains normal operating data and an actual pressure sensor drift.  Figure 4.33 

presents the data representing the two pressure sensors.  A slow drift in the channel 1 

measurement stating at about 13000 can be visually identified. 

       The PCR based inferential model is developed using 22 other variables, which are 

highly correlated with turbine first stage pressure. These variables and their correlations 

with turbine first stage pressure are listed in table 4.9. 
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Figure 4.33. Turbine first stage pressure. 
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Table 4.9. Variables used in building PCR model 

Variable 
Name 

Description Correlation with 
TBP1 

Correlation with 
TBP2 

x1 Gross power  0.3247     0.3434     

x2 STM GEN A Feedwater flow 1 0.9882     0.9940     

x3 STM GEN A Feedwater flow 2 0.9871     0.9934     

x4 STM GEN B Feedwater flow 1 0.9868     0.9960     

x5 STM GEN B Feedwater flow 2 0.9844     0.9953     

x6 STM GEN C Feedwater flow 1 0.9941     0.9979     

x7 STM GEN C Feedwater flow 2 0.9929     0.9963     

x8 STM GEN A Steam flow 1 0.9869     0.9937     

x9 STM GEN A Steam flow 2 0.9875     0.9940  

x10 STM GEN B Steam flow  1 0.9838     0.9928     

x11 STM GEN B Steam flow  2 0.9840     0.9929     

x12 STM GEN C Steam flow 1 0.9938     0.9981     

x13 STM GEN C Steam flow  2 0.9904     0.9946     

x14 STM GEN A Steam Pressure  1 -0.8645    -0.8735    

x15 STM GEN A Steam Pressure  2 -0.8401    -0.8609    

x16 STM GEN A Steam Pressure  3 -0.8263    -0.8517    

x17 STM GEN B Steam Pressure  1 -0.8261    -0.8493    

x18 STM GEN B Steam Pressure  2 -0.8654    -0.8785 

x19 STM GEN B Steam Pressure  3 -0.8237    -0.8515    

x20 STM GEN C Steam Pressure  1 -0.8569    -0.8723    

x21 STM GEN C Steam Pressure  2 -0.8194    -0.8436    

x22 STM GEN C Steam Pressure  3 -0.6746 -0.7084 
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The table 4.9 shows that turbine first stage pressure is positively correlated with 

steam flow and feed water flow and is negatively correlated with steam pressure. This is 

expected because when steam flow increases, steam generator pressure will decrease and 

the turbine first stage pressure in the mixing chamber will go up. These correlation 

coefficients are strong except for variable x22. After a close look at variable x22, we find 

that the noise level is much higher in that channel. Turbine first stage pressure also has a 

fairly low correlation with the plant gross power generation. This may be partially due to 

system time delays. Because of this, gross power generation was not used in the 

inferential model. 

        The first 10000 data points are used as the model training set and the data from 

13000 to 20000 is selected as the test set. For model training, the response variable is the 

average of the pressure sensor outputs. In the following graphs, the original test set 

subscripts are dropped new subscripts 1-7000 are used. 

       Figure 4.34 is a plot of the two pressure channels and the inferential sensor.  It can be 

noted that the inferential prediction is very stable but has slightly more noise than the 

sensor measurements.  This is primarily due to several fairly high noise sensors, such as 

x22, that are used as inputs.  Removing these from the input space would reduce the noise 

but may also reduce the system robustness. 
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Figure 4.34.  Channel 1, channel 2 and inferential sensor using PCR. 
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Figures 4.35 and 4.36 present the inferential senor predictions and the two sensor 

measurements. Figure 4.35 shows the sensor drift of Channel 1, while Figure 4.36 shows 

that Channel 2 is working properly.  This also can be shown in the residual plots, which 

are presented as Figure 4.37 and 4.38.  Recall the residual plots show the difference 

between the prediction and the sensor measurements. The residual plots are mean 

centered for the first 100 points so that the trend can be clearly identified. 

Although the PCR based inferential sensor can identify the degrading sensor, the 

residual variances are high due to the noise components. These high variance residuals 

may make detecting very small sensor drifts difficult. This shortcoming can be remedied 

through application of the ICA method.  A direct ICA transform of the testing data set, 

which includes sensor channel 1, sensor channel 2, and the inferential sensor results in a 

much smaller residual variance in Figure 4.39. The results are shown in Table 4.10. 

Figure 4.39 presents the residuals with 95% confidence limits.  It also shows the 

drift limits at ± 11.5 units corresponding to 2% channel drifts.  Using this control chart 

methodology, a sensor would be determined to be out of calibration when the 95% 

confidence limit crosses a drift limit.  If the residuals had higher noise contents, the 95% 

confidence intervals would be larger, and the sensor would be considered out of 

calibration sooner.  By reducing the residual noise, greater margins are allowed resulting 

in more time before maintenance is required. 
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Figure 4.35. PCR and channel 1 prediction. 
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Figure 4.36. PCR and channel 2 prediction. 
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Figure 4.37. Channel 1 residual plot. 
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Figure 4.38. Channel 2 residual plot. 
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Figure 4.39. Residuals from ICA transform with inferential sensor. Red curves are 95% 

confidence intervals in the residuals, upper and under lines are drift limits. 

 

 

Table 4.10 Variance in PCR residual and ICA + PCR residual 

 PCR ICA+PCR 

Ch#1 1.1880 0.3492 

Ch#2 1.3003 0.1564 
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4.9.2  Data Set With Anomalies 

In this data set from a different Nuclear Power Plant, similar data were collected.  

The plant was a four loop plant and the inferential sensor used 8 feed water flow sensors, 

8 steam flow sensors, and 12 steam pressure sensors for a total of 28 predictor variables.  

All of the correlation coefficients with turbine first stage pressure had magnitudes above 

0.95.  A plot of the two channels of first stage turbine pressure measurements is shown in 

Figure 4.40.  The units of pressure have been normalized to percent power. 

A PCR-based inferential model was constructed using the first 10,000 data points 

for training.  Figure 4.41 is a plot of the inferential prediction and turbine pressure 

Channel 1.  This figure shows several anomalous situations near sample 40,000. Upon 

further investigation, it was determined that four pressure sensors used as inputs to the 

inferential model were undergoing maintenance during the anomalous interval.  Figure 

4.42 shows plots of the four predictor variables that cause the poor predictions.   

The type of behavior shown in Figure 4.41 is commonly termed spillover and is 

characterized by drifts, or other faults in predictor variables, spilling over into the 

response variable prediction.  Most inferential models are prone to this type of behavior; 

however, ICA filtering can remove it.  Figure 4.43 is a plot of the first stage turbine 

pressure prediction after using ICA to transform the two redundant channels and the 

PCR-based inferential prediction. 

It is easily seen that the anomalous behavior is not apparent in the variable 

estimate and will not affect the sensor residuals.  Figure 4.44 is a plot of the sensor 

residuals, their 95% confidence intervals and 1.4% drift limits. 
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Figure 4.40. Plot of both first stage turbine pressure measurements. 
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Figure 4.41. Channel 1 and the inferential prediction. 
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Figure 4.42. Anomalous predictor variable plots. 
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Figure 4.43.  Plot of PCR with ICA prediction. 
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Figure 4.44.  Plot of sensor residuals, 95% confidence intervals and 1.5% drift limits. 
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4.10 Summary 

ICA has been shown to be a useful technique for modeling redundant sensors.  It 

produces reduced noise and drift free estimates which can be used for sensor fault 

detection.  

The ICA redundant sensor estimation technique has significant advantages over 

other methods commonly employed for redundant sensor calibration monitoring. 

The advantages of using the ICA algorithm over the PCA and direct averaging 

techniques are  

1. Its ability to properly model common noise and reduce false alarms. 

2. Its ability to not have any spillover from faults in other channels. 

3. Its ability to reduce uncertainty in the parameter estimate. 

A major discovery of this research is the use of ICA to monitor systems with only 

two redundant channels. For the stationary signal, ICA is able to detect the faulted 

channel while the drift or step change is presented in one of the channels. 

 The ICA method is easy to use; only one parameter, the window size, needs to be 

specified. The moving window technique found the optimal window size captured most 

of the non-Gaussian component. 

A reliability monitoring module was developed for the monitoring of algorithm 

failures. When the ICA weights fail to sum up to one, the necessary condition is invalid. 

Thus, one needs to switch to another averaging method. The reliability monitoring 

module is implemented into a real-time control system for both stationary and non-

stationary signals.  
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A hybrid system merging ICA technique and inferential sensing technique shows 

its superior performance than both original systems. The hybrid system is more robust to 

data anomalies and also produces lower variance residuals.  
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  CHAPTER 5 
UNCERTAINTY ANALYSIS 

 

5.0 Introduction 

 In this chapter the development of methods to quantify the uncertainty inherent in 

the ICA method is presented. A typical residual plot in Figure 5.1 can be used to explain 

the necessity of having accurate techniques to quantify the uncertainty. This plot shows 

the residual between the sensor output and the ICA prediction.  Around the 500th sample, 

the sensor begins to drift downward.  This residual is bounded by lines representing 95% 

prediction intervals.  These bounds are significant in that they contain the actual sensor 

drift with a 95% confidence.  Also displayed are upper and lower sensor drift limits, 

which are represented by straight lines.  When one of the 95% prediction intervals 

crosses the allowable drift boundary, there is less than 95% confidence that the sensor has 

not drifted past its allowable level.  Therefore, the sensor must be scheduled for 

recalibration or taken out of service.   

This plot shows the advantage of having predictions with small uncertainties.  If 

the prediction uncertainty were greater than the allowable drift band, then the technique 

would be of no use.  For the same drift rate, tighter uncertainty bands would allow 

extended operation before calibrations are necessary because there would be a larger 

cushion between the 95% prediction interval band and the drift limit.  

There are several valid methods that can be used to estimate empirical prediction 

uncertainties. In the previous sections, the error bound was roughly estimated by 

computing the residual variance early in the monitoring stage.  
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Figure 5.1. A typical residual plot with uncertainty estimate 
 
 
 
 

This estimate is based on the assumption that the instrument channels are initially 

operating correctly and that the early residuals contain no drift component. It also 

assumes that the model is correctly specified so that the prediction is accurate. Thus, the 

residual variance can be estimated using the sample variance. In the following sections, a 

more precise method, called “bootstrap”, will be developed and investigated in detail.  
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5.1 Prediction Interval Definitions 

 Two terms are commonly used in relating the accuracy of a predicted parameter.  

These are confidence interval and prediction interval.  Suppose a function of x exists, 

f(x), and we have some measured values of that function so that if we developed an 

empirical model with inputs x, we would have a desired response or targets t(x). The 

relationship is therefore )()()( xxx ε+= ft .   

The confidence interval is defined as the accuracy of the estimate, , to the 

true value, i.e. the distribution of the quantity .  The prediction interval is 

defined as the accuracy of the estimate to the targets (desired response values), i.e. the 

distribution of the quantity t .  Note that even if the predictive model was 

perfect and its output equaled the target, t(x), it could not account for the noise 

)(ˆ xf

)(ˆ)( xx ff −

)(ˆ)( xx f−

)(xε  in 

the targets and would not perfectly predict f(x).  It can also be seen that the prediction 

interval encloses the confidence interval: .  In this 

research, prediction intervals are of more practical use because they provide the accuracy 

with which we can predict the desired response, not just the accuracy of the model itself. 

)x()](ˆ))( xxx ε+− ft ([)(ˆ x =− ff

5.2 Source of Uncertainties and Bootstrap Prediction Interval 

      Predictive uncertainty can be decomposed into its two major components through 

what is commonly called the bias-variance decomposition [Hastie, 2001].  

 Assume ε+)X

)(ˆ Xf

= (fY , where ε is the model error, . For 

any model prediction , model error at 

2)(,0)( εσεε == VarE

0xX =  is: 
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 The bias term can be further decomposed into model bias and estimation bias. 

From equation (5.1), uncertainties have two sources: one part is from the data while the 

other part is from the model. 

 A theoretical analysis and quantification of uncertainty is difficult and usually 

only estimates can be made. Normally one does not know the true distribution and only 

asymptotic results can be given. When the model is not correctly specified, uncertainties 

from model misspecification are difficult to bound. Fortunately, the bootstrap method 

provides a technique for the empirical study of prediction uncertainty that incorporates all 

of these sources of error.   

The bootstrap is a recently developed technique for making statistical inference 

using resampling methods. It requires significant computing power, but this is not a 

concern for calculations performed off-line on current computers.  The bootstrap 

technique for estimating standard error was developed by Efron in 1979.  The basic 

technique involves sampling an empirical distribution with replacement.  The bootstrap 

algorithm begins by sampling the original data set with replacement resulting in a 

bootstrap sample x* = (x1
*, x2

*,…,xn
*).  The sample contains n randomly sampled 

observations.   This is repeated a large number of times resulting in B independent 

bootstrap samples: x*1, x*2, … x*B, each of size n. Typical values for B, the number of 

bootstrap samples, range from 50 to 200 for fairly accurate standard error estimates 

[Efron, 1993]. 
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For each of B bootstrap samples, a statistic is calculated: s(x*b).  For example, if 

s(x) is the sample median, then s(x*) is the median of the bootstrap sample. The bootstrap 

estimate of the standard error is the standard deviation of the statistic calculated from 

each bootstrap sample. 
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For large n, one can obtain a bootstrap confidence interval assuming a normal 

distribution [Efron, 1981, 1987]. 

Assuming any estimate ,  ),(~ˆ 2seyNy

                  )1,0(~
ˆ

N
se

yyZ −
=  

[ ] αθ αα 21}ˆ,ˆ{Pr )()1( −=⋅−⋅−∈ − sezysezyob                           (5.3) 

The same analysis can be applied to construct a prediction interval. 

The bootstrap method is straight-forward to implement on a computer. It 

commonly has a computational advantage over asymptotic theory due to its simplicity. 

Additionally, the convergence rate is better than asymptotic theory under certain 

distributions.  In some cases, there are no alternatives and bootstrap is the only method 

capable of calculating uncertainty statistics [Schimek, 2000]. 
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5.3 Bootstrap Prediction Interval Example  

We will present a sample bootstrap application. Suppose we have a predictor 

variable, X ~ N (0,1) and response variable Y, which is a linear function of X plus some 

Gaussian noise: 

)1,0(*5.0*2 normXY +=                                           (5.4) 

From equation (2.18), a least square regression coefficient is estimated. The predicted 

value is calculated from equation (2.19). The least square model is shown in Figure 5.2. 

The regression line goes through center of most of the data points.  

From equation (2.24), the confidence interval of the regression coefficient is calculated: 

)087.0,2(~))(,(~ˆ 21 NXXN T σββ −       (5.5) 

In reality, the true value of β is unknown but can be estimated using bootstrap method.  

First, 100 models are calculated from a resampled distribution. A bootstrap 

confidence interval is obtained by taking the mean and standard deviation of the 

regression coefficient: 

)056.0,0017.2(~ˆ Nβ           (5.6) 

The bootstrap confidence interval of 0.056 is a little smaller than the analytical result 

(0.087) in the above example. This can be due to the finite random numbers generated. 

The same bootstrap procedure is used to calculate a prediction error and a 

prediction interval. Recall that the prediction error is the difference between the 

prediction estimate and the true value. Since the true value is unknown, the prediction 

error is estimated by the bias and variance of the residuals where the residuals are the 

difference between the model prediction and sampled value. If the model is unbiased, the  
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Figure 5.2. Linear model between predictor and response variable 

 

mean of the residuals is equal to zero.  In this case, the variance of the residuals is the 

estimate of prediction error.  

The bootstrap residuals are shown in Figure 5.3. For each of the 86 data points, 

100 models are calculated and the mean residual and the residual variance is plotted.  

The average value of the residual means is –0.0031 (near zero), giving evidence 

that the linear model prediction is unbiased; hence, the prediction error can be estimated 

by the residual variance. The average of the residual standard deviations is 0.5. Thus, the  
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Figure 5.3. Plot of residual means and standard deviations for each data point. 

 

estimate of the prediction error is 0.5, which is exactly the noise level in equation 5.4.  

The 95% prediction interval will be: 

]ˆ*96.1ˆ,ˆ*96.1ˆ[ σσ +− yy                                                (5.7) 

The 95% prediction intervals calculated by the bootstrap method are plotted in figure 5.4. 

As a second example, the noise level of equation (5.4) was increased to 0.9. 

)1,0(*9.0*2 normXY +=                                                 (5.8) 

The Mean and average standard deviation of the residuals are -0.0039 and 0.89 

respectively. Again, the estimate of the prediction error is equal to the noise level in 

equation (5.8).  
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Figure 5.4. Linear model predictions and 95% prediction intervals using bootstrap. 
 

 

For the above examples, the linear model prediction is unbiased. The contribution of 

prediction error from the bias term is close to zero. The following example shows the 

prediction interval from a biased prediction. 

For the function Y and X ~ N (0,1), 

)1,0(*5.0* normXXY +=                                           (5.9) 

     A linear model is calculated to estimate the nonlinear function in equation (5.9). A 

plot is shown in Figure 5.5. Bootstrap prediction bias and variance are shown in Figure 

5.6 and the prediction interval is shown in Figure 5.7. 
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Figure 5.5. Linear estimate for a nonlinear function. 

 

Figure 5.6. Bootstrap bias and variance for the biased model. 
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Figure 5.7. 95% prediction interval for a biased model 

 

This example shows that a linear model is not a good estimate for a nonlinear function. 

However, the bias term can be estimated from bootstrap method. Thus, the 95% 

prediction interval is large and covers approximately 95% of the samples. The bootstrap 

method to estimate the prediction interval now is extended to ICA uncertainty analysis. 

5.4 ICA Prediction Error  

The ICA model is derived from the non-Gaussianity principle. Because ICA is a data-

driven transformation method, the ICA prediction error largely depends on the data set 

and the model assumptions. The bootstrap method provides a technique to directly 

compute an estimate of the prediction errors. 
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Similar to the example in Section 5.3, the prediction error is estimated from the 

bootstrap residuals. For a given data set (i.e., redundant sensor measurements), an ICA 

transform is applied to the bootstrap sample sets. For each bootstrap sample set, an ICA 

parameter estimate is produced and residuals are generated from that calculation. This 

procedure is repeated B times, with B being as large as 100. Thus for each data point, 100 

residuals are generated. The mean of the residuals is calculated from equation (5.10) and 

standard deviation of the residuals from equation (5.2). 

B

x
xsy

B

i
i

b
∑

=== 1* )(ˆ                                                             (5.10) 

The total prediction error is estimated by combining the bias and the variance estimates:  

22 )ˆ()ˆ(ˆ bootesy +=σ                                                         (5.11) 

The 95% prediction error interval is  

[ ]σσ ˆ96.1ˆ,ˆ96.1ˆ ⋅+⋅− yy                                                   (5.12) 

The bootstrap method estimates the bias term and variance terms of the prediction error 

simultaneously.  

5.5 Bootstrap Prediction Example for ICA  

The bootstrap method for ICA prediction error is presented through the following 

example, which uses ICA to compute the sensor estimate using two redundant sensor 

inputs and an inferential model prediction.  Figure 5.8 presents the same data from 

Section 4.9.2, which is a measurement of nuclear power plant first stage turbine pressure.  
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Figure 5.8. First stage pressure measurements with inferential sensor (ch#1). 

 

Channel 1 is the PCR inferential prediction calculated from a model using 28 predictor 

variables from previous measurements. Channels 2 and 3 are the two redundant sensor 

measurements. 

It is obvious that the inferential sensor prediction contains data anomalies. Figure 

4.43, shows that the ICA model properly filtered these anomalies and produced a fairly 

constant, noise-free, parameter prediction. However, these anomalies do produce a higher 

bias term as will be shown. 
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The ICA weights were calculated with 1000 bootstrap samples and are shown in 

Figure 5.9. The PCR prediction weights are mostly near zero except for several small 

spikes. This means that the PCR model prediction is not weighted heavily, and therefore 

not used to a high degree in the model.  This is because the PCR prediction has a higher 

variance due to the data anomalies. Because the bootstrap procedure uses observation 

vectors that are slightly differently for each sample, when the data anomalies are not 

included in bootstrap samples, the ICA calculates the weights differently and gives the 

prediction more weight. 

The ICA parameter prediction is a linear combination of channel 1 (PCR 

inferential prediction), and redundant sensor channels 2 and 3. A slightly different weight 

for each channel produces a slightly different parameter prediction for each bootstrap  

 

 
Figure 5.9. ICA weights for 1000 bootstrap samples 
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sample. Thus, the residuals between the ICA prediction and the channel measurement are 

slightly different each time. Uncertainties are estimated from equation (5.2), (5.10) and 

(5.11). 

 A histogram plot of the residuals for one data point is shown in Figure 5.10.  It is 

evident that the distribution is fairly normal so we can use 1.96 times the total prediction 

error as an estimate for the 95% prediction intervals. 

 The mean and variance of the residuals for the first 25 data points are plotted in 

Figure 5.11. Recall that the mean is an estimate of the bias.  Actually, it includes the 

irreducible error due to the noise in response variable, but treating it as a bias is a 

conservative assumption. The bias term is much higher than the variance term in this case 

and the major contributor to prediction error is from the bias. 

The total prediction error is calculated from Equation (5.11) and plotted in Figure 

5.12. The expectation of  prediction error is 0.078, which is about 0.08% of measurement. 

The estimate of residual variance used in Figure 5.1 is 0.0835. These two estimates are 

very close to each other, so for this case, the simple technique of estimating the 

prediction error discussed in Chapter 4 was valid. 

The prediction interval is calculated from equation (5.12). A 95% prediction 

interval with the ICA estimate is shown in Figure 5.13. Channel 2 is within ICA 

prediction interval limits, which show no drift in the channel. The prediction intervals are 

applied to the residuals and are shown in Figure 5.14 along with 1.4% drift limits.  The 

uncertainties are small enough that the sensors have significant room to drift before they 

would need to be scheduled for calibration. 
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Figure 5.10. Histogram of 1000 bootstrap residuals for data point 44641. 
 

 
Figure 5.11. Mean and variance of residuals for 1000 bootstrap samples of first 25 data 

points. 

 
Figure 5.12. Total prediction error for 1000 bootstrap samples of first 25 data points. 
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Figure 5.13. ICA prediction and 95% prediction intervals.  

 
 

 
Figure 5.14. 1.4% drift limit and residuals with calculated prediction intervals. 
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5.6 Prediction Interval Comparison  

It was shown in section 4.9.1 that hybrid ICA incorporating a PCR inferential sensor 

produces lower variance predictions than PCR model alone. From the comparison of 

prediction interval, this feature is shown clearly.  

The same dataset from Section 5.5 is used for calculation. For the PCR model, a 

similar bootstrap procedure is used to build 200 models from training data. Bias and 

variance are calculated from residuals between PCR predictions and channel 2 responses 

on the testing data. The histogram of the prediction error is shown in Figure 5.15. The 

PCR plus ICA result is shown in Figure 5.16.  

 

 

Figure 5.15 Histogram of bootstrap prediction error for PCR model. 
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Figure 5.16 Histogram of bootstrap prediction error for ICA + PCR hybrid model. 

 

The prediction intervals are estimated from calculating the expectation from the 

prediction error distribution. The ICA plus the PCR hybrid model is 0.078 while the PCR 

model alone is 0.1324. The uncertainty in PCR model is as much as two times that of the 

hybrid model. 

 
5.7 Summary 

In this chapter, a method for ICA uncertainty analysis is developed and applied to 

actual plant data. The prediction error comes from the bias and variance of model 
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prediction. A linear model example is used to show that the bootstrap method produces 

similar prediction interval estimates when compared to standard analytical methods.  For 

the ICA-based data transformation method, no analytic method exists, but the bootstrap 

method can be successfully used to estimate the prediction interval.  

In the example data set, the major contribution to prediction error is from the bias 

term. ICA produces a low variance prediction. The prediction error is about 0.08% of the 

total measurement, which provides significant room for sensor drift before mandatory 

calibration.   

The prediction interval of the hybrid model is compared with the PCR model via the 

bootstrap method. The PCR model produces prediction interval that is twice the size of 

the hybrid model. 
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CHAPTER 6 
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

6.1 Conclusions 

In this dissertation a novel approach to redundant sensor validation was developed 

that employs Independent Component Analysis (ICA).   Performance of the ICA 

algorithm indicated sufficiently low parameter estimate residual variances when 

compared to simple averaging, the Instrument Calibration and Monitoring Program 

(ICMP), and Principal Component Analysis (PCA) techniques.  The drift detection 

capabilities of the reviewed algorithms were similar for cases in which the number of 

redundant channels was high. However, for smaller redundant sets down to only 2 

channels, only ICA was able to consistently, and correctly, identify the drifting sensor 

while minimizing the effect of the drifting instrument channel measurements on the 

parameter estimate.  For stationary signals it can detect and isolate sensor drifts for as few 

as two redundant sensors.   

The ICA method is fast and can be embedded into a real-time system.  The ICA 

estimate contains less noise than the original signals and is drift free. Thus the ICA 

estimate for system control was investigated.  Experimental results show that the ICA 

controller can be used for real time control and can eliminate potential drifts for steady 

state operations. The usage and effectiveness of ICA was demonstrated in several water 

level control experiments. 

The robustness of the technique was also investigated. The ICA based system was 

proven to be accurate and robust; however, classical ICA algorithms commonly fail when 
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distributions are multi-modal. This most likely occurs during highly non-stationary 

transients. However, the unity check technique indicates such a failure and the method 

can switch to simple average. For linear non-stationary signals, a rotation transform can 

resolve the problem, but the implementation is fairly complex. 

The ICA technique is easy to apply. Only one parameter needs to be pre-

determined: the window size of the data. It is dependent on the sample rate and the 

necessary speed of response, but should be at least 50. Fault isolation is performed with a 

simple residual check using tolerances in a control chart framework. 

ICA is an unsupervised learning paradigm which builds and applies the model at 

the same time. Merging ICA with an inferential sensor technique such as PCR provides a 

prediction is more robust. It also has filtered data anomalies that occur in inferential 

sensor prediction.  

The hybrid system reduces uncertainties in the parameter prediction which can be 

evaluated using bootstrap prediction intervals. Both the bias and variance of prediction 

error can be estimated directly from the residuals.  

6.2 Future Work 

 The Classical ICA method failed when it was applied to nonstationary signals. 

This limited the effectiveness of the method for general usage of signal processing. 

Though the unity check based reliability module can indicate when the method fails, a 

direct solution is preferred. The rotation transform solves a linear nonstationary signal 

problem and also implies a piece- wise solution for more general conditions. However, 

other nonlinear transforms such as kernel regression might be found to provide a more 
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general solution. Other ICA principles such as a change of variances may be used to 

solve some specific classes of nonstationary signal problems. 

 ICA for sensor validation is based on residual analysis. The more sophisticated 

scheme in a parity space approach can be utilized in residual analysis. ICA estimation is 

merely a residual generating engine. This is extremely useful when merging ICA with 

inferential modeling for common mode failure detection. This approach will expand the 

scope of sensor validation to general fault detection and isolation problems. 

 A more sensitive error detection method, such as the SPRT, might be more 

optimal than a control chart method. However, the distribution assumption in SPRT and a 

higher rate of false alarms requires future research. 
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A.1 Published Articles 
 
      Five articles have been published during the development of this research. They are 

briefly described below.  

A.1.1 “Redundant Sensor Calibration Monitoring Using ICA and PCA"  

This paper was published in  Real Time Systems Special Issue on "Applications of 

Intelligent Real-Time Systems for Nuclear Engineering", Vol. 27(1), 27-48, May 2004. 

This paper presents a comparison of methods for industrial on-line sensor calibration 

monitoring for redundant sensors. Principal component analysis (PCA) and independent 

component analysis (ICA) techniques are developed and compared using both simulated 

data and data sets from an operating nuclear power plant.  The performance is dependent 

on the types of noise sources; however, under most conditions ICA outperforms PCA, 

based on the bias and variance of their respective parameter estimates.  A case study is 

included to demonstrate the usefulness of both techniques for the early detection of 

sensor drift. 

A.1.2 "Independent Component Analysis for Redundant Sensor Validation"  

This paper was published in the Proceedings of the 2003 Maintenance and Reliability 

Conference, Knoxville, TN, May 4-7. This paper mainly compared ICA method and 

ICMP results. The ICA method is able to reduce the redundancy of the original dataset in 

order to predict the process parameter more accurately. The ICA prediction method is 

proven to be a robust method that can be used as a non-parametric approach to build a 

model that can detect faulty and drifted sensors so that they can be scheduled for 
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maintenance.  A slow sensor drift case study from a nuclear power plant is presented to 

show the usefulness of this technique. The ICA based system results are much better than 

other current methods such as ICMP. Independent component analysis is shown to be a 

new and effective approach for redundant sensor validation. 

A.1.3 "ICA Filter for Redundant Sensor Monitoring"  

This paper was published in the Transactions of the American Nuclear Society, New 

Orleans, LA, November, 2003. In this paper, the noise reduction feature of ICA is 

presented. ICA estimate contains less noise and is drift-free. It acts as a noise and drift 

filter to the redundant measurements. Additional FDI technique is no longer needed while 

applying ICA filtering. In other words, ICA filtering itself acted as FDI technique. The 

measurements from each channel contain the process parameter, a common noise source 

and independent channel noise sources. These three components are most likely 

independent from each other. Except for the channel noise, the other two components are 

seldom a Gaussian distribution. Another assumption for ICA is that the transform matrix 

A is linear and time invariant. These assumptions are valid at most conditions, but are 

especially valid for fairly steady state measurements.  Moreover, during faulty conditions, 

the fault component is introduced into one or more redundant channels and is absolutely 

independent from the process parameter. Therefore, we can create the model not only 

from fault free data (regression), but we can also build the model using data when the 

drift is present because of the model's ability to separate the independent components. 

ICA filtering is applied on a three-channel measurement which one of the channel is 

 134



drifting.  The original measurements and the drift-free ICA estimate are shown in the 

article. 

A.1.4 "A Robust Controller for Two Redundant Sensor Systems"  

This paper was published in the Proceedings of the 2004 Maintenance and Reliability 

Conference, Knoxville, TN, May 4-7. Redundant sensors are often used to measure 

critical process variables that are controlled. When double redundancy is used, one must 

choose which of the two sensors to use for input to the controller. If a drifting or faulty 

sensor is chosen to be the controller input, the system will be incorrectly operated.  

Independent component analysis (ICA) provides a solution to this problem. ICA 

prediction is robust in that the faulty component of a sensor measurement does not 

adversely affect the parameter estimate; even there are only two redundant sensors. A 

new control strategy is presented that uses the ICA estimate as the controller input, so 

that drift in one of the sensors will not cause the controlled system to drift. The ICA-

based control strategy is demonstrated on a water level control experiment. The ICA 

controller is compared to a classical controller during normal and drifting conditions. The 

results demonstrate that in the event of sensor drifts, the system is correctly controlled 

and the drifting sensor is correctly identified. 

A.1.5 "A Hybrid Redundant Sensor Estimation Technique for 2-channel Systems"  

This paper will be published at the 14th Annual Joint ISA POWID/EPRI Controls and 

Instrumentation Conference and 47th Annual ISA Power Industry Division Symposium, 

Colorado Springs, Colorado, June 6-11. A Redundant Sensor Estimation Technique 
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(RSET) was developed for on-line redundant sensor calibration monitoring.  This method 

has been extended to the two-channel case through the use of an inferential sensor.  The 

inferential sensor uses an empirical model with correlated signals as inputs.  The 

advantages of this system are reduced spillover and noise characteristics through the use 

of the Independent Component Analysis based RSET system and increased stability due 

to the inferential sensor.  Theses advantages are demonstrated through an application in 

which first stage turbine pressure sensors of a nuclear power plant are monitored. 

 
A.2 Matlab Functions 
 
A.2.1 ICA Interface 
 
% Redundant Sensor Calibration Monitoring and Reduction System 
% RSET 
% Rset_gui.m User interface for RSET 
% Written by Jun Ding Version 1.0 
% Jan. 3, 2003 
% University of Tennessee 
% Copyright @ 2003 All rights reserved  
 
 
global fname; 
global sName; 
global sUnits; 
global sTag; 
global sSpan; 
global sPTID; 
global sGroupID; 
global inputX; 
varPlot=10; 
 
set(gcf,'DefaultUicontrolUnits','Normalized') 
color_order=['b' 'g' 'r' 'c' 'm' 'y' 'k' 'b' 'g' 'r' 'c' 'm' 'y' 'k']; 
 
%Frame Input 
text_title_ = uicontrol(gcf,'Style','Text',... 
    'String','Redundant Sensor Calibration Monitoring and Reduction System',... 
    'Position',[0.1 0.95 0.8 0.05],'HorizontalAlignment','Center'); 
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set(text_title_,'Fontname','Palladius','FontSize',0.03,'FontWeight','light'); 
frame1_ = uicontrol(gcf,'Style','Frame','Position',[0.054 0.678 0.395 0.27]); 
text_f1_ = uicontrol(gcf,'Style','Text',... 
    'String','Input Signals',... 
    'Position',[0.163 0.90 0.165 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
push_load_ = uicontrol(gcf,'Style','Pushbutton','String','Load','Value',0,'Position',[0.067 
0.818 0.072 0.05],'Callback','getFile'); 
edit_f_ = uicontrol(gcf,'Style','Edit','String',fname,'Position',[0.196 0.818 0.162 
0.05],'HorizontalAlignment','left'); 
text_f2_ = uicontrol(gcf,'Style','Text',... 
    'String','Redundancy',... 
    'Position',[0.067 0.758 0.125 0.035],'HorizontalAlignment','Left'); 
edit_f2_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.196 0.758 0.10 
0.05],'HorizontalAlignment','left'); 
text_i3_ = uicontrol(gcf,'Style','Text',... 
    'String','Sampling Rate',... 
    'Position',[0.067 0.70 0.185 0.035],'HorizontalAlignment','Left'); 
edit_i3_ = uicontrol(gcf,'Style','Edit','String','1','Position',[0.196 0.70 0.10 
0.05],'HorizontalAlignment','left'); 
push_transpose_ = 
uicontrol(gcf,'Style','Pushbutton','String','Transpose','Value',0,'Position',[0.307 0.758 0.10 
0.05],'Callback','transVar'); 
push_plot_ = uicontrol(gcf,'Style','Pushbutton','String','Plot','Value',0,'Position',[0.307 
0.70 0.072 0.05],'Callback','plotVar'); 
 
%Frame Description 
frame2_ = uicontrol(gcf,'Style','Frame','Position',[0.492 0.678 0.395 0.27]); 
text_f3_ = uicontrol(gcf,'Style','Text',... 
    'String','Description of Sensors',... 
    'Position',[0.56 0.91 0.265 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
text_s1_ = uicontrol(gcf,'Style','Text',... 
    'String','Name',... 
    'Position',[0.502 0.85 0.05 0.03],'HorizontalAlignment','Left'); 
text_s2_ = uicontrol(gcf,'Style','Text',... 
    'String','Units',... 
    'Position',[0.502 0.776 0.05 0.03],'HorizontalAlignment','Left'); 
text_s3_ = uicontrol(gcf,'Style','Text',... 
    'String','Tag#',... 
    'Position',[0.502 0.702 0.05 0.03],'HorizontalAlignment','Left'); 
edit_s1_ = uicontrol(gcf,'Style','Edit','String',sName,'Position',[0.562 0.85 0.12 
0.05],'HorizontalAlignment','left'); 
edit_s2_ = uicontrol(gcf,'Style','Edit','String',sUnits,'Position',[0.562 0.776 0.12 
0.05],'HorizontalAlignment','left'); 
edit_s3_ = uicontrol(gcf,'Style','Edit','String',sTag,'Position',[0.562 0.702 0.12 
0.05],'HorizontalAlignment','left'); 
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text_s4_ = uicontrol(gcf,'Style','Text',... 
    'String','Span',... 
    'Position',[0.692 0.85 0.08 0.03],'HorizontalAlignment','Left'); 
text_s5_ = uicontrol(gcf,'Style','Text',... 
    'String','Pt ID',... 
    'Position',[0.692 0.776 0.08 0.03],'HorizontalAlignment','Left'); 
text_s6_ = uicontrol(gcf,'Style','Text',... 
    'String','Group#',... 
    'Position',[0.692 0.702 0.08 0.03],'HorizontalAlignment','Left'); 
edit_s4_ = uicontrol(gcf,'Style','Edit','String',sSpan,'Position',[0.772 0.85 0.10 
0.05],'HorizontalAlignment','left'); 
edit_s5_ = uicontrol(gcf,'Style','Edit','String',sPTID,'Position',[0.772 0.776 0.10 
0.05],'HorizontalAlignment','left'); 
edit_s6_ = uicontrol(gcf,'Style','Edit','String',sGroupID,'Position',[0.772 0.702 0.10 
0.05],'HorizontalAlignment','left'); 
 
%Frame Moving Window 
frame31_ = uicontrol(gcf,'Style','Frame','Position',[0.054 0.057 0.395 0.27]); 
text_f41_ = uicontrol(gcf,'Style','Text',... 
    'String','Moving Window Size',... 
    'Position',[0.064 0.284 0.365 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
text_c31_ = uicontrol(gcf,'Style','Text',... 
    'String','Start at',... 
    'Position',[0.064 0.182 0.1 0.03],'HorizontalAlignment','Left'); 
text_c32_ = uicontrol(gcf,'Style','Text',... 
    'String','End  at',... 
    'Position',[0.064 0.132 0.1 0.03],'HorizontalAlignment','Left'); 
edit_f3_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.164 0.182 0.122 
0.05],'HorizontalAlignment','left'); 
edit_f4_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.164 0.132 0.122 
0.05],'HorizontalAlignment','left',... 
    'CallBack','setWindow'); 
set(edit_f3_,'backgroundColor',[1 1 1],'FontSize',0.03); 
set(edit_f4_,'backgroundColor',[1 1 1],'FontSize',0.03); 
push_plot2_ = uicontrol(gcf,'Style','Pushbutton','String','Plot','Value',0,'Position',[0.322 
0.152 0.072 0.05],'Callback','plotWindowVar'); 
 
%Frame Drift Injection 
frame32_ = uicontrol(gcf,'Style','Frame','Position',[0.054 0.375 0.395 0.27]); 
text_f42_ = uicontrol(gcf,'Style','Text',... 
    'String','Drift Injection',... 
    'Position',[0.064 0.603 0.365 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
 
text_d3_ = uicontrol(gcf,'Style','Text',... 
    'String','Ch#',... 
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    'Position',[0.067 0.549 0.056 0.04],'HorizontalAlignment','Left'); 
text_d2_ = uicontrol(gcf,'Style','Text',... 
    'String','Start',... 
    'Position',[0.067 0.491 0.056 0.04],'HorizontalAlignment','Left'); 
text_d1_ = uicontrol(gcf,'Style','Text',... 
    'String','Type',... 
    'Position',[0.067 0.424 0.056 0.04],'HorizontalAlignment','Left'); 
text_d4_ = uicontrol(gcf,'Style','Text',... 
    'String','Parameter',... 
    'Position',[0.265 0.549 0.09 0.04],'HorizontalAlignment','Left'); 
text_d5_ = uicontrol(gcf,'Style','Text',... 
    'String','End',... 
    'Position',[0.265 0.491 0.056 0.04],'HorizontalAlignment','Left'); 
edit_d1_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.133 0.491 0.099 
0.04],'backgroundColor',[1 1 1],'HorizontalAlignment','left'); 
edit_d2_ = uicontrol(gcf,'Style','Edit','String','1','Position',[0.133 0.549 0.099 
0.04],'backgroundColor',[1 1 1],'HorizontalAlignment','left'); 
edit_d3_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.353 0.549 0.084 
0.04],'backgroundColor',[1 1 1],'HorizontalAlignment','left'); 
edit_d4_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.353 0.491 0.084 
0.04],'backgroundColor',[1 1 1],'HorizontalAlignment','left'); 
popup_d1_ = uicontrol(gcf,'Style','Popupmenu','backgroundColor',[1 1 1],... 
    'String','Ramp UP|Ramp DOWN|Step UP|Step DOWN|Constant at Mean|Constant at 
Current Value|Constant at Specific Value|Constant Step UP %|Constant Step DOWN 
%|Variance Increase','Value',1,... 
    'Position',[0.133 0.424 0.15 0.04],'CallBack','diPopup'); 
push_plotd_ = uicontrol(gcf,'Style','Pushbutton','String','Plot','Value',0,'Position',[0.322 
0.388 0.072 0.05],'Callback','plotWindowVar'); 
 
%Frame Transform 
frame4_ = uicontrol(gcf,'Style','Frame','Position',[0.492 0.375 0.395 0.27]); 
 
text_f5_ = uicontrol(gcf,'Style','Text',... 
    'String','Transform',... 
    'Position',[0.56 0.60 0.265 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
text_t1_ = uicontrol(gcf,'Style','Text',... 
    'String','Bootstrapping Cycle',... 
    'Position',[0.51 0.518 0.20 0.04],'HorizontalAlignment','Left'); 
edit_t1_ = uicontrol(gcf,'Style','Edit','String','0','Position',[0.735 0.518 0.099 
0.043],'HorizontalAlignment','left',... 
    'CallBack','setCycle'); 
set(edit_t1_,'backgroundColor',[1 1 1],'FontSize',0.02); 
push_do_ = uicontrol(gcf,'Style','Pushbutton','String','Do','Value',0,'Position',[0.518 0.423 
0.072 0.05],'Callback','doTransform'); 
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push_show_ = uicontrol(gcf,'Style','Pushbutton','String','Show','Value',0,'Position',[0.643 
0.423 0.072 0.05],'Callback','showTransform'); 
push_save_ = uicontrol(gcf,'Style','Pushbutton','String','Save','Value',0,'Position',[0.77 
0.423 0.072 0.05],'Callback','saveTransform'); 
 
%Frame Drift Detection 
frame5_ = uicontrol(gcf,'Style','Frame','Position',[0.492 0.057 0.395 0.27]); 
 
text_f6_ = uicontrol(gcf,'Style','Text',... 
    'String','Drift Detection',... 
    'Position',[0.56 0.285 0.265 0.03],'FontWeight','bold','HorizontalAlignment','Center'); 
text_dd1_ = uicontrol(gcf,'Style','Text',... 
    'String','Method',... 
    'Position',[0.521 0.191 0.120 0.04],'HorizontalAlignment','Left'); 
popup_dd1_ = uicontrol(gcf,'Style','Popupmenu','backgroundColor',[1 1 1],... 
    'String','Threshold|SPRT','Value',1,... 
    'Position',[0.656 0.211 0.15 0.033],... 
    'CallBack','ddPopup'); 
choice=1; 
push_dshow_ = uicontrol(gcf,'Style','Pushbutton','String','Show','Value',0,'Position',[0.518 
0.102 0.072 0.05],'Callback','showDD'); 
push_dsave_ = uicontrol(gcf,'Style','Pushbutton','String','Save','Value',0,'Position',[0.782 
0.102 0.072 0.05],'Callback','saveDD'); 
push_quit_ = uicontrol(gcf,'Style','Pushbutton','String','Quit','Value',0,'Position',[0.919 
0.006 0.072 0.05],'Callback','fc_quit'); 
 
%dipopup.m 
 
if ~isempty(inputX) 
    diChoice = get(popup_d1_,'Value'); 
    bd = get(edit_d1_,'String'); 
    bd = str2num(bd); 
    sig = get(edit_d2_,'String'); 
    sig = str2num(sig); 
    param = get(edit_d3_,'String'); 
    param = str2num(param); 
    ed = get(edit_d4_,'String'); 
    ed = str2num(ed); 
    sr = get(edit_i3_,'String'); 
    sr = str2num(sr); 
 
    drift_method=diChoice; 
    perc_method=1; 
    ref=0; 
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    if diChoice==7 
       ccv=param; 
    elseif diChoice==10; 
       sigma=param; 
    else 
       perc=param; 
       ccv=1; 
       sigma=1; 
    end 
 
    
driftX=simulate_drift(inputX,sig,perc,perc_method,ref,bd,ed,sr,drift_method,ccv,sigma); 
    XX=driftX; 
end 
 
%doTransform.m 
 
clear WW_c; 
% ICA transform 
XY=XX'; 
X=XY; 
dim=size(XY); 
icNum=min(4,dim(1)); 
count=0; 
for i=1:rsCycle      % resampling cycles 
% prepare new data from resampling 
    i=i 
    for j=1:dim(2) 
        k1=round(rand(1)*(dim(2)-1))+1; 
        for k=1:dim(1) 
            X(k,j)=XY(k,k1); 
        end 
    end 
    
[Y,A,W]=FASTICA(X,'approach','symm','g','tanh','displayMode','off','verbose','off','num
OfIC',icNum); 
    if ~ isempty(Y) 
        count=count+1; 
        [W1, s_IC,xavg,index] = icapost(X,Y,W); 
        for j=1:dim(1) 
          WW_c(count,j)=W1(index,j); 
        end 
    end 
end 
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function [W1, s_IC,xavg,IC_index] = icapost(X,Y,W) 
% function of ICA post processing  
% Identify main component of process from unordered independant components 
% X: m(sensor)x n (sampling points) matrix of measured signals 
% Y: identified independant components  
% xavg: simple average 
% IC(m) seperated components of Y  
% W1: weight matrix such as Y = W1 * X 
% s_IC: main components 
% written by Jun Ding 
% Sepetember 6 2002 
 
m=size(Y); 
IC=zeros(m(1),m(2)); 
t=linspace(1,m(2),m(2)); 
 
for i=1:m(1) 
  IC(i,:)=Y(i,:); 
end 
 
xavg=mean(X,1); 
fac1=mean(median(X)); %robust mean estimation using median 
 
for i=1:m(1) 
  m_IC=IC(i,:); 
  fac_mean=fac1/median(m_IC);   
 
  if fac_mean < 0 
     s_IC= - m_IC*abs(fac_mean); 
     W1=-W*abs(fac_mean); 
  else 
     s_IC=m_IC*abs(fac_mean); 
     W1=W*abs(fac_mean); 
  end 
 
%  ss(i)=std(s_IC) 
  ss(i)=std(s_IC-xavg) 
end 
 
minstd=min(ss); 
 
 
for i=1:m(1) 
    if ss(i)==minstd 
           IC_index=i;          
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           m_IC=IC(i,:); 
           fac_mean=fac1/median(m_IC);   
       if fac_mean < 0 
           s_IC= - m_IC*abs(fac_mean); 
           W1=-W*abs(fac_mean); 
       else 
           s_IC=m_IC*abs(fac_mean); 
           W1=W*abs(fac_mean); 
       end 
     end 
 end 
 
function 
[driftX]=simulate_drift(X,sig,perc,perc_method,ref,bd,ed,sr,drift_method,ccv,sigma); 
 
% Function to simulate drifts in matrices of sensor measurements 
 
% [driftX]=simulate_drift(X,sig,perc,perc_method,ref,bd,ed,sr,drift_method,ccv,sigma); 
 
%X is an nxp data matrix (use raw data), where n is the number of samples and p is the 
number of signals 
%sig is the column of the signal to drift 
% 
%perc is the percent drift, or step  
% 
%if perc_method=0, the inserted drift is applied as % drift per day 
%if perc_method=1, the inserted drift begins at point bd, and ends at point ed at which 
point the drift reaches the specified percentage 
% 
% Note that setting perc_method is only necessary for ramp drifts. If inserting any other 
type of drift,  
% perc_method can be set to 0 or 1 with the same result. 
% 
%ref, is the value to which the percentage refers: 
%   for percent of the mean, set ref=0 
%   for percent of the full signal range, set ref=1 
% 
% Note this option is to handle drift simulations for signals whose mean values 
%   are near zero. A 2% drift for a signal of mean value ~0.1 will not be very visible;  
%   in this case, apply the percent to the full signal range to get a better simulation. 
% 
% 
% bd is the point at which to begin the drift 
% ed is the point at which to end the drift 
% IF ed is set to ed=0, the drift will continue through the end of the data file 
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% 
%sr is the sampling rate in minutes 
% 
%drift method specifies the type of drift, rampup (1), rampdown (2), stepup(3), stepdown 
(4),  
% constant at mean value (5), constant at current value of bd (6), constant at specific 
value (7),  
% constant step up by a percentage of mean (8), constant step down by a percentage of 
the mean (9),             
% variance increase (10) 
% 
%ccv is only used for drift_method=7, otherwise it is not used. 
%   It is the value at which a constant step will be inserted. 
%   i.e. all points from bd:ed will be set to ccv 
% 
%sigma is only used for drift_method=10 
%   It is the standard deviation of the noise to add from N(0,sigma) 
% 
% EXAMPLE 
% Insert a drift in signal 2 (sig=2) beginning at point 100 (bd=100), ending at point 200 
(ed=200). 
% The drift will reach a total of 2% (perc=2, perc_method=1) of the mean value (ref=0). 
The data sampling rate is 1 minute (sr=1). 
% The drift will ramp up (drift_method=1). Ignore ccv and sigma, only used for variance 
increase and constant values. 
% [driftX]=simulate_drift(X,sig,perc,perc_method,ref,bd,ed,sr,drift_method,ccv,sigma); 
% Developed by Brandon Rasmussen, 2003 
 
 
 
 
if ed==0; 
    ed=size(X,1)+1; 
end; 
 
num_points=ed-bd; 
 
if ref==0; 
    M=mean(X(:,sig)); 
elseif ref==1; 
    M=max(X(:,sig))-min(X(:,sig)); 
end; 
 
 
%Calculate drift fraction per sample 
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f=(sr*perc)/(100*24*60); 
fv=f*ones(num_points,1); 
cfv=cumsum(fv); 
 
f2=perc/(num_points*100); 
fv2=f2*ones(num_points,1); 
 
cfv2=cumsum(fv2); 
 
 
driftX=X; 
 
 
 
    if perc_method==0; 
 
        if drift_method==1; %(ramp up) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)+(cfv*M); 
        elseif drift_method==2; %(ramp down) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)-(cfv*M); 
        end; 
         
    elseif perc_method==1; 
        if drift_method==1; %(ramp up) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)+(cfv2*M); 
        elseif drift_method==2; %(ramp down) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)-(cfv2*M); 
        end; 
    end; 
     
    if drift_method==3; %stepup(3) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)+((perc/100)*M); 
    elseif drift_method==4; % stepdown (4) 
            driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)-((perc/100)*M); 
    elseif drift_method==5; % constant at mean value (5) 
            driftX(bd:(ed-1),sig)=M; 
        elseif drift_method==6; % constant at current value of bd (6)  
            driftX(bd:(ed-1),sig)=driftX(bd,sig); 
        elseif drift_method==7; % constant at specific value (7) 
            driftX(bd:(ed-1),sig)=ccv; 
        elseif drift_method==8; %constant step up by a percentage of mean (8)              
            driftX(bd:(ed-1),sig)=M+((perc/100)*M); 
        elseif drift_method==9; % constant step down by a percentage of the mean (9) 
            driftX(bd:(ed-1),sig)=M-((perc/100)*M); 
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        elseif drift_method==10; % variance increase (10) 
              driftX(bd:(ed-1),sig)=X(bd:(ed-1),sig)+normrnd(0,sigma,length(bd:(ed-1)),1); 
    end; 
         
 %ShowTransform.m 
 
nn=size(WW_c); 
if (nn(1)==1) 
    tr=WW_c 
else 
    tr=median(WW_c) 
end 
PE=XX*tr'; 
figure(varPlot); 
xavg=mean(XX'); 
plot(PE); 
hold on; 
%plot(xavg,'r-'); 
ylabel('parameter estimate'); 
grid; 
title('Redundant Sensors'); 
varPlot=varPlot+1; 
 
%ShowDD.m 
 
dim=size(XX); 
nn=size(WW_c); 
if (nn(1)==1) 
    tr=WW_c; 
else 
    tr=median(WW_c); 
end 
PE=XX*tr'; 
if ~isempty(PE) 
    for i=1:dim(1) 
        for j=1:dim(2) 
            diff(i,j)=XX(i,j)-PE(i,1); 
        end 
    end 
    mm_diff=ones(dim(1),1)*mean(diff(1:100,:)); 
    z_diff=diff-mm_diff; 
    std_diff=std(diff(1:50,:)); 
    for j=1:dim(2) 
        dline(:,j)=std_diff(1,j)*2*ones(dim(1),1); 
        ndline(:,j)=-std_diff(1,j)*2*ones(dim(1),1); 
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        lline(:,j)=0.015*mean(XX(:,j))*ones(dim(1),1); 
    end 
     
    for i=5:dim(1) 
        for j=1:dim(2) 
            z_diff(i,j)=(z_diff(i-4,j)+z_diff(i-3,j)+z_diff(i-2,j)+z_diff(i-1,j)+z_diff(i,j))/5; 
            dline(i,j)=dline(i,j)+z_diff(i,j); 
            ndline(i,j)=ndline(i,j)+z_diff(i,j); 
        end 
    end 
     
    if choice==1 
        for j=1:dim(2) 
            figure(varPlot); 
            ch=num2str(j); 
            ch=strcat('ch#',ch); 
            plot(z_diff(:,j),color_order(j)); 
            text(0.9,0.9,ch,'units','normalized','color',color_order(j)) 
            hold on; 
            plot(dline(:,j),'r-'); 
            plot(ndline(:,j),'r-'); 
            plot(lline(:,j)); 
            plot(-lline(:,j)); 
            ylabel('difference'); 
            title('Residual'); 
            varPlot=varPlot+1; 
        end 
    end 
end 
clear diff; 
clear dline; 
     
%PlotVar.m 
 
x_size=size(inputX); 
figure(varPlot); 
text_x=0.9; 
text_y=0.9; 
for i=1:x_size(2) 
    plot(inputX(:,i),color_order(i)); 
    ch=num2str(i); 
    ch=strcat('ch#',ch); 
    text(text_x,text_y,ch,'units','normalized','color',color_order(i)) 
    text_y=text_y-0.05; 
    hold on; 
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end 
ylabel('measurement'); 
grid; 
title('Redundant Sensors'); 
varPlot=varPlot+1; 
 
%plotWindowVar.m 
 
x_size=size(XX); 
figure(varPlot); 
text_x=0.9; 
text_y=0.9; 
for i=1:x_size(2) 
    plot(XX(:,i),color_order(i)); 
    ch=num2str(i); 
    ch=strcat('ch#',ch); 
    text(text_x,text_y,ch,'units','normalized','color',color_order(i)) 
    text_y=text_y-0.05; 
    hold on; 
end 
ylabel('measurement'); 
grid; 
title('Redundant Sensors'); 
varPlot=varPlot+1; 
 
A.2.2 Moving Window Function 
 
%r2mw.m 
%Script to calculate moving window ICA 
%Developed by Jun Ding 
%2003 
 
if ~isempty(inputX) 
    diChoice = 2; 
    bd = 16000; 
    sig = 2; 
    param = 2; 
    ed = 37913; 
    sr = 15; 
    drift_method=diChoice; 
    perc_method=1; 
    ref=0; 
    if diChoice==7 
       ccv=param; 
    elseif diChoice==10; 
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       sigma=param; 
    else 
       perc=param; 
       ccv=1; 
       sigma=1; 
    end 
 
    
driftX=simulate_drift(inputX,sig,perc,perc_method,ref,bd,ed,sr,drift_method,ccv,sigma); 
    XX=driftX; 
end 
 
xx1=driftX; 
dim=size(xx1); 
ica_coef=zeros(8,8,dim(2)); 
data_std=zeros(8,8,dim(2)); 
data_corr=zeros(8,8,dim(2)); 
for j = 1: 8 
    for i = 1:8 
        if i>=j 
           a=i*4000; 
           b=(j-1)*4000+1; 
           xx=xx1(b:a,:); 
           ss=std(xx); 
           icNum=min(4,dim(2)); 
           
[Y,A,W]=FASTICA(xx','approach','symm','g','tanh','displayMode','off','verbose','off','num
OfIC',icNum); 
           if ~ isempty(Y) 
               [W1, s_IC,xavg,index] = icapost(xx',Y,W); 
               cw(j,i)=cond(W1); 
               m_cor=corrcoef([s_IC' xx]); 
               for k=1:dim(2) 
                   ica_coef(j,i,k)=W1(index,k); 
                   data_std(j,i,k)=ss(k); 
                   data_corr(j,i,k)=m_cor(1,k+1); 
               end 
               ica_std(j,i)=std(s_IC); 
           end 
       end 
    end 
end 
 
dd=ones(1,dim(2)); 
data_sum_err=zeros(8,8); 
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for i=1:8 
    for j=1:8 
        if ~((data_std(i,j,1)==0)) 
           c2(1,:)=data_std(i,j,:); 
           d2(1,:)=data_corr(i,j,:); 
           p=polyfit(c2,d2,1); 
           y=polyval(p,c2); 
           ds=(d2-y).^2; 
           data_sum_err(i,j)=ds*dd'; 
        end 
    end 
end 
 
A.2.3 ICMP Calculation 
 
%ICMP Script 
% Jun Ding 
%2003 
load VCPCRMODEL 
X=[yp ytest1 ytest2]; 
[estimate,ACvalues,estimate_weights,est_dev,acceptance,consistency]=icmp3(X); 
figure(1) 
plot(X) 
hold on 
plot(estimate,'k-') 
legend('Infer Sensor','ch#1','ch#2','ICMP est') 
title('ICMP results improved with inferential sensor') 
 
res1=estimate-ytest1; 
res1=res1-mean(res1(1:100,1))*ones(size(res1,1),1); 
figure(2) 
plot(res1); 
axis([1 7000 -15 15]) 
title('residual of ch#1,ICMP+Inferential Sensor') 
 
res2=estimate-ytest2; 
res2=res2-mean(res2(1:100,1))*ones(size(res2,1),1); 
figure(3) 
plot(res2); 
axis([1 7000 -15 15]) 
title('residual of ch#2,ICMP+Inferential Sensor') 
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function 
[estimate,ACvalues,estimate_weights,est_dev,acceptance,consistency]=icmp3(X); 
 
% ICMP algorithm for redundant channel calibration verification 
 
 
% INPUTS 
% X is the redundant data 
%   Data should be entered as (samples x signals) 
% IMPORTANT:  In this function, the consistency and acceptance criteria are estimated 
based on the  
%   deviation of the signals from their mean values.  This is not a fail-safe method of 
estimating these 
%   parameters, I just found it works most of the time.  The EPRI documents do not 
provide any automatic 
%   determination of these parameters, leaving it up to the user.  Better results may be 
obtainable by adjusting 
%   these parameters. 
% OUTPUTS 
% estimate is the parameter estimate of the ICMP algorithm 
% ACvalues are the alarm values, 0 or 1, for each observation for all channels, thus its 
dimensions are the same as  
%   the data X.  
% estimate_weights are the weights for each channel for each observation that are used to 
compute the estimate 
% est_dev is a matrix of differences between the estimate and each signal contained in X. 
% acceptance returns the acceptance criteria value for each channel. These are the values 
that are compared to the absolute deviation 
%   between the estimate and each channel to determine out-of-calibration conditions. 
% consistency returns the consistency values for each channel. These are the values that 
are compared to the deviations between channels  
%   to determine the estimate_weights. 
 
 
 
 
 
[np,ns]=size(X); 
data=X;   
 
deviation=data-((mean(data')')*ones(1,ns)); 
avgdeviation=abs(mean(deviation)); 
stddeviation=std(deviation); 
consistency=avgdeviation+3*stddeviation; 
acceptance=avgdeviation+4*stddeviation; 
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if (ns==(length(consistency))&ns==(length(acceptance))) 
else 
    error('The number of columns (signals) in data must be equal to the length of the 
consistency and acceptance vectors') 
end; 
 
for k=1:ns; 
    %divide data into signal k, and remainder 
    d1=data; 
    d2=d1(:,k); 
    d1(:,k)=[]; 
    %compute absolute deviation between signal k and remaining signals 
    absdiff=abs(d1- d2*ones(1,(ns-1))); 
    %divide consistency values for signal k and remainder 
    c1=consistency; 
    c2=c1(k); 
    c1(k)=[]; 
    %compute consistency sums for all absolute deviations 
    c3=c1+(c2*ones(1,(ns-1))); 
    %determine consistency for each absolute deviation 
    cc=absdiff<(ones(np,1)*c3); 
    %sum to determine the consistency of signal k for each sample 
    C(:,k)=(sum(cc'))'; 
     
     
end; 
 
    %Compute total consistency for each sample 
    Ctot=sum(C')'; 
    %weight each sample by the consistency values determined 
    est=(data.*C); 
    %Normalize the estimate by the total consistency 
    estimate=(sum(est')')./Ctot; 
     
    estimate_weights=C./ (Ctot*ones(1,ns)); 
 
     
    % Estimate Deviations 
     
    abs_est_dev=abs(data-(estimate*ones(1,ns))); 
     
    % Create an npXns alarm matrix 
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    ACvalues=abs_est_dev> (ones(np,1)*acceptance); 
 
    est_dev=(data-(estimate*ones(1,ns))); 
 
A.2.4 PCR Calculation  
 
% PCR Script 
% Developed by Jun Ding 
% 2004 
load T0308 
load T0401 
dim=size(T0401); 
x=T0308; 
xt=T0401; 
x=[x ones(37441,1)]; 
xtrain=x(1:10000,4:31); 
ytr1=x(1:10000,2); 
ytr2=x(1:10000,3); 
xtest=xt(1:dim(1),4:31); 
ytest1=xt(1:dim(1),2); 
ytest2=xt(1:dim(1),3); 
 
options.display='off'; 
options.plots='none'; 
model1=pcr(xtrain,ytr1,1,options); 
pred1=pcr(xtest,model1,options); 
yp1=pred1.pred; 
yp_m1=yp1{1,2}(:,1); 
figure(10) 
plot(yp_m1) 
hold on 
plot(ytest1,'r-') 
legend('prediction','ch#1'); 
title('PCR prediction for turbine first stage pressure 2003-08 - 2004-03') 
res1=yp_m1-ytest1; 
res1=res1-mean(res1)*ones(size(res1,1),1); 
figure(11) 
plot(res1); 
axis([1 dim(1) -10 10]) 
title('residual of ch#1,PCR') 
 
model2=pcr(xtrain,ytr2,1); 
pred2=pcr(xtest,model2); 
yp2=pred2.pred; 
yp_m2=yp2{1,2}(:,1); 
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figure(12) 
plot(yp_m2) 
hold on 
plot(ytest2,'r-') 
legend('prediction','ch#2'); 
title('PCR prediction for turbine first stage pressure 2003-08 - 2004-03') 
res2=yp_m2-ytest2; 
res2=res2-mean(res2)*ones(size(res2,1),1); 
figure(13) 
plot(res2); 
axis([1 dim(1) -10 10]) 
title('residual of ch#2,PCR') 
 
 
A.2.5 Bootstrap Prediction Error Interval for Linear Model 
 
%Linear Model Bootstrap Prediction Error Interval Script  
%Developed by Jun Ding 
%2004 
x=randn(85,1); 
y=2*x+0.9*randn(85,1); 
b=regress(y,x) 
y_hat=b*x; 
figure(1) 
plot(x,y_hat,x,y,'r+') 
legend('yhat','y') 
xlabel('x') 
ylabel('y') 
dim=size(x); 
m=100; 
for i=1:m 
    rnd_index=floor(dim(1).*rand(1,dim(1)))+1; 
    for j=1:dim(1) 
        xx(j,1)=x(rnd_index(1,j),:); 
    end 
    y=2*xx+0.9*randn(85,1); 
    b=regress(y,xx) 
    y_hat=b*xx; 
    res(:,i)=(y_hat-y); 
    i=i 
end 
m=mean(res'); 
st=std(res'); 
figure(2) 
errorbar(m,2*st);  
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xlabel('data points') 
ylabel('residual') 
 
A.2.6 ICA Bootstrap Prediction Error Interval 
 
% Bootstrap Interval for ICA 
% Developed by Jun Ding 
% Jun Ding 
 
load T0401_ICA 
dim=size(z); 
icNum=min(4,dim(2)); 
m=1000; 
ica_coef=zeros(m,dim(2)); 
xx=z; 
for i=1:m 
    rnd_index=floor(dim(1).*rand(1,dim(1)))+1; 
    for j=1:dim(1) 
        xx(j,:)=z(rnd_index(1,j),:); 
    end 
    
[Y,A,W]=FASTICA(xx','approach','symm','g','tanh','displayMode','off','verbose','off','num
OfIC',icNum); 
    if ~ isempty(Y) 
         [W1, s_IC,xavg,index] = icapost(xx',Y,W); 
          for k=1:dim(2) 
              ica_coef(i,k)=W1(index,k); 
          end 
      end 
      i=i 
end 
res=zeros(2,3,dim(1)); 
for i=1:dim(1) 
    for j=1:m 
      est=z(i,:)*ica_coef(j,:)'; 
      r1(j)=est-z(i,1); 
      r2(j)=est-z(i,2); 
      r3(j)=est-z(i,3); 
    end 
    res(1,1,i)=mean(r1); 
    res(2,1,i)=std(r1); 
    res(1,2,i)=mean(r2); 
    std2=std(r2); 
    res(2,2,i)=std2; 
    p2(i)=2*std2/z(i,2); 
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    res(1,3,i)=mean(r3); 
    std3=std(r3); 
    res(2,3,i)=std3; 
    p3(i)=2*std3/z(i,3); 
    i=i 
end 
 
errorbar(res(1,2,:),res(2,2,:)*2) 
legend('ch#2') 
title('Bootstrape 95% confidence interval') 
ylabel('residuals') 
xlabel('time') 
 
hist(r2,100) 
xlabel('residual') 
ylabel('frequency') 
title('Bootstrap residual of ch#2 at point 44641') 
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