80 research outputs found

    Reduction of simple semi-conditional grammars with respect to the number of conditional productions

    Get PDF
    The present paper discusses the descriptional complexity of simple semiconditional grammars with respect to the number of conditional productions. More specifically, it demonstrates that for every phrase-structure grammar, there exists an equivalent simple semi-conditional grammar that has no more than twelve conditional productions

    Simple-Semi-Conditional Versions of Matrix Grammars with a Reduced Regulating Mechanism

    Get PDF
    This paper discusses some conditional versions of matrix grammars. It establishes several characterizations of the family of the recursively enumerable languages based on these grammars. In fact, making use of the Geffert Normal forms, the present paper demonstrates these characterizations based on matrix grammars with conditions of a limited length, a reduced number of nonterminals, and a reduced number and size of matrices

    Regulated Formal Models and Their Reduction

    Get PDF
    Department of Theoretical Computer Science and Mathematical LogicKatedra teoretické informatiky a matematické logikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Accepting grammars and systems

    Get PDF
    We investigate several kinds of regulated rewriting (programmed, matrix, with regular control, ordered, and variants thereof) and of parallel rewriting mechanisms (Lindenmayer systems, uniformly limited Lindenmayer systems, limited Lindenmayer systems and scattered context grammars) as accepting devices, in contrast with the usual generating mode. In some cases, accepting mode turns out to be just as powerful as generating mode, e.g. within the grammars of the Chomsky hierarchy, within random context, regular control, L systems, uniformly limited L systems, scattered context. Most of these equivalences can be proved using a metatheorem on so-called context condition grammars. In case of matrix grammars and programmed grammars without appearance checking, a straightforward construction leads to the desired equivalence result. Interestingly, accepting devices are (strictly) more powerful than their generating counterparts in case of ordered grammars, programmed and matrix grammars with appearance checking (even programmed grammarsm with unconditional transfer), and 1lET0L systems. More precisely, if we admit erasing productions, we arrive at new characterizations of the recursivley enumerable languages, and if we do not admit them, we get new characterizations of the context-sensitive languages. Moreover, we supplement the published literature showing: - The emptiness and membership problems are recursivley solvable for generating ordered grammars, even if we admit erasing productions. - Uniformly limited propagating systems can be simulated by programmed grammars without erasing and without appearance checking, hence the emptiness and membership problems are recursively solvable for such systems. - We briefly discuss the degree of nondeterminism and the degree of synchronization for devices with limited parallelism

    Acta Cybernetica : Volume 11. Number 4.

    Get PDF

    Acta Cybernetica : Volume 20. Number 2.

    Get PDF

    Contributions of formal language theory to the study of dialogues

    Get PDF
    For more than 30 years, the problem of providing a formal framework for modeling dialogues has been a topic of great interest for the scientific areas of Linguistics, Philosophy, Cognitive Science, Formal Languages, Software Engineering and Artificial Intelligence. In the beginning the goal was to develop a "conversational computer", an automated system that could engage in a conversation in the same way as humans do. After studies showed the difficulties of achieving this goal Formal Language Theory and Artificial Intelligence have contributed to Dialogue Theory with the study and simulation of machine to machine and human to machine dialogues inspired by Linguistic studies of human interactions. The aim of our thesis is to propose a formal approach for the study of dialogues. Our work is an interdisciplinary one that connects theories and results in Dialogue Theory mainly from Formal Language Theory, but also from another areas like Artificial Intelligence, Linguistics and Multiprogramming. We contribute to Dialogue Theory by introducing a hierarchy of formal frameworks for the definition of protocols for dialogue interaction. Each framework defines a transition system in which dialogue protocols might be uniformly expressed and compared. The frameworks we propose are based on finite state transition systems and Grammar systems from Formal Language Theory and a multi-agent language for the specification of dialogue protocols from Artificial Intelligence. Grammar System Theory is a subfield of Formal Language Theory that studies how several (a finite number) of language defining devices (language processors or grammars) jointly develop a common symbolic environment (a string or a finite set of strings) by the application of language operations (for instance rewriting rules). For the frameworks we propose we study some of their formal properties, we compare their expressiveness, we investigate their practical application in Dialogue Theory and we analyze their connection with theories of human-like conversation from Linguistics. In addition we contribute to Grammar System Theory by proposing a new approach for the verification and derivation of Grammar systems. We analyze possible advantages of interpreting grammars as multiprograms that are susceptible of verification and derivation using the Owicki-Gries logic, a Hoare-based logic from the Multiprogramming field

    Acta Cybernetica : Volume 15. Number 3.

    Get PDF
    • …
    corecore