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A form of the Zermelo—von Neumann theorem 
under minimal assumptions* 

B. Csákány t 

To the memory of L. Kalmár (1905-1976) 

Abstract 

A simple and general version of the classical result in the title is formulated 
and proved in the form of a proposition concerning formal languages. 

The fundamental game-theoretical theorem of von Neumann asserts that in a 
two-player zero-sum game both players have optimal (possibly mixed) strategies. 
A stronger statement is true for chesslike games, i.e. discrete finite games in which 
there are no chance moves, and there is complete information for both players. In 
such games, either one of the two players has a pure winning strategy or both players 
have pure safe strategies. We call this fact the Zermelo—von Neumann theorem, as 
Zermelo was the .first to state an equivalent claim in [15], although he did not use 
the notion of a strategy, which was introduced and developed later in works of such 
pioneers as Borel [4], Steinhaus [14], von Neumann [10], and Kalmár [7]. In this 
note we prove a simple and general version of the Zermelo—von Neumann theorem. 
Here it takes the form of an assertion on formal languages, with no assumption on 
chance moves or complete information. The proof utilizes an idea of Fremlin [5] 
which dates back to the solution of the game Nim by Bouton [2]. The title alludes 
to the title of an article of Kalmár ([8]) in which a simple and general form of 
Gödel's incompleteness theorem is proposed and proved. Note that a fine analysis 
of interconnections between [15], [7], and a closely related article [9] by D. König 
may be found in a recent survey paper of Schwalbe and Walker ([13]); in which 
the definitive formulation of the Zermelo—von Neumann theorem is convincingly 
credited to Kalmár. -\1 

As usual, generators, elements and subsets of free monoids F(P) will be called 
letters, words, and languages, respectively. A word w\ is a prefix of the word w if 
w = W\W2 for some word u>2; we write wi < w in this case. The prefix closure of a 
language L is the set of all prefixes of all words in L. We say that L is complete, if 
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322 B. Csákány 

every infinite chain wi < W2 < • • • of elements of the prefix closure of L stabilizes 
(i.e., there exists an i such that Wi = W{+\ = .. .). A prefix wi of w is proper if 
w\ ^ w. A language L is prefix-free if no proper prefix of w G L is in L (cf., e.g., [6], 
[12], where such languages are called prefix codes). Here by a game we shall mean a 
nonempty complete prefix-free language L C F(P) trisected into pairwise disjoint 
sets L/v, LMI and LT- For games L C F(P) we adopt the following terminology: 
the letters (i.e., the elements of P) are the positions, all nonempty prefixes of the 
words in L are the states, and all pairs (si,s2) of states such that there exist a 
position p with s2 = Sip are the moves of L. The words in L are the terminal 
states, the one-element prefixes of them are the initial states of the game L; finally, 
the words in L^r, LM, and LT are the normal, misère, and tie terminal states (cf. 
[1]), respectively. We also refer to terminal states of L as L-games. 

The rationale of this terminology is that whenever two persons (say, White and 
Black) play a common finite discrete game G (as Nim, Chess, Go, card games, etc.), 
the whole process of playing—i.e., the G-game—is fully determined by the sequence 
g = pi.. .pn of subsequent positions, and every move of G consists of choosing a 
further position pt+i to continue a prefix p\.. .pi (1 < i < n) of g, according, of 
course, to the rules of the considered game. For several simple games (e.g., for 
Nim) the set of options depends only upon pi. However, it may depend upon the 
parity of i, and, more generally, upon each position in p i . . .pi. This is the case, 
e.g., in Chess, in virtue of some special rules such as castling, en passant capturing, 
and the threefold repetition rule that prevents infinite games of Chess. Thus, we 
can consider every game L Ç F(P) as an abstract form of a concrete two-player 
discrete game £ with possible positions p £ P. The rule of moves of C is implicit in 
the set of all pairs of states of form {pi • • - Pi,P\ • • -PiPi+i)- As L is complete, this 
rule excludes the possibility of an infinite sequence of moves in C\ i.e., £ is a finite 
game. The idea of considering states rather than positions goes back to the article 
[7], in which Kalmár introduced the script form of a game (Schriftspiel). The result 
of C is encoded into the components L^,LM,LT of L: for g G L, g G Ljv means 
that the player unable to move loses (as in Nim), g G LM indicates that he/she 
wins (e.g., LM is empty if L stands for Chess), and g £ LT means that the L-game 
g ends in a tie. 

As White and Black move alternately, White always moves from a state of 
odd length. Hence we call such states White states, and states of even length will 
be called Black states (including terminal states in both cases). Let Sw and SB 
stands for the set of all White states, resp. Black states. Clearly, in an L-game g 
White wins iff g € LN n SB or g G Lm fi Sw, and Black wins iff g G LN H Sw 
or g G L m H SB- We define a strategy of White as a mapping W of the set of 
nonterminal White states into the set of Black states; similarly, a strategy of Black 
is a mapping b : SB \ L Sw• Given a one-element word pi which is an initial 
state of L, any pair (w, b) of strategies determines a sequence 

g{pi,w,b) =pi w(pi) b(w(pi)) w(b(ui(pi))) b{w(b{w(p!)))) ... 

which, due to the completeness of L, cannot be infinite. Thus, g(p\,w,b) is an 
L-game with initial state p\. A strategy wq of White is called a winning strat-
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egy at pi if, for any strategy b of Black, White wins the game g{p\,wo,b), and, 
correspondingly, a strategy bo of Black is winning at pi if, for any strategy w of 
White, Black wins the game g(pi,w, bo). Finally, we call a strategy w\ of White a 
safe strategy atp\ if, for any strategy b of Black, either White wins g{p\,wi,b) or 
g(pi,wi,b) ends in a tie; a safe strategy of Black is defined similarly. We prove the 
following: 

Given a game L and an initial state p\ of L, either one of Black and White has 
a winning strategy at p\ or both of them have safe strategies atp\. 

Consider a game L and let S be the set of all states of L. Call a triple 
(RUR2,RX), consisting of disjoint subsets of S, regular if it meets the following 
requirements: 
(1) If s 6 Ri and (s, s') is a move, then s' £ R2. 
(2) If s £ i?2 and s is not a terminal state, then there exists a move (s, s') with 

s' E i?i. 
(3) If s € Rx and (s, s') is a move, then s' £ R2U Rx. 
(4) If s £ Rx and s is not a terminal state, then there exists a move (s,s ' ) with 

s' eRx. 
E.g., (LN ,LM ,LT ) is regular. The set of all regular triples is partially ordered 

by the rule 

(RI,R2,RX) < (Ri', R2 , Rx') iff R\ C Ri', i?2 Q R2 1 Rx C Rx . 

Clearly, if , R%) is a chain of regular triples, then (U a R?, UQ
 R2> U a

 Rx) is 
regular, too. Hence there exists a maximal regular triple (Q1, Q2, Qx) > (N, M, T). 
We show that Q = Qi UQ2 UQX = S. Suppose not. No states in S\Q are terminal. 
Therefore, as L is complete, there is a state s € S\Q with the property that if (s, s') 
is a move, then s' € Q. If all such s' are in Q2, then (Qi U {s}, Q2, Qx) is regular; if 
there is such an s' in Q1, then (Qi, Q2 U {s}, Qx) is regular; and (Qi, Q2, Qx U {s}) 
is regular in the remaining case, contradicting the maximality of (Qi, Q2, Qx). 

Define a function u on the set S\L of nonterminal states by choosing for u(s) 

some s' g Q2 such that (s, s') is a move, if s € Qi, 
some s' 6 Qi such that (s, s') is a move, if s 6 Q2, 
some s' € Qx such that (s, s') is a move, if s £ Qx. 

Such a function exists by the axiom of choice and the definition of regular triples. 
Suppose that the initial state pi is in Q\. Denote the restriction of u to Sb \ L 
by ui. Then u\ is a strategy of Black. Consider an arbitrary strategy w of White. 
The L-game g\ = g(p±,w,ui) is either a White state in LN or a Black state in Lm, 
i.e., Black wins in gi. Thus, u\ is a winning strategy at pi for Black. If p\ € Q2, 
then similarly we obtain that the restriction of u to Sw \ L is a winning strategy 
at pi for White. Finally, if p\ 6 Qx, then these restrictions are safe strategies at pi 
for Black and White, respectively. 

Note that the standard proof (see, e.g., [11] and [3]) goes by induction on the 
maximal length n{p{) of games with initial state p\. The finiteness of a game 
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does not imply the existence of such an n(pi); this latter is a slight additional 
requirement on the game, whose fulfilment is usually guaranteed by postulating 
that the number of possible moves is finite in every state. This assumption is 
superfluous under our treatment. A simple example of a finite discrete game with 
no upper bound n(pi) on the number of possible consecutive moves from the initial 
state is the following. Two players place congruent coins onto a centrally symmetric 
table alternately; however, at most once during a game, instead of placing a coin, a 
player may choose to reduce arbitrarily but equally the size of all coins to be placed 
further on. The last player to move wins. 
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Automaton Theory Approach for Solving Modified 
PNS Problems* 

B. Imreh* 

To Professor Masami Ito on his 60th birthday 

Abstract 

In this paper a modified version of the Process Network Synthesis (PNS) 
problem is studied. By using an automaton theoretical approach, a procedure 
for finding an optimal solution of this modified PNS problem is presented. 

Introduction 
The Process Network Synthesis (PNS for short) problem can be considered as a 
particular process design optimization. For this design, a set of the available op-
erating units is given and each operating unit has a positive weight. Moreover, 
two distinguished sets of materials, the sets of raw materials and required prod-
ucts are also given. We are to find a minimum-weight process, consisting of the 
available operating units, which produces the required products from the raw ma-
terials. The corresponding processes from structural point of view can be identified 
by particular bipartite graphs satisfying some conditions. Such conditions are es-
tablished in [4] and [5]. The bipartite graphs satisfying these conditions are called 
solution-structures and they can be considered as generalized feasible processes. 
This generalization means that we consider the processes in dynamic sense when 
we do not require the executability of processes. Therefore, a solution-structure 
may represent a non-executable process where by the executability of a process we 
mean that there exists such a scheduling of its operating units that the process 
can be performed in accordance with this scheduling. Here, by introducing a new 
condition for the bipartite graphs, we modify the original problem, concerning the 
generalized feasible processes, to such one whose feasible solutions represent exactly 
the executable feasible processes. For solving this modified problem, we extend the 
idea of [8]. Namely, for every instance of the modified problem, we define such an 

"This work has been supported by the Hungarian National Foundation for Scientific Research, 
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automaton that an optimal solution can be found by performing a shortest path 
method in the weighted transition graph of this automaton. 

The paper is organized as follows. In Section 1, we recall the PNS problem 
and introduce its modified version, moreover, we recall some necessary notions and 
notation on automata. Then, in Section 2, the automaton theoretical approach and 
a procedure for finding an optimal solution are presented. 

1 Preliminaries 
Since the description of the original PNS problem can be found in more works 
(see e.g. [4], [5], [6], and [7]), we recall only the necessary definitions here. In the 
combinatorial approach, the structure of a process can be described by the process 
graph (c/. [5]) defined as follows. 

Let M be a finite nonempty set, the set of the materials, and let 0 ^ O C 
p'(M) x p'(M) with M n O = 0, where p'(M) denotes the set of all nonempty 
subsets of M. The elements of <9 are called operating units and for any operating 
unit u = (C, D) £ O, C and D are called the set of the input and output materials 
of u, respectively. The pair (M , O) is called a process graph. The set of vertices 
of ( M , 0 ) is M U O, and the set of arcs is E = Ei U E2, where Ei = {(x ,u) : 
u = (C,D) € 0 k x e C) and E2 = {(u,x) : u = (C,D) 6 O & x € D}. If 
there are vertices xi,x2 , . . . ,x„, such that (xi, x2), {x2, £3),.- • •, (xn-i,xn) are arcs 
of (M,0), then the path belonging to these arcs is denoted by path[xi,x„]. Let the 
process graphs (M, O) and (M, O) be given: (M, O) is called a subgraph of (M , O), 
i f M C M a n d O C O . 

For any O C O, let us define the following functions on 0: 

matin(0)= [J C, matout(0)= [J D, 
(C,D)EO (C,D)eO 

and 

mat{0) = matin(0) U matout(0). 

Now, we can define the instances of the process design problem as follows. By 
an instance of the process design problem we mean a quartet M = ( M , 0,P,R), 
where M,0, P, R are finite sets; M is the set of the available materials, l / P C M 
is the set of the desired products, R C M is the set of the raw materials, and 
0 7i 0 C.p'(Af) x p'(M) is the set of the available operating units. It is supposed 
that P n R = 0 and M n O = 0. We are to design a process from structural point 
of view which produces the given set P of the required products from the given set 
R of the raw materials by using some available operating units. 

Let us observe that the process graph ( M , 0 ) describes the interconnections 
among the operating units of 0 . Furthermore, every generalized feasible process 
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corresponds to a subgraph of ( M , 0). Consequently, we can determine the gen-
eralized feasible processes by examining the corresponding subgraphs of ( M , 0 ) . 
If we do not consider further constraints such as material balance, then the sub-
graphs of (M, O) which can be assigned to the generalized feasible processes have 
common combinatorial properties. Such properties are established in [4] and [5]. 
A subgraph ( M , 0 ) of ( M , 0 ) is called a solution-structure of ( M , 0 , P , R , ) if the 
following conditions are satisfied: 

(Al) P C M , 

(A2) Vx G M, x G R & no (u, x) arc in the process graph (M, 0), 

(A3) Vu G Ô, 3 path[u,x] with x G P, 
(A4) Vx G M, 3(C, D) G 0 such that x G C U D. 

The set of the solution-structures of M is denoted by S(M, O, P, R, ) or S(M). We 
shall use the following observation which can be easily proved. 

Remark 1. If (M,0) is a solution-structure o /M, then M = mat(0), and hence, 
Q determines the solution-structure (M,0) uniquely. 

Let us now consider an instance of the process design problem in which ev-
ery operating unit has a positive real weight. We are to find a solution-structure 
with minimal weight where by the weight of a process graph we mean the sum of 
the weights of the operating units belonging to the process graph under considera-
tion. Now, an optimization problem, called PNS problem, can be formalized in the 
following way: 

Let an instance M = ( M , 0 , P , R ) of the process design problem be given. 
Moreover, let w be a positive real-valued function defined on 0, the weight function. 
The optimization problem is then 

(1) min{ w(u) : (M, Ô) G S(M, O, P, R)}. 
ueO 

It is worth noting that the PNS problem is NP-hard (cf. [1]). 
As we mentioned some of the feasible solutions of (1), which are solution-

structures, may represent non-executable processes. To illustrate this fact, let us 
consider the following simple example. 

Example 1. Let M = {a i , . . . ,d6}, R = {ai, a2}, P = {a6} and O = {ui,1*2,^3}, 
where the definition of the operating units are given by the table below. 

input materials output materials 
Ui ai, a2 

U2 0,3, Û4 Û5 
U3 Û5 0,4, üß 
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Now, S(M, O, P, R) is a singleton set and the only one solution-structure represent 
such a process which can not be executed. The corresponding process graph is 
depicted in Figure 1. 

For excluding the non-executability, we modify problem (1) in such a way that 
its feasible solutions will represent the executable feasible processes. For this reason, 
we use the following coloring of the process graphs. Let (M, O) be a process graph 
and R a set of materials. It is said that (M, O) is colorable by R if every material 
vertex of (M,0 ) can be colored by the procedure below. 

Coloring Procedure 

Step 1. Color all of the materials in M D R. 

Step S. If there is an operating unit whose all input materials have already colored, 
then color its all output materials. Terminate otherwise. 

Now, we can define the modified optimization problem. Let a process design 
problem M = ( M , 0 , P , R ) be given. A subgraph (M, 0) of (M, 0) is called a 
feasible solution of (M, O, P, R,) if the following conditions are satisfied: 
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(M,0) satisfies (¿1) through (A4), 
moreover, 

(M, O) is colorable by R. 

The set of the feasible solutions of M is denoted by S'{M, 0,P,R,) or S'(M). 
Let w be a positive real-valued function defined on 0 . Then the modified optimiza-
tion problem can be defined as follows. 

(2) min{ w(u) : (M, 0) £ S'{M, 0, P, R)}. 
uEO 

Let us investigate the relationship between the feasible solutions of (2) and the 
executable feasible processes. First let us consider an executable feasible process. 
Obviously it determines a subgraph (M, O) of (M, O) uniquely. The following 
properties can be excepted from an executable feasible process. 

Evidently, it must be executable. This yields that ( M , 0 ) is colorable by R. 
It has to produce every desired products. This results i n P C M , i.e. (M,0) 

satisfies (^41). 
A material can be regarded as a raw material in the process if it is not to 

be produced by any available operating unit of the process under consideration. 
On the other hand, it can be excepted that all the materials other than the raw 
materials are to be produced by some operating unit of the process. This implies 
that {A2) is valid for (M,0) . 

The appearance of an operating unit in the structurally feasible process is for-
bidden unless the corresponding operating unit participates directly or indirectly 
in the production of the desired products. This yields that (A3) holds for (M,0) . 

Each of the materials of the process must be consumed or produced by at least 
one of the operating units of the process. This implies that (M.O) satisfies (A4). 

Summarizing we have that the P-graph (M, 0) , determined by the executable 
feasible process considered, satisfies conditions (.41) through (.44), moreover, it is 
colorable by R, and hence it is a feasible solution of (2). 

Now, let us consider the reverse situation. Let (M, 0) € 5'(M). Let us consider 
the process based on (M, 0 ) from structural point of vie'w. Such a process exists 
and unique. Since (M,0 ) is a subgraph of (M,0) , the process consists of only 
available operating units. Condition (.41) ensures that all the desired products 
are produced in this process. Condition (A2) guarantees that all the unproduced 
materials available in the process are raw materials. Conditions (A3) and [A4) 
imply that this process does not contain unnecessary operating units and unnec-
essary materials. Finally, the colorability of (M,0 ) provides that the process is 
executable. Indeed, since the process graph is colorable, we can assign the time to 
every operating unit when its output materials are colored. Then by choosing a 
suitable time unit, the coloring time of every operating unit can be considered as 
its scheduling time, and the process is executable. Of course this scheduling is not 
necessarily optimal. Therefore, this process is an executable feasible process. 
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Obviously, problem (2) is such a restriction of (1), where we are to find a 
minimum-weight feasible solution among the feasible solutions of (1) which repre-
sent executable processes. We note that problem (2) is also NP-hard. It can be 
proved in the same way as for (1) (c/. [1]). We also note that if the process graph 
(M,0) of M = ( M , 0 , P , R ) is cycle-free, then S'(M) = S(M), and therefore, 
Problems (1) and (2) collapse. Regarding the solution of cycle-free PNS problems, 
we refer to [2], [3], and [9]. 

To close this section we recall some notions on automata. By an automaton we 
mean a system A = (A, X), where A is a finite nonvoid set of states, X is a finite 
nonempty set of input signs, and every x £ X is realized as a unary operation xA 

on A. For any a £ A and x £ X, axA can be interpreted as the state into which 
A enters from a by receiving the input sign x. For a word p £ X*, apA can be 
defined inductively as follows: 

(1) aeA — a, . 

(2) apA = (avA)xA for p = vx, v £ X* and x £ X, 

where e denotes the empty word of X*. 

One can assign a directed transition graph to each automaton as follows. Let 
A = (A,X) be an arbitrary automaton. By the transition graph of A we mean the 
graph GA = {A, E), where for any couple of states a, b £ A, (a, b) £ E if and only if 
there exists an input sign x £ X such that axA = b. Let us equip each edge of the 
transition graph with a label which is equal to the corresponding letter as usual. 

A recognizer is a system A = (A,ao,F) which consists of an automaton A = 
(A, X), the initial state ao(6 A), and the set F(C A) of final states. The language 
recognized by A is 

L(A) = {p:p£X* and a0pA £ F}. 

It is also said that L(A) is recognizable by the automaton A. 

2 Solution of the modified PNS problem 
We shall solve problem (2), by using an automaton theoretical approach. Namely, 
for every instance of (2), an automaton is constructed such that some feasible 
solutions of (2) can be described as words over the input alphabet of this automaton, 
moreover, these words are accepted by a recognizer based on this automaton. Then, 
by equipping the transition graph of the automaton considered with the weigths 
of the operating units, a shortest path in this weighted graph which leads from 
the initial state into the set of final states of this recognizer provides an optimal 
solution of (2). 

We shall use the following statement. 
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Lemma. Let an instance M = (M, O, P, R) of the process design problem be 
given. Moreover, let (M,0) be a process graph which is colorable by R and satisfies 
conditions (A1),(A2), and (A4), but (A3) is not valid for (M,0). Then there 
exists a proper subgraph of (M, O) which is colorable by R and satisfies all the four 
conditions. 

Proof. We present a procedure to construct the required subgraph. 

Procedure 

Initialization Let KQ = P, Oo = 0, and i = 0 

Iteration (i-th iteration) 

Step 1. Terminate if Ki C R\ the required subgraph is (mat(Oi),Oi). Otherwise 
proceed to Step 2. 

Step 2. Select a material x £ K{\ R and an operating unit u £ O such that x £ 
mat°ui{u). Let Oi+1 = OiU{u} and Ki+X = (KiUmatin{u))\matout(Oi+i). 
Set i := i + 1, and proceed to the succeeding iteration step. 

The procedure is correct, since the colorability of (M, 0) implies that if K R 
(I< C M), then there are x e K\R and u £ O with x £ mat0Ut(u). Now, let 
us suppose that the procedure is finished by the process graph (Mi,Oi), where 
Mi = mat(Oi). Obviously, (Mi,Oi) is a subgraph of (M,0), moreover, Ki C R. 
These facts imply that (Mi,Oi) satisfies condition (A2). From Mj = mat(Oi) 
it follows that (Mi,Oi) satisfies (A4). KQ = P implies that (Al) is valid for 
(Mi, Oi). Finally, from the procedure it follows that (A3) is also valid for (Mi, Oi), 
and therefore, (Mi,Oi) satisfies all the four conditions. Now, if (Mi,Oi) is not 
a proper subgraph of (M,0), then the two process graphs are equal. But this 
equality contradicts our assumption that (M,0) does not satisfy condition (A3). 
Consequently, (Mi,0{) is a proper subgraph of (M,0).- Finally, it can be proved 
by induction on j that if each material of K j has got color, then the materials 
contained in mat(Oj) can be colored by Kj. From this fact it follows that (Mi, Oi) 
can be colored by R, which ends the proof of the statement. 

To construct the automaton mentioned above, let 'us consider an arbitrary in-
stance M = (M, O, P, R) of the design problem and let w be a weight function. 

Let us define the automaton B = (B, 0') as follows. Let B = B' U {o}, where 
B' = p'(M) and o 0 B'. Moreover, let 0' = {u : u = (C, D) € 0 and R n D = 0}. 
One can give the states of the automaton the following meaning. A state which is 
a set of materials means the available materials at a given time. State o is used for 
describing the unsuccessful transitions. The transitions are defined in the following 
way. For every Q £ B' and u = (C, D) € 0', let 

moreover, let o u B = o. 
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The transitions have the following meaning. Let us suppose that we are going 
to build up a process graph. First we fix the available materials, their set Q will 
be the starting state of the automaton. As a next step, we try to put an operating 
unit in the graph, let u = (C, D) denote it. If each input material of u is available 
at this moment, i.e., C C Q, then we can put u in the process graph, and we can 
suppose that from this moment the available materials are the earlier available ones 
and the output materials of u, i.e., the elements of the set Q U D. If u has such an 
input material which is not available, then we can not put u in the process graph 
we build, and this fact is expressed such that the transition is unsuccessful. It is 
easy to check that the following observation is valid for the automaton B. 

Remark 2. If Q is a state of B, p is a word over O', and u £ O' occurs in p, then 
Q{pu)B = QpB. 

Let us equip the transition graph Q& with weights in the following way. If 
{QIQ') is a n edge of Q and the labels of this edge are Uj1}... ,Ujt, then let us 
assign the weight w1 = min{iz;(uj1),... ,w(ujt)} to the edge under consideration, 
moreover, if w' = uj, for some 1 < I < t, then keep the label Uji and cancel the 
remaining labels of this edge. Let us denote this weighted and labelled graph by 
{QB,W). 

Let us define now the recognizer B = ( B , R , F ) , where F = {Q : Q C 
B' and P C Q). Then the following statement is valid. 

Proposition. For every word p = u^ .. .Uik € L(B), if path[R, RpB] is a 
shortest path among the paths leading from R into a final state in (QB,W), then 
u^,... ,Uik are pairwise different and (M,0) is an optimal solution of (2), where 
0 = {uj,,.. .,mk} and M = mat(O). 

Proof. Let p = Ujj .. .Uik £ L(B) and let us suppose that path[R, RpB] is a 
shortest path leading from R into a final state in (GB,W)- Then Remark 2 implies 
that mt,...,Uik are pairwise different, since every operating unit has a positive 
weight. Now, let us consider the process graph (M,0) , where 0 = { u ^ , . . . ,Uik} 
and M = mat(0). First we show that (M,0 ) is a feasible solution of (2). From 
the definition of (M,0) it follows that (.44) holds for (M,0). The definition of 
0' and p G L(B) imply that (A2) is valid for (M,0) . Moreover, from p £ L(B) 
it follows that ( M , 0 ) is colorable by R and (Al) is valid for ( M , 0 ) . It is stated 
now that ( M , 0 ) satisfies (A3). If it is not so, then by our Lemma, there exists 
a proper subgraph of ( M , 0 ) which is a feasible solution of (2). Let us denote 
this subgraph by ( M , 0 ) . Since M = mat(O) and by Remark 1, M = mat(0), 
we obtain that O C 0. Let us suppose that O = {ujl,..., } c O for some 
1 < I < k. Since ( M , 0 ) is a feasible solution of (2), it is colorable by R. Without 
loss of generality, we may assume that the coloring procedure first colors the output 
materials of Uj1, then the output materials of Uj2 etc. This yields that the word 
p = Uj1 ... Uj, brings the automaton B from R into some final state. On the other 
hand, the weight of path[R, RpB] is less than the weight of path[R, RpB] which is a 
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contradiction. Therefore, (M,0) satisfies (A3), and it is a feasible solution of (2). 
Let us observe that the weight w of (M, O) is equal to the weight of path[R, RpB}. 
Now, we prove that (M, O) is an optimal solution of (2). Indeed, if it is not so, then 
there exists a feasible solution (M, 0 ) of (2) such that its weight w is less than the 
weight w of (M, 0). In similar way as above, we can construct then a word p such 
that p € L(B) and w is equal to the weight of path[R, RpB], This yields that the 
weight of path[R, RpB] is less than the weight of path[R, i?pB] which contradicts 
our assumption that path[R, RpB] is a shortest path leading from R into some final 
state in Consequently, (M,0) is an optimal solution of (2). 

Our Proposition provides the following procedure for finding an optimal solution 
of (2). 

Procedure for finding an optimal solution of (2) 

Step 1. Construct the transition graph of the automaton B and calculate the set F 
of final states. 

Step 2. Let us equip the transition graph with the weights of the operating units, and 
simultaneously, rewrite the labels of the edges such that let every edge have 
only one label. 

Step S. Determine a shortest path leading from the state R into the set F. 

Step 4• By using the obtained shortest path, determine an optimal solution of problem 
(2). 

It is worth noting that the whole transition graph is not required by the pro-
cedure in general, only the transition graph of the subautomaton generated by the 
state R. To demonstrate this fact and the procedure, let us consider the following 
small example. 

Example 2. Let M = {ai , . . . ,ag}, R — {01,02,^3}, P = {as} and O = 
{ui, u2, U3, U4 }, where the definition of the operating units and their weights are 
given by the table below. 

inpu t mater ials o u t p u t mater ia ls weight 

Ui a i , a 2 a4, a5 2 

U2 a5, a6 5 

U3 Ol) 0.3 a6, a.7 1 
U4 a5, a6 a8 3 

The process graph of this design problem is depicted in Figure 2. 



336 B. Imreh 

o 

a 8 

Figure 2. T h e process graph of Example 2. 

By constructing, the transition graph of the subautomaton generated by R, 
we get a transition graph of 12 vertices. It is depicted in Figure 3, where the 
sets are given by circles containing the indices of their elements, loop edges are 
omitted, furthermore, over each edge the operating unit is written which induces 
the transition and under the edge the weight of the operating unit is given. By 
determining the shortest paths, we obtain that the path belonging to the word 
U1U3U4 is a suitable shortest path, its edges are bold in Figure 3. The corresponding 
optimal solution with weight 6 is given in Figure 4. 
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Figure 3. T h e weighted transi t ion graph for Example 2. 

Figure 4. T h e optimal solution of Example 2. 
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Factorizations of Languages and 
Conditions * 

Alexandra Mateescuf Arto Salomaa* and Sheng Yu§ 

Abstract 

Representat ions of languages as a p roduc t (catenat ion) of languages axe 
investigated, where t he factor languages are "prime", t h a t is, cannot be de-
composed fu r the r in a nontrivial manner . In general, such prime decomposi-
tions do not necessarily exist. If they exist, they axe not necessarily unique 
- the number of factors can vary even exponentially. T h e paper investigates 
pr ime decomposit ions, as well as the commut ing of the factors, especially for 
the case of finite languages. In par t icular , a technique about commut ing is 
developed in Section 4, where t he factorization of languages L\ and L2 is 
discussed under the assumpt ion L1L2 = L i L \ . 

Keywords: finite language, catenation, commutativity of languages, prime 
decomposition 

1 Introduction 
Prime factorizations of natural numbers and their uniqueness constitute one of the 
really fundamental issues in all mathematical sciences. On the other hand, in the 
theory of formal languages, the operation of product or catenation was introduced 
already at a very early stage. Clearly, any language L can be expressed as a 
product of itself and the language {A} consisting of the empty word A.. We refer 
to such decompositions of L as trivial, and say that L {A} is prime if it has only 
trivial decompositions. In a prime decomposition for a language L every factor is 
a prime. Although questions dealing with primality can be viewed as fundamental 
in language theory, rather little work in this area has been done so far, see, for 
instance, [10, 6]. [2] is an early reference dealing with finite languages. [7] develops 
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a method according to which one may construct, with the maximal use of the 
distributive law, for every finite language F an expression from which the number 
of states and final states in the minimal deterministic automaton for F can be 
immediately seen. [10] contains results about the commuting of two languages in 
some special cases. 

The following remarks about related papers are in order. A systematic study 
about decompositions was initiated in the technical report [5]. This paper is the 
"journal version" of the report [5], while [9] is the "conference version" of it. The 
report [5] has given impetus to further research, for instance, [3, 4]. We have 
included in this paper material from [9] only insofar it increases readability. In 
particular, our main technical contribution in this paper, Section 4, is disjoint from 
[9]. 

We begin with the following basic observation about finite languages. Whenever 
a nonempty finite language F can be written as a product 

F = F1F2...Fk, 

where none of the factors Fi, 1 < i < k, is trivial, then k cannot be larger than the 
length of the longest word in F. Consequently, we have always a complete control 
of all possible decompositions, at least in principle. This does not hold true for 
infinite regular languages, where there is no bound for the number of factors. Still 
decompositions such as 

£* = LIL2 = (A + E + E 2 + . . . E n - 1 ) ( E n ) * , n > 2; 

convey definite information about E*. (Here, as frequently in the sequel, "+" stands 
for union.) Indeed, they were instrumental in the proof for the fact that equations 
between regular expressions possess no finite basis, see [7] for details. 

Every finite language (different from {A}) possesses a prime decomposition. This 
follows by an obvious induction on the length of the longest word in the language. 
This is not true for infinite languages. For instance, no star language L (L = K*, 
for some K) can possess a prime decomposition. Indeed, for infinite languages, 
decompositions other than prime decompositions can sometimes be quite useful. 
For instance consider the language L over the one-letter alphabet {a}, 

L = {a* | i = 10,13,16,17,19,20 or i > 22}. 

L possesses a decomposition L = L1L2, where L\ = (a3)+ and L2 — (a7)+ . Here 
we definitely have a simplification of the original language, presented as a product 
of languages, although the factors are not prime. For instance, the total number 
of states in the minimal automata for L\ and L2 is much smaller than the number 
of states in the minimal automaton of L. Using the same idea and allowing an 
arbitrary number of factors, one can show that the number of states may grow 
exponentially in the transition from the decomposition to the original language. 
Somewhat similar matters are discussed also in Section 3. We hope to return to 
the discussion of this and other similar problems (which lie outside the scope of the 
present paper) in another context. 
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A brief description of the contents of the present paper follows. The reader is 
expected to be familiar with the very basics of formal languages and finite automata. 
One of the references [6, 7, 8] may be consulted if need arises. 

Basic decidability results are presented in Section 2. They lead also to a notion 
very central in the study of regular languages, that of a decomposition set, originally 
introduced in [9]. Sections 3-5 deal exclusively with finite languages. In Section 3, 
we discuss decompositions of different lengths, as well as the testing of the primality 
of a finite language, also from the point of view of complexity. The two final sections 
deal with the commuting of two finite languages Ft and F2, that is, the validity of 
the equation FIF2 = F2Fi. While this is a tricky problem in the general case, some 
special cases can be handled. 

Our main results are contained in Section 4, where factorization of languages 
Fi and F2 is discussed under the assumption F\F2 = F2F\. Also a very efficient 
construction is presented in the case where one of the two languages involved is 
a singleton. The construction could be applicable also in other similar situations. 
The final Section 5 discusses some recent results and open problems. 

It has not escaped our notice, especially in view of the many possible interpre-
tations of finite languages and the central theoretical role of thé problems studied 
in this paper, that the problems might turn out to be significant in certain applica-
tions. For instance, succinct representations of DNA nucleotide sequences certainly 
fall within this category. However, we have had no specific applications in mind. 

2 Decomposition sets and decision problems 
The notions of a prime language and a prime decomposition of a language were 
already defined in the Introduction. According to the definition, the language {A} 
consisting of the empty word is not prime. Thus, all factor languages in a prime 
decomposition are nontrivial. Depending on the language, the prime decomposition 
may be unique or there may be several prime decompositions for the same language. 
It is also possible that a language has no prime decompositions. However, every 
finite language possesses a prime decomposition. 

Typical problems concerning the decomposition of finite languages are the fol-
lowing: 

1. Is a given finite language prime? 

2. Find all prime decompositions of a given finite language. 

3. Find, for a given finite language, a prime decomposition possessing a specific 
property. (We might require, for instance, that the total number of states in 
the automata accepting the prime factors is minimal.) 

It is obvious that all problems of this nature are decidable for finite languages. 
The complexity issues lie mainly outside the scope of this paper. In many cases, 
an exhaustive search is the only algorithm we know for a specific problem. 
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We now present some simple examples, due to [9], of prime and nonprime finite 
langauges. Consider the languages over the alphabet {a}, defined by 

Fn,k = A + ak + a2k + • • • + ank, n > 2, k > 1, 

= A + a2 + a3 + a4 + • • • + a" ,n > 4. 

Let, further, F„,n > 4, denote any language consisting of A and an and, in addition, 
of arbitrarily many words a1 with n/2 < i <n. Then no language FUtk is prime, 
whereas all languages Fare prime. The language.F^ is prime iff n = 4. 

Sometimes a slight change in a prime language induces a possibility for a de-
composition. Consider the following two languages: 

F = adba + acbb.+ bcaa + bdab, 

F' = adba + adbb + bdaa + bdab. 

Thus F' results from F by replacing the two occurrences of the letter c by the 
letter d. Then the language F is prime, whereas F' possesses the decomposition 
F' = (adb + bda)(a + b). See [9] for details, as well as for the proof of the following 
theorem and for related references. 

Theorem 1 There is no algorithm, for deciding whether or not a given linear lan-
guage is prime. Consequently, the problem of primality is undecidable for context-
free languages. 

The proof of Theorem 1 does not work for regular languages. Indeed, as Theo-
rem 2.2 below shows, the primality problem is decidable for regular languages. We 
now recall from [9] a notion very suitable for the study of decompositions of regu-
lar languages. It is closely related to left quotients of regular languages. It shows 
how an arbitrary decomposition can be extended to one of finitely many specific 
decompositions, obtainable in a standard way. 

Let R be a regular language over an alphabet E, and let A = (Q, S, QO, QF) 
be the minimal finite deterministic automaton for R. (Here Q is the set of states, 
qo the initial state, QF the set of final states, and S the transition function. We 
extend <5 to words over E. Thus, 6(q,w) = q' means that the word w takes A 
from the state q to the state q'.) For a nonempty subset P C Q, we consider the 
following two languages: 

.Jif = | % , ,« ; ) GP}, 
i?2

p = p | {W | 6(p,w) e QF}. 
pep 

Lemma 1 Let R and A be defined as above. Assume that R = L1L2, where L\ 
and ¿2 are arbitrary languages. Define P CQ by 

P = {p E Q | S(qo,w) = p, for some w € Li}. 

Then R — R1R2 and, moreover, Li C Rf for i = 1,2. 
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Lemma 1 was established in [9]. Observe that the languages L\ and L2 above 
are quite arbitrary; they need not even be recursively enumerable. They can always 
be extended, without losing the validity of the decomposition, to regular languages 
obtainable from the minimal automaton for A. These resulting "standard" decom-
positions can always be expressed in terms of a decomposition set. 

By definition, a nonempty subset P C Q is a decomposition set (for a regular 
language R) if R = J? fJ i f . The decomposition R = flfflf referred to as the 
decomposition of R induced by the decomposition set P. We say that the decom-
position L = LyL-2 of a language L is included in the decomposition L = L[L'2 if 
Li C L\, i = 1,2. See [9] for the proof of the following result. 

Theorem 2 Every decomposition of a regular language R is included in a decom-
position of R induced by a decomposition set. The problem of primality is decidable 
for regular languages. 

The algorithm obtained by checking through all possible decomposition sets is 
clearly exponential. It is likely that primality testing is NP-complete even for finite 
languages. Observe also that the decomposition induced by a decomposition set 
may be trivial. Indeed, we have i i f = {A} iff P = {qo} and qo has no incoming 
arrows. Similarly, — {A} exactly in case P = QF and A is the only word taking 
A from each of the final states to a final state. Also the following result is an 
immediate corollary of Lemma 1. 

Theorem 3 Whenever a regular language has a nontrivial decomposition, it has a 
nontrivial decomposition where the factors are regular languages. 

We conclude this section with two open problems. 
Open problem. Instead of catenation, we may take the shuffle operation to be 

the product operation for languages. Decompositions and primality can be defined 
for this product as well. Is the last sentence of Theorem 2 valid also now? In other 
words, is the primality of regular languages with respect to the shuffle product 
decidable? Although we have been able to settle some special cases, the case of an 
arbitrary regular language seems to be very tricky. 

Open problem. Does Theorem 3 hold with "regular" replaced by "context-
free"? It would be very strange to have an example of a context-free language L 
having nontrivial decompositions L = L1L2, in all of which at least one of the 
languages L\ and L2 is non-context-free. 

3 Primality testing 
In the remainder of this paper we discuss only finite languages. A given finite 
language may possess several prime decompositions. It may even happen that two 
prime decompositions of the same language have no common factors. For instance, 

(A + a2) (A + a2 + a3 + a4) = (A + a2 + a3)2, 
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where all factors are prime languages. Even the number of factors may vary dras-
tically in different prime decompositions of the same language. The following con-
tribution to Problem 2 of thé preceding section was established in [9]. 

Theorem 4 There are finite languages Ln having two prime decompositions with 
0(n) and 0(logn) factors. 

Theorem 4 was established in [9] using the following example. Consider numbers 
n = 2k, k > 1, and languages 

Ln = X + a + a2 + h a" - 1 . 

Then 
Ln = (A + a)""1 = (A + a)(A + a2)(A + a 4 ) . . . (A + a2"^). 

, The most straightforward examples about factorizations not unique are obtained 
in terms of languages over one-letter alphabet {a}. Other examples are easy to 
construct. For instance, 

F' = A + a + b + ab + b2 + ab2 +b3 +ab3 + b4 + ab4 = (X + a + b + b2+ ab2)(X + b)2 = 

= (X + a + ab + b2+ ab2)(X + b)2 = (A + a)(A + b2){X + b)2, 

where all languages within parentheses are primes. 

Consider primality testing, Problem 1 mentioned in Section 2. There seems to 
be no other general method than trying all possible factors. Of course, in special 
instances, ad hoc arguments can be used to exclude factors of certain types. A 
special case consists of testing the primality of languages of the form 

A + ah+ah+--- + ai", (1) 

where the i's are distinct positive integers. In this case primality testing can be 
reduced to a problem concerning sets of nonnegative integers as follows. 

Let N be a set of nonnegative integers. We say that N has the decomposition 
property if there are nonempty subsets N\ and _/V2 of N, maybe overlapping or 
identical but both containing at least two elements, such that 

N = {ni + n2 | ni £ Ni and n2 € iV2}-

We also say that N decomposes into and iV2. (Recall here also the one-letter 
language L presented in the Introduction.) 

Clearly, N can have the decomposition property only if 0 £ iV, in which case 0 
belongs also to both Ni and iV2. The following result is now obvious. 

Lemma 2 The language L/v = SigAra® is prime iff the set N contains 0 and has 
not the decomposition property. More specifically, if N decomposes into Ni and N2 
then 

Ln = (a + y , ai)(A + E 
ieNi iew2 
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Although the problem of N possessing the decomposition property bears some 
resemblance to the subset sum problems, we have not been able to establish its 
./VP-completeness. Of course, testing the primality of the languages (1) is only a 
special case of the general problem. 

If c is a letter not in the alphabet of F, then F + c is always prime. One can 
affect the same change also without introducing new letters. 

Theorem 5 Let F be a finite language whose minimal alphabet E contains at least 
two letters. Then for some w £ E+ , F + w is prime. 

Proof. Let k be the length of the longest word in F. Let w be any word of length 
2k + 1 such that there is a word in F whose first (resp. last) letter differs from the 
first (resp. last) letter of w. This requirement can be satisfied since E contains at 
least two letters. We claim that F + w is prime. Assume the contrary: F + w has a 
nontrivial decomposition F + w = F\F2. We can write Pi = F{ + w\, F2 = F2+w2, 
w = w\vj2. (Possibly P/ is empty or Wi — X.) One of the words wi and w2 is of 
length greater than k. Assume that \w2\ > k. Then F[ — 0 because, if a; £ F{, the 
word xw2 is not in F + w. Thus, F + w = W\F2. But this is not possible because P 
contains a word whose first letter differs from the first letter of w\. (vj\ = A would 
yield a trivial decomposition.) If |u>i| > k, we obtain similarly a contradiction, 
using the fact that P contains a word whose last letter differs from the last letter 
of w2. This completes the proof. q 

Theorem 5 can be extended to concern languages P over {a} containing the 
empty word. 

4 Factorization versus commutativity conditions 
It was one of the very early results on combinatorics on words that two words 
u and v commute, uv = vu, iff both u and v are powers of the same word. No 
similar result is known for finite languages. When do two finite languages Pi and 
F2 commute, P1P2 = P2P1? We begin with the special case, where one of the 
languages is a singleton. The technique presented in this section, interesting also 
on its own right, shows in detail the structure of the two languages. 

The following results are well known and can be found in, e.g., [6] or [10]. 

Lemma 3 If uv = vz, u,v,z £ E*, and « / A, then u = xy, v = (xy)kx, and 
z = yx for some x, y £ E* and k > 0. 

Lemma 4 If uv = vu, then there exists such that u = xs and v = xl for 
some s,t > 0. 

Lemma 5 If um = vn and m,n> 1, then u = xs and v = xl for some x £ E* and 
s,t> 1. 

Theorem 6 Let x € E* and L C E* be a finite language. If xL = Lx, then there 
exists w £ E* such that x = ws and L — Ul=i{wii}< for s,n,t\,... ,tn > 0. 
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Proof. The theorem holds trivially if L — 0. If L = {?/}, then xy = yx. By 
Lemma 4, we have x = ws and y = w* for some s, t > 0. Thus, the theorem holds. 

Assume that the theorem holds for L = {yi,..., yt}, t < n. 
Now we consider the case when t = n, i.e., L = {yi, •. • ,yn}- We have the 

following three cases: 
Case I. xyn ' ynx. Then, by Lemma 4, x = WQ° and yn = WQ° for some WQ £ E* 
and so, to > 0. Let L' = {j/i, . . . ,i/n_i}. Then xL' = L'x since xL = Lx, xyn = 
ynx, and xyn g xL' and ynx & L'x. By the induction hypothesis, x = iu®1 and 
L' = U £ i V i ' } s o m e ^ and S\,ti > 0. Since x = Wq0 = to*1, w0 and wi 
are powers of a common word w, i.e., v>o = wl and W\ = wm. Then x = wls° and 
L = {wmt\... ,wmt"-1,wlt°}. The theorem holds. 
Case II. xyn ^ ynx. Then xyn = y^x for some ii £ {1, . . . ,n - 1}. If xy^ = ynx, 
then let Li = {yiltyn} and L2 = L — L\. Otherwise, xy^ = y^x for some i2 £ 
{1,. . . ,n — 1} — {¿i}. We continue this way until we get xyim = ynx, i.e. 

xyn=yhx, xyh=yi2x, , xyim=ynx. 

Consider the case m < n — 1. Let L\ = {y^ , . . . , j/jm, yn} and L2 = L - L\. Then 
xLi = L\x and xL2 = L2x. By the induction hypothesis, we have 

m n 
x=uSl, Li = (^{it^}, and x = v32, L2=[j{vt'}. 

i=l j=1 

Since it®1 = vS2 = x, we have u = wk and v = wl for w £ E* and k,l > 0. 
Therefore, 

m n 
x = wk°\ ¿-(UK^iudJW4'})-

i=l j=l 

Case III. This case is the same as Case II except that m = n — 1, i.e, we have 
xyn ± ynx and 

xyn — 2/ijX, xyii = yi2x, , xyin_1 = ynx. 

Since xyn = i/i,x and xy^ = y^x, we have, by Lemma 3, 

X = (uiVi)klU1: yn=V1U1, 2/ti — UiVi 

x - (u2v2)k2u2, yh = v2u2, yi2 = u2v2. 

So, we have 
(uiWi)4^!«!^! = u2v2(uivi)klui. 

Then, U\V\ = v\Ui. Thus, u\ and Hi are powers of the same word w\ £ E*. So, 
x = u/®1 and yi - u)'1 for si, t\ > 0. Similarly, we can show that, for 1 < i < n, 

x = w*' and yi = wf. 
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Since wl1 = ... = w„n — x, we know that w\, . . . , wn are powers of a common 
word w, i.e., wi = wtl, . . . , wn = wln by Lemma 5. Thus, L = UlLii10'^'} 
x = wllSl. • 

Let p and q be two natural numbers such that (p, q) = 1 and p < q. Define 
Np = { l , . . . , p } and Nq = Also define a function a : Nq —• Nq by 
a(i) = ((i+p-l) mod q) +1. Thus, a(i) — i+p where the least positive remainder 
of the sum modulo q is taken. Since (p, q) = 1, it is clear that, for any i € Nq, we 
have {i,a(i),... ,cr i _1(i)} = Nq and crq(i) = i. 

Let w 6 £<m, t,m > 0, i.e., w = xix2 • • -xt and Xj 6 E m , 1 < i < t. Denote by 
(w)lm\ 1 < i < t, the substring Xi of w. When m is understood, we simply write 
M i -

Let Li C S p m , L2 C S«m, p,q,m > 0, (p,q) = 1, p < q, and L j L 2 = L2LX. 
Then we have the following results. 

Lemma 6 Let N'q = {¿ i , . . . , in}, 1 < n < q, be a subset of Nq and x\,..., xn 6 
Sm. If there exists w G L2 such that (w)ix = xi, ..., (w)in — xn, then there exists 
u £ L\ such that (u)ij = Xj for all ij £ N^ fl Np. 

Proof. The lemma holds due to the facts that L\L2 = L2L\ and p < q. • 

We explain this lemma by the following example. 

Example 1 Let p = 3 and q = 7. Then Np = {1,2,3} and Nq = {1,2, . . . ,7}. 
Given N^ = {1,3,4,7} and xi,x2,x3,x4 G X = S m , there is w £ L2 such that 
(w)i = xi, (w)3 = x2, (w)4 = X3, and (w)7 — X4. Then, clearly, there is u £ Li 
such that (u)i = X\ and (11)3 = x2, which is illustrated in the diagram below. 

w 

f 

I i-J 1 ^ ' ' —' 1 1 in I^Lj 
X J X 2 X 3 

H in LJL2 

Lemma 7 Let N'q = {¿1,... ,in}, 1 < n < q, be a subset of Nq and x\,... ,xn € 
Sm. If there exists w € L2 such that = x\, ..., ¿n) = xn, then there 
exists W' £ L2 such that (W')^ = Xi, ..., (UJ1)^ = xn. 
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Proof. Let w 6 L2 such that {ui)a^}) = Xj, ij £ Then there exists u £ Li 
such that = xj for all <r(ij) £ n Np by Lemma 6. Since wu £ L2LX 

and L2L\ = L\L2, we have wu = vw1 for v £ L\ and w' £ L2. Notice that 
(w')i = (ui)CT(i) for 1 < i < (q - p) and (w')i = (u)a(¿) for (q - p + 1) < i < q due 
to the fact that |u| = p and the definition of a. Therefore, (u/),,- = (w)<7(ij) — Xj, 
1 < j < n. D 

We explain the above lemma and its proof by the following example. 

Example 2 As in the previous example, let p = 3 and q = 7. Then Np = {1,2,3} 
and Nq = {1,2, . . . , 7} . We are given N'q = {1,3,4,7} and xx, x2, x3 , x4 € X = £m, 
and we kno\y that there is w £ L2 such that (u>)CT(x) = xi, (10)0(3) = x2, (w)ct(4) = 
X3, and (w)CT(7) = x4 (i.e., (wj4 = xi, (w)6 - x2, (w)7 = x3, and (w;)3 = x4). Then, 
there is u £ Li such that (u)3 = x4 by Lemma 6. Since wu £ L2Lt — L\L2, we 
have wu — vw' for v 6 L\ and w' £ L2. We can see from the diagram below that 
(u/)i = xi, (w')3 = x2, {w')4 = x3, and (w')7 = x4. 

w u 

w' 

Corollary 1 Let = {ii,... ,in), 1 < n < q, be a subset of Nq and xi,..., xn £ 
£m. If there exists w £ L2 such that (w)<7fc(i1) = Xi, • • •, (if)CT

fc(in) = xn, for some 
k, 0 < k < q — 1, then there exists w' £ L2 such that (w1)^ — x\,..., (w')in — xn. 

Proof. Apply Lemma 7 k times. • 

Theorem 7 Let Lx C £Pm , L2 C S i m , p,q,m> 0, (p,q) = 1, and LXL2 = L2L1. 
Furthermore, let X = {w £ £m | wu £ L\ for some u € £*}. Then L\ = Xp and 
L2=X". 

Proof. First, we prove that Lx C Xp and L2C Xq. Define Yi - {w £ S m | uwv £ 
Li for u £ i;^-1)"1 and v € E<*-i>m}I 1 < i < p, 

and Zj = {w € E m | uwv £ L2 for u £ E^ - 1 '™ and v £ 1 < j < q. 
Then,- clearly, L\ CYi---Yp and L2 C Z\ • • • Zq. We know that Yi = X and it is 
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obvious that Z\ = X. Let x £ Zi for some i, 1 < i < q. Then there is a word 
w £ L2 such that (w)i = x. It is clear that i — ak(l) for some k, 0 < k < q — 1. 
Then, by Corollary 1, we know that there is w' £ L2 such that (w')i = x. So, 
x £ Zi = X. Since x is chosen arbitrarily, we have shown that Zi C X. Similarly, 
we can show that Zi C X for each i, 1 <i < q. Therefore, we have Z\ • • • Zq C Xq 

and, thus, L2 C Xq. As a consequence we have that Li C Xp. 
Second, we prove that Xp C Li and Xq C L2. In order to do so, we prove by 

induction on n, the cardinality of N'q, 1 < n < q, that for any Nq = {¿i , . . . , i n } C 
Nq and x\,..., xn £ X, there exists w £ L2 such that (w)ik = xk, for 1 < k < n. 
For n = 1, let N^ = {«} and x be an arbitrary word in X. If i = 1, it is clear that 
there exists w £ L2 such that (w)i = x. Otherwise, there a k( i ) = 1 for some k, 
1 < k < q — 1. So, by Corollary 1, we have w £ L2 and (w)i = x. 
For the induction step, let N'q = { ¿ i , . . . , i n } and xi,...,xn £ X. Denote Np = 
N'q n Np. If iv; / 0 and N'q-N'plL 0, then both #N'p < n and #(N'q - A^) < n. 
Then there exist u £ L\ such that (u)ik — xk for ik £ Np and v £ L2 such that 

= xi for ii £ N'q - Np by the induction hypothesis. Since L\L2 = L2Li, 
we have uv = wz for w £ L2 and z £ L\. Clearly, (w)ik = xk for all ik £ Nq. 
Otherwise (Np = 0 or Nq - Np = 0), there is an integer A; > 0 such that ak(N'q) 
satisfies the condition. Then by Corollary 1 and the above arguments, we have 
w £ L2 such that (w)ik = xk. 

Let n = q, i.e., N' = Nq. Then we have proved that Xq C L2. Using Lemma 6, 
we get Xp C L\. Therefore, we have L\ = Xp and L2 = Xq. • 

5 Further results and open problems 
One might be tempted to conjecture that two finite languages F\ and F2 commute, 
FiF2 = F2F\, iff there is a finite language F such that both F\ and F2 are unions 
of powers of F. (Indeed, such a conjecture was presented in [9].) Clearly, if both 
Fi and F2 are of the form 

Fh + Fi2 + ... + F , 

where also F° = {A} can appear among the terms of the union, then F\F2 = F2F\. 
However, the converse is not true: F\ and F2 may commute without being 

unions of powers of the same set. The examples used in connection with Theorem 4 
can be applied to provide counterexamples. For instance, denote 

Li=a + a2 + a3, L2 = a + a3, L3 = A + a. 

Then 
LXLZ = L2Lz(= L3L1 = L 3 L 2 ) . 

If we now denote F, = Li + L3{b}L3, i = 1, 2, it follows that FIF2 = F2FI- It is 
also clear that Fi and F2 cannot be represented as unions of powers of the same 
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set. (First examples to this effect were given in [3], where it is also shown that the 
converse holds in case the cardinality of one of the sets F\ and F2 is at most 2.) 

The validity of the converse, as well as the unique decomposition, can be directly 
established in some special cases. 

For instance, let £ consist of all nonempty finite languages F, where all words 
of F are of equal length. Then we get immediately the following result. 

Lemma 8 Assume that F is a language in £ and that F = FIF2, for some Fi and 
F2. Then both and F2 are in £. 

Lemma 8 shows that the languages in £ possess a unique prime decomposition 
and that £ is a free monoid with respect to catenation. Observe that £ is not 
finitely generated. See [9] for a more detailed discussion. 

Thus, the equation FjF2 = F2F\ holds for languages in £ only in case both Fi 
and F2 are powers of the same language X . Moreover, if one of the languages, say 
F2, is an arbitrary finite language, we may present it as a (finite) union of languages 
in £ and use the same argument to show the existence of a language X such that 
Fi is a power of X and F2 is a (finite) union of powers of X. This and other similar 
results have been established in [10]. 

The technique in the preceding section was based on more detailed arguments 
and yields a direct construction of the set X. 

In conclusion, we present some general remarks and open problems concerning 
the converse mentioned above. What can be said, in general, about two commuting 
finite languages F\ and F21 

Open problem. Assume that F\F2 = F2F\ holds for two finite languages F\ 
and F2. Characterize the cases, where and F2 are not unions of powers of the 
same language. In the sequel we refer to such cases as exceptional. 

One possible approach to this problem is to consider positive decompositions, 
[9]. As seen above, the ambiguities caused by the presence of A seem to be the 
reason behind exceptional cases. 

Another approach is is to have an upper bound for the cardinality of one of the 
two finite languages, say Fx. We already mentioned that if F\ is of cardinality at 
most 2 then, independently of F2, the case is not exceptional, [3]. On the other 
hand, the example 

F! - a + ab + ba + bb, F2 = Fx + F? + bab + bbb 

given in [4] shows that the upper bound 4 for the cardinality of F\ is not sufficient. 
It is an open problem whether or not the upper bound 3 is sufficient. 

In our few final remEurks about commuting, the languages considered are not 
necessarily finite. Following [4], we say that a finite language F C S* possesses 
the Bergman type characterization, BTC if, for any language L C S* satisfying 
FL = LF, there exists a language K C £+ and sets I, J of nonnegative integers 
such that 

F={jK\ L={jKi. 
iei j€J 
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(The terminology refers to [1], where the commutation of two polynomials over 
noncommuting variables is investigated.) It is shown in [4] that every three-word 
code possesses BTC. We conclude with the following open problems from [4]. 

Open problem. Does every code possess BTC? 
Open problem. Does every three-word language possess BTC? 
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Reduction of Simple Semi-Conditional Grammars 
with Respect to the Number of Conditional 

Productions 

Alexander Meduna and Martin Svec* 

Abstract 

The present paper discusses the descriptional complexity of simple semi-
conditional grammars with respect to the number of conditional productions. 
More specifically, it demonstrates that for every phrase-structure grammar, 
there exists an equivalent simple semi-conditional grammar that has no more 
than twelve conditional productions. 

Keywords: descriptional complexity, simple semi-conditional grammars 

1 Introduction 
To describe languages as economically and succintly as possible, formal language 
theory has recently intensively investigated how to reduce grammars without any 
decrease of their power (see [1], [4], and [5]). Continuing with this vivid investiga-
tion, the present paper discusses the reduction of simple semi-conditional grammars, 
which characterize the family of recursively enumerable languages (see [2]). 

More specifically, besides ordinary context-free productions, simple semi-con-
ditional grammars may have some conditional productions which have an attached 
string representing a forbidding condition or a permitting condition. This pa-
per concentrates its discussion on the reduction of simple semi-conditional gram-
mars with respect to the number of conditional productions. It demonstrates that 
for every recursively enumerable language, there exists an equivalent simple semi-
conditional grammar that has no more than twelve conditional productions^ 

2 Definitions 
This paper assumes that the reader is familiar with the language theory (see [3]). 

Let V be an alphabet. V* denotes the free monoid generated by V under 
the operation of concatenation where e denotes the unit of V*. Let V+ = V* — 

'Department of Computer Science and Engineering, Brno University of Technology, 
Bozetechova 2, Brno 61266, Czech Republic 
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{e}. Given a word, w G V*, |iu| represents the length of w. We set sub(w) = 
{y : y is a subword of u;}. Given a symbol, a G V, denotes the number of 
occurences of a in w. For w G V+, first(w) denotes the leftmost symbol of w. 

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G ' 
(V,T,P,S), where V, T and S are the total alphabet, the terminal alphabet (T c 
V), and the axiom (S G V — T), respectively, and P is a finite set of productions of 
the form (A x,a,P) with A G V - T, x G V", a £ V+ U {0} and ¡3 e V+ U {0}, 
where 0 is a special symbol, Q £ V (intuitively, 0 means that the production's 
condition is missing). Production (A -»> x,a,f3) G P is said to be conditional, if 
a / 0 or ^ ^ 0. G has degree (i, j), where i and j are two natural numbers, if for 
every (A x,a,/3) G P, a G V+' implies |a | < i, and 0 G V+ implies \fi\ < j. 
Let u,v G V", and (A —> x, a, /3) G P. Then, u directly derives v according to 
(.A -¥ x, a, P) in G, denoted by 

u=>G v [(A x,a,p)} 

provided for some ui,u2 G V*, the following conditions (a) through (d) hold 

( a ) u = UIAU2, 

(b) v = uixu2, 

(c) a ^ O implies a G sub(u), 

(d) 0 £ 0 implies P £ sub(u). 

When no confusion exists, we simply write u =>G V. AS usual, we extend =>G to 
=>'G (where i > 0), and The language of G, denoted by L(G), is defined 
as L(G) = {w £T* : S w}. 

Based Upon the concept of sc-grammars, Meduna and Gopalaratnam [2] have 
defined a simple semi-conditional grammar (an ssc-grammar for short) as an sc-
grammar in which every production has no more than one condition. Formally, 
let G = (V,T, P, S) be an sc-grammar. G is a simple semi-conditional grammar if 
(A -¥ X, a, P) G P implies {0} C {a, p}. 

3 Results 
Theorem 1 Every recursively enumerable language can be defined by a simple 
semi-conditional grammar of degree (2,1) with no more than 12 conditional pro-
ductions. 

Proof. Let L be a recursively enumerable language. By Geffert [1], we can assume 
that L is generated by a grammar G of the form 

G = (V, T, P U {AB e,CD e},S) 

such that P contains only context-free productions and 

V-T = {S,A,B,C,D}. 
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We construct an ssc-grammar G' of degree (2,1) as follows: 

G' = (V',T,P',S), where 
V' = VU W, 

W = {A, B, (eA), $, C, D, (ec), #}, VnW = ®. 

The set of productions P' is defined in the following way: 
1. if H a 6 P, H € V - T, a <E V*, then add (#•-> a , 0,0) to P'\ 

2. add the following six productions to P': 

(A A,0,A), 
(B^B,0,B), 
(A^(ea),AB, 0), 
(B^$,(eA)B, 0), 

($->£,0,(£a)); 

3. add the following six productions to P': 

(D 5,0,.D), 
(C->(ec),CD, 0), 
(D^#,{ec)D,0), 

( # ^ e , 0 , ( e c » . 

Next, we prove that L(G') = L(G). 

Basic idea: Notice that G' has degree (2,1) and contains only 12 conditional 
productions. The productions of (2) simulate the application of AB —> e in G' and 
the productions of (3) simulate the application of CD e in G'. 

Let us describe the simulation of AB —> e. First, one occurence of A and one 
occurence of B are rewritten to A and B, respectively (no more than one A and 
one B appear in any sentential form). The right neighbor of A is checked to be B 
and A is rewritten to (£A)- Then, analogously, the left neighbor of B is checked to 
be (£A) and B is rewritten to $. Finally, (SA) and $ are erased. The simulation of 
CD —> e is analogous. 

To establish L(G) = L(G'), we first prove the following two claims. 

Claim 1 S x' implies #xx> ^ 1 for aU X ^ {A,B,C,D} and some x' € 
(yy. 
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Proof. By inspection of productions in P', the only production that can generate 
X is of the form (X -> X,0,X). This production can be applied only when no X 
occurs in the rewritten sentential form. Thus, it is not possible to derive x' from S 
such that > 2 . • 

Informally, next claim says that every occurence of (£,4) in derivations from 5 
is always followed either by B or $, and every occurence of (EC) is always followed 
either by D or # . 

Claim 2 It holds that 

A J S *Q, y'1(£A)y'2 implies y'2 G (V')+ A first(^) G {£,$} for any y'x G (V')*; 

B) S =>*G, y[(ec)y'2 implies y'2 G {V')+ A first(yj) G { £ , # } for any y[ G (V)*-

Proof. We establish the proof by the examination of all possible forms of derivations 
that may occur when deriving a sentential form containing (Ea) or (ec)-

A) By the definition of P', the only production that can generate (EA) is p = 
(A —¥ (ea),AB,0). This production has the permitting condition AB, so it can be 
used provided that AB occurs in a sentential form. Furthermore, by Claim 1, no 
other occurence of A or B can appear in the given sentential form. Consequently, 
we obtain a derivation 

S =**G, u[ABu'2 =>g> u[{sa)Bu2 [p] 

for some u'^u^ G (V ')*, A,B £ s u b ^ u ^ ) , which represents the only way how to 
get (ea)- Obviously, (ea) is always followed by B in u[(ea)Bu'2. 

Next, we discuss how G' can rewrite the subword (£a)B in u[(ea)Bu2. There 
are only two productions having the nonterminals (EA) or B on their left-hand 
side—pi = (B $, (ea)B, 0) and p2 = {(ea) 0, B). G' cannot use p2 to erase 
(ea) in u[ (ea)Bu'2 because p2 forbids an occurence of B in the string to be rewrit-
ten. Production pi has also a context condition, but (ea)B G sub(u'1 (£a)Bu'2) and 
thus pi can be used to rewrite B with $. Hence, we obtain a derivation of the form 

S u'iABu'2 =>g- U'^EA)^^ 

Notice that during this derivation, G' may rewrite u[ and u'2 to some v[ and 
v'2, respectively (v'i,v2 G (V)*); however, (£a)B remains unchanged after this 
rewriting. 

In this derivation we obtained the second symbol, $, that can appear as the 
right neighbor of (EA)- Tt suffices to show that there is no other symbol that could 
appear immediately after (ea)• By inspection of P', only ($ —> e,0, (£,4)) can 
rewrite $. However, this production cannot be applied when (ea) occurs in the 
given sentential form. In other words, the occurence of $ in the subword (£.4)$ 

M 
[Pi]-
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cannot be rewritten before (EA) is erased by the production p2. Hence, (£,4) is 
always followed either by B or $ and thus the first part of Claim 2 holds. 

B) By inspection of productions simulating AB £ and CD —• e in G' (see 
(2) and (3) in the definition of P'), these two sets of productions work analogously. 
Thus, part B of Claim 2 can be proven by analogy with part A. • 

Let us return to the main part of the proof. Let g be a finite substitution from 
(V)* to V* defined as follows: ' 

1. for all X G V : g{X) = {A'}; 

2. g(Â) = {A}, g(B) = {B}, g((eA)) = {A}, g(%) = {B,AB}; 

3. g(C) = {C}, g(D) = {D},g({ec)) = {C}, g(#) = {C,CD}. 

Having this substitution, we can now prove the following claim: 

Claim 3 S =5>q x if and only if S x' for some x G g(x'), x G V*, x' G (V)*. 

Proof. The claim is proven by induction on the length of derivations. 
Only if: We show that 

S x implies S x, 

where m > 0, x G V*\ clearly x G g(x). This is established by induction on m. 
Basis: Let m = 0. That is, S 5. Clearly, S =>°G,'S. 
Induction Hypothesis: Suppose.that the claim holds for all derivations of length m 
or less, for some m > 0. 
Induction Step: Let us consider a derivation S x, x G V*. Since m + 1 > 1, 
there is some y G V+ and p G P U {AB -¥ e, CD -»• e} such that S y =̂ <3 
x \p}. By the induction hypothesis, there is a derivation S y. 

There are three cases that cover all possible forms of the production p: 

(i) p = H y2 G P, H ev - T , y2 ev*. Then, y = yrfy^ and x = 2/12/22/3, 
2/1,2/3 € V*. Because we have (H y2,0,0) G P', S =>•£,, yiHy3 

2/12/22/3 [{H -¥ 2/2,0,0)] and 2/12/22/3 = x. 

(ii) p = AB £. Then, y = yxABy3 and x = y\y3, 2/1,2/3 G V*. In this case, 
there is the following derivation: 

yiABy3 

=>c 2/I4^2/3 ¿A4)] 
=>G' yiÀBy^ [(B 5 , 0 , B)] 
^ G ' 2/i (£A)By3 M-* (£a),AB, 0)] 

2/1 (£A)$ 2/3 [(B - > $,(£A)5,0)] 
2/1 $2/3 №A) 

=>G' 2/12/3 e,0,(eA))]. 
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(iii) p = CD "-> e. Then, y = y\CDy3 and x = 2/12/3, 2/1,2/3 £ V"*. By analogy 
with (ii), there exists the derivation S y\CDy3 2/12/3. 

I f : By induction on. the length n of derivations in G', we prove that 

S =>Q> x' implies S =>G x 

for some x £ g(x'), x £ V*, x' G (V)*-
Basis: Let n = 0. That is, S =>•", S. It is obvious that S S and 5 G g(S). 
Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n > 0. 
Induction Step: Consider a derivation S ^ J t 1 x', x' G (V)*. Since n + 1 > 1, 
there is some y' G p' € P' such that S y' =$>G> x' \p'\, and by the 
induction hypothesis, there is also a derivation S =>G y such that y G g(y')-

By inspection of P', the following cases (i) through (xiii) cover all possible forms 
of p': 

(i) p' = (H 2/2,0,0) G P.', H £ V - T, 2/2 G V*. Then, y' = 2/^2/3. 
x' = 2/12/22/3, 2/1,2/3 € (V)* and y has the form y = y\Zy3, where 2/1 £ 
5(2/1)1 2/3 G 9(2/3) and Z G 9(i i) . Because for all X £ V - T : g{X) = {X}, 
the only Z is H and thus y = y\Hy3. By the definition of P ' (see (1)), there 
exists a production p = H —> 2/2 in P and we can construct the derivation 
5 y\Hy3 =>G 2/12/22/3 W s u c h t h a t 2/12/22/3 = x, x G s(x'). 

(ii) p' =• (A ->• 1 , 0 , 1 ) . Then, y' = y^Ay's, x' = 2/^2/3, 2/1,2/3 e (V)* and 
2/ = 2/i^2/3, where 2/1 £ 3(2/1), 2/3 €.3(2/3) a n d ^ e 3(j4). Because 3(A) = {A}, 
the only Z is A, so we can express y = y\Ay3. Having the derivation S 
y such that y £ g(y'), it is easy to see that also y £ g(x') because A £ g(A). 

(iii) p' = B,0,B). By analogy with (ii), y' = y ' M , x' = y[By'3, y = 
yiBy3, where y[,y'3 £ (V1)*, 2/1 € g(y[), y3 £ g(y3) and thus y £ g(x') 
because B £ g(B). 

(iv) p' — (A -* (eA),AB,0). By the permitting condition of this production, 
AB surely occurs in y'. By Claim 1, no more than one A can occur in y'. 
Therefore, y' must be of the form y' — y[ABy3, where 2/1,2/3 € (V)* and 
A £ sub(t/ji/3). Then, x' = y[(eA)By'3 and y is of the form y = y\Zy3, where 
2/i € g(y[), 2/3 € 3 ( 2 /3) and Z £ g{AB). Because g{AB) = {AB}, the only Z 
is AB; thus, we obtain y = y\ABy3. By the induction hypothesis, we have 
a derivation S =>G y such that y £ g(y'). According to the definition of 3, 
y £ g{x') as well because A £ g((e,4)) and B £ g(B). 

(v) p' = (B $,(£,4)5,0). This production can be applied provided that 
(<Sa)B £ sub(2/'). Moreover, by Claim 1, #¿2/' < 1- Hence, we can ex-
press 2/' = y[(eA)By'3, where y[,y'3 £ (V)* and B $ sub(y[y'3). Then, 
x' = 2/1 (£A)$y3 and y = y\Zy3, where 2/1 € g{y[), y3 €.3(2/3) and 
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Z € 9{{£A)B). By the definition of g, g((eA)B) = {AB}, so Z, = AB 
and y = y\ABy3. By the induction hypothesis, we have a derivation S 
y such that y € g(y')- Because A £ g((eA)) and B £ <?($), y £ g(x') as well. 

(vi) p' = ((eA) £ ,0 ,5) . Application of ({sA) £ ,0 ,B) implies that (eA) 
occurs in y'. Claim 2 says that (EA) has either B or $ as its right neighbor. 
Since the forbidding condition of p' forbids an occurence of B in y', the 
right neighbor of (eA) must be $. As a result, we obtain y' = y[ (eA)$y'3 

where y[,y3 € (V')*. Then, x' = y[$y'3 and y is of the form y = y'{Zy3, 
where j/i £ g(y[), 2/3 6 3(2/3) a n d z € By the definition of g, 
g({eA)$) = {AB,AAB}. If Z = AB, y = yiABy3. Having the derivation 
S y, it holds that y 6 g(x') because AB 6 g($). 

(vii) p' = ($ -4 e,0,(eA)). Then, y' = y[%y'z and x' = y'^, where y{,y'3 e (V1)*. 
Express y = yiZy3 so that yx £ g{y[), y3 £ g(y'3) and Z £ g($), where 
g($) = {B,AB}. Let Z = AB. Then, y == yxABy3 and there exists the 
derivation S =ï*a yxABy3 =>G 2/i2/3 [AB e], where yxy3 = x, x £ 3(2;'). 

In cases (ii) through (vii) we discussed all six productions simulating thé ap-
plication of AB —>• e in G' (see (2) in the definition of P'). Cases (viii) - (xiii) 
should cover productions simulating the application of CD —> e in G' (see (3)). 
However, by inspection of these two sets of productions, it is easy to see that they 
work analogously. Therefore, we leave this part of the proof to the reader (it can be 
established by analogy with (ii) - (vii) by replacing nonterminals A,B, A, B,(EA) 
and $ with C,D,C,D, (ec) and #) . 

We have completed the proof and established Claim 3 by the principle of induc-
tion. • 

Observe that L(G) = L(G') follows from Claim 3. Indeed, according to the 
definition of g, we have g(a) = {a} for all a ET. Thus, from Claim 3, we have for 
any x € T*: 

S x if and only if S x. 

Consequently, L(G) = L(G') and the theorem holds. • 
In fact, the previous proof established more than stated in Theorem 1. Indeed, 

it also reduced the number of nonterminals as the next corollary says. 

Corollary 1 Every recursively enumerable language can be generated by a simple 
semi-conditional grammar of degree (2,1) with no more than 12 conditional produc-
tions and 13 nonterminals. 

Proof. Observe that G' has 13 nonterminals in the proof of Theorem 1. • 

The above corollary tells us that besides the number of conditional productions, 
we have also reduced the semi-conditional grammars with respect to the number of 
nonterminals. In addition, we were able to establish this result for semi-conditional 
grammars of degree (2,1). This result gives rise to a question of whether we can 
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further reduce the number of conditional productions in the semi-conditional gram-
mars of any degree. In other words, consider the semi-conditional grammars with 
productions having context conditions of any length. Can they generate any recur-
sively enumerable language with fewer than 12 conditional productions? 
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Closed On-Line Bin Packing 

E. Asgeirsson* U. Ayestaf E. Coffmanf J. Etra§ 
P. Momcilovic*, D. Phillips*, V. Vokhshoori*, Z. Wang? 

and J. Wolfe* 

Abstract 

An optimal algorithm for the classical bin packing problem partitions 
(packs) a given set of items with sizes at most 1 into a smallest number of 
unit-capacity bins such that the sum of the sizes of the items in each bin is 
at most 1. Approximation algorithms for this NP-hard problem axe called 
on-line if the items axe packed sequentially into bins with the bin receiving 
a given item being independent of the number and sizes of all items as yet 
unpacked. Off-line algorithms plan packings assuming full (advance) knowl-
edge of all item sizes. The closed on-line algorithms are intermediate: item 
sizes are not known in advance but the number n of items is. The uniform 
model, where the n item sizes axe independent uniform random draws from 
[0,1], commands special attention in the average-case analysis of bin packing 
algorithms. In this model, the expected wasted space produced by an opti-
mal off-line algorithm is ©(%/"), while that produced by an optimal on-line 
algorithm is 0(%/"Tog~n)- Surprisingly, an optimal closed on-line algorithm 
also wastes only Q(y/n) space on the average. A proof of this last result is the 
principal contribution of this paper. However, we also identify a class of op-
timal closed algorithms, extend the main result to other probability models, 
and give an estimate of the hidden constant factor. 

1 Introduction 
An instance of the one-dimensional bin packing problem is a list Ln = 
(a i ,a2 , • • - , a n ) of items t ha t must be packed into, i.e., partit ioned among, a 
minimum-cardinality set of bins Bi,B2,--. subject to the constraint tha t the set 
of items in any bin fits within tha t bin's capacity. In the usual way, we will take 
the bin capacity to be 1 for convenience, so a set of items fits into a bin if and only 
if the item sizes sum to no more than 1. The unused space in Bi is called a gap 
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and is denoted by pj. The sum of the gaps in the occupied bins of a packing is the 
wasted space of the packing. 

The bin packing problem has countless applications in operations research and 
engineering. To name just a few, we mention storage allocation for computer net-
works, assigning advertisements to newspaper columns, assigning commercials to 
station breaks on television, writing a collection of files to several floppy disks, 
packing trucks with a given weight limit, and the cutting-stock problems of various 
industries like those producing lumber and cable. 

Let A denote an arbitrary approximation algorithm for the NP-hard bin packing 
problem and let OPT denote an algorithm that produces optimal packings. Let 
A(Ln) and OPT(Ln) denote the numbers of bins used by algorithms A and OPT. 
In the classical analysis of bin packing approximation algorithms, combinatorial 
methods are used to derive worst-case performance ratios 

RA := sup{4(L)/0PT(L)} 
L 

and their asymptotic variants. Less often, probabilistic studies that are typically 
quite difficult are conducted in order to obtain average-case performance. The 
average-case approach is followed in this paper. The item-size distribution is taken 
to be the uniform distribution on [0,1], denoted as usual by ¡7(0,1). This is the 
distribution of choice in bin packing analysis, along with the assumption that item 
sizes are independent. For general coverage of the probabilistic analysis of bin 
packing algorithms, see the monograph by Coffman and Lueker(1991). 

A bin packing algorithm is called on-line if it packs every item a; solely on 
the basis of the sizes of the items aj, 1 < j < i, i.e., without any information on 
subsequent items. The decisions of an on-line algorithm are irrevocable; packed 
items cannot be repacked at later times. Two classical on-line algorithms are First 
Fit and Best Fit. Each of these algorithms begins by putting ai into B\. Thereafter, 
First Fit places the next item into the lowest indexed (first) gap no smaller than 
the item, and Best Fit puts the next item into a smallest gap no smaller than the 
item with ties resolved in favor of the lowest indexed bins. 

A bin packing algorithm that can use full knowledge of all items in packing Ln 
is called off-line. One of the first results in the average-case theory was a proof 
by Lueker(1982) that an optimal off-line algorithm has the following asymptotic 
bound. 

£ O P T o / / i i n e ( L n ) = ! + 

where Q(y/n) bounds the expected wasted space, since the expected total item size 
gives the n /2 term. More recently, Shor(1991) proved that on-line packings must 
produce greater expected wasted space by at least a log factor. In particular, he 
showed that 

£OPTo n ; i r j e(L„) = ^ + Q(Vnlogn). 

Although there is no known simple algorithm for achieving this bound, the Best 
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Fit (BF) algorithm comes close in that (see Shor(1986)) 

£BF(L n ) = ! + 0 (v^ log 3 / 4 n) 

The closed on-line algorithms are intermediate between the classes of on-line 
and off-line algorithms: item sizes are not known in advance, but the number n of 
items is. As noted by Shor(1986), it is surprising that one can produce an algorithm 
that achieves O(^fn) expected wasted space without knowing item sizes in advance. 
However, the algorithm must know n, i.e., it must be a closed on-line algorithm. 
According to one such algorithm, which we call Closed Best Fit (CBF), the first 
[n/2] items are packed one to a bin and the remaining [n/2J items are packed by 
Best Fit. The claim is that CBF wastes at most 0(y/n) space on average, and so 
the following bound on closed on-line packing holds. 

Theorem 1 Tl 
EOPTclosed(Ln) = - + 

We have seen no proof of this result, and while it is true that standard techniques 
may be applied in such a proof, the way in which they are applied has novel features. 
For this reason, and because the improvement possible in closed on-line bin packing 
is indeed unexpected, the next section sets down for the record a proof of Theorem 
1: Still more reasons are provided by the additional results to which the analysis 
leads. For example, we derive a compact upper bound on the hidden constant factor 
from the analysis of a random walk. Further, as discussed in Section 3, Theorem 
1 will be seen to apply to a number of practical matching algorithms, and to be 
extendible to distributions other than the uniform. 

2 Proof of Theorem 1 
For convenience, we assume hereafter that n is even; this will not affect our asymp-
totic results. Let L ^ and Ln\ be the sublists of the first n/2 and last n/2 items of 
Ln, respectively. We begin by proving 0(y/n) wasted space for the modification of 
CBF which closes any bin Bj, j < n/2, after it receives a second item, and closes 
any bin Bj, j > n/2, after it receives its first item. Denote the modified algorithm 
by CBF». An example is shown in Figure 1(a). After proving that Theorem 1 holds 
for CBF*, we will show that CBF«(Ln) > CBF(Ln) for all Ln, thus completing the 
proof of Theorem 1. 

We begin with a key property of CBF, packings. 

Lemma 1 Let Ln and L'n differ only in the permutations of their last n /2 items. 
Then CBF»(Ln) = CBFt (L'n). 

Proof. Consider the ordered CBF, packing of Ln in which the bins are arranged so 
that the first n/2 items are in decreasing size order, as illustrated in Figure 1(b). 
We say that this packing is a canonical packing if in addition the last n/2 items 
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a) CBF b) Ordered CBF, c) Canonical packing 

Figure 1: An example with items 1 through n = 12 having sizes 

.26, .78, .82, .48, .08, .68, .57, .8, .12, .84, .5, .11. 

are in increasing size order. Roughly speaking, CBF, attempts to pack bins with 
matched items, one large and one small. However, ordered matchings (packings) 

(2) 

are not necessarily canonical unless Ln is in increasing size order. For example, in 
Figure 1(b) a canonical matching requires that items ag and a 12 be interchanged. 

On the other hand, the CBF» packing can be put into canonical form without 
changing CBF,(I/„). To see this, suppose items ¿1,¿2 are in and matched 
with j i , j 2 , respectively, in bins of the ordered CBF* packing. If a,j1 > a j 2 and 
a.ij > a,i2 then aj1 + a^ < aj1 + a^ < 1 and aj2 -I- a¿j < aj1 + a^ < 1, so we 
can interchange items j \ and without exceeding bin capacity. Iterating these 
interchanges at most 0(n2) times brings the CBF, packing into canonical form 
up through Bn/2• Trivially, the items in the singleton bins beyond Bn/2 can then 
be sorted into increasing order, at which point the entire packing is a canonical 
packing. In addition, the set of items in singleton bins can not have changed, since 
the Best Fit rule depends only on gap sizes and not on the bin (gap) indexing. We 
conclude that the cardinality of the CFB» packing is left unchanged at the end of 
the ordering process. It remains only to observe that CBF, packings for lists Ln 
and L'n that differ only in the permutation of their last n/2 items will converge 
under the ordering process to the same equal-cardinality canonical packing. • 

We now prove that Theorem 1 holds for CBF», and in the process, find the 
hidden constant factor. 

Lemma 2 

ECBF»(Ln) 

as n - > 00. 

Proof. By Lemma 1 we need consider only canonical CBF* packings. Let N\(y) be 
the number of items in Ln ' with sizes less than y and let N2(y) be the number of 
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items in Ln ^ with sizes greater than 1 — y. Define 

S(y) := N2(y) - N^y) 

and note that maxo<y<i S(y) > ¿(0) = 0. It is easy to see that 

C B F , ( L n ) = max S(y). (1) i 0<y<l 

As an example, note that maxo<y<i 6(y) = 1 in Figure 1(b), and that S(y) achieves 
its maximum for any y € (1 — an ,a$) . TO verify (1), one can argue in terms 
of the number of singleton bins beyond Bn/2 in the CBF, packing, which is just 
CBF«(Ln) - n/2. To the right of the rightmost singleton bin Bj with j < n/2, the 
number of items from L ^ less the number of items from lJrP gives the maximum 
of 8(y) over [0,1] and is equal to the number of singleton bins beyond Bnj2. 

We now interpret S(y) as a random walk that evolves as y increases from 0 to 
1. For each size a in Ln^ a plus is plotted at point a, and for each size a in Ln ^ a 
minus is plotted at point 1 — a. For each minus encountered as y increases from 0 
to 1, S(y) steps down by 1, and for each plus encountered, S(y) steps up by 1. Let 
Si, 0 < i < n, be the position of this random walk after the ith jump. As can be 
seen, {<5j} is a classical n-step symmetric random walk with the constraint that its 
paths start and end at the origin, i.e., ¿o = <5n = 0. Letting n = 2v, the number 
of such paths is (2

J/"). By the reflection principle (see e.g, Feller(1968), p. 72), the 
number of such paths that hit or exceed k is , 0 < k < v, and so 

1 E ' 
\<k<v 

By the binomial theorem, the sum evaluates to |(22"— (2„")), so routine applications 
of Stirling's formula yield 

17T72 
E max 5(y) = E max Si ~ \ — 

0<y<l 0<i<n V 8 

as n —> oo. • 

We will be done once we have proved 

Lemma 3 
C B F t ( L n ) > CBF(Ln). 

Proof. Let ae 1 , . . . , aek be the subsequence of items in L„. that are packed by CBF 
into bins Bj, j < n/2, that already have at least two items, or bins Bj, j > n/2, 
that already have at least one item. Remove these items from the CBF packing 
and repack them best-fit into the singleton bins Bj, j < n/2. That is, item a^ is 
put into a singleton bin Bj, j < n/2, with the smallest gap no smaller than 1 — at 
if such a bin exists; if no such bin exists, a^ is put into an empty bin (necessarily 

E max Si = -iw-r ( 
1 Kk<v x 
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beyond Bn/2). In either case, the bin receiving ati is then closed. The final packing 
is a CBF, packing of a list L'n that can differ from Ln only in the permutation of 
the last n /2 items. Moreover, the final packing has a cardinality at least that of 
the original CBF packing. In particular, CBF*(L'n) - CBF(L„) > 0 is the number 
of new singleton bins produced in the new packing. By Lemma 1 we can then 
conclude that 

CBF.CLiJ = CBF,(Ln) > CBF(Ln) 

which proves the lemma. • 

3 Final Remarks 
Consider the closed on-line algorithm that (i) packs the first n /2 items one to a 
bin, (ii) sorts the bins so that the items are in decreasing order, and (iii) packs the 
remaining items First Fit. This is the algorithm actually proposed by Shor(1986). 
Let us call this algorithm Closed First Fit (CFF) and define CFF* just as we defined 
the variant CBF* of CBF (limiting bins to at most two items). In comparing CFF* 
and CBF*, we observe that packing best fit is like packing first fit into a decreasing 
sequence, so the two algorithms give, for all Ln, exactly the same packing. 

. Theorem 1 is easily generalized to any distribution symmetric around 1/2 that 
is not concentrated entirely at 1/2. Further, we can apply the same ideas to distri-
butions U(0,1 /p), with p an integer. For example, suppose p = 3. Then we take 
n/6 bins and divide each into thirds. The top thirds of these bins are packed as 
before as if'they were bins themselves; only the scaling by a factor of 3 has any 
effect. Similarly, the middle thirds are packed after top thirds and then the bottom 
thirds are packed last. Bins beyond Bn/6 are introduced as needed and packed as 
if they consisted of 3 bins with capacity 1/3. The extension of Theorem 1 follows 
easily. 
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A PTAS for single machine scheduling 
with controllable processing times 

Petra Schuurman* and Gerhard J. Woeginger* 

Abstract 

We deal with a single machine scheduling problem in which each job has 
a release date, a delivery time and a controllable processing time. The fact 
that the jobs have a controllable processing time means that it is allowed to 
compress (a part of) the processing time of the job, in return for compression 
cost. The objective is to find a schedule that minimizes the total cost, that 
is, the latest delivery time of any job plus the total compression cost. In this 
note we discuss how the techniques of Hall and Shmoys [3] and Hall [1] can 
directly be applied to design a polynomial time approximation scheme for 
this problem. 

Keywords. Scheduling, worst case analysis, approximation algorithm, ap-
proximation scheme, controllable processing time. 

1 Introduction 
We consider a scheduling problem in which n jobs, J\,..., J n , have to be scheduled 
on a single machine. Each job Jj has a processing requirement pj and it becomes 
available for processing at a specific point in time, which we call its release date 
rj. After its processing, J j needs some delivery time (independent of the machine) 
before it is completed (e.g. cooling off or transportation time); we denote this 
delivery time by qj. We assume that no preemption is allowed, i.e. once a job has 
been started, it must be completed without interruptions. The goal is to minimize 
the latest job delivery completion time, which we call the length of the schedule. 
This scheduling problem with release dates and delivery times is usually denoted 
by 11 Tj | Lm a x . 

In this paper we consider a more difficult variation of problem 11 r3- | Lm a x : 
There are situations where one can and wishes to board out part of the work. In 
case part of the work of job Jj is boarded out, we say that Jj is compressed. The 
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amount J j is compressed is denoted by Xj, and the maximum possible compression 
of Jj is denoted by UJ. Here XJ is a decision variable with 0 < XJ < UJ\ note 
that Xj does not need to be integral. We call the amount of processing time of a 
job J j after compression, its shortened processing time ctj. Clearly, (ij = pj — Xj. 
Of course compressing a job J j results in extra costs, so-called compression costs. 
We denote the compression cost per unit of Jj by Cj. The total compression cost, 
denoted by C, satisfies C = cjxj- The objective is now to find a schedule a 
that minimizes the total cost T(a), that is the length L(a) of the schedule plus the 
total compression cost C(a). 

For the computational complexity of the single-machine problem, the following 
is known. Let us first discuss the cases where all delivery times are equal. Then de-
termining a schedule with minimal length of an instance of 11 r j | Lm a x comes down 
to finding a schedule with minimal makespan, where the makespan is the com-
pletion time of the latest job. In this case, determining a schedule with minimal 
makespan can be done in polynomial time by ordering the jobs in nondecreasing 
order of release date. The compressible processing time variant also admits a poly-
nomial time algorithm in case of equal delivery times: After sorting the jobs in 
nondecreasing order of release date, we start compressing the jobs with compres-
sion cost less than 1 in order of nonincreasing compression costs, where we only 
compress a job in case the length of the schedule thereby decreases. Now let us 
turn to the cases with arbitrary delivery times. Lenstra, Rinnooy Kan & Brucker 
[5] proved that 11 rj \ LmSLX is AiV-hard in the strong sense. Therefore, the single 
machine problem with compressible processing times, which encloses 11 r j | Z/max as 
a special case, is also strongly MV-haid. 

These later observations justify the search for approximate solutions by means 
of polynomial time approximation algorithms. We say that such an approximation 
algorithm has worst case performance guarantee p, or is a /^-approximation algo-
rithm for short, if it always delivers a solution with value at most p-OPT. Here, 
OPT denotes the value of an optimal solution, which will also be denoted by T* in 
our case. For a strongly NV-haxd problem, the best that we can hope for, is the 
existence of a polynomial time approximation scheme, a PTAS for short. A PTAS 
is a family of polynomial time (1 + e)-approximation algorithms for all e > 0. 

Already in 1971 Schräge [8] developed a 2-approximation algorithm for 
11>j'| Lmax based on a simple heuristic. During the eighties various improvements 
upon Schrage's heuristic were designed to obtain better performance guarantees. 
First Potts [7] modified the heuristic of Schräge into a f-approximation algorithm, 
and then Hall and Shmoys [3] on their turn improved Potts' heuristic to get a f -
approximation algorithm. In 1989, Hall and Shmoys [2] developed a new idea, that, 
among others, helped them in designing an approximation scheme for 11 t j | Z/max-
Hereby the approximability status of 11 r j | Lm a x was determined. The results of 
Hall and Shmoys [2] were even stronger, since they extended to the problem with 
precedence constraints. 

In 1991, Zdrzalka [9] designed a + ^-approximation algorithm for the single-
machine problem with compressible processing times; Here, r is the performance 
guarantee of the best approximation algorithm for 11 r j | Lm a x . Hence the approx-
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imation algorithm of Zdrzalka has performance guarantee arbitrarily close to | . 
Nowicki [6] improved on this result by constructing a ( | + e)-approximation algo-
rithm, where e > 0 can be arbitrarily small. 

In this note we apply the ideas of Hall and Shmoys [2] for 11 r-j | Lmax"and some 
of the ideas of Hall [1] for the flowshop problem, to design an approximation scheme 
for minimizing the latest delivery time under controllable processing times. 

2 The approximation scheme 
Clearly the total cost is a combination of two opposing objectives: On the one hand 
we want to minimize the total length and on the other hand we wish to minimize 
the total compression cost. Therefore, it seems logical to separate these costs when 
attacking the problem. It comes in hand to express the minimal compression costs 
as a function of the length of the schedule; to that end we define Copt(L) to be the 
minimal compression costs of a schedule of length L. Note that the minimal total 
cost, T*, equals min^(L + Copt(L)). We start with the following observation. 

Observation 2.1 The minimal compression costs of a schedule Copt(L) is nonin-
creasing in its length L. • . • 

Before giving a detailed description of the approximation scheme, we start With 
a global explanation of the ideas behind the scheme. Our approach consists of 
finding a schedule with nearly optimal costs given a fixed length. We construct an 
algorithm Ae (L) that, given a feasible schedule length L, produces a schedule of 
length at most (1 + f ) L and costs at most Copt(L). 

As introduced by Hall and Shmoys in [2] and used in various papers later on, 
we make use of a so called outline scheme. An outline scheme is a partition of the 
feasible schedules into sets. This partition is done in such a way that schedules in 
the same sets, share the same characteristics. The idea of the outline scheme is 
to generate a good schedule for each set and then to take the best among these 
generated schedules to be the approximate solution. For this idea to work, the 
following two conditions are necessary: First, the partition has a polynomial number 
of sets, and second, for each set, we are able to find a schedule that is nearly as 
good as the best schedule within that set, in polynomial time. 

To satify the first condition, as one usually does in designing a PTAS, we distin-
guish between big jobs and small jobs. We call a job big if its shortened processing 
time is at least 62L, otherwise we call a job small. Note that, in contrary to the 
usual definition, this definition is schedule dependent. 

Each set in the outline scheme is characterized by, what we call, a skeleton. 
Roughly speaking, this skeleton determines the approximate position of the big 
jobs in a schedule; an exact characterization of a skeleton is given in Section 2.2. 
Our algorithm Ae(L), which is based on building a good schedule for each skeleton, 
consists of two stages. Given a candidate length L, we first guess the approximate 
position of the big jobs in an optimal schedule by enumerating all possible skeletons. 
In the second stage, we construct a schedule for each skeleton by fitting in the small 
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jobs. The best among all those schedules will be the output of our approximation 
algorithm. 

Below we describe the various steps of our approximation scheme in detail: 
First, in Section 2.1, we indicate for which lengths L we construct an approximate 
solution; the characteristics of a skeleton are described in Section 2.2; in Section 
2.3 we show how we have incorporated the small jobs to obtain good schedules. 
Finally, in Section 2.4, we show that our algorithm indeed produces a near-optimal 
solution, i.e. a solution with cost at most (1 + e)T*. 

2.1 Fixing the length of the schedule 
As we want our algorithm to have polynomial running time, we only evaluate a 
constant number of different lengths L. In order to determine suitable lengths, we 
start by computing natural lower and upper bounds on the length of a schedule. By 
means of the approximation scheme of Hall and Shmoys [2], we get a lower bound 
on the length of a schedule by computing an approximate schedule in case all jobs 
are compressed upon their maximal compression Uj. We choose the parameters in 
the approximation scheme of Hall and Shmoys such that the approximate length 
of this schedule, which we denote by L0(e), is at most (1 + | ) times the length of 
an optimal schedule in which all jobs are maximaly compressed. 

Analogously, we determine a natural upper bound on the length of a schedule 
by finding an approximate schedule for the problem in which no job is compressed. 
The approximate length of this schedule is denoted by Lco(e), where L00(e) is less 
than (1 + | ) times the length of an optimal schedule in which no job is compressed. 
Clearly, we only consider schedules with length between Lq(e) and L00(e). 

We would like subsequent lengths to differ at most a multiplicative factor of 
1 + | . For this purpose the range of [Lo(e), L ^ (e)] could be too wide, therefore we 
need to construct better lower and upper bounds. 

The work of Zdrzalka [9] and Nowicki [6] gives us good lower and upper bounds 
on the total cost T* of an optimal schedule. Consider a |-approximation algorithm 
for the problem, obtained by the approach of Nowicki. Let T ( a x ) be the cost of 
schedule crv produced by this algorithm. Clearly, we do not execute AE(L) for 
lengths L with L > T(AJ^F). Furthermore, in case L < ~ET(AJ^)) tha;t is, L < |ET*, 
we also do not execute AE(L). 

Concluding: We execute algorithm AE(L) for a constant number of lengths L, 
starting with max(Lo(£), ^£T(a//)) , increasing the length every time with a factor 
(1 + | ) until the value exceeds min(L00(e),T(crJv)). The structure of our scheme is 
as follows. 

Scheme 
INPUT: A n u m b e r e < 1. 

Compute schedules <7o and Awith lengths Lq(e) and Loo(e) respec-
tively, by means of the approximation scheme of Hall and Shmoys. 
Construct a schedule o^f, with cost T(ax) , by a |-approximation algo-
rithm obtained by the approach of Nowicki. 
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L := max(L0(£),§eT(atf)); 
WHILE L < MIN(LOO(e),T(au)) DO 

Construct an approximate schedule a by algorithm Ae(L)\ 

E N D WHILE 

O U T P U T : A schedule a for which the total cost T(a) is minimal among 
all constructed schedules. 

The algorithm AE(L) consists of two stages, which are explained in the next two 
sections. 

2.2 Stage 1: Characterising the skeleton of a schedule 
Following the idea of the outline scheme, the first stage of Ae (L) consists of grouping 
together schedules with the same skeleton. We first characterize such a skeleton, 
after which we enumerate all feasible skeletons in order to build one good schedule 
from each of these skeletons in the second stage. • .• 

Given a candidate length L and a constant e, we divide the interval [0, L) in | 
intervals h, i — 1 , . . . , j , of equal length, i.e. Ii = [(i - 1 )L5, iL5), where 5 = —e. 
For each interval /¿, we.would like to know which jobs are started in this interval 
and the amount of time that they occupy the machine. As in e.g. Hall & Shmoys 
[3] and Hall [1], we do not determine the corresponding starting interval for all jobs, 
but only for the big jobs. The only difference between our problem and for example 
the flowshop problem studied by Hall, is that, due to the possibility of compressing, 
we do not know beforehand which jobs are big and which jobs are small. However, 
we can easily overcome this difference:, a straightforward extension of the approach 
in Hall and Shmoys [3], leads to a PTAS. 

We characterize a skeleton by the following: 

• For each interval i = 1 , . . . , we specify a set of big jobs Bi. The cardi-
nality of each set Bi is at most j and Bi D Bi = 0 for all rand /. 

• For each job Jj in a set Bi, we specify its approximate shortened processing 
time ay, aj is between S2L and L, and is a multiple of 63L. 

• For each interval /¿, i = 1,..''., j , we specify the approximate total shortened 
processing time Ai of the small jobs in the interval /¿; A{ is a multiple of S2L. 

We can represent a skeleton by a vector y, where yi — (Bi,{a,j\Jj 6 Bi},Ai). 
Although the number of different skeletons is polynomial (see the proof of Lemma 
2.2 in Section 2.4), .we restrict our attention to those skeletons for which there 
possibly exists a feasible schedule, i.e. so-called feasible skeletons that satisfy the 
following conditions. 

• Every big job can be compressed up to aj, that is, for every job Jj in a set 

L:= L( 1+f) 

Bi-. 
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• Every big job is assigned to a compatible starting interval, i.e. for every job 
Jj e Bi -. 

Tj < i5L and (i — 1 )SL + dj + qj < ^ S3L. 

• No interval is overloaded, i.e. for every interval U and for all 1 < I < i 

i 
+ _ maxfij < (i - I + 1 )(6L + 262L), 

k=i jeBk
 jeB' 

the additional 2S2L is due to the rounding of the shortened processing times. 
Our approach consists in enumerating all feasible skeletons. In the next section 

we explain how to transform a feasible skeleton y into a feasible schedule a (y). 

2.3 Stage 2: Incorporating the small jobs 
Given a feasible skeleton y, we know the approximate total amount of shortened 
processing time of the small jobs for each interval h and both the starting interval 
and the approximate,shortened processing time of the big jobs. Since we have 
rounded the shortened processing times, we need to enlarge the intervals /¿. We 
therefore define intervals i = 1 , . . . , where U = [(t — 1 )(SL + 3S 2L), i (6L + 
352L)). We now determine the starting interval I{ and the shortened processing 
time for the small jobs. Analogous to Hall [1], we determine this data by means of 
a linear program. 

To that end, we define decision variables a,ij, where aij represents the shortened 
processing time of job J j in the interval /¿. The set of small jobs is denoted by 
S. In fact our linear program assigns different pieces of the same job to different 
intervals, which corresponds to the construction of a preempted schedule. The first 
two inequalities in the LP-formulating below, express the bounds on the amount 
of compression Xj. Equalities three and four impose natural constraints on the 
intervals each (piece of) job is processed in, whereas inequalities five and six bound 
the total amount of shortened processing time for each machine and each job, 
respectively. The goal is of course to minimize the total compression cost. 

LP 
min -
s-t- pj-Eian > o V i e s 

Pi - < uj Vj e s 
a^ = 0 if r j > iSL Vi = 1 , . . . , i , Vj £ S 
aij — 0 if L - qj < (i - 1)8L Vi = 1 , . . . , V? € S 

T , j a i j < h Vi = l , . . . , i 
Ei aij < 82L V j t S 

a i j > 0 Vi = 1 , . . . , j , Vj G S 
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The LP may not give a solution, in this case it is clear that there is no schedule 
corresponding to the skeleton y. Otherwise, we construct a feasible schedule as 
follows. 

Instead of assigning different pieces of a small job to different intervals, as the 
LP-solution suggests, we assign the job as a whole, that is, the total shortened pro-
cessing time a ' j a s determined by the LP, to a single interval /¿. We recursively 
determine the jobs that have starting interval /1, /2 , • •. /1. In each step i, we first 
compute Ri, which denotes the subset of small jobs that have not been assigned to 
/1, /2, • • • U-1 and for which there is a I < i with a/j > 0. Then, we order the jobs 
in Ri in increasing order of their delivery time. Finally, we assign the jobs in Ri 
one by one to 7j until the total shortened processing time exceeds Ai. 

Given the starting intervals of the jobs,'we order the jobs in each interval Ii as 
follows. First we schedule the small jobs (in arbitrary order), then we schedule the 
big jobs in order of nondecreasing shortened processing time. We only allow idle 
time between two jobs with different starting intervals. In order to obtain a feasible 
schedule, that is, to ensure that each job is started at or after its release time, we 
introduce an idle interval with length SL at the beginning of the schedule. Hence 
the intervals Ii are shifted by 5L time units. We call the schedule constructed above 
a(y). It is easy to check that a(y) is a feasible schedule. 

Summarizing: the structure of our algorithm Ae(L) is as follows. 

Algorithm Ae(L) 
INPUT: A number e < 1 and an integer L. 

s ••=&•> 
Divide the interval [0, L) into | intervals of equal length; 
Enumerate all feasible skeletons y; 
FOR each feasible skeleton y DO 

Compute the compression cost Cfl(y) for the big jobs in y 
Solve the LP; 
IF the LP has a solution with value Cs(y) 

THEN construct a schedule a(y) with length at most 
' (1 + |)L and compression cost Cs{y) + Cs(y). 

E N D FOR 

O U T P U T : A schedule a with total minimal cost among all constructed 
schedules a(y). 

2.4 The analysis 
We start this section by showing that Ae(L) runs in polynomial time. Then, we 
conclude that, since the number of executions of Ae(L) is constant, as stated in 
Lemma 2.3, our scheme has polynomial running time. Finally, by means of Lemmas 
2.4 and 2.5, we prove that our scheme produces a near-optimal solution. 

Lemma 2.2 Algorithm Ae(L) runs in polynomial time. 
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Proof. Since the LP described in Section 2.3'clearly runs in polynomial time and 
the procedure to construct o(y) is also polynomial, the key factor is the number of 
different skeletons. If'the latter is polynomial, then so is Ae(L). 

As the number of big jobs per interval is at most j , we have at most n* different 
Bi's. For each job Jj we have at most js choices for its approximate shortened 
processing time ay, hence, there are at most ^ ^ different sets {a.j\Jj G 5;}. Finally, 
there axe j different choices for Aj. Concluding: the number of different skeletons 
is a,t most 

and therefore Ae(L) runs in polynomial time. • 

Lemma 2.3 The number of times A£(L) is executed is a constant that depends on 
e. 

Proof. Let K be the number of times we execute algorithm Ae(L) and let Ljirst 
and Liast be the first and last length, respectively, for which algorithm Ae(L) is 
executed. Clearly, LfiTSt > \eT(a^f) and Liast — (1 + ! ) K - 1 £/ i rs t < T(ax). 
Hence, 

that is, 

(1 + ~)K 1Lfirst < T((Jtf) < —Lfirst, 

l o g ( ¿ ) 
« < í — / i F \ + • l og ( l + | ) 

From the previous two lemmas it follows that our scheme runs in polynomial 
time. It now remains to prove that a e , the output of our scheme, has value at most 
(1 +e)T*. To that end, we first prove that algorithm Ae(L) outputs a near-optimal 
schedule. 

Lemma 2.4 The algorithm Ae(L) produces a schedule with length at most (1 + | ) L 
and cost-at most Copt(L). 

Proof. Let o be a schedule with length at most L and cost at most Copt(L). We 
divide [0, L) in | intervals U of equal length and we define Si to be the set of small 
jobs that start in /¿. Next, we construct a skeleton y, with yi = ( B i , { a j \ J j € 
Bi}, i4i), where 

• S j is defined to be the set of big jobs that start in /¿; 

• for each job Jj € Bi, we define its approximate shortened processing time a,j 
to be f ^ " ] 53L; 

• Äi is defined to be equal to (E,,. eS; AJ 
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After first enlarging each interval h by a multiplicative factor of '1 + 6 (i.e.- an 
absolute increase of SL), to compensate the rounding of the big jobs, and then 
enlarging each U by SL, to compensate for the rounding of the small jobs, it is 
clear that every big job can still be started within its assigned interval. 

Given the skeleton y, we construct a feasible schedule, oe(y), as described in 
Section 2.3. Thanks to the additional S2L units of space in each interval we can 
also cope with an additional small job that is possibly assigned to /¡. Furthermore, 
since no big job is compressed more than in the original schedule (we have rounded 
up the shortened processing times) and the small jobs are compressed in such a 
way that the compression cost are minimized, the compression cost of <rE(y) is at 
most Copt(L). 

Let us now compute the length of cre(y). We have already argued that no 
interval It is overloaded, that is, the jobs assigned to U can actually be started in 

Because our algorithm has shifted all jobs SL units to the right, no job is started 
before its release time. But a job might complete after L. Let us reason how much 
this additional delay might be. Consider a big job in oe (y) that starts at a time 
tj £ h. In cr this job starts at time tj £ / j i.e. tj > (i — 1 )SL. As tj + cij + qj < L, 

tj + a,j + qj < SL + i(SL + 3 S2L) + aj + qj 
< 2SL + ZiS2L + tj + (1 + S)a,j + qj 
< bSL+{I+6)L 
< (1 + 6 6)L 

= 

Hence, the delivery completion time of each big job is at most (1 + | ) L . A similar 
analysis can be made for each small job. Concluding: L(ae(y)) < (1 + 6S)L = 
(1+ I)L and C(ae(y)).<C0pt(L). • 

Lemma 2.5 The scheme proposed in the previous sections computes a solution 
with value at most (1 + e)T*. 

Proof. Let a* be an optimal schedule. We now distinguish two cases. 
In case (i), the length L(o*) of schedule a* is less than | e T*. We know that 

the algorithm A e( |T*) outputs a schedule o\ with total cost at most (1 + | ) | e T * + 
Copt(L(a*)) < eT* + T* = (1 + e)T*. This settles the first case. 

In case (ii), the length L(a*) of schedule a* is at least | e T * . Then there exists 
an integer k > 0 such that (1 + f )* - 1 ̂ first <L(o*) < (1 + f ) k L firsts where LfiTSt 
is defined as in Lemma 2.3. Our scheme computes 4 e ( ( l + 1 ) L/irst), which delivers 
a solution 02 with length at most (1 + | ) k + l L S i r s t < (1 + §)2L(a*) < (1 +e)L(a") 
and cost at most Copi(L(<7*)). 

To conclude, in either case our approximation algorithm outputs a schedule 
with cost at most (1 + e)T*. • 

Our final theorem summarizes the main result of this paper. 
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T h e o r e m 2.6 The single-machine problem with release dates, delivery times and 
compressible processing times with objective to minimize the maximal job delivery 
completion time possesses a PTAS. • 
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An Arithmetic Theory of Consistency Enforcement 

Sebastian Link* and Klaus-Dieter Schewe* 

Abstract 

Consistency enforcement starts from a given program specification S and 
a static invariant I and aims to replace S by a slightly modified program spec-
ification Si that is provably consistent with respect to X. One formalization 
which suggests itself is to define Sx as the greatest consistent specialization 
of S with respect to X, where specialization is a partial order on semantic 
equivalence classes of program specifications. 

In this paper we present such a theory on the basis of arithmetic logic. 
We show that with mild technical restrictions and mild restrictions concerning 
recursive program specifications it is possible to obtain the greatest consistent 
specialization gradually and independently from the order of given invariants 
as well as by replacing basic commands by their respective greatest consistent 
specialization. Furthermore, this approach allows to discuss computability 
and decidability aspects for the first time. 

1 Introduction 
In order to capture the semantics of a system, almost all approaches to formal 
specification provide at least static invariants. Then the problem is to guarantee 
consistency. For a program specification 5 and an invariant 1 this means that 
every execution of S starting in a state that satisfies I should always lead to a 
state satisfying I , too. This is usually relaxed so that only terminating executions 
of 5 are considered, in which case the problems of termination and of consistency 
can be handled separately. 

If program semantics is expressed axiomatically by the use of predicate trans-
formers leading to weakest (liberal) preconditions, then consistency leads to the 
well known proof obligation X =>• wlp(S)(I). Verification of such proof obligations 
can then be a very hard task. 

As an alternative consistency enforcement has been considered. In particular, 
in the field of databases, where the complexity of the invariants - usually called 
integrity constraints in this context [9] - is much higher than the complexity of the 
programs themselves, the trigger approach has become very popular, but it can be 
shown that triggers cannot solve the problem in general [7]. 

' Massey University, Department of Information Systems, Private Bag 11222, Palmerston 
North, NZ, E-mail: [s . l ink|k.d.schewe]Smassey.ac.nz 
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Another approach considers greatest consistent specializations (GCSs) [6, 8]. 
Here the goal is to replace a given program specification 5 and a given static in-
variant I by a slightly modified program specification Sj that is provably consistent 
with respect to 1. The modification should guarantee that "effects" of the original 
S are preserved within Si. For this the approach considers the specialization order 
on semantic equivalence classes of program specifications. The existing theory is 
based on infinitary logic C ^ . 

In order to shift the GCS approach from the purely theoretical framework ([6]) to 
an applicable theory we have to investigate computability of GCSs and decidability 
of preconditions that must be built. For these purposes it is preferable to obtain a 
tight connection with classical recursion theory [1]. Therefore, we will replace the 
underlying logic of [6] by first-order arithmetic logic. The paper will introduce a 
new theory of consistency enforcement based on this logic with almost all results 
from [6] carrying over in a modified form. On this basis, effectivity issues can be 
investigated for the first time. 

We start in Section 2 with a brief review of arithmetic logic. Then we show 
the existence of predicate transformers with respect to this logic. In particular, 
relational program semantics becomes equivalent to predicate transformer seman-
tics provided we guarantee the property of universal conjunctivity and the pairing 
condition. We even show in Section 3 that recursion theory can be extended to the 
arithmetic case, at least, if we are restricted to certain WHILE-loops. 

With this background we can show that the GCS approach carries over to arith-
metic logic. This will be done in Section 4. Many of the proofs in [6] only require 
slight changes. Computability cannot be guaranteed in general, since the building 
of least fixpoints requires to test for semantic equivalence, which is undecidable. 
For the case of FOR-loops, however, GCSs are computable. This will be shown in 
Section 5. Furthermore, we show how effective GCSs can be computed. 

We argue that at least for one application field, i.e. databases as already men-
tioned, the restrictions are tolerable. For the general case some other pragmatic 
solutions must be applied [5]. We conclude with a short summary and outlook. 

Due to the compact representations in this paper we recommend reading [3] for 
details. 

2 Arithmetic Logic and Programming Semantics 
Our study is based on first-order arithmetic logic [1, Ch.7], i.e. our logical language 
contains just the function symbols 0, s, + and * of arity 0, 1, 2 and 2. The informal 
meaning is as usual: the constant 0, the succesor function, addition and multipli-
cation. By convenience + and * are written as infix operators. The only predicate 
symbol is the equality symbol =. Variables in our language will be xi, x2, £3, 

We use the notation T for the set of terms and F for the set of formulae. In 
addition, let V denote the set of variables. We allow all standard abbreviations 
including formulae true and false. 

Semantically, we fix a structure with domain N, the set of non-negative integers. 
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Then 0, s, +, * and = are interpreted in the usual way. For an interpretation it is 
then sufficient to consider a function a : V —> N. By the coincidence theorem it is 
even sufficient to be given the values o(xi) for the free variables Xi in a term or a 
formula. In particular, we may always write a as a fc-tuple, if the number of free 
variables is k. 

Finally, a fc-ary relation R C Nfc is called arithmetical iff it can be repre-
sented by a formula Q 6 F in arithmetic logic (with free variables x \ , . . . ,£*,), i.e. 
(ai,... ,ak) £ R holds iff \=a Q holds for the interpretation defined by a(xi) = a* 
(t = l , . . . , fc ) . 

2.1 Predicate Transformers in Arithmetic Logic 
In accordance with the existing theory on consistency enforcement in [6] each finite 
subset X C V is called a state space. Each function a : X —> N is called a state on 
X. Equivalently, a state is always representable by a fc-tuple. For a fixed X let S 
(= S(X)) denote the set of all states over X. 

A formula <p E F with free variables fr(ip) in X is then called an X-formula or 
an invariant on X. In order to emphasize the variables we sometimes write ip(x) 
with a vector x of the state variables involved. 

Then any pair of.formulae (A(S), So(>S)) with 2k and k free variables, respec-
tively, may be considered as defining the relational semantics of a program spec-
ification S: For convenience assume the first k free variables in A (S) to coincide 
with the free variables of S 0 (5). 

According to our notation we sometimes write A ( S ) ( x , y ) and So (S ) ( x ) . So 
A ( S ) can be interpreted by state pairs, whereas So (5) allows an interpretation by 
states. We interpret (a, r) with A(S) as an execution of S with start state 
a and a final state r . Similarly, a state a satisfying So (5) is considered as a start 
state for S, in which a non-terminating execution of S exists. 

Note that the model of relational semantics comprises daemonic non-determi-
nism, non-termination and partial undefinedness. 

In order to come to an axiomatic semantics based on the introduced logic of 
arithmetic, we associate with 5 two predicate transformers wlp(S) and wp(S) - i.e., 
functions from (equivalence classes) of formulae to (equivalence classes) of formulae 
- with the standard informal meaning: 

• wlp(S)(cp) characterizes those initial states a such that each terminating ex-
ecution of S starting in (7 results in a state T satisfying ip. 

• wp(S)(np) characterizes those initial states o such that each execution of S 
starting in a terminates and results in a state r satisfying tp. 

The notation wlp(S)(tp) and wp(S)(ip) corresponds to the usual weakest (liberal) 
precondition of 5 with respect to the postcondition ip. In order to save space we 
shall often use the notation iy(Z)p(5)(^) to refer to both predicate transformers at 
a time. If this occurs in an equivalence, then omitting everything in parentheses 
gives the wp-part, whereas omitting just the parentheses results in the wlp-part. 
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From our introduction of Д(S) and Eo (S) the following definition is straight-
forward. 

Definition 1 The predicate transformers associated with a program specification 
5 on a state space X are defined as 

wlp(S)(v{x)) <S> Vy.A(S)(x,y) v i f f ) and 
wp(S)(v(x)) & (Vy.A(S)(x,y) => tp{y)) Л -So (5 ) ( f ) 

for arbitrary X-formulae <p. • 

The next step is to show that predicate transformers satisfying some nice condi-
tions are sufficient for the definition of program specifications S. The conditions 
are the pairing condition and a slightly modified universal conjunctivity property. 
This gives the equivalence between the relational and the predicate transformer 
semantics. 

We use the standard notation w(l)p(S)*(ip) O- -^w(l)p(S)(~^ip) and refer to 
wlp(S)* and wp(S)* as the dual predicate transformers. 

Proposition 1 The predicate transformers w(l)p(S) satisfy the following condi-
tions: 

wp(S)(ip) О wlp(S)(ip) Awp(S)(true) . and 
:wlp{S){Vy.Q{y)^V{x,f)) Vy.Q(y) wlp(S)(<p(x,y)) 

Conversely, any pair of predicate transformers satisfying these two conditions de-
fines A(S)(x,y) <S> wlp(S)*(x = y) and E 0 ( f ) wp(S)* (false). 

Proof. We first show that w(l)p(S) fulfil both conditions. Due to 

wp(S)(true) & (\/y.A(S)(x,y) true) A^0(S)(x) 
& . -So(S)(x) 

we receive thé pairing condition 

wlp(S)(ip(x)) A wp(S)(true) & (4y.A(S)(x,y) => <p(y)) А -E0(5)(x) 
wp(S)(y(x)) . 

The universal conjunctivity property follows from 

wlp(S)(Vy-Q(y) => 4>(x,y)) & Vz.A(S)(x,^^ {x/z}.(\/y.Q(y)^<p(x,y)) 
О Vz.A(S)(f, z) => (Vy.Q(y) =• <p(z, y)) 
& Vy.Vz.(A(S)(x, ï ) A Q(y) ip{z,y)) 
& Vy-Q(y) => Vf.(A(S)(i , f ) =>• v(2,y)) 
^ УШУ) => V?.(A(S)(x, 2) ^ {x/zj.^x, y)) 
& Vy.Q(y) ^ wlp(S)(<p(x,y)) 
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for the case that {y Q(y)} i 0 holds. If this set is empty then ~<Q(y) holds for 
all y and we have wlp(S)(true) <=> true which is obviously valid. 
Now, let fip and fp be predicate transformers statisfying the pairing condition and 
the universal conjunctivity property. Then it remains to show wlp(S) = fip{S) and 
wp(S) = fP(S). For an arbitrary X—formula ip we have 

\=a <p(x) \=a <p'(x) with ip'(x) &Vy.(x = y^> <p(y)) 

Let a be an arbitrary state with (=CT fip(S)(ip(x)). Then we compute 

K fiv(S)(<fi(X)) N . flp(S)(<p'(x)) 

N . fip{S){Vy-x = y=$ <p(y)) 

N . fiP{S){Vy.^y(y) ^ x ^ y ) 
N . Vy.-«p(y) fiP(S)(x ± y) 
N . Vy.flp(SY(x = y)^<p(y) 

N . Vy.A(S)(x,y) => <p{y) 

N . wlp(S)(tp(x)) , 

therefore the asserted equivalence. Furthermore, we have 

wp(S) (<p) O wlp(S) (ifi) A wp(S) (true) (pairing condition) 
<=> wlp{S)(ip) A-iE0(5)(f) ' (Def: wp{S){true)) 

wlp(S)(<p) A-ifp(S)*{false) (Def. E0(5)) 
^ fiP(S)(<p)A^fP(S)*(false) (wlp(S) = flp(S)) 

f,P(S)(<p) Afp(S)(true) (Def. fP(S)*) 
O fp(S)(<p) , (pairing condition) 

which completes the proof. • 

The next result gives a normal form representation of the predicate transformer 
wlp(S), which will be useful in many proofs. 

Lemma 1 It is always possible to write wlp(S)(<p) in the form 

wlp(S)(<p(x)) & Vz.wlp(S)*(x = z) =><p(z) 

Proof: 
Obviously, we have <p(x) Vz.x = z (p(z) Vz.-}(p(z) =>• x ^ z. Then the 

lemma follows immediately by applying the universal conjunctivity property. • 

2.2 Guarded Commands 
We now introduce the familiar language of guarded commands [4]. We use skip, 
fail, loop and parallel assignment x^ :— tit | | . . . ||a;ifc := hk with variables Xi- e V 
and terms Ui € T as basic commands. The informal meaning, of the first three 
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in this list is to change nothing, to be completely undefined and to do only non-
terminating executions, respectively. 

Complex commands are constructed from sequences S\; 52, choices Si OS2, re-
stricted choices S1 S2, unbounded choice @xj • S and preconditioning V -> S. 

To define the semantics we simply have to define the predicate transformers. 
These are given as follows: 

w(l)p(skip)((p) <p 
w(l)p(fail){ip) & true 
w{l)p(loop){<p) O- false(Vtrue) 

w(l)p{xh := t^W-.-Wx^ :=iij(<p) {xiJtil,...,xiJtik}.ip 
w(l)p(S1]S2)(V>) O i0(i)p(Si)(t«(Op(S2)foO) 
w(l)p(SiOS2)(tp) & w(l)p(Si)(<p)*rv{!)p{S2)(<p) 

w(/)p(5i B S2)(y) «• w(l)p(Si){<p) A (wpiSiYitrue) V w{l)p(S2)(<p)) 
w(l)p(@xj • S)(<p) Vxj.w(l)p(S)(<p) 
w(l)p(V ->• S)(<p) w(l)p(S){<p) 

Here {xil /¿¿x , . . . , Xik /Uk} denotes the simultaneous substitution of the variables Xij 
by the terms Uj. We do not want to dispense with the restricted choice-operator 
[2 since it is needed to define IF S FI and DO 5 OD commands. For a deeper 
justification, please see [4]. Of course, we might always write S\ Owp(Si)( false) —• 
S2 instead of S\№S2. However, this violates the orthogonality property of guarded 
commands which we want to maintain. 

It is easy to verify the pairing condition and the universal conjunctivity property 
for these predicate transformers. 

We say that S is an X-command for some state space X iff w(l)p(S)(<p) •<=> tp 
hold for each ^-formulae <p, where XC\Y = 0, and X is minimal with this property. 

3 Recursion 

In the last section we introduced the language of guarded commands together with 
an axiomatic semantics expressed via predicate transformers in arithmetic logic. So 
far, this language covers straightline non-deterministic partial programs extended 
by unbounded choice. We would like to go a bit further and investigate recursive 
programs expressed as least fixpoints p,T.f{T) with respect to a suitable order 
This order will be the standard Nelson-order [4]. 

Unfortunately, we are not able to carry over the very general recursion theory 
from [4]. We have to restrict ourselves to simple WHILE-loops, i.e. f(T) — V -> 
5 ; T D - i V s k i p , where the variable T does not occur within S. For convenience, 
we introduce command variables T i , T 2 , — Throughout this section, we will use 
f(T) to denote simple WHILE-loops as above. 
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3.1 The Nelson-Order 
The idea of the Nelson-order is that whenever Si ^ S2 holds, then each terminating 
execution of Si is preserved within S2 , but a terminating execution in S2 may be 
"approximated" in Si by a non-terminating execution. This leads to the following 
definition. 

Definition 2 The Nelson-order is defined by 

Si < S2 o (wlp(S2)(tp) wlp(Si)(ip)) A (wp(Si)M =» wp(S 2 )M) 

for all Lp. • 

Particularly, we are interested in chains { f l ( l o o p ) } i w i t h respect to •<. Therefore, 
we define next a Godel numbering g of guarded commands, which exteinds the 
Godel numbering of terms and formulae from [1, p.327f.]. Let h denote this Godel 
numbering for our logic. Recall the following definition: 

/i(0) = l , h{Xi)=3\ h(s(t))= 2 - 3 / l « , h{h + t2) = 4 • 3h^ - 5 ^ , 

h(ti *t2)= 8 • 3 h ( t l ) • 5h{t2\ h(ti = t2) = 16 • 3 h ( t l ) • 5f t ( t2), = 32 • 

h(<Pi <p2) = 64-3' l (v ' l ) •5' ,(¥,2) and h(Vxi.<p) = 26+i-3h^l 

In the same way we define 

g(fail) - 1, giloop) = 2, g{skip) = 4, 
k 

g(xh := th ||... ||zij: := tik) = 8 • J | prim{ij)Hui], 
j=i 

ff(Si;S2) = 16-3 f f ( 5 l ) -55 ( S 2 ) , 5(SiDS2) = 32-35 ( S l ) -5 s ( S 2 ) , 

ff(Si BS 2 ) = 6 4 - 3 9 ( S l ) -5S(S2), 

g(V S) = 128 • 3h(v) • 5 s ( s ) , and g(@Xj • S) = 256 • 3j • 5 s ( s ) 

with the primitive recursive function prim taking n to the n'th prime number. 
First we show that with this Godel numbering g we may express all formulae 

w(l)p(fl(loop))((p) by two arithmetic predicate transformers. 

Lemma 2 Let f(T) = V —• S; TD-iV.—• skip such that T does not occur within S. 
Then for each j € N, there exist predicate transformers T\ ( j ) and r(j) on arithmetic 
predicates such that the following properties are satisfied: 

1. for each arithmetic predicate <fi{x), the results of applying these predicate 
transformers are arithmetic predicates in i and x, say 

x)(i,x) = ri(j){if(x)) and Xj{i,z) = T(j){y>( £)) 
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2. for j = h((p) we obtain 

Vi .Vi. M ( i , f ) wlpifiloop))^))) 
Vi-Vi. (xj(i ,£) <S> wp(fl(loop))(v{x))) 

and 

with x = Xi *h • 

Proof. It is sufficient to prove the lemma for the case of S not containing loops 
itself. In general, program specifications can only have finitely many loops, so we 
can find the claimed predicate transformers 7j(j) and r(j) for the innermost loop 
first. Here, the involved program specification S, say So, is non-recursive. Having 
proven the lemma for this case, we obtain valid predicate transformers wlp(Si) and 
wp(Si) for the innermost loop Si by Lemma 3. Hence, without loss of generality 
we can assume that S in f{T) = V —» 5; TC\->V —> skip is non-recursive. 
For arbitrary program specifications T with g(T) = i and arbitrary formulae 
(p(x) with h(ip) = j let us write Q'i{i,j,x) = wlp(T)(ip(x)) and Q'2(i,j,x) — 
wp(T)(ip(x)). If i,j are not Godel numbers of programs or formulae, respectively, 
we may extend Q[ and Q2 arbitrarily. Let prex(i, j) be the primitive recursive func-
tion that gives the exponent of the j + 1-st prime number in the prime factorization 
of i. Then, we have 

Q'i(i,3,x) = 

true 
true 
h-'U) 
{xiJh-i(jl),...,xiJh-1(jk)}.h-1(j) 

Q[(prex(i,l),Q'1(prex{i,2),j,x),x) 
Q[ (prex(i, 1 ),j, x) A Qi (prex(i, 2), j, x) 
<2i(prez(i, 1 ),j, x) A (Q'2(prex(i, 1), 7, x) 

=!> Q[{prex{i,2),j,x)) 
h~l{prex{i, 1)) => Q[(prex(i, 2),j, x) 
Vxprex(i,i)-Q'i{prex(i, 2),j, x) 

,prex(i, 0 ) = 0 
,prex(i, 0) = 1 
,prex(i, 0) = 2 
,prex(i,0) = 3 
prex(i,i{) = ji 
with 1 < I < k 
,prex(i, 0) = 4 
,prex(i, 0) = 5 

,prex(i, 0) = 6 
,prex(i, 0) = 7 
,prex(i, 0) = 8 

We obtain a similar equation for Q'2(i,j,x) which does not depend on Q[. As this 
is a recursive definition, Q[ is not an arithmetic predicate. Note, however, that if 
we fix i and j, i.e., the program specification T and the formula <p, we can turn the 
equation into a formula of arithmetic logic. 
Let us now consider just the case T = fh(loop) for our fixed mapping / on program 
specifications. For k = 0 we have wlp(loop)(ip(x)) o true. Furthermore, we get 
wlp{fk+1(loop))(<p(x)) <£> (OP wlp{S)(wlp(fk(loop)){ip(x)))) A ( i P >p(x))). 
Thus, we may define a primitve recursive function g with g(0) = g(loop) and 

g(k + 1) = g(fk+1 {loop)) = 32-3 128 16 • *9(S). 5g(k) -128 

such that 
Q[(mj,x) = wlp(fk(loop))(ip(x)) 
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is satisfied. Now define an arithmetic formula Q(i,j,x) such that we have 

Q(h(iP),h(ip),x) ((V^wlp(Sm)AhV=><p)) 

for arbitrary ip,(p € F. As 5 is fixed and recursion-free we just take the right-
hand side of the equivalence as the definition for Q(i,j,x) for Godel numbers i : j 
of formulae and extend this to all i,j. If we take Qi(k,j,x) = Q[(g{k),j,x), we 
obtain (for k > 0) 

Qi(k,j,x) = Q(h(tp),j,x) 

with ip(x) = wlp{fk~l (loop)){ip(x)). Hence, also 

Qi(0,j,x) = true and 
Qi{k + l,j,x) = Q(h{Q1(k,j,x)),j,x). 

Taking n(j)(ip(x)) = Xj(k,x) = Qi(k,j,x) (for fixed j), this shows that x) (k, ¿0 
is arithmetic, as Q is arithmetic and arithmetic predicates are closed under prim-
itive recursion. An analogous argument leads to arithmetic predicates %2(fc, a?) = 
T(j)(f(x)) for fixed j, thus proving the first part of the lemma. The equivalence in 
the second part follows immediately from the construction. • 

With help of the arithmetic predicate transformers r; ( j ) and r(j) from Lemma 2 
we can now define a limit operator S = limkeN fk (loop) via 

wlp{S){ip(x)) & Vfc.Xft(v)(fc,x) and 

wp(S)(<p(x)) O 3 k.xlM(k,x) . 

FOR Xi[v){k,x) = TI(h(ip))(ip(x)) and xlM(k,x) = T(h{tp))(<p(x)). 

L e m m a 3 The definition of S = limi€pj ft(loop) is sound. 

Proof. We first verify the universal conjunctivity property by direct calculation, 
namely 

wlp{S)(Vz.P(z) tp{x,z)) <£> Vi.Xh(vz.P(2-)=>v,(i,?))(i'f) 

O Vi.wlpifiloopWVz.Piz) => <p(x,z)) 
& Vi.yz.Pizl^wlpifiloopMipix,?))) 
<=> Vz.P(z) (Vi.wlpifiloop))^,?))) 
& Vz.P(z)^Vi.XiM(i,( x,z)) 
& Vz.P(z) =>wlp(S)(<p(x,z)) . 

For the second part of this Lemma, we first observe that 

wp{S){tp(x)) & 3 i.xlM{i,x) 

<£> 3i.wp[fl (loop))(ip(x)) 
• o 3i.wlp(fx(loop))((p(x))'Awp(fl(loop))(true) 
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holds. In order to derive the pairing condition we verify both implications sepa-
rately. Let us first show 

wp(S)(ip) wlp(S)(ip) A wp(S)(true) . 

For a state q with (=„ wp(S)(<p) it follows that \=a wp(f%0(loop))(tp) holds, 
i.e. |=a wlp(fio(loop))(ip) and \=a wp(f'°(loop))(true) for a particular i0 G N. 
From wp(S)(true) O 3i.wp(fl(loop))(true) we conclude wp(S)(true) and 
since {fl(loop)}içN is a chain it must be the case for every i € N that either 
fi(loop) •< fio(loop) or fl°(loop) fx(loop) holds which means either 

K wlp(fi0(loop))(tp) wlptf^loop))^) 

or 
N. ™P(f°(loop))(tp) wlp(f{loop))(<p) . 

In every case, we have \=a wlp(fl (loop))(ip) for arbitrary i £ N, therefore 
Vi.wlp(F(loop))(ip), too and this is equivalent to \=„ wlp(S)(ip). 
For the reverse direction 

wlp(S)(<p) A wp(S)(true) => wp(S)(tp) 

we assume that (=ff Vi.wlp(fl(loop))(<p) A 3i.wp(f'(loop))(true) holds. From this 
we derive \=c wlp(f'°(loop))(ip) A wp(f10 (loop))(true) for some io € N, i.e. 
wp(fio (loop))(ip) by the pairing condition of / t 0 (loop). Finally, the assertion follows 
from wp(S)(tp) <£> 3 i .wp( f l ( loop))( ip) . • 

3.2 Least Fixpoints 
Now, we are going to show how to obtain the semantics for WHILE-loops. It is 
easy to see that the function f(T) = V S; TO->V —• skip on guarded commands 
is monotonie in the Nelson order [4]. Then an immediate consequence of the last 
lemma is the existence of a least upper bound, which is just given by the limit 
operator. 

L e m m a 4 The chain {fl(loop) \ i £ N} has a least upper bound, namely 
lim i6N fl(loop). • 

Proof. We have already seen in the proof of Lemma 3 that 

wlp(\imf'(loop))((p) O Vi.wlp(fl(loop))(<p) 
¿6 N 

holds which means we receive w/p(linij6N f'(loop))(ip) => wlp(fk(loop))(ip) for all 
k € N. In addition, we have obtained 

uip(lim f'(loop))((p) 3i.wp(f%(loop))(ip) 
ig N 
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and because of that wp(fk(loop))(ip) => wp(limigN fl(loop))(ip) for all A; £ N. Con-
sequently, limjgN fl(loop) is an upper bound of the chain {fl(loop) \ i £ N} with 
respect to the Nelson-order. 
Now, let T be an arbitrary upper bound of {fl(loop) \ i 'E N}. Then we have to 
show limieN P(loop) < T but this follows immediately from 

wlp(T)(<p) wlp(fl (loop))(ip) for all i 6 N o wlp(lim fl(loop))((p) t€N 

and 

wp(\im f^loop))^) O wp(fl(loop))(<p) for some i € N =>• wp(T)(tp) . 
IG N 

Thus, limigN f%{loop) is the least upper bound as asserted. • 

In the following we use the notation p.T.f(T) to denote the least fixpoint of / 
provided it exists. We now restrict ourselves to WHILE-loops. 

Proposition 2 Let f(T) = V —> S\TO^V —• skip. Then f has a least fixpoint 
with respect to <, which is p,T.f(T) = l im i €wf l ( loop) . 

Proof. First of all {fx(loop) \ i £ N} is a chain with respect to the Nelson-order 
since loop is a minimum and / is monotonic. Therefore, 5 = l i m f l ( l o o p ) is the 
least upper bound according to Lemma 4. At this point we want to verify that S 
is a fixpoint with respect to / . Due to 

O (V wlp(T)(wlp{S){<p))) A (pP => ip) 
O (V =>. wlp(T)(Vi.i £ N wlp(f(loop))(<p))) A (-i7> =>• tp) 
& (V =>• (Vi.i £ N wlp(T)(wlp(f\loop))(<p)))) A {pP tp) 
O (Vi.i e N (V => wlpiT^wlpifiloop))^))) A {p"P => i f ) 

Vi.i £ N =>. (V => wlp(T)(wlp(f{(loop))(y)) A {pV => <p)) 
& Vi.i £ N => wlp(V T; f(loop)apV skip)(ip) 
O Vi.i € N^io /p i / i / ' i /oop)) )^) 
<S> Vi.i € N =>• wlp(f* (loop)) (ip) 
O- w/p(lim fl(loop))((p) 

O- tulp(S)(<p) , 

it remains to show wp(f (S))(true) O wp(S)(true). From the monotonicity of / it 
follows that / ( 5 ) is a further upper bound of (f'(loop) | i £ N} with respect to the 
Nelson-order, so we can conclude S < f(S), especially 

wp(S)(tp) => wp(f(S))(tp) 

wlp(f(S))(<p) 
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receive 

(V 
O (V => 

(V =• 
wp(V 
wp(V 

O wp(P 

wp(f(S))(<p) & (V =>• wp(T)(wp(S)(<p))) A (-P 
uip(T)(3i.i £ N A wp(fi(loop))(<p))) A (->V =>• <p) 
wp(T)(wp(fi (loop))(ip))) A (~>V => 93) for some i £ N 
-»• T; ft(loop)a-i'P —> skip)(np) for some i £ N 
-> T; /'(Zoop)d-iT7 skip)(<p) for some z £ N 

1+1(Zoop))(y>) for some i € N , 

i.e. as to be shown 

wp(f(S))(<p) => 3i.i £ N A wp(fi(loop))(ip) o wp(S)(ip) . 

Let T be an arbitrary fixpoint with respect to / . Since /oop is a minimum with 
respect to the Nelson-order we have loop •< T. Applying the monotonicity of / 
with respect to ^ again we obtain fn(loop) < fn(T) = T for arbitrary n £ N, so T 
is an upper bound of { f l ( l oop ) | i £ N} with respect to the Nelson-order. But S is 
the least upper bound, thus 5 ^ T holds. • 

Finally, in order to support also nested loops, we extend the Godel numbering g to 
command variables and fixpoint expression letting 

g(Tj) = 512 • 3j and g(nTj.f(Tj)) = 1024 , • 59inTi)) . 

For the extension of Q[ and Q'2 from the proof of Lemma 2 we then need a function 
i(x,j, k), which associates with the Godel number x = g(f(Tj)) the Godel number 
g(fi(loop)). We omit the details. 

4 Greatest Consistent Specializations 
Now the foundations are laid to develop the theory of consistency enforcement on 
top of first-order arithmetic logic. 

4.1 Consistency and Specialization 
First we have to define consistency and the specialization preorder. This can be 
done in complete analogy to the case in [6]. 

Definition 3 Let I be an invariant on the state space X. Let S and T be 
commands on the state spaces Z and Y, respectively, with Z C Y C X. 

• S is consistent with respect to 1 iff I wlp(S)(l) holds. 

• T specializes S (notation: T C S) iff w(l)p(S)(<p) => w(l)p(T)(<p) holds for 
all Z-formulae ip. • 
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Due to the pairing condition it is sufficient to consider only = true for the uip-part 
in the specialization definition. The wlp-part can also be simplified in the known 
way. The proof of the next proposition is shifted into Appendix A. The result will 
play an important role in the proof of Theorem 2. 

Proposition 3 Let S and T be commands on the state spaces X and Y, respec-
tively, with X C.Y. Then wlp(S)(<p) =>• wlp(T)(<p) holds for all X-formulae iff 

{z/x}.wlp{T')(wlp(S)*(x = z)) 

holds, where z is a disjoint copy of x and T' results from T by renaming each Xi 
into Zi. • 

Next we introduce the central notion for consistency enforcement, the GCS. 

Definition 4 Let S be a y-command and I an invariant on X with Y C I . The 
greatest consistent specialization (GCS) of S with respect to I is an X-command 
Si with Si C 5, such that Si is consistent with respect to X and each consistent 
specialization T Q S satisfies T C Si. • 

First we show the existence of GCSs and their uniqueness up to semantic equiva-
lence. Furthermore, GCSs with respect to conjunctions can be built successively. 
In both cases, the proofs from [8, 6] carry over without significant changes. Never-
theless, we will give the proofs in Appendix B. 

Proposition 4 The GCS Si of S with respect to 1 always exists and is unique 
up to semantic equivalence. We can always write 

Si = [1 (5; • 2 := z1; 1 skip)) IS ( - £ (S; • z := z')) , 

where z refers to the free variables in I not occurring in S. 
Furthermore, for two invariants 2 and J we always obtain that I A J —> SI^J 

andlAj—t (SI) j are semantically equivalent. • 

The normal form of S i of Proposition 4 should be read as follows. Whenever I 
holds, we execute S and permit arbitrary assignments to state variables that are 
not affected by 5. Subsequently, we test whether I was indeed invariant under 
the execution of S and these assignments. For the case that 1 does not hold, we 
do not need to check I again. Using the normal form of Proposition 4, we may 
derive wp(Sx)(true) O wp(S).(true) by direct computation. In fact, this is already 
obtainable from the definition of greatest consistent specializations. Anyway, this 
result allows us to concentrate on the predicate transformer wlp(S). 

4.2 An Upper Bound for GCSs 
For practical applications the form of the GCS derived in Proposition 4 is almost 
worth nothing, since it involves testing the invariant after non-deterministic selec-
tion of arbitrary values. However, the form is useful in proofs. 
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A suitable form of the GCS should be built from GCSs of the basic commands 
involved in S. Let the result of such a naive syntactic replacement be denoted by 
S'j. In general, however, S'x is not the GCS. It may not even be a specialization of 
S, or it may be a consistent specialization, but not the greatest one. An example 
for the latter case is S = x := x — a; x := x + a with some constant a > 1 and 
I = x>l. 

We now formulate a technical condition which allows us to exclude this situa-
tion. Under this condition it will be possible to show that S i Q S j holds. The 
corresponding result will be called the upper bound theorem. 

We need the notion of a deterministic branch S+ of a command S, which requires 
S+ C S, wp(S)*(true) O wp(S+)*(true) and wlp{S+)*(ip) =>• wp(S+)(<p) to hold 
for all tp. Herein, the last condition expresses that S+ is indeed deterministic, 
i.e., whenever |=(CT,T) A(x,y) then \=a ~>£o(x) and whenever (=(0-^,) &(x,y) and 
\=(aiT2) A(x ,y ) hold then T\ ( X ) = T 2 ( X ) . Together, a deterministic branch S+ of S 
is a deterministic specialization of S which comprises executions if and only if S 
does. 

Furthermore, we need the notion of a S-constraint for an X-command S. This is 
an invariant J on X\JX' with a disjoint copy X' of X, for which {x1 /x}.wlp(S')(J) 
holds, where S' results from S by renaming all Xi to x\. Thus, ¿-constraints are 
exactly those formulae which are interpreted by state pairs and satisfied by a spec-
ification. 

Finally, we write ipa for the characterizing formula of state a. 

Definit ion 5 Let S = Si\S2 be a y-command such that Si is a Y{-command 
for Yi C Y (i = 1, 2). Let X be some X-invariant with Y C X. Let X - Yx = 
{yx,... ,ym}, Yi = {xi , . . . ,xi} and assume that {x^,. . . ,x[} is a disjoint copy of Y\ 
disjoint also from X. Then S is in 8-X-reduced form iff for each deterministic branch 
S± of S\ the following two conditions - with x = (xi,... ,xi), x' = (x[,... ,x\) -
hold: 

• For all states a with ->X we have, if ipa =i> {x/x'}.(Vy 1 ...ym.X) is a 
¿-constraint for S]+, then it is also a ¿-constraint for 5j+ ; S2-

• For all states 0 with |=CT X we have, if yv {x/x'}.(Vyi.. .ym.->I) is a 
¿-constraint for S^, then it is also a ¿-constraint for Sf ; S2- • 

Informally, ¿-Z-reducedness is a property of sequences Si; S2 which rules out oc-
curences of interim states that wrongly cause an enforcement within any branch 
of Si but which is not relevant for the entire specification. If we for instance look 
again at the example above, then the GCS of S — x :— x — a\ x := x + a with respect 
to X = x > 1 is certainly skip, but (x := x —a)i = (x = 0 V x > a) x := x — a. A 
simple replacement of basic commands by their respective GCSs leads in this case 
to (x = 0 V x > a) x := x — a; x := x + a which is just a proper specialization of 
skip. The reason for this is, that 5 is not in X-reduced form. 
Arbitrary programs 5 are called X-reduced iff all occurences of sequences within 5 
are ¿-X-reduced. 
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Definition 6 Let S be an y-command and I some X-invariant with Y C X. S 
is called T-reduced iff the following holds: 

• If 5 is one of fail, skip, loop or an assignment, then S is always Z-reduced. 

• If 5 = Si; 52, then S is Z-reduced iff Si and are I-reduced and S is 
(5-I-reduced. 

• If S is one of V ->• T, @y • T, SiOS2 or Si H S2, then S is Z-reduced iff Si 
and S2 or T respectively are Z-reduced. 

• If S = pT.f(T), then S is Z-reduced iff fn(loop) is Z-reduced for each n 6 N. 
• 

With these technical preliminaries we may now state and prove the upper bound 
theorem. The proof itself is done by lengthy structural induction on guarded com-
mands and therefore shifted to Appendix C. 

Theorem 1 Let 1 be an invariant on X and let S be some 1-reduced Y-command 
with Y C X . Let S'x result from S as follows: 

• Each restricted choice S\ S2 occurring within S will be replaced by S\ • 
wlp(Si)(false) ->• S2. 

• Then each basic command, i.e. skip, fail, loop and all assignments, will be 
replaced by their GCSs with respect to I. 

Then T C S'x. holds for each consistent specialization T C S with respect to I. • 

4.3 The General Form of a GCS 
Theorem 1 has a flavour of compositionality, but it does not yet give the GCS. The 
idea of the main theorem on GCSs is to cut out from the upper bound S'z those 
executions that are not allowed to occur in a specialization of S. This is accom-
plished by adding a precondition V whose meaning becomes obvious by Proposition 
3. This leads to the following theorem. 

Theorem 2 Let I , S and S'T be as in Theorem 1. Let Z be a disjoint copy of the 
state space Y. With the formula 

V(S,I,x') = {z/y}.wlp(S'x, z = x' -> skip)(wlp(S)*(z = y)) , 

where S'-[ results from S'z by renaming the Y to Z, the GCS Si is semantically 
equivalent to 

•V(S,l,x') -> (S'x-,y = x1 skip) . 
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Proof. We take the form claimed in the theorem as a definition and verify the 
conditions in the definition of the GCS. If v? is an arbitrary y-formula, we use the 
definition of dual predicate transformers to validate 

wlp(Si)* (<p) & 3 f .V[S,I,&) Awlp(S'xy(y = f A<p) . 

IfP(S,l,x') holds, then 

wlp(Sj)*(y = X1 A <p) =» wlp(S)*(ip) 

is true for all ^-formulae ip by Proposition 3. But then it follows immediately that 
wlp{Si)*{<p) =>• wlp(S)*(<p) holds, hence Si C S. 
Consistency can be verified easily, since S'x is already consistent with respect to I , 
namely 

wlp(S'x)(l) . 
wlp(S'x)(y = x1 =$> wlp(skip)(l)) 
wlp(S'i)(wlp(y = £'—>• skip)(I)) 
wlp(S'i,y = x1 —> skip)(T) 
Vf , P ( S , 2 , f ) => wlp(S'i\ y = x1 -t skip)(I) 
wlp(@tf •V(S,l,x') -4 S'i,y = x1 skip)(l) 
wlp(Si)(l) . 

Therefore we have the consistency of Si with respect to I . Note, that the second 
implication in the computation' above holds due to the monotonicity of wlp(S'x) 
applied to 1 => (y = x ' I ) . 
Finally, let T be an arbitrary consistent specialization of S. We assume without 
loss in generality that wp(T)(true) O true holds. From Theorem 1 we already get 
T C Sx. From this we compute 

w(l)p(S'i\y — x! skip)(ip) w(l)p(S'x)(w(l)p(y = f.->• skip)(ip)) 
v ' 

s f 
=>• w(l)p(T)(w(l)p(y = x1 skip)((p)) 
& w(l)p(T; y = x'-> skip)((p) , v ' 

Jx' 

i.e. Ts' C S f . At this point it suffices to show wp(T3')* (true) V(S,2,x'), 
because 

w(l)p(V(S,l,x') ^ S^')(ip) <* V(S,l,xl) u>(Z)p(Sf')(<p) 

=> wp(Ts')*(true) =• w(l)p(S%)(<p) 

=> wp(Ts')* (true) =>• w(l)p(Ts' )(<p) 

& w(l)p(wp(T£')*(true) ->T£')(<p) v ^ ' 
rpS' 
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implies immediately T* C V(S,I,x') -> Sf ' and we obtain Vf • Ts' C Vf • 
V(S,l,x') —Sf , consequently. The formula on the left-hand side is equivalent to 
T, whereas the one on the right-hand side is equivalent to Si. 
Assume there is a state a, in which V(S,l,x') does not hold. From Proposition 3 
we get the existence of a state b with 

('wlp(S)(y ¿b)=> wlp(S'x; y = x1 skip)(y ± &)) , 

which is equivalent to 

K wlp(S)(y ± b) A pwlp(Si)(y = f y f b) 

and this, finally, to 

\=swlp(S)ti?$)Awlp(S'x)*(y = f Ay = b) . 

Hence x' = b must hold by definition of characterizing state formulae. On the other 
hand we receive wlp(T)(y ^ b) due to T Q S and together with 

wlp(Ts')(false) <£> wlp(T)(y = x1 => false) 
& wlp(T)(y¿x1) 

wlp(T)(y^b) 

we conclude (=g wlp(Tx'^(false). From the pairing condition wp(Tx )(false) 
wlp(Ts')(.false) A wp(Ts )(true) and 

wp(Ts')(true) O wp{T)(y = x1 => true) wp(T){true) <£> true 

follows (=5 wp(Tx )(false), which is equivalent to [=3 pwp(Tx )*(true). • 

Note that if we consider deterministic branches as a pragmatic approach suggested 
in [6], then the unbounded choice in Theorem 2 disappears. We omit further details. 

The charaterization of GCSs according to Theorem 2 makes it formally possible 
to reduce consistency enforcement to a simple syntactical replacement (the forming 
of S'x) and to an investigation of a guard, namely V(S,l,x'). 

5 Computability and Decidability 
We have now reached the stage, where we can say that the GCS approach could 
have been succesfully developed with respect to arithmetic logic. Thus, we can turn 
to the original intention of this paper: computability and decidability issues. 

Taking the general form of the GCS in Theorem 2 we may now ask, whether 
we can find an algorithm to compute the GCS. We may further ask, whether the 
result is effective. In general it will not be possible to compute the GCS, but we 
will identify subcases, for which effective GCSs can be computed. 
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5.1 The Computability of GCSs 
First consider the computability problem. Taking our Gödel numberings h for terms 
and formulae and g for commands, we have already exploited their inversibility. 
From this we obtain the following immediate consequence. 

Lemma 5 For each n G N it is decidable, whether n is the Gödel number of a 
term, a formula or a guarded command. • 

Next we consider the upper bound S'x that occurs in the GCS. Since this is only 
a syntactic transformation, we may now conclude that (5, X) >-> S'x is computable. 
Hence it is sufficient to investigate the computability for the precondition V(S, X, x') 
for arbitrary x'. 

These conditions involve the predicate transformers wlp(S) and wlp(S'x). Ac-
cording to our definition of axiomatic semantics for commands, we know that build-
ing these predicate transformers is simple done by syntactic replacement operations. 
By exploiting our Gödel numbering h again, we conclude that for recursion-free S 
the mapping 

: ( S , I , x ' ) ^ V { S , I , x ' ) 

- and hence (5, X) ^ Sx, töo - is computable. 
However, if S involves a loop, then S'x also involves a loop. In order to determine 
uilp(S) and wlp(Sx) we have to use the limit operator. For a loop f.iTj.f(Tj) this 
means to build wlp(fl (loop)) for all i G N. This is only possible, if there is some 
n 6 N such that wlp(fn(loop)) = %ulp(fm,(loop)) holds for all m > n, m 6 N. This 
means that we have a bounded loop (or equivalently a FOR-loop). 
Proposi t ion 5 If recursive guarded commands are restricted to bounded loops, 
then GCSs are computable, i.e. the function (S,X) Sx is computable. In general, 
however, the GCS cannot be computed. • 

5.2 Effective GCSs 
Even, if the GCS Sx can be computed from a given command S and the invariant 
X, the result still contains the preconditions V(S,X,x'). If such a precondition is 
undecidable, then the GCSs will not be effective. We will demonstrate how effective 
GCSs can be computed. 

Therefore, we consider the proof of the upper bound theorem (see Appendix C) 
again. The next result shows that we have already proven more than we needed. 

Lemma 6 Let T be a program specification on Y and X a static constraint on X 
withYÇX. 

1. IfT = P ^ S , then TX = P^> Si. 

2. IfT = SiOSa, then TX = (Si)iO{S2)i-

3. IfT = @y • S, then Tx = @y Si. 
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Proof. The Propositions 7, 8 and 9 show the specialization intone direction. For thé 
reverse specialization, one shows straightforwardly that P —> Si, (SI)IE(S2)I and 
@y • Si are Z-consistent specializations of P -»• S, S1OS2 and @y • S, respectively. 
• 
Note, that Lemma 6 does not hold for the case of sequences, even if they are Ô-1-
reduced. Although Proposition 11 gives us of course specialization in one direction, 
the reverse specialization does not hold in general. The reason why (S\) i ; (82)1 is 
not a specialization of Si ; S2 is that wlp(S2)(<p) is not necessarily a state formula 
of the underlying S\ state space. 

The next lemma will give us a computation of effective GCSs for program spec-
ifications S that only use basic commands, choices, guards and sequences. We 
dispense with the case of restricted choices. 

Lemma 7 Let S be a program specification on X built of basic commands, choices, 
guards with decidable preconditions and sequences. If ip is a decidable state formula 
on X, then wlp(S)(if) and wlp(S)* (ip) are decidable as well. 

Proof. . The proof is a straightforward structural induction that makes use of the 
closure.properties for decidable arithmetical predicates. • 

It it well-known that every first-order predicate formula <p is equivalent to a for-
mula Q1X1... QkXkwhere Qi £ {V,3} for i = 1 , . . . ,k and ip is quantifier-free. 
This result carries immediately over to guarded commands with respect to the 
@-operator. 

Lemma 8 Each guarded command S, whose occurences of loops are all bounded, 
can be written in the form • ... @xn • S" such that S' does not contain an 
unbounded choice operator 

Proof. The only interesting case is the one for bounded loops. Applying the 
predicate transformer wlp here results in a finite conjunction, whereas wp gives a 
finite disjunction. • 

Let us all bring together and consider a program specification S for which all 
occurences of loops are bounded and all preconditions are decidable. In a first 
step, we replace all occurences of the restricted choice operator S in the usual way. 
Then we apply Lemma 8 that provides us with a specification T = @y\ • . . . @yn • R 
that is semantically equivalent to S. Lemma 6 tells us then not to worry about 
the occurences of unbounded-choice operators, i.e., Xz.= @y\ « . . . @yn • Ri. We 
apply the main theorem (Theorem 2) to compute Ri and conclude by Lemma 7 
that all preconditions of the form V(S',1, x') are decidable. Finally, we obtain the 
following result. 

Proposit ion 6 Let S be a program specification such that every loop is bounded 
and all preconditions are decidable. Let T be a decidable static constraint. Then we 
can compute the GCS Si in the form Si = @yi • ... @yn • Ti, where Ti has the 
form of Theorem 2 with all preconditions V(T' ,I,x') being decidable. • 
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6 Conclusion 
In this article we considered the GCS approach to consistency enforcement .pre-
sented in [6]. We could show that the underlying theory of predicate transformers 
could be carried over from an infinitary logic to first-order arithmetic logic. We 
were even able to do this for recursive program specifications by exploiting Godel 
numberings for terms, formulae and guarded commands. However, the used recur-
sive program specifications are slightly restricted with respect to the more general 
theory in [4]. 

Then we could show that the existence and uniqueness of GCSs, the commuta-
tivity result from [8] and the fundamental compositionality result carry over to the 
new logic. This allows to study computability and decidability issues. We could 
show that the GCS is computable for program specifications where all loops are 
bounded. Moreover, effective GCSs can be computed when preconditions within 
guards and the given static constraint are decidable. 

There are at least three more problems we would like to approach next. Firstly, 
we would like to study the Goldfarb classification [2] and its impact to GCS con-
struction. More precisely, we look for a characterization of those static invariants X 
for which Z-reducedness is decidable. Secondly, we would like to look at weakened 
approaches to consistency enforcement, e.g. the one presented in [5] and to discuss 
computability and decidability for this approach as well. Thirdly and finally, we 
would like to address the problems of GCSs - and weakened approaches - with 
respect to basic commands. In particular, it would be nice to see how GCSs for 
various classes of relational constraints would look like. 

A Appendix A: Proof of the Normal Form for Spe-
cialization 

Proposition 3. Let S and T be commands on the state spaces X and Y, re-
spectively, with X CY. Then wlp(S)((p) => wlp(T)((p) holds for all X-formulae 
iff • 

{z/x}.wlp(T')(wlp{S)*(x = z)) 

holds, where z is a disjoint copy of x and T' results from T by renaming each Xi 
into ZI. 
Proof. The normal form representation from Lemma 1 gives for wlp(T') the equiv-
alence from wlp(T')(wlp(S)*(x = z)) to 

Vz'.wlp(T')*{z = z1) {z/z'}.wlp{Sy(x = z). 

Now, S is defined on X which results in 

{z/z,}.wlp(S)*(x = z) & wlp(S)*(x = z1) . 

Hence, it is sufficient to show the equivalence between 
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1. wlp(S)(ip) => wlp(T) (up) for all X-formulae <p and 

2. {z/x}.(\/z'.wlp(T,Y{z = ?) ^wlp{S)*{x = !•)). 

Let us assume that (1) holds. By renaming, wlp(S')(ip) => wlp(T')(tp) holds for all 
Z-formulae (p. In particular, if ip = z — a for some state a, then wlp(S')(z = a) O 
{x / z} .wl'p(S)* (x = a). But then, 

Vz'.(wlp(T')*(z=.z') => {x/z}.wlp{S)*(x = z1)) 

must be valid and this implies (2). 
Suppose that (2) holds. Again, Lemma 1 can be employed to show the equivalence 
of wlp(T)*(ip) with arbitrary X-formula ip to 

3z'.({z/x}.wlp{Tly(z = z1) Aipiz1)) . 

With Vz'.{wlp(T'y(z = ?)=> {x/z'}.wlp(Sy(x = ?)) follows immediately 

{z/x}.(3z'.(Wlp(Sy(x = z')A<f(z'))) , 

which is equivalent to wlp(S)*(ip) by Lemma 1. This gives the proof. • 

B Appendix B: Existence, Normal Form Repre-
sentation and Commutativity of GCSs 

In the appendix we give a detailed proof of Proposition 4. 
Proposition 4. The GCS ST of S with respect to X always exists and is unique 
up to semantic equivalence. We can always write 

Sz = ( I - t :=/;!-»• skip))E (-Z(5;@f • 2 := ? ) ) , 

where z refers to the free variables in I not occurring, in S. 
Furthermore, for two invariants T and J we always obtain that IA J —• SXAJ 

and X A J —> (Si) j are semantically equivalent. 
Proof. First we show the existence and uniqueness up to semantic equivalence of 
GCS. We set 

T = {T \T C S and T is consistent with respect to 1} . 

If the least upper bound Si of T with respect to the specialization C exists, then this 
must be the GCS. Therefore, we have the uniqueness up to semantic equivalence. 
We now verify the conditions from Definition 4 for the program specification S i 
above. Let ip be an arbitrary state formula on Y. Then we receive 

wlp{Siy(ip) O (XAwlp(Sy(3z'.{z/z'}.{XAip)))\/ 
(nlA wlp(Sy(3z'.{z/z'}.ip)) 

& ( I A wlpiSyi^.iz/z1}.!) A ip)) V (-iZ A wlp(Sy(ip)) 
=> (XAwlp(Sy{ip))V(~^lAwlp(Sy(ip)) 
«• wlp(S)*(ip) . 
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Doing this we have made use of the dual predicate transformers' monotonicity 
property and the fact that variables Zi do not occur within tp. Then the asserted 
specialization Si Q S follows from the same computation for wp instead of wlp. 
Next we consider 

wlp(Si){l) O (l=>wlp(S)(Vz'.{z/z'}.(l =>!))) A 
(pi => wZp(S)(Vz'.{z/z'}.Z)) 
->Z => i«Zp(5)(Vf .{z/z1 }.Z) 
IV pwlp(S)(V?.{?/?}.!) . 

and obtain Z => wlp(Si)(l) which means that the above S i is indeed consistent 
with respect to Z. 
Let x — y be a characterizing state formula and T C S a n arbitrary, but Z-consistent 
specialization of S. Then we ditinguish two cases. 
Case 1. We assume x = y => ->Z and therefore we conclude wlp(T)*(x = y) =>• 
wlp(T)*(->Z) => --Z using the monotonicity of wlp(S)* and consistency of T. More-
over, it follows 

wlp(T)*(x = y) plAwlp(S)*(x = y) 

=>• wlp(Si)*(x = y) . 

For the first implication we simply use the specialization T C 5, for the second we 
refer to the monotonicity applied to x = y =>• 3z* .{z/z1 }.x = y and the last one 
follows from the first line of the computation of wlp(Si)* 
Case 2. Starting from x = y => Z gives wlp(T)*(x = y) <=>• wlp(T)*(l Ax = y), 
subsequentely. We compute the following using T C. S and the monotonicity of 
wlp{Sy 

wlp(T)*(x = y) => wip(5)*(3f ' .{f/z '}.(lA® = »))A 
wlp{Sy{3z'.{z/z'}.x = y) 

=> (ZAiuZp(S)*(3f .{z / f }.(Z A f = j/))) V 
( - Z A wlp(Sy(3z'.{z/z'}.x. = y)) 

O. wlp(Siy(x = y) . 

This first step has brought us to wlp(T)*(x = y) => wlp(Si)*(x = y), i.e. 
wlp(Si)(x ^ y) => wlp(T)(x ^ ,y). For arbitrary state formula (p we have 
<p(x) Vy.-np(y) => x ^ y and therefore 

wlp(Si)(ip(x)) Vy-~«p(y) => u>lp(Si)(x ± y) 
=>• Vy.p(p(y) =>• wlp(T)(x ± y) 

wlp(T)(ip(x)) , 

using the universal conjunctivity property of wlp. Thus, we obtain wlp(T)*(tp) 
wlp(Sxy(ip) for all On top of that wp(T)*(false) =i> wp(S)*(false) => 
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wp(Sx)* (false) holds as well, due to the specialization T C S and the first line of 
the computation of wlp(Si)* above. Indeed, we have proved that T is a specializa-
tion of Si. 
Let us now consider the asserted commutativity result. Since (Szi)z2 in-
consistent by definition we have 

Z2 =• wlp((SXl)xJ(l2) . 

On the other side we can use the definition of GCS and consistency as well as 
(SIx)I2 C Sij in order to receive 

Zi wlp(SXl)(Ii) => wlpttSi^^Xh) . 

In summary, this results in 

Z iAZ 2 wlp((Six)l2)(h) A wlp((Sz,)^)(l2) O wlp((SXl)Xa){h AZ2) , 

so we have proved the consistency of (SXl)z with respect to I\ A I 2 . From C S 
and (5i j ) j2 C S i j we derive 

wlp(S)(ip) w/p(SXl)(<,?) =• wlp((SiJX2)(<p), 

i.e. the specialization (SzJx C 5. Consequentely, definition 4 yields (Si, ) j2 C 
SZXAZ2

 a n d we obtain 

wlp(li AZ2 SilAi2)(<p) & Zi AZ2 wlp(SXlAi2)(<p) 
. h M2 ^ wlp((Si,)l2)(y) 

wlp(l1Al2-^(Si1)X2)(ip) 

for arbitrary tp which means Zi A Z2 (SX l) l 2 C Zi A Z2 —> Sj l Az2- Thus, it 
remains to show the reverse specialization. 
From Si, Az2 E S follows 

. ZI A Z 2 — S Z , AI 2 C S . (1) 

In addition, Sz lAz2 consistent with respect to Zi A Z2 of definition, so we have 
not only Zi A Z2 => wZp(SzlAzJ(Z1) but also 1\ A12 => wlp(SilAi2)(l2). Next we 
consider 

ZI =>• W/p(Z! A Z2 SXl aZ2 ) (ZJ ) O ZI A Z2 => wZp(S2l AZ2 ) (ZI ) (2) 

and 

Z2 => wlp(h A X2 Sz lAz2)(Z2) ^ Zi AZ2 =>• wlp(SilAi2)(l2) . (3) 

From equation (2) we obtain the consistency of Zi A Z2 —» Sz lAz2 with respect to 
Zi- and using equation (1) yields 

Zx A Z 2 S i l A z 2 C SXl . (4) 
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From equation (3) follows the consistency of Zi A -» Sjl Az2 with respect to Z2 

and using equation (4) we conclude 

h A l i - > S z l A l 2 C ( 5 I J 2 2 . (5) 

Finally, we compute 

w(l)p{lx A Z 2 ( S z J ^ X y ) ZL AZ2 ^ ( / M S z J z J M 
Zx A ( l ) p { h AI2 Sz, AZ2 ) (V) 

<S> Zi A Z2 (Zx A Z2 w(l)p(SiiAZ2)M) 
<3> Zi A Z2 =i> u;(/)p(5z1 A Z 2 ) ( v ) 

<S> W(Z)p(Z! A Z 2 5 Z I A I 2 ) ( V ) 

the specialization Zi AZ2 —> 5z lAz2 Q 2] AI2 (Si1 ) j 2 , where we just make use 
of equation (5) in the appearing implication. This completes the proof. • 

C Appendix C: Proof of the Upper Bound Theo-
rem 

Recall the strategy, to obtain a new specification S'j from a given complex program 
specification 5 and static invariant Z by replacing all basic commands, i.e. skip, fail, 
loop and in particular assignments, within 5 by their respective GCSs. The upper 
bound theorem 1 proposes that this yields an upper bound for Sx with respect to 
the specialization order C, i.e., Sx E S'z. 

The result is only provable if we assume that S is in Z-reduced form. We use 
structural induction on guarded commands and start with — • , @ and El. We will 
deal with the more difficult cases of sequences and recursion in subsections. 

Proposition 7 Let S' = P —> S be a specification on Y and I a static constraint 
on X with Y CX. IfTQS' is 1-consistent, then TQP Sx-

Proof. First w(l)p{S){<p) (P =>• w(l)p(S){<p)) establishes S' C S, hence T Q S 
by assumption and transitivity of C. Moreover, the Z-consistency of T gives us 
even T C Si . From 

wp(S')(false) O P =>• wp{S)(false) <£> ->P V wp{S)(false) 

we receive -<P =>• wp(S'){false). As the specialization T Q S' means in particular 
wp(S')(false) wp(T)(false), we conclude ->P =>• wp(T)(false) or equivalently 
wp(T)*(true) => P. But then 

w{l)p(V Si){<p) ^ P ^ w(l)p{Sx)(tp) 
P w(l)p(T)(<p) 

=> wp(T)*(true) w(l)p(T)(ip) 
O w(l)p(wp(T)*(true) —> T)(ip) 
& w(l)p(T)(ip) , 
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holds and therefore the desired specialization T Ç P - t Sx- • 

Proposition 8 Let S = S1OS2 be a program specification on Y and X a static 
invariant on X with Y C X. IfTQSis X-consistent, then T Ç (Si)zO(S2)z-

Proof. We start showing the semantic equivalence of T to T'UQ —• loop with 
wp(T')(true) true, wlp(T')((p) O wlp(T)(ip) for arbitrary <p and Q O 
wp(T)*(false). Namely, 

wlp(T'UQ loop) ( ( f ) wlp(T')(ip) A (Q wlp(loop)(ip)) 
wlp(T)(ip) A true 
wlp(T)(ip) and 

wp(T'OQ loop) (if) wp(T')(ip) A(Q=> wp(loop)(ip)) 
wlp(T')(<p) A wp(T')(true) A -<Q 

<3- wlp(T)(ip) A ->wp(T)*(false) 
wlp(T)(ip) A wp(T)(true) 

0 wp(T)(<p). 

From 

w(l)p(S)(ip) => w(l)p(T)(ip) w(l)p(T')((p) A w(l)p(Q -)• loop)(<p) 

we obtain Q —> loop C S and therefore also 

Q loop = (Qi -> Zoop)a(Q2 Zoop), 

with Qj loop C S» for 1 = 1,2. We show T" C (Si)xD(S2)z since this implies 

T C (S^iDiQ! ^ loop)a(S2)iO(Q2 ^ loop) 
> v ' > v ' 

(S2)'x 

with (Si)'x C (Si)x for i - 1,2. Namely, Qi loop C Si, (Si)z C Si implies 
(Si)'x C Si and from the I-consistency of (Si)'x follows (Si)'x C (S,)z. 

Without loss in generality we assume that wp(T)(true) true holds. For each 
state a on Y we define Ta = T\(y = a skiv). Then T° is a deterministic 
specialization of T as. 

wlp(T3)*(y = b) 

wp(Ts)*(y = b) 

wlp(T)*(y = a Ay = b) 
wlp(T)*(y = a) for 6 = a 
false otherwise 

wlp(T)*(y = b) and 

wp(T)*(y = aAy = b) 
wp(T)*(y = a) for b = a 
wp(T)* (false) otherwise 

wp(TY(y = b) . 
{ 
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The last implication in the second case follows from the monotonicity of wlp(T)* 
applied to false =>• y = b. Besides, we obtain w(l)p(Ts)* (R) => w(l)p(T)*(R) for 
arbitrary <p. From ip(y) <=> Vz.-«p(z) => y ^ z we derive 

wlp{T)(ip(y)) & wlp(T)Çiz.-np(z) y ^ z) 
O Vz.-*p(z) => wlp(T)(y ± z) 
=>• Vz.-^(z) wlp(Ts)(y ± z) 

wlp{Ts)(Vz.-.<p(z) y ^ z) 
wlp(Ts)(tp(y)) , 

i.e., the specialization Ta Ç. T, as the lop-part can be obtain similarily. Here, in 
case of an empty index set we use wp(Ta)(true) O wp(T)(true). The proof that 
Ta is deterministic uses 

wlp(T5)*(y = b) & wlp(T)*(y = bAy = a) 

and the distinction into two cases. If b ̂  a holds, then 

wlp{T)*(y = bAy = a) & wlp{T)*(false) O false wp{Ta)(y = b) 

and if b — a is valid, then 

wp(Ta)(y = a) wp(T)(y = a => y = a) O true 

implies wp(Ta)(y = b). Together wlp(Ta)*(ip) => wp(Ta)(ip) for arbitrary tp means 
that Ta. is deterministic. Using wlp's monotonicity, we conclude I =>• wlp(T)(l) => 
wlp(T)(y = a => I ) =>• wlp(Ta)(l) and therefore that Ta is also Z-consistent. As 
we have just proven that T° is deterministic, it is also semantically equivalent to 
TfCITf with Tf Ç St for i — 1,2. More precisely, we have Tf = Pf Ts with 

Pi ^ {z/y}-^P({y/^}-TS)(z = a^wlp(Sir(z = y)). 

Using Proposition 3 we have 

P 3 VP 2
S {z/y}.wlp({y/z}.Ts)(y = a^wlp(S)*(z = y)) true , 

where T s Ç 5 is applied. Moreover, T 3 = (Pf V Pi) T 3 = Pf -> T3DP2
3 ->• T 3 

holds. Since Tf is Z-consistent for ¿ = 1,2, the GCS definition gives us Tf C (Sj)! 
and therefore T 3 C (5 i ) z a (5 2 ) i . 

Finally, the least upper bound of all T" with respect to Ç must be a special-
ization of (Si ) id(S 2 ) i . But this least upper bound is T and the proof is done. 
• 

The case of unbounded choice can be proven similarily to the last case. 

Proposi t ion 9 Let S' = • S be a specification on Y and Z a static constraint 
on X with Y ÇX. IfTÇS' is 1-consistent, then TQ@ySx. • 
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Proposition 10 Let S — Si B S2 a specification on Y and 1 a static constraint 
on X with Y QX. IfTQSisI consistent, then 

T C (S1)xOwp(S1)(false) (S2)x C (Si)z El (S2)x. 

Futhermore, T C (Si)x^wlp(Sx)(false) ->• (S2)x holds. 

Proof. We define Ti = wp(Si)*(true) T and T2 = wp(Si)(false) T. Let tp 
be an arbitrary ^-formula. Then we have 

w(l)p(TiOT2)((p) & (wp(Si)*(true) A w(l)p(T)* (tp)) V 
(wp(S1)(false)Aw(l)p(Ty(ip)) 

& (wp(Si)*(true) V wp(Si)(false)) A w(l)p(T)*(ip) 
& w(l)p(T)*(tp) , 

that is T and T\OT2 are semantically equivalent. By assumption T C Si HS2 holds, 
and hence 

w(l)p(T)*(<p) w(l)p(Si)*(cp) V (wp(Si)(false) A w(l)p(S2)*(<p)) 

is valid, too. Besides, we can proof 

w(l)p(Ti)*(tp) <3> wp(Si)*(true) A w(l)p(T)* (tp) 
=i> (wp(Si)*(true) Aw(l)p(Si)*(<p)) V 

(wp(Si)*(true) A wp(Si)(false) Aw(l)p(S2)* (tp)) 
V 

ofalse 

But this means Ti C Si. Even more, 

w(l)p(T2)* (ip) o wp(Si)(false)Aw(l)p(Ty(V) 
(wp(S1)(false)Aw(l)p(S1y(tp))\/ 
(wp(Sl)(false) A w(l)p(S2)* (<p)) 

=i> (wp(Si)(false) A wp(Si)*(true)) V v * ' 
•»false 

(wp(Sy)(false) A w(l)p(S2)*(tp)) 
& w(l)p(wp(S1)(false) ^ S2)*(tp) 

gives us T2 C wp(S\)(false) S2. Herein, the second implication is due to 
->wp(Si)*(irue) =» -^wp(Si)*(tp) and wlp(Si)*((p) it;p(Si )*(<£>). 
As Ti and T2 are I-consistent, we have Ti C (5i) j . Due to Proposition 7 and 
(Si)x C Si, we derive T2 C wp(Si)(false) ->• (S2)z C wp((Si)x)(false) (S2)x, 
i.e., by definition of the predicate transformers 

TiDT, C (Si)xEhvp(Si)(false) —> (S2)x 
Q (S1)xOwp((S1)x)(false)^(S2)i = (S^x^iS^j. 
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This gives the first statement, the second one becomes obvious when we look at 
wp(Si)(false) => wlp(Si)(false). p 

C.l The Case for Sequences 
We come now to the case of sequences. Herein, the definition of ¿-X-reducedness 
will become more apparent. But first, we will show the following lemma. 

Lemma 9 Let S — Si; S2 be a program specification on Y with SI on YJ C Y 
for i = 1,2. Let I be a static invariant on X = {x i , . . . , x s} with Y C X. Be-
sides, X-YI-Y2 = {yi,... ,ym}, X-YI = {yi,... ,ym,ym+i,... ,yn}, X-Y2 = 
{yi, • • -,ym,xi-1-1,... ,xk), YI = {xi , . . . ,xi, XI+I, .... ,xk} and {x i , . . . ,x'k) a dis-
joint copy 0/Y1 with Y{ fl Y = 0. If S is 5-1-reduced and Si deterministic, then 

1. for all states a and b with \=s. |=£ and [=5 wlp(S)*(3yi,... ,ym. 
x = b), for which 

x = a =>.{x/x}.(Vyi ,..., y„.wlp{S2)*(3yi,... ,ym,xi+1,..., xk.x = b) => I ) 

is a 5-constraint for Si, x = a => {x/x'}.Vyi,... ,yn.l is a 5-constraint for 
S. 

2. for all states a and b with |=5 X, X and (=5 wlp(S)*(3yi,... ,ym. x — b), 
for which 

x = a {x/x}.(Vyi,...., y„.wZp(S2)*(3yi,. ..,ym, ®i+i, • • • ,xk.x = b) => -> 1) 

is a 5-constraint for Si, x = a => {x/x'},\/yx,..., yn.-*l is a 5-constraint for 
S-

Proof. We will show (i) only. The proof for (ii) is completely analogously. Let a 
and b be states with (=5 ->X, |=g -X und |=s wlp(S)*(3yi,..., ym• x = b) and 

x = a =>{x/x'}.(V2/i,..., yn-wlp(S2)*( 

3yi,...,ym,xi+i,...,xk.x = b) =>1) (*) 

a ¿-constraint for Si. Then 

|=a wlp(S)*{3yi,.. .,ym.x = b) o |=5 wlp(Si)* (wlp(S2)* (3yx,.. .,ym.x = b)) 
=> 1=5 wp(Si)(wlp(S2y (3yi,... ,ym.x = b)) 
=• [=5 wlp(Si)(wlp(S2)*(3yi,... ,ym.x = b)) 

holds, using the definition of wlp(S), Sx being deterministic and the pairing condi-
tion. Moreover, we conclude 

|= {x1 /x}.wlp({x/x'}.Si)(x = a 

wlp({x/x'}.S2y(3yi,...,ym.{x/x'}.x=b)) (**) 
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by definition of wlp(Si). By definition of a ¿-constraint, (*) implies 

|= {x1 /x}.wlp({x/x'}.Si)(x = a => 

{x/x1} .Vyi , . . . , yn.wlp(S2)* (3j / i , . . . , ym,xi+i ,...,xk.x = b) =>!)) 

and together with (**) further 

{x1/x}.wlp({x/x'}.Si)(x = a => { f / f }.Vyi,... ,yn.l) . 

Hence, x = a => {x/x'}.Vyi,... ,yn.l is a ¿-constraint for Si. As 5 is ¿-Z-reduced 
by assumption, x = a => {x/x'}^iyi,... ,yn-2 is also a ¿-constraint for S. p 

Proposition 11 Let S = Si ; S2 be an 1-reduced specification on Y with T be-
ing a static constraint on X with Y Ç X. If T Q S is I-consistent, then 
T C ( S i ) i ; ( S 2 ) z . 

Proof. Without loss in generality we assume that wp(T)(true) O true holds. Then 
it suffices to show wlp(Sz)*(x = a) => wlp((Si)i-,{S2)i)*(x = a) for all state 
characterising formulae x = a. Namely, 

wlp{(Si)i)(wlp((S2)i)(v>m) O wlp((Si)i)(wlp((S2)i)(Vz.^<p(z) ^ X j i z ) ) 
O wlp((Si)x)(Vz.-i<p(z) =• wlp((S2)i)(f ? z)) 
O V z . ^ ( f ) => wlp((Si)i)(wlp((S2)i)(x ± z)) 

Vz.^ip(z) => wlp{Sj)(x ± z) 
wlp(Si)(yz.^ip(z) => x ^ £) 

O iu/p(Sz) (¥>(£)) 

holds for all X-formulae 
As Si is the least upper bound of its deterministic branches with respect to Ç, 

we can further assume without loss in generality that Si is deterministic. Therefore, 
we are able to use the stronger properties from Lemma 9. 

First, we compute both sides of of the implication above using the GCS normal 
form from Proposition 4. We obtain 

wlp{Si)*(x = a) & (lA3iwlp(Sy({y/Q.lA{y/Q.x = a))V 
(pi A 3Ïwlp(S)*({y/£}.x = a)) (6) 
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as well as 

wlp((S1)r,(S2)ir(x = a) o ( lAu»/p (5i )*(3y 1 > . . . , i /n . ( lA 
wlp((S2)i)'(x = a)))) V (pl A wlpiS^i 

... ,yn.wlp((S2)i)*(x = a))) 
& (Z A wlp(Si)* (3yx,.. ,,yn.{l A wlp(S2)*( 

3yi,---,ym,XL+i,...,Xk(I/\X = S))))) V 

(-Ü A wlp(Si)* (3yi,.. .,yn.(l A wlp(S2)*( 
^yi,---,ym,xi+i,...,xk(lAx = a)))))V 

(-iZ A wlp(Si)* (3yi,..., yn. (-. 1A 
wlp(S2)*(3yi,...,ym,xi+i,...,xk.x = a)))) 

and this is equivalent to 

3 6 . . . . , < £ n . 3 £ i Í Í + 1 , • • • , a . ( w l p ( S i ) * { { y / t } . l A 
{y/S}.wlp(S2y({yl?}.(l Ax = a))))V 

3 6 , • • • , fn-3f i , • • • 1» • • • ^ - " " ^ A 
A {y/0-wlp(S2)*({y/?}.x = a))) 

(7) 

Case 1. We assume x = a =$> ->1. Then wlp(Sj)*{x = a) => wlp(Sx)*(~"Z) => ->Z 
follows as 5 j is Z-consistent. Since we also rulp(Si)*(x = a) assume, we look at 
the second line of formula (6). We show, that we can derive the second subformula 
of (7). Assuming consistency, we are allowed to neglect ->Z, i.e., we need to derive 

(wlp(Si)*{p{y/£}.l A {y/£}.wlp(S2)*({y/£'}.x = a)))) 

Suppose, (8) does not hold. Then, there is a state b with 

|=5 wlp(Si)(V£i,..., tn.{y/t}.(wlp(S2y 

• • •, C . ii+1, • • •, = 3) Z))). 

We compute that (9) is equivalent to 

|=5 {x'/x}.wlp({x/x'}.S1)({x/x1}. 

V6, • • •, Zn-{y/£}.(™ip(S2Tm,..., , . . . , e k : { f f / ? } . s = 3)=> Z)) 
v V 

R 

and therefore to 

(=5 {x,/x}.{Vx!l.wlp{{xlx!}.Sly{x! = f") { f / £ " } . { x / f 

(8) 

0 ) 
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applying Lemma 1 to wlp({x/x'} .Si)({x / x1} .R). From this, we derive the equiva-
lence to • ' 

2 = b=> {x'/x}.(W.wlp({x/x'}.S1)*(x' = x") =» {f/£"}.{x/f}.R) o 
{x'/x}.(W.wlp({x/x'}.S1y(x' = x") =>• {x = b=> { f / f " } . { f / f } . / ? ) ) o 
{x'/£}.wlp({£/tf}.Si)(£=b=> {x/x'j.R). 

But then 

x = {x/f}.(V£i,...,£„. 

.. ,C> • • , = 3) =» I ) ) (10) 

is a ¿-constraint for Si. As not only ->Z, but also [=3 ->I is valid, Lemma 9 (i) 
implies that 

f = i = » { i / f } . ( v e 1 , . . . J e n . { j / / D . i ) (11) 

is a ¿-constraint for 5. We conclude 

{xf/x}.wlp({x/x'}.S)(x = b^ {f/f}.(V^,...,e„.M}.2)) 

and this is equivalent to 

hs {x'/x}.wlp({x/x'}.S)({x/x'}.(^i,... ,tn.{y/(}.l)) 
\=twlp(S)(Vyi,...,yn.l) . . (12) 

following a similar computation as above. On the other hand, we apply monotonic-
ity on the assumption x = a ->1 and use S% C S to compute 

wlp(Sz)*(x = a) => wlp(Sx)*{-^T) 
^ wlp{S)*(-^l) 

wlp{S)*{3yi,...,yn^l) . 

But this is a contradiction since 

wlp(S)*(3yi,...,yn.^l) <£> -^wlp(S)(Vyi,...,yn.l) 

holds. 
Case 2. Now we assume x = a => 1 and |=j wlp(Sx)* {x = a). Following (6) we 
distinguish further. 
Case 2.1. We suppose |=£ ->Z A 3£.wlp(S)*({y/£}.x = a). For state & we have 

3Z.wlp{Siy(wlp{S2)m(W$.2 = 3})& 
3lwlp(Siy((lV-,l)Awlp(S2y({y/£}.x = a))& 

• 3lwlp(Siy(lAwlp(S2y({y/$.(x = aAl)))\/ 
3£.wlp(Siy(^l A wlp(S2)'({y/(}.x = a)) 
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and therefore (7). This gives the proof of case 2.1. 
Case 2.2. We suppose X A 3£.wlp(S)*({y/£}.(! A x = a)) and show that 

|=f , . . . , £n-3£j,. . . , C , tf+i > • • • • ft -HP(5I)*({¿r/D-i A 

{y/Z}.wlp(S2y({y/?}.(l A f = a)))) (13) 

follows. This implies the first subformula in (7). According to case 1, we assume 
that (13) does not hold. Similar to the computations above, we conclude that 

{y/£}.(-wlp(S2y(3Z[,..., C> . • •, = <!)=*• -x)) 

is a ¿-constraint for Si. Using Lemma 9 (ii) as well as X and |=j X, we can 
conclude that 

2=b=> {S/x1 }.(V£i,..., tn.{y/i}.-<r) 

is a ¿-constraint for S. We derive 

{x'/S}.wlp({x/x'}.S)(x = {x/x1 }.(V&, • • .,tn.{y/&.-<[)) 

and further 

{x'/x}.wlp({x/x'}.5)({x/f }.(V&,..., Zn.{y/Q.^l)) , 

i.e., equivalence to 

1=6 vulp(S)iyyi,..., yn-->T). (14) 

Due to our assumptions and x = a X we can also conclude that 
, . wlp{Sxy{x = a) => wlp(Si)*(i) 

=> wlp{Sy(l) 
wlp(S)*{3yi,...,yn.l) 

<=$> ->wlp(S)(Vyi,...,yn.-<X) 

holds, a contradiction to (14). This gives the proof for case 2.2. • 

C.2 The Recursive Case 
In this appendix we prove the upper bound theorem for recursive operations re-
stricted to simple WHILE-loops in the form of f(S) = V -> T; SD-^V skip for 
which we know the existence of least fixpoints according to subsection 3.2. For this 
we need some additional lemmata. 

For recursive guarded commands the monotonicity of all operation constructors 
with respect to the Nelson-order is fundamental [4]. Unfortunately, a similiar 
result does not hold for the specialization order C. More precisely, the result is 
false for the H-constructor in its first component. 
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Lemma 10 Let f(S) be a guarded-command expression with the program variable 
S in which restricted choice El does not occur. Then f is monotonie with respect 
to the specialization order Ç. 

Proof. The proof is done by structural induction. For each constructor it is 
completely analogous to the corresponding proof for the Nelson-order in [4]. We 
omit the details. • 

In [6, Proposition 20, p.120] we have seen that S'T may contain the choice-
constructor instead of restricted choice, provided we include some guard. Replacing 
within a recursive operation some S\ £3 S2 by (51) z E3-(S2)x would destroy the re-
quired result. 

The next lemma follows from taking together the cases in the upper bound 
theorem for preconditionings —choices • , unbounded choices @ and restricted 
choices 

Lemma 11 Let T be a consistent specialization of some 1-reduced f(S') with re-
spect to T, where f(S) is an expression built from the constructors of guarded com-
mands. Construct fi(S) from f(S) as follows: 

(i) Each restricted choice S\ S3 S2 occuring within f(S) will be replaced by 
Si Dwl'p(Si ) (false) -)• S2 • 

(ii) Then each basic operation, i.e. skip and assignments will be replaced by their 
GCSs with respect to 1. 

Then we have T Q fx(S'x). • 

We must now face the main difficulty to bring together two different partial orders, 
namely the specialization order C which is fundamental for GCSs and the Nelson-
order required for recursion. 

In order to accomplish this we will need to make use of another limit operator 
linitgN fl(loop)x- Semantics is completely analogously assigned as for the case of 
limjgN f'iloop). Therefore, we receive a corresponding result to Lemma 2 which can 
be obtained by using Proposition 4. It then is straightforward to verify counterparts 
for Lemma 3 and Lemma 4, finally. 

Lemma 12 Let 1 be a static constraint and f(T) = V —> S;TOPV —> skip such 
that T does not occur within S. Then for each j E N, there exist predicate trans-
formers r f ( j ) and T1 ( j ) on arithmetic predicates such that the following properties 
are satisfied: 

(i) for each arithmetic predicate <p(x), the results of applying these predicate 
transformers are arithmetic predicates in i and x, say 

X)'X(i, x) = TÏ(j){<p{x)) and X f Z ( i , x) = TT{j){ip(x)) 
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(ii) for j = h(ip) we obtain 

Vx.Vi. fxj'Z(»i & wip(/'(/oop))(¥>(f))) and 

Vx.Vi. (x2j'X(i, x) wp(fx (loop))(<p(x))) 

with x — «Ctj j • • • > Xik' 

Proof. We follow closely the proof Lemma of 2 where we obtained a primitve 
recursive function g such that 

Q'i(mj^) = wlp(fk{loop)){v{x)) 

is satisfied. Herein, g(k) gives us the Godel number of fk(loop). Using the normal 
form for GCSs from Proposition 4, we can easily derive a further primitive recursive 
function s such that the composition of s with g yields the Godel number (s o g)(k) 
for fk(loop)x. Notice, that loopx = loop holds. In particular, we obtain 

Qi((sog)(k),j,x) = wlp(fk(loop)x)(<p(x)). 

Then, we define predicates Qf(k,j,x) = qx((s o g)(k),j,x) and an extension of 
Qx{h(ip),h(<p),x) (CP => wlp(S)(ip)) A (pV ip)) with ip,<p £ F. We conclude 

Ql(k,j,x) = gf((s°s)(fc),j,x) = Qx{h(ip),h(<p),x) , 

where h(<p) '= j and ip(x) = wlp(fk~l (loop)z)(ip(x)) = Qx(k — l,j,x). In summary, 
we receive 

Qx(0,j, x) = true and 
Q?(fc + i,j,x) = Qx{h(Qx(k,j,x)),j,x). 

Now we take tf(j)(ip(x)) = x] ' Z ( fc ,x) = Qx{k,j,x) and conlcude as in Lemma 2. 
• 

We now define limit operators limigpj fl(loop)x with help of the predicate trans-
formers rx(j) and rx(j): 

wlp^imf'iloop)!^ {(p(x)) O Vi.xl^v)(i,x) and 

wp ^lim/l(/oop)i^ (<p(x)) & 3i.x2
hfv)(i,x) 

for Xl
hfv)(i,Z) = T-?{h(<p))(<p(x)) and xlf^ih*) = TX(.h(ip))(ip(x)). 

Lemma 13 The definition of limits lim^ fl (loop) x is sound. 

Proof. The proof follows exactly the one from Lemma 3. We just need to mention 
that {fl{loop)x | i 6 N} is a chain with respect to the Nelson-order •<. As loopx — 
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loop is the ^-minimum, we have loopx < f(loop)x• Since {fl(loop) \ i € N} is a 
chain and therefore fl(loop) < f1+1 (loop) holds, we can finally derive fl(loop)x •< 

The following lemma gives us the corresponding result to Lemma 4. The proof is 
again completely analogous. 

Lemma 14 The chain {fl(loop)x | i € N} has a least upper bound, namely 

We are now prepared to bring specialization- and Nelson-order together. 

Lemma 15 Let T und S be Y-operations. Furthermore, let 1 be an invariant on 
X for Y C X. Then we have: 

(i) IfT <S holds, then Tx < Si follows. 

(ii) (limigN fi(loop))x Ç limieN(/ ,(Zoop))x. 

Proof, (i) Here we use the normal form of a GCS given in Proposition 4. The first 
result follows immediately, because all constructors are monotonie in the Nelson-
order •<. 

(ii) First, limi6N fl(loop) is the least upper bound of {f'(loop) \ i 6 N} with respect 
to the Nelson-order according to Lemma 4, i.e. especially fl(loop) lim^N fl(loop) 
holds for arbitrary i € N. From this and (i) we get fl(loop)x (limi(EN fl{loop))J, 
i.e. (limjgN fl(loop))x is an upper bound for {fl(loop)x \ i € N}. Using Lemma 
14, lim izw fl(loop)x is the least upper bound of the chain {fl(loop)x | i 6 N } which 
means that l i m ^ fl(loop)x ^ (lim^gN fl(loop))x must hold. Therefore, we receive 

f1+1 (loop)x (see also Lemma 15). • 

linUgN P(loop)x- • 

according to the definition of the Nelson-order. 
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Once again we make use of Proposition 4 in order to compute 

wlp ^lim fl (loop)z J ( f ) 

Vi.i é N = > wlp (/'(loop)i) (</?) 

Vi.i G N => wlp({l /'(Zoop); @z* • z := z"; J skip)® 

( - . ! -> Á Z o o p ) ; ^ . . ? : = . ? ) ) M 

Vi.» E N ( ( Í => iw¿p(/i(ioqp))(V5'.{5y5'}.X => <p))A 
( - 1 WZp(/i(Zoop))(V,r.{z/z'}.<¿))) 

( I Vi.i e N wlpifiloop))^? .{z/z1}.! => v>))A 
( - 1 => Vi.i € N => wlp(fi(loop))(Vz'.{z/z'}.<p)) & 

( I wZp (limfiloop^j (Vz'.iz/z'}.! =>-<p))A 

(-.1 => wlp (\imf(loop)j {¥?.{?/?}.?)) ^ 

«j/p( ( Í lim 7 ¿ (Zoop) ; • z : = z1 ; I ->• sfcip) El 

( - 1 lim f(loop)-, . z := f))(<¿>) igN 

wlp M lim/*(Zoop)J J (cp) ' , 

i.e. 

wlp ^lim fl (loop) j^j (ip) wlp ^ ^lim /'(Zoop)^ ^ M 

supplies the asserted specialization. • 

We are now able to give the main proof. 

P ropos i t i on 12 Let S' = p,Tj.f(Tj) with f(Tj) = V T ^ D - V P s/cip be an 
X-reduced y-operation and T Q S' a consistent specialization with respect to some 
X-invariant I with Y C X. Then we have T C p.Tj.fx(Tj), where fx{Tj) is built 
as in Lemma 11. 

Proof. Since S" is a fixpoint we have S' = f(S'). T is an I-reduced consistent 
specialization of S' by assumption, so the specialization 

T C fi(Si) = fx (( j im/ '(Zoop) 

follows by Lemma 11. Due to the monotonicity of fx and because of Lemma 15 (ii) 
we derive further 
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( T » \ 
/ x ( ( l i m № 0 p ) ) J C h Hm (f(looP))x 

\ £ 7 
We set Tu — f j(loop) and show Tu C Tu for all i G N by induction. The case i = 0 
gives Tio = loopx = loop = T2Q. In the case i > 0 we can assume TIJ C T2j for all 
j < i. Tu is an I-consistent specialization of fl(loop) = f ( f 1 - 1 (loop)), hence we 
conclude 

Tu E fx {{rHloop))^ = h (T1( i_1}). 

by Lemma 11. Now, we apply the induction hypothesis and the monotonicity of 
fx in order to obtain fx ( T ^ ^ ) C fx = T2i, i.e. together Tu Q T2i as 
asserted. 
For T2 = limjgN fx(loop) follows 

wlp(T2)(<p) & Vi.i G N =>• wlp(T2i)(<p) 
=> Vi.i G N =>• wlp(Tu)(ip) 
O wlp(T\) (tp) 

and 

wp(T2)(ip) o 3i.i G N A wp(T2i)(ip) 
=> Bi.i G N A wp(Tu)(tp) 
O wp(Ti)(y) , 

thus the specialization 7\ QT2 . Finally, we receive by applying Lemma 10 

T C / i f f i ) C fx(T2) =T2= PTvfx(TJ) , 

where we use the fact that T2 is a fixpoint. • 
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Definition of a Parallel Execution Model with 
Abstract State Machines* 

Zsolt Nemethf 

Abs t rac t 

Languages, architectures and execution models axe strongly related. A 
new architectural platform makes necessary to modify the execution model 
in order to exploit all the advantages of the underlying architecture while 
preserving its main characteristics. The latter issue requires a careful analysis 
of the design process. Abstract State Machines offer a powerful method for 
aiding complex system design. In this paper some aspects of its application 
are presented by taking the redesign process of a parallel Prolog model as an 
example. 

1 Introduction 
The research work presented in this paper aimed at the design of a Prolog inter-
preter on a multithreaded architecture. However, the certain project represents just 
the framework and the goal is more general: investigating how a dataflow based 
model fits a kind of hybrid multithreaded architecture and what the conditions of 
efficient work are. In a wider scope it deals with the relationship of computational 
models and the underlying physical architecture. 

LOGFLOW is a fine-grained all-solution parallel (reduced) Prolog system for 
distributed memory architectures. Its abstract execution model called Logicflow 
[13] can be considered as a sort of macro dataflow scheme, whereas its abstract ma-
chine model is the Distributed Data Driven Prolog Abstract Machine [14] (3DPAM). 
3DPAM tries to make a connection between a dataflow based execution model and 
a kind of von Neumann physical architecture. 

A hybrid multithreaded platform offers the possibility of creating a more effi-
cient Prolog abstract machine. Its ability to hide latencies due to remote memory 
access or synchronisation (multithreading) opens a new way for representing Prolog 
data (heap) and managing the variables. On the other hand, its hybrid feature, 
i.e. support for both the fast sequential and dataflow execution, is close to the 
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macro dataflow model of LOGFLOW and makes possible an efficient realisation 
of dataflow nodes and token flows. To exploit the latter property at the abstract 
machine level, a new abstract execution model is necessary, too. The new execu-
tion model has been derived from the Logicflow in three major steps by changing 
the way how solution streams are separated, the way how solutions are propagated 
and by grouping together elementary nodes [18]. Whereas the gain in efficiency is 
obvious (qualitatively), it is not the case for correctness and semantical equivalence 
of the models. 

The work presented in the paper is a study on the application of a formal method 
called Abstract State Machines in proving the correctness of the redesign. Abstract 
State Machines (Gurevich's ASMs, formerly known as evolving algebras) offer a way 
for the design and analysis of complex hardware and software systems [3] [9]. They 
are similar to Turing machines in a sense that they simulate algorithms yet, they are 
able to describe semantics at arbitrary levels of abstraction. An ASM consists of a 
finite set of transition rules by which the system is driven form state to state, each 
represented by sets with relations and functions (algebras). By refinement steps a 
"more abstract" model can be turned into a "more concrete" one and by relating 
their states and transition rules (by proof mapping) their relative correctness and 
completeness can be proven. In several refinement steps the equivalence of the 
models can be shown. 

The refinement technique is applied at deriving the new execution model via a 
series of submodels. LOGFLOW is modeled as an ASM and modifications are intro-
duced by successive new ASMs where each modification step can be checked. Fur-
thermore, implementation steps, creating an interpreter engine can be conducted 
and checked in the same way. 

In Section 2 the notion of computational models are introduced and the circum-
stances are explained why the modification of Logicflow became necessary. It also 
summarises the main steps of redesign. Section 3 is a brief introduction to ASMs 
and their applications. Section 4 puts the design into the framework of ASMs: 
the initial model and the first derivation are introduced. Finally, in Section 5 the 
correctness of the first modification is shown. 

2 Computational models 
Computational models are considered as a higher level of abstraction above lan-
guages and architectures [22]. In the course of LOGFLOW project a highly ab-
stract, dataflow based parallel and distributed model called Logicflow [13] has been 
derived from Prolog language (Figure l.a). Target architectures were represented of 
parallel von Neumann types, primarily transputers and networks of workstations. 
The abstract execution model cannot be implemented directly on the physical ma-
chine model but a virtual machine, the so called abstract machine layer is intro-
duced between the execution model and the physical machine model. This way of 
execution via abstract interpretation is general in case of Prolog and declarative 
languages. 
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a ) b) 

Figure 1: Levels of abstraction 

However, the semantical gap between the models to be layers is still too big. 
The abstract machine, 3DPAM [14] provides the dataflow features required by the 
execution model at a high cost: token handling, queues, synchronisation, remote 
communication are realised by software. 

Multithreaded architectures offer a solution for fundamental issues of distributed 
computing: eliminating idling at remote memory access and synchronisation [2]. 
An emerging class called hybrid dataflow/von Neumann tries to combine the speed 
of sequential execution and the simplicity and performance of dataflow scheduling 
[20]. The runtime model of hybrid dataflow/von Neumann architectures is close 
to that of Logicflow therefore, a natural step is making an attempt to replace the 
architecture to a hybrid one. 

Hence the direction of engineering is reverse with respect to that of the 
LOGFLOW system: how the abstract engine can exploit the advantages of the 
architecture. Then how the execution model should be modified in order to fit the 
abstract engine making a real connection between the language and the architecture 
(Figure l.b)? 

The multithreaded and the hybrid properties of the architecture are completely 
independent. Multithreading enables remote memory accesses and thus, allows a 
new way of Prolog data layout. The main points of the new variable handling arid 
some performance considerations have been presented in [16] and [17]. The hybrid 
property gives an opportunity for a new and efficient realisation of a Logicflow based 
model, where all the dataflow features are supported by the architecture. These 
features can be exploited at abstract machine level but accordingly, the Logicflow 
model must be be modified, too. The main steps of the modification in the abstract 
execution model has been presented in [18]. 

Yet, a set of very important questions remains open: how the original Logicflow 
and the modified Hybrid (Multithreaded) Logicflow models are related. Are they 
functionally equivalent? Does the Prolog Abstract Machine exactly what the exe-
cution model requires? Is the model sound? In this paper a part of the design is 
introduced in the framework of ASMs that shows how these issues can be handled 
and how the design process can be made precise and well documented by a proper 
formal method. 
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Figure 2: Elements of a DSG graph: Unify (A), And (B), Or (C) and Unit (D) 
nodes. 

2.1 The Logicflow concept 

The Logicflow model is a higher abstraction of dataflow principles [13] for a mas-
sively parallel (Or and pipeline-And) all-solution execution of Prolog programs 
on distributed memory architectures. Prolog programs are transformed into a 
Dataflow Search Graph (DSG, Figure 2). Nodes in this graph represent specific 
Prolog activities like unification, facts, handling alternatives, etc. Essentially they 
group together elementary dataflow nodes. As a consequence, DSG nodes can have 
inner state and one token is always enough to make a node fire. 

In this model a clause is represented by a so called Unify-And ring. The Unify 
node (A in Figure 2) represents the head and the unification, And nodes (B) stand 
for the body goals and prepare the call. Alternative clauses are connected by Or 
nodes (C). The example graph in Figure 2 consists of 3 alternatives. Finally, group 
of consecutive facts are depicted by Unit nodes (D). 

Logicflow is a Prolog model without backtrack. Request tokens (representing a 
query) are propagated from top to bottom. Or nodes duplicate the request tokens 
and thus, alternative branches of a predicate can be activated simultaneously. In 
this way Or-parallelism can be exploited. When request tokens reach the Unit 
nodes, they generate all the possible solutions to the request. Solution tokens form 
a stream flowing in the Unify-And ring. This ring can be considered as a pipeline: 
its different stages can process different tokens in the same stream in turn and thus, 
pipeline And-parallelism can be exploited as well. Solutions are propagated from 
bottom to top. Nodes must separate different token streams and manage their flow. 
Due to the all-solution property, there can be hundreds or thousands different token 
streams, each consisting of several tokens. 
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2.2 The hybrid dataflow/von Neumann Logicflow concept 

The target architecture of the current Multithreaded Prolog Abstract Machine 
(MPAM) implementation is the Kyushu University Multimedia Processor on 
Datarol (KUMP/D) [24]. KUMP/D is a successor of multithreaded Datarol.[l] and 
Datarol-II [15] machines. It is a hybrid dataflow / von Neumann one, i.e. it can 
support both program counter based sequential execution and dataflow scheduling. 
More precisely, the Datarol execution model distinguishes the short term and long 
term execution. Short term execution means sequential processing whereas long 
term execution is dataflow based scheduling of the sequential threads. In such a 
way there are threads that run exclusively until the termination point sequentially. 
At the end the next thread is scheduled on dataflow principles. In other words it 
is a kind of macro dataflow model, too. 

In this model a program consists of simultaneously existing function instances. 
A function instance has its own context (frame) and shared code. Note, that the 
function instance and the thread are not the same: a function instance may consist 
of multiple threads. They belong to the same context. According to the definition 
of the thread, in a single context they do not work concurrently, rather the function 
can be considered as a set of consecutive threads. A thread is terminated whenever 
a synchronisation or remote memory access causes latency. At this point a fast 
context switch allows the processor to go on eliminating idle cycles; it is the essence 
of multithreading. 

In the MPAM model each DSG node could be represented by a frame, where 
its own context is stored, furthermore it also has registers for token information. 
There is a thread (or more threads) attached to the frame. In such a way a node 
is represented as a function instance: the function code is realised by the threads 
whereas arguments and local variables of the function are kept in the frame. 

A running function instance can activate (call) another function. It can pass 
arguments just like in case of procedure call of other programming models. When 
the new instance is ready to run, the scheduler may select it for execution. However, 
at this point, the caller instance remains as it is, its content is not stored in a token 
(in contrast with 3DPAM model). The new instance can proceed without load 
operations, because all the necessary data are available as arguments. A passive 
instance is waiting for some results. When the specified results are ready, it can be 
awaken on dataflow principles, where no load instructions are necessary: the state 
is the same as it was before, the results are local variables. 

These are the principles of the MPAM working model that ensure an efficient 
interpretation of Prolog programs on the new architecture. However, the abstract 
execution model must be modified, too in order to narrow the semantical gap. 
There are three significant steps of redesign that enable the changes in the abstract 
machine model: creating node instances, optimised paths at alternatives and the 
introduction of aggregate nodes [18]. 

In Logicflow token streams form a central concept. Streams are maintained (and 
different streams are separated) by a colouring scheme and at abstract machine level 
the context tables that are needed for keeping consistent the colouring represent 
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some restrictions. However, the separation of streams could be defined in another 
way at abstract execution level. Obviously, if it could be guaranteed, that a node 
emits only one request token, there are no multiple reply streams and thus, they 
need not be separated. The key is in the Unify-And ring where And nodes prepare 
calls to predicates, i.e. they emit tokens towards Or, Unify or Unit nodes. If 
for each token in the stream a new instance of And node is created, the called 
node beneath it will receive a single request token. The Unify node merges the 
answer streams from the last And nodes within the ring. They belong, however, to 
the same stream representing the answer to the single request token of the Unify 
node. In such a way the token streams are separated physically without the need 
of colouring. 

Or nodes (handling alternatives) do nothing at merging solution streams but 
maintain the correct colours. If the token colouring scheme can be eliminated, 
according to previous principles, there is no need to propagate solutions through 
the cascade of Or nodes, they can reach their root in one step. 

As it was set forth the goal is to create an execution model, where nodes can be 
mapped to function instances easily. Although, it is possible at the present stage, 
increased granularity would reduce the cost related to instance (frame) management 
and data transfer between frames. The granularity can be increased by grouping 
together DSG nodes, resulting aggregate nodes. By a formal analysis 8 types of 
aggregate node have been defined as: unit, unify, or-unit, or-unify, and-or-unit, 
and- or-unify, and-unit, and-unify (Figure 3). In an aggregate node the component 
nodes share context and register information in a single frame saving significant 
time associated with frame set-up, communication, argument passing, intranode 
dataflow and so on. Thus, the unit of execution is an aggregate node that can be 
handled as a function instance with all the optimisations introduced before. 

3 System design with ASMs 
The idea of transforming the original Logicflow model has been presented in [18]. 
Yet, it is a rather informal description of the principles. The scope of current 
investigation is the verification of those transformation steps, in a broader sense, 
the question should be answered if the Logicflow and the Hybrid Multithreaded 
(HM) models of Prolog execution are semantically the same. Next, MPAM must 
be defined in such a way that it is equivalent to the HM Logicflow model. Abstract 
State Machines are proven to be capable, powerful and especially useful for solving 
this problem. They are able to deal with the very high level of abstraction of 
execution models and at the same time they are flexible enough to deal with MPAM 
at a significantly more concrete (with respect to implementation) level. 

3.1 Abstract State Machines 
Abstract State Machines represent a mathematically well founded framework for 
system design and analysis [3][6] introduced by Gurevich as evolving algebras [9]. 
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Figure 3: An example DSG graph where aggregate nodes are depicted as grey 
rectangles. The graph consists of 16 nodes instead of 30. All 8 types of aggregate 
nodes can be seen here (a). A snapshot of a possible execution showing node 
instances and optimised return paths (b). 

The motivation for defining such a method is quite similar to that of Turing ma-
chines (TM). However, while TMs are aimed at formalising the notion of com-
putable functions, ASMs are for the notion of (sequential) algorithms [12]. Fur-
thermore, TMs can be considered as a fixed, extremely low level of abstraction 
essentially working on bits, whereas ASMs exhibit a great flexibility in supporting 
any degree of abstraction. 

In every state based systems the computational procedure is realised by tran-
sitions among states. In contrast with other systems, an ASM state is not a single 
entity or a set of values but ASMs states are represented as (modified) logician's 
structures, i.e. basic sets (universes) with functions and relations interpreted on 
them. Experience showed that any kind of static mathematic reality can be rep-
resented as a first-order structure [12]. These structures are modified in ASM so 
that dynamics is added to them in a sense that they can be transformed. 

Applying a step of ASM M to state (structure) A will produce another state A' 
on the same set of function names. If the function names and arities are fixed, the 
only way of transforming a structure is changing the value of some functions for 
some arguments. The transformation can depend on some condition. Therefore, 
the most general structure transformation (ASM rule) • is a guarded destructive 
assignment to functions at given arguments [3]. 

ASMs are especially good at three levels of system design [3]. First, they help 
elaborating a ground model at an arbitrary level of abstraction that sufficiently 
rigorous yet easy to understand, defines the system features semantically and inde-
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pendent of further design or implementation decisions. Then the ground model can 
be refined towards implementation, possibly through several intermediate models 
in a controlled way. Third, they help to separate system components. ASM is not 
a paper theory but it has been applied in various industrial and scientific projects 
like verification of Prolog [4] and Occam [5] compilers, Java virtual machine [23], 
PVM specification [7], ISO Prolog standardisation, validating various security and 
authentication protocols, VLSI circuits, and many more. The definition of ASMs 
is written in [8] and [11] and a tutorial can be found in [9]. A brief summary is 
presented here in order to make the paper self-contained. 

A vocabulary (or signature) is a finite set of function names, each of fixed arity 
furthermore, the symbols true, false, undef, =, the usual Boolean operators and 
the unary function Bool. A state A of vocabulary T is a nonempty set X together 
with interpretations of function names in T on X. X is called the superuniverse 
of A. An r-ary function name is interpreted as a function from Xr to X, a basic 
function of A. A 0-ary function name is interpreted as an element of X. 

In some situations the state can be viewed as a kind of memory. Some appli-
cations may require additional space during their run therefore, the reserve of a 
state is the (infinite) source where new elements can be imported inside the state. 

A location of A (can be seen like the address of a memory cell) is a pair I = (/, a), 
where / is a function name of arity r in vocabulary T and a is an r-tuple of elements 
of X. The element / (a ) is the content of location./. 

An update is a pair a = (l,b), where I is a location and b is an element of X. 
Firing a at state A means putting b into the location I while other locations remain 
intact. The resulting state is the sequel of A. It means that the interpretation of a 
function / at argument a has been modified resulting in a new state. This is how 
transition among states can be realised. An update set is simply a set of consistent 
updates that can be executed simultaneously. 

ASMs are defined as a set of rules. The simplest rule is the skip that does not 
do anything. An update rule f(a) := b is a rule and causes an update ( ( f , a ) , b ) , 
i.e. hence the interpretation of function / on argument a will result b. It must be 
emphasised that both a and b are evaluated in A. 

A conditional rule R of form 

if c then 
R1 

e l se 
R2 

end if 

is a rule. To fire R the guard c must be examined first and whenever it is 
true R\ otherwise, Ri must be fired. A block of rules is a rule and can be fired 
simultaneously if they are mutually consistent. 

An import rule of form 

import v 
R 
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endimport 

is a rule for introducing new elements from the reserve and firing rule R. 
The following construct 

e x t e n d U by vi,...vn w i t h 

R 
e n d e x t e n d 

is a shorthand notation for 

import vi,...vn 
U(vi) true 

U(vn) := true 

R 
endimport 

that is new elements are imported from the reserve and they are assigned to 
universe U and then rule R is fired. 

There are further rules introduced for convenience but these are the inevitable 
ones that will be used thoroughly in this paper. The basic sequential ASM model 
can be extended in various ways like nondeterministic sequential models with the 
choice construct, first-order guard expressions, one-agent parallel and multi-agent 
distributed models. The latter is applied in modeling Logicflow, therefore a very 
brief introduction follows. 

A distributed ASM consists of , 

• a finite set of single-agent programs IIn called modules 

• a vocabulary T, which includes each Fun(Yln) — {Self}, i.e. it contains all 
the function names of each module but not the nullary Self function 

• a collection of initial states 

The nullary Self function allows an agent to identify itself among other agents. 
It is interpreted differently by different agents (that is why it is not a member of the 
vocabulary.) An agent a interprets Self as a while an other agent cannot interpret 
it as a. The Self function cannot be the subject of updates. 

A run of a distributed ASM is a partially ordered set M of moves x of a finite 
number of sequential ASM agents A(x) which 

• consists of moves made by various agents during the run. Each move has 
finitely many predecessors. 

• The moves of any single agent are linearly ordered. 

• Coherence: each initial segment X of M corresponds to state cr(X) which for 
every maximal element x 6 X is obtainable by firing A(x) in a(X — {x}). 
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Figure 4: Principle of refinement. 

3.2 Model refinement 
Refinement is defined as a procedure where a "more abstract" and a "more con-
crete" ASMs are related according to the hierarchical system design. At higher 
levels of abstraction implementation details have less importance whereas they be-
come dominant as the level of abstraction is lowered giving rise to practical issues. 
The goal is to find a controlled transition among design levels that can be expressed 
by a commuting diagram. 

Let us assume ASM M has been refined to ASM M ' by a partial abstraction 
function T that maps certain states of M ' to M so that the diagram commutes 
in Figure 4. To put in another way, if the refinement is correct, it is the same 
if ASM M ' moves from B to B' and then the corresponding state of ASM M is 
taken or first T(B) is taken and then the rule corresponding to R is fired. In both 
cases the result should be A'. However, the notion of equivalence, correctness and 
completeness strongly depends on the system designer's needs as it will be shown 
later. 

4 From Logicflow to HM Logicflow model of exe-
cution 

ASM represents the framework for proving the correctness of the new HM Logicflow 
model with respect to its predecessor Logicflow. Although the refinement procedure 
was introduced before as a transition between design levels, it is just a consequence 
of its "traditional" application. In fact, refinement is a method to relate any two 
ASMs of any level of abstraction. In our case Logicflow and HM Logicflow models 
that represent the same design levels, are related. 

What has not been mentioned before is the considerable amount of intuition 
that is necessary at making a refinement step. Making a suitable mapping between 
corresponding states and rules is a hard task, if not impossible in case of complex 
systems. Instead, the gap between the two models should be divided by introducing 
submodels that differ only in one or two properties from the previous one and thus, 
a simple one-to-one mapping can be applied to some of the rules and states whereas 
the rest of mapping can be conceived by reasoning. 
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Prolog Abstract 
Engine 

Figure 5: From Logicflow to HM Logicflow by a series of refinement steps. 

As it was introduced earlier, the HM Logicflow model can be derived from 
Logicflow in three transformation steps. Yêt, these steps from model to model 
are still to big because transformations involve the modification or replacement of 
many features at a time. Finally, a proper set of five submodels was found where 
the mapping can be done with reasonable efforts (Figure 5). 

ASM1 is the original Logicflow model. In ASM2 a new kind of synchronisation 
is introduced in the Unify-And ring. As a consequence, in ASM3 instances of And 
nodes can be created. It yields that every node receives just one request token thus, 
there is no need for token colouring in ASM4. If there are no colours, the cascades 
of Or node can be optimised in ASM5. In ASM6 the concept of frames are brought 
into existence whereas ASM7 is the model for the HM Logicflow with all its details 
[19]. As it can be seen in Figure 5, all these models are at the same level of design 
abstraction. 

The design of MPAM completely fits the same methodology. (It is entirely out 
of the scope of this paper and can be found in [19].) By successive refinement steps 
the abstract HM Logicflow model can be turned into a model of the engine that is 
much closer to the implementation level. The instructions of MPAM can be derived 
from groups of instructions of the ASM that describes it. It should be emphasised 
that in this scheme in Figure 5 both the model describing the principle of execution 
and the implementation details can be designed in the same formal framework of 
ASMs. 

4.1 Description of the Logicflow model by an ASM 
Logicflow is a distributed, dataflow and thus, indeterministic execution scheme that 
can be modeled as a distributed multi-agent ASM. There are two questions to be 
clarified: 

1. From which point of view should the model be described, i.e. what entities 
should be the agents? The system could be modeled as the graph nodes are 
agents and react to the incoming tokens. Another possibility, that was chosen 
finally, is where tokens are agents and they make the nodes fire. Although 
this issue must be clearly answered before building the model, the decision is 
rather the question of taste. 
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2. What should the ASM describe? In [13] the function of each DSG node is 
described and it is claimed that every Prolog program can be compiled to a 
set of such nodes. Yet it is not a description of the Prolog execution. For 
instance the DSG graph for a Prolog program that contains recursion (and 
most Prolog programs do) may be different for different input parameters 
although the DSG components (the compiled program) and their functionality 
are the same. The ASM model aimed at simulating the actual execution, 
therefore it describes how the certain DSG graph is constructed from the 
precompiled building blocks. 

The machine created for modeling Logicflow is called ASM1. There is just one 
module thus, each agent executes the same program. Furthermore, the number of 
agents changes during the execution as tokens are created and discarded. The Self 
function is realised by the miliary function t, i.e. it means the current token that 
realises the agent and the same t in the program text is interpreted differently for 
different agents. 

4.1.1 The basic sets and functions 

ASM1 consist of the following universes: 

• TOKEN. Elements in this set are the agents. The nullary function t rep-
resents the Self function. Tokens have type and colour. The unary func-
tion type : TOKEN {DO, SUB, SUCC, FAIL, FAIL2} 1 and colour : 
TOKEN —> COLOUR can retrieve the type and colour of the given token, 
respectively, loc : TOKEN —>• NODE returns the current location (node) of 
the token. It is assumed that tokens are always assigned to a node and there 
is no buffering or transition time between two nodes. Some tokens can carry 
environments, i.e. variable substitutions that can be obtained by the subst: 
TOKEN ->• SUBSTITUTION function. 

• NODE. This universe contains the nodes that realise the actual DSG graph. 
There are 5 types of them that can be retrieved by node : NODE 
{AND,OR,UN IT,UNIFY,QUERY), mode : NODE {create, active} 
is related to the construction of the DSG graph and results if the graph con-
nected to the node has been built already or not. The function returnport : 
NODE {reply.in, reply.inl, reply.in2} gives the port type where the ac-
tual node must return the answer tokens. The topology of the nodes can be 
described by the onMrc : NODE x INT NODE function and by the 
macros derived from it: 

— child(node) = oruarc(node, 3) 1 

— childl(node) = oruarc(node, 3) 

'FAIL and FAIL2 tokens are functionally equivalent and they are not distinguished in [13]. 
The introduction of FAIL2 tokens is simply a notation for making the explanation easier. FAIL2 
tokens are those occuring in a Unify-And ring. 
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Figure 6: A generic node and interpretations of arc labels for different types of 
nodes. 

— child2(node) = on.arc(node, 5) 

— prev(node) = on-arc(node, 0 ) 

— next(node) = on-arc(node, 1) 

— parent(node) = oruarc{node, 1) 

— first(node) = on-arc(node, 3) 

— last(node) = on-arc(node, 2 ) 

This kind of description assumes a generic node with 6 arcs as it can be seen 
in Figure 6. The actual types of nodes enumerate their arcs accordingly, 
though not all arcs are in use. In such a way a kind of navigation can be 
defined among nodes, their relationship (parent-child, previous- next) can be 
described precisely yet, in a readable form. 

Some nodes contain context information like colour, substitution, counter 
that can be retrieved by the appropriate functions (colour-context : 
NODE x COLOUR COLOUR, substjcontext : NODE x COLOUR 
SUBSTITUTION, counter : NODE x COLOUR INT, andstate : 
NODE x COLOUR {open,closed}, or.state : NODE x COLOUR ^ 
{waitl,uiait2}). 

• COLOUR. Token streams are separated by a colouring scheme. Tokens 
forming a stream have the same colour no matter what the actual type or 
content of the token is. 

• STREAM. Tokens of the same colour targeted to the same port of a node 
form a stream. It is essentially a set. Tokens in this set can fire the node they 
are waiting for in arbitrary order except that a FAIL token must be the last 
one terminating the stream. A stream can be identified by the node and port 
the tokens are waiting for and the colour information (stream : NODE x 
PORT x COLOUR STREAM). The relation instream : STREAM x 
TOKEN —> {true, false} is true if the given token is a member of the stream, 
whereas function card : STREAM —> INT returns the number of tokens in 
the stream. 
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• SUBSTITUTION. Substitution is a set of variables and their binding val-
ues. 

• PORT. A port is an entry point to a node from the following set: PORT = 
{request.in, reply.in, reply.inl, reply.in2}. 

• LIT, CLAUSE. Literals and list of literals, i.e. clauses. Function procdef : 
LIT CLAUSE* returns the definition for the given literal. A clause can 
be separated to head and body parts by the head : CLAUSE LIT and 
body : CLAUSE —> LIT* functions. There is a predicate or goal assigned to 
some nodes that can be retrieved by predicate : NODE —» CLAUSE* and 
goal : NODE LIT, respectively. 

4.1.2 Modeling Logicflow by ASM1: an example 

A simple example program is presented here step-by step that shows the most 
important features of the ASM1 model. Abstract State Machines can be treated as 
a kind of pseudo-code so, even if one is not familiar with all the details of ASMs, 
the code can be read easily and it is self-explanatory more or less (see Appendix 
A.) 

The example given here is the well-known family program: 
g r a n d f a t h e r ( X . Y ) : - f a t h e r ( X , Z ) , p a r e n t ( Z , Y ) . 

p a r e n t ( A , B ) : - m o t h e r ( A , B ) . 

p a r e n t ( A , B ) ¡ - f a t h e r ( A , B ) . 

f a t h e r ( b i l l , j o h n ) . 

f a t h e r ( b i l l , j a m e s ) . 

f a t h e r ( j ohn, j a c k ) . 

m o t h e r ( j a n e , j a c k ) . 

m o t h e r ( a l i c e , f r e d ) . 

m o t h e r ( j a n e , c h a r l e s ) . 

: - g r a n d f a t h e r ( X , j a c k ) . 

The execution starts with one Do token (agent) at the Query node (Figure 7.a). 
There are no other tokens or nodes in the system. The activator of the Do token is 
g r a n d f a t h e r ( X , j a c k ) , i.e. the query, and the substitution is empty. This initial 
state is represented by the following structure: 

type(loc(t)) = Query 
type(t) = DO 
subst(t) = {} 
act(t) = grandf ather (X, jack) 

In this case rule 14 can fire extending the graph with a new but untyped node. 
This operation is realised by the extend construct that brings a new element from 
the reserve (and this element is different from those already in some basic set) and 
puts it into a set, NODE in this example. The relationship between the Query 
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Figure 7: The initial state and states after firing rules 14, 13, 7a, 2a, 13, 3, 1 
respectively. The result of rules 13, 3, 1 is shown together in f). 

already in play and the new node is set by the macro variations of the on-arc func-
tion. The predicate assigned to this node is grandfather(X,Y) ¡ - f a the r (X ,Z) , 
parent(Z,Y)and the Do token is moved to it (Figure 7.b). Then rule 13 can fire 
that sets the type of current undefined node to Unify (the predicate is a single 
clause having body.) This change enables rule 7a to fire. Note, the Unify node is in 
create mode, i.e. it is the first time a token appears on it and the subgraph must be 
extended. The Unify node represents the head of a clause where unification takes 
place. If the unification of the activator of the token is successful with the head 
of predicate (and it is in this case), the graph is extended by And nodes resulting 
the Unify-And ring. Each And node in this ring is in create mode, their connect-
ing arcs are set and body goals are assigned to them. The current colour and the 
substitution (updated with 0, the most general unifier) of the token are saved and 
a new colour is assigned to it. Note that the new colour is obtained by the extend 
construct which guarantees that this colour is different from all previous ones. A 
stream is created towards the request.in port of the first And node in the ring and 
the current token (transformed into a Sub type, substitution is 9 and location is 
the And node) is put into it together with a terminating Fail2 token (Figure 7.d). 

At this point rule 2a can fire. The node sets its counter to 1 (the number 
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Figure 8: Working cycle of an And node in Logicflow model 

of received Sub tokens) and since it is in create mode (see the extension in rule 
7a) it produces its subgraph. The subgraph is untyped currently, and the as-
signed predicate is f a t h e r ( b i l l , john) , f a t h e r ( b i l l , james), f a t h e r ( j o h n , 
jack) (Figure 7.e). 

Hence two rules may fire simultaneously. Rule 13 sets the type of untyped 
node to Unit (a predicate with multiple clauses and none of them have a body), 
whereas rule 3 sets the state of the And node closed and the Fail2 token vanishes. 
As a consequence of rule 13, rule 1 can fire. A Unit node brings together the 
successive facts in the program and produces all the possible solutions to them. 
It creates a stream to its parent node (i.e. the And node) and puts the solution 
tokens (Succ tokens) into it. Each Succ token has the same colour and they are 
identical with exception for the different substitutions according to the result of 
three different unifications. Finally, a Fail token is put into the stream terminating 
the computation (Figure 7.f). 

The first steps of executing the example program showed the most important 
features of the ASM1 model that describes the Logicflow model. The reader may 
trace the execution further by applying the appropriate rules in Appendix A. 

The first model that has been introduced between the Logicflow and the Hybrid 
Multithreaded Logicflow introduces a different way of synchronisation in the Unify-
And ring. The basic philosophy of Logicflow is that for a token representing a goal 
an answer stream of the same colour, terminated with a Fail token, is expected at 
the reply arc of the node no matter if it was produced by a single node or by a large 
subgraph. The receipt of the Fail token means that all the possible solutions to the 
query has been found and there are no active tokens belonging to the computation 
in the subgraph. 

Ensuring this property in the Unify-And ring is a complex task. There can 
be multiple overlapping streams in the ring separated and identified by colours. 
An And node receives a token stream and must generate a token stream of the 
same colour making it sure that the Fail2 token appears on its reply arc only when 

4.2 The first submodel: ASM2 
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no more solutions are possible. This is realised by and.state and a counter. The 
counter contains the number of tokens sent to the subgraph, i.e. each incoming 
request token increments it (Figure 8a, b, c) whereas each terminating Fail token 
in the answer stream decreases it (Figure 8 d, g, h). The Fail2 token on the request 
arc of the And node makes its state closed meaning that no more request tokens 
can be expected (Figure 8 e). At this point whenever the counter is 0, the Fail2 
token can be sent on the reply arc terminating the answer stream (Figure 8 h). 

This solution can be considered as a distributed tracking of the active streams 
in the Unify-And ring. A single Fail2 token is circulated in the ring terminating 
the request/reply stream and whenever it hits the Unify node, there are no more 
tokens belonging to the same task in the subgraph. (This property has been proven 
in [13].) 

However, if And node instances are created for each token in the stream ac-
cording to the modifications, this mechanism is not viable, since there is no single 
route for tokens in the ring and thus, there cannot be a single termination signal at 
the end. The first step in the modifications is the redesign of the synchronisation 
mechanism in the Unify-And ring. 

States and counters in the And nodes, furthermore Fail2 tokens are not necessary 
anymore. Instead, a counter is introduced in the Unify node that keeps a record 
of the active streams in the ring. A new type of nodes is introduced as Last_And 
which is the last and node within the Unify-And ring. Each time an And node 
receives a solution token, it increments the counter in the Unify node. Each time 
an And or Last_A.nd node receive a Fail token, they decrement the counter. The 
functionality of And and Last_And nodes is equivalent except that Last_And nodes 
never increment the counter. 

ASM2 is the model that describes the Logicflow model where this slight mod-
ification is introduced. Most rules remain intact except those related to And or 
Unify nodes. (See Appendix B.) 

The modification of the synchronisation mechanism within a Unify-And ring 
seems to be simple, feasible and correct. But can it be shown formally that ASM1 
and ASM2 are equivalent and functionally they do exactly the same? 

5 Proof of equivalence of ASM1 and ASM2 

This proof represents the first element in the series of equivalence proofs in Figure 
5. It is introduced here as a kind of case study and further proofs can be carried 
out in a similar way. First, it should be clarified what equivalence means. Then it 
must be defined how the indeterministic behaviour of these models can be treated. 
While the latter issue is general in the whole proof procedure, the first one is unique 
for each step, i.e. two model can be said equivalent with respect to some definition. 
Obviously, these definitions involve the property that has been changed in the given 
refinement step. 
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Figure 9: Schellhorn's modularisation theorem 

5.1 The notion of equivalence 

There can be many definitions of equivalence according to the level of abstraction 
and it is even possible that two algorithms are identical to some definitions of equiv-
alence and different to others [10]. ASMs offer a possibility to precisely define what 
equivalence means in the given situations. One presumption for the equivalence 
is that the two algorithms produce the same output for the same input. In [10] 
there are two possible equivalencies defined, the strict lock-step equivalence and 
the lock-step equivalence. It is shown that the two algorithms in scope (variations 
of bounded buffers) are lock-step equivalent but not strict lock-step equivalent. In 
both cases every step of algorithms and the corresponding states are taken into 
consideration which is not feasible for real life complex applications. 

A more practical approach that can be applied at refinements is presented in [21]. 
Let us assume two relations IN and OUT of initial and final states, respectively. 
A refinement is correct if for every finite trace of ASM'(st'0,...st'n) and for every 
sto of ASM with IN(st0,st'0) there exists a finite trace of ASM (st0, ...stm) so 
that OUT(stm,st'n). In other words: let us take into consideration all valid runs 
of ASM' starting from st'0 and ending in st'n. For each such run let us take all the 
sto states of ASM that are in relation IN(st0,st'Q). If every run of ASM starting 
from st0 ends in state stm that is in relation OUT(st'n, stm) then the refinement of 
ASM to ASM' is correct. If the refinement of ASM' to ASM is correct, too, then 
it is complete. Although, it is just a correctness of a kind of model transformation, 
it is also a definition of equivalence based on input-output behaviour. 

Schellhorn's main invention is the generalised proof method for refinement cor-
rectness (the "Modularisation Theorem"). The commuting diagram can be parti-
tioned by finding states that are in arbitrary relation which is the so called coupling 
invariant (Figure 9). In such a way the correspondence between two compútations 
can be reduced to subcomputations, i.e. if the two ASMs are started from related 
states they should finish their computation in related states as well. Schellhorn 
formalised his theorem for deterministic and indeterministic ASMs and defined the 
trace correctness as well. In the followings Schellhorn's idea is applied for equiva-
lence proof. 
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5.2 The problem of indeterminacy 
Logicflow model (and its modified versions) is inherently indeterministic due to 
dataflow nature. The corresponding ASM models are distributed multi-agent ones 
with similar behaviour. A program is deterministic if for some input set it generates 
the same output set no matter how many times the program is executed. Yet, the 
execution still can be indeterministic reaching the output set in different ways 
(different order of state transitions) from run to run. The main problem is that 
some execution paths can lead to the correct output set while others do not. 

Schellhorn's theorem for deterministic ASMs says that if there are two states x 
and x' that are in relation by the coupling invariant, there exist two integers i and 
j so that after i step of ASM and j step of A S M ' the coupling invariant holds 
for the resulted states in order to clain the refinement correct. However, it is just 
one possible successor state. Shellhorn generalizes his theorem for indeterministic 
behaviour so that for every possible x'} (the resulted state after j steps) there must 
be an i so that x'j and xt are in relation. 

What does it mean? It is not enough to find one possible partition of the 
commuting diagram but all the possible partitions. A serialisation method will be 
used according to [3]: given any initial segment of a run, each linearisation has the 
same final state. It is a consequence of the coherence condition in the definition 
of distributed ASMs. The execution is serialised, and then the partitions can be 
obtained according to the principles of partitioning deterministic systems. In this 
case no special properties of the actual serialisation can be used, because it is not 
one linearisation but any of them. In other words the partitioning will yield all the 
subdiagrams of which all the possible linearised executions of the two ASMs can 
be constructed. 

5.3 Definition of equivalence of ASM1 and ASM2 
Obviously, two Prolog executions are equivalent if they produce the same solutions 
to a given query. (Due to the all-solution property of the Prolog models in scope 
and the absence of side-effects the order in which solutions are given is meaningless.) 
However, taken into consideration two facts, several rules can be omitted at the 
proof thus significantly reducing the size of the commuting diagram. 

First, there are several rules that are identical in ASM1 and ASM2. It is the 
consequence of careful insertion of submodels where special attention was paid for 
introducing small changes from model to model. Evidently, they do not affect the 
equivalence of the two ASMs. Furthermore, ASM rules are local in a sense that 
they modify the state of the current token and the node it is currently on and do 
not affect other tokens or nodes in any way. 

As a consequence, the equivalence of the two models can be proven by showing 
the equivalence of the working cycle of Unify-And rings. It can be assumed that the 
embedding graph behaves the same in the two cases and there are no interactions 
among different Unify-And rings. First, let us assume that there are no other Unify-
And rings in the subgraph attached to the Unify-And ring in question. If they are 
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Figure 10: The reduced commuting diagram. 

proven to be equivalent, they behave exactly the same as a Unit node with respect 
to the generation of a token stream and then the equivalence holds in case of any 
embedding graph. 

ASM1 and ASM2 are equivalent if and only if for each valid run of ASM1 there 
is a related run of ASM2. According to the reasoning above, this definition can be 
narrowed as: the two models are equivalent if and only if for each valid run of a 
Unify-And ring in ASM1 there is a corresponding run of the same Unify-And ring 
in ASM2. 

In both cases the initial state is represented by the appearance of a Do token 
at the Unify node. The final state in ASM1 is the appearance of a Fail2 token on 
the reply.in arc of the Unify node, whereas the related state in ASM2 is composed 
by the 0 state of the counter and the empty stream. (Note that in ASM2 there is 
no Fail2 token on the Unify node, that is why the condition is expressed as a first-
order formula in rule 24.) The correspondence is expressed by the same properties 
of tokens and nodes as it can be seen in Figure 10. 

5.4 Partitioning the commuting diagram 
In Figure 10 a reduced commuting diagram can be seen. It is reduced in a sense 
that state transitions occurring in the Unify-And ring are included only. It shows 
one possible sequence of execution and as it has been explained, the proof should 
cover all possible execution patterns. 

The most important and generally the most difficult task is finding the proper 
coupling invariant. It can be any property that relates a state of ASM1 to ASM2 
and by which the diagram can be partitioned in such a way that from the initial 
state a related pair of states can be reached in finite steps, then the invariant 
property holds for some pairs of states, finally, from a related pair of states the final 
relation can be reached (see Figure 9). The essential change in the first submodel 
is the introduction of a single (centralised) counter in the Unify node instead of the 
many (distributed) counters and state flags of And nodes. Therefore the coupling 
invariant should be associated to the semantics of the counter. The centralised 
counter maintains the nam6er of active streams in the ring which is essentially the 
sum of distributed counters in And nodes. 
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Do/Unify^ Sub Succ , Fail2 1 Succ i Sub , Fail 2 Sub , Fail2 , Succ 3 Succ , Sub : Fail 3 ... 

Do/Unify^. Sub1, Sue?, Succ', Sub2, Fail1, Sub2
2 Succ\ Succ\ Sub3, Fail2, ... 

Figure 11: Initial fragment of the commuting diagram for the example runs 

Let si the sum of counters in And nodes belonging to the same ring and to the 
same colour in ASM1 and let s2 the current value of counter in Unify node of the 
same colour in ASM2. Let X an initial segment of a run of ASM1 with maximal 
element m and Y an initial segment of a run of ASM2 with maximal element n. 
Then si(X) means the value of si after performing the steps of X, the meaning of 
s2 (Y) is similar. 

The coupling invariant relates states belonging to initial segments X — {m}, 
Y — {n} where the value of the counter changes so that 

3l(X - {m}) ? Sl(X), s2(Y - {n}) ? s2(Y) 
and after these steps they are equal 
S l ( X ) = S 2 ( y ) 
then a(X — {m}) and a(Y — {n}) are in relation where a is a projection from 

segments (sequences of steps) to states. 
Let us introduce the following notation: Token™ is an event when token of type 

Token is received at the nth And node in the Unify-And ring with si or s2 — x, 
whereas Token/Unify means an event caused by a token of type Token at the Unify 
node. ASM rules are usually guarded by dataflow firing conditions, therefore for 
the sake of simplicity these events will represent firing the rules. A possible valid 
run of ASM1 in the Unify-And ring with 3 And nodes is the following list of events: 

Do/Uni fyundef ~ Subl
unde{ - Succ} - Fail2\ - Succ\ - Sub\ - Fail\ — Sub\ -

Fail2\ — Succ\ — Succ2 — Sub2 — Fail\ — Succ\ — Succ\ — Sub\ — Sub/Unifyz — Sub3 — 
Failj - Fail2\ - Fail3 - Succ2 - Succ2 - Sub/Unify2 - Fail3 - Sub/Unifyi -
Succl - Fail3 - Sub/Unifyo - Fail2/Unify0 

A corresponding run in ASM2 can be obtained by omitting Fail2 events. It 
means that the embedding graph received and produced tokens in exactly the same 
timing. 

Do/Unifyundef — Sub\ — Succ\ — Succ^ ~ Subl — Fail\ — Sub\ — Succ2 — 
Succ3 - Sub3 - Failj - Succ| - Succl - Sub3 - Sub/Unifyi - Subl - Fail\ -
Fail\ — Succ% — Succ3 — Sub/Unify2 — Fail2 — Sub/Unifyi — Succ\ — Fail3 — 
Sub/Unifyo - O/Unifyo, 

where O/Unify means rule 24. 
If both ASM1 and ASM2 were deterministic models, the commuting diagram 

that is represented in Figure 11 could be easily partitioned by the invariant property 
showing the equivalence of the two models. But due to the indeterministic nature, 
the partitioning should be possible for every linearisation of valid runs of ASM1 
and ASM2. Therefore, from these strings the general properties must be extracted 
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Sub 
-•x •x-

Succ 
Fail2 
Sub/Unify 

Succ +i 

+i 
Sub 

- •x 

Succ +i 
a) 

SÍlb 
-i 
Fail 

•X--

X- -»•X-
Succ Succ 

+1 +1 

b) 

+1 

Sub 
-•X 

X •X 
Fail -i 

+i +i 
Sub Sub 

X »-X 

-•X 
SUCC Fail 

+1 -1 

c) 

Fail 
-»-x 

-•x 
Succ 

Figure 12: Straight (a) and inverted (b) pairs of states. Inverted pairs (c) is 
impossible. 

omitting the special features of the certain runs. In such a way a general partitioning 
will be resulted that can be treated as " building blocks" from which all the possible 
runs can be constructed. If the commutativity for these subdiagrams holds, it holds 
for all the diagrams that can be constructed of them. (Note that all possible runs 
can be constructed but not every possible construction is a valid run.) 

First it must be shown that from the initial states a related pair of states can 
be reached. According to the definition, the first Sub event of ASM1 will be related 
to the Do/Unify event of ASM2 (Figure 13.a.) Hence there are two possibilities: 
the subgraph connected to the first And node can produce a solution (Figure 13.b) 
or not (Figure 13.c). Hence at the beginning either a+b or a+c subdiagrams are 
fixed sequences. The terminating subdiagram d is the only possible terminating 
sequence and it needs some explanation. 

Between the last Fail and the terminating states there cannot be anything except 
Sub/Unify and Fail2 events. Otherwise, if there were any Sub or Succ events, they 
would be preceded by their terminating Fail event that is impossible. In such a way 
the only terminating sequence is subdiagram d in Figure 13. It also shows that the 
final state can be reached from a related pair of states (namely a Fail-Fail pair). 

In ASM1 the relevant states where the counters are modified in any way are 
represented by Sub and Fail events. Between them any number (including 0) of 
irrelevant Succ, Fail2 and Sub/Unify event can occur without affecting the sum of 
counters. In case of ASM2 those events are Succ (except at the last And node in 
the ring) and Fail with any number of Sub and Sub/Unify (and Succ at the last 
And node) between them. 

In the straight case there are no relevant states between related states (Figure 
12.a). It means that at the related states both si and s2 are incremented or 
decremented. Therefore, subdiagrams e, f, h, i in Figure 13 can be easily and 
systematically created. However, it is possible that states are inverted, there are 
relevant states that are not related, i.e. the next relevant state increments the 
counter in an ASM and decrements in the other (Figure 12.b, c). It is even possible 
that there are multiple inverted states. An example for inversion can be seen in 
bold in Figure 11. 
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What does it make evident that after an inversion a related pair of states will 
be reached in Figure 12.b? 

Remark 1. Let a(X) and cr(Y) be related states. The number of Fail events in 
X and Y are equal. (Proof: starting from subdiagram a) in Figure 13 and applying 
straight subdiagrams, the statement holds. Reaching the first inverted pair, the 
appearance of a Fail event in one ASM guarantees the existence of another Fail 
event in the other ASM model, because the number of Fail events in the entire runs 
are equal.) 

Remark 2. Succ events are in relation with Sub events that happened later in 
the run. It is simply a consequence of the fact that Sub events are caused by Succ 
events (except the first one.) 

From these two statements it is true that for the Fail event of ASM1 in Figure 
12.b there is another Fail event in ASM2 and for Succ in ASM2 there must be a 
Sub in ASM1. In such a way the relation holds for the Sub-Fail pair. 

On the other hand, the another combination of inverted states is not possible 
(Figure 12.c). The second Sub event in ASM1 would have been related (through 
an inversion) to a Succ event that occurs later which is in contradiction with the 
causality expressed in Remark 2. 

As it can be seen, both the start-up and the final stage are of given, fixed types 
of subdiagrams. There are 3 types of related pairs: Sub-Succ, Fail-Fail and Sub-
Fail. From these 9 other types of subdiagrams can be created. In such a way all 
the valid runs can be constructed from these 13 types of subdiagrams. 

For a single diagram, e.g. e) in Figure 13 Schellhorn's theorem states the fol-
lowing. Starting ASM1 from Sub and ASM2 from a related Succ, for every possible 
successor state in ASM1 there must be a successor state in ASM2 so that the in-
variant holds again. This is covered by diagrams e), h) and k) in Figure 13. There 
can be any number of intermediate states, reaching the next Sub/Succ, Fail/Fail 
or Sub/Fail pair, the relation is true. Hence the proof can be continued starting 
from the new related states. It is easy to trace the correctness from the very begin-
ning to the end. The commutativity of subdiagrams shows the commutativity of 
all diagrams constructed of them that means the equivalence of ASM1 and ASM2 
according to our definition. 

In this step it was assumed that there are no other Unify-And rings in the 
subgraphs connected to the And nodes in scope. Since it was shown that the 
Unify-And ring of the modified model behaves like the one in the original Logicflow 
and hence, from the parent node's point of view there is no difference between 
a Unit and a Unify node, the equivalence proven here is true even if there are 
Unify-And rings in the subgraphs attached to the And nodes. 

6 Conclusion 
In this paper a small part of the design of a distributed.parallel Prolog execution 
model was introduced where Abstract State Machines were applied in the course 
of development. The outcome of the paper is not a description of a parallel model 
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Figure 13: Commuting subdiagrams 
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ready to be implemented, rather a profitable case study where the application of 
ASM is demonstrated in different situations. 

First, an existing model, Logicflow has been described by ASM1. It is a precise 
and succinct way of specification that helps to discover the features of the system. 
Then, this model can be derived to another one by successive minor modifications 
that are realised by a series of submodels represented by ASMs. In this paper a 
single step of such modification was introduced. The ASM notation makes clear 
the scope and the extension of changes. 

ASMs are not just a method for description and analysis but provide a frame-
work where models can be compared and their equivalence or inequivalence can be 
precisely defined and proven. In the current context the equivalence of ASM1 and 
ASM2 has been proven. The proof method was able to tackle with the distributed 
and indeterministic nature of dataflow based parallel Prolog models. In summary, 
experience showed the endowment and efficiency of ASMs (and the related tech-
niques) in system design. 
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Appendix A: ASM code for the Logicflow model 
(ASM1) 
1 A DO token on the request.in arc of a Unit node 
if node(loc(t)) = UNIT ft type(t) = DO 
then 

extend STREAM by s with 
stream{parent(loc(t)),returnport{loc{t)),colour{t)) := s 
seq i = l . .n 

let 6 = mgu(act(t),head(nth(predicate(loc(t)),i))) 
if 0! = nil then 

extend TOKEN by t' with 
col our (t') := colour (i) 
/oc(i') := parent(loc(t)) 
substit') := subst(t)@e 
type(t') := SUCC 
instream(s,t') :— true 

endextend 
endif 

endseq 
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loc{t) := parent{loc(t)) 
type(t) := FAIL 
subst(t) := {} 
instream(s,t) := true 

endextend 
where n = length,(predicate(loc(t))) 

2 A SUB token on the request.in arc of an And node 

2a First appearance 

i f node(loc{t)) = AND k type(t) = SUB & mode(loc(t)) = create 
then 

extend NODE by n with . 
parent(n) := loc(t) 
child(loc{t)) := n 

; mode(n) := create 
returnport(n) := reply.in 
predicate(n) := procdef(goal(loc(t))) 
loc(t) := n 

endextend ' " 
. i f counter(loc{t), colour(t)) = undef 

then 
counter(loc(t), colour(t)) := 1 

e l s e 
counter(loc(t), colour(t)) := counteT(loc(t), colour(t)) + 1 

endif 
i f andstate(loc(t), colour(t)) = undef 

then 
andstate(loc(t), colour(t)) := open 

endif 
instream(stream{loc(t),request.in,colour{t)),t) := false 
mode(loc(t)) := active 
act(t) := goal(loc(t)) 
type(t) := DO 

6.1 2b Further appearances 

i f node(loc{t)) = AND & type(t) = SUB & mode(loc(t)) = active 
then 

if counter(loc(t),colour(t)) = undef 
then 

counter(loc(t), colour(t)) 1 
e l s e 

counter (ioc(i), colour (t)) := counter (I oc(t), colour (t)) + 1 
endif 
instream(stream(loc(t), request.in, colour[t)),t) := false 
loc{t) := child(loc(t)) 
act(t) := goal(loc(t)) 
type(t) DO 
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3 A FAIL2 token on the request.in arc of an And node 
i f node{loc(t)) = AND 

& type(t) = FAIL2 
k mode(loc(t)) = active 
& card(stream(loc(t), request.in, colour(t))) = 1 
then 

instream(stream(loc(t), request.in, colour(t)),t) := false 
and^tate(loc(t), colour(t)) := closed 
if counter (loc(t), colour(t)) = 0 I counter(loc{t), colour(t)) = undej 

then 
instream(stream(next(loc(t)), request.in, colour(t)),t) := true 
loc(t) := next(loc(t)) 

e l se 
TOKEN(t) := false 

endif 

4 A SUCC token on the reply.in arc of an And node 
if node(loc(t)) = AND & type(t) = SUCC St mode(loc(t)) = active 
then 

if node{next(loc(t))) = UNIFY 
then l e t port = reply.in 
e l se l e t port = request.in 

endif 
if stream(next(loc(t)), reply.in, colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)),port,colour(t)) := s 
instream(s, t) := true 

endextend 
e l se 

instream(stream.(next(loc(t)), port, colour(t)),t) := true 
endif 
instream(stream(loc(t), request.in, colour(t)),t) false 
loc(t) := next(loc(t)) 
type{t) := SUB 

5 A FAIL token on the reply.in arc of an And node when it is 
open 
i f node(loc(t)) = AND 

fc type(t) = FAIL 
& mode(loc(t)) = active 
& card(stream(loc(t), reply.in, colour(t))) = 1 
& and^tate{loc{t), colour(t)) = open 
then 

counter(loc(t), colour(t)) := counter(loc(t), colour(i)) — 1 
TOKEN(t) := false 

6 A FAIL token on the reply.in arc of an And node when it is 
closed 
i f node{loc(t)) = AND 
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& type(t) = FAIL 
& mode{loc(t)) = active 
& card(stream(loc(t), reply.in, colour(t)))) = 1 
ft andstate(loc(t), colour(t)) = closed 
then 

if node{next{loc{t))) = UNIFY 
then l e t port = reply.in 
e l se l e t port — request.in 
endif 
counter(loc(t), colour(t)) := counter{loc{t),colour(t)) — 1 
instream(stream(loc(t), reply.in, colour(t)),t) := false 
if counter(loc(t), colour(t)) = 0 
then 

instream(stream.(next(loc(t)),port,colour(t)),t) := true 
loc(t) := next(loc(t)) 

endif 

7 A DO token on the request.in arc of a Unify node 

7a First appearance 
if node{loc{t)) = UNIFY ft type(t) = DO ft mode(loc{t)) = create 
then 

l e t 0 = mgu(act(t), head(predicate(loc(t)))) 
if 0! = nil 
then 

extend COLOUR by neuicolour with 
colour (t) := new colour 
colourjcontext(loc(t),newcolour) := colour(t) 
substjcontext(loc(t),newcolour) := subst(t)@9 
extend NODE by n i , n 2 , . . . n m with 

node{ni) := AND 
mode(ni) := create 
first(loc(t)) := Tii 
prev(ni) := loc(t) 
last(loc(t)) := n m 
next(nm) := loc(t) 
prev(nk) — njfc_i 
next(nk) := nfc+1 

goaHjii) •.= nth(body(predicate(loc(t))), i) 
loc(t) — m 
type(t) := SUB 
subst(t) := 0 
extend STREAM by s with 

stream(first(loc(t)), request.in,newcolour) := s 
extend TOKEN by t' with 

ioc(t') 7ii 
type(t') := FAIL2 
colour(t') newcolour 
instream(s,t') := true 

endextend 
instream(s, t) := true 

endextend 
endextend 
mode{loc(t)) := active 

endextend 
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e l se 
extend STREAM by s with 

stream(parent(loc(t)),returnport(loc(t)), colour(t)) := s 
type(t) := FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 
where m = length(body(predicate(loc(t)))) ,1 <i <m, 1 < k < m 

7b Further appearances 
if node(loc(t)) = UNIFY & type(t) = DO & mode(loc{t)) = active 
then 

l e t 9 = mgu(act(t), head(predicate(loc(t)))) 
i f 0! = nil 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colourucontext(loc(t), newcolour) colour(t) 
substjcontext{loc(t), newcolour) := subst(t)@8 
extend STREAM by s with 

stream(first(loc(t)), request.in, newcolour) := s 
loc(t) := first(loc(t)) 
type(t) := SUB 
instream(s, t) := true 
subst{t) := 6 
extend TOKEN by t' with 

Zoc(t') := first(loc(t)) 
type(t') := FAIL2 
colour{t!) := newcolour 
instream(s,t') := true 

endextend 
endextend 

endextend 
e l se 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),colour(t)) := s 
type{t) •.= FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 

8 A SUB token on the reply.in arc of a Unify node 
i f node(loc(t)) = UNIFY & type{t) = SUB 
then 

instream(stream(loc(t),reply.in,colour(t)),t) false 
colour(t) := savedjcolour 
subst(t) := saved-subst@subst(t) 
type(t) := SUCC 
loc(t) := parent(loc(t)) 
if stream(parent(loc(t)),returnport(loc(t)), savedjcolour) = undef 
then 
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extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),saved-colour) := s 
instream(s, t) true 

endextend 
else 

instream(stream(parent(loc(t)), returnport(loc(t)), saved-colour), t) := true 
endif 

where saved-Colour = colour -context(loc(t), colour(t)), saved-subst = subst-context(loc(t), colour(t)) 

9 A FAIL token on the reply.in arc of a Unify node 
if node(loc(t)) = UNIFY & type(t) = FAIL2 & car d(stream(loc(t),reply .in, colour (t))) = 1 
then 

l e t saved-colour = colour -context(loc(t), colour(t)) 
instream(stream(loc(t), reply.in, colour{t)),t) := false 
colour(t) := saved-colour 
type(t) := FAIL 
loc(t) := parent(loc(t)) 
if stream(parent(loc(t)),returnport(loc(t)), saved-colour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)), saved-colour) := s 
instream(s,t) := true 

endextend 
else 

instream(stream(parent(loc(t)), returnport{loc(t)), saved-colour), t) := true 
endif 

10 A DO token on the request.in arc of an Or node 

10a First appearance 
if node(loc(t)) = OR & type(t) = DO & mode(loc(t)) = create 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour-context(loc(t), newcolour) := colour(t) 
extend NODE by П\,П2 with 

childl(loc(t)) := n\ 
child2(loc(t)) n2 
parent{n\) •.= loc(t) 
parent(n2) •= loc(t) 
returnport(ni) := reply.inl 
returnport(n2) := reply.in2 
if к = 1 
then 

predicate{n\) := car(predicate(loc{t))) 
predicate(n2) ••= cdr(predicate(loc(t))) 

e lse 
predicate(ni) := [ciausei, ...clause^-i] 
predicate(n2) := [clause^, ...clausen] 

endif 
extend TOKEN by t' with 

ioc(t') : = n 2 
type(t') DO 
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colour(t') := newcolour 
subst(t') := subst(t) 

endextend 
loc(t) := ni 

endextend 
endextend 
mode(loc(t)) := active 
where clause^ = nth(predicate(loc(t)),i), k = min{i\body(clausei) ^ nil} 

10b Further appearances 
i f node(loc(t)) = OR k type(t) = DO & mode(loc(t)) = active 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour jcontext(loc(t), newcolour) — colour(t) 
extend TOKEN by t' with 

loc(t') := child2(loc(t)) 
type(t') := DO 
colour (V )•,—newcolour 
subst(t') := subst(t) 

endextend 
loc(t) := childl(loc(t)) 

endextend 
endextend 

11 A SUCC token on any of the reply.in arcs of an Or node 
i f node{loc[t)) = OR k type(t) = SUCC 
then 

l e t saved-colour = colour jcontext(loc(t), colour(t)) 
colour(t) := savedjcolour 
loc(t) := parent(loc(t)) 
i f instream(stream(loct(t),reply.inl,colour(t),t) = true 
then 

instTeam.(streaTn(loct(t),reply.inl,colour(t),t) := false 
e l s e 

instream(stream(loct(t),reply.in2,colour(t),t) := false 
endif 
i f stream{parent(loc(t)),returnport(loc(t)), savedjcolour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)), returnport(loc(t)), savedjcolour) := s 
instream(s,t) := true 

endextend 
e l s e 

instream(stream(parent(loct(t)), returnport(loc(t)),saved-colour),t) ~ true 
endif 

12 A FAIL token on any of the reply.in arcs of an Or node 

12a The Or node is in waitl state 
i f node(loc(t)) = OR 
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ft type{t) = FAIL 
ft or_siate(/oc(t), colour(t)) = waitl 
ft (3s £ STREAM : instream(s,t) k card(s) = 1) 
then 

or^tate(loc(t), colour(t)) := wait2 
TOKEN(t) •.= false 

' STREAM(s) := false 

12b The Or node is in wait2 state 
if node(loc(t)) = OR 
ft type{t) = FAIL 
ft or^tate(loc(t), colour(t)) —wait2 
ft (3z 6 STREAM :instream(z,t) ft card(z) = 1) 
then 

l e t saved^colour = colour jcontext(loc(t), colour(t)) 
if stream(parent(loc(t)), returnport(loc(t)), savedjcolour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),saveducolour) := s 
instream(s,t) := true 

endextend 
e l se 

instream(stream(parent(loct(t)), returnport(loc(t)), savedjcolour), t) := true 
endif 
STREAM(z) := /aise 
colour(t) := savedjcolour 
loc(t) := parent(loc(t)) 

13 A DO token on the request.in arc of an undefined node 
(child nodes of And and Or nodes are undefined) 
if node(loc(t)) = undef ft type(t) = DO 
then 

if length(predicate(loc(t)) = 1 
thenif body(clausei) ^ nil 

then 
node(loc(t)) := UNIFY 

e l se 
node(loc(t)) := C/N/T 

endif 
e l s e i f Vi : body(clausei) — nil 

then 
node(loc(t)) := UNIT 

e l se 
node(loc(t)) := OR 

endif 
endif 
where clausei = nth(predicate(loc(t)),i) 

14 A DO token on a Query node 
if node(loc(t)) = QUERY ft type{t) = DO 
then 
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extend NODE by n with 
child(loc(t)) := n 
parent(n) := loc(t) 
predicate{n) := procdef (act(t)) 
mode(n) := create 
returnport{n) := reply.in 
loc(t) := n 

endextend 

15 A SUCC token on a Query node 
i f node(loc(t)) = QUERY & type(t) = SUCC 
then 

TOKEN(t) := false 

16 A FAIL token on a Query node 
if node(loc(t)) = QUERY & type{t) = FAIL St card(stream(loc(t), reply.in, colour{t))) = 1 
then 

TOKEN(t) := false 
STREAM(stream(loc(t), reply, in, colour(t))) := false 

Appendix B: ASM code for the modified Logicfiow 
model (ASM2) 
ancestor : NODE NODE 
counter : NODE x COLOUR INT 

17 A DO token on the request.in arc of a Unit node 
Same as Rule 1 

18 A SUB token on the request.in arc of an And or Last_And 
node 
6.2 18a First appearance 
i f node(loc(t)) = (AND\LAST.AND) fc type(t) = SUB ft mode(loc(t)) = create 
then 

extend NODE by n with 
parent(n) := loc{t) 
child(loc(t)) := n 
mode(n) := create 
returnport(n) := reply.in 
predicate(n) := procdef(goal(loc(t))) 
loc(t) := n 

endextend 
instTeam(stream(loc(t),request.in,colour(t)),t) := false 
mode(loc(t)) := active 
act(t) := goal(loc(t)) 
type(t) -.-DO 
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18b Further appearances 
if node(loc(t)) - (AN D\LAST-AN D) ft type(t) = SUB ft mode(loc(t)) = active 
then 

instream(stream(loc(t),request.in,colour(t)),t) := false 
loc(t) := child(loc{t)) 
act(t) := goal(loc(t)) 
type(t) := DO 

19 A SUCC token on the reply.in arc of an And node 
if node[loc(t)) = AND ft type(t) = SUCC ft mode(loc(t)) = active 
then 

if stream(next(loc(t)), request.in,colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)),request.in,colour(t)) :—'s 
instream(s, t) := true 

endextend 
e l se 

instream(stream(next(loc(t)),request.in,colour(t)),t) := true 
endif 
instream(stream(loc(t), reply.in, colour(t)),t) := false 
counter(ancestor(loc(t), colour(t)) := counter(ancestor(loc(t),colour(t)) + 1 
loc(t) := next(loc(t)) 
type(t) := SUB 

20 A SUCC token on the reply.in arc of a Last_And node 
if node(loc(t)) = LAST .AND ft type(t) = SUCC ft mode(loc(t)) = active 
then 

if stream.(next(loc(t)),reply.in,colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)), reply.in, colour(t)) := s 
instream(s, t) := true 

endextend 
e l se 

instream(stream(next(loc(t)),reply.in,colour(t)),t) := true 
endif 
instream(stream(loc(t), reply, in, colour(t)),t) := false 
loc(t) := next(loc{t)) 
type(t) := SUB 

21 A FAIL token on the reply.in arc of an And or Last_And 
node 
if node(loc(t)) = (AND\LAST-AND) 

ft type(t) = FAIL 
ft mode(loc(t)) = active 
ft car d(stream(loc(t), reply .in, colour (i))) = 1 
then • 

counter (ancestor (loc(t)), colour ( f ) ) := counter (ancestor {loc{t)), colour {t)) — 1 
TOKEN(t) := false 
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22 A DO token on the request.in arc of a Unify node 

22a First appearance 
if node{loc(t)) = UNIFY & type(t) = DO fc mode(loc(t)) = create 
then 

l e t 6 = mgu(act(t), head(predicate(loc{t)))) 
if 9\ = nil 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour-context(loc(t), newcolour) :— colour(t) 
substxontext(loc(t), newcolour) := subst(t)@0 
counter(loc(t), newcolour) := 1 
extend NODE by n i , n 2 , . . . n m with 

if i < m then 
node{ni) := AND 

else 
node(n{) := LAST^AND 

endif 
mode(ni) create 
ancestor(n{) := loc(t) 
first(loc(t)) := ni 
prev{n\) loc(t) 
last(loc(t)) := nm 
next(nm) ¡oc(t) 
prev(nk) := nk-i 
next(nk) := 7ifc+i 
goal(ni) :— nth{body{predicate{loc(t))), i) 
loc(t) — n 1 
type(t) := SUB 
subst(t) := 9 
extend STREAM by s with 

stream(first(loc(t)),request.in,newcolour) := s 
instream(s,t) := t rue 

endextend 
endextend 
mode(loc(t)) := active 

endextend 
e lse 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)), colour) := s 
typeit) := FAIL 
instream(s, t) := irue 
loc(t) := parent{loc{t)) 

endextend 
endif 

where m = length(body(predicate(loc(t)))), 1 <i< m , 1 < k < m 

22b Further appearances 
i f node(loc(t)) = UNIFY ft type(i) = DO k mode{loc{t)) = active 
then 

l e t 0 = mgu(act(t), head{predicate{loc{t)))) 
if 0! = nil 
then 
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extend COLOUR by netvcolour v i t h 
colour (t) := newcolour 
colour (loc(t), new colour) := colour (t) 
sub st{loc{t), new colour) := subst(t)@8 
counter (loc(t), new colour) := 1 
extend STREAM by s with 

stream(first(loc(t)),request.in,newcolour) := s 
loc(t) := first(loc(t)) 
type(t) := SUB 
instream(s,t) := true 
subst(t) := 0 

endextend 
endextend 

e l s e 
extend STREAM by s with 

stream(parent(loc(t)),returnport(loc(t)), colour) := s 
type(t) := FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 

23 A SUB token on the reply.in arc of a Unify node 
Same as Rule 8 

24 The counter of a Unify node is 0 
if (3Node , Colour : Node 6 NODE, Colour 6 COLOUR) : node(Node) = UNIFY 

& counter(Node, Colour) = 0 
& card(stream(Node, reply.in, Colour)) = 0 
then 

l e t saved-colour = colour jcontext(Node, Colour) 
extend TOKEN by t ' with 

colour(t') := saved-colour 
type(t') := FAIL 
loc(t') := parent(Node) 
i f stream(parent(Node),returnport(Node),saved-Colour) = undef 
then 

extend STREAM by s with 
stream(parent(Node),returnport(Node), savedjcolour) := s 
instream(s,t') := true 

endextend 
e l s e 

instream(stream(parent(N ode), returnport(Node), saved jcolour), t') := true 
endif 

endextend 

25 A DO token on the request.in arc of an Or node 

25a First appearance 
Same as Rule 10a 
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25b Further appearances 
Same as Rule 10b 

26 A SUCC token on any of the reply.in arcs of an Or node 
Same as Rule 11 

27 A FAIL token on any of the reply.in arcs of an Or node 

27a The Or node is in waitl state 
Same as Rule 12a 

27b The Or node is in wait2 state 
Same as Rule 12b 

28 A DO token on the request.in arc of an undefined node 
(child nodes of And and Or nodes are undefined) 
Same as Rule 13 

29 A DO token on a Query node 
Same as Rule 14 

30 A SUCC token on a Query node 
Same as Rule 15 

31 A FAIL token on a Query node 
Same as Rule 16 
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Properties of Composite of Closure Operations and 
Choice Functions 
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Abstract 

The equivalence of the family of FDs is among many hottest topics that 
get a lot of attention and consideration currently. There are many equivalent 
descriptions of the family of FDs. The closure operation and choice function 
are two of them. Major results of this paper are the properties of the com-
posite function of the choice functions and closure operations. The first parts 
of this paper address the theories of the composite function of two choice 
functions and the sufficient and necessary condition of a composite function 
of two choice functions to be a choice function. Rest of the paper addresses 
the sufficient and necessary condition of a composite function of more than 
two choice functions to be a choice function and a composite function of more 
than two closure operations to be a closure operation. 

Keywords: composite function, choice function, closure operation. 

1 Introduction 
Equivalent descriptions of the family of functional dependencies (FDs) have been 
widely studied. Based on the equivalent descriptions, we can obtain many impor-
tant properties of the family of FDs. Choice function and closure operation are 
two of many equivalent descriptions of the family of FDs. In this paper, we mostly 
investigate the choice functions. We show some properties of choice functions, and 
focus on the comparison between and composite, function of two, and more than 
two choice functions. At the end of this paper, we show a theory of the composite 
function of two and more than two closure operations. 

The results of this paper are divided into four parts. First, some properties of the 
composite function of two choice functions appear in Section 2. Section 3 presents 
the results about the composite function of more than two choice functions, and 
that of more than two closure operations. In the conclusion section, we introduce 
our plans for future research. 
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Let us give some necessary definitions that are used in the next section. Those 
well-known concepts in relational database given in this section can be found in [1, 
2,3, 4, 5, '6, 8]. 

Definit ion 1 Let U = {ai,.. . ,a„} be a nonempty finite set of attributes. A func-
tional dependency is a statement of the form A —> B, where A,B C U. The 
FD A —• B holds in a relation R = {hi,..., hm} over U if V hi,hj € R we have 
hi(a) = hj(a) for all a 6 A implies hi(b) = hj(b) for all b € B. We also say that R 
satisfies the FD A B . 

A family of FDs satisfying Armstrong's Axioms is called an f-family over U. 
Given a family F of FDs over U, there exits a unique minimal f-family F+ that 
contains F. It can be seen that F+ contains all FDs which can be derived from F 
by Armstrong Axioms. 

A relation scheme s is a pair <U,F >, where U is a set of attributes, and F is 
a set of FDs over U. 

Let U be a nonempty finite set of attributes and P(U) its power set. A map 
L : P{U) —> P(U) is called a closure over U if it satisfies the following condi-
tions: 
(1)ACL(A), 
(2) AC B implies L(A) C L(B) 
(3) L{L(A)) = L(A). 

Set L(A) = .{a : A {a} € -F+}, we can see that L is a closure over U. There 
is a 1-1 correspondence between closures and f-families on U. 

A map C : P(U) P(U) is called a choice function, if every A £ P(U), then 
C(A) C A. 
If we assume that C(A) = U — L(U — 4̂) (*), we can easily see that C is a choice 
function. 

The relationship like (*) is considered as a 1-1 correspondence between closures 
and choice functions, which satisfies the following two conditions: 
For every A,B CU, 
(1) li.C{A) C B C A, then C(A) = C(B) 
(2) If A C B, then C(A) C C{B) 

We call all of choice functions satisfying those two above conditions special 
choice functions. 

There is a 1-1 correspondence between special choice functions and f-families 
on U. 

We define T as a set of all of special choice (SC) functions on U. Now we 
investigate some properties of those functions. 

2 Properties of the SC functions 
In this section, we give some results related to the composite function of two choice 
functions. 
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Let / , g € I\ and we determine a map k as a composite function of / and g as 
the following: 

k(X) = f(g(X)) = f.g(X) = fg(X) for every X Ç U. 

Let U be a nonempty finite set of attributes, and f,g & T. We say that / is 
smaller than g, denoted as / < g or g > f , if for every X Ç U we always have 
f(X)Cg(X). 
The "smaller" relation, <, satisfies these following properties. For every f,g,h 6 
r : 
1) / = / (Reflexive) 
2) If / < g, and g < f , then g = f . (Symmetric) 
3) If / < g, and g < h, then f < h. (Transitive) 

Proposition 1 If f,g G T, then 

l) f o < f , 2) fg<g, 
3) g f < f , 4) gf<g. 

Proof. Since / , g G T, / and g must be SC functions on U. Therefore, we have 
g(X) Ç X for every X Ç U , then f{g(X)) Ç f{X). And / is a SC function on U, 
so f(g(X)) C g(X). So we can conclude that fg < f and fg < g. Similarly, we 
can easily prove gf < f and gf < g. • 

Proposition 2 If f,h and g S T and f < g, then 

1) fh < gh, 
2) hf < hg. 

Proof. Because / , g and h are three SC functions and f < g, we always have 
f(h(X)) Ç g(h(X)), for every X Ç U. Since f < g, we have f { X ) Ç g(X). h is a 
SC function, so we have h(f(X)) Ç h(g(X)). We can conclude that fh < gh and 
hf < hg. • 

Proposition 3 If f , g, h and k 6 F , and f < g, and k < h, then fk < gh. 

Proof. Assume f,g,h,k&T and f < g, and'Tc < h. According to Proposition 2, 
we have fk < gk and gk < gh. Therefore, according to the transitive property, we 
have fk < gh. • 

Theorem 1 If f,g £T, then these following two conditions are equivalence: 

1) / < 9, 
2) fg = /• 
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Proof. (1 2) Assume f,g 6 T and / < g. Since / is a SC function, / must 
satisfies this property: if f ( X ) ÇYÇ.X, then f ( X ) = f{Y). Therefore, we have 
/ < 9 or f { X ) Ç g(X) Ç X for every X Ç U, so f(g(X)) = f { X ) or we conclude 
that f g = / . 
(2 1) Assume f,g 6 T and fg = / . Since / and g are SC functions, according 
to Proposition 1, we have fg < g, but fg = f , so we have / < g. The proof is 
completed. • 

From the Theorem. 1, we can easily see that if / < g, then f g is a SC function 
(since f g = f , and / is a SC function). 

Lemma 1 If f eT, then f f = / . 

Proof. It can be seen easily that Lemma 1 holds directly from the Theorem 1. • 

Theorem 2 Let f,g € T. A composite function of f and g, denoted as f g , is a 
SC function if and only if fgf = fg: 

( f g is a SC function fgf = fg). 

Proof. First, we need to prove that fg is a choice function. 
For every X C U, we have g(X) C X because g is a SC function. And / also is 
a SC function, so if g(X) C X, then f(g(X)) C f ( X ) C X. Therefore, we can 
conclude that fg(X) C X, in other word, we can say that fg is a choice function. 
Similarly, we can prove that gf is also a choice function. 

Now, we prove that f g is a SC function O f g f = fg . First, we need to prove 
the statement: if fg is a SC function, then fgf = fg. According to Proposition 1, 
we have fg < f . And fg is a SC function, so fgf = fg due to Theorem 1. 

Then, we just need to prove that if fgf = fg, then fg is a SC function. In other 
words, we need to prove that if fgf — fg, then fg satisfies these two conditions 
(1) and (2): 
If X C y , then fg(X) C fg(Y), and if fg{X) CYCX, then fg{X) = fg(Y). 
When X C Y, we have g{X) C g(Y) since g is a SC function. And when g(X) C 
g(Y), we have f(g(X)) C f(g{Y)) or fg{X) C fg(Y) since / is also a SC function. 

We have fg(X) CYCX, so g(fg(X)) C g{Y) C g(X) or gfg(X) C g(Y) C 
g(X) since g is a SC function. And since / is also a SC function, we also have 
f(9f9(X)) Q f(g(Y)) C f(g(X)) or f g f g ( X ) C fg(Y) C fg(X). However, fgf 
=fg, so that leads to that fgg{X) = f g f g { X ) C fg(Y) C fg(X). We can rewrite 
that expression as fgg{X) C fg(Y) C fg(X). According to Lemma 1, we have 
gg(X) = g(X), so fgg(X) = fg(X) C fg(Y) C fg(X). Therefore, fg(X) = 
f9(Y). 
Consequently, we can conclude that fg is a SC function iff fgf = fg. The proof is 
completed. • 
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Theorem 3 Let f , g € T. Then fg and gf are simultaneously SC functions if and 
only if fg = g f . 

Proof. In the proof of Theorem 2, already we have proved that fg and gf are 
always choice functions when f and g are SC functions. 
We need to prove this statement: if fg and gf are simultaneously SC functions, 
then fg = g f , for f,g € T. 
According to Proposition 1, we have f g < g and f g < f . So due to Proposition 3, 
we have { f g ) { f g ) < g f . But we also have fg is a SC function, so ( f g ) { f g ) = fg 
due to Lemma 1. Thus, ( f g ) ( f g ) = /<?<<?/• Similarly, we also have gf < fg. 
Hence, we have fg<gf< fg, so we can conclude that fg = g f . 
We just need to prove that: if fg = g f , then fg and gf are simultaneously SC 
functions for / ,g € r . In other words, we need to prove that if fg = g f , then fg 
and gf satisfies these two conditions (1) and (2): 
If XCY, then fg(X) C fg(Y) and g f ( X ) C gf(Y). 
If fg(X) CY CX, then fg(X) = fg{Y), and if gf{X) CY CX, then g f ( X ) = 
gf(X)-

In the proof of Theorem 2, we have already proved: if X C Y, then fg(X) C 
fg(Y). Similarly, we also can prove.that g f ( X ) C gf(Y). 
We have fg(X) C Y C X, so g(fg(X)) C g{Y) C g(X) or gfg(X) C g(Y) C 
g{X) since g is a SC function. And since / is also a SC function, we also have 
f(9f9{X)) C f(g(Y)) C f(g(X)) or f g f g ( X ) C fg(Y) C fg(X). However, fg = 
g f , so that leads to that f f g g ( X ) = f g f g ( X ) C fg(Y) C fg(X). We can rewrite 
that expression as f f g g ( X ) C fg(Y) C fg(X). According to Lemma 1, we have 
gg = g and f f = f , so f f g g ( X ) = fg(X) C fg(Y) C fg(X). Therefore, fg(X) = 
fg(Y). 
Similarly, we also prove that if gf{X) C Y C X, then gf{X) = gf(Y). ' 
Consequently, we can say that fg and gf are simultaneously SC functions if and 
only if fg = gf for / , g e l \ The proof is completed. • 

So far, we have covered some properties of the composition of two SC functions 
and found out some interesting results. However, we would like to raise the follow-
ing two questions: 
Can we generalize the Theorem 2 for the composition of more than two SC func-
tions? Will we get the same answer? More generally, what is a necessary. and 
sufficient condition such that a composite function of more than two SC functions 
is a SC function? 

3 Composite of more than two SC functions and 
more than two closure operations 

In order to generalize the Theorem 2, we first need to observe the composition of 
three SC functions before we can go any further. 



462 Nghia D. Vu and Bina Ramamurthy 

Theorem 4 Let / , g; and h € T. A composite function of f , g, and h, denoted as 
fgh, is a SC function if and only if fghfg = fgh: 

(fgh is a SC function o fghfg = fgh) 

Proof. We can easily prove that fgh is a choice function. 
For every X Ç U, we have h(X) Ç X because g is a SC function. And / and g also 
are SC functions, so if h{X) CX, then g(h(X)) ç h{X) ç X, then f{g(h(X))) Ç 
g(h(X)) Ç h(X) Ç X. Therefore, we can conclude that fgh(X) Ç X, in other 
word, we can say that fgh is a choice function. Now, we must prove that fgh is a 
SC function fghfg = fgh. 

First, we need to prove the statement: if fgh is a SC function, then fghfg = 
fgh. 
According to Proposition 1, we have gh < g or g(h(X)) C g(X), for every X C U. 
And / is a SC function, so f(g(h(X)) C f(g(X)), and f(g(X)) C g(X) ç X. 
Thus, we have that f (g(h{X))) ç f{g{X)) ç X, so we have f(g(h(f(g(X))))) = 
f(g(h(X))).ov fghfg = fgh since fgh is a SC function. 

Then, we just need to prove that if fghfg = fgh, then fgh is a SC function. 
In other words, we need to prove that if fghfg = fgh, then fgh satisfies these two 
conditions (1) and (2): 
If X Ç Y, then fgh(X) Ç fgh(Y), and if fgh(X) Ç Y Ç X, then fgh(X) = 
fgh(Y). 

When X Ç Y, we have h(X) Ç h(Y) since h is a SC function. And when 
h(X) Ç h{Y), we have g(h{X)) Ç g(h(Y)) or gh(X) Ç gh(Y) since g is a SC 
function. And since / is also a SC function, we have f(gh(X)) Ç f(gh(Y)) or 
fgh(X) Ç fgh(Y). 

We have fgh(X) Ç Y Ç X, so h{fgh{X)) Ç h(Y) Ç h(X) or hfgh(X) Ç 
h(Y) Ç h(X) since h is a SC function. And since g is also a SC function, we also 
haveg(hfgh{X)) Ç g{h(Y)) Ç g(h(X)) or ghfgh{X) Ç gh(Y) Ç gh{X). Similarly, 
we have fghfgh(X) Ç fgh(Y) Ç fgh(X) since / is a SC function. However, 
fghfg = fghi so that leads to that fghfgh(X) = fghh(X) Ç fgh(Y) Ç fgh(X). 
We can rewrite that expression as fghh(X) Ç fgh(Y) Ç fgh(X). According to 
Lemma 1, we have hh{X) = h(X), so fghh(X) = fgh(X) C fgh(Y) Ç fgh(X). 
Therefore, fgh(X) = fgh{Y). 
Consequently, we can conclude that fgh is a SC function iff fghfg = fgh. The 
proof is completed. • 

It can be seen easily that we can generalize the Theorem 4 for the composite of 
more than three SC functions with the result and proof analogous to Theorem 4. 

As we used to mention in the Introduction part, there is a relation (*) between 
the choice function and closure. For every A € P(U), if we assume that C(A) = 
U - L(U - A)(*), we can prove that C is a choice function. After investigating 
some properties of the composite of choice functions, we are willing to show that 
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the closure operation has similar property. First, we need to give a definition of 
the composite function of closure operations. 

Let f,g € L, a set of all of closure operation on U. We determine a map k as a 
composite function of / and g as the following: 

k(X) = f(g(X)) = f.g(X) = fg(X) for every XCU. 

We have similar definition of the composite function of more than two closure 
operations. 
Here is the result about the composite of closure operations. 

Theorem 5 Let f,g and h £ L, a set of all of closure operation on U. A composite 
function of f,g and h, denoted as fgh, is a closure (or closure operation) if and 
only if fghfg = fgh. 

(That is, fgh is a closure fghfg = fgh) 

Proof. First we prove this statement: if f,g, h and fgh are closures, then fghfg = 
fgh. 
For every X C U, we have X C h(X) since h is a closure. From X C h(X), we have 
d{X) C g(h(X)) since g is a closure. Similarly, we have f(g(X)) C f(g(h(X))). 
Since / is a closure, we have g(X) C. f(g(X)). And since g is a closure, we have 
X C g{X). Thus, X C f(g(X)). So we can lead to X C f(g(X)) C f(g(h(X))). 
We can rewrite in the other form X C fg(X) C fgh(X). Since fgh is a closure, 
we have fgh(X) C fgh(fg(X)) C fgh(fgh(X)). Because fgh is a closure, we 
have fgh(fgh(X)) = fgh(X). Hence fgh(X) C fgh(fg(X)) C fgh(fgh(X)) = 
fgh(X). So we can conclude that fgh(fg{X)) = fgh(X) or fghfg(X) = fgh(X). 

Now, we move to prove the reversed statement: if fghfg = fgh, then fgh is a 
closure. 
In order to prove fgh is a closure, we need to prove that fgh satisfies those three 
conditions: 
1 ) K fgh(X), 
2) X CY implies fgh(X) C fgh(Y), for X and Y C U, and 
3) fgh(fgh(X)) = fgh(X). 
We have already proved 1) above. 
Since h is a closure, from X C Y, we have h(X) C h(Y). Similarly, we have 
g(h(X)) C g(h(Y)), then f(g(h(X))) C f(g(h(Y))) or fgh(X) Cfgh(Y). Thus, 
fgh satisfies 2). 
Since fghfg = fgh, we have fgh{fgh(X)) = fghfgh{X) = fghfg{h{X)) = 
fgh{h(X)) = fghh(X) — fgh(X) since h is a closure, which satisfies the third 
condition hh(X) — h(X). Therefore, fgh also satisfies three conditions. So fgh is 
a closure if fghfg = fgh. The proof is completed. • 

Similarly to the SC function, we can generalize Theorem 5 for the composite of 
more than three closure operations with analogous result and proof. 
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4 Open problems 
Our further research will be devoted to following open problems: 

Open Problem 1. Is the union, intersection, or subtraction of two SC functions 
a SC function? 

Open Problem 2. We would like to apply above results and Theorems into design 
of algorithm. We have two relation schemes s =< U,F > and t =< U,V >, 
where U is a set of attributes and F and V are two different sets of FDs over 
U. We define F+ and V+ be a set of all FDs that can be derived from F 
and V respectively. Is it possible build a closure / and a closure g from F+ 

and V+ respectively such that fg = f g f ? If so, how can we design fg? In 
other word, how can we design a relation scheme w =< U,H > from which 
we can build H+, from which we can design the closure fg = fgf ? If so, is 
it possible to generalize this design for more than two closure operations? 
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The Home Marking Problem and Some Related 
Concepts 

Roxana Melinte, Olivia Oanea, Ioana Olga, • 
and Ferucio Lauren^iu rJ,iplea* 

Abs t r ac t 

In this paper we study the home marking problem for Petri nets, and 
some related concepts to it like confluence, noetherianity, and state space 
inclusion. We show that the home marking problem for inhibitor Petri nets 
is undecidable. We relate then the existence of home markings to confluence 
and noetherianity and prove that confluent and noetherian Petri nets have 
an unique home marking. Finally, we define some versions of the state space 
inclusion problem related to the home marking and sub-marking problems, 
and discuss their decidability status. 

1 Introduction and Preliminaries 
A home marking of a system is a marking which is reachable from every reachable 
marking in the system. The identification of home markings is an important issue 
in system design and analysis. A typical example is that of an operating system 
which, at boot time, carries out a set of initializations and then cyclically waits for, 
and produces, a variety of input/output operations. The states that belong to the 
ultimate cyclic behavioural component determine the central function of this type 
of system. The markings modeling such states are the home markings. 

The existence of home markings is a widely studied subject in the theory of Petri 
nets [6, 1, 15, 2, 14, 4, 13], but only for very particular classes of them. Thus, in [1] 
it has been proven that live and 1-safe free-choice Petri nets have home markings. 
The result has successively been extended to live and safe free-choice Petri nets 
[15], live and safe equal-conflict Petri nets [14], and deterministically synchronized 
sequential process systems [11]. All these results make use, more or less directly, of 
a confluence property which is induced by liveness and safety. 

The home marking problem for Petri nets (that is, the problem of deciding 
whether or not a given marking of a Petri net is a home marking) has been proven 
decidable in [5]. In our paper we show that this problem is undecidable for inhibitor 
Petri nets (section 2). Then, we relate the concept of a home marking to the 
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properties of confluence, safety, and noetherianity, and prove that confluent and 
noetherian Petri nets have an unique home marking (section 3). In Section 4 we 
define some versions of the state space inclusion problem for Petri nets, related 
to the home marking problem, and discuss their decidability status. We close the 
paper by some conclusions. 

The rest of this section is devoted to a short introduction to Petri nets (for 
details the reader is referred to [12, 9]). A (finite) Petri net (with infinite capacities), 
abbreviated PN, is a 4-tuple E = (S, T, F, W), where S and T are two finite non-
empty sets (of places and transitions, respectively), SnT = 0, F C ( 5 x r ) U ( T x S ) 
is the flow relation, and W : (S x T) U (T x S) N is the weight function of E 
satisfying W[x, y) = 0 iff (x, y) ^ F. When all weights are one, E is called ordinary. 

A marking of a Petri net E is a function M : S —> N. A marked Petri net , 
abbreviated mPN, is a pair 7 = (E,Mo), where E is a PN and Mo, the initial 
marking of 7, is a marking of E. 

The behaviour of the net. 7 is given by the so-called transition rule, which 
consists of: 

(a) the enabling rule: a transition t is enabled at a marking M (in 7), abbreviated 
M[i)7, iff W(s,t) < M(s), for any place s; 

(b) the computing rule: if M[t)7 then t may occur yielding a new marking M', 
abbreviated M[t)yM', defined by M'(s) = M(s) - W{s, t) + W(t, s), for any 
place s. 

The transition rule is extended homomorphically to sequences of transitions by 
M[A)7M, and M[wt)1M' whenever there is a marking M" such that M[w)7M" 
and M"[t)yM', where M and M' are markings of 7, w € T* and t E T. 

• Let 7 = (E, Mo) be a marked Petri net. A word w € T* is called a transition 
sequence of 7 if there exists a marking M of 7 such that Mo[w)yM. Moreover, 
the marking M is called reachable in 7. The set of all reachable markings of 7 is 
denoted by [Mo)7 (or [Mo) when 7 is clear from context). 

A Petri net 7 is called n-safe, where n > 1 is a natural number, if M(s) < n for 
all reachable marking M\ 7 is called safe if it is n-safe for some n. Clearly, a Petri 
net is safe iff it has a finite set of reachable markings. 

2 The Home Marking Problem 
A home marking of a system is a marking which is reachable from every reachable 
marking in the system. For Petri nets, home markings are defined as follows. 

Definition 2.1 A marking M of a Petri net 7 = (E, Mo) is called a home marking 
of 7 if M e [M') for all M' e [M0). 

The Home Marking Problem (HMP) _ 
Instance: 7 = (E, M0) and a marking M of 7; 
Question: is M a home marking of 7 ? 
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In [5], home spaces of Petri nets are considered. A home space of a Petri net 7 
is any set HS of markings of 7 such that for any reachable marking M there is a 
marking M' € HS reachable from M. If HS is singleton, its unique element is a 
home marking. 

A set A of markings of a Petri net 7 is called linear if there are a marking M 
of 7 and a finite set {Mi,..., Mn} of markings of 7 such that 

n 
(VM' e i4)(Vl < i < n)(3ki G N)(M' = M + ^ 

¿=1 

The main result proved in [5] states that it is decidable whether or not a linear 
set of markings is a home space. Therefore, the home marking problem is decidable 
because any singleton set is linear. 

The concept of a home marking can also be considered for extended Petri nets 
(like inhibitor, reset etc.) by taking into consideration their transition relation. 
In what follows we show that it is undecidable whether or not a marking of an 
inhibitor Petri net is a home marking. First, recall the concepts of an inhibitor net 
and counter machine. 

A k-inhibitor net (k > 0) is a couple 7 = (E, I), where E is a net and I is a 
subset of 5 x T such that F n / = 0 and |{s € S|(s, t) e I}\ < k for all t e T. 

Let 7 = (E, I) be an inhibitor net, M a marking of 7 and t € T. Then, 

M\t)y,i O M[t)E A (Vs E S)((s,t) e I =• M(s) — 0), 

and 
M [ T ) 7 > I M ' M [ T ) 7 I I A M[t)sM'. 

A deterministic counter machine (DCM) is a 6-tuple A = (Q,qo,Qf,C,xo, I), 
where: 

(1) Q is a finite non-empty set of states, q0 € Q is the initial state, and 9/ € Q is 
the final state-, 

(2) C is a finite non-empty set of counters. Each counter can store any natural 
number, and XQ : C —• N is the initial content of the counters; 

(3) I is a finite set of instructions. For each state there is exactly an instruc-
tion that can be executed in that state; for <7/ there is no instruction. An 
instruction for a state q is of the one of the following forms: 

- increment instruction - I(q, c, q1) 

q : begin 
c := c + 1; 
go to q' 

end. 

- test instruction - I(q,c,q',q") 
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q : if c = 0 then go to q' 
else begin 

c := c — 1; 
go to q" 

end. 

Let A = (Q,qo,qf,C,xo,I) be a DCM. A configuration of A is a pair (q,x), 
where q G Q and x : C — N . A configuration (q,x) is called initial when q = qo 
and X — XQ J cl configuration (q,x) is called final when q = qj. 

Let A = (Q,qo,qf,C,xo,I) be a DCM. Define the binary relation on the 
configurations of A by: 

(1) there is an increment instruction I(q,c,q') such that x'(c) = x(c) + 1 and 
x'(c') = x(c'), Vc' 6 C — {c}; 

(2) there is a test instruction I{q,c,qi,q2) such that 

(2.1) if x(c) = 0, then q' — qi and x' = x; 
(2.2) if x(c) ^ 0, then q' = q2, x'(c) = x(c) - 1 and x'(c') = x{c') for all 

d e c - {c}. 

The Halting Problem for counter machines is to decide whether or not a given 
DCM reaches a final configuration. It is well-known that this problem is undecidable 

Theorem 2.1 The home marking problem for 1-inhibitor Petri nets is undecidable. 

Proof We show that the halting problem for DCM can be reduced to the home 
marking problem for 1-inhibitor Petri nets. 

Let A = (Q,qo,qf,C,xo,I) be a DCM. Define an 1-inhibitor Petri net as 
follows: 

• to each u £ QuC we associate a place su; 

• to each increment instruction I(q, c, q') we associate a transition t as in Figure 
1(a), and to each test instruction I(q,c,q',q") we associate two transitions t' 
and t" as in Figure 1(b). 

A configuration a = (q, x) of A is simulated by the marking M given by: 

Let Mo be the marking corresponding to the initial configuration, and J be the set 
of pairs (sc , t ' ) , where sc and t' are as in Figure 1(b). 

The net 7 = (E, J, Mo) is an 1-inhibitor net, and we have: 

(q, x) \~A (q', x') iff one of the following holds: 

[10]. 

Ma{sq) 
Ma{sq.) 
Ma(sc) 

1, 
o, v ? ' e Q - W 
x(c), Vc e C. 
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a O v s 

So' 

S„" 

o 
(a) (b) 

Figure 1: (a) The case I(q,c,q'); (b) The case I(q,c,q',q") 

(*) cr = (q,x) is reachable in A from cr0 = {QOIxO) iff is reachable in 7 from 
M0. 

Modify now the net 7 as in Figure 2 (all places and transitions of 7 are pictorially 
represented in the dashed box labelled by 7; the place s* and the other transitions 
are new and specific to 71). • , 

!7i 

1 7 

Figure 2: An inhibitor net instance associated to a DCM instance 

We prove that A halts iff 71 has a home marking. Assume first that A halts, 
and let ( q j , x ) be the final configuration when A halts. Then, M( î / i X)(sg /) = 
1. Therefore, the newly added transitions can be applied yielding the - marking 
(1 ,0 , . . . , 0) which is a home marking of 71 (this marking can be reached from any 
reachable marking of 71 via the marking M(g / j I)). 

Conversely, assume that 71 has home markings but A does not halt. Let M 
be à home marking of 71. Then, M(sq,) = 0 (otherwise, A halts). Now we can 
easily see that the place s* will be arbitrarily marked (each transition in A induces 
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a transition in 71 which increases by one the place s*) without the posibility to 
remove tokens from it because M(sq/) = 0. Therefore, M can not be reached from 
all reachable markings of 71, contradicting the fact that M is a home marking of 
7i- D 

3 Confluent and Noetherian Petri Nets 
A Petri net is confluent if its firing relation is confluent, i.e., for any two reachable 
markings there is a marking reachable from both of them. This concept proved to 
be of great importance when we are dealing with the set of reachable markings of 
a Petri net. It has been considered explicitly for the first time, in connection with 
Petri nets, in [1], where it has been called directedness. 

Definition 3.1 An mPN 7 = (£,M0) is confluent if [Mi) n [M2) ± 0 for all 
MUM2 6 [M0). 

Directly from definitions we obtain the following result. 

Theorem 3.1 If an mPN has a home marking then it is confluent. 

The converse of Theorem 3.1 does not hold generally. For example, the Petri 
net in Figure 3 is confluent but it . does not have any home marking. In case of safe 

a Si s2 b 

C H O o — • 

Figure 3: A confluent net which does not have a home marking 

Petri nets, the confluence property implies the existence of home markings. 

Theorem 3.2 A safe mPN has a home marking iff it is confluent. 

The proof of Theorem 3.2 is identical to the proof of Lemma 8.3 in [4] for 
ordinary Petri nets. 

The concept of a noetherian relation is another very important concept in the 
theory of binary relations. As for the confluence property, a Petri net is called 
noetherian if its firing relation is noetherian. 

Definition 3.2 An mPN is called noetherian if it does not have infinite transition 
sequences. 

Theorem 3.3 Any confluent and noetherian marked Petri net has an unique home 
marking. 
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Proof Let 7 = (£,Mo) be a confluent and noetherian mPN. Since 7 is noethe-
rian, there is a marking M' £ [Mo) such that ->(M'[i)), for any transition t. We 
will show that M' is the unique home state of 7. 

For every reachable marking M of 7 the confluence property leads to the ex-
istence of a marking M" such that M" £ [M) n [M'). Then, the property of M' 
leads to the fact that M" = M'. Therefore, M' £ [M) which shows that M' is the 
unique home marking of 7. • 

Using the coverability tree of a Petri net [12, 9] we can easily prove that the 
noetherianity property is decidable. 

Theorem 3.4 It is decidable whether an mPN is noetherian or not. 

Proof An mPN 7 is noetherian iff for any leaf node v of the coverability tree of 
7, the label of v has no other occurrence on the path from the root to v. Since the 
coverability tree of a Petri net is always finite and can effectively be constructed, 
the property of being noetherian is decidable. • 

Let us denote by C (A/*, H, H*, S) the class of confluent (noetherian, having 
home markings, having an unique home marking, safe). It is easily seen that any 
noetherian mPN has a finite set of reachable markings (equivalently, it is a safe 
net). The converse of this statement does not hold generally as we can easily see 
from the net in Figure 4(a). A pictorial view of the relationships between these 

(a) . (b) (c) 

Figure 4: (a) 7 e 5 n U* - (b) 7 € U* - 5; (c) 7 e 5 n U - U* 

classes of nets can be found in Figure 5. Some strict inclusions follow from the 
examples in Figure 4, and some of them are rather trivial. 

It is important to know which nets are confluent. In [1] it has been proved that 
live and 1-safe free-choice Petri nets are confluent. The result has been extended 
in [15] to live and safe free-choice Petri nets. Further, Recalde and Silva proved in 
[14] that live and safe equal-conflict Petri nets have home markings (therefore, they 
are confluent), and the result has been extended to deterministically synchronized 
sequential process systems in [11]. 
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H 

U* 
N 

Figure 5: Relationships between classes of Petri nets 

4 Home Markings and State Space Inclusions 
The home marking problem can be naturally related to some particular versions of 
the space inclusion problem for Petri nets [7]. In order to define them we need first 
the following concept. 

Definition 4.1 Let 7 = (E,M0) be a mPN and M a marking of 7. The dual of 
7 w.r.t. M, denoted by 7, is the Petri net defined as follows: 

- 7 = (S,M); 

- V = (S,T,F,W)-, 

- T = {t\t E T}; 

- (s, t) E ~F iff (i, s) E F, for all s € S and t E T, and 
(t, s) E F iff (s, t) E F, for all s £ 5 and t E T; 

- W{s,t) = W(t,s) and = W{s,t), for all s € S and t E T. 

For a sequence u = t\ • • • tn of transitions of a Petri net E denote by u the 
sequence u = tn • • • ti. 

Lemma 4.1 Let E be a Petri net and Mi and M2 markings of E. Then, the 
following hold: 

(1) for every transition sequence u ET*, Mi[u)EM2 iff M2[u)^Mi; 

(2) M2 is reachable from Mi in E iff Mi is reachable from M2 in E. 

Proof (1) can be obtained by induction on the length of u using the fact that t 
undos the effect of t, and (2) follows from (1). • 

Now, we can prove the following simple but important result. 
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Proposition 4.1 Let 7 = (E,Mo) be a Petri net and M a marking of 7. Then, 
M is a home marking of 7 iff [M0)7 Ç [M)~. 

Proof Let us suppose first that M is a home marking of 7. Then, for every 
marking M E [Mo)7 there is a sequence of transitions v ET* such that M[v}yM. 
From Lemma 4.1 it follows that M[v)~M, which shows that M is reachable from 
M in 7. Therefore, [M0)7 Ç [M)-. 

Conversely, let M be a reachable marking in 7. The proposition's hypothesis 
lead to the fact that M is reachable in 7. Then, from Lemma 4.1 it follows that M 
is reachable from M in 7. Therefore, M is a home marking of 7. • 

Recall now the space and sub-space inclusion problems as defined in [7] (in what 
follows, the components of the Petri net Ei will be denoted by Si, Ti,- F\, and Wi, 
respectively). 

The Space Inclusion Problem (SIP) 
Instance: 71 = (£1 ,Mq) and 72 = (S2 ,M^) such that Si = S2; 
Question: does [M0

1)71 C [M0
2)72 hold ? 

The Sub-space Inclusion Problem (SSIP) 
Instance: 71 = (£1, M0

:), 72 = (E2, M$), and S Ç Si n S2; 
Question: does [M£)yi\s Ç [M0

2)72|s hold ? 

It is known that both SIP and SSIP are undecidable [7]. Proposition 4.1 leads 
us to considering the following versions of SIP and SSIP (in what follows 7 is the 
dual of 7 w.r.t. a marking M of 7). 

The Dual Space Inclusion Problem (DSIP) 
Instance: 7 = (E,M0) and a marking M of 7; 
Question: does [M0)7 Ç \M)~ hold ?, 

The Dual Sub-space Inclusion Problem (DSSIP) 
Instance: 7 = (E, Mo), a marking M of 7, and S' Ç 5; 
Question: does [M0)7|s< Ç [M)-\s> hold ? 

From Proposition 4.1 it follows that HMP and DSIP are recursively equivalent 
and, therefore, DSIP is decidable because HMP is decidable [5]. 

Definition 4.2 A marking M of a Petri net 7 = (E, M0) is called a home sub-
marking of 7 w.r.t. S' Ç S if for any marking M E [Mo) there is a marking 
M' £ [M) such that M'\ s . = M| s- . 

The Home Sub-marking Problem (HSMP) 
Instance: 7 = (E, M0), a marking M of 7, and S' Ç S; 
Question: is M a home sub-marking of 7 w.r.t. S' ? 
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Our concept of a home sub-marking is, in fact, the same as that in [5] where it 
has been proven that the HSMP is decidable. HSMP and DSSIP are not recursively 
equivalent as HMP and DSIP are. In fact, we shall prove that DSSIP is undecidable 
for a proper sub-class of Petri nets and, therefore, undecidable for the whole class 
of Petri nets. 

Definition 4.3 A 3-tuple (E ,s i , s 2 ) is called a two-way Petri net (2wPN, for 
short) if E is a Petri net, si and s2 are places of E, and there is a partition of T, 
T = T'U T", such that *Sl =T' = s j , *s2 = T" = s'2, and W{Sl,t') = W(t',si) = 
W{s2,t") = W{t", s2) = 1 for all t' e T and t" € T". 

Pictuarially, a 2wPN is like in Figure 6 (its set of places is S U {si, S2}, where 
si. ^ s2 and S1/S2 £ S). 
. . , q rpl ^ Tn 

Figure 6: A pictorial view of a two-way Petri net 

Theorem 4.1 The dual sub-space inclusion problem for 2wPN is undecidable. 

Proof We prove the undecidability of DSSIP by reducing SIP to it. 
Let 71 and 72 be an instance of SIP. We consider the 2wPN E as given in Figure 

6, but with the following differences: 

- 5 = 51 = S2; 

- T = Ti and T" = f 2 ; 

- the arcs and their weights between T\ and 5 are given by and W\, respec-
tively; 

- the arcs and their weights between T2 and 5 are given by F2 and W2, re-
spectively. 

Consider then the markings M0 = (Mq, 1,0) and M — (Mq,0,1), and the marked 
Petri nets 7 = (E,M0) and 7 = (E,M). 

Thus, we have obtained an instance of DSSIP for 2wPN satisfying: 

(Mo1)^ C [M0
2)72 ^ [M0)y \ s C [M)-\ s . 

Therefore, SIP is reducible to DSSIP for 2tvPN; the theorem follows then from the 
undecidability of SIP [7]. • 

Clearly, DSSIP for the whole class of Petri nets is undecidable, being undecidable 
for a sub-class of them. 
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Conclusions 
The existence of home markings is a widely studied subject in the theory of Petri 
nets [6, 1, 15, 2, 14, 4, 13], but only for very .particular classes of them. Thus, in [1] 
it has been proven that live and 1-safe free-choice Petri nets have home markings. 
The result has successively been extended to live and safe free-choice Petri nets 
[15], live and safe equal-conflict Petri nets [14], and deterministically synchronized 
sequential process systems [11]. All these results make use, more or less directly, of 
a confluence property which is induced by liveness and safety. 

In this paper we have studied the home marking problem for Petri nets. We 
have proven several results that can be summarized as follows: 

• the home marking problem for inhibitor Petri nets is undecidable; 

• confluent and notherian Petri nets have an- unique home marking; 

• the dual sub-space inclusion problem for Petri nets is undecidable. 

All these results have been obtained by relating the concept of a home marking 
to some important concepts in Petri net theory, like confluence, noetherianity, and 
state space inclusion. Further study of these concepts is, in our opinion, an impor-
tant subject of research. 
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