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Reduction of Simple Semi-Conditional Grammars 
with Respect to the Number of Conditional 

Productions 

Alexander Meduna and Martin Svec* 

Abstract 

The present paper discusses the descriptional complexity of simple semi-
conditional grammars with respect to the number of conditional productions. 
More specifically, it demonstrates that for every phrase-structure grammar, 
there exists an equivalent simple semi-conditional grammar that has no more 
than twelve conditional productions. 
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1 Introduction 
To describe languages as economically and succintly as possible, formal language 
theory has recently intensively investigated how to reduce grammars without any 
decrease of their power (see [1], [4], and [5]). Continuing with this vivid investiga-
tion, the present paper discusses the reduction of simple semi-conditional grammars, 
which characterize the family of recursively enumerable languages (see [2]). 

More specifically, besides ordinary context-free productions, simple semi-con-
ditional grammars may have some conditional productions which have an attached 
string representing a forbidding condition or a permitting condition. This pa-
per concentrates its discussion on the reduction of simple semi-conditional gram-
mars with respect to the number of conditional productions. It demonstrates that 
for every recursively enumerable language, there exists an equivalent simple semi-
conditional grammar that has no more than twelve conditional productions^ 

2 Definitions 
This paper assumes that the reader is familiar with the language theory (see [3]). 

Let V be an alphabet. V* denotes the free monoid generated by V under 
the operation of concatenation where e denotes the unit of V*. Let V+ = V* — 
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{e}. Given a word, w G V*, |iu| represents the length of w. We set sub(w) = 
{y : y is a subword of u;}. Given a symbol, a G V, denotes the number of 
occurences of a in w. For w G V+, first(w) denotes the leftmost symbol of w. 

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G ' 
(V,T,P,S), where V, T and S are the total alphabet, the terminal alphabet (T c 
V), and the axiom (S G V — T), respectively, and P is a finite set of productions of 
the form (A x,a,P) with A G V - T, x G V", a £ V+ U {0} and ¡3 e V+ U {0}, 
where 0 is a special symbol, Q £ V (intuitively, 0 means that the production's 
condition is missing). Production (A -»> x,a,f3) G P is said to be conditional, if 
a / 0 or ^ ^ 0. G has degree (i, j), where i and j are two natural numbers, if for 
every (A x,a,/3) G P, a G V+' implies |a | < i, and 0 G V+ implies \fi\ < j. 
Let u,v G V", and (A —> x, a, /3) G P. Then, u directly derives v according to 
(.A -¥ x, a, P) in G, denoted by 

u=>G v [(A x,a,p)} 

provided for some ui,u2 G V*, the following conditions (a) through (d) hold 

( a ) u = UIAU2, 

(b) v = uixu2, 

(c) a ^ O implies a G sub(u), 

(d) 0 £ 0 implies P £ sub(u). 

When no confusion exists, we simply write u =>G V. AS usual, we extend =>G to 
=>'G (where i > 0), and The language of G, denoted by L(G), is defined 
as L(G) = {w £T* : S w}. 

Based Upon the concept of sc-grammars, Meduna and Gopalaratnam [2] have 
defined a simple semi-conditional grammar (an ssc-grammar for short) as an sc-
grammar in which every production has no more than one condition. Formally, 
let G = (V,T, P, S) be an sc-grammar. G is a simple semi-conditional grammar if 
(A -¥ X, a, P) G P implies {0} C {a, p}. 

3 Results 
Theorem 1 Every recursively enumerable language can be defined by a simple 
semi-conditional grammar of degree (2,1) with no more than 12 conditional pro-
ductions. 

Proof. Let L be a recursively enumerable language. By Geffert [1], we can assume 
that L is generated by a grammar G of the form 

G = (V, T, P U {AB e,CD e},S) 

such that P contains only context-free productions and 

V-T = {S,A,B,C,D}. 
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We construct an ssc-grammar G' of degree (2,1) as follows: 

G' = (V',T,P',S), where 
V' = VU W, 

W = {A, B, (eA), $, C, D, (ec), #}, VnW = ®. 

The set of productions P' is defined in the following way: 
1. if H a 6 P, H € V - T, a <E V*, then add (#•-> a , 0,0) to P'\ 

2. add the following six productions to P': 

(A A,0,A), 
(B^B,0,B), 
(A^(ea),AB, 0), 
(B^$,(eA)B, 0), 

($->£,0,(£a)); 

3. add the following six productions to P': 

(D 5,0,.D), 
(C->(ec),CD, 0), 
(D^#,{ec)D,0), 

( # ^ e , 0 , ( e c » . 

Next, we prove that L(G') = L(G). 

Basic idea: Notice that G' has degree (2,1) and contains only 12 conditional 
productions. The productions of (2) simulate the application of AB —> e in G' and 
the productions of (3) simulate the application of CD e in G'. 

Let us describe the simulation of AB —> e. First, one occurence of A and one 
occurence of B are rewritten to A and B, respectively (no more than one A and 
one B appear in any sentential form). The right neighbor of A is checked to be B 
and A is rewritten to (£A)- Then, analogously, the left neighbor of B is checked to 
be (£A) and B is rewritten to $. Finally, (SA) and $ are erased. The simulation of 
CD —> e is analogous. 

To establish L(G) = L(G'), we first prove the following two claims. 

Claim 1 S x' implies #xx> ^ 1 for aU X ^ {A,B,C,D} and some x' € 
(yy. 
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Proof. By inspection of productions in P', the only production that can generate 
X is of the form (X -> X,0,X). This production can be applied only when no X 
occurs in the rewritten sentential form. Thus, it is not possible to derive x' from S 
such that > 2 . • 

Informally, next claim says that every occurence of (£,4) in derivations from 5 
is always followed either by B or $, and every occurence of (EC) is always followed 
either by D or # . 

Claim 2 It holds that 

A J S *Q, y'1(£A)y'2 implies y'2 G (V')+ A first(^) G {£,$} for any y'x G (V')*; 

B) S =>*G, y[(ec)y'2 implies y'2 G {V')+ A first(yj) G { £ , # } for any y[ G (V)*-

Proof. We establish the proof by the examination of all possible forms of derivations 
that may occur when deriving a sentential form containing (Ea) or (ec)-

A) By the definition of P', the only production that can generate (EA) is p = 
(A —¥ (ea),AB,0). This production has the permitting condition AB, so it can be 
used provided that AB occurs in a sentential form. Furthermore, by Claim 1, no 
other occurence of A or B can appear in the given sentential form. Consequently, 
we obtain a derivation 

S =**G, u[ABu'2 =>g> u[{sa)Bu2 [p] 

for some u'^u^ G (V ')*, A,B £ s u b ^ u ^ ) , which represents the only way how to 
get (ea)- Obviously, (ea) is always followed by B in u[(ea)Bu'2. 

Next, we discuss how G' can rewrite the subword (£a)B in u[(ea)Bu2. There 
are only two productions having the nonterminals (EA) or B on their left-hand 
side—pi = (B $, (ea)B, 0) and p2 = {(ea) 0, B). G' cannot use p2 to erase 
(ea) in u[ (ea)Bu'2 because p2 forbids an occurence of B in the string to be rewrit-
ten. Production pi has also a context condition, but (ea)B G sub(u'1 (£a)Bu'2) and 
thus pi can be used to rewrite B with $. Hence, we obtain a derivation of the form 

S u'iABu'2 =>g- U'^EA)^^ 

Notice that during this derivation, G' may rewrite u[ and u'2 to some v[ and 
v'2, respectively (v'i,v2 G (V)*); however, (£a)B remains unchanged after this 
rewriting. 

In this derivation we obtained the second symbol, $, that can appear as the 
right neighbor of (EA)- Tt suffices to show that there is no other symbol that could 
appear immediately after (ea)• By inspection of P', only ($ —> e,0, (£,4)) can 
rewrite $. However, this production cannot be applied when (ea) occurs in the 
given sentential form. In other words, the occurence of $ in the subword (£.4)$ 

M 
[Pi]-
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cannot be rewritten before (EA) is erased by the production p2. Hence, (£,4) is 
always followed either by B or $ and thus the first part of Claim 2 holds. 

B) By inspection of productions simulating AB £ and CD —• e in G' (see 
(2) and (3) in the definition of P'), these two sets of productions work analogously. 
Thus, part B of Claim 2 can be proven by analogy with part A. • 

Let us return to the main part of the proof. Let g be a finite substitution from 
(V)* to V* defined as follows: ' 

1. for all X G V : g{X) = {A'}; 

2. g(Â) = {A}, g(B) = {B}, g((eA)) = {A}, g(%) = {B,AB}; 

3. g(C) = {C}, g(D) = {D},g({ec)) = {C}, g(#) = {C,CD}. 

Having this substitution, we can now prove the following claim: 

Claim 3 S =5>q x if and only if S x' for some x G g(x'), x G V*, x' G (V)*. 

Proof. The claim is proven by induction on the length of derivations. 
Only if: We show that 

S x implies S x, 

where m > 0, x G V*\ clearly x G g(x). This is established by induction on m. 
Basis: Let m = 0. That is, S 5. Clearly, S =>°G,'S. 
Induction Hypothesis: Suppose.that the claim holds for all derivations of length m 
or less, for some m > 0. 
Induction Step: Let us consider a derivation S x, x G V*. Since m + 1 > 1, 
there is some y G V+ and p G P U {AB -¥ e, CD -»• e} such that S y =̂ <3 
x \p}. By the induction hypothesis, there is a derivation S y. 

There are three cases that cover all possible forms of the production p: 

(i) p = H y2 G P, H ev - T , y2 ev*. Then, y = yrfy^ and x = 2/12/22/3, 
2/1,2/3 € V*. Because we have (H y2,0,0) G P', S =>•£,, yiHy3 

2/12/22/3 [{H -¥ 2/2,0,0)] and 2/12/22/3 = x. 

(ii) p = AB £. Then, y = yxABy3 and x = y\y3, 2/1,2/3 G V*. In this case, 
there is the following derivation: 

yiABy3 

=>c 2/I4^2/3 ¿A4)] 
=>G' yiÀBy^ [(B 5 , 0 , B)] 
^ G ' 2/i (£A)By3 M-* (£a),AB, 0)] 

2/1 (£A)$ 2/3 [(B - > $,(£A)5,0)] 
2/1 $2/3 №A) 

=>G' 2/12/3 e,0,(eA))]. 
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(iii) p = CD "-> e. Then, y = y\CDy3 and x = 2/12/3, 2/1,2/3 £ V"*. By analogy 
with (ii), there exists the derivation S y\CDy3 2/12/3. 

I f : By induction on. the length n of derivations in G', we prove that 

S =>Q> x' implies S =>G x 

for some x £ g(x'), x £ V*, x' G (V)*-
Basis: Let n = 0. That is, S =>•", S. It is obvious that S S and 5 G g(S). 
Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n > 0. 
Induction Step: Consider a derivation S ^ J t 1 x', x' G (V)*. Since n + 1 > 1, 
there is some y' G p' € P' such that S y' =$>G> x' \p'\, and by the 
induction hypothesis, there is also a derivation S =>G y such that y G g(y')-

By inspection of P', the following cases (i) through (xiii) cover all possible forms 
of p': 

(i) p' = (H 2/2,0,0) G P.', H £ V - T, 2/2 G V*. Then, y' = 2/^2/3. 
x' = 2/12/22/3, 2/1,2/3 € (V)* and y has the form y = y\Zy3, where 2/1 £ 
5(2/1)1 2/3 G 9(2/3) and Z G 9(i i) . Because for all X £ V - T : g{X) = {X}, 
the only Z is H and thus y = y\Hy3. By the definition of P ' (see (1)), there 
exists a production p = H —> 2/2 in P and we can construct the derivation 
5 y\Hy3 =>G 2/12/22/3 W s u c h t h a t 2/12/22/3 = x, x G s(x'). 

(ii) p' =• (A ->• 1 , 0 , 1 ) . Then, y' = y^Ay's, x' = 2/^2/3, 2/1,2/3 e (V)* and 
2/ = 2/i^2/3, where 2/1 £ 3(2/1), 2/3 €.3(2/3) a n d ^ e 3(j4). Because 3(A) = {A}, 
the only Z is A, so we can express y = y\Ay3. Having the derivation S 
y such that y £ g(y'), it is easy to see that also y £ g(x') because A £ g(A). 

(iii) p' = B,0,B). By analogy with (ii), y' = y ' M , x' = y[By'3, y = 
yiBy3, where y[,y'3 £ (V1)*, 2/1 € g(y[), y3 £ g(y3) and thus y £ g(x') 
because B £ g(B). 

(iv) p' — (A -* (eA),AB,0). By the permitting condition of this production, 
AB surely occurs in y'. By Claim 1, no more than one A can occur in y'. 
Therefore, y' must be of the form y' — y[ABy3, where 2/1,2/3 € (V)* and 
A £ sub(t/ji/3). Then, x' = y[(eA)By'3 and y is of the form y = y\Zy3, where 
2/i € g(y[), 2/3 € 3 ( 2 /3) and Z £ g{AB). Because g{AB) = {AB}, the only Z 
is AB; thus, we obtain y = y\ABy3. By the induction hypothesis, we have 
a derivation S =>G y such that y £ g(y'). According to the definition of 3, 
y £ g{x') as well because A £ g((e,4)) and B £ g(B). 

(v) p' = (B $,(£,4)5,0). This production can be applied provided that 
(<Sa)B £ sub(2/'). Moreover, by Claim 1, #¿2/' < 1- Hence, we can ex-
press 2/' = y[(eA)By'3, where y[,y'3 £ (V)* and B $ sub(y[y'3). Then, 
x' = 2/1 (£A)$y3 and y = y\Zy3, where 2/1 € g{y[), y3 €.3(2/3) and 
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Z € 9{{£A)B). By the definition of g, g((eA)B) = {AB}, so Z, = AB 
and y = y\ABy3. By the induction hypothesis, we have a derivation S 
y such that y € g(y')- Because A £ g((eA)) and B £ <?($), y £ g(x') as well. 

(vi) p' = ((eA) £ ,0 ,5) . Application of ({sA) £ ,0 ,B) implies that (eA) 
occurs in y'. Claim 2 says that (EA) has either B or $ as its right neighbor. 
Since the forbidding condition of p' forbids an occurence of B in y', the 
right neighbor of (eA) must be $. As a result, we obtain y' = y[ (eA)$y'3 

where y[,y3 € (V')*. Then, x' = y[$y'3 and y is of the form y = y'{Zy3, 
where j/i £ g(y[), 2/3 6 3(2/3) a n d z € By the definition of g, 
g({eA)$) = {AB,AAB}. If Z = AB, y = yiABy3. Having the derivation 
S y, it holds that y 6 g(x') because AB 6 g($). 

(vii) p' = ($ -4 e,0,(eA)). Then, y' = y[%y'z and x' = y'^, where y{,y'3 e (V1)*. 
Express y = yiZy3 so that yx £ g{y[), y3 £ g(y'3) and Z £ g($), where 
g($) = {B,AB}. Let Z = AB. Then, y == yxABy3 and there exists the 
derivation S =ï*a yxABy3 =>G 2/i2/3 [AB e], where yxy3 = x, x £ 3(2;'). 

In cases (ii) through (vii) we discussed all six productions simulating thé ap-
plication of AB —>• e in G' (see (2) in the definition of P'). Cases (viii) - (xiii) 
should cover productions simulating the application of CD —> e in G' (see (3)). 
However, by inspection of these two sets of productions, it is easy to see that they 
work analogously. Therefore, we leave this part of the proof to the reader (it can be 
established by analogy with (ii) - (vii) by replacing nonterminals A,B, A, B,(EA) 
and $ with C,D,C,D, (ec) and #) . 

We have completed the proof and established Claim 3 by the principle of induc-
tion. • 

Observe that L(G) = L(G') follows from Claim 3. Indeed, according to the 
definition of g, we have g(a) = {a} for all a ET. Thus, from Claim 3, we have for 
any x € T*: 

S x if and only if S x. 

Consequently, L(G) = L(G') and the theorem holds. • 
In fact, the previous proof established more than stated in Theorem 1. Indeed, 

it also reduced the number of nonterminals as the next corollary says. 

Corollary 1 Every recursively enumerable language can be generated by a simple 
semi-conditional grammar of degree (2,1) with no more than 12 conditional produc-
tions and 13 nonterminals. 

Proof. Observe that G' has 13 nonterminals in the proof of Theorem 1. • 

The above corollary tells us that besides the number of conditional productions, 
we have also reduced the semi-conditional grammars with respect to the number of 
nonterminals. In addition, we were able to establish this result for semi-conditional 
grammars of degree (2,1). This result gives rise to a question of whether we can 
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further reduce the number of conditional productions in the semi-conditional gram-
mars of any degree. In other words, consider the semi-conditional grammars with 
productions having context conditions of any length. Can they generate any recur-
sively enumerable language with fewer than 12 conditional productions? 
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