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Codes and inﬁnite words*

J. Devolder ! M. La.tteux_t 1. Litovsky? L. Staiger?

Abstract

Codes can be characterized by their way of acting on infinite words. Three
kinds of characterizations are obtained. The first characterization is related to
the uniqueness of the factorization of particular periodic words. The second
characterization concerns the rational form of the factorizations of rational
words. The third characteristic fact is the finiteness of the number of factor-
izations of the rational infinite words. A classification of codes based on the
number of factorizationa for different kinds of infinite words is set up. The
obtained classes are compared with the class of w-codes, the class of weakly
prefix codes and the class of codes with finite dec1phermg delay. Complemen-
tary results are ‘obtained in the rational case, for example a necessary and
sufficient condition for a rational w-code to have a bounded deciphering delay
is given.

Résumé: La factorisation des mots infinis permet de caractériser les codes
parmi- les langages de mots finis. Les critéres obtenus sont de trois types.
Le premier critére est relatif 3 ’unicité de la factorisation de certains mots
périodiques. Le second concerne la forme des factorisations:.des mots ra-
tionnels: Finalement, seuls les codes.nous-assurent de la finitude du nombre
de factorisations des mots rationnels. Les codes sont classifiés selon le nom-
bre de factorisations de certains types de mots.infinis. Les classes obtenues
sont étudiées et comparées avec les classes déja définies de w-codes, de codes

. faiblement préfixes et de codes. i délai borné. Des résultats complémentaires
sont obtenus dans le'cas rationnel; en particulier il est donné une condition
nécessaire et suffisante pour qu’un w-code rationnel soit & délai borné.

Introductlon

. Codes, which are defined as the bases of free submon01ds of monoids of (ﬁmte)
words [1] were initially introduced by Schiitzenberger {19] in 1955. Since then, the

*This work has been partially supported by the PRC _”Mathémathues et Informatique”
and by the EBRA working group n° 3166 ASMICS.
tCNRS URA 369, LIFL, Université de Lille I, 59655 V)lleneuve d’Ascq cedex, France.
$LABRI, Université de Bordeaux I, ENSERB 33405 Talence cedex, France.
‘Lehrstuhhnformatlk II Universitit Dortmund, Postfach 500500, 4600 Dortmund 50,
Deutschland.
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study of some classes of codes, specially from the point of view of an easy decoding,
has been very active. Here we study codes, and classes of codes from the particular
point of wiew of decoding infinite words. In this respect, the interesting codes are
thoge for which évery infinite word hias at niost one factorisation: "We shall referto
these codes as w-codes. It was shown by Levenshtejn [12] that, for a finite code, any
infinite word has at most one factorization iff this code has a bounded deciphering
delay. For infinite codes the situation is more complicated. It turns out that the
class of w-codes (initially called ifl-codes by Staiger) properly contains the class of
codes having a finite deciphering delay, which in one’s turn properly contains the
class of codes having a bounded deciphering delay [20]. The most interesting codes
are codes with bounded deciphering delay, because they allow an easy decoding of
finite and infinite words. We give at the end of this paper an interesting necessary
and sufficient condition for a rational w-code to have a bounded deciphering delay.

Although arbitrary codes may give several factorizations of infinite words, codes
can be characterized by their way of acting on infinite words. This is the purpose
of the first section. Indeed, a language C is a code if and only if, for every word v
of Ct, the periodic infinite word v* has a single factorization over C. Codes are
also characterized by the form of the factorizations of ultimately periodic words,
and also by the fact that the number of factorizations of an arbitrary ultimately
periodic word is finite. As an application, it is shown that the usual notion of code
with bounded deciphering delay coincide with the notion defined in [20].

So, codes and w-codes are characterized in terms of infinite words. It is obvious
that a language C is a code if no infinite word has uncountably many factorizations
over C. Having this fact in mind, we set up a classification of codes based on the
number of factorizations for different kinds of infinite words. If C denotes a code,
the kinds of infinite words that we consider are the following ones: periodic words
of the form u¥ with u € C*, periodic words, ultimately periodic words and any
infinite words. This leads to consider the class C of codes, the class Il of m-codes,
the class W of weakly prefix codes, the class I of w-codes (I as "ificode”).

These classes are compared with each other, and also compared with the class
B of codes having a bounded deciphering delay, the class D of codes having a finite
deciphering delay, the class V of circular codes (V as ”very pure”), the class S
of suffix codes. The results can be summarized by the following strict inclusions
BcDcIcWcCcHIcC,VcW,SclI, and by the next array which indicates
the maximal number of factorizations according to the type of infinite words and
the class of codes, when the alphabet is countable and has at least two elements.
In this array, the stars s point out the characteristic properties, and oo denotes
Card(IR) : @ noncountable infinity of factorizations is possible.

words u¥ uv uy¥ any
(uecCt)

languages

w-codes 1 1 1 1»

weakly prefix 1 1 1s oo

w-codes 1 1s finite co

codes 1 finite « finite 2 oo

In the second sectit'm, we give characterizations for the classes W,IT and S and
we prove the announced inclusions. Using the inclusions V ¢ W,S C II and the
composition of codes, one can easily construct w-codes, weakly prefix codes and
s-codes. The second section terminates by some examples which enable us to fulfill
the array.
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In the last section, we examine the modifications holding when C is a rational
language. Every infinite word has then a finite bounded number of C-factorizations
whenever C is a code. The notion of w-code coincides with the notion of weakly
prefix code in the rational case. We give also a new interesting necessary and
sufficient condition for a rational w-code to have a finite deciphering delay. This
condition C¥ N C* Adh(C) = @ can be easily checked. As expected, it is decidable
whether a rational language belongs to any class B, I (i.e.. W) or II.

Notations and basic definitions:

In the following, we consider an alphabet (finite or not) A, the set A* (resp. A“)
of all finite (resp. infinite) words over A, the set AT which denotes the language
A* — ¢, where ¢ is the empty word. The length of a word u is denoted by |u|. The
symbol < (resp <) denotes the relation between words "is a (resp. strict) prefix
of”. The left quotient of a word u by a word v is denoted by v~ 1u.

Two words z and z' are said to be conjugate if there exist u and v such that

=uv and 7' = vu. A word z € At is primitive if z = u™ implies n = 1.

Given a language C C AT, the submonoid generated by C is the language
c* = {vy ...v,,fn > 0,u; € C,1 <t < n} and C¥ stands for the set of infinite
words obtained by concatenation of an infinite sequence of words of C : C¥ =
{vov1v2. ..ch,- € C,s > 0}. A C-factorization of a word v € C* is a sequence of
words of C : (vy,...,v,) such that v = v;...v,. A C-factorization of a word
v € C¥ is a sequence of words of C : (vg, v1,v2,...) such that v = vv,vz....

An infinite word w is said to be ultimately periodic if there finite words u and v
such that w = uv”. It is said to be periodic if 4 can be chosen equal to .

Given a language C C A% we shall often consider a bijection ¢ between an
alphabet X and the language C. This mapping can be extended to X* as a mor-
phism ¢ : X* — C®. This morphism is said to be a coding morphism for C (even if
it is not injective). The mapping © can also be extended to X“(p(292;...) is the
word go(fz(:‘gp z1):..). These extension agree with the composition of functions of
words of X* (resp. X“) and the set of C-factorizations of words of C* (resp C¥).

Thus a C-factorization of u € C* (resp : u € C¥) will be represented by an element
of X* (resp: X*).

Definitions: Let C be a language C AY. :
-Cisacodeifand only if Vuv € C uC* NuC* #P=>u=v
- C is a prefix code if and only f Vu,v€C u<v=>u=v
~ C is an w-code if and only if Vu,v €C uC¥ NvC¥ # § => v = v [20].

These definitions can be expressed in terms of morphisms. Let ¢ be any coding
morphism for C. '

- C is a code if and only if p : X* — C” is injective.

- C is an w-code if and only if p : X¥ — C¥ is injective.

Recall that w-codes are codes and that prefix codes are w-codes. Using coding
morphisms, it is easily seen that a composition theorem holds for codes [1] and w-
codes. Namely, let C be a language C Xt and ¢ : X* — A*® be 4 coding morphism
for a language D = p(X) c A%, if C and D are codes (resp: w-codes), o(C) is a
code (resp: w-code).
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1 Characterizations of codes

In this section, three kinds of characterizations for codes are obtained: the first
kind concerns the words which have only one C-factorization, the second is related
to the form of the C-factorizations of ultimately periodic words, the last give a
bound for the number of C-factorisations of a given ultimately periodic word.

We define now some notations and give some lemmata used in the proof of the

main theorem. Let ¢ : X* — C* be 2 coding morphism for C.

Lemma 1.1 IfC C A™ 15 a code, for every word v € At, there ezists at most one
primitive word 2 € Xt such that o(z) € v*.

Proof. K ¢(z) = n™ and p(2') = v™,p(z™) = p(z™). Thus 2™ = 2’ ( p
injective) and then m = n and z = 2’ if 2z and 2’ are primitive words. ]

Lemma 1.2 If yz* € X¥ 1s a C-factorization of uv* (where v 1s assumed to be a
primitive word), p(z) 18 a power of a conjugate of v.

Lemma 1.8 Let us consider £ € X such that p(z) ss ultimately persodic. There
ezsst y,z € X°,t € XV such that z = yzt, and p(z) = p(y)p(z)“.

Proof. Let z be the C-factorization: uy,ug,...,up,... of an ultimately periodic
word uv“. Since v is of finite length there exist 1, 7, k,msuch that k < m, u; ...y, =

uv'w and u; ...4, = uv*t w where w is a prefix of v. The word v/ = w™lv/w
belongs to Ct and uv” = u; ... ugv¥. : 0

Lemma 1.4 If C C A* 15 a code, for every word v € Ct, the word v“ has only
one C-factortzation.

Proof. Let us consider v € C*t : v = vjv;...v, with v; € C such that v* has two
distinct C-factorisations: v* = (vyvz...9,)¥ = ujuz...up... (Where Vi u; € C).
Without loss of generality we may assume that v; # u;. As in the proof of lemma
1.3, there exist s, 7, k, m such that k < m, u;...ux = v'w and u;...4,,, = vw
where w is a prefix of v. Then the word v't/w =u;...4,, = (vr .. .Un)jul e Uk
has two distinct C-factorizations. C is not a code. a

Lemma 1.8 Consider C C At such that every word of the form w* with w € C*
has ezactly one C-factorization. For all words u,v € A, every C-factorization of
the word uv® ss ultimately periodsc.

Proof. Let us consider a C-factorization z of the word uv” € C¥. From lemma 1.3,
there exist y,z € X*,t € X¥,v' € C* such that z = yzt,p(z) = v', p(t) = v¥. By
hypothesis, the word v"“ has a single C-factorization. Since p(2¥) = v¥ = o(t),
we have t = 2 and then z is ultimately periodic.

Lemma 1.8 Let C be a code C A*. Consider words u and v of AtY. The set of
C-factorizations of uv” s finite.

Proof. Let us consider uv¥ € C“. Assume that v is primitive. Denote by V =
{vs|t € I} the set of conjugates v; of v such that v} NC* 3 8. Since C is a code, we
can denote by 2; the primitive word such that p(z;) € v} and n; the corresponding
power of v; : p(z) = v*. We consider the equivalence relation on V:

v; = v; <> z; and z; are conjugate.
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Since p(z;) and p(2;) are conjugate, it is clear that n; = n; whenever v; =~ v;.

Let F be the set of C-factorizations of uv*. We shall prove that Card(F) < Zn;,
where only one n; by =~ class is taken.

Since C is a code, from lemma 1.5, every C-factorization of uv“ is ultimately
periodic, hence of the form yz* with z primitive; from lemma 1.2, there exists a
conjugate v; of v such that (z) € v}. Then the set F of C-factorizations of uv*
satisfies F = U(FNX*2!). Since X"z = X*z{ when 2 and z; are conjugate, the
previous union has only N terms, where N denotes the number of classes of ~.

It remains to prove that Card(F N X*z¥) < n;. Consider y'z¥,y"z¥ and
yz € F, such that |p(y)| = inf{|p(u)||uzf € F}. Since p(y)p(z)* =
o(y')e(z)¥, (%) € v} and v; is primitive, one has p(y') = p(y)uv} for some
h'. One has also p(y") = p(y)v}" for some h". If h' = kn; + k", p(y"2¥) =
¢(y)u:‘“+k"‘ = p(y)vf" = p(y'). Since C is a code y"z* = y' and then y"'z¢ = y'z¥.

e number of elements of F N X*z! is then at most the number n; of integers
modulo n,.

The following theorems give the characterization of codes. For convenience,
theorem 1.7 gives the characterizations related to periodic words ant theorem 1.8
gives those related to ultimately periodic words.

Theorem 1.7 Let C be a language C AY. The following assertions are equivalent:
1. C $s a code,
2. for every u € C*,u" has a single C-factorization,
S. every C-factorization of each periodic infinite word 1s ultimately pertodic,

4. each periodic infinite word has a finite number of C-factorszations.

Theorem 1.8 Let C be a language C AT. The following assertions are equivalent:
1C 13 a code,

3’ every C-factorization of each ultsmately persodic infinste word ss ultsmately pe-
riodsc,

4’ each ultimately periodic infinste word has a finste number of C-factorizations.

Proof. 1 = 2 : lemma 1.4; 2 = 3': lemma 1.5; 1 = 4': lemma 1.6; 3' =
3,4 => 4: clear; 3 = 1 and 4 = 1: If C is not a code, there exists a word u
which has two distinct C-factorizations. There exist y and z € X*,y # 2z, such
that o(y) = ¢(z) = u. Without loss of generality, one can assume that the first
letters of y and z are different, then a bijection ¥ between {0,1} and {y, z} gives a
bijective morphism ¥ : {0,1}¥ — {y, z}* and the elements of {y, z}“ are distinct
C-factorisations of u“. The word u belongs to C* and u“ has a non-countable set
of C-factorisations; hence also a non-countable number of non-ultimately periodic
C-factorisations. 0

Remarks: .
— From lemma 1.3, in the property 4’, one can replace: ®each ultimately periodic

infinite zord” by "each ultimately periodic infinite word of the form uv¥ with
u,v € Ct”,
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- A periodic infinite word can have a nonperiodic C-factorization even if C is
a (prefix) code. For example: if C = {a,ba}, the C-factorization of (ab)¥ is not
periodic.

Property 3’ of codes has been used to give characteristic properties of precircular
codes 7). The characterisations 3 and 3’ can be used to prove composition theorems
for weakly prefix codes and for x-codes. As an application of property 2, it can be
easily seen that a code C is always minimal in the family of w-generators of C¥ (i.e.
languages R such that R¥ = C¥). We give here another application of property 2.

Application:

In [20] the following notion of delay of decipherability was introduced: a lan-
guage C C A% is said to have a finste delay of decspherability if

YveCIm(v) 20 vC™¥A4“NC¥ c vev.

Remark: A language with a finite delay of decipherability in this sense is not
necessarily a code, as it can be seen for C = {a,a?}. The language C = {a?, a3, b}
is another more complicated example (it is not a code but m(b) = 0 and m(a?) =
m(a®) = 1).

Some authors use another notion of finite deciphering delay [1], [5], which is in
fact a notion of bounded deciphering delay [10]. Here, we say that:
- a language C C A* is said to have a finste decsphering delay if

YoeC Im(p)20 Vv'eC (vC™M A NV'CY £ =>v=1)
or equivalently if
VoeC Im(v)20 V' eC (vC™MA* NV'C* # 8= v=1)

A language which has a finite deciphering delay is a code Ll] and clearly has
a finite delay of decipherability in the sense of [20]. Thus the notion of finite
deciphering delay is stronger than the notion defined by Staiger. We shall see that
these notions coincide for codes.

Proposition 1.9 Every code which has a finite delay of decipherability 1s an w-
code. .

Proof. Consider v,v' € C such that vC¥ Nv'C¥ # §. For n 2> max(m(v), m(v'))
and w € vC¥ N v'CY, there exist u,u’ € C™ such that vu and v'u’ are prefixes of
w. If vu is a prefix of v'v/, (v'w')¥ € vC™) A N C¥, thus (v'u')¥ € vC¥. Since
v'u’ € C*, from characterization 2, v = v'. Hence C is an w-code. (=]

Proposition 1.10 Every code which has a finste delay of decipherability has a
finite deciphering delay. :

Proof. Let v and v' € C and assume that vC™(*) A° Nv'C* is not empty. Consider
w € vC™(*) 4°Nv'C*. The word wv® belongs to vC™(*) 4% N C¥ and then belongs
to vC¥ and to v'C¥, from the previous proposition we obtain that v = v'.

0
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Remarks:
- In a same way, a code satisfying: Im >0 VveC vC™®) 4% N oY C vCv
is a code with a bounded deciphering delay, that is to say:

3m > 0Vv € CVY' € C(vC™A* NV'C* £ = v=").

— The two notions of finite and bounded delay do not coincide in general, al-
though they are equivalent in the regular case [20].

— The notions of w-code and code with a (finite or bounded) deciphering delay
coincide in the case of finite codes [12] [5]; these classes do not coincide when regular
codes are considered [20] . We give in section 3 a necessary and sufficient condition
for a rational w-code to have a finite deciphering delay.

2 Study of some special codes - examples.

Weakly prefix codes were defined by Capocelli [5]:

Definition: A code C C A™ is a weakly prefix code if and only if

Vu,v,w € A* (w,wuy,uv,vu € C* =>u € C*).

Notice that this definition is equivalent to the next:
A language C C A% is a weakly prefiz code if and only if C is the base of a
monoid M satisfying the condition:

Yu,v,w € A* (w,wu,uv,vu €M = ue M).

Proof. It is sufficient to prove that a monoid M which satisfies the required
condition is stable [1]. If the words w,wu,uv’,v' belong to M, the words
w, wy, uv'w, v'wu belong also to M. Let v = v'w. The words w, wu, uv, vu be-
long to M and then u belong to M, M is stable. ' O
Clearly, prefix codes are weakly prefix codes.
Let us recall some definitions. A language C C At is a circular code [11] [1] if
and only if

¥n,p > OVug,...,Un~1,Y0,-..,Vp~1 € CVt € A*Vs € A* such that vy = ts

(o...4n—1=8vy...0p_1t=>n=p t=cand Vi u; = v;).

A monoid M C A*® is a very pure monoid if and only if
Yu,v€ A* (uv,vu € M = u,v € M).

It is known that a language C is a circular code if and only if C is the base of a
very pure monoid [16].

Clearly, the class V of circular codes is an interesting subclass of the class W
of weakly prefix codes. But the inclusion V C W is strict: for example, {ab, ba} is
a (weakly) prefix code but is not a circular code.

The next proposition characterizes weakly prefix codes in terms of infinite words.
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Theorem 3.1 Let C be a language C AY. The following assertions are equivalent:
1. C s o weakly prefiz code

2. for every u,v € C* uv¥ has a single C-facton'zation

8. each ultimmately periodic infinste word has at most one C-factorization.

Proof. 1= 2: Notice that, since C is a code, any C-factorization of an ultimately

periodic word is ultimately periodic. Assume now that uv* = u'v' and u, w’,v,v' €
Ct,|u| < |¢'|. If the two C-factorisations are distinct, we can assume that u =
Y1...4, and o' = u)...u, with u; # u]. If u' = uw where w € C°,C is not a
code. Then suppose that v’ = uw where w ¢ C°. Taking appropriate powers of

v and v’, we can assume that |v| = |v'| > |w|. Then v = ww' and v/ = v'w for
some word w'. We have u, uw, wuw', w'w € C* but w & C*, a contradiction with C
weakly prfix.

2 = 1 : If C is not weakly prefix, there exist u,v,w such that u ¢
C?,w, wu,uv,vu € C°. Hence w(uv)¥ has two distinct C-factorizations.

3 = 2: Clear. 2 = 3: Clear from lemma 1.3. a

As a consequence we obtain:

Corollary 2.2 w-codes are weakly prefiz codes.

The converse is not true in general. Let C = {ab} U {ab™ab”™*!|n > 1}. This
example presents a weakly prefix (circular) code C which is not an w-code, but
such that every proper subset of C is an w-code. This shows a difference between
w-codes and weakly prefix codes since a language C is clearly a weakly prefix code
iff every finite subset of C is a weakly prefix code. This example shows also that
V and W are not included in the class I of w-codes; I is neither included in V
(consider the prefix code {ab, ba}).

Now, we study a type of codes which take place between codes and weakly prefix
codes. Indeed, such a type of codes exists. From theorem 1.7, if C is a code, for
every u € Ctu® has a single C-factorization. But it is not possible to replace *u €
C*7 by "u € A*”. This observation was already made by Karhumaki in connection
with theorem 3.3 of [10], however the example given there, {ab, aba,baba} is not
a code. By contrast, the language C = {a,aaba, abaaba} is a code and the word
(aab)“ has two C=factorisations. »

In theorem 2.1, it is not possible to replace *ultimately periodic” by ” periodic”:
a language C may no longer be a weakly prefix code even if every periodic infinite
word has at most one C-factorisation. For example, let C = {ab,aba,ba?}. The
word ab(aba)” = aba(ba?)* is the only word which has at least two C-factorizations
beginning by two different words. Thus every periodic word has at most one C-
factorization. Note that C is a suffix code.

Thus theorem 1.7 and 2.1 do not study uniqueness of the factorization of periodic
words. Then it is natural to try to characterize codes which factorize infinite
periodic words in a single manner. For sake of convenience these codes are called
w-codes here. Note that the three-element codes which are not x-codes have been
studied by Karhumaki and called periodic codes {10].

Definition: A language C C At is said to be a w-code if each periodic infinite
word has at most one C-factorigation. .

Theorem 1.7 ensures that a 7-code is a code. We have seen an example showing
that the converse is false. As for weakly prefix codes, a technical characterization
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of r-codes can be obtained. One can prove that a code C C A% is a a-code if and
only if C satisfies the property:
(P) Vu,v,w, f§ € A* such that wuvu < % and |u| 2 |B)|, one has:

w,wy,uv,vu € C* 2> u e C”.

Proof. Let u,v,w, 8 such that wuvu < 8*,|u| > |B| and w, wu,uv,vu € C*. We
can assume S primitive, then u has a single interpretation over f : there exist a
single £ > 0, a single suffix of 8 : #', a single prefix of # : " such that u = g'F* 5"
Then uv = §'6788 ! and vu = f ~18B7" for some j. Hence f* = w(uv)” =
wu(vu)”. Since C is a x-code, the word #“ h as at most one C-factorisation
therefore u € C*.

Conversely, let f“ be a periodic word having two distinct C-factorisations:
(w1,ws,...) and (w], w3,...). We can assume that w; # wj. Denote f“ = uu;...
where u; = f for each 3. :

We can consider (when exists) p; such that w;...wp,—1 < uy...u-; <
wy...wp, < ty...%. There exist a word a and infinitely many ¢ such that
Wy ...Wp, = ¥ ...%—1a. In the sequel, m and n denote such indices p;. In a same
way, there exist a word a’ and infinitely many s such that there exists ¢; satisfyin
W Weoy <.t Swowy Sup..yand wy..wp = Uy ..y al
In the sequel, m' and n' denote such indices g¢;.

Let us choose m,m',n,n’ such that wy...w,, < wi...w), < wy...w, <
wi...wl,. Let w = wi...wp,wu = wW...W,, WUY = W)... W, WHYz =
w)...w),. The choice of m' can be done such that |u| > |8]. We have:
uy = pf'P € C* and yz = P € C+, where §’ and g" are conjugate with 8. Let
v = y(uy)? uv e C* and vu = (yzg”, then vu € C*. The words w, wu, uv, vu
belong to C*, therefore u belongs to C*, which gives a contradiction with "C is a
code” since w; # wjy. o

In this characterisation, the condition " C is a code” cannot be suppressed. For
example, let C = {ba, b, abc,bc}. The monoid C* is not free and the condition (P)
is satisfied.

From theorem 2.1, it is clear that weakly prefix codes are m-codes. Surprisingly,
the family of x-codes contains a well-known subfamily: the family S of suffix codes.
This fact is obtained as a consequence of the next interesting characterization of
suffix codes. ‘

Proposition 2.8 A language C C At 15 a suffiz code if and only if every C-
factorization of a persodic snfinste word 18 persodic.

Proof. If C is not a suffix code, there exist v/ € A%, u,v € C such that v = v'u.
The word uv” is periodic and has a non periodic C-factorization.

Conversely, consider a suffix code C, ¢ : X* — C* a coding morphism for C and
B a primitive word such that 8“ € C¥. Consider a C-factorization of . From
lemma 1.2 and theorem 1.7, this factorization can be written y2* and there exists a
conjugate of # : §’ such that p(z) = B’'™ for some n. Since f* = o', ely) = op'’*
for some k. Then (y) is a suffix of (8')*, and since C is a suffix code, y is a
suffix of z+. Hence the considered factorization is periodic. 0

In these conditions, f“ = v“ for some v in Ct and from theorem 1.7, the
C-factorisation of §“ is unique. So we have:

Corollary 2.4 Suffiz codes are x-codes.
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Remarks:

- The inclusion 8 C II is strict: the w-code {a,ba} is a not a suffix code.

- A code with a finite left deciphering delay (even delay 1) is not always a
7-code. T T T

For example: the word (abc) has two C-factorisations when C =
{a, ab,cab, bea}.

- 8 is not included in W : {c, ca, aba, ba?} is a suffix code which is not weakly
prefix.

As an application of theorems 1.8 and 2.1, a composition property for weakly
prefix codes and w-codes can be obtained:

Proposition 3.5 Let C be ¢ language C Xt and p : X° — A° be a coding
morphiam for a language D = (X) C AY. If C and D are weakly prefiz codes,
©(C) is a weakly prefiz code. If C 1s a weakly prefiz code and D a %-code, p(C) s
e %-code.

Remark: In proposition 2.5, for ©(C) to be a w-code, the request property *C
weakly prefix code® cannot be replaced by the other one *C #-code”. For example,
C = {c, ca,aba, baa} is a w-code but not a weakly prefix code (the word c(aba)“ has
two C-factorisations). Let ga(a;J = ac, p(b) = b,(c) = c. The code D = {ac,b,c}
is prefix but ¢(C) = {¢, cac, acbac, bacac} is not a w-code gince the word (cacba)®
has two C-factorisations.

In the following, we give some examples of w-codes and weakly prefix codes for
which there exists a word wo which has infinitely many factorisations. The set of
factorisations of wy may be countable or not countable. The last example allows
us to fulfill the array given in the introduction.

Example 3.1 Let C; = {aba?b2a3b3...a"b"a"*|n > 1}, C; = {bPa??|0 < p <
q} and consider C = C, U C3. The language C 1s a suffiz code and thus a x-code,
but C is not a weakly prefiz code since for ezample, the word aba®b?a®b3(atb?)
has two C-factorszations .

The word wy = aba?b?...a"b"a™ 1" t! ... has a countable infinity of C-
factorszations and every word has a countable (finite or not) number of C-
factorizations.

Example 2.3 Let A = {a,b},C = {uab®||u| = n,n > 0,|uls = 0 or 1} (Jula
denotes the number of occurrences of a in u). Clearly C 18 a suffiz code thus a

w-code. Since the word w = bab.bab.(b%ab*.bab)¥ = babZabt.(bab.b3ab*)“ has two
C-factorszations, C 18 not a weakly prefiz code. We shall see that there exists a
word wy which has a noncountable snfinity of C-factorizatsons.

Let wp be the word: ab©ab’! ... ab'™... where 1 =0,8; = 1,842 =841 +1p + 1
for every n > 0. Let us prove that, for every factorigation of wg : wo = uv, the
word v has at least two C-factorizations. In fact, v € z(v)C¥ N y(v)C¥ for two

different words: z(v) and y(v) of C. Let v = b%ab'"ab*"+1... with 0 < j, <
3n—1. Then v = b70ab70.b71abst. .. .. bhabdh, ... where Jn41 = Snth — Jn and Jn
satisfies 0 < 7 < t,45 for every h > 0; let us set z(v) = »°ab’®. The word v
has also the other C-factorisation: v = b%ab™ab*0 bFlab*!, .. . behab*h . ... where
ko = 30 +tn + L,kn41 = spny14nkn and k;, satisfies 0 < &k, < 19,4145 for every
h > 0; let us set y(v) = b"0ab‘"ab*0. We have: v € z(v)C¥ N y(v)C¥.

Then an injective mapping 6 form {0, 1}¥ into the set of C-factorizations of wp
_can be defined next way: let f = (8,)n € {0,1}¥, 6(B) = (25)n Where 2o = z{w)
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if Bo = 0 and 2o = y(wo) if fo = 1,20 = z((2021...2n-1)" wo) if B = 0 and
zp, = y((2021..-2n-1) " wo) if B, = 1. So wo has a noncountable infinity of C-
factorizations. O

Example 2.8 Let A = {u;|t > 0} and C = C;UC; where Cy = {ugujtiz... uzift >
0} and C3 = {ugigjjq1...Ugigi+1l5,7 > 0}. Since the mapping: (i,7) — 2'37
13 snjective, st can be shown that C is a weakly prefix code. Every word has a
countable /ﬁ.m’tc or not) number of C-factorizations and there ezists a word which
kas a countable infinsty of C-factorizatsons. Indeed the word wo = upt uz... 4, ...
has a countable infinity of C-factorizations since the C-factorizations of wy are of
t’lc fov:m: (uo e ugi)(026+1 cee u2.~3)(u2.~3+1 e 02-'32) e (u263j+1 . u253,~+1) cee for
some s > 0. (]

Example 2.4 Let A = {u;| > 1},C = {u,... u2n-1|n > 1} U {ug ... uz4|n > 1}.
We show that C s a weakly prefiz code such that there ezists a word which has a
noncountable infinity of C-factorizations.

Let wg = uj42...4,.... As in example 2.2, it can be easily verified that wy has
a noncountable infinity of C-factorizations. Let w be a word which has two C-
factorigations § and 6’ beginning by two different words. Then § and §' begin
by t,...uzn—1 and ty,...uz, for some n. The second words of § and &' are
UZp ... Ugp—1 OF Uzy ... Ugn DA Uznq] ... Ugn41 OF Ugnty...Ugnsa. IN every case
they overlap. Then, by induction, it can be shown that w = (u;...u,_;) " w, and
then w is not ultimately periodic. Thus C is a weakly prefix code.

Using the composition proposition 2.5 and the previous examples, it is easy to
construct over a finite alphabet examples of codes having the same properties. Let
B = {a,b} and ¢ : A — B* defined by: p(u;) = a’b. The language D = p(A4) is a
prefix code.

Example 2.6 Let C be the code defined in ezample 2.3. the language C' = p(C)
1s & weakly prefiz code over a finite alphabet satisfying:
~ every word has a countable (finite or not) number of C'-factorizations

- infinitely many words have a countable infinity of C'-factorizations.

Example 2.6 Let C be the code defined in ezample 2.4 the language C' = o(C
18 a weakly prefiz code over a finite alphabet and there ezists a word: p(wo) whic
has a noncountable tnfinity of C’'-factorizations.

3 The rational case

When a language C is rational, one can consider an automaton Qo = (Qo, 90, ¢r)
with a finite set of states Qo, a single initial state go and a single final state gp,
which recogniges C and such that no edge comes to go and no edge goes from gr.
The automaton (lo can be chosen trim (i.e. for every state g there exist a path
from go to ¢ and a path from g to gr) and unambiquous (i.e. the words of C have a
single acceptance path). The automaton {1 = (Q, g, go) obtained by identification
of go and gr recognizes C*. If C is a code, the automaton (1 is unambiguous [1].
This automaton looked as a Biichi automaton recognizes C¥.
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Theorem 8.1 Let C be a rational language C AY. The following conditions are
equivalent:

1. C 15 a code
2. every infinste word has a finste number of C-factorszations

3. there exzists p such that every infinite word has at most p C-factorizations.

Proof. 3 = 2 : clear. 2 = 1: This comes from theorem 1.7. 1 = 3 : Let C be a
rational code and 11 = (Q, o, go) an unambiguous automaton for C* constructed
as said before. Consider w € C¥ and ¢t > 1. We call cut of (w,t) every sequence
(m1,...,np~1) such that there exists n,, satisfying:

() mo =0<n <...<nyp_y <t < npp > 2 and wini-y,ni[€ C for
¢ =1,...,p. (Here, and in the sequel, the factor w;w;41...w;—; of a word w is
denoted by wis, 5[).

At first, we show that, for every ¢, (w,t) has at most Card(Q) cuts.

Let us consider (ni,...,n,) and (n),...,n}) such that (i) is satisfied. Denote
by g (resp. ¢') the state reached after reading w(0,¢[ in the single successful path
of w[0,ny| (resp. w(0,ni[). If ¢ = ¢’,w|[0,n,[ has a second successful path:
path related to w[0,n}[ until ¢, path related to w[0,n,| after. Then p = k and
(n1,...,np-1) = (n},...,np_,) since £} is unambiguous.

Thus (w,t) has at most Card(Q) cuts. Then w has at most Card(Q) C-
factorisations. 0O

Remark: An infinite word which has several C-factorizations is not necessarily
ultimately periodic: the word: abZcb®(c?b®)cb3(c?b3)? ... cb®(c2b3)™cb3(c2p3)" 11 . ..
has two C-factorisations when C = {a, ab, beb?, bc2b?, b3ch, b3c2b).

A set of infinite words over an alphabet A is said to be rational if it is a finite
union of sets R;S}” where R; and §; are rational subsets of A*. It was proved that
the rational sets of infinite words are the languages which can be recognized by

a finite Bichi-automaton [4]. The set of rational subsets of A is closed by finite
union, finite intersection and complement [4]. For details, one can see [18].

Proposition 8.2 Let C be a rational language C At. The set of infinite words
which have several C-factorszations i3 rational.

Proof. I C is rational, the semi-congruence defined by:
u~xveulc=v"1C

is of finite index. Let us denote by [u] the class of a word u. The set D of infinite
words which have several C-factorizations can be written:

D= J c°ul.(C*n([uy]"'C - {e})C¥).
fu)jcc :
So D is rational. a
Remarks:

— The set of infinite words which have several C-factorizations is countable when
the code C has three elements [10]. It can be noncountable when the code C has
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more that three elements. For example, let C = {ab, aba, bab?,b%ab2a}. Every word
of aba(b?ab?a + bab?ab)” has a noncountable infinity of C-factorisations.

— It can be proved from proposition 3.2 that, if C is a rational language, C is
an w-code if and only if all its finite subsets are w-codes. This property does not
hold for nonrational languages as it can be seen for C = {ab} U {ab"ab""’l)n > 0}.

— From proposition 3.2, we obtain the next statement which is a result of Staiger
[20]. This statement agrees with the fact that a rational w-language is specified by
the set of ultimately periodic words contained in it [4].

Corollary 8.8 Any ratsonal weakly prefiz code 35 an w-code.

Since it can be checked whether the rational set of infinite words which have sev-
eral C-factorisations is empty or contains a periodic word, we have the following
corollary.

Corollary 8.4 One con decide whether a rational language $s @ ®-code (resp. a
weakly prefiz code, or equivalently an w-code).

The membership problem for the studied classes of codes is decidable in the rational
case. Indeed the result is well known for codes [1}, and has been proved for codes
with bounded deciphering delay by Cori [6]. This latter result is also a consequence
of the next result of Capocelli, and can be also deduced from proposition 3.7.

Capocelli [5] gave a necessary and sufficient condition for a rational weakly
prefix code (or w-code) C to have a bounded deciphering delay. That is:

Jp>0Vu € A°uCPA°NC #0=>CtunCt = 4.

We give here another condition which obviously is satisfied when the code is finite.
In this condition we need the notion of adherence [3]. An infinite word w belongs
to Adh(C), the adherence of a language C of finite words, if every left factor of w
is a left factor of a word of C.

Lemma 8.5 Let us conssder a language C C A,

1. ¢f C 43 a code having a finite dectphering delay, C s an w-code and
CY N C*.Adh(C) = 8.

2. sf C i3 a rational w-code such that C*NC*.Adh(C) = §, then C has a bounded
deciphering delay.

Proof.

1. If C is not an w-code C cannot be a code having finite deciphering delay
(proposition lg)) Thus, let C be an w-code for which there is some w €

C¥ N C*.Adh( Without loss of generality, we may assume that w =
Yrugus... = wjuj...ujw' where u;,u} € C for every 5,w’' € Adh(C) and

u} # u; or p = 0. Since w' € Adh(C), for every d > 1 there exists v € C
such that u;...uq < ujuj...uyv where u} # u; or p = 0. Thus C has not
the deciphering delay (d — 1).

2. Let C be a rational language and Q = (Q, 9o, go) an unambiguous automaton
for C* constructed as said before. Let d be the number of states. Assume that
C has not he delay d. There exist n > 0,ug,...,uq4,up,...,ul, € C,z € A*
such that up...uq2 = ug...u), and ugy # uo.
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There exists a path of label ug...u! from go to go. Within this path, we
denote by g; the state reached after reading uou;...u;. There exist 7 and
3" > j_ such that g; = g} (we denote ¢ = g;). Then we denote: y =

Ug...Uj = Ug...Up_1 7' with 2 < u,,2 = uj4.. 0}, 722" = uﬁ,,...u{n;h,
with z° suffix of up, ,,,ul, .. vz = 2%y 40 .. u;. If A = 0, for every
n,z'z"z"” € C and then yz¥ € C*.AdL(C)NC¥. If h > 1,yz* has two distinct C-
factorisations: ug,...,u;(%;41,...,4;5)Y and up, ..., up g, (Yoo o Ui p g, )
where v = (u:n_'_hz"‘l').(z"lu:" , thus C is not an w-code. o

Lemma 3.5 can be used to derive a new proof of a result in [20]. To this end,.
we consider A as a topological space defined by the set of open subsets: E C A“
is opeén iff E = W AY for some W C A°. The closed subsets (s.e. the complements
of open subsets) are the languages of the form Adh(W) for some W C A® [21]. We
need here the next classes of the Borel hierarchy. A F,-set is a countable union of
closed subsets and a Gs-set is a countable intersection of open subsets.

Corollary 8.8 When C 13 a code with a finite deciphering delay, the language C¥
15 a Gs-get.

Proof. Since Adh(C*) = C¥ U C*. Adh(C) [13], when C¥ N C*. AdhéC) = @ the
set C¥ is the difference of the closed set: Adh(C*) and the F,-set: C*.Adh(C),
hence C¥ is a Gs-set. . 0
Remark: The tempting assumption *C*¥ = NC* A“” is true for the codes C having
a bounded deciphering delay [20] but no longer true for the codes C having a finite
(but not bounded) deciphering delay (cf. example 3 of [20]).

We can summarise:

Theorem 8.7 Let C be a rational language C AY. The following condstions are
equsvalent: : o

- C 13 a code with a bounded deciphering delay

- C 13 a code with a finste deciphersnig delay

- C 18 an w-code satssfying C¥ N C*.Adh(C) = 8.

- C 13 a weakly prefiz code satisfying C¥ N C*.Adh(C) = §.

We have already seen that there exist w-codes without finite deciphering delay.
The other condition: » C*.Adh(C) N C¥ = @#” is neither sufficient. For example,
the finite code {a, ab,bb} is not an w-code. Unfortunately proposition 3.7 is false
when C is not rational. For example, let. C = {ab"c"dJn > 0} U {a} U b*c. Since
Adh(C) =b* U ab®, the w-code C satisfies C* N C*.Adh(C) = 8, but the word a
has no finite deciphering -delay. _

In the aim to be complete, let us now observe the finite case. The finite case
i8 almost similar to the rational case. However proposition 3.7, as the result of
Levenshtejn [12] and Capocelli |5}, show that, in the finite case, the notion of w-code
and the notion of code with bounded deciphering delay coincide. This fact is also
a result of Blanchard [2] which uses another notion of factorization (”découpage”).

Nevertheless there are a lot of modifications when one considers two-element
codes. Indeed, if {u,v} is a code, {u,v} is also an w-code [10]. Since the examples
given in this paper are chosen with three elements when it is possible, the obtained
or recalled results can be recapitulated in the following proposition where Ap (resp.

Ap,Aq, Ag) denotes the class of rational (resp. finite, two-element, three-element)
languages belonging to a given class of languages A.
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Proposition 8.8 One has the following strict inclusions and equalities:
BcDcIcWcIlcC

morecover Bp = D and Ip = Wp for rattonal sets, Bp = DF =1Ip = w
Jor finite sets and Bg = Dg = = Wy for three element sets, and finally
By =Dg =13 = Wg =13 = C3 jor two element sets.
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A note on regular strongly shuffle-closed
languages

B. Imreh * A. M. Itof

In this work we study the class of regular strongly shuffle-closed languages and
we present their description by giving a class of recognition automata.

The shuffle product operation plays an important role in the theory of for-
mal languages, cf. [1], [ZE [4]. Several properties of shuffle closed languages are
studied in [3]. Among others a characterization of regular strongly shuffle-closed
languages is presented by giving their expressions. Using this result, we determine a
very simple class of deterministic automata accepting regular strongly shuffle-closed
languages.

First of all we introduce some notions and notations. Let X be a nonempty

finite set and let X* denote the free monoid of words generated by X. We denote
by 1 the empty word of X*. The shuffle product of two words u,v € X~ is the set

uov={W:w=uv;... Uplk, U= U1... U, U=V1... 0, t;,v; € X'}

A language L C X* is called shuffle-closed if it is closed under o, that is, if u,v € L,
then uov C L. If L is shuffle-closed and, for any u € L, v € X*, the condition
uov[)L # @ implies v € L, then L is called a strongly shuffle-closed language, or
briefly, an ssh-closed language.

Next let X = {z1,...,2,}, r > 1, be an arbitrarily fixed alphabet. For any
L C X*, let us denote by alph(L) the set of elements of X occurring in words of L.
We shall describe those regular ssh-closed languages over X for which alph(L) = X.

We use the Parikh mapping and its inverse which are defined as follows. Let
N ={0,1,2,...}. The mapping ¥ of X* into the set N’ defined by

U(u) = (p2,(4), ..., s, (), uweE X,

is called the Parikh mapping, where p.,(u) denotes the number of occurrences of
z; in u. For a language L C X*, we define V(L) = {¥(u) : u € L}. Moreover, if
S C N',then ¥~ }(S)={u:ue X* & ¥(u) € S}.

Now we recall a notation and a result from [3}.

Let a = (¢1,...,%,), b= (41,...,5-) € N" and let py, ..., p, be positive integers.
Then a — b(mod (p1,...,p,)) means that 3y > 3 and 1, = j(mod p;), for all ¢,
t=1,...,r..

*Department of Informatics, A. J6zsef University, Arpﬁd tér 2, H-6720 Szeged, Hungary
tFaculty of Science, Kyoto Sangyo University, 603 Kyoto, Japan
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Theorem 1 ([8], Proposition 5.2) Let L C X* with alph(L) = X. Then L is a
regular ssh-closed language if and only if L'is presented as

L= v (e a))
u€EF
where
(3) p1,...,pr are positive integers,
(i) F is a finite language over X with 1 € F satisfying
(%5)-(1) for any u € F, we have 0 < 7o < pt, 1 <t < r where ¥(u) = (51,...,3),
Q‘K {9} for any u,u € F, there ¢s a w € F such that ¥(uv) —

(mOd (ph ’pr)) R
Qt{ (8) for any u,v € F, there is ¢ w € F such that ¥Y(uw) <

(mOd (pl: )pr))

Finally, we make some further preparation For any positive integer p and

z, € X, let us denote by C(»*9) = (X, {0,...,p—1 6("”‘)) the automaton defined
by the followmg transition function. For any ] € 0 Lp-1},z€ X, let

frx#z
(pyzt) t)
§0=(5,2) = {]+1(modp) if z=z

where 7 + l(mod p) denotes the least nonnegative residue of j + 1 modulo p.
Now let py,...,p, be positive integers and form the direct product of the au-

tomata C(ptze) t =1,...,r. Let us denote by C(P1:- -Pr) this direct product and

by §(P1r-eipr) it,s t;ransition function. It is easy to prove that C(P1--Pr) has the
following properties:

(a) it is a commutative automaton,

(b) if a,b € [];_,{0,...,pt — 1}, u € X* are such that §P1epr) (3 y) = b,
then §(PrPr)(a v) =D, for all v € ¥~ ¥(u),

(c) for any u € X*, §(P1-Pr)(0, u) = ¥(u)(mod (py,.. ,p,)),
where O denotes the r-dimensional 0-vector and ¥(u)(mod .+, Pr)) denotes the
vector (i;(mod p;),...,t,(mod p,)) with ¥(u) = Ezl, yr).

For each t,t=1,...,r, let us denote by M,, the group defined by the addition
mod p; over the set {0,...,p — 1}. Let M{P1~+Pr) denote the direct product of
the groups Mp,, t = 1,...,r. Then M(P1Pr) i3 also a group; let @ denote its
operation. Let us observe that the set of states of C(P1.Pr) g equal to the set of

elements of M{P1:Pr) Therefore, for any subgroup H of M(P1-Pr) we can define
the recognizer

Rg,,,...,p,) _ (H{O’“' ,pe — 1}, X, §(P1p7) H),

where 0 is the initial state and H is the set of the final states.

~|pv)

The next property of Rg"‘" can be proved easily:

(d) if u,v € X* are accepted by Rﬁ;’""""') with final states a, b, respectively,
then uv is also accepted by R(;“""p') with the final state a@ b.
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Finally, form the set of recognizers

Mx = {Rg’"""p') :{p1,---,pPr) € N" and H is a subgroup of M(”"""”')}.

Now we are ready to prove our result.

Theorem 2 A language L C X* with alph(L) = X is regular ssh-closed sf and
only if L 3 accepted by a recognizer from Mx.

Proof. In order to prove the necessity, let us suppose that L C X* is a regular ssh-
closed language with alph(L) = X. Then there are positive integers p;,...,p, and
F C X* which satisfy the conditions of Theorem 1. Let us consider the automaton

C(p1.r) and let us define the set H by
H={a:a€ H{O,...,pt — 1} and §(PrPr)(0, u) = a, for some u € F}.
t=1

We show that H is a subgroup of M(P1Pr)  Indeed, let a,b € H be arbitrary
elements. By the definition of H, there are u,v € F with 5(”1"“"")(0,u) = a
and §(P1Pr)(0,v) = b. Let ¥(u) = (iy,...,5,) and ¥(v) = (41,...,5,). Then,
by (#) — (1), we have 0 < 1¢, 5 < p¢, for all t = 1,...,r, and hence, we obtain
by (c), that a = (¢y,...,¢,) and b = (j;,...,7,). On the other hand, by ({i)-(B)
of Theorem 1, there exists a w € F with ¥(uv) — ¥(w)(mod (p1,...,p,)). Let
¥(w) = (ky,..., k). Then, by (i) — (1) and (c), §(P1?")(0,w) = (ky,...,k,).
Since w € F, we have (ky,...,k,) € H. From ¥(uv) — W(w) it follows that
¢+ 5 = ke(mod p), t =1,...,r. But then a® b = (ky,...,k,). Therefore, H is
closed under the operation @ implying that H is a subgroup of M(P1-Pr)  This
completes the proof of the necessity.

In order to prove the sufficiency, let us suppose that L C X* with alph(L) = X
and there exists a recognizer Rg’"""p') € Myx accepting L. We show that Lis a
regular ssh-closed language.

The regularity of L is obvious. Now let u,v € L and let w be an arbitrary
element of the set uov. Since L is accepted by Rg’"""p'), there are a,b € H such
that §(P1?r)(0,u) = a and §(Pr+Pr)(0,v) = b. Therefore, by (d), we obtain
that uv is accepted by Ri(f"""p') with the final state a @ b. From this, by (b), we

get that w € L, and so, L is shuffle-closed.
Finally, let ¥ € L, v € X* and let us assume that uov(JL # 8. Ifv = 1,

then §(P1--P)(0,v) = 0 € H, and so, v € L. Now let us suppose that v 1.
Let §(P1-?r)(0,u) = a, §(P1P)(0,v) = b and let U(u) = (i},...,i.), ¥(v) =
(41,.-+,7!). Then there exist nonnegative integers t; < p¢, 3¢ < pe, b, ke, t =
1,...,r, such that &f = 3¢ + lbpe, 3t = 5t + kepe, t = 1,...,7. Let us denote
by u’ and v' the words z3' t'*P* . gir+tpr and g YRIPL | pirtkepr regspectively.
Using (b) and (c), we obtain that §(P1-Pr)(0,u') = a, §(P12+)(0, v') = b, where
a= %il,...,i,), = (J1,..+,Jr). By our assumption on u o v, there exists a word
wEuov()L. Let

wl = z';l+J.l+('1+kl)pl . I‘;:+J'r+(‘v+kv)}’r.
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Since w € uov() L and ¥(w') = ¥(u'v') = ¥(uv) = ¥(w), (b) imi)l_ies w' € L. On
the other hand, by (c), we have '

" PP (0, w') = (37 + 71 (mod p1),. .., 4, + 3 (mod p,))-
Now let us observe that (s; + ji(mod p,),...,%r + jr(mod p,})) = a ® b. Since

w' € L, we have a® b € H. But H is a subgroup of M(P1--+Pr) thusa € H and

a®be H imply b € H. Therefore, by‘&"’"""’")(o,- v) = b, we obtain that v € L,
and so0, L is an ssh-closed language. This completes the proof of the theorem.
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A Pumping Lemma
for Output Languages
of Attributed Tree Transducers

A. Kihnemann* H. Vogler*

Abstract

An attributed tree transducer is a formal model for studying prop-
erties of attribute grammars. In this paper we introduce and prove a
pumping lemma for output languages of noncircular, producing, and
visiting attributed tree transducers. We apply this pumping lemma to
gain two results: (1) there is no noncircular, producing, and visiting
attributed tree transducer which computes the set of all monadic trees
with exponential height as output and (2) there is a hierarchy of noncir-
cular, producing, and visiting attributed tree transducers with respect
to their number of attributes.

1 Introduction

In formal language theory we are often confronted with the task to decide, whether
a given language L is an element of a class £ of languages, where £ usually is
defined by a class of grammars or translation schemes. If L is an element of £,
then we have to specify a grammar or a translation scheme which generates L. If
L is not an element of £, then sometimes we can use necessary conditions which
every language in £ has to fulfill. With the help of these conditions we can try
to deduce a contradiction to the assumption that L is an element of £. Pumping
lemmata are such necessary conditions which have been proven to be very useful
tools.

Pumping lemmata have been invented for different kinds of languages, for ex-
ample string languages, graph and hypergraph languages, picture languages, and
tree transducer languages.

*Institut fiir Softwaretechnik I, Fakultdt Informatik, Technische Universitit Dresden,
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In the case of string languages we can observe the following evolution of pumping
lemmata: Scheinberg has used in [Sch60] a proof technique which can be seen as a
predecessor of the well known pumping lemma-for context—free languages of Bar-
Hillel, Perles, and Shamir [BPS61]. The structure of the latter pumping lemma has
served as pattern for most of the existing pumping lemmata in the literature and
therefore it seems to be the root of the research about pumping lemmata. Since
it also has influenced our pumping lemma, we present here a short version of the
lemma’s central statement and we recall itz proof idea:

For every context—free grammar G there is a natural number ng, called the
pumping index of G, such that for every string z which is an element of the language
L(G) generated by G and which has at.least the length ng, the following holds.
There is a decomposition z = uvwzy, such that v or z is not the empty string and
such that for every natural number j, the pumped string uv’ wz’y is an element of
L(G).

The proof can be sketched as follows: We choose a sufficiently long string z of
L(G), such that its derivation tree e has the following property: e is high enough,
such that it has a path p, on which two different nodes z; and z; are labeled by
the same nonterminal symbol. Assuming that z; i8 cloger to the root of e than =z,
we can define the following tree &: Roughly speaking, the tree & is that part of ¢
which has z; as root and from which the subtree rooting at z5 is pruned. Since
z; and z3 have the same label, we can construct for every natural number 5 a new
derivation tree, by repeating & 7 times. Taking the yield of these derivation trees,
we obtain new elements of L(G).

As stated above, the pumping lemma of Bar-Hillel, Perles, and Shamir is only
a necessary condition for the context—freeness of a string language. Thus there
exist non-context—free languages which fulfill the requirements of the pumping
lemma. In the sequel more and more stronger pumping lemmata for context—free
string languages have been invented. Most of them, however, represent no sufficient
condition for context~freeness. For example, in the Ogden-Lemma (cf. [Ogd68))
we can designate distinguished positions in the pumped string. This allows us to
concentrate on those substrings, in which pumping is effective. Bader and Moura
have developed in |BM82] a stronger version, the Generalized Ogden-Lemma, where
additionally positions in the pumped string can be excluded. In the paper of Bader
and Moura it is also shown that there is no stronger version of the Generalized
Ogden-Lemma which exactly characterizes the context—free string languages.

Wise has introduced in [Wis76] his Strong Pumping Lemma which is a necessary
and sufficient condition for context—free string languages. The central idea of this
lemma is to pump sentential forms of a grammar for a context—free language L
instead of pumping terminal strings of L. The Strong Pumping Lemma of Wise
represents another method to prove that a certain language is not context—free by
assuming that it is context—free and by applying the lemma. In contrast to the
other pumping lemmata stated above, this application guarantees the existence
of a contradiction, because the Strong Pumping Lemma characterizes the class of
context—free languages. Clearly, it depends on the skill of the researcher, whether
he can construct this contradiction, yes or no.
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There also exist pumping lemmata for subclasses of the class of context—free
languages: Boonyavatana and Slutski have invented pumping lemmata for linear
context- -free and nonterminal bounded string languages in [BS86a} and {BS86b}, re-
spectively. Yu has developed in [Yu89] a pumping lemma for deterministic context—
free languages. Ehrenfeucht, Parikh, and Rosenberg have introduced in [EPR81]
the Block Pumping Lemma as characterisation of regular string languages.

There are also pumping lemmata in the area of context— free graph and hy-
pergraph languages: Kreowski (cf. [Kre79]) and Habel (cf. [Hab89]) have invented
pumping lemmata for edge-replacement and hyperedge-replacement languages, re-
spectively. These pumping lemmata require a certain size of the pumped graphs.
In comparison with them, the Maximum Path Length Pumping Lemma for edge-
replacement languages of Kuske (cf. [Kus91,Kus93]) needs a certain length of a
path in the pumped graphs.

Another kind of language paradigm are the picture languages. Hinz has devel-
oped in [Hin90] pumping lemmata for certain subclasses of picture languages.

First Aho and Ullman have inspected pumping lemmata for output languages
of translation schemes in [AU71], namely for generalised syntax directed trans-
lations. Perrault and Ksik have introduced in [Per76] and [EsiSO], respectively,
pumping lemmata for (nondeterministic) top—down tree transducers (cf. [Rou70,
Tha70,Eng75]). The results of Esik also appear in the book of Gécseg and Steinby
(cf. [GS83]). Engelfriet, Rosenberg, and Slutski have presented in [ERS80] a pump-
ing lemma for deterministic top—down tree—to-string transducers which has a strue-
ture that is closely related to the pumping lemma for context—free string languages.
The proof of this lemma had a big influence on the development of the pumping
lemma for attributed tree transducers which we present in this paper.

The concept of attributed tree transducer has been invented by Fiilop in [Fil81];
it is a formal model for studying properties of attribute grammars introduced by
Knuth in [Knu68]. Attributed tree transducers are abstractions of attribute gram-
mars in the sense that they take trees over an arbitrary ranked alphabet of input
symbols rather than derivation trees as argument, and that the values of the at-
tributes are also trees over a ranked alphabet of output symbols.

Like in attribute grammars, the set of attributes is partitioned into the set of
synthesized and inherited attributes which are associated to the input symbols and
which compute their values in a bottom—up manner and in a top—~down manner,
respectively. In contrast to attribute grammars, to every input symbol the whole
set of attributes is associated; this means that all attributes are available at any
node of any input tree. Roughly speaking, computing the value of a synthesized at-
tribute occurrence of a node z of an input tree, the values of the inherited attribute
occurrences of z and of the synthesized attribute occurrences of its sons (if they
exist) may be used and, computing the value of an inherited attribute occurrence
of z, the values of the inherited attribute occurrences of its father (if it exists) and
of the synthesized attribute occurrences of z and of its brothers may be used. This
refers to the usual Bochmann Normal Form of attribute grammars [Boc76).

In this paper we consider only total deterministic attributed tree transducers:
For every node z of an input tree which is labeled by a particular input symbol
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and for every synthesigsed attribute s, the computation of the attribute occurrence
of s at z is fixed by exactly one rule. Similarly, for every node z which is labeled
by a particular input symbol and for every inherited attribute ¢, the computation
of the attribute occurrence of ¢ at the j—th son of z is fixed by exactly one rule.

As in attribute grammars, these dependencies can induce circularities among the
attribute occurrences of an input tree. We restrict the attributed tree transducers
to be noncircular and we designate a synthesised attribute as initial attribute.
Thus we designate an initial attribute occurrence at the root of every input tree
of which the value will be the output tree. Then every attributed tree transducer
M computes 2 total function from input trees to output trees. This function is
called the tree transformation of A{. The output language of an attributed tree
transducer M is defined as the range of the tree transformation of M.

As stated at the beginning of the introduction, pumping lemmata can help us
to prove that a certain language is not an element of a class of languages. But
not only pumping lemmata have been used to solve such a kind of problem: Filép
and V4gvolgyi have shown in [FV91] by means of a direct proof that a particular
tree transformation (which is induced by a bottom—up tree transducer; cf. [Eng75])
cannot be computed by an attributed tree transducer. Maybe the proof of Filop
and Végvolgyi can be generalized to a proof of a kind of pumping lemma. But we
do not follow here this line of generalization and return to the development of a
pumping lemma for a particular class of attributed tree transducers.

We restrict our pumping lemma to special attributed tree transducers, namely
producing and visiting (and noncircular) attributed tree transducers. An attributed
tree transducer is producing, if every rule application delivers at least one new
output symbol. An attributed tree transducer is visiting, if for every input tree
and for every node z of it, the value of at least one attribute occurrence of z is
needed to compute the value of the initial synthesized attribute occurrence at the
root. .

The main idea of our pumping lemma for output languages of producing and
visiting attributed tree transducers is adopted from the proof of the pumping lemma
for context—free string languages that was outlined at the beginning of this intro-
duction. In the case of context—free string languages we have to inspect a derivation
tree of a sufficiently long string to deduce new pumped strings. Here we have to
consider input trees belonging to a sufficiently large output tree to obtain new
pumped output trees: For every producing and visiting attributed tree transducer
M, a natural number ny¢, called the pumping index of M, can be constructed. If
we choose an output tree ¢t from the output language of A which has at least nj,
nodes, then every input tree e which can be transformed into t has the following
property: e is high enough, such that it has a path p, on which two different nodes
z; and z3 can be found, which have the same set of attribute occurrences that are
needed to calculate the initial attribute occurrence at the root of e. Assuming that
z, is closer to the root of ¢ than z3, we can define the following tree &: Roughly
speaking, the tree & is that part of ¢ which has z; as root and from which the
subtree rooting at z; is pruned. Since the two nodes are compatible with respect
to the needed attribute occurrences, we can construct new input trees by repeat-
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ing € arbitrarily many times. Translating these input trees by M, we obtain new
elements of the output language of M.

The proof is based on the observation that the decomposition of the input tree
¢ induces a decomposition of the output tree t into output patterns and that these
patterns are used to construct the new output trees. Thus the pumping process
itself can be described by using only the output patterns. Therefore the applications
of the pumping lemma are completely independend of the underlying input trees.

In this paper we apply our pumping lemma to prove the following two results:

e There is no noncircular, producing, and visiting attributed tree transducer
which computes the set of all monadic trees with exponential height as output.

e There is a hierarchy of noncircular, producing, and visiting attributed tree
transducers with respect to their number of attributes.

This paper is divided into five sections, from which this one is the first. In
Section 2 we fix all the notions and notations, especially about attributed tree
transducers, which are necessary for the remaining sections. Section 3 contains the
pumping lemma together with its proof. In Section 4 we show the two applications
of the pumping lemma. Finally, in Section 5 the reader can find a short summary
and a presentation of further research topics.

2 Preliminaries

In this section we collect the notations, notions, and definitions which are used
throughout this paper. Most of the definitions are taken from [KV94], some of
them with a slight modification.

2.1 General notations

We denote the set of natural numbers (including 0) by IN. For every m € IN, the
set {1,...,m} is denoted by [m)], thus [0] denotes the empty set §. The empty word
is denoted by e. For an arbitrary set S, the cardinality of S is denoted by card(S)
and the set of all subsets of S is denoted by P(S). If S is a subset of IV, then
maz(S) denotes the maximum of S; maz(@) is defined as 0. A relation f C Ax B
is a partial function, if for every (a,b;) € f and (a,b3) € f, the elements b; and b,
are equal. Such a partial function is denoted by f: A— — B.

If A is an alphabet, then A* denotes the set of words over A. For a string
v and two lists u;,...,u, and vy,...,v, of strings such that no pair u; and uj
overlaps in v, we abbreviate by v|u;/vy, ..., t,/v,) the string which is obtained
from v by replacing every occurrence of u; in v by v;. The resulting string is also
denoted by v[u;/v;; ¢ € [n]]. |p| denotes the length of a string p over an alphabet
which should be known from the context. If P; and P, are two sets of strings, then

Py - P := {p1pa | p1 € Py, p2 € P3}.
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Let => be a binary relation on some set T. Then, =>* and =% denote the
transitive, reflexive closure of = and the transitive closure of =>, respectively. Let
n€ IN—-{0}. If t; € T for every j € [n+ 1] and if t; = ;4 for every j-€ [n], then
the sequence ¢ty = t3 = ... = t,41 is called a dertvation. If only the first element
t, and the last element ¢,,,; of a derivation are important, we also use the notation
t; =% t,4+1. Note that there can exist more than one derivation ¢; =>7% ¢, ;. If
t =>* t' for t,t" € T and if there is no t" € T such that t' = t", then t' is called a
normal form of t with respect to =>. In general t can have either no or one or more
than one normal form. If the normal form of ¢t exists and if it is unique, then it
is denoted by nf(=>,t). The relation = is confluent, if for every t,t;,t; € T with
t =>*t; and t =* t;, there is an ' € T such that t; =* ¢’ and t; =* t'. It is
noetherian or terminating, if there is no infinite derivation of =, If = is noetherian
and confluent, then for every ¢ € T, the normal form of ¢ exists and it is unique.

2.2 Ranked alphabets, trees, and tree transformations

A ranked alphabet is a pair (L, rankg) where T is a finite set and rankg : T — IV
is a mapping which associates with every symbol a natural number called the rank
of the symbol. If ¢ € L with rankg (o) = n, and I is clear from the context, then
we also write 0(®) and rank(c) = n. If the rank function is clear from the context,
then (it)is dropped from the notation. The set of elements with rank n is denoted
by &inJ),

For a ranked alphabet I, the set of trees over ¥, denoted by T'(X), is the
smallest subset T C (Z U {(,),,})* such that for every o € Z(*) with n > 0 and
t1,...,tn € T, the string o(t1,...,t,) € T. For a symbol 0 € L(°) we simply write
o instead of o().

The following functions are defined inductively on the structure of trees in T(Z)
(here, the induction base is a special case of the induction step):

o height : T(Z) — IN delivers the height of a tree t € T(Z).
Ht=o(t,...,t,) withoc € ("), n > 0, and t,,...,t, € T(T), then
height(o(ty, ... ,tn)) = 1+ maz({height(t;) | ¢ € [n]}).

o sizeg: : T(Z) — NN delivers the size of a tree t € T(E) with respect to a
subset L' C L.
Ift =o(ts,...,ta) with o € Z(?), n >0, and ¢4,...,¢t, € T(Z), then
sizep/(o(ty, ..., ta)) = 1+ Lig, s¥2exi (), if 0 € T,
sizegi(o(t1, ..., tn)) = Lig(n) 926 (ti), f 0 ¢ T'.
If £’ = I, then we abbreviate sizey: by size.

o paths : T(X) — P(IN*) delivers the set of paths of a tree t € T(L).
Ift=o0(ty,...,tn) witho € T(?), n > 0, and ¢y,...,t, € T(Z), then
paths(o(ty,...,t,)) = {c}U{p|p=1p',i €[n],p' € paths(t;)}.
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e label : T(E) x IN*— — I delivers the label of the node of a tree t € T(X)
reached by a path p € paths(t).
Ift = o(ty,...,ts) witho € 2™, n >0, and t;,...,t, € T(L), then
label(a(ty,...,ta),p) =0,if p=ce,
label(o(ty,...,tn),p) = label(t;,p'), if p = sp' for some s € [n].

e subtree : T(Z) x IN*— — T(Z) delivers the subtree of a tree t € T(L) reached
by a path p € paths(t).
Ift = o(t1,...,ta) witho € 2(®, n >0, and t;,...,t, € T(E), then
subtree(o(ty,...,ta),p) = o(t1,...,tn), f p=c¢,
subtree(o(ty,...,ta), p) = subtree(t;; '), if p = sp' for some s € [n].

o repl : T(T) x N* x T(E)— — T(X) delivers the tree obtatned from a tree
t € T(X) by replacing the subtree reached by a path p € paths(t), by another
tree t' € T(L).

Ift=o(ty,...,t,) witho € 2("), n >0, and t;,...,t, € T(T), then
repl(o(ty,...,ta),p,t') =t if p=ce,

repl(o(ty,...,ta),p,t') = o(ty,...,repl(ti, p',t'),.. ., ta), if p = sp' for some
s € [n].

In the following we use the more convenient notation t[p «— t'| instead of
repl(t, p, t').

For every tree t € T(L) and for every path p € paths(t), the path p determines.
exactly one node of t. This node will be denoted by node(t, p).

Let X be a ranked alphabet, t € T(Z), and let U be another ranked alphabet
with rank(u) = O for every u € U and with UNE =@. A tree t' € T(EUU) is
called a pattern in t € T(Z), if there is a symbol v ¢ T with rank(v) =0, there is
a tree t"” € T(Z U {v}), and for every u € U there is a tree t, € T(L), such that
t=t"{v/t'|ufty; ue U]

A tree transformation is a total function r ;: T(L) —+ T(A) where T and A are
ranked alphabets.

2.3 Attributed Tree Transducers

In this subsection we define the syntax of so called ss—tree transducers and the
derivation relations which are induced by them. In [Gie88] si—tree transducers are
called full attributed tree transducers. Though ss—tree transducers are an extension
of attributed tree transducers in the sense of [Fiil81], we also use simply the notion
attributed tree transducer for an ss—tree transducer. If we restrict the transducers
to be noncircular, then their derivation relations are confluent and noetherian, and
every noncircular transducer computes a tree transformation.

A system of attributes is the first component in the definition of an attributed
tree transducer M. We specify a ranked input alphabet ¥. Then, intuitively,
M takes an argument ¢ where ¢ is a tree over L, called input tree, on which the
evaluation of attribute values is performed. An output tree is built up over a ranked
alphabet A of working symbols. The derivations of M will start with an initial
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synthesized attribute s;, and with an extra marker root on top of the input tree
where root is a new symbol of rank 1. If ¢ is an input tree, then in anology to [KV94]
we call the tree € = root(e) the control tree, because it controls the derivation of the
transducer (cf. Figure 1). The role of the marker root is explained after defining
the derivation relation. Of course, the kernel of the definition of an attributed tree
transducer is the finite set of rewrite rules. The possible right—hand sides of rules
are fixed at the end of the definition.

control tree é: root

input

tree ¢

Figure 1: The input tree ¢ and the control tree é.

We mention already here that, similarly to top—down tree transducers, we des-
ignate the argument position of every attribute to contain the control tree £. Addi-
tionally, in attributed tree transducers the control tree ¢ is associated with a path
through €. Actually, in the argument of an attribute, only a path through & will
occur, the control tree itself will parameteme the derivation relation (cf. Definition
2.6).

Definition 2.1 An si-tree transducer is a tuple (4, A, I, s, root, R) where
o A= (A, A,,A)is asystem of attributes, where

— A is a ranked alphabet of attributes; for every a € A, rank4(a) = 1.

— A, € A and A; C A are the disjoint sets of synthesszed attr:butcs and
inherited attributes, respectively, with A = A, U 4;.

o A is the ranked alphabet of working symbols (or: output symbols) with
ANnA=4.

e I is the ranked alphabet of input symbols with ANX = §.

8;n € A, is the instial attrsbute.

root is a symbol of rank 1, called the root marker, where root ¢ AUAUZ.
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*R= U R, is a finite set of rules, defined by Conditions 1. and 2.
o € LU (root}

1. The set R,,o¢ contains exactly one rule of the form
sin(2) = p
with p € RHS(A,,9, A, root).
For every s € A;, the set R,,¢ contains exactly one rule of the form
i(z1) - p
with p € RHS(A,,9, A, root).
2. For every o € Z(*) with k > 0 and for every s € A,, the set R, contains
exactly one rule of the form
s(z) = p
with p € RHS(A,, A;, A, o).
For every o € E(*¥) with k > 0, for every { € A; and for every j € [k,
the set R, contains exactly one rule of the form
‘ $(27) = p
with p € RHS(A,, A;, A, 0).
For every G, C A,, G; C A;, and 0 € LU {root} with rank(s) = k > 0, the
set of o—right-hand sides over G,, G; and A, denoted by RHS(G,,G;, A, 0),

is the smallest subset RHS of (G, UG; UAUIkjU{z,(,),,})* such that the
following three conditions hold:

(i) For every 6§ € Al") with r >0, and py,...,p, € RHS, the tree
6(p1,...,pr) € RHS.

(ii) For every s € G,, j € [k], the tree s(z5) € RHS.
(iii) For every i € G;, the tree 1(z) € RHS. O

For an si-tree transducer M = (4, A, L, 3;,,ro0t, R), we fix the following notions
and notations.

o The set U {root} is denoted by L.
e In the rules of R, the symbol z is called path variable.

e For every 0 € T(¥), the set of inside attribute occurrences of o, denoted by
in(c), is the set {s(z) | s € A,} U {i(z7) | + € Ai,7 € [k]}. The set of
tnside attribute occurrences of root, denoted by in(root), is the set {s;n(2)} U
{s(21) | s € A;}. The set of outside attribute occurrences of o, denoted by
out(o), is the set {i(2) |+ € A;}U{s(z7) | s € A,,J € [k]}. The set of outside
attribute occurrences of root, denoted by out(root), is the set {s(21) | s € 4,}.
The set of attribute occurrences of o € L., denoted by att(s), is the set
in(o) U out(o).
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s Forae A, o€ E(:) and n € {25 | j € [k] U {€}}, we call a rule of R, with
the left-hand side a(n) an (a,n,0)-rule. The right-hand side of this rule is
denoted by rhs(a,n,0). We note that only outside attribute occurrences of
o appear in rhs(a,n,0) and that for every a(n) € in(og), there is exactly one
(a,7n,0)-rule in R.

Example 2.3 We define the si—tree transducer M; = (4, A, L, s, root, R) with:
A = {BW), T3 L) R1) EO)},

y = {0(2)’a(0)}’

A= (A, A,, A;) with A = {s,1}, A, = {s}, and A; = {s}, and

R=R,0ot U R, U R, is the following set of rules:

Rrot = {s(z) — B(s(z1)), (1)
i(z21) — E } (2)
R, = {s(z) — T(s(z1),s(22)), (3)
(1) — L)) (4
i(22) — R(i(2)) } o (8)
R, = {s(z) — B(i(2)) } (6)

The si—tree transducer M, takes a binary tree ¢ over the ranked alphabet & =
{0(2), a(o)} as argument and it delivers a tree ¢ which has the same structure as e,
but in which every leaf node n is substituted by an encoding of the reverse path
from the root of ¢ to n. The encoding of a reverse path is a monadic tree over the
ranked alphabet { B(}), L(1), R(1)  E(9)}, where the symbol L (and R) represent the
left son (and the right son, respectively) of a node and the symbol B (and E) is the
first symbol (and the last symbol, respectively) of each path encoding (cf. Figure
2). m]

root(e) : rolot t: B
: |

Q/U \a

T
AN
B
|
R
1
E

mermmow \

—N—~—
& b:\

Figure 2: The control tree ¢ and the calculated output tree t.
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Observation 2.3

1. Top—down tree transducers [Rou70,Tha70,Eng75] are si—tree transducers with-
_out inherited attributes.

2. Attributed tree transducers [F'iil81] are si—tree transducers in which, for every
inherited attribute 1, the right-hand side of the (s,21,root)-rule is a tree
over A. In accordance to [Gie88) si-tree transducers are full attributed tree
transducers. But in the sequel we also use simply the notion attributed tree
transducer. a

Before working out the definition of the derivation relation, we first introduce a
" uniform classification scheme for subclasses of ssi—tree transducers which are induced
by the number of attributes.

Definition 2.4

o Let k, € IN — {0} and k; € IN. An s(,)%(x;) ~tree transducer M is an si-
tree transducer with at most k, synthesized attributes and with at most k;
inherited attributes.

o An s-tree transducer is an s(x,)¥(o)—tree transducer for some k, € IV — {0},
i.e., an si—tree transducer without inherited attnbutes ) (|

In the next definition we inductively describe the set of all sentential forms of
attributed tree transducers. For a given control tree & = root(e) with ¢ € T(E),

a sentential form is a tree over attributes, working symbols, and paths through é.

Moreover, the argument of an attribute is always a path through € and vice versa
a path may only occur in the argument of an attribute.

Definition 2.5 Let M = (A, A, I, s, root, R) be an st—tree transducer with sys-
tem A = (A, A,, A;) of attributes. Moreover, let &€ € {root(c) | ¢ € T(E)} and let
A’ be a ranked alphabet with A C A’. The set of (A, s;, paths(¢), A')-sentential
forms, denoted by SF(A, s;,,paths(€), A’), is defined inductively as follows where
we abbreviate SF(A, s;n, paths(é),A’) by SF.

(i) For every § € A'") with r > 0 and ty,...,t, € SF, the tree &(t1,...,t,) €
SF.

(ii) For every a € A and p € paths(é) with p # ¢, the tree a(p) € SF.
(iii) The tree s;n(c) € SF. O

Notice that the tree ¢ does not occur in sentential forms It is only needed to define
the set of paths of €.

For an attributed tree transducer M = (A,A, L, 8;n, root, R) with system 4 =
(A, A,, A;) of attributes and for a tree é € {root(e) | ¢ € T(Z)}, the set of
attribute occurrences of € denoted by att(€), is the set {s;,(c)} U {a(p) | a € 4,
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p € paths(€),p # ¢}. If € = root(e) for a particular tree e € T(Z), then we define
att(e) = att(€) — {sin(e)}.

Let ¢’ € T(Z+U {w}) with exactly one occurrence of a symbol w ¢ T, be a
pattern in a control tree ¢ € {root(e) |¢ € T(L)}, such that ¢’ = subtree(é[p'+— w), p)
holds for some paths p,p’ € paths(€). The set of inside attribute occurrences of ¢
with respect to ¢ is the set ({s(p) | # € A,} U {i(p') | + € A}) Nnatt(é). The set
of outside atiribute occurrences of ¢' with respect to ¢ is the set ({i(p) | + € A;}
U{s(p') | # € A,}) Natt(é). (The intersection with att(¢) is necessary to handle
the case p = ¢.) If the underlying control tree ¢ is clear from the context, then we
simply use the notions inside and outside attribute occurrences of ¢'.

Now we describe the derivation relation of an attributed tree transducer M with
respect to a control tree é. For later purposes, we restrict the derivation relation
to work only on particular parts of € parameterizing the derivation relation with a
subset P C paths(é).

Definition 2.6 Let M = (4, A, L, s;,,, root, R) be an si-tree transducer with sys-
tem A = (A4, A,, Ai) of attributes. Let € € {root(e) | e € T(Z)} and P C paths(é).
The derivation relation of M with respect to é and P, denoted by =>asz,p, is a
binary relation on SF(A, s;,, paths(¢), A) defined as follows:

For every t,t; € SF(A, 8in,paths(€),8), t, =>amepts, iff

o there is a t' € SF(A,sin,paths(é),A U {u}) in which the O-ary symbol
u ¢ AU A occurs exactly once,

e there is an attribute a € A,
e there is a path p € paths(é),
such that t; = t’[u/a(p)] and if one of the following two conditions holds:

1. o ais a synthesized attribute,

p € P and label(Z, p) = o for some o € T with k > 0,

there is a rule a(z) — p in R,, and
ta = t'{u/p[z/p]].

2. e ais an inherited attribute,

o p=p'j for some p' € P, label(é, p') = o for some o € 2(:) with k > 1,
and j € [kls

there is a rule a(z5) — p in R,, and

ts = t'[u/pl2/p']]- a

Note that in case 2. the path p itself needs not to be in P. This is important for the
later construction in the pumping lemma. If M or ¢ are known from the context,
we drop the corresponding indices from =. If P = paths(é), then we drop P.
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Before presenting an example derivation we have to explain the special role of
the marker root. It allows us to handle the calculation of the values of inherited
attribute occurrences at the root of an input tree ¢ like all the other attribute
occurrences of e. Taking the control tree root(e), we can specify the value of an
inherited attribute occurrence at the root of ¢ by a rule in R,,,;. In particular,
the inherited attribute occurrences at the root of ¢ may depend on the synthesized
attribute occurrences at the root of e. This mechanism has also been used in
[KV94]. It is more general than the solution presented in [Fiil81], where special
trees in T(A) are used to specify the values of the inherited attribute occurrences
at the root of e.

Example 2.7 Let M; be the attributed tree tra.nsducer defined in Example 2.2
and let &= root(o(o (e, a), a)) be the control tree. We abbreviate = M;, & paths(2)
by =>. The ‘number- of the apphed rule is indicated as a subscript. . The control tree
-and the calculated output tree are also shown in Flgure 2.

s(e)
" =) B(s(1))
=) - B(T(s(11), s(12)))
‘=3) ~ B(T(T(s(111), 5(112)), 5(12)))
=(s) B(T(T(B(s(111)),s(112)),s(12)))
=@ B(T(T(B(L(:(11))),s(112)), 5(12)))
=) B(T(T(B(L(L((1)))), (112)), 5(12))) -
=) B(T(T(B(L(L(E))), s(112)), s(12)))
=+ B(T(T(B(L(L(E))), B(R(L(E)))), B(R(E)))).

2.4 Ndnéirculér attributed tree transduéérs

Since an attributed tree transducer can be circular (in the same sense as an at-
. tribute: grammar), we can conclude that, in general, the derivation relations of
attributed tree transducers are not noetherian (cf., e.g. - [EmsQl] for an example of
- a circular attributed tree transducer.) However, noncircular attributed tree trans-
. ducers induce noethena.n denvatlon relatlons The notion of cnculanty is ta.ken

from [Fdl81):

Deﬁnition 2.8 Let M = (A, A, L, 5i,, root, R) be an si—tree transducer with sys-
tem A = (A, A,, A;) of attributes.

1. M is circular if

o there is an ¢ € {root(¢) | e € T(Z)}
- there is an a(p) € SF(A, s;n, paths(¢), A) with a € A and p € paths(é),

o there is a t € SF(A, s;n, paths(¢), A U {u}) in which the O-ary symbol
u & AU A occurs exactly once,
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such that a(p) =1, ; t[u/a(p)].
-2.- M_is. noncsrcular if it is not circular. ) ) m]

For the definition of the tree transformation computed by an attributed tree trans-
ducer we use the following result (cf. Theorem 3.17 of [KV94)).

Lemma 3.9 Let M = (4, A, L, s;n,ro0t,R) be an si—tree transducer. If M is
noncircular, then for every é € {root(e) | ¢ € T(L)}, the relation = ps,; is confluent
and noetherian. m]

Since the derivation relations of noncircular attributed tree transducers are con-
fluent and noetherian, every sentential form has a unique normal form. This is
the basis for the definition of the tree transformation which is computed by an
attributed tree transducer. '

Definition 3.10 Let M = (4, A, L, s;,,700t, R) be a noncircular si- tree trans-
ducer. The tree transformation computed by M, denoted by r(M), is the total
function of type T'(X) — T(A) defined as follows. For every e € T(Z),

r(M)(e) = nf(=>a,root(c)s 3in(€})- (8]

In the rest of this paper, we always mean noncircular attributed tree transducers
when we talk about attributed tree transducers.

For a given control tree &, for a given derivation s;, (¢) =7 ¢ (abbreviated by d),
where t = nf(=>s, 8in(c)), and for a given path p in & we define the set attset(d, p)
of those attributes a, for which there are attribute occurrences a(p) in a sentential
form during the derivation d. This concept is the same as the concept of state—set
described in [ERS80], however, we use another way of definition.

Definition 2.11 Let M = (4, A,Z, 3in,ro0t, R) be an si-tree transducer with
system A = (A, 4,, A;) of attributes. Let € € {root(e) | ¢ € T(X)}. Let d be the
derivation 3;,(e) = to =z t1 =z ... =z tn = nf(=>;, sin(e)) with n > 1 derivation
steps, and let p € paths(€). Then we define the attribute—set of d and p, denoted
by attset(d, p), by '

n
U attset'(t;,p)  where
=0

attset' : SF(A, sin, paths(é), A) x paths(¢) — P(A) is defined as follows:
For every 6 € Al"), v >0, ty,...,t, € SF(A, 8;n,paths(é), A) , p € paths(é),

attset'(§(t1,...,t,),p) = Uj-,attset'(t;,p).
For every a(p’) € att(é), p € paths(é), if p = p', then
.attset'(a(p'), p) = {a}.

For every a(p') € att(€), p € paths(é), if p # p', then
attset'(a(p'), p) = @ 0
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Example 2.12 Let M; be the attributed tree transducer defined in Example 2.2
and let € = root(a) be the control tree.

Let d = (s(e) =2 B(s(1)) =z B(B(i(1))) =z B(B(E))) be a derivation.

Then attset(d, ) = attset’(s(c), e) = {2}

and attset(d, 1) = attset’(B(s(1)), 1) U attset’(B(B(s(1))), 1) = {s,s} hold. o

In fact, the attribute—set of a path does not depend on the chosen derivation.

Lemma 2.13 Let M = (4,A, L, 8;,,ro0t, R) be an si-tree transducer. Let d;
and d; be two derivations s;,(€) =] nf(=>z, 8in(¢)) for some & € {root(c) | ¢ €
T(Z)}. Then, for every path p € paths(é), the sets attset(d;,p) and attset(ds, p)
are equal. m]

Definition 2.14 Let M = (4, A, X, s;n,root, R) be an si-tree transducer. Let
¢ € {root(e) | e € T(Z)} and let p € paths(€). The atiribute-set of ¢ and p,
denoted by attset(,p), is the set attset(d,p) for some derivation d = (s;,(e) =7
nf(=z sin(c)))- , 0

2.5 Producing and visiting attributed tree transducers

The pumping lemma in the next section is only valid for special kinds of attributed
tree transducers. In the following definition we introduce the concepts of producing
(every rule application produces at least one new output symbol), and visiting
(every node of a control tree is visited by at least one attribute) tree transducers.

Definition 3.15 Let M = (4, A, I, 8;, root, R) be an si—tree transducer. M is

e producing, if, for every rule A — p in R, the size of p with respect to A is at
- least 1, i.e., sszea(p) 2 1,

o visiting, if, for every control tree é € {root(e) | ¢ € T(Z)} and for every
p € paths(é), the attribute—set of ¢ and p is not empty, i.e., attset(é,p) # 0.
O

In the rest of this paper we always mean producing and visiting (and noncircular)
attributed tree transducers, when we talk about attributed tree transducers. We
denote the classes of tree transformations computed by (noncircular, producing, and
visiting) si-tree transducers, s(x,)3(x,)~ tree transducers, and s—tree transducers by
SIT, S(x,)I(x;)T, and ST, respectively.

2.6 Output languages of attributed tree transducers

The pumping lemma which we introduce in the next section, deals with output lan-
guages of tree transformations of attributed tree transducers. The output language
of a tree transformation r is defined as the range of 7.
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Definition 2.16 Let r : T(Z) — T(A) be a tree transformation. The output
language of r, denoted by Lou¢(r) is defined as follows:

Lout(r) = {t € T(A) | there is an ¢ € T(Z) such that r(¢) = t}. o

If r(M) is a tree transformation computed by an attributed tree transducer M,
we simply write Lou:(M) instead of L,y¢(r(M)) and we simply call Loye(M) the
output language of M instead of the output language of the tree transformation
computed by M.

We denote the classes of output languages of (noncircular, producing, and vis-
iting) si—tree transducers, 8(k,)%(k;)—tree transducers, and s—tree transducers by
SITouts S(k,)I(ki)Tout, and SToyt, respectively.

If we want to prove that a certain tree transformation r is not an element of the
class SIT, then the output language Loy (r) can be very useful. It would suffice
to show with the help of the pumping lemma presented in the next section that
Lout(r) € SITous. Thus, since Loye(r) is not the range of an si-tree transducer, r
cannot be the tree transformation computed by an st—tree transducer.

For the sake of convenience, we now omit the parantheses for arguments of
monadic output symbols in the rest of the paper; the parantheses for arguments of
attributes remain.

Example 2.17 Let M, be the attributed tree transducer defined in Example 2.2
and let d be the derivation of Example 2.7.

Thus, in the following we write rule (1) of M; in the form s(z) — B s(z1). Note
that there are still parantheses in the attribute occurrence s(z1). The notation
8(z) — T(s(21), 8(22)) of rule (3) is left unchanged, because T is a binary output
symbol.

In anology we write the last but one sentential form of d that was shown in
Example 2.7 as BT(T(B L L E, s(112)), 5(12)). ]

3 Pumping lemma for attributed tree transduc-
ers |

Before presenting the pumping lemma for si-tree transducers and working out
the proof formally, we want to illustrate the central idea and show an example.
Although the pumping lemma only deals with output trees and not with the control
trees corresponding to them via a tree transformation, the control trees play an
important part.

Let M be an attributed tree transducer. If we choose a sufficiently large output
tree ¢, then every control tree é = root(e) with r(M)(e) = t is high enough, such
that it has a path p, on which two different nodes z; and z3 can be found such
that (cf. Figure 3)

e there exist strings p;, p3, and p3 such that |pz| > 0 and p = p;p3ps,
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e z; and z; can be reached from the root by p, and p;p;, respectively, i.e.,
z) = node(é,p1) and z3 = node(é, p1p3), and

o the attribute—sets attsct(é, p;) and attset(é, p1ps) are equal.

These two nodes define a decomposition of € into three input patterns ¢’, ¢, and
¢'"’. Intuitively,

o ¢’ is the tree é without the subtree which has z; as root.
e ¢’ is the tree which has z; as root without the subtree which has z; as root.

o ¢'" is the tree which has z; as root.

Figure 3: Control tree ¢ with input patterns and induced output patterns.

This decomposition of the control tree ¢ induces a decomposition of the output
tree ¢ into a certain output pattern f, certain output patterns t, and £, for every
synthesized attribute s, and certain output patterns t; and #; for every inherited
attribute 3. Roughly speaking, these patterns correspond to normal forms of certain
attribute occurrences of the patterns ¢’, ¢’’, and ¢’’. More precisely,

e The tree i corresponds to the normal form of s;,(¢) that is calculated only
on the nodes of ¢'.

o For every synthesized attribute s in the attribute—set of the two relevant
nodes z; and zg, the tree t, (and f,) corresponds to the normal form of s(p;)
(and s(p,p3), respectively) that is calculated only on the nodes of ¢” (and
¢’”, respectively).
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o For every inherited attribute ¢ in the attribute- -set of the two relevant nodes
z3 and 1z, the tree ¢; (and #;) corresponds to the normal form of i(p;p;)
(and i(p1), respectively) that is calculated only on the nodes of e” (and ¢,
respectively).

In Figure 3 these output patterns are indicated; the root of every output pattern
i8 represented by an arrow. The reader should not be misleaded by the cycles
among the pieces of the final output tree: we consider noncircular attributed tree
transducers and, only for the sake of simplicity of the figure, we show only one
inherited attribute and one synthesized attribute; thus, dependencies are folded
and suggest cycles which are not there.

If we construct new control trees by repeating the pattern ¢ arbitrarily often,
then we can get new output trees by translating the new control trees. All of them
are by definition elements of L,u¢(M). The output patterns ¢, and ¢; must be
used for every repetition of ¢” to obtain the new output tree. Figure 4 shows the
situation in which e” is repeated twice.

Figure 4: Control tree with two repetitions of ¢” and output patterns.

In the pumping lemma we use a recursive function tree’ which walks through
the patterns of the control tree and builds up the output using the output patterns
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defined above. 7

Note that for the pumping process it is not necessary that the nodes z; and z
are labeled by the same symbol, in contrast to the pumping lemma for context—
free languages (cf. for example [BPS61]). This is due to the fact that we only deal
with ranked alphabets rather than heterogeneous signatures; thus only the rank of
the symbols is important when building up trees.

We show the input patterns, the output patterns and the pumping process in
the following example.

Example 8.1 Let M, be the si—tree transducer defined in Example 2.2. For sim-
plicity we repeat the rules of Mj, omitting superfluous paranthesis:

Reoot = {s(z) — Bs(z1),

i(z1) - E }
R, = {s(z) — T(s(21),s(z2)),

i(z21) — Li(z),

i(z22) — Ri(2) }
Re = {sl) — Bi(s) )

Although the pumping lemma only guarantees to work with an output tree ¢
with size(t) > npy; for a’certain natural number nyy,- (which is called the pumping
index of M, ), it often also works for smaller output trees. Nevertheless, the pump-
mg index is needed in the proof of the pumping lemma. In this example we have

=215, The reader can check this after havmg read Definition 3.2.

¢ =root(e) :

root

Figure 5: Control t._ree' & with right-hand sides of rules.
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Here we take the smaller tree t = nf(=>;, 8in(€)), where é = root(o(a, a))
is the control tree. In Figure 5 the control tree € is shown by dotted lines, where
additionally the right-hand sides of those rules.are incorporated which are necessary
to compute the values of the attribute occurrences of é.

Now we consider the two nodes node(¢,1) and node(¢,11) of the control tree &
which can be reached from the root of & by paths 1 and 11. Note that o = label(é, 1),
a = label(é, 11), and attset(é, 1) = attset(é,11) = {s,}. In this case we have chosen
the path p = 11 with its subpaths p; = 1, p3 = 1, and ps = ¢. In Figure 6 we show
three patterns in € with the nodes reached by the paths ¢, 1, and 11, respectively,
as roots. Again the right-hand sides of rules are incorporated into the figure.

e: rool
: 8

m .,

Figure 6: Input patterns ¢’, ¢’ and ¢’

with right-hand sides of rules.

For later purposes, in Figure 7 we also show the control tree ¢ and the patterns
¢/, ¢, and ¢’ framing those parts of the patterns which only consist of input
symbols. In fact, we have é = ¢'[w/e/"[w/e"]].

With these preparations we can obtain the patterns in the output tree t as
follows: Roughly speaking, for each of the patterns ¢’, ¢”, and ¢"’, we calculate the
values of the inside attribute occurrences as function in the values of the outside
attribute occurrences. Therefore we can use the dependencies among the attribute
occurrences presented in Figure 6, where the outside attribute occurrences and the
inside attribute occurrences are depicted as non—filled cycles and non- filled boxes,
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é€: root e e - e . @
w

a/a\a

Figure 7: Control tree € and its decomposition.

respectively, whereas the other attribute occurrences are depicted as filled cycles.
More precisely, we calculate

e the values f and #; of the inside attribute occurrences s(¢) and $(1) of ¢,
respectively, as function in the value of the outside attribute occurrence s(1)
of ¢,

e the values ¢, and ¢; of the inside attribute occurrences s(1) and ¢(11) of e”,

respectively, as function in the values of the outside attribute occurrences
s(11) and 1(1) of ¢”,

e and the value #, of the inside attribute occurrence s(11) of ¢" as function in
M

the value of the outside attribute occurrence i(11) of €,
and replace the synthesized attribute occurrences s(1) and s(11) by the symbol s
with rank O and the inherited attribute occurrences i(1) and $(11) by the symbol
1 with rank 0. For the sake of understanding we choose exactly the attributes as
names for the new symbols. Based on the rank, the reader can retrieve whether
symbols or attributes are concerned at a time. The values of the output patterns
are as follows:

i = nf(=e(9())s(1)/s] = Bs,
Bo= nf(ai)(1)/] - &,

t, = nf(=aa2s(1)[s(11)/s, i(1)/i] = T(s,BR3),
b= nf(Sagani)ls(1)/s, S04 = Li,

t, = ﬂf(=>é_{11}, 8(11))[%(11)/5] = Bs.

In Figure 8 we show the output tree t and the output patterns defined above.
For later purposes we also frame the parts of the patterns which only consist of
output symbols.



282 A. Kihnemann and H. Vogler
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Figure 8: Qutput tree ¢ and output patterns.

Now we show the pumping process in the cases in which
(i) the pattern ¢” is dropped (r = 0),
(i1) the pattern ¢” occurs once (r = 1}, and
(iii) the pattern e occurs twice (r=2).
Thus we have the control tree |
(i) éo =e'[w/e”],if r=0,
(i) € =¢, = ¢'[w/e"|w/e"]], if r =1, and
(iii) & = e'[w/e"|w/e"[w/e]], if r = 2.

For every 0 < r < 2, the normal form n f(=>;,, 3;n(¢)) is denoted by tree(r). It can
also be calculated using the above defined patterns of ¢t as follows:

* We start with the pattern { = Bs that corresponds to the attribute occurrence
s(€), and replace the symbol s by the function call tree’(s,r,1). Roughly speaking,
the recursive function tree’ moves through the different patterns of &, and it con-
structs the output using the output patterns. Every function call of tree’ delivers
one output pattern, in which the symbols s and 1+ are replaced by new function calls
of tree!. '

The function tree’ has three parameters. The first parameter is one of the
symbols s or ¢. It indicates, whether we have to use one of the patterns ¢t, or £,
(in case of the symbol s), or one of the patterns ¢; or £; (in case of the symbol 1).
The other two parameters are natural numbers. The second parameter r indicates
the number of repetitions of ¢” in the control tree é,. It is constant during the
calculation of a certain output tree. The third parameter | indicates the level of
the input pattern, where tree’ currently works. | = O means the patterne’, 1 <I{<r
means the {-th repetition of the pattern ¢, and | = r + 1 means the pattern e'”.

If 1 <1 < r, then tree’ uses the pattern t, = T(s, BRs) (or t; = Li); this
pattern corresponds to the normal form which is calculated only on the nodes of
the pattern ¢’ starting with the attribute occurrence s(1) (or 1(11), respectively).
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CIfl=r+1, then tree’ uses the pattern £, = Bi; this pattern corresponds to the
normal form which is calculated only on the nodes of the pattern ¢’ starting with
the attribute occurrence s(11).

If [ = O, then tree’ uses the pattern {; = E; this pattern corresponds to the
normal form which is calculated only on the nodes of the pattern e’ starting with
the attribute occurrence 5(1). '

If { is the current level of the function tree’, then every occurrence of the symbol
s (or ¢) in the produced output pattern is replaced by a function call tree!(s, r, i +1)
(or tree!(s,r, 1 — 1), respectively), because tree’ has to move one level down (or up,
respectively) in é,.

tree(0) ~ fo: o) tree(0):
= B tree'(s,0,1) @)

B B tree’(1,0,0) ) . o
= BBE : ®

. tree(l) .
= BM(S,l,l)
B T(tree'(s,1,2), B R tree'(i,1,0))
B T(B tree'(i,1,1), BR E)
B T(B L tree/(i,1,0), B R E)
= BT(BLE,BRE)

tree(2)
= Bltree(s,2,1)
= B T(tre'(s,2,2), B R tree'(i,2,0))
= B T(T(tree(s,2,3),
B R tree'(i,2,1)),BR E)
= B T(T(B tree(i,2,2),
B R Ltree'(i,2,0)),BRE)
= BT(T(BLiree(i,2,1),
BRLE),BRE)
= BT(T(BLLtree(i2,0),
BRLE),BRE)
= BT(T(BLLE,BRLE),BRE)

Figure 9: Calculations of tree(r) for 0<r<2 and decompositions of &, and tree(r).
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¢ In Figure 9 we show besides the calculations of the output trees tree(0), tree(1),
and tree(2), their decompositions into the output patterns. Every output pattern
is labeled with the level 0 < I < r+1 of the input pattern which causes it. We also
show the control trees, corresponding to the output trees, and their decompositions
into input patterns which are labeled with their level. a
As stated in the last example, the pumping process only guarantees to work for
output trees which are large enough. This requirement is satisfied, if the size of the
output tree is at least the pumping index of the given attributed tree transducer.
Recall that we only consider noncircular, producing, and visiting attributed tree
transducers.

Definition 8.2 Let M = (4, A, L, s;,, root, R) be an si-tree transducer with k,
synthesized and k; inherited attributes. We define

cy = maz{sizeys(p) | (A — p) € R}

(maximum number of attribute occurrences in right-hand sides),
I = maz{sizea(p) | (A — p) € R}

(maximum number of output symbols in right-hand mdes),
my = maz{rank(c)|c € L}

(maximum rank of input symbols),

and the pumping index nys of M as:

(kstki)niy 2ki.(gke—1)
ny =141y Z (em)? where nhy = E (ma)?.
=0 =0 O

In the proof of the pumping lemma we need the fact that the subtree e of a control
tree root(e) has at least some particular height; the desired height is 2% - (2% —1)+2
(cf. the proof of Theorem 3.4 for an argumentation on t‘.hls number). If, for an
attributed tree transducer M and for a derivation s;, (¢) =>r oot(e) b the size of ¢ is
at least the pumping index nps, then e has the desired height.

Lemma 3.3 Let M = (4, A, L, si, root, R) be an si—tree transducer with k, syn-
thesized attributes, k; inherited attributes, and with pumping index njs. Let
t € Lout(M).

If size(t) > naf, then for every ¢ € T(Z) such that t = nf(=root(c), 3in(€)), the
height height(e) > 2% - (2% — 1) + 2. ' '

Proof. Consider t € Loy:(M) with size(t) > np. We examine a control tree
& = root(e) with a certain derivation s;n(e) =F t. We abbreviate this derivation
by d and the number of derivation steps of d by length(d). The proof consists of
a sequence of five implications. First, we list these implications and afterwards we
give some explanations.
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(ko+ki)ny, .
(1) Hstze(t)2nu=1+l- Y (eM),
=0
(k,+k,~)-n'~ .
then length(d) > 1+ > (cam).
5=0
(kotki ) ‘nie

(2) I length(d)>1+ Z—:o (cae)?, then card(att(€)) > 2 + (ko + k;) - ny,-

(8) If card(att(€)) = 2 + (ko + ki) - nM, then card(att(e)) > 1+ (k, + k) - nly,.
(4) 1f card(att(e)) > 1+ (k, + k;) - n)y, then size(e) > 1+ nM
2% (2%e~1)
(5) Ifsize(e) >1+nfy =1+ ¥ (ma),
=0
then hetght(e) > 2% - (2% — 1) + 2.

(1) Since lps is the maximum number of output symbols in the right-hand sides
of the rules of M, E(k'“") "M (car)? rule applications can produce at most

E(k'+k)””(c )’ output symbols. Hence, since size(t) > 1 +

E(k ki) g (ca)?, it needs at least 1+ E(k""k ) (ca)? rule appli-
catlons to generate ¢.

(2) Since every attribute occurrence can call at most cps other attribute occur-
rences in one derivation step, 1+ (Ic +k;) -n), different attribute occurrences

of € can cause at most E(k'+k ) e (cas)’ rule applications during the whole
derivation d. To understand this fact, we can construct the calling tree of
d with attribute occurrences of € as nodes: the root of this tree is labeled
3in(€); every node of the tree labeled a(p) has as many sons as there are
attribute occurrences in t' with a(p) =z t'; the sons are labeled by the dif-
ferent attribute occurrences. It is easy to observe that the length length(d)
of the derivation d is equal to the size of the calling tree. Under the assump-
tion that there are at most 1+ (k, + k;) - n}, different attribute occurrences
of &, the height of the calling tree is at most 1 + (k, + ki) - n),, because

' .
M is noncircular. Thus its size is at most E(k Hki) e (cm)?. Hence, since

length(d) > 1+E_('-k=;k e (ca)?, we have at least 2+ (k, -+ k;) - ny, different
attribute occurrences of &.

(3) At the root of € we only have the attribute occurrence s;, (¢), thus there exist
at least 1+ (k, + k;) - n), attribute occurrences of e.

(4) Since M has k, + k; attributes, an input tree ¢ with n}, nodes can only
have (k, + k;) - n}, attribute occurrences. Hence, since card(att(e)) > 1+
(ks + K;) - n)yy, we must have size(e) > 1+ nl,.

(5) Since mjy 18 the maximal rank of the input symbols an input tree with height
i.(2ke— N
i . (2% — 1) + 1 can only have the size Ez (2 1)(mM)’. Hence, since



286 A. Kihnemann and H. Vogler

sizele) > 14+ ny, = 14 22 et '—1)(mM)j, we must have hesght(e) >
2k . (2% — 1) + 2. ]
Theorem 3.4 (Pumping Lemma)
Let M= (4, A, Z, 8;, ro0t, R) be an si—tree transducer with system A = (4,4,,4;)
of attributes and pumping index nas.
For every t € Loyu¢(M) with size(t) > na
e there exist three ranked alphabets

~ (U,,ranky,) with U, C A,, card(U,) > 1, and ranky,(s) = O for every
seU,,

~ (Ui, ranky,) with U; € A; and ranky,(s) = O for every 1 € U, and
~-U=U,uU;,

e there exists fe T{AUU,) — T{A) with sizea () > 1,

o for every i € U;, there exists a tree f; € T(A U U,)with size, (£;) > 1,

e for every s € U, , there exists a tree ¢, € T(AUU) with 1 < size.A (ts) < nm, -

e for ;avery 1€ U;, there exists a tree t; € T(A ul) with:l < sizea (t:) < np,

e for every s € U,, there exists :;tree = T(AU U;) with 1 5 sizep (f,) < na,
with |

o for every s € U,, the symbol s occurs in £ or there is an i’ € U such that s
occurs in £, . . -

e for every s € U,, there is an ¢' € U, such that s occurs in t, or there is an
1’ € U; such that s occurs’in ¢y,

. for every i € U;, there is an ' € U, such that ¢ occurs m t,r or there is an
s/ € U; such that 1 occurs in ti,

e for every ¢ € U;, there is an s' € U, such that ¢ occurs in i,
such>that't = tree(1) and for every r > 0, the tree tree| (r) € Lout(M). The function
tree: N — T(A)

is for every r > 0 defined by tree(r) = ¢ [s/tree!(s, 7, 1) ; s €U,], where the partial
function
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tree’ : U x IN X IN — — T(A) is defined as follows:
For every s€ U, and r > 0, if l € [r],
trec'(s, 1) = t.]¢'ftred(s',r, L +1) ; & € Uy, ¥ ftree(i',r, 0~ 1) ; &' € U],
Forevery s€e U, and r >0, if I=r+ 1,
tree'(s,r, 1) = &' /tree (¥, r, 01— 1); &' € Uy).
For everyt € U; and r > 0, if l € [r],

tree'(s,r, 1) = tifs’[tree!(s',r,l+1); &' €U,, o' [tree’(¥',r, 1 - 1) ; &' € Uj].
For everyi1 € U; and r 2> 0, if I = 0,
tree'(s,r,l) = &[s'/tree(s',r, 1 +1); o' €U,]

Proof. Let M = (4, A, I, 8;n,ro00t, R) be an si-tree transducer with system 4 =
(A, A,, A;) of attributes, k, synthesized attributes, and k; inherited attributes.

Consider t € Lout(M) with size(t) > np. By Lemma 3.3 we know that,
for every control tree §¢ = root(e) with s;n(¢) =7 ¢, the condition height(e) >
2ki . (2%2 — 1) + 2 holds.

We choose a control tree & = root(e), a derivation d = (s;n(€) =7 ¢), and a
path p with maximal length from the root of ¢ to a leaf of é&. Then we know that
|p| > 2%i - (2¥+ —1) +2 > 2%¢ . (2¥ — 1). Note that here it would have been sufficient
to have |p| > 2% . (2%* — 1) + 1, but later in the proof of the size conditions for
the output patterns we again make use of the pumping index n,, to avoid the
definition of a new constant. Otherwise we would have had another formulation of
the pumping lemma with two constants (like in [BPS61], there the corstants are
called p and g).

Since there are exactly 2% possibilities to choose an arbitrary subset of the k;
inherited attributes and since there are exactly 2¥* — 1 possibilities to choose an
arbitrary, nonempty subset of the k, synthesized attributes, we have that

card({attset(é,p") | p' # ¢, and p' is a prefix of p}) < 2% . (2% — 1).

Since |p| > 2% - (2F — 1), there must exist strings p; # ¢, p; # ¢ and ps with
P = p1p2ps, such that
attset(é,p1) = attset(¢, p1p2).

We choose p1, p2, and p3 such that |pyps| is minimal. This means that we take
the first repetition of attset(é,p'), where p’ is a prefix of p, beginning from the leaf
at p. Then we know that |paps| < 2% - (2%* — 1), because otherwise there is another
repetition of attset in that part of p between node(é,p,) and node(é, p1p2ps), in
contradiction to |pzps| being minimal.

We define the subsets U, C A, and U; C A, such that

U, = attset(é,p1) N A, and  U; = attset(é, p1) N A;.

In fact, card(U,) > 1, because M is visiting and thus every symbol of the control
tree must be visited by a synthesized attribute,.

Let w ¢ T with rank(w) = 0. We define trees ¢/ € T(Z; U {w}) and ¢" €
T(Zu{w}), where both, ¢’ and ¢”, have exactly one occurrence of w, and ¢'’ € T(Z)
with the help of p;, p; and p3 as follows:
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e' = E[pl ~— U)]
e = osubtree(élpips — w|,p1)
e = subtree(é, pipa)

Then the representation é = ¢'[w/e”[w/¢']] holds. The reader can find these
patterns of é and the paths leading to them in Figure 3.

In the sequel we need the sete P;, P;, and P3 of paths, which lead from the root
of  to the nodes in the three parts ¢/, ¢”, and ¢'”, respectively:

Py paths(c') — {p1}
P, = ({p1} - paths(c")) — {p1pa}
Ps = {pipa} - paths(c")

Note that the path p; leading to the root of ¢ is excluded from P; and that the
path p1p2 leading to the root of ¢ is excluded from Pj.

Now we calculate, roughly speaking, the values of the inside attribute occur-
rences of the patterns ¢’, ¢, and ¢” as functions in the values of the outside
attribute occurrences of the same patterns in order to gain the desired output pat-
terns that are needed for the pumping process. Therefore we restrict the derivation
relation of M to the sets P;, Py, and Ps, respectively, as it is defined in Definition
2.6.

For the definition of the output patterns, we use symbols from the ranked al-
phabets (U,, ranky,) and (U;, ranky;) with ranky,(s) = O for every s € U,, with
ranky, (¢) = O for every s € U;, and with U = U, UU;. We choose exactly the at-
tributes as names for the symbols, to emphasize their strong connection, although
they have different ranks. It is easy to decide from the context in which the names
occur, whether symbols or attributes are concerned at -a time.

Now we can define (cf. Figure 3):

~

t = nf(=¢pr, snl(e))e'(p1)/s' ; &' € UL).

For every s € U,,
t, = nf(=>zp,, 8(p1))[¢' (Prp2)/¢' ; & €U,, ¢'(p1)/¢'; &' € U;] and
t, = nf(=>zpr,,s(p1p2))l8'(prp2) /¥ ; &' € U3).

For every 1 € U;,
ti = nf(=2¢p,,i(p1pa))[s'(p1p2)/s'; & €U, V' (p1)/d'; &' € U] and
i = ﬂf(»z,P.,‘(Px))[«"(Pl)/s ;8 €U, ]

Note that, by the definition of =>; p,, the inherited attribute occurrences s’(p;) can-
not be evaluated and thus may occur in nf(=>zp,, s(p1)) and nf(=>¢ p,,3(p1p2)).
The same holds for =; p, and the inherited attribute occurrences s'(p;p3) that may
occur in nf(=>zp,, s(p1p2)).

By this definition, every pattern has the type, whlch 18 required by the pumping
lemma. We only have to check that { ¢ T(A). Again the reason is that every
symbol of the control tree must be visited by synthesized attributes. Thus, one
of the synthesized attribute occurrences s(p,) must be called directly from s;,(¢)
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via a sequence of attribute occurrences of ¢/. Otherwise the derivation would never
reach ¢".
Now we prove the sise conditions for the patterns:

(a)

(b)

()

(4)

(e)

szea (i) >1:
We have sizea () > 1, because p; # & and thus there must be at least one

rule application to calculate nf(=>zp,, 2in(c)) # %in(e). Note that M is
producing.

For every i € U;, sizea(t;) > 1:

We have sizea (£;) > 1, because nf(=>g,p,,4(p1)) can only consist of output
symbols and attribute occurrences s’(p;) and thus cannot be equal to i(p,;).
Again there is at least one rule application to calculate the normal form.

For every s € U,, 1 < sizea(t,) < nn:

We have sizea(t,) > 1, because pa # ¢ and thus there must be at least one
rule application to calculate nf(=>z,p,,8(p1)) # a(p1). We have sizea(t,) <
nu, because the calculation of nf(=sr,, s(p1)) only takes place on the part

" of the control tree. Since p is a longest path in ¢, its subpath psps with
|p3p3| < 2%i . (2% — 1) is a longest path of ¢"|w/e"'] and thus ¢” can have
no path with a length greater than 2*i - (2*+ — 1). Then height(e") < 2% .

(2*+ — 1)+ 1 and (with a reverse argumentation to fix height(e) in the proof of
ki.(gke
Lemma 3.3 we get size(e”’) < E:_O(Q

(ks +k;) -n), attribute occurrences of ¢”, we have less than E(k'+k ) (eae)?

-1)(mM)" = ny;, we have less than 1+

rule applications to generate ¢, and thus sizea (¢,) < In- Z(k""k ) ma (em)? <
na.

For every s € U;, 1 < sizea (t) < nag:

We have sizea(t;) > 1, because p; # ¢ and thus there must be at least
one rule application to calculate nf(=>z p,,%(p1pa)) # i(p1p2). The proof for
sizea (t;) < npg is analogous to that in (c).

For every s € U,, 1 < sizea(f,) < nu:

We have sizea (f,) > 1, because nf(=>z p,,s(p1p2)) can only consist of out-
put symbols and attribute occurrences 3'(p;p;) and thus cannot be equal to
s(p1pa). Again there is at least one rule application to calculate the normal
form. We have sizea (t.) < nps, because the calculation of nf(=>a Py 8(p1p2))
only takes place on the part ¢/ of the control tree. Since p is a longest path
in ¢, its subpath ps with |ps| < |paps| < 2% - (2%* — 1) is a longest path of ¢"'.
Now we can apply the same argumentation as in (c).

In the next step we have to check, whether the symbols s € U, and s € U; occur at
least once in the desired patterns of t. We show the proof only for the occurrences
of s € U, in the tree f or in a tree #; for some 3' € U;. The other cases can be
treated analogous. The proof works by contradiction:
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If there is an s € U, such that s does not occur in f and not in & for every
' € U;, then, by the definition of the patterns of ¢, the attribute occurrence s(p,)
does not occur in nf(=>; p,,8in(¢)) and not in nf(=>; p,,3'(p1)) for every ¢’ € U;.
But the calculation of these normal forms are the only parts of the derivation d, in
which the attribute occurrence s(p;) can be introduced into the derivation. Thus
8(p1) cannot occur in d, in contradiction to s € attset(d, p1) = attset(é, p;).

The last item of this proof is to show that t = tree(1) and that for every r > 0,
the property tree(r) € Lout (M) holds.

We abbreviate the control tree, which is built up by repeating r > O times the
pattern ¢, by &,:

b =clw/lw/..."lw/e™ |.. ] ]
~——————
r times r tunes
Thus, in particular, & = ¢;. '
First we have to verify the following Statements (1a) and (1b) concerning the

function tree':

(1a) For every s € U,, r 20, 1< 1< r+1, tree'(s,r,l) = nf(=q,s(prpy ')

(1b) For everyt € U;, r>20,0< <, tree'(s,r, 1) = nf(=>s,,1(p1ph))-

Since M is noncircular, there must exist an order in which, for every r > 0, the
attribute occurrences of the set {s(pi1p;) | s € U,,0 <1< r}u{s(p1p}) |t € U,
0 <1 < r} can be evaluated. This order induces an order 6 on the set {tree'(s,r,1) |
s€U,1<1I<r+1}uU{tree!(s,r,1) |1 € U;,0 <1 < r} of function calls and thus
it is guaranteed that the recursive function tree’ is well defined.

If, for example, the evaluation of tree'(s,r, 1) forces us to evaluate tree'(s',r,
I + 1), then, for every 1 < I < r, the attribute occurrence s'(p,p}) has to appear
earlier than the attribute occurrence s(p;p; ') in an order of the above attribute
occurrences. But this is guaranteed, because in this case t, must contain a symbol
&' (compare the definition of tree’ in Theorem 3.4) and by the definition of ¢,, we
must have an attribute occurrence &'(p1p3) in nf(=>zp,,s(p1)). Hence, s'(p1p2)
must be evaluated before s(p1) and thus, for every 1 < I < r, ¢'(p1p}) must be
evaluated before s(p1p}?).

Now we take an arbitrary such order # of function calls which can be considered
as a string of length (r + 1) - card(U). Then we can prove the Statements {1a) and
(1b) by finite (mathematical) induction on v with 1 < v < (r+ 1) - card(U), i.e., v
is a position in this string. Depending on the function call at position v, we have to
prove either the statement tree’(s,r, 1) = nf(=;,, a(plp','x)) (if the »—th function
call is tree!(s,r,1)) or the statement tree'(s,r,!) = nf(=>z,,s(p1py)) (if the v—th
function call is tree(s, r, [)). If we want to prove the statement for the function call
at position ¥ in 4, then we can use the induction hypothesis which says that, for
every function call at position ' with 1 < ' < v, the corresponding statement
holds

ase (a): The function call at position v is tree’(s,r,l) with s € U,, r > 0, and
151 < r+1. Thus we have to prove the statement tree'(s,r,l) =nf(=>:,, .s(plp2 H).
There are two cases:
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Case L 1<I<r

tree'(s,r, 1)

= t,[s'/tree’(s',r,1+1); o' €U,, ' [tree! (¢, r, 1 —1); &' € U}]
(Definition of tree')

= o fnf(e, o (Eh) 5 8 € Us, /0 f(s,, ¥ (pirs ) ¥ € U
(Induction Hypothesis for function
calls with positions less than v)

= nf(=e,t[e'/o (p16}) ; & €U,, /i’ (prpy ") 5 &' € U3))

nf(=>z,,s(pips)) (Calculation on the I-th occurrence of ¢”)

Case I l=r+1

tree'(a, v + 1)

= £,[s'/tree' (s, r,7) ; &' € U] (Definition of tree’)

t,[8'/nf(=,,V(p1p})) ; &' € U] (Induction Hypothesis for function
calls with positions less than v/)

= nf(=e Ll (p1p3) s ' €UL])
= nf(=>s,,s(p1p5)) (Calculation on e™)

Case (b); The function call at position v is tree’(s,r,!) with ¢« € U;, r > 0, and
0 <1< r. Thus we have to prove the statement tree(s,r, 1) = nf(=s,,1(p1p})).
There are two cases:

Case : 1<I<r

M(ix T l)
= t;[s'[tree’(s',r,i+ 1) ; ' €U,, ¢'[tree’(s',r,1 — 1) ; &' € Uj]
(Definition of tree’)
— bl nf(=e, o (aph)) 5 & € Us, 3 [nf(=e i (s ) s & € Ui
(Induction Hypothesis for function
calls with positions less than v)
nf(entile' /o (i) 5 o € Us, #/0 (1657 Y) ; & € Vi)

i

= nf(=¢,1(p1p})) (Calculation on the I-th occurrence of ¢')
Case II: I =0
tree'(s,r,0)
= t;[s'[tree'(s',r,1); &' €U, (Definition of tree’)
= #[a'/nf(=¢,,8(p1)); o €U} (Induction Hypothesis for function

calls with positions less than v)

nf(=>z, &' /o' (p1) ; &' €U,))
nf(=s,4(p1)) (Calculation on ¢')

Then we can prove for every r > 0 the equation tree(r) = nf(=>z,, % (¢)):
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tree(r)
= {[s/tree'(s,r,1); s € U,] (Definition of tree)
nf(=>:p;,8in(€))[s(p1)/s; 8 € U][s/trec'(s,7,1) ; s € U,]
(Definition of £)

nf(=zp,,%in(€))[s(p1)/tree' (s, 7,1) ; s € U,]
nf(=zp,,8in(e))s(p1)/nf(=2,,8(p1)) ; s €U,| (Statement (1a))
= nf(=e.p,,8n(e))[e(p1)/nf(=>s,,4(p1)) ; s € U,] (S“bltlefm fi')in &
unchange

]

= nf(#z,, 8in(€))

This equation has the two desired consequences that finish the proof of the pumping
lemma

© tres(t) = ,._;.(z,,d,m () = nf{vesne)) = .

o For every r>0, trce(r) = nf(=>,,,s.,.(e')) € ng(M),
because f(M)(e )= tree(r) where & = root(e,) ‘ m]

We want to conclude this section with an observatlon concerning the requxrements
of the attributed tree transducers to be producmg and visiting.
"~ If we had dropped the producmg—condxtlon” then the pumpmg process itself
would not have been affected. But it would have ‘been unpossxble to prove -that the
“output patterns conslst of at'least one output symbol In'the next section we shall
see that the apphcatlons of the pumping lemma demonstrated there, are no more
feasible wnthout this sue—condltlon
If we had dropped the vmltmg—condltlon , then the’ proof of the pumpmg
lemma itself would:have been -impossible. Since for’ the control tree & and for
every subpath p’ of the chosen path p, attset(é, p ) # @ cannot be guaranteed, the
following constructlon is no more feasible.

4 Applications

Our .pumping lemma is usable for the output language of every noncircular, pro-
ducing, axild-visitix_ig'a;ttributed tree transducer. But, if we take output languages
which are constructed over an arbitrary output alphabet, then the application of
the pumping lemma is very difficult. Hence we apply our pumping lemma only to
output languages with monadic trees.

The following Theorem 4.1 is a specialized version of our pumping lemma for
the case of monadic output languages. Observation 4.2 makes a statement about
the number of occurrences of the output patterns in the trees tree(0) and tree(1) in
the case of monadic output languages. We use this theorem and this observation
in the following proofs.
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4.1 Pumping lemma for monadic output languages

In order to simplify the study of this paper we state here a complete monadic
version of the pumping lemma instead of giving only the additional conditions.

Theorem 4.1 Let M = (A, A, L, s;n, root, R) be an si—tree transducer with sys-
tem A = (A, A,, A;) of attributes, pumping index nys, and A = AV U A9,
For every t € Lout(M) with size(t) > nas

o there exist three ranked alphabets
— (U,,ranky,) with U, C A,, card(U,) > 1, and ranky,(s) = 0 for every
seU,,
— (Us, ranky,) with U; C A; and ranky,(3) = 0 for every s € U;, and
_U=u,uv;,
~ with card(U,) = card(U;) or card(U,) = card(U;) + 1,
o there exist u € U, and £ € T(A(Y) U {u}) with sizea () > 1,

o for every i € U;, there exist u € A®) UU, and £; € T(A() U {u})
with sizea(8) > 1,

o for every s € U,, there exist u€ U and t, € T(AM U {u})
with 1 < sizea(t,) < nar,

o for every & € U;, there exist u € U and t; € T(A(Y) U {u})
with 1 < sizeA(t.-) < nym, .

o for every s € U,, there exist u € A®) UU; and £, € T(A(M) U {u})
with 1 < sizea (£,) < nar,

such that

e exactly one tree of the set {f; | € U;}u {f, | s € U,} is of type T(A), such
that-
if card(U,) = card(U;), then there is exactly one s € U; such that #; € T(A),
if card(U,) = card(U;) + 1, then there is exactly one s € U, such that £, €
T(4),

‘e for every s € U,, the symbol s occurs in exactly one tree of the set

{i} u {E"' |" € Ui}:

o for every s € U,, the symbol s occurs in exactly one tree of the set
{t,r I de U,}U {t.'l It" € U‘},

o for every ¢ € U;, the symbol 1 occurs in exactly one tree of the set
{tss | ¢ €U YU {tir | € U3},

e for every s € U;, the symbol 1 occurs in exactly one tree of the set
{t., | & €U,},
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such that t = tree(1) and for every r > 0, the tree tree(r) € Loue(M). The function
: IN — T(A)

is for every r > 0 defined by tree(r) =1 [s/tree!(s,r,1); s € U.] where the partial
function

tree' :Ux N x IN — — T(A) is defined as follows:
For every s€ U, and r > 0, ifl € [r],
tre(s,r,1) = tuls'ftree' (o', 14 1); of € U,, §'/tred (i1~ 1) ; & € Uy,
For every s€U,and r 20, f I=r+1,
tree’(s,r,l) = i,[i'/tree!(',r,1-1); ¢ € U;).
For every s € U; and r > 0, if l € [r],

tree'(s,r,l) = t;[s'/tree!(s',r,l+1); &' € U,, ¢'[tree'(s',r,1 — 1) ; +' € U;].
For every s € U; and r > 0, if | = 0,
tree!(i,r,]) = &;ls'/tree'(s',r, i +1); &' €U,

Proof. We only have to prove the additional conditions of the pumping lemma.
The proof is based on the proof of Theorem 3.4. Thus we make use of some notions
which were introduced there.

We first prove the correctness of the substitutions of *occurs in a tree” in Theo-
rem 3.4 by "occurs in exactly one tree®. We show the proof only for the occurrence
of s in the tree £ or in a tree £;;. The other cases can be treated analogous. The
proof works by contradiction:

Assume that there is an s € U, such that s occurs in at least two different trees of
the set {£}U{£;' | i’ € U;}. Then, by the definition of the patterns of t, the attribute
occurrence s(p1) occurs in two different normal forms of nf(=>zp,, sin(c)) and
nf(=>zp,,t (p1)) for s’ € U;. The calcula.tlon of these normal forms correspond to -
different parts of the derivation s;,(¢) =>F t Thus s(p;) occurs in two different
sentential forms of the derlvatlon 3n(€) =>é t. There must exist t;,t; € (A())*
with s;n(€) =7 t1s(p1) =7 titas(py) =7 ¢. Consequently, M is circular, which is
a contradiction. The conditions that

e there exist u € U, and t € T{AM) U {u}),
o for every ¢ € U;, there exist u € A(®© U U, and {; € T(AM U {u}), and
e for every s € U,, there exist u € A(®) UU; and £, € T(A(Y) U {u})
are direct consequences of the pumping lemma, because A is monadic.
. For every s € U,, there exist u € U and t, € T(AM U {u}) and
o for every { € U;, there exist u € U and t; € T(A(M) U {u}),

because each of the card(U) symbols of U occurs in exactly one of the card(U)
trees of the set {t, | s € U,} U {t; | s € U;}, and because each of these trees can
contain at most one (and thus exactly one) of the symbols.
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We know that each of the card(U;) symbols of U; occurs in exactly one of
the card(U,) trees of the set {{, | s € U,}, and that each of these trees can
contain at most one of the symbols. Thus we must have card(U,) > card(U;).
We also know that each of the card(U,) symbols of U, occurs in exactly one of
the card(U;) + 1 trees of the set {f} U {; | ¢ € U;}, and that { contains exactly
one and each of the other trees can contain at most one of the symbols. Thus we
must have card(U;) > card(U,) — 1. We can conclude that card(U,) = card(U;) or
card(U,) = card(U;) + 1 holds.

If card(U,) = card(U;), then every tree t, contains exactly one of the symbols
of U; and every tree #; except one of them contains exactly one of the symbols of
U,. Thus there is exactly one i € U; with #; € - T(A).

If card(U,) = card(U;)+1, then every tree i; contains exactly one of the symbols
of U, and every tree {, except one of them contains exactly one of the symbols of
U;. Thus there is exactly one s € U, with {, € T(A). m]

Observation 4.2 Let M = (4, A, L, s;,,r00t, R) be an si—tree transducer with
system A = (A, A,, A;) of attributes and A = A1) U A9, Then in Theorem 4.1,

1. tree(0) is built up, using each of the trees of the set
{(u{t; |ie U} u{t, | s € U,} exactly once and

2. t = tree(1) is built up, using each of the trees of the set
{(u{ts |teU}u{i,|seU}uft;|seU;}u{t, | s €U,} exactly once.

Proof. Again we make use of some notions which were introduced in the proof of
Theorem 3. 4

(a) The tree £ is used exactly once in tree(0) and tree(1), because { is introduced
calling the function tree’ the first time and nowhere else.

(b) The argumentation for the statement that the trees of the set {i; |+ € U;}
U {£, | s € U,} are used at most once in tree(0) works as follows by contra-
diction: ' '

W.l.o.g. we assume that a tree #; is used twice (or more than twice). Then the
calculation of nf(=zp,,i(p1)) corresponds to different parts of the deriva-
tion sin(e) =7 tree(0). Thus i(p1) occurs in different sentential forms of
the derivation s;,(¢) =>z tree(O) There must exist t,tz € (AM)* with

sin(e) =7 t1i(p1) =7 titai(p1) =7 tree(0). Consequently, M is circular,
which is a contradiction.

(c) The same argumentation can be applied for the proof of the statement that
the trees of the set {¢; |s € U;}u{t, |s €U} u{t; |ieU;}u{t, |seU,}
are used at most once in tree(1).

(d) The argumentation for the statement that the trees of the set {f;|: € U;}
U {t, | s € U,} are used at least once in tree(0) works as follows by contra-
diction:
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By Theorem 4.1 we have card(U,) = card(U;) or card(U,) = card(U;) + 1.
We show the proof only for the case card(U,) = card(U;). The other case can
be proved analogous.

We let k = card(U,) = card(U;), U, = {81,...,8¢}, and U; = {51, ..., 4 }.

Assume that not all of the desired output patterns occur in tree(0). The
number of used trees #; with s € U; and the number of used trees {, with
s € U, has to be equal, because the process of building up tree(0) starts with
t, it must end with the only tree & € T(A) by Theorem 4.1, and the use of
trees £; with £ € U; and of trees £, with s € U, must alternate, as can be seen
observing the function tree'.

Thus we can assume that there is a k' € [k — 1], such that only the patterns

tiyy.- t.., sBayy enests .+ occur in tree(0) (possibly by rena.mmg the trees) We

construct a cu'cula.nty in &y with the remaining patterns tw e t,k s t, B!
., s, Which can not be of type T(A), as follows:

Because of Theorem 4.1 and because the symbols s;,...,8;,%1,...,5% must
occur in the patterns which are used to construct tree(0), we know:

— For every 5 with k' +1 < 5 < k, the tree f;,. e T(AM U {sprg1,...,8:}),
— for every j with k' +1 < j < k, the tree {,; € T(A(l) U{k'+1,---,8k})s

— and every symbol Ski4ly.- 8k,tkl+1, .,tx must occur in exactly one
tree of the set {t.,, . t.,,t.,‘,“, t,,}.
Thus, possibly by renaming the trees, there must exist ¥’ € [k — k| with:
— For every j with k' +1 < 7 < k' + k", the tree f.-j € T(A(M u {s,}),
—~ for every j with k'+1 < j < k'+ k" — 1, the tree {,, € T(AM U{i;41}),
- and f,,,,,, € T(AM U {ip41)).
By the definition of the patterns in the proof of Theorem 3.4 we know that

these patterns correspond to normal forms of certain attribute occurrences
and we can construct a derivation on the control tree é; as follows:

ik+1(p1)
>3, ts..+,3k 1+1(p1)
=>30 t‘h’+1 o,,:.H'k’-}-ﬂ(Pl)

=>30 E"k"*‘i.k'*'l t‘,l &1 3k'+k"(P1)
t‘.tl+lt.hl+l . ttu_',ku tc,:_,,,,n‘k'-{-l(Pl)

We can conclude that M is circular, which is a contradiction. An example
situation which would be a consequence of the assumption that not all of the
desired output patterns occur in tree(0) is shown in Figure 10.
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Figure 10: Circularity in éo with k = 3, k' = 1 and k" = 2.

(¢) The trees of the set {; |1 € U;}U {f, |se U} u{t; |seUi}u{t, |seU,}
are used at least once in tree(1), because these patterns correspond to parts of
the derivation s;,(¢) =7 t = tree(1) by the definition of the output patterns
in the proof of Theorem 3.4. a

4.2 Arithmetic Proof

It is known from Lemma 4.1 of [Fil81] that, if M is an attributed tree transducer
and if r(M)(e) = t for an input tree ¢ and an output tree t, then there is a
constant ¢ > 0 such that height(t) < c - size(e) holds. Thus, there cannot exist
an attributed tree transducer M, which calculates the tree transformation r(M) :
T{({vV), a®}) — T{{BW, E©)}) with r(M)(v"a) = B?>"E for every n > 0. We
only mention here that there is a macro tree transducer (cf. Example 4.3 of [EV85])
which calculates this tree transformation.

If we do not restrict the input trees to be monadic trees, then the lemma of
Fiilop says nothing about whether an attributed tree transducer M’ exists com-
puting the tree transformation r(M’) : T(Z) —s T({B1), E(0}) with Loy (M') =
{B?*"E | n > 0}. Such a producing and visiting attributed tree transducer cannot
exist, because we can use our pumping lemma to prove that {B3"E | n > 0} ¢
SIT,,: holds.

We call the following kind of proof arithmetic proof, because we use arithmetic
arguments while applying the pumping lemma.

Theorem 4.8 {B2"E |n > 0} ¢ SIT,.,
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Proof. Assume that there is an si—tree transducer M = (4, A, L, s;, root, R) with
system A = (A, A,, A;) of attributes and Loyt (M) = {B? E | n > 0}. By Theorem
4.1, for every t € Loy (M) with size(t) > nay, where nas > 1 is the pumping index

nyg-cerd(A)

of M, certain properties hold. Consider t = B3 E; clearly, size(t) 2> npy.

According to Theorem 4.1 there exist U, C A, with card(U,) > 1, U; C A4;,
a tree £, trees &;,t; for every s € U;, and trees £,,t, for every s € U, fulfilling the
conditions of Theorem 4.1, such that ¢ = tree(1).

t = tree(1) is built up, using each of the trees of thé set {f} U{f | € U;} U
{t, | s € UYu{t; | s € U;}u{t, | s € U,} exactly once, because of Observation 4.2.
tree(0) is built up, using each of the trees of the set {{}U{f; |s € U;}u{t, | s € U,}
exactly once, because of Observation 4.2.

Thus we can estimate size(tree(0)) with the size conditions of Theorem 4.1 as
follows:

size(tree(0))
size(tree(1)) — ¥, cp, sizea(t.) — Lieu, s92ea(ts)

v

gra-card(A) 4 q (nane — 1) - (card(U,) + card(Us)) (sizea(ts) < nar — 1,
sizea(t;) < ny — 1)
> gnamcard(4) 41— (ny — 1) - (card(4,) + card(A;))
= gormecard(4) 41 (ny — 1) - card(A)
> onmcard(A) 41— (ny - card(A) — 1)
> 2n~-card(A) +1-— 2nu-card(A)—1
= gnam-card(A)-1 +1, and
size(tree(0))
= sise(tree(1)) — T,co, sizealts) - Siep, sisea(t)
< gnaecard(A) 4 g _ (card(U,) + card(U;)) (sszea(t,) 2 1,
sizea (t,') > 1)
< 2nu-curd(A) +1.

Note that the requirement of M to be producing is necessary for this part of the
proof.

Thus 2m»card(A)=1 11 < size(tree(0)) < 2" 3r4(4) 11 and therefore tree(0) ¢
Lo (M) = {B?"E | n > 0}, contradicting the assumption. O

4.3 Structural Proof

In contrast to the (easier) arithmetic proofs, we want to demonstrate here, how
structural properties of a certain output language can be used while applying the
pumping lemma for attributed tree transducers. We use the results of this subsec-
tion to present a hierarchy for attributed tree transducers with bounded number
of attributes.

Lemma 4.4 For every k> 1, {(BD")***1E | n > 0} ¢ S(x) I(x) Tout-
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Proof. Let k > 1. Assume that there is an si— tree transducer M = (4, A, I, s;p,
root, R) with system A = (A, A,, A;) of attributes, Ly:(M) = {(BD")2*+1E |
n > 0} and with k synthesised attributes and k inberited attributes. By Theorem
4.1, for every t € Loyt(M) with size(t) > ny, where np > 1 is the pumping
index of M, certain properties hold. Consider t = (BD"»" (2"+1))2"+1E clearly
size(t) > nas.

According to Theorem 4.1 there exist U, C A4, with card(U,) > 1, U; C A;
with card(U,) = card(U;) or card(U) card(U;) + 1. Additionally, there exist
a pattern £, patterns #;,t; for every ¢ € U;, and patterns i,,t, for every s € U,
fulfilling the conditions of Theorem 4.1, such that ¢t = tree(1).

t = tree(1) is built up, using each of the patterns of the set {f} U {f;|i € U;}
U{t,|seU}u{t;i|i€U}u{t, |seU,)} exactly once, because of Observation
4.2. In the following, we simply identify these patterns with the sequence of their
output symbols from the root to the leaf by dropping the symbols s € U, and 1 € U;.
This notation is slightly inaccurate, but easier to read. We let k; = card(U,),
ko = card(U;), U, = {81,...,8k, }, and U; = {31,...,1x, }. .

Case 1: kl = kg .
In this case we can represent ¢ as follows, where for every [ € [k,], t) is a sequence
of patterns taken from the 3k, patterns ¢,,,...,t, ,¢,,.. i tiy, sBayy- t,k

t= tree(l) =£¢ f," ¢(2) f,‘, ... tlk) f,'k

For every | € [ky], the tree t(*) is built up from at least one pattern. It is constructed
from at most 2k; + 1 patterns, if the other trees (") are buil up from exactly one
pattern, because each pattern can only be used once, according to Observation
4.2. Since for every j € [ky], 1 < sizea(t,;) < nar, 1 < sizea(t;;) < np, and
1< sich(f,J.) < ny, we know for every I € [ky]:

1 S sizeA(t(’)) < (2k1 + 1) c N\ S (2’0 + 1) RV

Thus every sequence t(*) can overlap at most two parts of successive symbols D in
tree(1). The k; sequences together can overlap at most 2k; < 2k parts of successive
symbols D in tree(1). Since there are 2k+1 parts of successive symbols D in tree(1),
there must exist one subsequence

_ BDnu-(2k+1)B or b= anu-(2k+l)E
of tree(1) which completely is a part of £ or of a tree £;, for some I € [k;].

We present an example situation with k = k; = 2 and with a subsequence

b=BD...DBint,:

-
-
Py
™
~—
o,
-

This subsequence b must appear in tree(O), because tree(0) is built up, using
each of the patterns £,%;,,.. t.,‘l fary-- t,,= exactly once by Observation 4.2.
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(It is not important for this proof that the relative positions of these patterns can
change from tree(1) to tree(0).)

The patterns t,,, ..., tss 1 tiys - - -8, 0 not appear in tree(0) any more. These
patterns can only contain symbols D and B, because sizey (f.-,,l) 2> 1 and thus the

last symbol E must be a part of E"h .

If there is a symbol B in one of these patterns, then the number of symbols B
decreases and thus tree(0) ¢ {(BD")?*+1E | n > 0}, contradicting the assumption.

If these patterns only contain symbols D, then the number of symbols D de-
creases and the number of symbols B is constant. Thus we must have a block
¥ =B D...DBorb =B D...D E with less than nps - (2k + 1) successive
symbols D. Since b and b’ have a different number of successive symbols D, we
have tree(0) ¢ {(BD")?**1E | n > 0}, contradicting the assumption.

Note that the last steps of the above argumentation need the requirement of M
to be producing.
Case 2: ky =k +1 ,
In this case we can represent ¢t as follows, where for every ! € [k;], t(") is a sequence
of patterns taken from the 3k, —1 patterns ¢,,,...,ts, ,ti;,... ,t,-,“_l,f.l, ceny f,h:

t=tree(1) ={¢tM & (D&, D g ek

For évery | € [k; — 1], the tree t(¥) is built up from at least one pattern, and t(%1) is
built up from at least two patterns. For every I € [k; —1], the tree (") is constructed
from at most 2k, — 1 patterns, if the other trees t('') with I’ € [k; — 1] are built up
from exactly one pattern and t(k1)"is built up from exactly two patterns, because
each pattern can only be used once, according to Observation 4.2. The tree t(¥1) is
constructed from at most 2k; patterns, if the other trees t(*') with I' € [k, — 1] are
built up from exactly one pattern. Then we can apply the same argumentation as
in Case 1. a

Lemma 4.5 For every k> 1, {(BD")?*E | n > 0} ¢ S(k) Ik-1) Tout-

Proof. The proof of this lemma is analogous to the proof of Lemma 4.4. ]

The following lemma completes the requirements for the desired hierarchy of at-
tributed tree transducers.

Lemma 4.6
e For every k > 1, {(BD™")**E |n >0} € S(k) L) Tout-

o For every k > 0, {(BD")?**1E | n.> 0} € S(k.41) Ik Tout.

Proof. For evéry k > 1 we define an si—tree transducer

M2k = gﬂ(zk),A,E, 81, root, R(2¥)) with:

A= {B(1 ,D(l),E(O)},

T = {y(1), a0},

AR) = (A3 A ACR)) ien ACK) = (), ..., 85,01, .0, 0k,
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AB®) {s1,-..,5:)}, and A‘(z") = {¢1,...,%%}, and
R = R u RPY U RPM with:

R = {a(a) -
{i;(z1) —

o {ik(21) —

B = (o)
{iJ'(ZI) -

RZY = {s;(z) —

B s,(z1)
B sj41(21)

E

D s;(z1)
D i,(z)
B i;(z)

Ju
|jelk—1}u
}

|7 €[k]}u

| 7 € [k]}

| 7 € [k]}

For every k > O we define an si—tree transducer
M(2k+1) = (4(3k+1) A T s, root, R(2k+1)) with:

A = {BYW, D) )},
L = {y(1),al0)},

Al2k+1) = (A(2k+1),A£2’°+1),A'(Zk“)) with A(Zk+1) = {81, s 8k+1,11,
AR = Lo akaa), and APFHY = (4G, and
R(2%+1) = Rfi';,“) u Rg"‘“) U RCHY) with:

Rt = {a(2)
(2k+1) __ {‘J..(ZI)
Ry = {'?J(z)
RIFHY = E((;)

{sx+1(2)

T A A

B s,(z1) Ju

B sj41(21) | € [k]}

D s;(z1) |7elk+1]}u
D1i,(s) |5 € [k]}

B i,(z) |5 €[k} u

E }

301

ik}

Clearly, for every k > 1, Loyt(M(*¥)) = {(BD™)*E | n > 0}. Thus we can conclude
the statement of the lemma.

O

From Lemma 4.4, Lemma 4.5, and Lemma 4.6 we gain the following hierarchy
for classes of output languages of si—tree transducers with bounded number of

attributes:

Theorem 4.7 S(i)f(x—1)Tout C S(x)l(x)Tout C S(k+1)I(x)Tout, for every k > 1. O

This theorem can be transformed into the following theorem that presents a hierar-
chy for classes of tree transformations of si—tree transducers with bounded number
of attributes (cf. also Figure 11):

Theorem 4.8 S(k)I(k_l)T C S(k)I(k)T c S(k+1)I(k)T, for ever); k>1. (]
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Figure 11: Hierarchy of tree transformation classes.

5 Summary and further research topics

In this paper we have developed a pumping lemma for output languages of non-
circular, producing, and visiting attributed tree transducers. We have restricted
the applications of the pumping lemma o monadic output languages yielding two
results for attributed tree transducers. In particular,

o we have proved that the language {B®" E | n > 0} can be no output language
of a noncircular, producing, and visiting attributed tree transducer, using our
pumping lemma together with arithmetic properties of this language, and

e we have proved a hierarchy for noncircular, producing, and visiting attributed
tree transducers with bounded number of attributes, using our pumping
lemma together with structural properties of languages.

There are several further research.topics in the area of pumping lemmata for at-
tributed tree transducers and other kinds of tree transducers:

e Are there non-monadic languages which can be proved not to be output lan-
guages of attributed tree transducers with the help of our pumping lemma in
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a justifiable expense? In the case of non-monadic languages the proofs be-
come very much harder, because the output patterns can no more be treated
like concatenated strings as in the proof of Lemma 4.4. The output patterns
are non-monadic trees which occur in a non— monadic output tree. The main
problem is to find a complete case analysis for all possibilities to construct an
output tree with output patterns. Then we have to derive a contradiction for
every case. Additionally we have the difficulty that output patterns can occur
more than once in an output tree tree(1), as can be seen in Figure 9. Thus
in the case of non— monadic output languages there is no helping observation
as Observation 4.2,

o A similar pumping lemma as for attributed tree transducers can be developed
for macro tree transducers (cf. [EV85]). It will be introduced in another paper
which is in preparation (cf. [Kih94}). Is it possible to use this pumping lemma
in a proof that the difference set SI;T—-S;T of subclasses of macro attributed
tree transducers is not empty, as it was conjectured in [KV94]?

o As next step it should be possible to construct a pumping lemma for macro
attributed tree transducers (cf. [KV94]) as combination of the lemmata for
attributed tree transducers and macro tree transducers. Then as special case
of it we have a pumping lemma for the class SI;T and perhaps it is possi-
ble to prove that the difference set S;T-SI;T is not empty, as it also was
conjectured in [KV94].
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On Semi-Conditional Grammars with
Productions Having either Forbidding or
Permitting Conditions

A. Meduna * A. Gopalaratnam®*

Abstract

This paper simplifies semi-conditional grammars so their productions have
no more than one associated word-either a permitting condition or a forbid-
ding condition. It is demonstrated that this simplification does not decrease
the power of semi-conditional grammars.

1 Introduction

A semi-conditional grammar is a context-free grammar with productions having
two associated words—a permitting condition and a forbidding condition. Such a
production can rewrite a word, w, provided its permitting/forbidding condition
is/is not a subword of w. Semi-conditional grammars without erasing productions
characterize the family of context-sensitive languages; when erasing productions
are allowed, these grammars define all family of recursively enumerable languages.

This paper studies a simplified concept of these grammars, whose productions
have no more than one associated word—either a permitting condition or a forbid-
ding condition. It is shown that this simplification does not decrease the generative
power of semi-conditional grammars.

2 Definitions and Examples

We assume that the reader is familiar with formal language theory (see [3]).

Let V be an alphabet V* denotes the free monoid generated bX V under the
operation of concatenation, where A denotes the unit of V*. Let VT = V* — {A}.
Given a word, w € V*, |w| represents the length of w, and alph(w) denotes the set
of symbols occurring in w. We set sub(w) = {y : y is a subword of w}. Given a
symbol, a € V, #,w denotes the number of occurrences of a in w.

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G =
£,V, P,S,T), where V, T, and S are the total alphabet, the terminal alphabet (T C

), and the axiom, respectively, and P is a finite set of productions of the form
(A— a,p,p)with A€V —T,aecV*, eVt uU{0}, and p € V* U {0}, where 0

*Department of Computer Science, University of Missouri-Columbia, Columbia, Mis-
souri 65211, USA
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is a special symbol, 0 ¢ V (intuitively, 0 means that the production’s condition is
missing). If (A — a, B, p) € P implies a # A, G is said to be propagating. G has
degree (¢,0), where 1 is a natural number, if for every (A — a,8,u) € P, eVt
iﬂl—f)liesﬁﬁ |<7%, and p=0. G'has aegi'éé_'(o;j), where 7 is a natural number, if for
every (A — a,B,p) € P, =0, and p € V* implies |u| < 5. G has degree (1,7),
where ¢ and j are two natural numbers, if for every (A — a,8,u) € PVt
implies || <4, and p € V* implies |u| < j. Let y,v €V*, and (4 — a,f,u) € P.
Then, u directly derives v according to (A — a, fs), denoted by

u=>v[(A = a,p,u)]

provided for some uy, u; € V*, the following conditions (1) through (4) hold

1) u=u;Au,
2) v=ujaus
3) B # 0 implies B € sub(u
4) p # 0 implies p ¢ sublu

When no confusion exists, we simply write u => u. As usual, we extend = to =*
where 1+ > 0), =%, and =*. The language of G, denoted by L(G), is defined by
(G)={weT;S=>"w}

Now, we introduce the central notion of this paper-a simple semi-conditional
grammar. Informally, a simple semi-conditional grammar is an sc-grammar in
which any production has no more than one condition—either a permitting condition
or a forbidding condition. Formally, let G = (V, P, S, T) be an sc-grammar. G is a
ssmple semi-conditional grammar (an ssc-grammar for short) if (A — z,a,8) € P
implies {0} C {e, A}.

To give an insight into ssc grammars, let us present two examples.

‘Example 1 Let
. G = ({S’ A’ X’ C’ Y)a’ b}’ P’ S’ {a’ b})

be an ssc-grammar, where

P = {(§— AC,0,0),
(A — aXb,Y,0),
(C—Y,4,0),
(Y — Ce,0, A),
(A — ab,Y,0),
(Y —’C,O’A),
(X — A,C,0)}

Notice that G is propagating, and it has degree (1, 1). Consider aabbcc. G derives
this word as follows: :

S = AC = AY = aXbY = aXbCc = aAbCc = aAbY ¢ = aabb¥Yc = aabbee.

Obviously,
L(G) = {a"b"c";n > 1}.

Note that {a"b"c";n > 1} is not a context-free language.
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Example 2 Let
G= ({S) A, B, X,Y,a},P,S, {G})

be an ssc-grammar, where P is defined as follows:

P = {(S—a,0,0),
(S — X,0,0),
(X = YB,0, A),
(X — aB,0, A),
(Y — XA4,0, B),
(Y — aA,0, B),
(A — BB, XA,0)}
(B — AA,YB,0)}
(B — a,a,0)}.

G is a propagating ssc-grammar of degree (2,1). For aaaaaaaa, G makes the
following derivation:

S = X=>YB=>YAA=>XAAA= XABBA = XABBBB = XBBBBBB =
aBBBBBB = aBaBBBBB = aBaBBBBa => aaaBBBBa =
aaaBBBaa = aaaaBaaa = aaaaaaaa.

Clearly, G generates {a2";n > 0}, that is,
L(G) = {a®*";n > 0}.

Note that {a’n; n > 0} is not context-free. :
The family of languages generated by ssc-grammars of degree (z,7) is denoted
by SSC(s, 7). Set

SSC = G G SSC(s, 5).
+=035=0

To indicate that only propagating grammars are considered, we use the prefix
prop-; for intance, prop-SSC (2, 1) denotes the family of languages generated by
propagating ssc-grammars of degree (2, 1).

The families of context-free, context-sensitive, and recursively enumerable lan-
guages are denoted by CF, CS, and RE, respectively.

Let us finally recall that a context sensitive grammar in Penttonen normal form
is a quadruple, G = (V, P, S, T), where V, S, and T have the same meaning as for
an sc-grammar, and any production in P is either of the form AB — AC or of the
form A — a, where A,B,C €V —T,a € (TU(V — T)?) (see [2]). In the standard
manner, we define =,=>*, =+ =* and L(G). If we want to express that z = y in
G according to p € P, we write z => y [p].

3 Results

From the definition, the results achieved in (1], and the examples given in the
previous section, we see that

CF c prop—-SSC C prop—SC = prop-SC(2,1) = prop—SC(1,2) = CS
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and
prop—SSC C SSC C SC =SC(2,1) = SC(1,2) = RE

This section ~s(:ates that

CF
C
prop — SSC = prop — SSC(2, 1) = prop — SSC(1,2) =
prop — SC = prop — SC(2,1) = prop — SC(1,2) = CS
. c
SSC = SSC(2,1) = SSC(1,2) = SC = SC(2,1) = SC(1,2) = RE

In other words, we demonstrate that ssc-grammars are as powerful as sc-grammars.
To establish this result, we first prove that propagating ssc-grammars of degree
(2,1) generate precisely the family of context-sensitive languages.

Theorem 1 CS = prop — SSC(2,1).

Proof. Clearly, prop — SSC(2,1) C CS, so it suffices to prove the converse
inclusion.

Let G = (V, P, S, T) be a context-sensitive grammar in Penttonen normal form.
We construct an ssc-grammar, G' = (V UW, P!, S, T), that generates L(G). Let

W = {B;AB — AC€ P,A,B,CeV - T}
We define P’ in the following way:

1.ifA—-a€eP,AeV -T,ae Tu(V - T)?,
then add (A — «,0,0) into P’,

2. f AB—+ ACe P ABCeV-T,
then add

(B — B,o, é), (é — C, Aé,O), and (B — B,0,0)
to P'(B is the ~ version of B in AB — AC).

Notice that G is a propagating ssc-grammar of degree (2,1). Moreover, from
(2), we have for any Be W

S =& aimplies #ga < 1

because the only production that can generate B is of the form (B — B,9, B).
Let g be the finite substitution from V* into (W UV)* defined as follows:
foralDeV,

1. if D € W(D is the ~ version of D), then g(D) = {D, D};

2. if D ¢ W, then g(D) = {D}.
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Next, we will show that for any w € V¥,
S =>¢ wif and only if § =%, vwithv € g(w)

for some m,n > 0.

Only sf: This is proved by induction on m.

Basis: Let m = 0. The only w is S as S =2 S. Clearly, § =2, S for n = 0,
and S € g(S).

Induction Hypothesis: Assume that the claim holds for all derivations of length
m or less, for some m > 0.

Induction Step: Consider a derivation S »'5“ a,x €Vt Because m+12>1,
there is some § € V* and p € P such that § =% 8 =¢ a [p]. By the induction
hypothesis, S =%, ' for some B' € g(B) and n > 0. Next, we distinguish two

cases, case (i) considers p with one nonterminal on its left- hand side, and case (ii)
considers p with two nonterminals on its left-hand side.

(l) Letp—D—»ﬂz eP,DeV-T5 ETU(V T)2 ﬂ=ﬂ10ﬁ3,ﬂ1,ﬁ3 eV,
@ = ﬂ1ﬁ2ﬁ3)ﬂ' = ﬂixﬂ:'sxﬂi € g(ﬂl))ﬂé € g(ﬂS)s and X € g(D) By (1)) (D -
$2,0,0) € P. If X = D, then S =%, f1DB3 =>¢' p1P2P3 [(D — p2,0,0)]. Because
B € g(ﬂl) B3 € g(Bs), and Bz € g(B;), we obtain ] 8,6; € g(B18283) = g(a). If
X = D, wehave (X — D,0,0) € P',50 S =%, B X84 = B, DB (D — B2,0,0)],

and f ﬂzﬂaeg(a
(i) Let p = AB — AC € P,A,B,CE€V — T, = p1ABBy, f1, 2 EV*, a =

PLACBs,B' = B XY B3, P1 € 9(ﬁ1) Bz € 9( —2), X € g(A), and Y € g(B). Recall
that for any B #56 <1land (B — B,0,0) € P'. Then, 8’ =%, f; ABp; for some
i€ {0,1} s0 By € g(B;),5 = 1,2, and (g(A) U g(B))N alph(B1ABf2) = {A B}. At

this point, we have:

S =>2;l 51AB52
e PiABB [(B— B,0,B)|
=g P1ACB; - |(B — C,AB,0)|

where B1 € g(B1), B2 € 9(B2),C € ¢(C), i.e., B ACP; € g(a).
If: This is established by induction on n; in other words, we demonstrate that

if S =%, v with v € g(w) for some w € V¥, then § =¢ w.

Basis: For n = 0, v surely equals S as § =%, S. Because S € g(S), we have w = S.
Clearly, S =>‘C); S.

Induction Hypothests: Assume the claim holds for all derivations of length n or less,
for some n > 0.

Induction Step: Consider a derivation, S =3t o/,0' € gla),a € V. Asn+12>
1, there exists some § € V1 such that S =% B = o [p|,B' € g9(B).
induction hypothesis, S =>; 8. Let §' = B1B'f3,8 = p1Bp2,B; € 9(B;),7 =
1121)6:' € VtiBl € g(B)aB eV - Tra' = ﬁi“'ﬂaa and p= (B' - #',#11#2) € P'.
The following three cases — (i), (ii}, and (iii) — cover all possible forms of the
derivation step f’' =>g+ o' [p].
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(i) 4 €g(B). Then, S =>¢ f1BBs, B11' B3 € g(P1BB3), i.e., o' € g(B1 BBz).

(i) B=BeV-T,ueTU(V—-T)%u =0=pu; Then, there exists a
production, B — u' € P, 80 S =4 1 Bfz = Pip'Pz|B — u']. Since p' € g(u'),
we have a = BB, such that o’ € g(a).

(i) B'=B,u’ =C,p; = AB,p3=0,A,B,C €V —T. Then, there exists
a production of the form AB — AC € P. Since #zf' < 1,Z = B, and AB €
sub(B’), we have 8] = §'A,p, = 6A (for some 6§ € V*), and §' € g(6). Thus,
S =g 6ABB; =>c §ACB;3|AB — AC|,6ACB; = $,CPB,. Because C € ¢(C), we
get a = 1 CP; such that a' € g(a).

By the principle of induction, we have thus established that for any w €
V*t,S =% wif and only f § =7, v with v € g(w). Because g(z) = {z}, for
any z € T*, we have for every w € T,

S=>¢wif and only if S =7 w.
Thus, L(G) = L(G'), and the theorem holds. Q.E.D.

Corollary 2 CS = prop — SSC(2,1) = prop—SSC = prop-SC(2,1) =
prop — SC.

We now turn to the investigation of ssc-grammars with erasing productions. We
prove that these grammars generate precisely the family of recursively enumerable
languages.

Theorem 8 RE = SSC (2,1).

Proof. Clearly, we have the containment SSC(2,1) C RE; hence, it suffices to
show RE C SSC(2,1). Every language L € RE can be generated by a recursively
enumerable grammar, whose productions are of the form AB — AC or A — «
where A, B,C€V —T,a€ TU(V — T)2U {1} (see [2]). Thus, the containment
RE C SSC(2, 1) can be proved by analogy with the proof of Theorem 1 (the details
are left to the reader). Q.E.D.

Corollary 4 RE = SSC(2, 1)= SSC = SC(2, 1)= SC.

To demonstrate that propagating ssc-grammars of degree (1,2) characterize CS,
w)e first establish a normal form for context-sensitive grammars (see Lemmas 5 and
6).

Lemma 5 Every L € CS can be generated by a context sensitive grammar, G =
(NcpUNgsUT, P, S,T), where N, Ncs, and T are pairwise disjoint alphabets,
and every production in P is either of the form AB — AC or A — z, where
Be€ Ngs,A,C € Nop,z € Nos UT U (U‘?:lN’CF).

Proof. Let L € CS. Without loss of generality, we can assume that L is generated
by a context sensitive grammar G’ = (V, P/, S, T) in Penttonen normal form, that
is, every production in P’ is either of the form AB— ACor A—- BCor A — ¢«
(where A,B,C€V'—-T anda€ T}‘.

Let G = (Ncp UNecsUT,P,S,
follows:

NC’F = V—-T;
Ngs = {B;Bisthetilde version of Bin AB — AC € P'};
P = {A—-z;A—-z€P, A€V -T,z€TU(V-T)>?%}
U{B— B,B— AC;AB— ACe P',A,B,CcV —T}.

) be the context sensitive grammar defined as
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Obviously, L(G') = L(G), and G is of the required form. Hence, the lemma holds.
Q.E.D.

Lemma 6 Every L € CS can be generated by a context sensitive grammar G =
({S} U Ncr UNgs UT, P, S,T), where {S}, Ncr,Ncs,T are pairwise disjoint
alphabets, and every production in P is either of the form S — aD or AB — AC
or A— z, where a € T,D € Ncr U {/\},B € N¢s,A,C € Ncp,z € NosUTU
(U?=1 N&F)' .

Proof. Let L be a context sensitive language over an alphabet, T. Without loss of
generality, we can express L as L = L, U L3, where L; C T and L; C TT*. Thus,
by analogy with the proofs of Theorems 1 and 2 in 2], L2 can be represented as
Ly = UgeralL,, where each L, is a context sensitive language. Let L, be generated
by a context sensitive grammar, G, = (N¢r, U N¢s, UT, Pq,S,,T), of the form
of Lemma 5. Clearly, we can assume that for all a’s, the nonterminal alphabets
(Ncr, U Ngsg,) are pairwise disjoint. Let S be a new start symbol. Consider the
context sensitlve grammar

G = ({S} UNecrUNgs U T,P,S,T)

defined as:

Ncr = Uqer Ner,;

Ncs = Uaer Nes,;

P=U,erP,U{S —aS;;a€ T}U{S —~a;a€ L,;}.
Obviously, G satisfies the required form, and we have
L(G) = Ll U (UGET GL(GG)) = L1 U (UGET GLG) = L1 U L2 = L.

Consequently, the lemma holds. Q.E.D.

( \)?Ve are now ready to characterize CS by propagating ssc-grammars of degree
1,2).
Theorem 7 CS = prop — SSC(1,2).

Proof. Clearly, prop — SSC(1,2) C CS; hence, it suffices to prove the converse
inclusion.

Let L be a context sensitive language. Without loss of generality, we can assume
that L is generated by a context sensitive grammar, G = ({S} U Ncr U Ngs U
T, P,S,T), of the form of Lemma 6. Set V = ({S}UNcrUNcsUT). Let g be the
cardinality of V; ¢ > 1. Furthermore, let f be an (arbitrary, but fixed) bijection
from V onto {1 ...,}), and let =1 be the inverse of f.

Let G~ = (V"‘, ~,S,T) be a propagating ssc-grammar of degree (1,2), in
which A

Ve = (U?=1Wf) U |4

where

W, = {<a,AB— AC,j>;a€T,AB — AC € P,A,C € Nor, B € Nes,
1<j<5)

W, = {[a,AB — AC,jl;a€T,AB —+ AC € P,A,C,€ Ncp,B € Ngg,
1<5<q+3);

Ws = {B,B',B";B¢e Ngs});
W, = {(aa€T}
and P~ is defined as follows:
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1.if S —+adePaeT Ac(NcrU{A}),
then add (S — 3A4,0,0) to P~;

2. faeT,A—z€ P, A€ Ngr,z€ (V = {S})U(Ncr)?,
then add (A — z,3,0) to P~;

3.faeT,AB—+ ACe P, A C,e Nop,B€E Ncg,
then add to P~ the following set of productions
(an informal explanation of these productions can be found below):

{(@a -< a,AB — AC,1 >,0,0),

(B— B',<a,AB — AC,1 >,0),

(B— B,<a,AB — AC,1>,0),

(< a,AB — AC,1>—<a,A — AC,2 >,0, B),
(B — B",0,B"),

(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B),
(B" — [¢,AB — AC,1],< a,AB — AC,3 >,0)}

U {([a,AB — AC,j] — [a,AB — AC,j + 1},0,
f~'(s)la, AB — AC,j]);1 < 5 < gq, f(A) # 5}

U {([a,AB — AC, f(A)] — [a,AB — AC, f(A) + 1],0,0),
([a,AB — AC,q+ 1] — [a,AB — AC,q +2],0,
B'la,AB — AC,q+1]),

(la,AB — AC,q+ 2] — [a, AB — AC,q + 3],0,

< a,AB — AC,3 > [a, AB — AC,q+2|),

(< a,AB — AC,3 >—+< a,AB — AC,4 >,

[a,AB — AC,q +3],0),

(B' — B,<a,AB — AC,4>,0),

(< a,AB — AC,4 >—< a,AB — AC,5 >,0,B’),
([a,AB — AC,q+3]— C,< a,AB — AC,5 >,0),
(<a,AB — AC,5 >— &,0,[a, AB — AC,q+ 3])}
(B, B, and B" correspond to Bin AB — AC);

(4) if a € T, then add (@ — a, 0,0L to P~.
Let us informally explain the basic idea behind point (3)-the heart of all con-
struction. The production introduced in this point simulate the application of
productions of the form AB — AC in G as follows: an occurrence of B is chosen,
and its left neighbor is checked not to belong to V~ — {4}; at this point, the left
neighbor necessarily equals A, so B is rewritten with C.
Formally, we define a finite letter-to-letters substitution g from V* into (V~)*
as follows:
if D € V, then add D to g(D);
if <a,AB — AC,j >e W1(a € T,AB — AC€ P,B € N¢cs,A,C € Nor,
7 €{1,...5}), then add < a, AB — AC, 5 > to g(a);

if [s, AB — AC,j]€W3(a € T,AB —+ AC€ P,B€ N¢s,A,C € Ngr,
7€{1,...,g+3}), then add [s,AB — AC, j] to g(B);

if {B, B, B"} C W3(B € Ngs), then include {8, B', B"} to g(B);

if 8 € Wy(a € T), then add & to g(a).
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Let g7 ! be the inverse of g.
To show that L(G) = L(G™), we first prove three claims.

Claim 1: S =% zin G,z € V*, implies z € T(V — {S})".

Proof of Claim 1.

Observe that the start symbol, S, does not appear on the right side of any
production and that § — z € P implies £ € TUT(V — {S}). Hence, the claim
holds.

fClaim 2: S =%zin G”,z € (V~)*, then z has one of the following seven
orms:
(i) z=oay, wherea €T,y (V- {S})%;
(i) z=ay, whereaeW,ye(V-{S})*;
(iii) z=<a,AB — AC,1> y, where <a,AB — AC,1 > W),
yE ((V - {S}) U {B') BxB"})‘i#B”y <1
(iv) z=<a,AB — AC,2 > y, where <,AB — AC,2 > W;,
ye((V-{(S,B})U{B'B,B'}) #s < I;
(v) z=<a,AB — AC,3 >y, where < a,AB — AC,3 > W,
y € ((V - {S,B})u{B'})* ({[s, AB — AC,j};1<j < g+3}U
{*, B"H((V - {S,B}) u{B'})"; '
(vi) z=<a,AB — AC,4 > 2, where < a,AB — AC,4 >e W,
y€((V-{S}))u{B'})*[e,AB — AC,q+3|((V - {S}u{B'})";
(vi) z=<a,AB — AC,5 > y where < 6, AB — AC,5 > W,
y € (V- {S})*{la, AB — AC, g5], A}(V - {S})".

Proof of Claim 2.
The claim is proved by induction on the length of derivations.

Basis: Consider S = z. By inspection of the productions, we have § = aA [(S —
aA,0,0)] for some 8 € Wy, A € ({A} U Ncr). Therefore, z =a or z = aA (where
a€Wqand A € ({A} UNcF)); in elther case, z is a word of the required form.

Induction hypothesis: Assume the claim holds for all derivations of length at most
n, for some n > 1.

Induction step: Consider a derivation of the form § =>"*! z . Since n > 1, we
have n + 1 > 2. Thus, there is some z of the required form (z € (V~)*) such that
S =" 3 = z |p] for some p € P~.

Let us first prove by contradiction that the first symbol of z does not belong to
T. Assume that the first symbol of z belongs to T. As z is of the required form,
we have z = ay for some a € (V — {S})‘. By inspection of P~, there is no p € P~
such that ay = z&p], where z € (V™)*. We have thus obtained a contradiction, so
the first symbol of z is not in T.

Because the first symbol of z does not belong to T, z cannot have form (i); as
a result, z has one of forms (ii) through (vii). The following cases I through VI
demonstrate that if z has one of these six forms, then z (in § =" z = x[pf) has
one of the required forms, too.
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L. Assume that z is of form (ii), i.e., 2 = @y, € W,, and y € (V — {S})*. By
inspection of the productions in , we see that p has one of the following forms
(a), (b), and (c): S

a) p=(A — u4,8,0) where A € Nocr and v € (V - {S}) UéNcp)z;

b) p=(@ +<a,AB — AC,1> 0,0) where < a, AB — AC,1 > W;;

¢) p=(a@ — a,0,0) where a € T.
ote that productions of forms (32{, (b), and (c) are introuced in construction
steps (2), 5)3), and (4), respectively.) If p has form (a), then z has form }ii). If p
has form (b), then z has form (iii). Finally, if p has form (c), then z has form (i).
In any of these three cases, we obtain z that has one of the required forms.

II. Assume that z has form (iii), i.e., z =< a,AB — AC,1 > y for some
< a,AB — AC,1 >e W,y € ((V — {S}) u{B",B,B"})*, and #sny < 1. By
the inspection of P~, we see that z can be rewritten by productions of these four
forms:

(a) (B— B',<a,AB— AC,1>,0);

(b) (B— B,<a,AB — AC,1>,0);

() (B—B",0,B) (if B" ¢ alph(y),i.c., #5ny = 0);

(d) (<a,AB — AC,1>—<a, AB — AC,2 >,0,B)  (if B" ¢
alph(y),s.e., #py =0).

Clearly, in cases (a) and (b), we obtain z of form (iii). If z = =z [p] in G~, where
p is of form }c‘), then #pvz = 1, so we get z of form (iii). Finally, if we use the
production of form (d), then we obtain z of form (iv) because #pz = 0.

III. Assume that z is of form (iv), i.e,, 2 =< a,AB — AC,2 > y, where
< a,AB — AC,2 > e W,,y € ((V — {S,B})u{PB', B,B"})*, and #p»y < 1. By

inspection of P~, we see that the follwoing two productions can be used to rewrite

z:

(a) (B — B",0,B") (¢fB" & alph(y));

}.:) (<a,AB — AC,2 > — < a, AB — AC,3 >,0, B) (:fB ¢ alph(y)).

cage (a), we get z of form (iv). In case (b), we have #zy =0, 80 #5z = 0.

Moreover, notice that #p+z < 1 in this case. Indeed, the symbol B” can be
generated only if there exists no occurrence of B” in a given rewritten word, so no
more that one occurrence of B appears in any sentential form. As a result, we
have #p# < a,AB — AC,3 > y < 1,ie, #p»z < 1. In other words, we get z of
form (v).

IV. Assume that z is of form (v), i.e., 2z =< a,AB — AC,3 > y for some
< 6,AB — AC,3 >€ W,y € ((V - {S,B})u {B'})*({[a,AB — AC,j];1 <
7 < qg+3u{B"A}) ((V — {S,B}) U{B'})*. Assume that y = y; Yy, with
y1,¥2 € (V- {S,B})U{B'})*. Y = ), then we can use no production from P~
to rewrite z. Because z = z, we have Y # A. The following cases (A) through (F)
cover all possible forms of Y.

(A) Assume Y = B". By inspection of P~, we see that the only production
that can rewrite z has the form (B" — [a, AB — AC,1],< a,AB — AC,3 >,0).
In this case, we get z of form (v).

(B) Assume Y = [a,AB — AC,j]w,j € {1,...,q}, and f(A) # j. Then z
can be rewritten only according to the production ([a, AB — AC,j| — [a, AB —
AC,37 + 1],0,f~(j)[a, AB — AC,j]) (which can be used unless the rightmost
symbol of < a, AB — AC,3 > y; is f~1(j)). Clearly, in this case we again get z of
form (v).
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(C) Assume Y = [a, AB — AC,j],5 € {1,..., 49}, f(A) = 7. This case forms an
analogy to case (B), except that the production of the form ([a, AB — AC, f(4)] —
l[a, AB — AC, f(A) + 1],0,0) is now used.

(Dﬁ Assume Y = [s, AB — AC,q + 1]. This case forms an analogy to case
(B); the only change is the application of the production ([a, AB — AC,q+ 1] —
[a, AB — AC,q+2],0,B'[a, AB — AC,q + 1])1‘

(E) Assume Y = |a,AB — AC,q + 2]. This case forms an analogy to case
(B) except that the production ([a, AB — AC,q+ 2| — [a¢,AB — AC,q +3],0,<
a,AB — AC,3 > [a, AB — AC, ¢ +2]) is used.

(F) Assume X = [a, AB — AC,q + 3|. By inspection of P~, we see that the
only production that can rewrite 2z is (< ¢, AB — AC,3 >—< a,AB — AC,4 >
y[a, AB — AC, q + 3],0). If this production is used, we get z of form (vi).

V. Assume that z is of form (vi), i.e., 2 =< a,AB — AC,4 > y, where <
a,AB — AC,4 >e Wy and y € ((V — {S})u{B'})* [a,AB — AC,q + 3]((V -
{S}) U{B'})*. By inspection of P~ these two productions can rewrite 2:

(a) (B’ — B,<a,AB — AC,4 >,0);

g)) (<a,AB — AC,4 >—<a,AB — AC,5>,0,B’) (if B’ € alph(y)).

learly, in case (a), we get z of form (vi). In case (b), we get z of form (vii)
because #5:y =0, 80 y € (V — {S})*{[a, AB — AC,q + 3], A}(V — {S})*.

VI. Asgume that z is of form (vii), i.e., 2 =< @¢,AB — AC,5 > y, where
<a,AB — AC,5 >e Wy and y € (V — {S})*{[a, AB — AC,q + 3], A}V — {S})*.
By inspection of P™, one of the following two productions can be used to rewrite

z:
a [a, AB — AC,q+3] = C,< a,AB — AC,5 >,0);
b <a,AB — AC,5 >— 8,0,[a, AB — AC,q+3])
if [a, AB — AC,q + 3| € alph(2)).
In case (a), we get z of form (vii). Case (b) implies #(a,AB—AC,q+3]Y = 0; thus,
z is of form (ii).
This completes the induction step and establishes Claim 2.

Claim 3: It holds that
S=>"winGifandonlyif S=>"vin G~

where v € g(w) and w € V*, for some m,n > 0.

Proof of Claim 8.

Only sf: The only-if part is established by induction on m; that is, we have to
demonstrate that S =™ w in G implies § =* v in G~ for some v € g(w) and
weVt.

Basis: Let m = 0. The only w is S because S =° S in G. Clearly, S =° S in
G~, and S € ¢(S).

Induction Hypothesis: Suppose that our claim holds for all derivations of length
m or less, for some m > 0.

Induction Step: Let us consider a derivation, § =™*! z,in G,z € V*. Because
m+ 12> 1, there are y € V* and p € P such that S =™ y = z [p] in G, and
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by the induction hypothesis, there is also a derivation S =" y™ in G~ for some
y~ € g(y). The following cases (i) through (iii) cover all possible forms of p.

(i) Let p=S — aA € P for some a € T, A € Ncr U{A}. Then, by Claim 1,
m=0,s0 y=3S5 and z = aA. By (1) in the construction of G~,(S — &A4,0,0) €
P~. Hence, S = a~ A in G~ where a~ 4 € g(aA).

(ii) Let us assume that p= D — y, € P, D € NgF,ys € (V-{S})U(Ncr)?,y =
y1Dys,y1,y3 €V* and z = y; yays. From the definition of g, it is clear that g Z‘)’ =
{Z} for all Z € N¢F; therefore, we can express y~ = z; Dz3 where 2z, € g(y,) and
23 € g(ys). Without loss of generality, we can also assume that y; =ar,a € T, r €
(V' = {S})® (see Claim 1), s0 z; = a"7",a" € g(a), and r" € g(r). Moreover, by (2)
in the construction, we have (D — y3,3,0) € P~. The following cases (a) through
(e) cover all possible forms of a”.

(a) Let a” = & (see (ii) in Claim 2). Then, we have S =" ar’Dzz =
ar''yazs [(D — y2,38,0)], and Gr''y323 = 219223 € g(y1y2y3) = g(z).

(b) Let a” = a (see (i) in Claim 2). By (4) in the construction of G~, we
can express the derivation in G~ : § =™ ar""Dz3 as § =" ar''Dz3 => ar'"Dz,
[(@ — a,0,0)]; thus, there exists this derivation in G~ : S =""1 ar"Dz; =
ar' yazs((D — ya, 8,0)] with @r''yz23 € g(z).”

(c) Let 0" = < a, AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let "Dz € (V — {S})*, i.e., [a, AB — AC, ¢+ 3| € alph (+"Dz23). Then,
there exists this derivationin G~ : § "< a,AB — AC,5 > r""Dz3 = ar'" Dz; [(<
a,AB — AC,5 > — &,0,[a,AB — AC,q + 3|)] = ar"yz23[(D — y2,8,0)}, and
ar''yz2s € g(z). :

(d) Let a” = < a, AB — AC,5 > (see (vii) in Claim 2). Let [a,AB — AC,q +
3] € alph (" Dz3). Without loss of generality, we can assume that y~ = < a,AB —
AC,5 > 7" Ds"[a, AB — AC, q+ 3]t", where s"[a, AB — AC,q+ 3]t" = 23,sBt =
ys, 8" € g(t),s,t € (V — {S})*. By inspection of P~ (see (3) in the construction of
G™), we can express the derivation in G~ : § =" y™~ as:

s > ar"Ds" Bt"
=> < a,AB — AC,1 > ¢"Ds" Bt"
[(8 =< a,AB — AC1>,0,0)]

=1+lmimal <4 AB — AC,1>' Ds'Bt'
[my(B — B, < a,AB — AC,1>,0)m,]

= < a,AB — AC,2 > ¢'Ds'Bt'
" [(< ¢y, AB — AC,1>—< a,AB — AC,2 >,0, B)]
= <a,AB — AC,2 > v'Ds'B"t
[B‘___’ B",O,B")]
= < a,AB — AC,3 > ¢ Ds'B"t
[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= <a,AB — AC,3 > r'Ds'[a, AB — AC, 1]t

[(B" — [a,AB — AC,1],< a, AB — AC, 3 >,0)]
=»e+2 <a,AB — AC,3 > r'Ds'[a,AB — AC,q+ 3]t
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[(la, AB — AC,1] — [a,AB — AC, 2,0, f~*(1)
[a,AB — AC,1))...
(la, AB — AC, f(4) — 1] — [a, AB — AC, f(4)],0,
f7(7(A4) - 1)[a, AB — AC, f(4) - 1])
(la,AB — ACf(A) — [a, AB — AC, f(A) +1],0,0)
(la, AB — AC, f(A) + 1] — [a, AB — AC, f(4) +2],0,
f—l(f(A) +1)[a,AB — AC, f(A) +1])...
([a;AB — AC,q] — [0, AB — AC, ¢ + 1],0,
f7*(a)la, AB — AC, q))
([a,AB — AC,q+ 1] — [a,AB — AC,q +2],0,B'
[a,AB — AC,q+1])
([¢,AB — AC,q+ 2] — [a,AB — AC, g+ 3],0,
<a,AB — AC,3 > [a, AB — AC,q+2|)]

= < a,AB— AC,4> r'Ds'[a, AB — AC,q + 3]t
[(<a,AB — AC,3 >—< a,AB — AC,4 >,
[a,AB — AC,q + 3],0)]

= Ims] < a,AB — AC,4> r"Ds"[a, AB — g + 3]t" [m3]

= < a,AB — AC,5 > r'"Ds"[a, AB — AC, q + 3]t"
(< a,AB — AC,4 >—< a,AB — AC,5 >,0, B')]

where my, m; € {(B — B',< a,AB — AC,1>,0)}*,m3 € {(B' = B,< a,AB —
AC,4 >,0)}*, |ms| = |mimz|,” € ((alph(r") — {B}) U {B'})*, 97 (r) — r,¢' €
(aloh(") — {BY) U {B"})",6"1(s') = g7}(") = 5, € ((alph(e") - {B}) U
(B))", 7 (¢) = (") = .

Clearly, ar"Ds"Bt" € g(arDsBt) = g(arDys) = g(y). Thus, there exists
this derivation in G~ : § =* ar"Ds"Bt" = ar'y,s"Bt" [(D — y.,&,0)] where
z1y223 = ar'yzs" Bt" € g(aryzsBt) = g(y1yays) = g(z).

(e) Let a” =< a, AB — AC,1i > forsome AB — AC € Pandi€{},...,4} (see
(iii) - (vi) in Claun 2) By analogy with (d), we can construct the derivation S =*

ar’ Ds'' Bt" = ar'y,s" Bt" [(D — ya,38, O)IJ such that ar'y,s" Bt" € g(y1y2y3) =
g(z) (the details of this construction are left to the reader).

(iti) Let p = AB — AC € P,A,C € Ngr,B € Ngs,y = 1ABy3,y1,y3 €
V* z =y ACy3,y~ = zlAYza,Y € g(B) 2; € g(y;) where 1 € {1,3}. Moreover,
let y; = ar (see Claim 1), z, = a"r",d" E g(a),r"" € g(r). The followmg cases (a)
through (e) cover all possible forms of a"

(a) Let a" = @. Then, by Claim 2, Y = B. By (3) in the construction of G,
there exists the following derivation in G™:

S =" ar'"ABzs
= <a,AB — AC,1 > r" ABuj
[(8 =< a,AB — AC,1> 0,0)]
=tmil < g AB — AC,1> ' ABz;
[mi(B — B,< a, AB — AC,1>,0)]
= <a,AB — AC,2 > r'ABu,
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[(< a,AB — AC,1 >—< a, AB — AC,2 >,0, B)]

= <a,AB — AC,2>r"AB"u;

(B — B",0,B")]
=> <a,AB — AC,3>r'AB"us

[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= < a,AB — AC,3 > r'Ala, AB — AC, 1]u;

[(B" — [a,AB — AC,1],< a, AB — AC,3 >,0)]

=>9+2 <a,AB — AC,3 > r'Ala, AB — AC,q + 3|us

[(ls, AB — AC,1] — [a, AB — AC,2],0,

ft(1)[e,AB — AC,1))...

(la,AB — AC, f(A) — 1] — [a, AB — AC, f(4)],0,

F7H(f(A) = 1)[e, AB — AC, f(A) - 1))

((ay AB — AC, f(4)] — [a, AB — AC, f(A) + 1],0,0)

(la,AB — AC, f(4) +1]) — [s, AB — AC, f(4) + 2],0,

f_l(f(A) +1)[a, AB — AC, f(A) +1])...

(la, AB — AC,q] — [a, AB — AC,q+ 1],0,

f7Y(q)[a, AB — AC, q))

(la,AB — AC,q+1] — [a,AB — AC,q+2],0, B’

[a,AB — AC,q + 1))

([a,AB — AC,q + 2] — [a,AB — AC, q + 3],0,

< a,AB — AC,3 > [a,AB — AC,q +2])]
= <a,AB — AC,4 > r'Ala, AB — AC,q + 3)us

[(<a,AB — AC,3 >—< a,AB — AC,4 >,

[a,AB — AC, g + 3],0}]

<a,AB = AC,4 > r"A[a,AB — AC,q+ 3]zz [m2]

<a,AB — AC,5 > r"Ala,AB — AC,q+ 3|z3

[(<a,AB — AC,4 >—+<a, AB — AC,5>,0,B')]
= <a,AB — AC,5 > r"ACz; _
[([a,AB — AC,q+3] = C,< a,AB — AC,5 >,0)]

¢y

where m; € {(B — B',< a,AB — AC,1 >,0)}*,m; € {(B' - B,< a,AB —
AC,4 >,0)}*, |my| = |ma|, us € ((alph(zs) — {B}) U{B'})*, 97} (us) = g7 (z3) =
ys,r' € ((alph(r") = {B}) U{B'})", g7 (r') =g~ (") = .

It is clear that < a, AB — AC,5 >€ g¢(a); thus, < ¢, AB — AC5 > r""ACz; €
g(arACys) = g(z).

(b) Let 6" = a. Then, by Claim 2, Y = B. By analogy with (ii.b) and (iii.a) in
the proof of this claim (see above), we obtain: § ="~! ar"ABz; =*< a,AB —
AC,5 > 1" ACz3 so < a,AB — AC,5 > " ACz; € g(z).

(¢) Let a” =< a, AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let "AYz; € (V — {S})*. At this point, Y = B. By analogy with
(ii.c) and (iii.a) in the proof of this claim (see above), we can construct § ="*1
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ar'"ABz3 =>*< a,AB — AC,5 > r"ACz3 80 < a, AB — AC,5 > r" ACz; € g(z).

(d) Let a" =< a,AB — AC,5 > for some AB — AC € P (see (vii) in Claim
2), and let [a, AB — AC, q+ 3] € alph(r" AYs). By analogy with (ii.d) and (iii.a)
in the proof of this claim (see above), we can construct S =* ar” ABz; and, then,
S =>* ar'"ABzz =*< a,AB — AC,5 > r" ACz3 80 < a,AB — AC,5 > r"ACz; €
oarACys) = o(a).

(e) Let a" =< a, AB — AC,i > for some AB — AC € P,: € {1,...,4}, see
(IT) - (IV) in Claim 2. By analogy with (ii.e) and (iii.d) in the proof of this claim
(see above), we can construct § =>* ar" ACzs, where ar’’ ACz; € g(z).

If: By induction on n, we next prove that
if $ =" vin G~ with v € g(w) and w € V* (for some n > 0),
then S =* win G.

Basis: For n =0, the only vis S as S =>° § in G~. Because {S} = g(S), we have
w=S. Clearly, § =% S in G.

Induction hypothests: Assume the claim holds for all derivations of length n or less,
for some n > 0. Let us show that it is also true for n + 1.

Induction step: For n+ 1 =1 (i.e. n = 0), there only exists a direct derivation of
the form S = aA[(S — &A,0, OS] where A € Ncp U {)A},a €T, and GA € g(aAd).

By (1), we have in P a production of the form S — a4 and, thus, a direct
derivation S = aA.

Suppose n +1 > 2 (i.e. n > 1). Consider a derivation in G~ : § ="*1 &/
where z' € g(z),z € V*. As n+1 > 2, there exist 3 € Wy, A € Nor,y € VT, such
that § = a4 ="~ ! y = 2'|p] in G~, where p € P~,y' € ¢(y), and by induction
hypothesis, S =* y in G.

Let us assume that y' = 21222,y = y1 Dy2,2; € g(y;),y5 € (V — {S})*,7
L2, Zeg(D),DeV -{Sth,p=(Z2 —r',r;,r3) € P,ry=00rry =0,z
217’23, 7' € g(r) for some r € V* (i.e. z' € g(yiry2)). The following cases (i)
through (iii) cover all possible forms of ¥’ = z'[p] in G™.

(i) Let Z € Ncr. By inspection of P~, we see that Z = D,p= (D — r',3,0) €
P~,D —+rePand r=r". Thus, § =* y; By, => y1ry[B — r| in G.

(if) Let » = D. Then, by induction hypothesis, we have the derivation § =*
v1Dy; and y; Dy =y, ry; in G.

(iii) Let p = (Ja, AB — AC,q¢+ 3] — C,< a,AB — AC,5 >,0),Z = [a, AB —
AC,q+3]. Thus, r' = C and D = B € N¢g. By case (VI) in Claim 2 and the form
of p, we have z; =< a, AB — AC,5 >t and y; = au, where t € g(u),< a,AB —
AC,5 >€ g(a),u € (V — {S})*, and a € T. From (3) in the construction of G~, it
follows that there exists a production of the from AB — AC € P. Moreover, (3)
and Claim 2 imply that the derivation in G™ :

S =>ad=>""1y = [

can be expressed in the form

S = aA
=* &thz
= <a,AB — AC,1 > vtBz

[(a +<a,AB — AC,1 >,0,0)]
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=19l < a,AB — AC,1> vBuw,

[6')
= < a,AB — AC,1> vB"w;

[(B — BII, 0, B”)]
=> < a,AB — AC,2> vB"w,

[(a, AB — AC,1 >—< a,AB — AC,2 >,0, B)]
= < a,AB — AC,3 > vB"w,

[(< a,AB — AC,2 >—< a,AB — AC,3 >,0, B)]
= < a,AB — AC,3 > v[a, AB — AC,1]w;

[(B" — |a,AB — AC,1],< a, AB — AC,3 >,0)]
=842 < g AB — AC,3 > v[a, AB — AC,q+ 3|w;
0 .
=> < a[, ,]4B — AC,4 > v[a, AB — AC,q + 3|w,
[(<a,AB — AC,3>—< a,AB — AC,4 >,
[a,AB — AC, g+ 3],0)]
=911 < a,AB — AC,4 > t|a, AB — AC,q + 3]z,

]
= < a,AB — AC,5 > t[a, AB — AC,q + 3|2,

[(< a,AB — AC,4 >—< a,AB — AC,5 >,0, B')]
= <a,AB— AC,5>tCz,;

[(la,AB — AC,q+3] = C,< a,AB — AC,5 >,0)]

* where 0’ € {(B — B’,< a,AB — AC,1>,0)}*{(B — B, < a, AB - AC,1>,0)}
{(B — PB',< a, AB — AC’ 1> 0)} ,g(B) N alph(vw;) C {B'}, g‘l(v)

6 —(0)1(f AB )—» AC’ f(A | = [a, AB — AC, f(A) + 1],0,0)0;([a, AB — AC,q +
1] — [a, AB — AC,q+2] 0,B'ls, AB — AC,q+ )é[a AB — AC,q+ 2] —
[aAB—+AC,q+3]0<aAB—»AC3>[aAB—' ,q+2]
61 = ([a, AB — AC,1] — [a, AB — AC,2],0, f~!(1)[a,AB.— AC 1})
(la,AB — AC,2] — [a, AB — AC, 3},0, f~ 1(2)[a AB — AC,2))..
llacl}? — AC f(4) - 1] — [a,AB - AC,f(A)],O,f‘l(f(A) - 1)[a,AB —
where f 2.4) unphes q1=A,
62 = (la, AB — AC, f(A)+1] — o, AB — AC, f(A)+2],0, f~1(f(A)+1) [a, AB —
AC, f(A) +1]).. ([a AB — AC,q] — [a,AB — AC,q + 1],0, 7 }(q)[a,AB —
AC, g]), where f(A) = q implies g2 = A, 0" € {(B' — B,< a, AB — AC,4 >,0)}*.
The above derivation implies that the rightmost symbol of ¢ must be A. As
te g(u), the rightmost symbol of u must be A as well. That is, t = s'A,u = s4
and &' € g(s) gor some 3 E V —{S})*). By the induction hypothesis, there exists a
derivation in S =* asABy;. Because AB — AC € P, we get S =* asABy, =
asACy;[AB — AC|, where asACy; = yirys.
By (1), (ii), (iii) and inspection of P~, we see we have considered all possible
derivations of the form S ="*! 2/ (in G~) , so we have established Claim 3 by the
principle of induction.
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The equivalence of G and G~ can be easily derived from Claim 3. By the
deﬁnif;ion of g, we have g(a) = {a} for all a € T. Thus, by Claim 3, we have for all
seTt: S=>*zinGif andonlyif S =* zin G~
Consequently, L(G) = L(G™~). We conclude that

CS = prop - SSC(1, 2)
and the theorem holds. Q.E.D.

Corollary 8
CS = prop — SSC(1,2)= prop — SSC = prop -~ SC(1,2) = prop — SC.

We now turn to the investigation of ssc-grammars of degree (1,2) with erasing
productions.

Theorem 9 RE = SSC(1,2).

Proof. Clearly, we have the containment SSC(1,2) C RE; hence, it suffices to
show RE C SSC(1,2). Every language L € RE can be generated by a grammar
G = (V,T,P,S) in which each production is of the form AB — AC or A — z,
where A,B,C €V — T,z € {A}UTU (V — T)? (see [2]). Thus, the containment
RE C SSC(1,2) can be established by analogy with the proof of Theorem 7 (the
details are left to the reader) Q.E.D.

Corollary 10 RE = SSC(1,2) = SSC = SC(1,2) = SC.
Corollaries 2,4, 8, and 11 imply the main result of this paper:
Corollary 11
CF
C
prop — SSC = prop — SSC(2,1) = prop — 8SC(1,2) =
prop — SC = prop — SC(2,1) = prop — SC(1,2) = CS
C
SSC = SSC(2,1) = SSC(1,2) =SC =SC(2,1) = SC(1,2) = RE
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Invariance groups of threshold functions

E. K. Horvith *

Permutations of variables leaving a given Boolean functien f(z;,...,z,) in-
variant form a group, which we call the snvariance group G of the function. We
obtain that for threshold functions G is isomorphic to a direct product of symmetric
groups.

A threshold function is a Boolean function, i.e. a mapping {0,1}"* — {0, 1} with
the following property: There exist real numbers w;, ..., wy, ¢ such that

f(zli'-',zn) =1iff Zw.-z.- 2t,

=1

where w; is called the wesght of z; fors = 1,2,...,n, and ¢ is a constant called the
threshold value.We can suppose without loss of generality that :

wy <wg<.. <Wn [1],{2]

Throughout this paper, we use the notation: (X) = (z1,...,zn); W =
(w1,.. " wn), Ws Y5y wizi. Let X stand for the set consisting of the symbols
Z1,. eﬁne an ordering on the set X in the following way: z; < z, iff
w; <' w, For any permutation x of X, the moving set of x, denoted by M(~),
consists of all elements z of X satisfying x(z) # z. Denote by Sx the group of
all permutatlons of the set X, and by S, the symmetric group of degree k. If

(X) (p1,- ( ;;n) € {0, 1% and o € Sy, then let o(P) = fr(pl), ,o(pn)) and
ag 11 YAt ]

(h ) be an ordered set. Consider a partition C of X. As usual, we shall

denote the class of C that contains z € X by z. We call C convez if z; 5 z; < 3
and Z; = Z; together imply 2; = ;. For any convex partition C of X, the ordering
of X induces an ordering of the set of blocks of C in a natural way: %; < Z; iff
z; < z5.

Theorem 1 For every n-ary threshold function [ there ezists a partition Cy of X
such that the snvariance group G of f consists of exactly those permutations of Sx
whsch preserve each block of Cy

Conversely, for every partttwn C of X there exists a threshold function fc such
that the snvarsance group G of fc consists of ezactly those permutations of Sx that
preserve each block of C.

Proof. First, consider an arbitrary n-ary threshold function f. Let us define the
relation ~ on the set X as follows: ¢+ ~ j iff ¥ = 5 or f is invariant under the
transposition (z;z;). Clearly, this relation is reflexive, and symmetric. Moreover,
it is transitive because

*JATE, Bolyai Intéset, Aradi Vértanik Tere 1, H-6720 Sszeged, Hungary e-mail
H7753Kat@HUELLA.BITNET
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(ziz5)(z52x)(2i25) = (ziz)-

Hence ~ is an equivalence relation.
Claim 1. The partition C; defined by ~ is convex.

Proof. If it is not 5o then there exist a Boolean vector D = (dy,...,d,) € {0,1}"
and 1 <1 <5 <k < n with z; ~ z; such that .

d+ wid; + wyd; + widy < ¢, (1)

‘ d + w;d; '-i-w,-d,-+w,,dk 2t, (2)
ifd=3 . xCcedq- Now (1) and (2) imply d; = 0, d; = 1. Since z; ~ zx, from
(1) and (2) we infer:

d+ wide + w,-d,- + wkd,- <t, (3)

d+ widy + wyd; + wid; > t. (4)

Assume di = 0. Then d + wx <t < d+ wy; by (3) and (2), whence wx < w; ,
which is a contradiction. On the other hand, suppose di = 1. Then because of (1)
and (4), d+ w; + wy <t < d+ w; + wy, which is also a contradiction.

For the reason of convexity, the blocks of ~ may be given this way:

Cl = {:i:l,...,z.-l},

C; = {zi|+1r"'rzi'x+iz}:

c = {z"n+t':+...+"t—1+l» RN I e 2 ¥} }

N | .
Every permutation that is a product of some “permitted” transpositions pre-

serves the blocks of Cy, and belongs to G. We show that if a permutation does not
preserve each blocks of C; defined by ~, then it cannot belong to G.

Lemma 1 Let v = (2,25, ... %j,_,YZj, -+ Z5,,) € Sx de a cycle of length-m + 1
withz;, €Cp, 1< s<m,y€Cy,p#4q. Then7¢G.

Proof. Let us confine our attention to the following:
(Y25 ) (Z0 %55 - Tja 1 Y25s - Ti) = (251 %4, -+ 25, ) (9),
80 .
(yzils—n) = (z.ﬁ Tyz - zjm)(zix Ty s oo Tipo1 YZg o - zjm) .

If 4 were an element of G, then (yz;,_,) would be also an element of G, which
contradicts the definition of ~.

Claim 1. If a cycle § € Sx has entries from at least two blocks of Cy, then »
BEG.
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Proof. Given the convex partition C; of (X;<), for any cycle 8 of length k we
construct a sequence of cycles of increasing length, called the downward sequence
of A, as follows: Let Z,, Z, (%, > Z,;) the two greatest blocks of C; for which z,, z,
are entries of 5. We cancel some entries of 8 in such a way that we keep all entries
in Z, and the greatest entry in Z,, and we delete all the remaining entries of . This
results in the initial cycle of the downward sequence f(,) of length r; r > 2. We
do not need to define members of the downward sequence with subscripts less then
r. If we have constructed f(;), we obtain the next member f(;41) of the downward
sequence by taking back the greatest cancelled (and not restored yet) entry of § in
its original place. Thus, the final member of the downward sequence is fx) = B.

Let us denote by zl! (¢ > r), the “new” entry of f(;). If 1 < r, then we do not have
to define zl'l. As an illustration take the following:

X={zlv"')38})

€, = {31, 12})
C: = {zs3,z4},
C:s = {"'5) T6, z"})
Cs = {=zs},

and '
B = (z425Z12723) = (21272324%5).
The downward sequence is;

' B(3) = (z7z42s),

19(4) = (272324%s), alfl = T3,

Bis)(= B) = (z121732435),  2l®l = z,.

It is obvious from the construction of the downward sequence that the weight
of an arbitrary variable occuring in f(;) is not smaller than the weight of ghitil,
By Lemma 1, the initial cycle of the downward sequence (in our example B3))
is not in G. In order to prove that § & G, we show that if there exist Aj;) =
(a(,-)'l, .. .,a(.-),,,) and B(;) = (b(.-),l, . .,b(.-),n) with A;), By € {0,1}" such that
f(A)) = 0 and f(B;)) = 1 and B(;)(A(;)) = Bys), then we are able to construct
A1) = (8@+1),09- -3 8(+1),n) 30d Bpay = (big1),15--+rb(i41),n) With Ay,
B(.‘+1) € {0,1}" satisfying f(A(i+1)) =0 and f(B(i+1)) =1and ﬂ(i+1)(A(i+1)) =
B(i41)- Let us denote with superscripts [I(5)}, and [r(s)] the left, and the right
neighbour of zll in the cycle f(;), respectively. In our example: zl'®) = gz,
zlr(®)] = z; because zl8 = z,. (For the sake of clarity: [r([{(7)])] = ({[r(7)]] = 7;
moreover, zl*)] and 2l are the images of zl/} and zl/()], respectively.) We shall
use this notation for the corresponding components of a concrete Boolean vector
as well, i.e. for example: al(".()’ N and al(zg’ ). We have four possibilities for A(;):

Case 1. a?‘.;'ll =0, am‘“)] = 0.
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Case 3. a[(';.;'l] =1, amiﬂ)l =1.

Case 8. a{';.')H] =1, al(zg"“)] =0.
Case 4. al(';.';” =0, a[(:.§'.+1)] =1

We show that in the first three cases A; is appropriate for A;41. In Case 4 the
only thing we have to do is to transpose two components of A; in order to get a
suitable A;43.

Case 1. af;} ' = 0, af{*V = 0.
4 L]

Even though f;;; bypasses zl*+1l, Bi+1)(Aw) = Buy(A)) holds because
"{'Jl] = “{f-g'“”- I AG+1) = Ag), then By (Au+n) = Bw(Aw) = B
So let us choose B(;4+1) = B(;). Thus f(A(4+1)) = 0, f(Bi+1)) = 1, and
ﬂ(;+1)(A(;+1)) = B(i41) are satisfied.

I [ ZCFOTT 2FF I [ G+

Ag) a%ﬁln 0 0

By | o0 o [bgt
7S B O
Bii+1) 0 o |8

Case 2. a[(';')"ll =1, a%‘“” =1

The situation is the same as in Case 1: at.')"” = am"ﬂ)]. Let Ai41) = Agy)-

Then B(;;1)(A(i+1)) = Bs)(A)) = Bys), hence let us choose B(;41) = B(;). Thus
f(Ai+1)) = 0, f(Bi4r)) = 1, and B(i41)(A+1)) = B(i41) are satisfied for the

reason as in Case 1.

2 3+1)] gt +1] ZIr+I)]

Ag) aiy 1 1
B;) 1 1 bl(:;”'ur
[F{(s+1]] :
Ai+1) S(i+1) 1 . (1+1Ir
ris
B(i+1) 1 1 b(i+1)

Case 8. a{?{ll =1, a%‘“” =0.

Now, A(;) is appropriate for A(;,;) but we cannot guarantee the same for By;)
and B(,‘+1). Let A(i+1) = A(,‘), and B(s'+1) = g(;+1)(A(;+1).). We can get the
Boolean vector B(;4) from B(;) if we transpose bl(:';l and b{".()'“”, ie.:

1(s+1)] _ [s+1] _
brn ' =1, and i) =0,
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while . ]
b((“.()'“" =0, and b‘(;;‘“ =1

furthermore, all the other components of B(;+1) and By;) are identical. Since zli+1l
has the smallest weight in f(;41), we get

n n
E w"b(")’j S E w"b("""l)t-’.’
=1 =1

which means that f(B(;4+1)) = 1. Moreover, f(A4+1)) =0, and B(i41)(A@41)) =
B(i41) are satisfied.

PAUCSRY)) ZI 1] ZITGFI)]
[Is+1]
~ = ] : \ (0+1)]
(s
B {l(0+1)] 1 by
e el : I (O )
ris+
Bty - 0 bi+1)
Case 4. a{';.')H' =0, a{:;"ﬂ)l -1
Let us construct A(;;,) from .A(,-) as follows: Put a{iilll) =1, a[(:(;‘-;)l)] = o,
Bi+1),; = 8(:),; if ag41); # al(".'frlll) or a(i41),; # a{:(;'l")‘”. (Transpose a[(".‘)H]

and a[(:;'.'H)) in the Boolean vector A(;) (and keep all the other components of it

unchanged) to get A(;;,).) Since zl*+1] has the smallest weight in B(i+1), We get

n n
Y wiaee),s £ D wisE).5
=1 5=1

hence f(A(i+1)) = 0. Let B(iy1) = B(i+1)(A(i+1)). With this choice B(i1) = B;,
hence f(Bs4+1)) = 1. .

paLlco2y) e e 22 e e )
Ag) agy v 0 1
By || 1 0 by

A+ || agin) 1 0

Bii+1) 1 0 biea)
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Claim 2 is proved.

Every permutation that is8 a product of disjoint cycles such that any of them
preserves each blocks of C; belongs to the invariance group G of f. We have to
show, that if not all of the factors have this property, then the permutation does
not leave the threshold function f invariant.

Lemma 2 Let x € Sx of the form x = xam;, where 71,72 € Sx, with M(m) N
M(x3)=08andx, €G. Then x € G.

Proof. Suppose that it is not 8o, i.e. * € G. Now 7y, & G means that there exist
Xo,xl € {0, 1}" with f(XQ = O,f(Xl) = 1, and Wl(Xo) = Xl' Let Xg = 71’2(X1),
ie. X3 = w(LXo). Since f(X3) = 1 contradicts the assumption € G, we infer
f(X3) = 0. Let X5 = x,(X3). As M(x;) N M(x;) = @, we have mym; = mamy.
Therefore X3 = x(X,). The assumption r € G implies f(X3) = 1. Looking at the
infinite series of Boolean vectors

Xo, X1,y Xny ...

we can establish in the same way that if s = 2k, k € N, then f(X;) = 0, while if
1 = 2k + 1 then f(X;) = 1. On the other hand,

w(x) = s(x)!" + s(x)1? + s(x)°1,

where S(X)IY = Ez;éM(n)“’:”J’: s = Ez,'GM(ﬂ) wz;, S(X)P =
zzjeM(") w,z;. With this notation: S(Xo)lll < S(Xl)m: S(Xo)m = 5(x,),
S(Xo)P® = S(X,)!%]. For the series of S(X;)!*I:

(6) S(Xo)H < s(x)M = (X)) < (X)W = s(x,)V < ...,

as applying 73 changes only S(X;)!3]; moreover, f(Xzx) =0 and f(Xax+1) = 1
imply W(X3x) < W(Xak+1), hence S(X3¢)!!! < §(Xar41)l2). On the other hand,
if z is the order of xy, then S(Xo)!! = §(X3,)!!] , which contradicts (6).

Claim 8. For » € Sx, let *x = 7, ...7, where 7; are disjoint cycles. If there exists
av; with1<j<randvy; G, then x ¢ G. )

Proof. It is easy to see if there is only one such ;. If there is more, then 7 ¢ G
is an immediate consequence of Lemma 2.

Claim 1, Claim 2, and Claim 3 together provide a proof of the first part of the
Theorem.

For proving the converse of the theorem, we show first that for any n there exist
a n-ary threshold function which is rigid in the sense that its invariance group has
only one element (the identity permutation).

Suppose n is odd. With n = 2k + 1, consider the following weights:

wy w2 cer | Wk | Wil | Wk43 | - Wak Wak+1 (7)
k| -k+1]...1 -1 0 1 | k=1 k

Let t = 0. We prove that for any transposition r of form (z;z;_;) where 2<j<n
there exists a Boolean vector U = (uy,...,u,) € {0,1}" such that f(U) = 1 and
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f(r(U)) =0. Forafixed jlet u; =1, upp1; =1, u;=0if s # 3,1 #n+1—7.
It is obvious that f(U) = 1; however, f s; r(U)) = 0. Hence f is rigid.

If n = 2k, then the welghts can be chosen as
wy wy coc fwr—y | W | Wy | Wey2z | oo | wag—a | wag
“k| —k+1]...] -2 | -1 1 2 | k=11 &

8
Let t = 0. The method is almost the same as before, i.e. consider the followi(ng
U= (ug,..c tp): Fy#k+1thenlet uj=1,uy41-;=1,u;,=0if s # j5,—5.
If = k+ 1 then let ug4y = 1 and u; = 0 ifi #k+ 1 If r = (z;z;-1), where
2< 37 <n,then f(U) =1 while f(r(U)) =
~ " Now, we construct a threshold functlon gg for an arbltrary partition C of an
arbitrary ordered set X of variables. Denote now by ~* the equivalence relation
on X defined by C. First, suppose that C is convex. Let 1;,...,1; denote the
number of elements of the blocks of C, respectively. Consider the ngld function f
of | variables that is defined in (7) or (8) dependmg on the parity of I. Take the
weight w; 1; times, the weight w; i3 times and so on in order to define a threshold
function g of n = ¢; + 3 + ...+ 3; variables. Variables of g with the same weight
are permutable. However, transposltlons o of form (z;x;_,), where 2 < 7 < n and
J #* 7 — 1, are “forbidden” for g because if we consléer the correspondmg U and
construct a Boolean vector V' of dimension n from U by rewriting it in the following
way: instead of u,, (m = 1,...,1), write 0 i, times, whenever u,, = 0; and write
1 (once) then 01, — 1 times otherwnse, then we shall get a Boolean vector V' of
dimension n, for which g(V') = 1 while g(c(V') = 0. If C is not convex, the only thing
we have to do is to reindex the variables 1n order to get a convex partition. After
constructing a threshold function for the rearranged variables with the procedure
described above, put the original indexes back and the desxred threshold function
is ready. Theorem is proved.
" The invariance group Gp of an arbltra.ry Boolean function is not necessarily of
the form

(9) Gp = 8;, X...% 8.

For example, let h be the following: h(zy,...,z,) = 1 iff there exists ¢ such that

=121 =1,2z; =0if  #4,4+1 where @ means addition mod n. The
invariance group of h contains the cycle (%1,...,%n) and its powers but it does not
contain transpomtlons of form (z;zi41).

However, there exist Boolean functions with invariance groups of the form (9),
which are not threshold functions.

Permutable variables of a threshold function does not mean equal weights. Here
is an example: h(a:?x = 212324V Z3z4. This is a threshold function with the following
weights, and threshold value:

w | wy |ws | wg |t
1 2 3 4 |7

The transposition (z;z;) is “permitted” but the others are not.

But the weights can always be chosen to be identical for variables belongmg to
the same equivalence class. If the j-th class C; = {Zi, is+...4ij_141s -+ s iy 4is )
. iptigt..di; Footwi gy
by te notation of (5), then let wy, =Tttt ’_l:; Saslit Uy Replace
Wiy tatotii—1+1s -0y Wiy 4445 by Wi, Since Tiytiat.Hijm1+lre oo Tigdo+i;
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are from the same equivalence class, for fixed =z, ...,z,+.i;,_, and
Tiy4ij+1re -+ Tiy4.ip o the fact that W(X) exceeds t (or not) depends only on
the number r of 1-s among the coordinates z;, +i,+...4i;_y+1,- -+ Tiy +...+i;; MOre-

over, W(X) has a maximum (minimum) if we put all our 18 to places with the
greatest (smallest) weights possible. Obviously

Wit i1t W G 14
r

< wy)s

moreover,
wi;+...i_,-—r +...+ Wy, +..45

r

wjy) <
Hence
Witodeoa bt t oo P Wi e ST S Wi et W

Consequently, after replacing w;; 4454...44;_,+1s- - - » Wiy +...4i; DY W], we still have
the same threshold function.
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On the Complexity of Dynamic Tests for Logic
| Functions

V.A.Vardanian®

Abstract

A generalisation of the concept of dynamsc test is proposed for detecting
logic and parametric faults at input / output terminals of logic networks
realising k— valued logic functions (k > 2). Upper and lower bounds on the
complezity (i.e., length) of minimal dynamic tests are obtained for various
cladses of logic functions. ) » :

1 Introduction

In dynamic testing of combinational logic networks (see [1,2]) the fault-free and
faulty circuits are distinguished if they have different dynamic (i.e., time varying)
behaviors (output level variations) under the same input stimulation by a transition
signal. It should be noted (see [1-3]) that there are statically undetectable logic
faults, as well as parametric faults (e.g., inadmissible variations of the magnitude
of time delays), which may become detectable only in dynamic testing. In (3
a notion of dynamic test was introduced for input/output terminals (I/O faults
of combinational networks since in many cases faults are more likely to occur at
the input/output terminals rather than inside. The dynamic test [3,4] is defined
to be a set of input patterns sensitizing the output of the network with respect
to simultaneous switching of every feasible subset of input variables. Evidently,
the dynamic test for I/O faults does not depend on the internal structure of the
network, but depends only on the function realized by the output. In [3-7] some
classes of logic and parametric 1/O faults are described to be detectable by dynamic
tests, and the complexity (i.e., length) of minimal dynamic tests is investigated for
various classes of logic functions.

In this paper, a generalisation of the notion of dynamic test called (dynamic)
test of regularity, is proposed for k— valued logic functions, k > 2. As a result,
the class of detectable I/O faults is considerably enlarged. A notion of stability
dual to that of sensitivity is introduced, and the test of regularity is defined to be
a set of input patterns that are sufficient to both sensitize and stabilize the logic
function with respect to simultaneous switching of every feasible subset of input
variables. Upper and lower bounds on the complexity of minimal tests of regularity
are obtained for some classes of k-valued logic functions.

*Institute of Informatics and Automation Problems of the Armenian National Academy
of Sciences, Yerevan, Armenia
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2 Notations and Definitions
Let Ex = {0,1,....k — 1}, k > 2, denote
Er = {8/8 = (a1, ... an), a; € Ex,i = T,n};
Pe(n) ={f/1: E} = Bx};

G1(&) = {B/B € B}, (B; # a;) = (7 € I)}

where IC N, ={1,2,...,.n},I #8,a € E}.
Fork > 2,a € Eg, I = {$1,-.»%,} C N,,I # 8, the set G;(&) [ ES has only
one element denoted 1n the sequel by

~I . =. R . & .
a = (alx ey Qg =1, Oy Oy 41y eeey X5y —1, O,y O 41, ""an)
where ¢ =1- 0,0 € E,.

Definition 2.1 . The function f(z,...,zn) € Pi(n) is sensitive (stable) at vector
& € E} with respect to the subset of variables {z;,,...,z;,} C {z1,...,Zn} if there

exists a vector E € G{.-,-,_,_,.-;,(a) such that f(&) # f(ﬁ) ( respectively , f(a) =

£(B)). The function f is sensitive (stable) with respect to {z;,, ..., z;, } if there exists
a vector & € E} at which f is sensitive (stable) with respect to {z;,,...,z;,}.

Definition 2.2. The function f € Px(n) is said to be regular if it is both sensi-
liive and st}able with respect to every nonempty subset of variables {z;,,...,z;,} C
Z1yeey Ty,
Denote by Ri(n) the set of all regular functions f € Pi(n).
We shall say that almost all functions from a class F|(n) € Px(n) have a property
R if the fraction of functions from F{n) with property R tends to 1 as n — co.
It is easy to prove the following assertion.

Lemma 2.1. Almost all functions f € Py(n) are regular.

Definition 2.8. The set of vectors T*(s, f) C E} ( respectively, T**(s, f) C E})
is called an s— test of sensstivity ( stabilsty ) for f € Pyi(n), if for each sub-
set {81,..,8,} € N,, 1 < r < s, the sensitivity (stability) of f with respect
to {zi,,...,%; } implies the existence of a vector @ € T*(s, f) ( respectively,
& € T**(s, f)] at which £ is sensitive (stable) with respect to {z;,, ...,:c.-j.
Definition 2.4. The set of vectors T(s, f) C E7 is called a { dynamic ) s— test of
regularsty for the function f € Pi(n), if it is both an s— test of sensitivity and an
s— test of stability for f.

For s = 1 (respectively s = n) the s— tests will be called single (complete)
tests. The test To(s, f) is called a msnsmal s— test for f, if |To(s, f)| = t(s, f) =
min{|T(s, f)|/T(s, js € Z(s, f)}, where Z(s, f) is the set of all s— tests of regularity
for f, and [A| denotes the cardinality of the set A.

The main objective of this paper is to find bounds on the complexity measure
t(s, f) of minimal s— tests of regularity for logic functions f € Pi(n),k > 2,1 <
s < n.
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3 The Complexity of Single Tests

The set of functions Pk(n) may be considered as a probability space with every
element f € Py(n) having the same probability exp,(—k"™). Denote by H, the
Hamming code in the n-cube EJ. It is known (see TQ]) that |Hn| = ezps(n —

[logz(n + 1)]). The pair of vectors &,F € Ha, & # B, will be called a regular pair
for the Boolean function f € P;(n) iff A;_,(f(&) ® f(3*}) @ fB) e 1) =1
where @ is the modulo 2 sum. Obviously, if {&, ﬁ} is a regular pair for f € P;(n)
then {&, 5} is a single test of regularity for f.

For every &,f € H,,a £ B, f € P, (n) define the following random variables

~(f) = { 1 if {, B} is a regular pair for f
“p 0 otherwise
Obviously, &(f) = X~ BeH. a#F € 3’( f) determines the number of regular pairs

for f € Pg(ng.
From Definition 2.4 with k > 3,s = 1, it follows that if for every 3,1 <1 < n,
the function f € Pyx(n) is both sensitive and stable at vector & € E} with respect
to variable z;, then {&} is a minimal single test of regularity for f.
For every & € E} and f € Pi(n) define the following random variable

(= (1 if{@}isa singlé test for f

&) { 0 otherwise

Obviously, the random variable {x(f) = Y v zo §(f) determines the number of
1]

single tests of regularity for f € Py (n), k > 3. Now let us compute the expectations
M&i(f) and dispersions D¢ (f) for the random variables &(f), k > 2.

Lemma 3.1

H\(|H,|-1)2~""1, k=2
M&(f) = {Ln(lm_ ((L - 1))/k)k-1 —k~H)n k>3

Lemma 3.2 .

= [ (1=2"")M&(f) if k=2
Da(f) = { M&(f) + (ca(R)n? + ca(k)n — )E~"(M&(f))? k>3
where ¢y (k) and c3(k) depend only on k.

Lemma 3.3. For almost all functions f € Pe(n), k > 2,n — oo,

() ~ M&(f).

Proof is based on the second - moment method (see, e.g., [8]). From Lem-
mas 3.1 and 3.2 it follows that M¢x(f) — oo, and DE&(f) = o((Méx(£))?)-
Let ¢(n) — oo0,4(n) = o(\/ME&(f)), then according to Chebyshev’s inequal-
ity (see [8]) the fraction of functions f € Pi(n) satisfying the inequality
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|€c(f) — M&(f)] < éﬁn{)‘lb{&(ﬂ tends to 1 as n — oo. Consequently, by
definition, & (f) ~ M &x(f) for almost all functions f € Px(n), n — oo, k > 2.

Theorem 8.1 . For almost all functions f € Px(n)

t(l-’f)= {i g:;g

" Proof for k > 3 follows immediately from Lemma 3.3. For k = 2 from Lemma 3.3
it follows that t(1, f) < 2 for almost all functions f € P;(n). From Lemma 2.1 and
Definition 2.4 with k = 2,s = 1, it follows that t(1, f) > 2 which completes the
proof.

4 Upper Bounds on the Complexity of s— Tests

The set of vectors @ C E7 will be called an (n,2s + 1,r)— code if |Q] = r and
p(&',ﬁ) >2s+1forall &8 €Q,a# B, where o(a, ﬁ), called the distance between
& and ﬁ, is the number of coordinates 1,1 < 1 < n, such that a; # §;.

Lemma 4.1. Let Q C EP be an (n,2s+ 1,r)— code,s > 2,k > 2 and $(n) — oo
asn— oo If

L= {Nloga 355, (7) + 9(n)] for k =2
[(k—1)""logy /-1y n+¥(n)] fork>3
then for almost all functions f € Px(n) Q is an s— test of regularity.

Proof. Let I = {¢;,...,4} € N,,1 < m < s. Denote by ®;(I) ( respectively,
Wi (1)) the number of functions f € Pk(nz that are not sensitive (sta.bleg at each
vector & € Q with respect to the subset o

to compute

@4 (1) = expy (k™ = r(k = 1)™), U (1) = k*" exp(a—1)u(r(k — 1)™).

Let px(n, Q) be the probability of an event that Q is an s— test of regularity for a
random function from Py (n). Now it is easy to verify that if r satisfies the conditions
of the lemma, then

Pr(n,Q) 2 L-expp(—k") D (®elD) +W(D) =
ICNa,1<|1|<s

variables {z;,,...,z; }. Then it is easy

) n . .
=1- E (') (expk(_r(k - 1) + exp(k_l)/k(r(k - 1)‘)) =1- 0(1).
=1
Denote by Fkﬁn, 23+ 1) a code in E} of maximal cardinality with a code distance

23+ 1. The following statement is a straight-forward generalization of a well-known
result for k = 2 (see [9]).

Lemma 4.2 . Forall k> 2

|Fi(n, 25 + 1)| > kﬂ/i (’:) (k - 1)°.

+=0
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Theorem 4.1 . For almost all functions f € P3(n) and n — oo

oS (ST 2=t
nH()) ifs=|M],0<A<1/4
where H(A) = —Alogz A — (1 — A)log, (1 — A).
Proof. Applying the well - known' (see [10]) inequality
Yo (7) < expy(nH(m/n)) where m < n/2, and taking into account Lemma 4.2

we obtain that if s = nJ 0 < A <'1/4,n — oo and r satisfies the conditions of
Lemma 4.1 for k = 2, the

|Fa(n, 22 + 1)] > expy{n(1 — H(2s/n))) > expy(n(1 — H(2)))) > r.

Thus, if the conditions mentioned above are satisfied, .then there can be constructed
an (n,28+1,r)— code which according to Lemma 4. '1 will be an s-test of regularity

for almost all functions f € Py(n). Hence, t(s, f) < r = [log, 3.1, () + ¢(n)],
whence the proof follows directly.

Theorem 4.2 . For almost all functions f € Pe(n), k > 3,
2 < s < |n(logz k — 1)/(21og,(k — 1))}, n — oo,

t(s, f)fu(k -1 logy (k1) -

Proof is analogous to that of Theorem 4.1.

5 Lower Bounds on the Complexity of s— Tests

Let {$1,...,8¢} € Np,¢5 € Ek,J =1,r,1 <r < n,k > 2. Denote by EP (i1, c1; -.;;
tr, ¢,) the set of all vectors ﬂ € Ep with B;; = ¢;, 5 = 1,r, called an (n — r)—
dimensional subcube in EJ. The set of mdxces {tl, ot will be called the set of
fized indices of the subcube Any two subcubes in E" will be called parallel if they
have the same set of fixed indices. Obviously, any two parallel subcubes do not
intersect, and |Ep (81, 158, ¢,)| = k™"

: ]The followmg statement is a stralghtforward generaluatxon of a lemma from
10

Lemma 5.1 . For anyset M C E7, |M| = m<n+1 k > 2, there exists a family of

(n—m+1)— dimensional parallel subcubes of cardinality k™=, with each subcube
containing at most one vector from M.

Let mx(m) be the probability of an event that a random function from Py (n)
has an s— test of regularity consisting of m vectors.

Lemma 6.2 . Fork>2,m<n+1and n— oo

=7

) < () 1 (1= (Edymts - om0 )1 )

=1
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Proof. Denote by M(M) the set of functions f € Rk(n) having M as an s— test
of regularity. Then, taking into account Lemma 2.1, it 18 easy to verify that

m(m) <expy(-k") Y |M(M)] + o(1).

MCE} |M|=m

According to Lemma 5.1 there can be found a family of (n — m + 1)— dimensional
parallel subcubes of cardinality k™~! with each subcube containing at most one
vector from M. Let {31,,...,7m—1} be the set of fixed indices corresponding to
every subcube from the family. Denote N} = N,, \{71,...,Jm—1}. Let M*(M) be
the set of functions f € R I(n) having M as an s— test of regularity with respect to
N,, i.e., for every subset f 150} € N3, 1 < v < s, f is both sensitive and stable
with respect to the set of variables {z;,,...,z;, }. Obviously, M(M) C M*(M).
It is easy to compute that -

M (80)] < T (exps (mlk — 1) = expy (mlt — 1) - )7 )

(n—rr:+1)(k_1).-)=

()

»
x expy (K™ — mz

=1

LY : k - l ) t
k (2" ym(k-1)' _ p-m(k-1)
k 1;[1 (1- ) k )
Whence the proof of the lemma follows immediately.
The proof of the following statement is obvious.

Lemma 5.3 . If n(m) = o(1) for k > 2,m = m(n),n — oo, then for almost all
functions f € Pi(n)
t(s,f)2m+1

Theorem 5.1 . For n — oo and almost all functions f € P;(n)

(s —1)logyn if s = const > 2
(s, f)2 slog, 2 if s = o(n),s — o0
! nH(A)/(1+ H(X)) ifs=|In],0<A<1/2
n/2 if s>n/f2

Proof. From Lemma 5.2 with k£ = 2 we obtain

< gmn _o—m+1 . n-m+1 .
mlm) 27 ep -7 ("7 )+
Putting
L(s — 1) logz n — logz log, n — r(n)],
7(n) = o(logn), r(n) — oo if 8 = const > 2
mo = { |slog; 2 — 2logz n+ slogy(1— 2log, 2)]| if s =o(n),s — oo
[nH(A)/(1+ H())) — 3logy n) if s=|An|,0< A <1/2

[n/2 —vlogy n|,v = const > 5/4 if s >n/2
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it is easy to verify that xx(mo) = o(1),n — co. Hence in view of Lemma 5.3 we
obtain the assertion of the theorem.

Corollary 5.1 . If s = const > 2,n — oo, then for almost all functions f € P3(n),
t(s, f) =< logn.

Corollary 6.2 . If s = o(n),s — oo,n — oo, then for almost all functions
fe Pg(n),

t(s, f) ~ alog, g.

Corollary 5.8 . If s = [An],0 < A < 1/4,n — oo, then for almost all functions
f € Pg(n),
t(s, f) < n.

Corollaries 5.1-5.3 are obtained from Theorems 4.1 and 5.1.
Theorem 5.2 . If s > 2,k > 3,n — oo, then for almost all functions f € Pi(n),

t(s, f)z‘(k - 1)_2 logk/(k_l) n.

Proof. From Lemma 5.2 with k > 3 we obtain

mtm) <k exp, (= ("7 7T ERH) 4 o),

It is easy to verify that xx (m) = o(1) for m = | (k —1) 72 logy (x—1) » — logj logj n],
n — 0o. Thus, in view of Lemma 5.3, the theorem is proved.

Corollary 5.4 . f k > 3,2 < s < |n(log, k— 1)/(2log;(k — 1)} ], n — oo, then for
almost all functions f € Px(n), ? )/ (2log,

t(s, f) < logn.
Proof follows directly from Theorems 4.2 and 5.2 .

6 Upper Bounds on the Complexity of Complete
Tests

For Boolean functions f € P, gn) denote w) (%) = f(3)® f(3"), I C N,.,I # 8. Now
let us describe an algorithm for constructing a complete test of regularity for an
arbitrary function f € P;(n).

Algorithm 6.1 . Step 1. Choose an arbitrary vector &@; € E} and put
Ti(f) = {&}
T2 = {I/I C N,,I# 9,w](&,) =0);
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T = {I/I C N, I #8,w}() = 1}.
If T2 T # 8 and there exists a subset I; € T, for some o € {0,1} such that
w{’ (%) # o, then we pass to the next step, otherwise the algorithm terminates.
Step i(i > 2). Choose a vector & € EJ such that w{i (&) = 7, where I; €
T2 wi(E) #0,0€{0,1}. I

1 1
D/ € Ty (@) =7} 2 15 1Tl +1
then put o
T(f) = Ti-af) U &)
TO = {I/Te TO,, 0] (&) = o);
T ={I/IeTL,wf (@) =1},
otherwise

Ti(f) = {&"/a € Ti—: ()} J(&5):
TO = {IAL/I € T2,,1 # L, w}(&) =7}

T! = {IAL/I€ T % wl(&) = o},
where A is the set-theoretical operation of symmetric difference.
If T°UT,;! # 0 and there exists a subset ;41 € T,” for some o € {0,1} such
that w{‘, “ (%) # o, then we pass to Step s + 1, otherwise the algorithm terminates.
Finally, Algorithm 6.1 will determine a set T,,(f) of m > 1 vectors which, as

we are going to prove below, is a complete test of regularity for f € P;(n).
We shall say that the subset ] C N,, I # 8, is a feasible fault of sensitivity

(stability) for f € P3(n) if w) (%) # O (respectively, w{_ (£) # 1), and the vector
& € E7 detects the fault of sensitivity (stability) I for f.if w] (&) = 1 (respectively,
1(3) = o
wy (&) =0). :
Theorem 6.1 . For all functions f € P;(n),
' t(n, f) <n+1.

Proof. Let m = m(f) be the number of steps performed by Algorithm 6.1 for
f. Tt is easy to see that for each 1,1 < i < m, the vectors from T;(f) do not
detect the faults of sensitivity J € T;® and the faults of stability J € T;!, and the
total number of faults not detected by the vectors from T.-j(f ) is reduced more than
twice -after each step. Since the algorithm terminates iff 7,,,(f) detects all feasible
faults of sensitivity and stability for f, then T, (f) is a complete test of regularity
for f. Consequently, t(n, f) < |Tm(f)| = m. It is easy to prove by induction on
t,1 <4 < m, that |T,%|+ |T;*| < 2**+!~* - 1. The conditions causing Algorithm 6.1
to terminate imply 0 < |T,9| +|T,}] < 2"*1~™ — 1 whence the bound m < n+11is
derived directly.
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Corollary 6.1 . For almost all functions f € Pa(n),

n/23t(n, f) Sn+ 1.

Proof follows directly from Theorems 5.1 and 6.1. '
Let t*(s, f) (respectively, t**(s, f)) be the complexity of a minimal s— test of
sensitivity ( stability ) for f € Py(n).

Lemma 6.1 [7]. For almost all functions f € Px(n),k > 3,
t*(n,f) < n.

We will say that the function f € Pi(n),k > 3, is stable in EJ if for every
I C N,,I# 8, there exists a vector & € EJ detecting the fault of stability I for f
in EZ, i.e. , f(&) = f(&'), where &' is the sole vector from G;(&) () E}. Denote
by 0? fyI) the number of vectors & € E} detecting the fault of stability [ for f.

Lemma 6.2 . For almost all functions f € Pi(n),k > 3, the inequality 6(f, 1) >
2271 holds for all I C N, I # 4.

Lemma 6.8 . Almost all functions f € Px(n), k > 3, are stable in EJ.

Lemma 6.4 . Almost all functions f € Pi(n), k > 3, take all k values from Ej at
vectors from E7. ‘ :

Proofs of Lemmas 6.2-6.4 are not difficult, so they are omitted.

Now let us describe an algorithm for constructing a complete test of stability
for almost all functions f € Pi(n),k > 3. To this end, each function f € Pi(n) is
associated to a table J(f) with 2" rows, one for each vector from E}, and 2" — 1
columns, one for each feasible fault of stability I C N,,, I # 0. At the intersection
of the ith row and jth column corresponding to @ € EZ and I C N,, respectively,
there stands a '1'('0’) iff £(&) = f(@) (respectively, f(a) # f(&')). Let To(f) =0
and J(f) = J(f).

Algorithm 8.2 . Step i (¢ > 1). Select a vector & € E} with the corresponding
row in J.-_ly having the maximum number of 1’s, and put T.Slf) =Ti_1(f) lg{&.-}.
Denote by Ji(f) the table obtained from J;_1(f) by deleting all the columns having
1I’s in the row corresponding to &;. If J;(f) = @ or J;(f) has only 0’s , then the
algorithm terminates, otherwise we pass to Step ¢ + 1.
Note that according to Lemma 6.3, for almost all functions f € Pi(n) Algorithm
6.2 terminates iff J,(f) = @ for some m > 1. Hence, the following assertion holds.

Lemma 6.5 . For almost all functions f € Pi(n), k > 3, Algorithm 6.2 constructs
a complete test of stability.

Lemma 6.8 . For almost all functions f € Pi(n), k > 3,
t**(n, f) < [nlogak/(ak-1) 2] + 1.

Proof. Let u, be the fraction of faults of stability I C N,,, I # §, detected by
vectors ay,...,&, € E} which are selected after the rth step of Algorithm 6.2.
Then, obviously, (1 — 4,)(2" — 1) is the number of faults of stability remain-
ing still undetected , i.e., the number of nonempty subsets I C N, such that

fl@ay) # f(&'f) for all 5,1 < 5 < r. From Lemmas 6.2 and 6.3 it follows that for
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almost all functions f € Pi(n) the total number of feasible faults of stability, de-
tectable by the remaining vectors from EJ is not less than (1 — g, )(2" — 1)2"~1.
Consequently, among the remaining vectors there can be found a vector detecting
not less than (1— p,§(2" — 1)/(2k) faults of stability which are not detected by the
first r selected vectors. Thus, we obtain

1 1 1
> — -— = —_—— —_— >...>
Br+1 2 pr + 21:(1 b)) = (1 2k)#r topr 22

1.7 13 1.0
>2(t— — — 1-—) 2
2 (t-3) “‘+2k§)( 2w 2
( since Lemma 6.4 implies p; > § > 3¢ )

1 r 'y 1 r+1
> = =) =1-(1- —
— 2k Z(l Zk) 1-( 2k)

=0

Thus, p, > 1 — (1— ). Putting ro = [logy_ 4 zee7] < [nlogaky(ak—1) 2], we
find out that after the choice of ro vectors there will still remain undetected not
more than

(1-p)@ =1 < (1- )@ - 1) <1

faults of stability. Taking into account Lemma 6.5, we obtain that for almost all
functions f € Pi(n)

t**(n, f) < ro + (1 — pr, ) (2" — 1) < [nlogar/(ax—1) 2] +1.

Theorem 6.2 . For almost all functions f € Px(n), k > 3,

t(n, /)<n(1+ logay/(ak-1) 2)-

Proof follows directly from Lemmas 6.1 and 6.6 .
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Some Remarks on Functional Dependencies in
Relational Datamodels*

Vu Duc Thit Le Thi Thanh !

Abstract

The concept of minimal family is introduced. We prove that this family
and family of functional dependencies (FDs) determine each other uniquely.
A characterization of this family is presented.

We show that there is no polynomial time algorithm finding a minimal
family from a given relation scheme. We prove that the time complexity of
finding a minimal family from a given relation is exponential in the number
of attributes.

Key Words and Phrases: relation, relational datamodel, functional depen-
dency, relation scheme, closure, closed set, minimal generator, key, minimal key,
antikey.

1 Introduction

The functional dependency introduced by E.F.Codd is one of important semantic
constraints in the relational datamodel.

The family of FDs has been widely studied in the literature. In this paper we
_give a family of sets and show that it is determined uniquelyby family of FDs. This
paper presents some results about computational problems related to this family.

Let us give some necessary definitions and results used in what follows.

Let R = {a1,...,8,} be a nonempty finite set of attributes. A functional
dependency is a statement of the form A — B, where AABC R. The FD A— B
holds in a relation r = {hy,...,h,} over R if Vh;, h; € r we have h;(a) = h;(a) for
all a SA implies h;(b) = h,(b) for all b € B. We also say that r satisfies the FD
A— B. : :

Let F, be a family of all FDs that hold in r. Then F = F, satisfies

(1) A A€F,
(2 (A—-BeF,B—+CeF)=(A—CeF),
(3) (A—-Be€F,ACC,DCB)= (C—DEe€F),

*Research supported by Hungarian Foundation for Scientific Research Grant 2575.
'Computer and Automation Institute Hungarian Academy of Sciences, H-1111 Bu-
dapest, Ligym4nyosi u. 11. Hungary.
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(4 (A-BeF,C—»DeF)= (AUC—»BUDEF).

A family of FDs satisfying (1)-(4) is called an f-family (sometimes it is called
the full family) over R.

Clearly, F, is an f-family over R. It is known }"1] that if F is an arbitrary
f-family, then there is a relation r over R such that F, = F.

Given a family F of FDs, there exists a unique minimal f-family F* that con-
tains F. It can be seen that F* contains all FDs which can be derived from F by
the rules (1)-(4). N

A relation scheme s is a pair < R, F >, where R is a set of attributes, and F is
a set of FDs over R. Denote A* = {a: A — {a} € F*}. A" is called the closure of
Aovers. ltisclear that A- Be FYif BC A+,

Clearly, if s =< R, F. > is a relation scheme, then there is a relation r over R
such that F, = F'* (see, [1]). Such a relation is called an Armstrong relation of s.

Let R be a nonempty finite set of attributes and P(R) its power set. The
mapping H : P(R) — P(R) is called a closure operation over R if for all 4,B €
P(R), the following conditions are satisfied :

(1) AC H(4),
(2) A C B implies H(A) C H(B),
(3) H(H(4)) = H(A).

Let s =< R, F > be a relation scheme. Set H,(A) = {a: A — {a} € F*}, we
can see that H, is a closure operation over R.

Let r be a relation, s =< R, F > be a relation scheme. Then A is a key of r ( a
key of s)if A— R€ F,( A— R € F*). A is a minimal key of r(s) if 4 is a key
of r(s) and any proper subset of A is not a key of r(s).

enote K, (K,) the set of all minimal keys of r(s).

Clearly, K,, K, are Sperner systems over R, i.e. A, B € K,(K,) implies A Z B.

Let K be a Sperner system over R. We define the set of antikeys of K, denoted
by K}, as follows:

K'={AcR:(B€EK)=> (BZ A)and (A c C) = (3B € K)(B C C)}.

It is easy to see that K~! is also a Sperner system over R.

It is known [5] that if K is an arbitrary Sperner system over R, then there is a
relation scheme s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of the
set of minimal keys (antikeys), then this Sperner system is not empty (doesn’t
contain R). We consider the comparison of two attributes as an elementary step
of algorithms. Thus, if we assume that subsets of R are represented as sorted lists
of attributes, then a Boolean operation on two subsets of R requires at most |R|
elementary steps.

Let L C P(R). L is called a meet-irreducible family over R ( sometimes it is
called a family of members which are not intersections of two other members ) if
VA,B,C€L,then A=BNC implies A=Bor A=C.

Let I C P(R), Re I,and A,B € I => ANB € I. I is called a meet-semilattice
over R. Let M C P(R). Denote M* = {NM' : M' C M}. We say that M is a
generator of I if Mt = I. Note that R € Mt but not in M, by convention it is
the intersection of the empty collection of sets.

Denote N={A€l:A#n{A' €eI:Ac A'}}.



Some Remarks on Functional Dependencies in Relational Datamodels 347

In [5] it is proved that N is the unique minimal generator of I.
It can be seen that N is a family of members which are not intersections of two
other members.

Let H be a closure operation over R. Denote Z(H) = {A : H(A) = A} and
N(HY={A€Z(H): A#n{A € Z(H): Ac A'}}). Z(H) is called the family of
closed sets of H. We say that N(H) is the minimal generator of H.

It is shown [5] that if L is a meet-irreducible family then L is the minimal
generator of some closure operation over R. It is known [1] that there is an one-to-
one correspondence between these families and f-families.

Let r be a relation over R. Denote E, = {E;; : 1 < i < j < |r]|}, where
E;; = {a € R: hi(a) = h;(a)}. Then E, is called the equality set of r.

Let T, = {A € P(R) : 3E;; = A, BEy : A C E,;}. We say that T, is the
maximal equality system of r.

Let r be a relation and K a Sperner system over R. We say that r represents
Kif K, = K. :
The following theorem is known ([7])

Theorem 1.1 Let K be a non-empty Sperner system and r a relation over R. Then
r represents K sff K~1 = T,, where T, is the mazimal equality system of r.

In [6] we proved the following theorem.

Theorem 1.2 Letr = {hy,...,h,} be a relation, and F an f-family over R. Then
F. = F sff for every ACR

n E.'j if BE.',' €E :AC E.','
HF(A) = AgE;;,

R otherwise,

where Hr(A) = {a € R: A — {a} € F} and E, 1s the equality set of r.

2 Results

In this section we introduce the concept of minimal family. We show that this
family and family of FDs determine each other uniquely. We give some desirable
properties of this family. We present some results about the relationship between
this family, meet-semiattice and family of FDs.

Definition 2.1 Let Y C P(R) x P(R). We say that Y is ¢ minsmal family over
R if the following condstions are satssfied :

(1) V(A,B),(A',B'YeY: ACBCR, AcC A' implies BC B', A C B’ implies
B C B

(2) Put R(Y) = {B :(A,B) € Y}. For each B € R(Y) and C such that C C B
and AB' € R(Yg :C C B' C B, there is an A € L(B) : A C C, where
L(B)={A: (A,B)e Y},
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Remark 2.2 (1.) R € R(Y).

(2.) From A C B' impliecs BC B' there 1s no a B' € R(Y) such that ACc B'C B
and A= A' implies B=B'.

(3.) Because A C A’ implies B C B' and A = A’ implies B = B', we can be see
that L(B) is a Sperner system over R and by (2) L(B) # 8.

Let I be a meet-semilattice over R. :

Put M*(I)={(A,B):3C€l:AcC A#n{C:Cel,AcC},B=n{C:
Cel, Ac C}}.

Set M(I) =é(A, B) e M*(I): A(A', B) € M*(I): A' c A}.

Note that if C € I, then C is an one-term intersection. It is possible that A = §.

It can be seen that for any meet-semilattice I there is exactly one family M(I).

Theorem 2.8 Let I be a meet-semalattice over R. Then M(I) is a minimal famnily
over R. '

Conversely, if Y 15 a minimal family over R, then there 1s ezactly one meet-
chmilét}tt'cc I sothat M(I) =Y, where = {CC R:V(A,B) €Y : A C C implies

C .

Proof: Assume that I is a meet-semilattice over R. We have to show that M (J)
is a2 minimal family over R. It is obvious that AC B C R.

From B =n{D:Del, A c D}},wehave B C D.If AC B',then AC D
andby B=n{C:Ce€I:AcC C}weobtain BC B'.By B(A'",B)e M*(I): A’ C
A and from A’ € A C B implies B’ C B we can see that if A’ C A then B’ C B.
Thuakwe obtain (1). Clearly, L;(B) = {A : (A, B) € M(I)} is a Sperner system
over R.

If there is a B € R(M(I)) and D satisfying D € B and VB’ € R(M(I)) : D C
B', B' C B imply B = B', then for all A€ L;(B): A Z D(s).

It can be seen that D #nN{C:CeIl,DcC}land B=n{C:Cel,D c C}.

If L;gB) U D is a Sperner system over R, then by definition of M(I) we have
D € L;(B). From (*) this is a contradiction.

If there exists an A € L;(B) : D C A, then this conflicts with the definition of
M(I )kThus, we have (2) in Definition 2.1. Consequently, M(I) is a minimal family
over R.

Conversely, Y is a minimal family over R. Clearly, I is a meet-semilattice over
R. It is obvious that (4, B) € Y implies A ¢ I.

Now we have to prove that M(I) = Y. Assume that (4,B) € Y. By (1) in
Definition 2.1 V(A’,B’) € Y : A’ C B implies B’ C B. From this and definition of
I we obtain B € I.

According to definition of I there is no C € I such that A ¢ C c B. On the
other hand, A C B and B i8 an intersection of Cs, where C € I, A C C. Thus,
l?Eﬁ{C: Cel,AcC}and A#n{C:C €I, A cC}. Hence, (4, B) € M*(I)

olds.

Clearly, if A = @ then (A, B) € M(I). Assume that A # ¢ and (4', B) € M*(I).
It is obvious that by the definition of M*(I) A' ¢ B and AB': A' c B’ C B. By
(2) in Definition 2.1 there is an A € L(B) : A” C A'. Because L(B) is a Sperner
system over R and A € L(B) we have A’ ¢ A. Thus, (A, B) € M(N) holds.

Suppose that A C R and A ¢ I. Based on the above proof, B € R(Y) implies
‘B € I. Clearly, R € R(Y). Consequently, for A there is a B € R(Y) such that
A C B(##). We choose a set B so that |B| is minimal for (**), i.e. AB' € R(Y):
A C B' C B. According to (2) in Definition 2.1 there exists an A' € L(B) : A' C A.
If thereis C € I: AC C C B, then A’ C C C B. This conflicts with the definition
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of I. Consequently, for all C € I and C # B, A C C implies B C C. From this and
according to the definition of M*(I) (A, B) € M*(I) implies B € R(Y).

Assume that (A, B) € M(I). By the above proof, B € R(Y) holds. We consider
the set L(B) = {A’' : (A’, B) € Y}. According to definition M(I) we have A C B
and AB' € R(Y) : A € B' € B. By (2) in Definition 2.1 there is an A’ € L(B)
such that A’ C A. If A’ C A, then according to the above proof (4’, B) € Y implies

A’',B) € M(N). A' C A contradicts the definition of M(N). Thus, A' = A holds.
onsequently, we obtain (A4, B) € Y.

Suppose that there is a meet-semilattice I’ such that M(I') = Y. We have to
show that I = I'. By definition of M(I') E € I' implies E € I. Thus, I' C I
holds. Suppose that there is a D € I and D ¢ I'. According to the definition
of meet-semilattice R€ I'. Put D®* =nN{E e I': D c E}. By D ¢ I' we have
D c D”. According to M*(I') (D, D”) € M*(I'). From definition of M(I') there
isaD:D' CDand (I',D") € M(I'). Thus, ' C D C D” holds. This conflicts
with the fact that D € I. Hence, I = I’ holds. ]

It is known [1] that there is an one-to-one correspondence between families of
FDs and meet-semilattices and by Theorem 2.3 we obtain the following.

Proposition 2.4 There 15 an one-to-one correspondence between minimal families
and familses of FDs.

Because there are one-to-one correspondences between meet-irredundant fami-
lies, closure operations and families of FDs, we also have the following.

Proposition 2.5 There are one-to-one correspondences between mintmal families,
meet-srredundant famslies and closure operations.

Remark 2.6 Let s =< R, F > be a relation scheme over R. A functional depen-
dency A — B € FY 45 called basic of s if

(1) Ac B,
(8) BA': A'C A and A' — Be F*,
() AB': BC B' and A— B' € F*,

Denote by B(s) the set of all basic FDs of s.

If a relation scheme is changed to a relation we have a basic functional depen-
dency of r. Denote the set of all basic FDs of r by B(r).

It can be seen that the set {A — R: A € K, } is a subset of B(s).

Remark 2.7 Let s =< R, F > be a relation scheme over R. Put Z(s) = {A: AT =
A}. Z;a) 15 & meet-semilatiice over R. M(Z(s)) ss called the minsmal family of s.
According to definstions of M(I) and B(s) we can see that M(Z(s)) = {(A, B) :
A — B € B(s)}. '

It is known [17] that there is no a polynomial time algorithm finding a set of
all minimal keys of a given relation scheme. From this and by Remark 2.6 we have
the following corollary.

Corollary 2.8 Let s =< R, F > be a relation scheme over R. There 1s no a
polynomaial time algorsthm to find the minsmal family of s.
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Definition 2.9 Let R be a relation over R and F, a family of ali FDs that hold in
r.Put At ={a: A— {a}€F)} SetZ, ={A: A= A}}. Then M(Z,) s called
the minimal family of r.

It is easy to see that the set {A — R: A € K.} is a subset of B(r).

We construct a following exponentlal time algonthm finding a minimal family
of a given relation.

In relation scheme s =< R, F >, a functional dependency A — B € F is called
redundant if either A = B or there i8 C — B € F such that C C A.

Algorithm 2.10 (Finding a mtmmal Jamily of r)
(Input:) a relation r = {hy,...,hm} over R.
(Output:) a minimal family of r.
(Step 1:) Find the equality set E, = {E;; : 1 <1 < 3 < m}.

(Step £:) Find the minimal generator N, where N = {A€ E, : A # ﬂ{B €E :AC
B}}. Denote elements of N by Ay, ..., A,

(Step 3: For every B C R if there is an A,él <1 <t) such that B C A;, then compute
C= N A; and set B — C. In the converse case set B — R. Denote
BCA;
by T the set of all such functsonal dependencies

(Step 4:) Set F=T —Q, where @ ={X Y €T : X =Y is a redundant functional
dependency }.

(Step 5:) Put M(Z,) = {(B,C) : B— C € F}.

According to Theorem 1.2 and definition of M(Z,), Algorithm 2.10 finds a
minimal family of r.

It can be seen that the time complexity of Algorithm 2.10 is exponential in the
number of attributes.

Let s =< R, F > be a relation scheme over R. We say that s is in Boyce-Codd
normal form ( BCNF)lt'A—0{¢1}¢F+ for At # R, a ¢ A.

If a relation scheme is changed to a relation we have the definition of BCNF for
relation.

Proposition 2.11 Given a BCNF relation r over R. The time complexsty of find-
ing a minimal famsly of r 1s ezponential sn the number of elements of R.

Proof: From a given BCNF relation r we uge Algorithm 2.10 to construct the
minimal family of r. By definition of BCNF, we obtain

M(Z,)= {{B,C) :B—+C€eF}= {(B,R) : B € K,}.

Let us take a partition R = X; U...U X,, UW, where |R| = n,m = [n/3], and
|X|—3(1<t<m) A
Set M = , i.e. K1 is a set of minimal keys of M, we have
M {C Cé—n '3,CNX; —9forsome|}1f|W]

—n—3CﬂX 0forsomet(1<:<m—l)or|0’|
n-— 4CnX UW) G}xfW|—1

M= { |C|—n 3,Cn —ﬂforso'mei(15i$m)or|C|=n—2,CnW=

ﬂ}xf|W|—2



Some Remarks on Functional Dependencies in Relational Datamodels 351

It is clear that 3l*/4l < |[K-1|,|M| < m+1.
Denote elements of M by C,,...,C,

1.
Construct a relation r = {hg, hy,..., h;} as follows:
For alla € R hoa) =0, fors =1,...,¢t

h,-(a)={ 0 ifaeC;

s otherwise.

Clearly, |r]| < |R| holds. According to Theorem 1.1 M is the set of antikeys of r
and K~ is the set of minimal keys of r. From definition of BCNF, we can see that
M(Z,)={(B,R): Be K~1}.

us, we can construct a relation r in which the number of rows of r is less
than |R|, but the number of elements of M(Z,) is exponential in the number of
attributes. O

Since the class of BCNF relations is a special subfamily of the family of relations
over R, the next corollary is obvious.

Corollary 2.12 The time complezity of finding a minsmal family of a given rela-
tion r ts ezponential in the number of atéributes.
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