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Codes and infinite words* 

J. Devolder * M . Latteux* I. Litovsky* L. Staiger® 

Abstract 
Codes can be characterized by their way of acting on infinite words. Three 

kinds of characterizations are obtained. The first characterization is related to 
the uniqueness of the factorization of particular periodic words. The second 
characterization concerns the rational form of the factorizations of rational 
words. The third characteristic fact is the finiteness of the number of factor-
izations of the rational infinite words. A classification of codes based on the 
number of factorizations for different kinds of infinite words is set up. The 
obtained classes are compared with thé class of u-codes, the class of weakly 
prefix codes and the class of codes with finite deciphering delay. Complemen-
tary results are obtained in the rational case, for example a necessary and 
sufficient condition for a rational w-code to have a bounded deciphering delay 
is given. 

Risumé: La factorisation des mots infinis permet de caractériser les codes 
parmi les langages de mots finis. Les critères obtenus sont de trois types. 
Le premier critère est relatif à l'unicité de la factorisation de certains mots 
périodiques. Le second concerne la forme des factorisations des mots ra-
tionnels. Finalement, seuls les codes-nous assurent de la finitude du nombre 
de factorisations des mots rationnels. Les codes sont classifiés selon le nom-
bre de factorisations de certains types de mots infinis. Les classes obtenues 
sont étudiées et comparées avec les classes déjà définies de v-codes, de codes 
faiblement préfixes et de codes à délai borné. Des résultats complémentaires 
sont obtenus dans le cas rationnel, en particulier il est donné une condition 
nécessaire et suffisante pour qu'un tu-code rationnel soit à délai borné. 

Introduction 
Codes, which are defined as the bases of free submonoids of monoids of (finite) 
words [1] were initially introduced by Schützenberger [19] in 1955. Since then, the 
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study of some classes of codes, specially from the point of view of an easy decoding, 
has been very active. Here we study codes, and classes of codes from the particular 
point of wiew of decoding infinite words. In this respect, the interesting codes are 
those for which every infinite word has at most one factorisation: "We shall refer to 
these codes as w-codes. It was shown by Levenshtejn [121 that, for a finite code, any 
infinite word has at most one factorization iff this code nas a bounded deciphering 
delay. For infinite codes the situation is more complicated. It turns out that the 
class of w-codes (initially called ifi-codes by Staiger) properly contains the class of 
codes having a finite deciphering delay, which in one's turn properly contains the 
class of codes having a bounded deciphering delay [20]. The most interesting codes 
are codes with bounded deciphering delay, because they allow an easy decoding of 
finite and infinite words. We give at the end of this paper an interesting necessary 
and sufficient condition for a rational w-code to have a bounded deciphering delay. 

Although arbitrary codes may give several factorizations of infinite words, codes 
can be characterized by their way of acting on infinite words. This is the purpose 
of the first section. Indeed, a language C is a code if and only if, for every word v 
of C + , the periodic infinite word v" has a single factorization over C. Codes are 
also characterized by the form of the factorizations of ultimately periodic words, 
and also by the fact that the number of factorizations of an arbitrary ultimately 
periodic word is finite. As an application, it is shown that the usual notion of code 
with bounded deciphering delay coincide with the notion defined in [20]. 

So, codes and w-codes are characterized in terms of infinite words. It is obvious 
that a language C is a code if no infinite word has uncountably many factorizations 
over C. Having this fact in mind, we set up a classification of codes based on the 
number of factorisations for different kinds of infinite words. If C denotes a code, 
the kinds of infinite words that we consider are the following ones: periodic words 
of the form uw with u € C + , periodic words, ultimately periodic words and any 
infinite words. This leads to consider the class C of codes, the class II of 7r-codes, 
the class W of weakly prefix codes, the class I of w-codes ( I as "iflcode"). 

These classes are compared with each other, and also compared with the class 
13 of codes having a bounded deciphering delay, the class D of codes having a finite 
deciphering delay, the class V of circular codes (V as "very pure"), the class S 
of suffix codes. The results can be summarized by the following strict inclusions 
B c D c I c W c I I c C , V c W . S c I I , and by the next array which indicates 
the maximal number of factorizations according to the type of infinite words and 
the class of codes, when the alphabet is countable and has at least two elements. 
In this array, the stars « point out the characteristic properties, and oo denotes 
Card(iR) : a noncountable infinity of factorizations is possible. 

words u" uu uvu any 
( « 6 0 + ) 

languages 
w-codes 1 1 1 1* 
weakly prefix 1 1 U oo 
jr-codes 1 U finite oo 
codes U finite « finite « oo 

In the second section, we give characterizations for the classes W,IT and S and 
we prove the announced inclusions. Using the inclusions V C W , S C II and the 
composition of codes, one can easily construct w-codes, weakly prefix codes and 
«•-codes. The second section terminates by some examples which enable us to fulfill 
the array. 
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In the last section, we examine the modifications holding when C is a rational 
language. Every infinite word has then a finite bounded number of C-factorizations 
whenever C is a code. The notion of w-code coincides with the notion of weakly 
prefix code in the rational case. We give also a new interesting necessary and 
sufficient condition for a rational w-code to have a finite deciphering delay. This 
condition C" n C" Adh(C) = 0 can be easily checked. As expected, it is decidable 
whether a rational language belongs to any class B, I (i.e. W ) or II. 

Notations and basic definitions? 
In the following, we consider an alphabet (finite or not) ¿4, the set A" (resp. Aw) 
of all finite (resp. infinite) words over the set A+ which denotes the language 
A* — e, where e is the empty word. The length of a word u is denoted by |u|. The 
symbol < (resp <) denotes the relation between words "is a (resp. strict) prefix 
of". The left quotient of a word u by a word v is denoted by v - 1 u . 

Two words x and x' are said to be conjugate if there exist u and v such that 
x = uv and x' = vu. A word z € is primitive if z = un implies n = 1. 

Given a language C C the submonoid generated by C is the language 
C" = { « i . . . ti„[n > 0, Vi € C, 1 < i < n} and Cu stands for the set of infinite 
words obtained by concatenation of an infinite sequence of words of 0 : 0 " = 
{voui"2 • ••!"» G C,i > 0}. A C-factorization of a word v S C" is a sequence of 
words of C : (t>!,..., t)„) such that v = Ui...w„. A C-factorization of a word 
v S Cu is a sequence of words of C : (vo) f i i f2i • • •) s u ch that v = t>o«it>2 

An infinite word w is said to be ultimately periodic if there finite words u and v 
such that w = uv". It is said to be periodic if u can be chosen equal to e. 

Given a language C C we shall often consider a bijection <p between an 
alphabet X and the language C. This mapping can be extended to X° as a mor-
phism <p : X" —* C". This morphism is said to be a coding morphism for C (even if 
it is not injective). The mapping <p can also be extended to X" (p(zqZi ...) is the 
word <p(za)<ptzi)...). These extension agree with the composition of functions of 
words of X" (resp. X " ) and the set of C-factorizations of words of C4 (resp Cw). 
Thus a C-factorization of u € C* (resp : u € Cu) will be represented by an element 
of X" (resp: Xu). 

Definitions: Let C be a language C A+. 
- C is a code if and only if Vu, v € C uC" n vC* ^ 0 => u = v 
- C is a prefix code if and only if Vu, w € C u < v u = v 
- C is an w-code if and only if Vu, v e C uCw n vC" ^ 0 => u = v [20]. 

These definitions can be expressed in terms of morphisms. Let <p be any coding 
morphism for O. 

- C is a code if and only if <p : X* —* C" is injective. 
- C is an w-code if and only if <p : X" —» C" is injective. 
Recall that w-codes are codes and that prefix codes are u-codes. Using coding 

morphisms, it is easily seen that a composition theorem holds for codes [l] and op-
codes. Namely, let C be a language C X+ and <p : X* —* A* be a coding morphism 
for a language D = <p[X) C A+, if C and D are codes (resp: w-codes), <p(C) is a 
code (resp: w-code). 
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1 Characterizations of codes 
In this section, three kinds of characterisations for codes are obtained: the first 
kind concerns the words which hâve only one C-factorization, thè second is related 
to the form of the C-factorizations of ultimately periodic words, the last give a 
bound for the number of C-factorùsations of a given ultimately periodic word. 

We define now some notations and give some lemmata used in the proof of the 
main theorem. Let <p : X' —• C" be a coding morphism for C. 

Lemma 1.1 If C C A+ is a code, for every word v € A+, there exists at most one 
primitive word z € X+ such that <p(z) € u . 

Proof . If <p(z) = n" and <p[z') = vm,<p(zm) = <p(z,n). Thus zm = z'n ( <p 
injective) and then m = n and z = z' if z and z' are primitive words. • 

Lemma 1.2 If yz" s Xw is a C-factorization of uvw (where v is assumed to be a 
primitive word), <p[z) is a power of a conjugate of v. 

Lemma 1.3 Let us consider x € Xu such that <p(x) is ultimately periodic. There 
exist y,z 6 X", t € Xu such that x = yzt, and <p(x) = <p(y)<p(z)w. 

Proof . Let x be the C-factorization: tti, tt 2 , . . . , t ip , . . . of an ultimately periodic 
word uv". Since v is of finite length there exist », j, k, m such that k < m, u i . . . it* = 
uvxw and t»i . . . u m = uvi+3w where w is a prefix of v. The word v' = w~1v3w 
belongs to C + and uvu = « i ... UfcV'w. • 

Lemma 1.4 If C C A+ is a code, for every word v € C+, the word vw has only 
one C-factorization. 

Proof . Let us consider v € ' C + : v = ViV2... vn with V{ e C such that vu has two 
distinct C-factorisations: vu = (t>i«2 . . . vn)w = uiu2 . . . up . . . (where Vs u,- e C). 
Without loss of generality we may assume that ^ Ui. As in the proof of lemma 
1.3, there exist i,j, k, m such that k < m, « i . . . u* = v*w and u i . . . um = vt+Jtu 
where to is a prefix of v. Then the word v%+}w = u i . . . um = (« j ... vn)3 U\ ... tifc 
has two distinct C-factorizations. C is not a code. • 

Lemma 1.5 Consider C C such that every word of the form wu with w 6 C+ 

has exactly one C-factorization. For all words u, v 6 A+, every C-factorization of 
the word uv" is ultimately periodic. 

Proof . Let us consider a C-factorization x of the word uvu G Cw. FVom lemma 1.3, 
there exist y,z € X*,t Ç. Xw, v' e C + such that x = yzt,<p(z) = v',p(t) = v'u. By 
hypothesis, the word v'w has a single C-factorization. Since <p(zu) = v'u = <p(t), 
we have t = zu and then x is ultimately periodic. • 

Lemma 1.6 Let C be a code C A+. Consider words u and v of A+. The set of 
C-factorizations of uv" is finite. 

Proof . Let us consider uv" G C". Assume that v is primitive. Denote by V = 
{v, |i £ 1} the set of conjugates v,- of v such that v* f~lC+ / 0. Since C is a code, we 
can denote by z,- the primitive word such that y?(z,-) £ vf and rij the corresponding 
power of Vi : <p{zi) = vj". We consider the equivalence relation on V: 

Vi ~ Vj O 2,- and Zj are conjugate. 
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Since <p(zi) and <p(z,) are conjugate, it is clear that n̂  = ny whenever ~ tiy. 
Let f be the set of C-factorizations of uuw. We shaU prove that Card(.F) < En,-, 

where only one n,- by ~ class is taken. 
. Since C is a code, from lemma 1.5, every C-factorization of uvu is ultimately 

periodic, hence of the form yz" with z primitive; from lemma 1.2, there exists a 
conjugate t>< of v such that <p(z) & Then the set F of C-factorizations of tiv" 
satisfies F = U ( f n i ' z " ) . Since X*z? = X*z" when Zi and z, are conjugate, the 
previous union has only N terms, where N denotes the number of classes of 

It remains to prove that Card(.F fl X*z") < n*. Consider y'z",y"z" and 
yz? g F, such that |*>(y)| = inf{|p(u)||tug' € F). Since ^ ( y M ^ ) " = 
<p[y')p(zi)u, <p(zi) S v* and Vi is primitive, one has <p(y') = <p(y)v? for some 
h'. One has also <p(y") = <p(y)vI" for some h". If h' = fcn< + h", <p(y"z?) = 
<p{y)vi "+kni = = <P(y')- Since C is a code y"zf = y' and then y"zf = y'zf. 
The number of elements of F D X* z" is then at most the number n,- of integers 
modulo n,-. • 

The following theorems give the characterization of codes. For convenience, 
theorem 1.7 gives the characterizations related to periodic words ant theorem 1.8 
gives those related to ultimately periodic words. 

Theorem 1.7 LetC be a language C A+. The following assertions are equivalent: 

1. C is a code, 

2. for every u 6 C + , u" has a single C-factorization, 

S. every C-factorization of each periodic infinite word is ultimately periodic, 

4. each periodic infinite word has a finite number of C-factorizations. 

Theorem 1.8 LetC be a language C A+. The following assertions are equivalent: 

1 C is a code, 

8' every C-factorization of each ultimately periodic infinite word is ultimately pe-
riodic, 

4' each ultimately periodic infinite word has a finite number of C-factorizations. 

Proo f . 1 =>• 2 : lemma 1.4; 2 3': lemma 1.5; 1 => 4': lemma 1.6; 3' => 
з,4' =>• 4: clear; 3 => 1 and 4 => 1: If C is not a code, there exists a word u 
which has two distinct C-factorizations. There exist y and z G X+,y ^ z, such 
that <p(y) = <p(z) = u. Without loss of generality, one can assume that the first 
letters of y and z are different, then a bijection ^ between {0 ,1 } and {y, z} gives a 
bijective morphism ¥ : {0,1}W —* {y, z}u and the elements of [y, z}u are distinct 
C-factorizations of uu. The word u belongs to C + and uw has a non-countable set 
of C-factorizations; hence also a non-countable number of non-ultimately periodic 
C-factorisations. • 

Remarks: 
- FVom lemma 1.3, in the property 4', one can replace: "each ultimately periodic 

infinite word" by "each ultimately periodic infinite word of the form uvu with 
и , « 6 C + " . 
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- A periodic infinite word can have a nonperiodic C-factorization even if C is 
a (prefix) code. For example: if C = {a, i>a}, the C-factorization of (ab)u is not 
periodic. 

Property 3' of codes has been used to give characteristic properties of precircular 
codes [7]. The characterizations 3 and 3' can be used to prove composition theorems 
for weakly prefix codes and for jr-codes. As an application of property 2, it can be 
easily seen that a code C is always minimal in the family of w-generators of C " (i.e. 
languages R such that Ru = C" ) . We give here another application of property 2. 

Application: 

In [20] the following notion of delay of decipherability was introduced: a lan-
guage C C i4+ is said to have a finite delay of decipherability if 

Vv 6 C 3m(u) > 0 vCm^Au nC" cvC". 

Remark: A languagerwith a finite delay of decipherability in this sense is not 
necessarily a code, as it can be seen for C = {a ,a 2 } . The language C = {a 2 , a 3 ,6 } 
is another more complicated example (it is not a code but m(fc) = 0 and m(a2) = 
m(a3) = 1). 

Some authors use another notion of finite deciphering delay [l], [5], which is in 
fact a notion of bounded deciphering delay [10]. Here, we say that: 

- a language C C is said to have a finite deciphering delay if 

V v e C 3m(v) > 0 Vv' € C (vCm^Au n v'C" ^ 0 => v = v') 

or equivalently if 

Vv 6 C 3m(v) > 0 Vv'eC (vCm^A* n v'C* ^ 0 => v = v') 

A language which has a finite deciphering delay is a code [1] and clearly has 
a finite delay of decipherability in the sense of [20]. Thus the notion of finite 
deciphering delay is stronger than the notion defined by Staiger. We shall see that 
these notions coincide for codes. 

Proposit ion 1.9 Every code which has a finite delay of decipherability is an op-
code. 

Proof . Consider v,v' G C such that w C D v'C' ^ 0. For n > max(m(u), m(w')) 
and tv E vC" fl v 'C" , there exist u, u' € C " such that vu and v'u' are prefixes of 
to. If vu is a prefix of v'u', ( vV ) w 6 vCm(u)yiw n C " , thus (v'u')w € vC u . Since 
v'u' 6 C + , from characterization 2, v = v'. Hence C is an w-code. • 

Proposit ion 1.10 Every code which has a finite delay of decipherability has a 
finite deciphering delay. 

Proof . Let v and » ' e C and assume that vC m h a * C W C is not empty. Consider 
w e vC m ( °U* Dv'C*. The word wvu belongs to vCmWAwnCu and then belongs 
to vCw and to v'C", from the previous proposition we obtain that v = v'. 

• 
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Remarks: 
- In a same way, a code satisfying: 3w> > 0 Vv € C v C ^ ' U « n C" C VCu 

is a code with a bounded deciphering delay, that is to say: 

3m > OVv e CVv' G C{vCmA* D v'C* ? 0 =>> v = v'). 

- The two notions of finite and bounded delay do not coincide in general, al-
though they are equivalent in the regular case [20]. 

- The notions of w-code and code with a (finite or bounded} deciphering delay 
coincide in the case of finite codes [12] [5]; these classes do not coincide when regular 
codes are considered [20] . We give in section 3 a necessary and sufficient condition 
for a rational u>-code to have a finite deciphering delay. 

2 Study of some special codes - examples. 
Weakly prefix codes were defined by Capocelli [5]: 

Definition: A code C C A+ is a weakly prefix code if and only if 

Vu, v,w £ A* (to, tou, uv, vu G C* => u G C*). 

Notice that this definition is equivalent to the next: 
A language C C A+ is a weakly prefix code if and only if C is the base of a 

monoid M satisfying the condition: 

Vu, v, w G A* (to, tou, uv, vu 6 M ^ u 6 M). 

Proof. It is sufficient to prove that a monoid M which satisfies the required 
condition is stable [1]. & the words w,wu,uv'lv' belong to M, the words 
w,wu,uv'w,v'wu belong also to M. Let v = v'w. The words w,wu,uv,vu be-
long to M and then u belong to M, M is stable. • 

Clearly, prefix codes are weakly prefix codes. 
Let us recall some definitions. A language C C A+ is a circular code [11] [l] if 

and only if 

Vn,p > OVuo,..., Un-i, w 0 , . . . , Vp-i G CVt G A*Ws G A+ such that vo = ts 

(uo . . . u„_ i = . . . Vp-it => n = p t = e and V» u,- = «,•). 

A monoid M C A* is a very pure monoid if and only if 

Vu, u G A* (uv, vu G M =>• u,v G M). 

It is known that a language C is a circular code if and only if C is the base of a 
very pure monoid [16]. 

Clearly, the class V of circular codes is an interesting subclass of the class W 
of weakly prefix codes. But the inclusion V C W is strict: for example, {ab, 6a} is 
a (weakly) prefix code but is not a circular code. 

The next proposition characterizes weakly prefix codes in terms of infinite words. 
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Theorem 2.1 Let C be a language C A+. The following assertions are equivalent: 

1. C is a weakly prefix code 

2. for every u, v € C + uvu has a single C-factorization 

S. each ultimately periodic infinite word has at most one C-factorization. 

Proof . 1 =>• 2 : Notice that, since C is a code, any C-factorization of an ultimately 
periodic word is ultimately periodic. Assume now that uvw = u'v u and u, u', v, v' G 
C+, |u| < |u'|. If the two C-factorisations are distinct, we can assume that u = 
u i . . . u№ and u' = t i j . . . u^ with ux jt u'j. If u' = uui where w S C,C is not a 
code. Then suppose that u' = uw where w & C°. Taking appropriate powers of 
v and v', we can assume that |v| = |ti'| > |to|. Then v = ww' and v' = w'w for 
some word w'. We have u, uw, ww', w'w 6 C* but w £ C°, a contradiction with C 
weakly prfix. 

2 =>• 1 : If C is not weakly prefix, there exist u,v,w such that u ^ 
C",w,wu,uv,vu € C". Hence w(uv)u has two distinct C-factorizations. 

3 =>• 2 : Clear. 2 =>• 3 : Clear from lemma 1.3. • 
As a consequence we obtain: 

Corollary 2.2 u-codes are weakly prefix codes. 

The converse is not true in general. Let C = { a i } U {a6"o6 , l+1|n > 1}. This 
example presents a weakly prefix (circular) code C which is not an w-code, but 
such that every proper subset of C is an w-code. This shows a difference between 
w-codes and weakly prefix codes since a language C is clearly a weakly prefix code 
iff every finite subset of C is a weakly prefix code. This example shows also that 
V and W are not included in the class I of w-codes; I is neither included in V 
(consider the prefix code {ab, ba}). 

Now, we study a type of codes which take place between codes and weakly prefix 
codes. Indeed, such a type of codes exists. Erom theorem 1.7, if C is a code, for 
every u e C+ uw has a single C-factorization. But it is not possible to replace 
C+a by "u € j4+*. This observation was already made by Karhumaki in connection 
with theorem 3.3 of [10], however the example given there, {ab,aba,baba} is not 
a code. By contrast, the language C = {a, aaba, abaaba} is a code and the word 
(ao6)w has two C=factorizations. 

In theorem 2.1, it is not possible to replace "ultimately periodic* by "periodic": 
a language C may no longer be a weakly prefix code even if every periodic infinite 
word has at most one C-factorisation. For example, let C = {ab, aba, fca2}. The 
word ab(aba)u = aba{ba2)u is the only word which has at least two C-factorizations 
beginning by two different words. Thus every periodic word has at most one C-
factorisation. Note that C is a suffix code. 

Thus theorem 1.7 and 2.1 do not study uniqueness of the factorization of periodic 
words. Then it is natural to try to characterize codes which factorize infinite 
periodic words in a single manner. For sake of convenience these codes are called 
K-codes here. Note that the three-element codes which are not «"-codes have been 
studied by Karhumaki and called periodic codes [10]. 

Definition: A language C C is said to be a ?r-code if each periodic infinite 
word has at most one C-factorization. 

Theorem 1.7 ensures that a 7-code is a code. We have seen an example showing 
that the converse is false. As for weakly prefix codes, a technical characterization 
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of «--codes can be obtained. One can prove that a code C C A+ is a jr-code if and 
only if C satisfies the property: 

(P) Vu,v,w,P g A* such that wuvu < f)u and |u| > |/9|, one has: 

w, wu, uv, vueC* =>• u e C*. 

Proof . Let u,v,w,P such that wuvu < > |/?| and w,wu,uv,vu € C*. We 
can assume f) primitive, then u has a single interpretation over P : there exist a 
single i > 0, a single suffix of P : P', a single prefix of p : p" such that u = 
Then uv = p'p'pp'-1 and wu = p"~^ppip" for some j. Hence Pu = ^(ut;)" = 
wu(vu)u. Since C is a «--code, the word p" h as at most one C-factorization 
therefore u € C*. 

Conversely, let p " be a periodic word having two distinct C-factorisations: 
(toi, tug,...) and (ttfj, w'f,. . .). We can assume that ti^ jt w^. Denote P" = u i o j . . . 
where tij = p for each ». 

We can consider (when exists) pi such that twi... u>Pi-i < Ui . . . u<_i < 
u>i...wPi < u i . . . There exist a word a and infinitely many « such that 
u>i . . . wPi = «i...u,-_iOt. In the sequel, m and n denote such indices p,-. In a same 
way, there exist a word a ' and infinitely many t such that there exists qi satisfying 
Wi . . . togi_i < Ui . . . u,-_i < Wi . . . wqi < Ui.. .Ui and w[ ... w'q. = U i . . . u ,_ ia . 
In the sequel, m' and n' denote such indices qi. 

Let us choose m, m', n, n' such that u>i... wm < ... w'm, < wi... wn < 
w^... w'n,. Let w = wi... wm, wu = u>J... w'm,, tvuy = t^i . . . iun, wuyz = 
w'1...w'n,. The choice of m' can be done such that |u| > \P\. We have: 
uy = p'p 6 C + and yz = p"p S C + , where P' and P" are conjugate with p. Let 
t> = y{uy)q~l\uv 6 C+ and vu = (yzY, then vu e C + . The words w,wu,uv,vu 
belong to C*, therefore u belongs to C*, which gives a contradiction with " C is a 
code" since jt w[. • 

In this characterisation, the condition " C is a code" cannot be suppressed. For 
example, let C = {ba,b,abc,bc}. The monoid C* is not free and the condition (P ) 
is satisfied. 

fVom theorem 2.1, it is clear that weakly prefix codes are jr-codes. Surprisingly, 
the family of «--codes contains a well-known subfamily: the family S of suffix codes. 
This fact is obtained as a consequence of the next interesting characterization of 
suffix codes. 

Proposition 2.3 A language C C A+ is a suffix code if and only if every C-
factorization of a periodic infinite word is periodic. 

Proof . If C is not a suffix code, there exist v' € A+,u, v e C such that v = v'u. 
The word uvu is periodic and has a non periodic C-factorization. 

Conversely, consider a suffix code C, <p : X* —+ C* a coding morphism for C and 
P a primitive word such that p" € C " . Consider a C-factorization of fiw. From 
lemma 1.2 and theorem 1.7, this factorization can be written yzu and there exists a 
conjugate of p : P' such that <p(z) = p n for some n. Since Pw = op u, <p(y) = op k 

for some k. Then <p(y) is a suffix of [Pn) + , and since C is a suffix code, y is a 
suffix of z+. Hence the considered factorization is periodic. • 

In these conditions, Pu = v" for some v in C + and from theorem 1.7, the 
C-factorisation of P" is unique. So we have: 

Corollary 2 .4 Suffix codes are it-codes. 
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Remarks : 
- The inclusion S C II is strict: the ir-code {a, ba} is a not a suffix code. 
- A code with a finite left deciphering delay (even delay l ) is not always a 

ir-code. 
For example: the word (afce)" has two C-factorisations when C = 

{a, ab,cab,bca). 
- § is not included in W : {e, ca, aba, ba2} is a suffix code which is not weakly 

prefix. 
As an application of theorems 1.8 and 2.1, a composition property for weakly 

prefix codes and ir-codes can be obtained: 

Propos i t ion 2.5 Let C be a language C X+ and <p : X" —» A" be a coding 
morphism for a language D = <p[X) C A+. If C and D are weakly prefix codes, 
<p(C) is a weakly prefix code. If C is a weakly prefix code and D a ir-code, <p(C) is 
a ir-code. 

Remark : In proposition 2.5, for <p(C) to be a ir-code, the request property "C 
weakly prefix code" cannot be replaced by the other one " C jr-code". For example, 
C = (c, ca, aba, taa} is a tr-code but not a weakly prefix code (the word c(aba)u has 
two C-factorisations). Let p(a) = ac,<p(b) = b,ip(c) = c. The code D = {ac,b,c} 
is prefix but <p(C) = {c, cac, acoac, bacac) is not a ir-code since the word (cacba)u 

has two C-factorisations. 
In the following, we give some examples of 7-codes and weakly prefix codes for 

which there exists a word u>o which has infinitely many factorisations. The set of 
factorisations of wq may be countable or not countable. The last example allows 
us to fulfill the array given in the introduction. 

Example 2.1 Let Cx = {aba2b2a3b3... an6"on + 1|n > l } , C 2 = {6Po«6"|0 < p < 
9} and consider C = C\ U Cj. The language C is a suffix code and thus a ir-code, 
but C is not a weakly prefix code since for example, the word o6o263o363(o464)u 

has two C-factorizations 
The word w0 = aba2b2 ...anbnan+1bn+1... has a countable infinity of C-

factorizations and every word has a countable (finite or not) number of C-
factorizations. 

Example 2.2 Let A = {a,b},C = {tia6n||u| = n,n > 0, |u|a = 0 or 1} f]u|a 
denotes the number of occurrences of a in u). Clearly C is a suffix code thus a 
ir-code. Since the word w = 6a6.6o6.(64o64.6o6)w = bab2ab*.(bab.b3ab4)u has two 
C-factorizations, C is not a weakly prefix code. We shall see that there exists a 
word Wo which has a noncountable infinity of C-factorizations. 

Let wQ be the word: ab,0abl1... abln... where i0 = 0, »x = 1, t n + 3 = ¿ „ + 1 + 1 „ + 1 
for every n > 0. Let us prove that, for every factorisation of wo : wo = uv, the 
word v has at least two C-factorizations. In fact, v € x(v)Cu fl y(v)C" for two 
different words: x(v) and y(v) of C. Let v = b'°abinabin+1... with 0 < j0 < 
» „ _ ! . Then v = b^ab^.b^^ab3'1 b}hab}h.... where jh+i = in+h ~ jh and jh 

satisfies 0 < jh < in+h for every h > 0; let us set x(u) = bj0abj0. The word v 
has also the other C-factorisation: v = b3°abinabk0.bklabkl bkhabkh.... where 

- Jo + *» + 1> kh+i — in+i+hkh ^h satisfies 0 < k^ < »n+i+h for every 
h > 0; let us set y(u) = b3°abinabk0. We have: « 6 x(v)Cu n y{v)Cu. 

Then an injective mapping 6 form {0, l } w into the set of C-factorizations of wo 
can be defined next way: let ^ = G { 0 , 1 } W , S(/3) = (zn )n where z0 = z(iu0) 
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if fa = 0 and zo = y(to0) if Po = 1, 
Zn = y((z 0 2l . . . Z n - i ) - 1 ^ ) if Pn = 1. 
factorizations. 

= z((zbzi ...z„_i)-1tu0) if Pn = 0 and 
So wo has a noncountable infinity of C-

• 

Example 2.S Let A = {u,-|t > 0} and C = CiUC2 where C\ = {uottxu2 . . . u2.|t > 
0} and C 2 = {u2'3j+i • • • U2'3J+1 l*i J > 0} . Since the mapping: (», j ) 2*3' 
is injective. it can be shown that C is a weakly prefix code. Every word has a 
countable (finite or not) number of C-factorizations and there exists a word which 
has a countable infinity of C-factorizations. Indeed the word wo = U0U1U2 ... u„ ... 
has a countable infinity of C-factorizations since the C-factorizations of wo are of 
the form: (tio ...u2.)(u2i+i...«2'3)(u2'3+i • • • Ua^1) • • • («a'si+i • • • «a'a^») ... for 
some i > 0. • 

Example 2 .4 Let A - {ui| > 1 } , C = {u„ . . . u 2 „ - i | n > 1} U { u „ . , .u2„|n > l } . 
We show that C is a weakly prefix code such that there exists a word which has a 
noncountable infinity of C-factorizations. 

Let to0 = u i u 2 . . . u„ As in example 2.2, it can be easily verified that w0 has 
a noncountable infinity of C-factorizations. Let to be a word which has two C-
factorizations S and 8' beginning by two different words. Then 8 and 6' begin 
by u n . . . u 2 n _ 1 and u n . . . u 2 n for some n. The second words of 8 and 8 ' are 
«2n • • • «4n - i or u 2 „ . . . u 4 n and U2„+1... or u 2 „ + i . . . U4„+2 . In every case 
they overlap. Then, by induction, it can be shown that w = ( u i . . . u n _ i ) - 1 t oo and 
then w is not ultimately periodic. Thus C is a weakly prefix code. • 

Using the composition proposition 2.5 and the previous examples, it is easy to 
construct over a finite alphabet examples of codes having the same properties. Let 
B = {a, 6} and <p : A —• B+ defined by: p(ui) = axb. The language D = p(A) is a 
prefix code. 

Example 2.5 Let C be the code defined in example 2.S. the language C = <p(C) 
is a weakly prefix code over a finite alphabet satisfying: 

- every word has a countable (finite or not) number of C'-factorizations 
- infinitely many words have a countable infinity of C'-factorizations. 

Example 2.6 Let C be the code defined in example £.4 the language C' = <p(C) 
is a weakly prefix code over a finite alphabet and there exists a word: y>(tOo) which 
has a noncountable infinity of C'-factorizations. 

3 The rational case 
When a language C is rational, one can consider an automaton flo = (Qo, <7o> I f ) 
with a finite set of states Q01 & single initial state go and a single final state gp, 
which recognizes C and such that no edge comes to go and no edge goes from qp. 
The automaton flo can be chosen trim (i.e. for every state q there exist a path 
from qo to q and a path from q to and unambiquous (i.e. the words of C have a 
single acceptance path). The automaton fl = (Q, qo, go) obtained by identification 
of go and qp recognizes C*. If C is a code, the automaton fl is unambiguous [1]. 
This automaton looked as a Buchi automaton recognizes C". 
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Theorem S. l Let C be a rational language C A+. The following conditions are 
equivalent: 

1. C is a code 

2. every infinite word has a finite number of C-factorizations 

S. there exists p such that every infinite word has at most p C-factorizations. 

Proof . 3 => 2 : clear. 2 => 1 : This comes from theorem 1.7. 1 =>• 3 : Let C be a 
rational code and fi = (Q, ?o> 9o) an unambiguous automaton for C" constructed 
as said before. Consider w € Cu and t > 1. We call cut of (u>, t) every sequence 
( n i , . . . , n p - i ) such that there exists np satisfying: 

(i) no = 0 < ni < . . . < n p _i < t < np,p > 2 and wfnj- i , n,-[e C for 
i = 1 ,...,p. (Here, and in the sequel, the factor WiW{+1 . . . u;y_i of a word to is 
denoted by w[t,y[). 

At first, we show that, for every t, (to, t) has at most Card(Q) cuts. 
Let us consider ( n i , . . . , np) and (n' j , . . . , n'k) such that (i) is satisfied. Denote 

by q (resp. q') the state reached after reading u>[0, t\ in the single successful path 
of tu[0, np[ (resp. to[0, nj.[). If q = q', to[0, np[ has a second successful path: 
path related to w [ 0 , u n t i l t, path related to to[0, np[ after. Then p = k and 
( n i , . . . , n p _ i ) = (fi ' j , . . . , n p - 1 ) since H is unambiguous. 

Thus (w,t) has at most Card(Q) cuts. Then to has at most Card(Q) C-
factorisations. • 

Remark: An infinite word which has several C-factorizations is not necessarily 
ultimately periodic: the word: o62c63(c263)c63(c263)2 . . . c63(c263)"c63(c263) , , + 1 . . . 
has two C-factorizations when C = {a,ab,bcb2,bc2b'2,b2cb,b2c2b}. 

A set of infinite words over an alphabet A is said to be rational if it is a finite 
union of sets RiS" where Ri and Si are rational subsets of A". It was proved that 
the rational sets of infinite words are the languages which can be recognized by 
a finite Buchi-automaton [4l. The set of rational subsets of Aw is closed by finite 
union, finite intersection ana complement [4]. For details, one can see [18]. 

Proposit ion 3.2 Let C be a rational language C A+. The set of infinite words 
which have several C-factorizations is rational. 

Proo f . If C is rational, the semi-congruence defined by: 

u ~ v O ts_1C = v~1C 

is of finite index. Let us denote by [u] the class of a word u. The set D of infinite 
words which have several C-factorizations can be written: 

d= u c . H . i c - n a u r ^ - M j c « ) . 
M c c 

So D is rational. • 

Remarks: 
- The set of infinite words which have several C-factorizations is countable when 

the code C has three elements [10]. It can be noncountable when the code C has 
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more that three elements. For example, let C = (afc, aba, bab2, b2ab2a}. Every word 
of ofea(62o62o + bab2ab)u has a noncountable infinity of C-factorizations. 

- It can be proved from proposition 3.2 that, if C is a rational language, C is 
an u>-code if and only if all its finite subsets are w-codes. This property does not 
hold for nonr&tional languages as it can be seen for C = {ab} U {a6"o6n+1Jn > 0}. 

- From proposition 3.2, we obtain the next statement which is a result of Staiger 
[20]. This statement agrees with the fact that a rational w-language is specified by 
the set of ultimately periodic words contained in it [4]. 

Corollary 8.S Any rational weakly prefix code is an u-code. 

Since it can be checked whether the rational set of infinite words which have sev-
eral C-factorisations is empty or contains a periodic word, we have the following 
corollary. 

Corollary S.4 One can decide whether a rational language is a ir-code (resp. a 
weakly prefix code, or equivalently an u-code). 

The membership problem for the studied classes of codes is decidable in the rational 
case. Indeed the result is well known for codes [l], and has been proved for codes 
with bounded deciphering delay by Cori [6]. This latter result is also a consequence 
of the next result of Capocelli, and can be also deduced from proposition 3.7. 

Capocelli [5] gave a necessary and sufficient condition for a rational weakly 
prefix code (or w-code) C to have a bounded deciphering delay. That is: 

3p > 0Vu € A^uCTA* n C ^ 0 =• C+u n C + = 0. 

We give here another condition which obviously is satisfied when the code is finite. 
In this condition we need the notion of adherence [3]. An infinite word to belongs 
to Adh(C), the adherence of a language C of finite words, if every left factor of to 
is a left factor of a word of C. 

Lemma 8.5 Let us consider a language C C A+. 

1. if C is a code having a finite deciphering delay, C is an u-code and 
Cu nC".Adh(C) = 0. 

B. ifC is a rational u-code such that C" nC* .Adh(C) = 0, then C has a bounded 
deciphering delay. 

Proof . 

1. If C is not an w-code C cannot be a code having finite deciphering delay 
(proposition 1.9). Thus, let C be an w-code for which there is some to G 
Cu n C*.Adh(C). Without loss of generality, we may assume that w = 
U1U3U3... = w'iUg... «J,«/ where € C for every %,w' 6 Adh(C) and 
«4 «1 or p = 0. Since 10' € Adh(C), for every d > 1 there exists v € C 
such that u i . . . ts<j < tî  u'2 ... u'pv where u'x / lii or p = 0. Thus C has not 
the deciphering delay (d— l) . 

2. Let C be a rational language and 0 = (Q, qo, 90) an unambiguous automaton 
for C° constructed as said before. Let a be the number of states. Assume that 
C has not he delay d. There exist n > 0, tto,. . . , u^, u'0,..., e C,z e A* 
such that u 0 . . .u^z = u'0 .. ,u'n and u[, ^ uq. 
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There exists a path of label Uq . .. u'n from go to go- Within this path, we 
denote by q}- the state reached after reading u o « i . . . uy. There exist j and 
j' > j such that g, = g'y (we denote q = q}). Then we denote: y = 
«o.. .tiy = « { , . . . u ^ . j i ' with J < u'm,x = ui+1.:.u'J;x'xx" = u'm...u'm+h, 
with x" suffix of u'm+h,u'}+i---ud* = «"um+h+x h = °> f o r e v e r y 
n, x ' i n i " e C and then yxu g C*.Adh(C) n C " . If h > 1, yxu has two distinct C-
factorinations: « o , . . . , uy(uy+i « y ) " and u { „ . . . , u ^ , (u 'm , . . . , u ' m + h _ l t « ) " 
where « = - l u m)> 'bus C n o t a n w-code. • 

Lemma 3.5 can be used to derive a new proof of a result in [20]. To this end, 
we consider Au as a topological space defined by the set of open subsets: E C Aw 

is opén iff E = WAu for some W C A". The closed subsets (t'.e. the complements 
of open subsets) are the languages of the form Adh(W) for some W C A" [21j. We 
need here the next classes of the Borel hierarchy. A F„-set is a countable union of 
closed subsets and a G^-set is a countable intersection of open subsets. 

Corollary 3.0 When C is a code with a finite deciphering delay, the language Cw 

is a Gg-set. 

Proof . Since Adh(C4) = C " U C t . Adh(C) [13], when Cu n C. AdhiC) = 0 the 
set Cu is the difference of the closed set: Adh^C") and the F„-set: C".Adh(C), 
hence C" is a Gg-set. • 
Remark: The tempting assumption "C" = n C A " " is true for the codes C having 
a bounded deciphering delay [20] but no longer true for the codes C having a finite 
(but not bounded) deciphering aelay (cf. example 3 of [20]). 

We can summarize: 

Theorem 3.7 Let C be a rational language C A+. The following conditions are 
equivalent: 

- C is a code with a bounded deciphering delay 
- C is a code with a finite deciphering delay 
- C is an w-code satisfying Cu n C . M ( C ) - 0. 
- C is a weakly prefix code satisfying C" n C" .Adh(C) = 0. 

We have already seen that there exist w-codes without finite deciphering delay. 
The other condition: " Cs.Adh(C) n C" = 0" is neither sufficient. For example, 
the finite code {a, ab, bb} is not an w-code. Unfortunately proposition 3.7 is false 
whén C is not rational. For example, let C = {a6ncnd|n > 0} U {a} U 6*c. Since 
Adh(C) = V U abu, the w-code C satisfies Cu n C*.Adh(C) = 0, but the word a 
has no finite deciphering delay. 

In the aim to be complete, let us now observe the finite case. The finite case 
is almost similar to the rational case. However proposition 3.7, as the result of 
Levenshtejn [12] and Capocelli [5], show that, in the finite case, the notion of w-code 
and the notion of code with bounded deciphering delay coincide. This fact is also 
a result of Blanchard [2] which uses another notion of factorization ("découpage"). 

Nevertheless there are a lot of modifications when one considers two-element 
codes. Indeed, if {u, « } is a code, {u,u} is also an w-code [10]. Since the examples 
given in this paper are chosen with three elements when it is possible, the obtained 
or recalled results can be recapitulated in the following proposition where Aj^ (resp. 
Ajf , Ag , A<g) denotes the class of rational (resp. finite, two-element, three-element) 
languages belonging to a given class of languages A . 
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Proposition S.8 One has the following strict inclusions and equalities: 

B c D c I c W c I l c C 

moreover B ^ = Dj^ and = Wj^ for rational sets, B p = D p = Ip = W p 
for finite sets and B j = D j = 1« = W « for three element sets, and finally 
B j = D j = I2 = W j = IIj = C2 for two element sets. 

References 
[1] J. Berstel and D. Perrin, Theory of codes (Academic Press, Orlando, 1985). 

[2] F. Blanchard, Codes engendrant certains systèmes sofiques, Theoret. Comput. 
Sei. 68 (1989) 253-265. 

[3] L. Boasson and M. Nivat, Adherences of languages, J. Comput. System. Sei., 
20, (1980), 285-309. 

[4] J.R. Buchi, On a decision method in restricted second-order arithmetic, Proc. 
Congr. Logic, Stanford Univ. Press, Stanford (1962) 1-11. 

[5] R.M. Capocelli, Finite decipherability of weakly prefix codes, in Algebra, Com-
binatorics and Logic in Computer Science Coll. Math. Soc. J. Bolyai 42, North 
Holland, Amsterdam (1985) 175-184. 

[6] R. Cori, Codes à délai borné maximaux, in Théorie des codes Publications du 
LITP, Universités de Paris VI et Paris VII (1979) 57-74. 

[7] J. Devolder, Precircular codes and periodic biinfinite words, Information and 
Computation, 107 n° 2 (1993) 185-201. 

[8] J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis, in 
Théorie des Automates et Applications, (Edit. D. Krob, Rouen, 1991) 75-90. 

[9] J. Devolder and E. Timmerman, Finitary codes for biinfinite words, RAIRO 
Info. Theor. Appl., 26 n° 4 (1992) 363-386. 

[10] J. Karhumâki, On three-element codes, Theoret. Comput. Sei. 40 (1985) 3-11. 

[11] J.L. Lasse*, Circular codes and synchronisation, Internat. Journal of Computer 
and syst. Sei. 5 (1976) 201-208. 

[12] V.l. Levenshtejn, Some properties of coding and self adjusting automata for 
decoding messages, Problemy Kibernetiki, 11 (1964) 63-121. 

[13] R. Lindner and L. Staiger, Algebraische Codierungstheorie, Theorie der se-
quentiellen Codierungen, Akademie-Verlag, Berlin (1977). 

[14] I. Litovsky, Générateurs des langages rationnels de mots infinis, Thèse Univ. 
Lille I (1988). 

[15] I. Litovsky and E. Timmerman, On generators of rational w-power languages, 
Theoret. Comput. Sei. 53 (1987), 187-200. 

[16] A. de Luca and A. Restivo, On some properties of very pure codes, Theoret. 
Comput. Sei., (1980), 157-170. 



256 J. Devolder, M. Laiteux, I. Litovsky and L. Staiger 

[17] R. McNaughton, Testing and generating infinite sequences by a finite automa-
ton, Information and control, 0 (1966), 521-530. 

[18] ~D: Perrin et JrEr Pin, Mots infinis, Publications du LITP, Univ. Paris VI et — 
VII, 91.06 (1991). 

[19] M.P. Schutgenberger, Une théorie algébrique du codage, Séminaire Dubreil-
Pisot 15 (1955-56), Institut Henri Poincaré, Paris. 

[20] L. Staiger, On infinitary finite length codes, RAIRO Theor. Inform, and Ap-
plic. 20 (1986) n° 4, 483-494. 

[21] L. Staiger and K. Wagner, Aùtomatentheoretische ùndaùtomatenfreie 
Charakterisierùngen topologischer Klassen regùlârer Folgenmengen, Elektron. 
Inform.-Verarb. ù. Kybernetik, EIK 10 (1974}, 379-392. 

Received March 1, 1993 



Acta Cybernetica, Vol. 11, No. 4, Szeged, 1994 

A note on regular strongly shuffle-closed 
languages 

B. Imreh * A . M . Ito* 

In this work we study the class of regular strongly shuffle-closed languages and 
we present their description by giving a class of recognition automata. 

The shuffle product operation plays an important role in the theory of for-
mal languages, cf. [1], [2], [4]. Several properties of shuffle closed languages are 
studied in [3]. Among others a characterization of regular strongly shuffle-closed 
languages is presented by giving their expressions. Using this result, we determine a 
very simple class of deterministic automata accepting regular strongly shuffle-closed 
languages. 

First of all we introduce some notions and notations. Let X be a nonempty 
finite set and let X* denote the free monoid of words generated by X. We denote 
by 1 the empty word of X*. The shuffle product of two words u, v £ X* is the set 

u o v = {ty : w = u i « i . . . UfcUfc, u = u i . . . u^, v = t»i . . . v*, u,-, v}- £ X* } . 

A language L C X* is called shuffle-closed if it is closed under o, that is, if u, v £ L, 
then u o v C L. If L is shuffle-closed and, for any u £ L, v £ X*, the condition 
uo u f ) L ^ 0 implies v £ L, then L is called a strongly shuffle-closed language, or 
briefly, an ssh-closed language. 

Next let X = {z i i r } , r > 1, be an arbitrarily fixed alphabet. For any 
L C X*, let us denote by alph(L) the set of elements of X occurring in words of L. 
We shall describe those regular ssh-closed languages over X for which alph(L) = X . 

We use the Parikh mapping and its inverse which are defined as follows. Let 
N = {0 ,1 ,2 , . . . } . The mapping ^ of X* into the set NT defined by 

* ( « ) = u e x * , 
is called the Parikh mapping, where (u) denotes the number of occurrences of 
Xt in u. For a language L C X*, we define ^(L) = {^(u) : u £ L}. Moreover, if 
S C Nr, then ¥ - 1 ( S ) = {u : u £ X* & £ 5 } . 

Now we recall a notation and a result from [3]. 
Let a = (t ' i , . . . , tr), b = ( j i , . . . , jr) £ iVr and let p j , . . . ,pr be positive integers. 

Then a «—• b(mod (p i , . . . , p r ) ) means that it > jt and tt = ^(modpt), for all t, 
t=l,...,r. . 

'Department of Informatics, A. József University, Árpád tér 2, H-6720 Szeged, Hungary 
^Faculty of Science, Kyoto Sangyo University, 603 Kyoto, Japan 
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Theorem 1 ([S], Proposition 5.2) Let L C X* with alph(L) = X. Then L is a 
regular ssh-closed language if and only if L is presented as 

u €F 

where 
(i) pi,... ,pr are positive integers, 
(ii) F is a finite language over X with 1 e f satisfying 
(ii)-(l) for any u e F, we have 0 < }t < Pt, 1 <t <r where 'P(u) = (ji,..., jr), 
(ii) (2) for any u, v € F, there is a w e F such that $(uu) «-• 
V(tu)(mod (p i , . . . ,Pr)), 
ii)-(3) for any u,v S F, there is a w e F such that ^(uiy) «-• 

v)(mod (p i , . . . iPr))-
Finally, we make some further preparation. For any positive integer p and 

it 6 -X", let us denote by C(p 'x ' ) = (X, { 0 , . . . , p - 1}, S(p'x,l) the automaton defined 
by the following transition function. For any j G { 0 , . . . , p — 1), x X, let 

s(p ,xt){- ) = { j iixjixu 
U ' ' \ y + l ( m o d p ) if 1 = 1« 

where j + l(mod p) denotes the least nonnegative residue of j + 1 modulo p. 
Now let p i , . . . , p r be positive integers and form the direct product of the au-

tomata C( ,> , ' : r ,), t = 1, . . . , r . Let us denote by this direct product and 
by i(Pi--'Pr) ¡tg transition function. It is easy to prove that has the 
following properties: 

(a) it is a commutative automaton, 
(b) if a , b € ntr=i{°.•••>Pt - 1}. « e X* are such that S(pi p '>(a,u) = b , 

then 5(pi p ' ) (a , v) = b , for all v e ^ " ^ ( u ) , 
(c) for any u 6 X ' , S(r" -P')(0,u) = tf(u)(mod ( P l , . . . , P r ) ) , 

where 0 denotes the r-dimensional 0-vector and ,iriu)(mod (p i , . . . ,p r ) ) denotes the 
vector (t'i(mod p i ) , . . . ,»r(mod p r)) with ^(u) = . . . , t r j . 

For each t, t = 1 , . . . , r, let us denote by A(p, the group defined by the addition 
mod pt over the set {0, ...,pt — 1}- Let —'Pr' denote the direct product of 
the groups Mpt-, t = l , . . . , r . Then >{(p»-- 'p ' ) is also a group; let 0 denote its 
operation. Let us observe that the set of states of c(p i ' "" 'p ' ' ) is equal to the set of 
elements of Therefore, for any subgroup H of A((pi '—'p '), we can define 
the recognizer 

r 
R(P„...,P,) = ( J J { 0 , . . . , P t - 1}, X , 0 , H ) , 

t=1 

where 0 is the initial state and H is the set of the final states. 
The next property of can be proved easily: 

(d) if u,v G X* are accepted by R ^ 1 ' w i t h final states a, b, respectively, 
then uv is also accepted by jt^1 '—'Pr ' with the final state a © b . 
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Finally, form the set of recognizers 
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Mx = { R ^ 1 ' ",Pr) : (Pl,... ,pr) G Nr and H is a subgroup of M<PI' ~ 'P ' ) } . 

Now we are ready to prove our result. 

T h e o r e m 2 A language L C X* with alph(L) = X is regular ssh-closed if and 
only if L is accepted by a recognizer from Mx • 

Proo f . In order to prove the necessity, let us suppose that L C X* is a regular ssh-
closed language with alph(L) = X. Then there are positive integers p i , . . . , pT and 
F C X* which satisfy the conditions of Theorem 1. Let us consider the automaton 
C(pi.-.p-) and let us define the set H by 

r 
H={ a : aG J J i 0 « " - » ? * ~ a n d 5 < P l P r ) ( °> u ) = a> for some u € F}. 

t=i 

We show that H is a subgroup of —'Pr'. Indeed, let a ,b G H be arbitrary 
elements. By the definition of H, there are u, v G F with P r ' (0 , ti) = a 
and ¿(Pi. -Pr)(0,v) = b. Let = ( » ! , . . . , » , ) and ¥(t>) = jV). Then, 
by fit) - ( i ) , we have 0 < it,jt < pt, for all t = 1 , . . . , r , and hence, we obtain, 
by (c), that a = (t ' i , . . . ,t ' r) and b = (j\,...,jr). On the other hand, by (ii)-(SJ 
of Theorem 1, there exists a w G F with ^(uu) «—» ^(«¿^(mod ( p i , . . . ,p r))- Let 

= (ku...,kT). Then, by ( « ) - ( ! ) and (c), 8^ p ')(0,u>) = . . . , kr). 
Since w G F, we have (fcj M G H - J "̂0111 * ( « « ) it follows that 
t't + jt = A^(mod p t), t = 1 , . . . , r. But then a © b = (klt..., kr). Therefore, H is 
closed under the operation © implying that H is a subgroup of This 
completes the proof of the necessity. 

In order to prove the sufficiency, let us suppose that L C X* with alph(L) = X 
and there exists a recognizer R , ( p i , - ' p ' ) g y{x accepting L. We show that L is a 
regular ssh-closed language. 

The regularity of £ is obvious. Now let u,t; G £ and let w be an arbitrary 
element of the set uov. Since L is accepted by R ^ 1 p ' \ there are a ,b & H such 
that ¿<Pl ^ ( O . u ) = a and 8 Pr)(0,t>) = b. Therefore, by (d), we obtain 
that uv is accepted by R ^ 1 with the final state a © b . From this, by (b), we 
get that w G L, and so, L is shuffle-closed. 

Finally, let u G L, v G X* and let us assume that u o w f l Z# ^ 0. If t> = 1, 
then 5(P»' ">P')(0, w) = 0 G H, and so, v G L. Now let us suppose that v ± 1. 
Let 5<P1 p ' * (0 ,u) = a, 8 ( p >-- p ' ) (0 , v) = b and let = ( ¿ i , . . . , t'r), ¥(t,) = 
Oi i • • • i Jr)• Then there exist nonnegative integers it < pt, jt < Pt, It, kt, t = 
1, . . . , r , such that i't = it + ltpt, j[ = jt + ktpt, t = l , . . . , r . Let us denote 
by u' and v' the words x * 1 + ' l P l . . . x\rJrl'p' and z f + f c l P l . . . x ^ + k ' p ' , respectively. 
Using (b) and (c), we obtain that ¿ ( p i - - p ' > (0 , u') = a, i<Pl P ' ) ( 0 , t / ) = b, where 
a = ( t ' i , . . . , t r ) , D = (j'i,...,jr). By our assumption on uov, there exists a word 
w G u o v L. Let 

w> = ^i+ji+Ci+fcOpi z«'r+yr+(i,+fc,)p. 
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Since w € u o v f i l , a n d ^i1" ' ) = ¥(t iV) = ¥(««;) = ^(tw), (b) implies w' € L. On 
the other hand, by (c), we have 

5(P.,...;P,)(0) W>) = ( , 1 + j\ (mod P l ) , . . . , ir + jr (mod"pr)): 

Now let us observe that (tj, + j'i(mod p i ) , . . . , tr + jT (mod pr)) = a © b . Since 
to' e L, we have a © b e H. But H is a subgroup of X ( p i , thus a e H and 
a © b e H imply beH. Therefore, by ' i ( p , - " p ' ) (O j t>) = b , we obtain that v e L, 
and so, L is an ssh-closed language. This completes the proof of the theorem. 
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A Pumping Lemma 
for Output Languages 

of Attributed Tree Transducers 

A. Kuhnemann* H. Vogler* 

Abstract 

An attributed tree transducer is a formal model for studying prop-
erties of attribute grammars. In this paper we introduce and prove a 
pumping lemma for output languages of noncircular, producing, and 
visiting attributed tree transducers. We apply this pumping lemma to 
gain two results: (1) there is no noncircular, producing, and visiting 
attributed tree transducer which computes the set of all monadic trees 
with exponential height as output and (2) there is a hierarchy of noncir-
cular, producing, and visiting attributed tree transducers with respect 
to their number of attributes. 

1 Introduction 
In formal language theory we are often confronted with the task to decide, whether 
a given language £ is an element of a class L of languages, where t usually is 
defined by a class of grammars or translation schemes. If £ is an element of 
then we have to specify a grammar or a translation scheme which generates L. If 
L is not an element of then sometimes we can use necessary conditions which 
every language in £. has to fulfill. With the help of these conditions we can try 
to deduce a contradiction to the assumption that £ is an element of L. Pumping 
lemmata are such necessary conditions which have been proven to be very useful 
tools. 

Pumping lemmata have been invented for different kinds of languages, for ex-
ample string languages, graph and hypergraph languages, picture languages, and 
tree transducer languages. 

'Institut für Softwaretechnik I, Fakultät Informatik, Technische Universität Dresden, 
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In the case of string languages we can observe the following evolution of pumping 
lemmata: Scheinberg has used in [Sch60] a proof technique which can be seen as a 
predecessor of the well known pumping lemma for context-free languages of Bar-
Hillel, Perles, and Shamir [BPS61]. The structure of the latter pumping lemma has 
served as pattern for most of the existing pumping lemmata in the literature and 
therefore it seems to be the root of the research about pumping lemmata. Since 
it also has influenced our pumping lemma, we present here a short version of the 
lemma's central statement and we recall itB proof idea: 

For every context-free grammar G there is a natural number no, called the 
pumping index of G, such that for every string z which is an element of the language 
L(G) generated by G and which has at-least the length nc , the following holds. 
There is a decomposition z = uvwxy, such that v or 2 is not the empty string and 
such that for every natural number j, the pumped string uv3 wx} y is an element of 
L(G). 

The proof can be sketched as follows: We choose a sufficiently long string z of 
L[G), such that its derivation tree e has the following property: e is high enough, 
such that it has a path p, on which two different nodes x\ and xi are labeled by 
the same nonterminal symbol. Assuming that xi is closer to the root of e than xj , 
we can define the following tree e: Roughly speaking, the tree S is that part of e 
which has zi as root and from which the subtree rooting at x2 is pruned. Since 
xi and xi have the same label, we can construct for every natural number j a new 
derivation tree, by repeating 2 j times. Taking the yield of these derivation trees, 
we obtain new elements of L(G). 

As stated above, the pumping lemma of Bar-Hillel, Perles, and Shamir is only 
a necessary condition for the context-freeness of a string language. Thus there 
exist non-context-free languages which fulfill the requirements of the pumping 
lemma. In the sequel more and more stronger pumping lemmata for context-free 
string languages have been invented. Most of them, however, represent no sufficient 
condition for context-freeness. For example, in the Ogden-Lemma (cf. [Ogd68]) 
we can designate distinguished positions in the pumped string. This allows us to 
concentrate on those substrings, in which pumping is effective. Bader and Moura 
have developed in [BM82] a stronger version, the Generalized Ogden-Lemma, where 
additionally positions in the pumped string can be excluded. In the paper of Bader 
and Moura it is also shown that there is no stronger version of the Generalized 
Ogden-Lemma which exactly characterizes the context-free string languages. 

Wise has introduced in [Wis76] his Strong Pumping Lemma which is a necessary 
and sufficient condition for context-free string languages. The central idea of this 
lemma is to pump sentential forms of a grammar for a context-free language L 
instead of pumping terminal strings of L. The Strong Pumping Lemma of Wise 
represents another method to prove that a certain language is not context-free by 
assuming that it is context-free and by applying the lemma. In contrast to the 
other pumping lemmata stated above, this application guarantees the existence 
of a contradiction, because the Strong Pumping Lemma characterizes the class of 
context-free languages. Clearly, it depends on the skill of the researcher, whether 
he can construct this contradiction, yes or no. 



A pumping lemma for output languages of attributed tree transducers 263 

There also exist pumping lemmata for subclasses of the class of context-free 
languages: Boonyavatana and Slutzki have invented pumping lemmata for linear 
context- -free and nonterminal bounded string languages in [BS86a] and [BS86b], re-
spectively. Yu has developed in [Yu89] a pumping lemma for deterministic context-
free languages. Ehrenfeucht, Parikh, and Rosenberg have introduced in [EPR81] 
the Block Pumping Lemma as characterisation of regular string languages. 

There are also pumping lemmata in the area of context- free graph and hy-
pergraph languages: Kreowski (cf. [Kre79]) and Habel (cf. [Hab89]) have invented 
pumping lemmata for edge-replacement and hyperedge-replacement languages, re-
spectively. These pumping lemmata require a certain size of the pumped graphs. 
In comparison with them, the Maximum Path Length Pumping Lemma for edge-
replacement languages of Kuske (cf. [Kus91,Kus93]) needs a certain length of a 
path in the pumped graphs. 

Another kind of language paradigm are the picture languages. Hinz has devel-
oped in [Hin90] pumping lemmata for certain subclasses of picture languages. 

First Aho and Ullman have inspected pumping lemmata for output languages 
of translation schemes in [AU71], namely for generalized syntax directed trans-
lations. Perrault and Ésik have introduced in [Per76] and [Ési80], respectively, 
pumping lemmata for (nondeterministic) top-down tree transducers (cf. [Rou70, 
Tha70,Eng75]). The results of Ésik also appear in the book of Gécseg and Steinby 
(cf. [GS83]). Engelfriet, Rosenberg, and Slutzki have presented in [ERS80] a pump-
ing lemma for deterministic top-down tree-to-string transducers which has a struc-
ture that is closely related to the pumping lemma for context-free string languages. 
The proof of this lemma had a big influence on the development of the pumping 
lemma for attributed tree transducers which we present in this paper. 

The concept of attributed tree transducer has been invented by Fülöp in [FÜ181]; 
it is a formal model for studying properties of attribute grammars introduced by 
Knuth in [Knu68]. Attributed tree transducers are abstractions of attribute gram-
mars in the sense that they take trees over an arbitrary ranked alphabet of input 
symbols rather than derivation trees as argument, and that the values of the at-
tributes are also trees over a ranked alphabet of output symbols. 

Like in attribute grammars, the set of attributes is partitioned into the set of 
synthesized and inherited attributes which are associated to the input symbols and 
which compute their values in a bottom-up manner and in a top-down manner, 
respectively. In contrast to attribute grammars, to every input symbol the whole 
set of attributes is associated; this means that all attributes are available at any 
node of any input tree. Roughly speaking, computing the value of a synthesized at-
tribute occurrence of a node x of an input tree, the values of the inherited attribute 
occurrences of x and of the synthesized attribute occurrences of its sons (if they 
exist) may be used and, computing the value of an inherited attribute occurrence 
of x, the values of the inherited attribute occurrences of its father (if it exists) and 
of the synthesized attribute occurrences of x and of its brothers may be used. This 
refers to the usual Bochmann Normal Form of attribute grammars [Boc76]. 

In this paper we consider only total deterministic attributed tree transducers: 
For every node x of an input tree which is labeled by a particular input symbol 
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and for every synthesized attribute a, the computation of the attribute occurrence 
of a at x is fixed by exactly one rule. Similarly, for every node x which is labeled 
by a particular input symbol and for every inherited attribute i, the computation 
of the attribute occurrence of i at the j'-th son of x is fixed by exactly one rule. 

As in attribute grammars, these dependencies can induce circularities among the 
attribute occurrences of an input tree. We restrict the attributed tree transducers 
to be noncircular and we designate a synthesized attribute as initial attribute. 
Thus we designate an initial attribute occurrence at the root of every input tree 
of which the value will be the output tree. Then every attributed tree transducer 
M computes a total function from input trees to output trees. This function is 
called the tree transformation of M. The output language of an attributed tree 
transducer M is defined as the range of the tree transformation of M. 

As stated at the beginning of the introduction, pumping lemmata can help us 
to prove that a certain language is not an element of a class of languages. But 
not only pumping lemmata have been used to solve such a kind of problem: Fülöp 
and Vágvölgyi have shown in [FV91] by means of a direct proof that a particular 
tree transformation (which is induced by a bottom-up tree transducer; cf. [Eng75]) 
cannot be computed by an attributed tree transducer. Maybe the proof of Fülöp 
and Vágvölgyi can be generalized to a proof of a kind of pumping lemma. But we 
do not follow here this line of generalization and return to the development of a 
pumping lemma for a particular class of attributed tree transducers. 

We restrict our pumping lemma to special attributed tree transducers, namely 
producing and visiting (and noncircular) attributed tree transducers. An attributed 
tree transducer is producing, if every rule application delivers at least one new 
output symbol. An attributed tree transducer is visiting, if for every input tree 
and for every node x of it, the value of at least one attribute occurrence of x is 
needed to compute the value of the initial synthesized attribute occurrence at the 
root. 

The main idea of our pumping lemma for output languages of producing and 
visiting attributed tree transducers is adopted from the proof of the pumping lemma 
for context-free string languages that was outlined at the beginning of this intro-
duction. In the case of context-free string languages we have to inspect a derivation 
tree of a sufficiently long string to deduce new pumped strings. Here we have to 
consider input trees belonging to a sufficiently large output tree to obtain new 
pumped output trees: For every producing and visiting attributed tree transducer 
M, a natural number km, called the pumping index of M, can be constructed. If 
we choose an output tree t from the output language of M which has at least r&Af 
nodes, then every input tree e which can be transformed into t has the following 
property: e is high enough, such that it has a path p, on which two different nodes 
Zi and X2 can be found, which have the same set of attribute occurrences that are 
needed to calculate the initial attribute occurrence at the root of e. Assuming that 
xi is closer to the root of e than xq, we can define the following tree e: Roughly 
speaking, the tree S is that part of e which has xi as root and from which the 
subtree rooting at x2 is pruned. Since the two nodes are compatible with respect 
to the needed attribute occurrences, we can construct new input trees by repeat-
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ing e arbitrarily many times. Translating these input trees by M, we obtain new 
elements of the output language of M. 

The proof is based on the observation that the decomposition of the input tree 
e induces a decomposition of the output tree t into output patterns and that these 
patterns are used to construct the new output trees. Thus the pumping process 
itself can be described by using only the output patterns. Therefore the applications 
of the pumping lemma are completely independend of the underlying input trees. 

In this paper we apply our pumping lemma to prove the following two results: 

• There is no noncircular, producing, and visiting attributed tree transducer 
which computes the set of all monadic trees with exponential height as output. 

• There is a hierarchy of noncircular, producing, and visiting attributed tree 
transducers with respect to their number of attributes. 

This paper is divided into five sections, from which this one is the first. In 
Section 2 we fix all the notions and notations, especially about attributed tree 
transducers, which are necessary for the remaining sections. Section 3 contains the 
pumping lemma together with its proof. In Section 4 we show the two applications 
of the pumping lemma. Finally, in Section 5 the reader can find a short summary 
and a presentation of further research topics. 

2 Preliminaries 
In this section we collect the notations, notions, and definitions which are used 
throughout this paper. Most of the definitions • are taken from [KV94], some of 
them with a slight modification. 

2.1 General notations 

We denote the set of natural numbers (including 0) by IV. For every m 6 JV, the 
set { 1 , . . . , m} is denoted by [m], thus [0] denotes the empty set 0. The empty word 
is denoted by e. For an arbitrary set S, the cardinality of 5 is denoted by card(S) 
and the set of all subsets of 5 is denoted by P (5). If S is a subset of JV, then 
max(S) denotes the maximum of S; max(0) is defined as 0. A relation / C Ax B 
is a partial function, if for every (a, by) € / and (a,6a) £ / , the elements bi and 6a 
are equal. Such a partial function is denoted by / : A * B. 

If A is an alphabet, then A* denotes the set of words over A. For a string 
v and two lists u i , . . . , u „ and « ! , . . . , « „ of strings such that no pair u< and uy 
overlaps in v, we abbreviate by v[ui/vi, ..., un/vn] the string which is obtained 
from v by replacing every occurrence of u,- in v by The resulting string is also 
denoted by v[ui/v<; t £ [n]]. |p| denotes the length of a string p over an alphabet 
which should be known from the context. If Pi and P2 are two sets of strings, then 
Pi • P2 := {P1P21 Pi e Pi, p2 e p2}• 
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Let ^ be a binary relation on some set T. Then, =»* and =>-+ denote the 
transitive, reflexive closure of => and the transitive closure of =>, respectively. Let 
ne IN-{0}. If tj G T for every j G [n+1] and if t}- => t y + 1 for every j G [n], then 
the sequence ti i j . . . => tn+i is called a derivation. If only the first element 
¿1 and the last element tn+i of a derivation are important, we also use the notation 
t\ =>+ t n + i . Note that there can exist more than one derivation ti =>+ tn+i- If 
t =>* t' for t,feT and if there is no t" G T such that t' => t", then t' is called a 
normal form of t with respect to =>. In general t can have either no or one or more 
than one normal form. If the normal form of t exists and if it is unique, then it 
is denoted by n/(=>,t). The relation => is confluent, if for every t, ij, £2 G T with 
t =>* ti and t =>* t3, there is an t' 6 T such that ti =>* t' and t2 t'. It is 
noetherian or terminating, if there is no infinite derivation of =>. If => is noetherian 
and confluent, then for every t G T, the normal form of t exists and it is unique. 

2.2 Ranked alphabets, trees, and tree transformations 

A ranked alphabet is a pair (E, ranks) where E is a finite set and ranks '• E —* ^ 
is a mapping which associates with every symbol a natural number called the rank 
of the symbol. If a G E with ranks (cr) = n, and E is clear from the context, then 
we also write cr'n) and rank(a) = n. If the rank function is clear from the context, 
then it is dropped from the notation. The set of elements with rank n is denoted 
by E<B>. 

For a ranked alphabet E, the set of trees over E, denoted by T(E), is the 
smallest subset T C (E U { ( , ) , , })* such that for every a G with n > 0 and 
ti> • • • 1 tn 6 T, the string . . . , tn ) G T. For a symbol o G we simply write 
a instead of <r(). 

The following functions are defined inductively on the structure of trees in T(E) 
(here, the induction base is a special case of the induction step): 

• height: T(E) —• N delivers the height of a tree t G T(E). 
If t = <r(ti , . . . ,t„) with j G E W , n > 0, and tu...,tn G T( E), then 
height[o(ti,... ,tn )) = 1 + maz{{height{ti) \ i G [n]}). 

• size^' '• T(E) —• If delivers the size of a tree t G T(E) with respect to a 
subset E' C E. 
If t = <r(ti , . . . ,tn) with o GE(") , n > 0, and tu...,tns T(Z), then 
aizcEi(<r(ti,..., t„)) = 1 + E,-6[„] a»«eE '(i,), if a G E', 
sizes-(<r{ti,..., t„)) = s»zeE<(ti), if a $ E'. 
If E' = E, then we abbreviate sizes1 by size. 

• paths : T(E) —• P(N*) delivers the set of paths of a tree t G T(E). 
If t = o{h tn) with a GE(") , n > 0 , and tu...,tn G T(E), then 
paths',... , t„ ) ) = {e } U {p | p = ip',i e [n],p' G pat/isfc)}-
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• label : T(E) x IN* • E delivers the label of the node of a tree t e T(E) 
reached by a path p G paths(t). 
If t = a{ti,...,tn) with a G E<"), n > 0, and h , . . . , t„ G T{E), then 
label(a(ti,..., tn),p) = <r, if p = e, 
label(<r(ti,..., tn),p) = label(ti,p'), if p = tp' for some i G |n]. 

• subtree : T(E) X H* • T{E) delivers the subtree of a tree t G T(E) reached 
by a path p € paths(t). 
Ut = a(tlt...,tn) with a G E<n>, n > 0, and t l f . . . , t„ 6 T ( E ) , then 
suft tree^t ! , . . . , « » ) ,^ ) = ff(ti,...,tn)i >f P = 
su6iree(a(tj t»), p) = su6ir«e(tj,p')) if p = ip' for some » G [n]. 

• repl : T(E) x JV* x T(E) ^ T(E) deliver» the tree obtained from a tree 
t € T(E) 6y replacing the subtree reached by a path p € pat/i£(t), another 
tree t' e T{E). 
If t = <T(ii, . . . , in) with a e E*"!, n > 0, and t 1 ( . . . , i „ € r (E) , then 
rep/(t7(t l l . . . I i „ ) ,p,t ' ) = t', if p = «, 
rep/Jtrftj,..., tn),p, t) = <r(i l l . . . )rep/(t t )p , ) ?),..., tn), if p = tp' for some 
ie\n]. 
In the following we use the more convenient notation t\p *— t'] instead of 
repl{t,p,f). 

For every tree t € T(E) and for every path p S paths(t), the path p determines 
exactly one node of t. This node will be denoted by node(t,p). 

Let E be a ranked alphabet, t € T(E), and let U be another ranked alphabet 
with rank(u) = 0 for every u € U and with U n E = 0. A tree t' e T(E U U) is 
called a pattern in t £ T(E), if there is a symbol v ^ E with rank(v) = 0, there is 
a tree t" 6 T(E U {u}) , and for every u e U there is a tree tu e T(E), such that 
t = t"[v/f[ufta ; « G CTJl-

A tree transformation is a total function r : T(E) —• T(A) where E and A are 
ranked alphabets. 

2.3 Attributed Tree Transducers 
In this subsection we define the syntax of so called st-tree transducers and the 
derivation relations which are induced by them. In [Gie88] si-tree transducers are 
called full attributed tree transducers. Though si-tree transducers are an extension 
of attributed tree transducers in the sense of [Ful8l], we also use simply the notion 
attributed tree transducer for an at-tree transducer. If we restrict the transducers 
to be noncircular, then their derivation relations are confluent and noetherian, and 
every noncircular transducer computes a tree transformation. 

A system of attributes is the first component in the definition of an attributed 
tree transducer M. We specify a ranked input alphabet E. Then, intuitively, 
M takes an argument e where e is a tree over E, called input tree, on which the 
evaluation of attribute values is performed. An output tree is built up over a ranked 
alphabet A of working symbols. The derivations of M will start with an initial 
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synthesized attribute and with an extra marker root on top of the input tree 
where root is a new symbol of rank 1. If e is an input tree, then in anology to [KV94] 
we call the tree e = root(e) the control tree, because it controls the derivation of the 
transducer (cf. Figure 1). The role of the marker root is explained after defining 
the derivation relation. Of course, the kernel of the definition of an attributed tree 
transducer is the finite set of rewrite rules. The possible right-hand sides of rules 
are fixed at the end of the definition. 

Figure 1: The input tree e and the control tree e. 

We mention already here that, similarly to top-down tree transducers, we des-
ignate the argument position of every attribute to contain the control tree e. Addi-
tionally, in attributed tree transducers the control tree e is associated with a path 
through e. Actually, in the argument of an attribute, only a path through e will 
occur, the control tree itself will parameterize the derivation relation (cf. Definition 
2.6). 

Definition 2.1 An si-tree transducer is a tuple (A, A , E, s,„, root, R) where 

• A = (A, A,, Aj) is a system of attributes, where 

— A is a ranked alphabet of attributes; for every a g A, rank a (a) = 1. 

— A, C A and Ai C A are the disjoint sets of synthesized attributes and 
inherited attributes, respectively, with A = A, U Ai. 

• A is the ranked alphabet of working symbols (or: output symbols) with 
A l~l A = 0. 

• E is the ranked alphabet of input symbols with A f~l E = 0. 

• Sjn G A, is the initial attribute. 

• root is a symbol of rank 1, called the root marker, where root A U A U E. 
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• R = R„ is a finite set of rules, defined by Conditions 1. and 2. 
a 6 E U {root} 

1. The set Rr0ot contains exactly one rule of the form 

«m(«) P 

with p G RHS(A„t, A, root). 
For every i & Ai, the set Rroot contains exactly one rule of the form 

»(si) ^ P 

with pG RHS(A,,9,A,root). 
2. For every a G E'fc) with k > 0 and for every a € As, the set R„ contains 

exactly one rule of the form 

«(*) P 

with p £ RHS{At, Ait A,<t). 
For every a G E' f c ' with k > 0, for every t 6 Aj and for every j G [&], 
the set R„ contains exactly one rule of the form 

i(zj) — p 

with p 6 RHS(A,,Ai,A,<r). 

For every G, C A,, G,- C Ai, and a € E U {root} with rank(a) = k > 0, the 
set of a-right-hand sides over G,, Gi and A , denoted by RHS(G,,Gi, A , a), 
is the smallest subset RHS of ( G . U G i U A U [Jfc] U {z, ( , ) , , })* such that the 
following three conditions hold: 

(i) For every S € A M with r > 0, and pi,...,pr € RHS, the tree 
6{Pl,...,pT)eRHS. 

(ii) For every s € G„ j € [k], the tree s(zj) G RHS. 
(iii) For every t G Git the tree i{z) G RHS. • 

For an st-tree transducer M = (>1, A, E, Sin,root, R), we fix the following notions 
and notations. 

• The set E U {root} is denoted by E + . 

• In the rules of R, the symbol z is called path variable. 

• For every a G E '* ' , the set of inside attribute occurrences of a, denoted by 
tn((r), is the set {s(*) | s G A,} U {i[zj) \ i G G [k]}. The set of 
inside attribute occurrences of root, denoted by in(root), is the set {s,„(z)} U 
{ » (z l ) | t G Ai}. The set of outside attribute occurrences of a, denoted by 
out[<x), is the set {»(«) 11 G Ai) U {s(zj) \ s G A,, j G [A;]}. The set of outside 
attribute occurrences of root, denoted by out(root), is the set (a(z l ) | s G A , } . 
The set of attribute occurrences of a G E + ) denoted by att[a), is the set 
tn(<r) U out(<r). 
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• For a G A, a G E ^ and »7 G {zj \ j G [Jfe] U { e } } , we call a rule of R„ with 
the left-hand side a(ri) an (a, i/,a)-rule. The right-hand side of this rule is 
denoted by rhs[a,r},(T). We note that only outside attribute occurrences of 
a appear in r/is(a, rj, <r) and that for every a(t]) G in(cr), there is exactly one 
(a, ri, cr)-rule in R. 

Example 2.2 We define the at-tree transducer Mi = (A, A, E, a, root, R) with: 

E = {<,( ' ) , a<°)>, 

A = {A, A,,Ai) with A = A, = {a}, and Ai = {»} , and 
R = Rroot U Ra U Ra is the following set of rules: 

Rroot = {•(«) B(s(z 1)), (1) 
i(zl) E } (2) 

R* = {•(•) — r(a(zl) ,a(z2)) , (3) 
t(zl) m*))> (4) 
i(z2) *(»•(«)) } (5) 

Ra = {•(») B(i(z)) } (6) 

The s*-tree transducer Mi takes a binary tree e over the ranked alphabet E = 
{a( 2 ) ,a(° ) } as argument and it delivers a tree t which has the same structure as e, 
but in which every leaf node n is substituted by an encoding of the reverse path 
from the root of t to n. The encoding of a reverse path is a monadic tree over the 
ranked alphabet {B^, L^, RW, E(0)}, where the symbol I, (and R) represent the 
left son (and the right son, respectively) of a node and the symbol B (and E) is the 
first symbol (and the last symbol, respectively) of each path encoding (cf. Figure 
2). • 

root[e) : root 
1 

t : B | 

a ,T 
/ \ • \ 

a a T B 
1 / \ / \ 

B 
1 

a a B 1 B R 
| 1 

L I R 
1 

E 
1 
L 

| 
L 

1 
E E 

Figure 2: The control tree e and the calculated output tree t. 
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Observation 2.S 

1. Top-down tree transducers [Rou70,Tha70,Eng75] are st-tree transducers with-
out inherited attributes. 

2. Attributed tree transducers [Ful8l] are st-tree transducers in which, for every 
inherited attribute t, the right-hand side of the (t, z l , root)-rule is a tree 
over A. In accordance to [Gie88] st-tree transducers are full attributed tree 
transducers. But in the sequel we also use simply the notion attributed tree 
transducer. • 

Before working out the definition of the derivation relation, we first introduce a 
uniform classification scheme for subclasses of st-tree transducers which are induced 
by the number of attributes. 

Def init ion 2.4 

• Let k, € IV — {0 } and ki e IV. An s ^ j t ^ . ) -tree transducer M is an st -
tree transducer with at most k, synthesized attributes and with at most ki 
inherited attributes. 

• An s-tree transducer is an «(fc.jtjoptree transducer for some k, e IN — {0 } , 
i.e., an st-tree transducer without inherited attributes. • 

In the next definition we inductively describe the set of all sentential forms of 
attributed tree transducers. For a given control tree e = root(e) with e 6 T{E), 
a sentential form is a tree over attributes, working symbols, and paths through e. 
Moreover, the argument of an attribute is always a path through e and vice versa 
a path may only occur in the argument of an attribute. 

Definit ion 2.5 Let M = (A, A , E, Sin, root, R) be an st-tree transducer with sys-
tem A = ( A , A , , A i ) of attributes. Moreover, let e € {root(e) | e S T (E) } and let 
A ' be a ranked alphabet with A C A ' . The set of (A, sin,paths(e), A')-sentential 
forms, denoted by SF(A,Sin,paths(e),A'), is defined inductively as follows where 
we abbreviate SF(A, Sin, paths(e), A ' ) by SF. 

(i) For every 6 e A'( r) with r > 0 and tu..., tT 6 SF, the tree S(ti,. ..,tr) e 
SF. 

(ii) For every a € A and p € paths(e) with p ^ e, the tree o(p) £ SF. 

(iii) The tree «¿„(e) € SF. • 

Notice that the tree e does not occur in sentential forms. It is only needed to define 
the set of paths of e. 

For an attributed tree transducer M = (A, A , E, Sin, root, R) with system A = 
(A,A,,Ai) of attributes and for a tree e € {rooi(e) | e e T(E) } , the set of 
attribute occurrences of e, denoted by att(e), is the set {¿¿„(s)} U (a(p) | a 6 A, 
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p G patha(e),p ^ e}. If e = root(e) for a particular tree e G T(E), then we define 
att(e) = att(e) - {a i n (e)} . 

Let e' G T (£+ U {tu}) with exactly one occurrence of a symbol w £ E+ be a 
pattern in a control tree e G (root(e) | e G T(E)} , such that e '= au6tree(e[p'<—iw],p) 
holds for some paths p, p' £ patha(e). The set of inside attribute occurrences of e' 
with respect to e is the set ((s(p) | a € A , } U { i (p ' ) | i G -4,}) Datt(e). The set 
of outaide attribute occurrences of e' with respect to e is the set ({t(p) | t G A , } 
U{a(p') | a € A , } ) n att(e). (The intersection with att(e) is necessary to handle 
the case p = e.) If the underlying control tree e is clear from the context, then we 
simply use the notions inside and outside attribute occurrences of e'. 

Now we describe the derivation relation of an attributed tree transducer M with 
respect to a control tree e. For later purposes, we restrict the derivation relation 
to work only on particular parts of e parameterizing the derivation relation with a 
subset P C patha(e). 

Definition 2.6 Let M = (A, A, E, Sjn, root, R) be an st-tree transducer with sys-
tem A = (A, A„ Ai) of attributes. Let e € {root(e) \ e € T ( £ ) } and P C patha[e). 
The derivation relation of M with respect to e and P, denoted by =>•jii.e.pi is a 
binary relation on SF(A, sinipaths(e), A) defined as follows: 
For every tlt t2 G SF[A, ain,patha(e), A) , tx =>M,i,p h, iff 

• there is a t' € SF(A,3in,patha(e), A U {u}) in which the O-ary symbol 
u ^ A U A occurs exactly once, 

• there is an attribute a G A, 

• there is a path p G patha(e), 

such that 11 = t'[u/a(p)] and if one of the following two conditions holds: 

1. • a is a synthesized attribute, 

• p G P and label(e, p) = a for some a G E ^ with k > 0, 
• there is a rule a(z) —• p in Ra, and 
. t3 = t'[u/p[z/p]]. 

2. • o is an inherited attribute, 

• P = P'j f°r some p' G P, label(e,p') 
and j G \k], 

• there is a rule a(zj) —» p in Ra, and 

• ta = t'{ulp[z/p'}}. 

= o for some a G El,. ' with A: > 1, 

• 
Note that in case 2. the path p itself needs not to be in P. This is important for the 
later construction in the pumping lemma. If M or ? are known from the context, 
we drop the corresponding indices from =>. If P = paths(ê), then we drop P. 
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Before presenting an example derivation we have to explain the special role of 
the marker root. It allows us to handle the calculation of the values of inherited 
attribute occurrences at the root of an input tree e like all the other attribute 
occurrences of t. Taking the control tree root(e), we can specify the value of an 
inherited attribute occurrence at the root of e by a rule in Rroot- In particular, 
the inherited attribute occurrences at the root of t may depend on the synthesized 
attribute occurrences at the root of e. This mechanism has also been used in 
[KV94]. It is more general than the solution presented in [Ful8l], where special 
trees in T{ A ) are used to specify the values of the inherited attribute occurrences 
at the root of e. 

Example 2.7 Let Mi be the attributed tree transducer defined in Example 2.2 
and let e — root(<T(a(a,ot),a)) be-the control tree. We abbreviate =>Aii,i,patht(e) 
by =>. The number of the appUed rule is indicated as a subscript. The control tree 
and the calculated output tree are also shown in Figure 2. 

=>(!) £ ( « (1 ) ) 
=•(3) B ( r ( s ( l l ) , s(12))) 
=>(3) 5 {T ( r ( s ( l l l ) , s (112 ) ) , « (12 ) ) ) 
=>(6) B(T(T(B(i( 111)), s(112)), ¿(12))) 
=•(4) jB (T ( r ( f l (L ( i ( l i ) ) ) , . { 112 ) ) - l i ( » ) ) ) 
=>(4) B{T{T{B{L(L{i(l)))), «(112)), »(12))) 
=•(•„ B(T(T(B(L(L(E))), s(112)), s(12))) 

B(T(T(B(L(L(E))), B(R(L{E)))), B(R(E)))) Q 

2.4 Noncircular attributed tree transducers 
Since an attributed tree transducer can be circular (in the same sense as an at-
tribute grammar), we can conclude that, in general, the derivation relations of 
attributed tree transducers are not noetherian (cf., e.g., [Ems9l] for an example of 
a circular attributed tree transducer.) However, noncircular attributed tree trans-
ducers induce noetherian derivation relations. The notion of circularity is taken 
from [Ful8l]: 

Definit ion 2.8 Let M = (X, A, E, 
Sin, root, R) be an at—tree transducer with sys-

tem A = (A,A,,Ai) of attributes. 
1. M is circular if 

• there is an e S {root(e) | e € T{E)} 

• there is an o(p) € SF(A, Sin,patha(e), A ) with a € A and p € paths(e), 

• there is a t £ SF(A, Sin,patha(e), A U {u } ) in which the O-ary symbol 
u ^ AU A occurs exactly once, 
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such that o(p) ё t[u/a(p)]. 

2. M is noncircular if it is not circular. • 

For the definition of the tree transformation computed by an attributed tree trans-
ducer we use the following result (cf. Theorem 3.17 of |KV94]). 

Lemma 2.8 Let M = (А, Д, E, з<П1 root, R) be an at-tree transducer. If M is 
noncircular, then for every ё £ {root(e) \ e € T ( £ ) } , the relation =>m,i is confluent 
and noetherian. • 

Since the derivation relations of noncircular attributed tree transducers are con-
fluent and noetherian, every sentential form has & unique normal form. This is 
the basis for the definition of the tree transformation which is computed by an 
attributed tree transducer. 

Definition 2.10 Let M = (А, Д , Е i s»m root, R) be a noncircular si— tree trans-
ducer. The tree transformation computed by M, denoted by т(М), is the total 
function of type Г(Е) — • T(A) defined as follows. For every e £ T(E), 

r(Ai)(e) = n/(=>-M , r o o t(e),e i n(e)). D 

In the rest of this paper, we always mean noncircular attributed tree transducers 
when we talk about attributed tree transducers. 

For a given control tree e, for a given derivation «¿„(г) t (abbreviated by d), 
where t = nf[=>t, «¿„(e)), and for a given path p in e we define the set attset(d, p) 
of those attributes a, for which there are attribute occurrences a(p) in a sentential 
form during the derivation d. This concept is the same as the concept of state-set 
described in [ERS80], however, we use another way of definition. 

Definition 2.11 Let M = (А, Д, E, Sin,root, R) be an at-tree transducer with 
system A = (А, of attributes. Let ё € {root(e) \ e £ T ( £ ) } . Let d be the 
derivation a,n(e) = to =>г • • • =>i = «/(=>g, а<„(е)) with n > 1 derivation 
steps, and let p € paths(e). Then we define the attribute-set of d and p, denoted 
by attset(d,p), by 

n 
attset'[tj, p) where 

У=о 

attset' : SF(A, 3in,pathsft), Д) x paths (i) —• P{A) is defined as follows: 
For every 6 £ Д(Г), r > 0, h,..., tr € SF(A, sin,paths(e), A) , p £ paths{e), 

tr),p) = Uy=i<»««i'(ty.P)-
For every a(p') £ ott(S), p € paths(e), if p = p', then 

attset'(a(p'),p) = {o}. 
For every a(p') € att(e), p £ paths(e), if p ф p', then 

o«aet'(a(p'),p) = 0 . D 
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Example 2.12 Let Mi be the attributed tree transducer defined in Example 2.2 
and let e = root(a) be the control tree. 
Let d = (a(e) =»? S (a ( l ) ) =>i B(B{i{l))) =>« B(B{E))) be a derivation. 
Then attaet[d,e) = attaet'(s(e),e) = {a} 
and attaet{d, 1) = a«aet ' (B(a( l ) ) , 1) U ottaet ' (5(B(t(l))) , 1) = {a , t } hold. • 

In fact, the attribute-set of a path does not depend on the chosen derivation. 

L e m m a 2.IS Let M = (A, A , E, root, R) be an at-tree transducer. Let dj 
and da be two derivations S{n(e) =>£ n/(=>?, «»n(«)) for some e € {root(e) \ t 6 
T(E) } . Then, for every path p € paths(e), the sets attset(di,p) and attset(d2,p) 
are equal. • 

Definit ion 2.14 Let M = (A, A , E, a,„, root, R) be an at-tree transducer. Let 
e € {root(e) | e € T(E)} and let p € paths(e). The attribute-set of e and p, 
denoted by attaet(e,p), is the set attset(d,p) for some derivation d = (a tn(s) =>i 
nf{=>i,sin(e))). • 

2.5 Producing and visiting attributed tree transducers 
The pumping lemma in the next section is only valid for special kinds of attributed 
tree transducers. In the following definition we introduce the concepts of producing 
(every rule application produces at least one new output symbol), and visiting 
(every node of a control tree is visited by at least one attribute) tree transducers. 

Definit ion 2.15 Let M = (A, A , E,a<„,root, R) be an at-tree transducer. M is 

• producing, if, for every rule A —• p in R, the size of p with respect to A is at 
least 1, i.e., atze^(p) > 1, 

• visiting, if, for every control tree e € {root(e) | e € T {E) } and for every 
p € paths(e), the attribute-set of e and p is not empty, i.e., attset(e,p) ^ 0. 

• 

In the rest of this paper we always mean producing and visiting (and noncircular) 
attributed tree transducers, when we talk about attributed tree transducers. We 
denote the classea of tree transformations computed by (noncircular, producing, and 
visiting) at-tree transducers, sffc. jt '^)- tree transducers, and a-tree transducers by 
SIT, 5 ( fct)/( fct.)T, and ST, respectively. 

2.6 Output languages of attributed tree transducers 
The pumping lemma which we introduce in the next section, deals with output lan-
guages of tree transformations of attributed tree transducers. The output language 
of a tree transformation r is defined as the range of r. 
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Definition 2.16 Let r : T{E) —• T(A) be a tree transformation. The output 
language of r, denoted by Lout(i') is defined as follows: 

Loutir) = { t e T(A) | there is an e 6 T{E) such that r(e) = t}. • 

If r(M) is a tree transformation computed by an attributed tree transducer M, 
we simply write Lmt(M) instead of L(mt(r(M)) and we simply call Lout(M) the 
output language of M instead of the output language of the tree transformation 
computed by M. 

We denote the classes of output languages of (noncircular, producing, and vis-
iting) ¿«-tree transducers, «(^»(fc.j-tree transducers, and «-tree transducers by 
SITm, S(fc.)/(fci)rou<, and STMt, respectively. 

If we want to prove that a certain tree transformation r is not an element of the 
class SIT, then the output language 2/ou<(r) can be very useful. It Would suffice 
to show with the help of the pumping lemma presented in the next section that 
Louti*) $ SIToat. Thus, since £<>ut(r) is not the range of an at-tree transducer, r 
cannot be the tree transformation computed by an si-tree transducer. 

For the sake of convenience, we now omit the parantheses for arguments of 
monadic output symbols in the rest of the paper; the parantheses for arguments of 
attributes remain. 

Example 2.17 Let Mx be the attributed tree transducer defined in Example 2.2 
and let d be the derivation of Example 2.7. 

Thus, in the following we write rule (1) of M\ in the form s(z) —* B s{z 1). Note 
that there are still parantheses in the attribute occurrence « (s i ) . The notation 
s(z) —* T(s(zl),s(z2)) of rule (3) is left unchanged, because T is a binary output 
symbol. 

In anology we write the last but one sentential form of d that was shown in 
Example 2.7 as BT(T(B LLE, «(112)), «(12)). • 

3 Pumping lemma for attributed tree transduc-
ers 

Before presenting the pumping lemma for «¿-tree transducers and working out 
the proof formally, we want to illustrate the central idea and show an example. 
Although the pumping lemma only deals with output trees and not with the control 
trees corresponding to them via a tree transformation, the control trees play an 
important part. 

Let M be an attributed tree transducer. If we choose a sufficiently large output 
tree t, then every control tree e = root(e) with r(M)(e) = t is high enough, such 
that it has a path p, on which two different nodes x\ and x? can be found such 
that (cf. Figure 3) 

• there exist strings pi, pa, and ps such that |Pa| > 0 and p = PiPaPs, 
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• xi and X2 can be reached from the root by pi and P1P2, respectively, i.e., 
xi = nodc(e,pi) and = node(c,pip2), and 

• the attribute—sets attset(e, pi) and attaet(e, P1P2) are equal. 

These two nodes define a decomposition of e into three input patterns e', e", and 
c'". Intuitively, 

• e' is the tree e without the subtree which has x j as root. 

• e" is the tree which has Xi as root without the subtree which has Xj as root. 

• e'" is the tree which has x2 as root. 

Figure 3: Control tree e with input patterns and induced output patterns. 

This decomposition of the control tree e induces a decomposition of the output 
tree t into a certain output pattern t, certain output patterns t, and t, for every 
synthesized attribute s, and certain output patterns and U for every inherited 
attribute t. Roughly speaking, these patterns correspond to normal forms of certain 
attribute occurrences of the patterns e', e", and e'". More precisely, 

• The tree t corresponds to the normal form of Si„(e) that is calculated only 
on the nodes of e'. 

• For every synthesized attribute s in the attribute-set of the two relevant 
nodes xi and X2, the tree t, (and t,) corresponds to the normal form of a(pi) 
(and «(pipa)» respectively) that is calculated only on the nodes of e" (and 
e'", respectively). 
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• For every inherited attribute » in the attribute- -set of the two relevant nodes 
x3 and xi, the tree t,- (and t,) corresponds to the normal form of »(P1P2) 
(and t'(pi), respectively) that is calculated only on the nodes of e" (and e', 
respectively). 

In Figure 3 these output patterns are indicated; the root of every output pattern 
is represented by an arrow. The reader should not be misleaded by the cycles 
among the pieces of the final output tree: we consider noncircular attributed tree 
transducers and, only for the sake of simplicity of the figure, we show only one 
inherited attribute and one synthesized attribute; thus, dependencies are folded 
and suggest cycles which are not there. 

If we construct new control trees by repeating the pattern e" arbitrarily often, 
then we can get new output trees by translating the new control trees. All of them 
are by definition elements of ¿ ^ ( M ) . The output patterns t, and t,- must be 
used for every repetition of e" to obtain the new output tree. Figure 4 shows the 
situation in which e" is repeated twice. 

Figure 4: Control tree with two repetitions of e" and output patterns. 

In the pumping lemma we use a recursive function tree' which walks through 
the patterns of the control tree and builds up the output using the output patterns 
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defined above. 
Note that for the pumping process it is not necessary that the nodes x\ and 

are labeled by the same symbol, in contrast to the pumping lemma for context-
free languages (cf. for example [BPS61]). This is due to the fact that we only deal 
with ranked alphabets rather than heterogeneous signatures; thus only the rank of 
the symbols is important when building up trees. 

We show the input patterns, the output patterns and the pumping process in 
the following example. 

Example S . l Let Mi be the st-tree transducer defined in Example 2.2. For sim-
plicity we repeat the rules of Mi , omitting superfluous paranthesis: 

Rroot = { < ( « ) Bs{z 1), 

•'(«I) — E } 
R* = W«) T{s(zl),a(z2)), 

•'(»I) — Li(z), 
i(z2) — Ri(z) } 

Ra = {<(«) — Bi(z) } 
Although the pumping lemma only guarantees to work with an output tree t 

with size(t) > riMj for a certain natural number (which is called the pumping 
index of Mi), it often also works for smaller output trees. Nevertheless, the pump-
ing index is needed in the proof of the pumping lemma. In this example we have 
nif[ = 21 8 . The reader can check this after having read Definition 3.2. 

Figure 5: Control tree e with right-hand sides of rules. 
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Here we take the smaller tree t = nf(=>i, at f l(e)), where e = root(cr(a, a ) ) 
is the control tree. In Figure 5 the control tree e is shown by dotted lines, where 
additionally.the right-hand sides of.those rules are incorporated which are necessary 
to compute the values of the attribute occurrences of e. 

Now we consider the two nodes node(e, l ) and node(e, 11) of the control tree e 
which can be reached from the root of e by paths 1 and 11. Note that a = label(e, 1), 
a = label(e, 11), and attset(e, l) = attset(e, 11) = {a,t } . In this case we have chosen 
the path p = 11 with its subpaths Pi = 1, Ps = 1, and ps = e. In Figure 6 we show 
three patterns in e with the nodes reached by the paths e, 1, and 11, respectively, 
as roots. Again the right-hand sides of rules are incorporated into the figure. 

Figure 6: Input patterns e', e" and e'" with right-hand sides of rules. 

For later purposes, in Figure 7 we also show the control tree e and the patterns 
e', e", and e'" framing those parts of the patterns which only consist of input 
symbols. In fact, we have e — e'[tu/e"[u>/e"']]. 

With these preparations we can obtain the patterns in the output tree t as 
follows: Roughly speaking, for each of the patterns e\ e", and e'", we calculate the 
values of the inside attribute occurrences as function in the values of the outside 
attribute occurrences. Therefore we can use the dependencies among the attribute 
occurrences presented in Figure 6, where the outside attribute occurrences and the 
inside attribute occurrences are depicted as non-filled cycles and non- filled boxes, 

\ 
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e: root e' : (root) e": 

<t w to 
/ \ a a 

Figure 7: Control tree e and its decomposition. 

respectively, whereas the other attribute occurrences are depicted as filled cycles. 
More precisely, we calculate 

• the values t and t,- of the inside attribute occurrences s(e) and t ( l ) of e', 
respectively, as function in the value of the outside attribute occurrence s( l ) 
of e', 

• the values t, and t,- of the inside attribute occurrences s( l ) and »(11) of e", 
respectively, as function in the values of the outside attribute occurrences 
a ( l l ) and t'(l) of e", 

• and the value t, of the inside attribute occurrence ¿(11) of e'" as function in 
the value of the outside attribute occurrence t ( l l ) of e'", 

and replace the synthesized attribute occurrences ¿(1) and «(11) by the symbol s 
with rank 0 and the inherited attribute occurrences t ( l ) and t ( l l ) by the symbol 
t with rank 0. For the sake of understanding we choose exactly the attributes as 
names for the new symbols. Based on the rank, the reader can retrieve whether 
symbols or attributes are concerned at a time. The values of the output patterns 
are as follows: 

»/(=>*, {.},*(*)) [«(1)/«] = Bs, 
= nf(=>it[t),i{l)Ml)/s} = E, 

. = n / ( = > M l , 1 2 } , « ( l ) ) [ a ( l l ) / 5 , t(l)/t] = T{s,BRi), 
i = » / ( = * M l l i a } l i ( l l ) ) [ « ( l l ) / i , t ( l ) / t ] = Li, 
*. = »/(=•«,{11}. «(H))[*'(ll)/*') = Bi. 

In Figure 8 we show the output tree t and the output patterns defined above. 
For later purposes we also frame the parts of the patterns which only consist of 
output symbols. 
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Figure 8: Output tree t and output patterns. 

Now we show the pumping process in the cases in which 

(i) the pattern e" is dropped (r = 0), 

(ii) the pattern e" occurs once (r = 1), and 

(iii) the pattern e" occurs twice (r = 2). 

Thus we have the control tree 

(i) e0 = « > / « " ' ] , if r = 0, 

(ii) e = h = e'[u>/e"[ty/e'"]], if r = 1, and 

(iii) ?2 = e>/e"[u;/e"[u;/e'"]]], if r = 2. 

For every 0 < r < 2, the normal form nf(=>ir, «¿„(e)) is denoted by tree(r). It can 
also be calculated using the above defined patterns of t as follows: 

We start with the pattern t = Bs that corresponds to the attribute occurrence 
s(e), and replace the symbol s by the function call tree'(s. r, 1). Roughly speaking, 
the recursive function tree' moves through the different patterns of er and it con-
structs the output using the output patterns. Every function call of tree' delivers 
one output pattern, in which the symbols s and t are replaced by new function calls 
of tree'. 

The function tree' has three parameters. The first parameter is one of the 
symbols s or ». It indicates, whether we have to use one of the patterns t, or tt 

(in case of the symbol a), or one of the patterns t,- or t,- (in case of the symbol ti). 
The other two parameters are natural numbers. The second parameter r indicates 
the number of repetitions of e" in the control tree er. It is constant during the 
calculation of a certain output tree. The third parameter I indicates the level of 
the input pattern, where tree' currently works. 1 = 0 means the pattern e',1 < I < r 
means the /-th repetition of the pattern e", and I = r + 1 means the pattern e'". 

If 1 < I < r, then tree' uses the pattern t, = T(s,BRi) (or t,- = Li); this 
pattern corresponds to the normal form which is calculated only on the nodes of 
the pattern e" starting with the attribute occurrence s ( l ) (or »(11), respectively). 
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If / = r + 1 , then tree' uses the pattern t, = St; this pattern corresponds to the 
normal form which is calculated only on the nodes of the pattern e'" starting with 
the attribute occurrence «(11). 

If I = 0, then tree' uses the pattern t< = E\ this pattern corresponds to the 
normal form which is calculated only on the nodes of the pattern e' starting with 
the attribute occurrence t ( l ) . 

If / is the current level of the function tree', then every occurrence of the symbol 
s (or t) in the produced output pattern is replaced by a function call tree'js, r,l+l) 
(or tree'(x, r? I — l) , respectively), because tree' has to move one level down (or up, 
respectively) in er. 

tree(O) 
B tree'is. 0.11 
B B tree'U, 0.0) 
B B E 

tree(1) . 
B tree'(s. 1.1) 
B Ti tree'is, 1,2), B R tree'U, 1. 0)) 
BTiB tree'U, \,\).B R E) 
B T(B L tree'U A, 0). B R E) 
BT(B L E,B R E) 

treej2) 
B tree'is,2.1) 
B T(tree'{s,2,2), B R. tree'U. 2.0)) 
B T(T(tre£(s, 2,3), 

B R tree'U,2,1)). B RE) 
B T(T(B tree'U, 2.21. 

B R L tree'U, 2,0)1. B R E) 
B T(T( B L tree'U. 2.1). 

B R L E),B R E) 
B T(T(B L L tree'U, 2.0). 

B R L E),B R E) 
B T(T(B L L E,B R L E),B R E) 

Figure 9: Calculations of tree(r) for 0 < r < 2 and decompositions of er and tree(r). 
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* In Figure 9 we show besides the calculations of the output trees tree(O), tree(l), 
and tree(2), their decompositions into the output patterns. Every output pattern 
is labeled with the level 0 < I < r +1 of the input pattern which causes it. We also 
show the control trees, corresponding to the output trees, and their decompositions 
into input patterns which are labeled with their level. • 
As stated in the last example, the pumping process only guarantees to work for 
output trees which are large enough. This requirement is satisfied, if the size of the 
output tree is at least the pumping index of the given attributed tree transducer. 
Recall that we only consider noncircular, producing, and visiting attributed tree 
transducers. 

Definition S.2 Let M = (A, A, E, Sin, root, iZ) be an st-tree transducer with k, 
synthesized and ki inherited attributes. We define 

cM = max{sizeA(p) | (A p) € ¿2} 
(maximum number of attribute occurrences in right-hand sides), 

Im = maxfaize&lp) | (A —• p) 6 R} 
(maximum number of output symbols in right-hand sides), 

mw = max{rank(a) \ a G E} 
(maximum rank of input symbols), 

and the pumping index km of M as: 

a*< -(2fc* — i) 
nM = l + lM- ( c m) j where n'M = ^ (mM)}. 

y=o y=o n 

In the proof of the pumping lemma we need the fact that the subtree e of a control 
tree root(e) has at least some particular height; the desired height is 
(cf. the proof of Theorem 3.4 for an argumentation on this number). If, for an 
attributed tree transducer M and for a derivation s,„(e) ^¡^«(e) t> the size of t is 
at least the pumping index n « , then e has the desired height. 

Lemma S.S Let M = (A, A, E, Sin, root, R) be an st-tree transducer with k, syn-
thesized attributes, ki inherited attributes, and with pumping index n ^ . Let 
teL^M). 

If size(t) > mm, then for every e 6 T(E) such that t = n / ( ^ r o o t ( e ) , 3,„(e)), the 
height height(e) > 2ki • (2fe* - l) + 2. 

Proo f . Consider t € Lout(M) with size(t) > n^. We examine a control tree 
e = root(e) with a certain derivation s,„(c) t. We abbreviate this derivation 
by d and the number of derivation steps of d by length(d). The proof consists of 
a sequence of five implications. First, we list these implications and afterwards we 
give some explanations. 
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(k.+ki)n'M 
(1) If size{t) > nM = 1 + lM • £ (cM)>\ 

3=0 
(fc.+fc.) n'u 

then length(d) > 1 + £ (cM)>. 
j=o 

(2) If length(d) > 1 + £ {'m)3 , then card(att{e)) > 2 + (k, + Jfc,) • n'M. 
i=o 

(3) If card(att(e)) > 2 + (Jfc. + Jfc<) • n'M, then card(att(e)) > 1 + (k, + Jfc,) • n'M. 
(4) If card(att(e)) > 1 + (Jfc, + Jfc,) • n'u, then size(e) > 1 -f n'M. 

(5) I f s i z e ( e ) > l + n'M = l + 2 E ^("m) 3 ' , 
i=o 

then height[e) > 2ki • (2fc* - 1) + 2. 

(1) Since Ijrf is the maximum number of output symbols in the right-hand sides 
of the rules of M, [ cm)3 rule applications can produce at most 
Ijhi • ( cw)J output symbols. Hence, since size(t) > 1 + 

lM • Ei=o+ f c , ) ' " i /(< :w)y . it needs at least 1 + E ^ J o ^ ' r u l e appli-
cations to generate t. 

(2) Since every attribute occurrence can call at most cm other attribute occur-
rences in one derivation step, 1 + (k, + fc,) • n'M different attribute occurrences 
of e can cause at most X^t/o^' ' " " (cm } 3 rule applications during the whole 
derivation d. To understand this fact, we can construct the calling tree of 
d with attribute occurrences of e as nodes: the root of this tree is labeled 
3<n(e); every node of the tree labeled a(p) has as many sons as there are 
attribute occurrences in t' with a(p) t'\ the sons are labeled by the dif-
ferent attribute occurrences. It is easy to observe that the length length(d) 
of the derivation d is equal to the size of the calling tree. Under the assump-
tion that there are at most 1 + (k, + • n'M different attribute occurrences 
of e, the height of the calling tree is at most 1 + (k, + ki) • n'M, because 
M is noncircular. Thus its size is at most E)=o u(cm)3- Hence, since 
length{d) > 1 + Ej=o+fc ' ) n " we have at least 2+ (fc„ + fci)- different 
attribute occurrences of e. 

(3) At the root of e we only have the attribute occurrence s«n(e), thus there exist 
at least 1 + (A:, + Â ) • n'M attribute occurrences of e. 

(4) Since M has k, + ki attributes, an input tree e with n'M nodes can only 
have (k, + ki) • n'M attribute occurrences. Hence, since card(att(e)) > 1+ 
(kt + ki) • n'M, we must have aize(e) > 1 + n'M. 

(5) Since m u is the maximal rank of the input symbols, an input tree with height 
2fc> . (2*' — 1) + 1 can only have the size E^==o2 Hence, since 
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atze(e) > 1 + n'u = 1 + we must have height(e) > 
2k* • (2*' - 1) + 2. • 

T h e o r e m 3.4 (Pumping Lemma) 
Let M= (A, A, E, Sin, root, R) be an si-tree transducer with system A = (A,A,,Ai) 
of attributes and pumping index n^. 
For every t £ Lout[M) with size[t) > nu 

• there exist three ranked alphabets 

- (U,,ranku,) with U, C A,, card[U,) > 1, and ranko.(s) = 0 for every 
a € U„ 

- (Ui,ranku4) with J7< C A» and rankui (») = 0 for every t £ 17*, and 

- U = U. U Ui, 

• there exists t £ T(A U Ut) - T{A) with size±(t) > 1, 

• for every t £ I/,-, there exists a tree t; £ T (A U U,)with atze^t , ) > 1, 

• for every a £ t/,, there exists a tree t, £ T(AU U) with 1 < size&(t,) < hm, 

• for every t € Ui, there exists a tree ti £ T ( A U U) with 1 < size&(t,) < n\f, 

• for every a £ Ut, there exists a tree t, £ T(AU [/,•) with 1 < size&(it) < nu, 

with 

• for every s E U,, the symbol a occurs in t or there is an »' £ Ui such that a A occurs m tii, 

• for every a £ UB, there is an a' £ U, such that a occurs in t,< or there is an 
»' £ Ui such that s occurs in i,-', 

• for every t £ Ui, there is an a' £ U, such that t occurs in t,< or there is an 
»' £ Ui such that i occurs in £*>, 

• for every t £ Ui, there is an a' £ U, such that i occurs in t,>, 

such that t = tree(l) and for every r > 0, the tree tree(r) £ Lout{M). The function 

tree : IN —• T{A) 

is for every r > 0 defined by tree(r) = t \s/tree'(s. r, 1) ; a £ 17,], where the partial 
function 



A pumping lemma for output languages of attributed tree transducers 287 

tree' :U x N x N • T( A) is defined as follows: 
For every s e U, and r > 0, if I e [r], 

tree'ia. r, I) = t, \a'/tree'{a'. r, I + l ) ; a' &U„ i'/tree'(i'. r, I - 1) ; i' & t/,]. 
For every a e U, and r > 0, if / = r + 1, 

tree'ia, r, I) = t.[i'/tree'(i\ r, I - 1) ; »' 6 17»]. 
For every t € Ui and r > 0, if Z e [r], 

tree'ii. r, 0 = U\a'/tree'{a'. r, I + 1) ; a' 6 U„ i'l tree'ii'. r, I - 1) ; i' e U{}. 
For every » e Ui and r > 0, if I = 0, 

tree'ii, r, /) = U\a'/tree'(a'. r, I + 1) ; a' e £/.]. 

Proof . Let M = (A, A, E, a,n, root, R) be an at-tree transducer with system A = 
(A, A,, Ai) of attributes, k, synthesized attributes, and ki inherited attributes. 

Consider t S Lqux^M) with aize(t) > nm. By Lemma 3.3 we know that, 
for every control tree e = root(e) with a,n(e) =>t t, the condition height(e) > 
2fc. . (2fc. - 1) + 2 holds. 

We choose a control tree e = root(e), a derivation d = («¿„(e) =>? t), and a 
path p with maximal length from the root of e to a leaf of e. Then we know that 
|p| > 2ki • (2fc* - 1) + 2 > 2ki • (2fc* - 1). Note that here it would have been sufficient 
to have |p| > 2*' • (2fc* — 1) + 1, but later in the proof of the size conditions for 
the output patterns we again make use of the pumping index nm to avoid the 
definition of a new constant. Otherwise we would have had another formulation of 
the pumping lemma with two constants (like in [BPS61], there the constants are 
called p and q). 

Since there are exactly 2ki possibilities to choose an arbitrary subset of the ki 
inherited attributes and since there are exactly 2k' — 1 possibilities to choose an 
arbitrary, nonempty subset of the k, synthesized attributes, we have that 

card({attaet(e,p') | p' ^ e, and p' is a prefix of p}) < 2ki • (2fc' - 1). 

Since |p| > 2k' • (2fc* — 1), there must exist strings Pi e, pa ^ e and p3 with 
P = P1P2P3, such that 

attaet(e,pi) = attaet(e,pip2). 

We choose pi, ps, and P3 such that IP2P3I is minimal. This means that we take 
the first repetition of attset(e,p'), where p' is a prefix of p, beginning from the leaf 
at p. Then we know that |p2P31 < 2k' • (2fc* — 1), because otherwise there is another 
repetition of attaet in that part of p between node(e, pi) and node(e, piP2P3)i in 
contradiction to IP2P3I being minimal. 

We define the subsets U, C A, and Ui C A,-, such that 

U, = attaet(e,pi) n A, and Ui = attaet(e,pi) fl A,-. 

In fact, card{U,) > 1, because M is visiting and thus every symbol of the control 
tree must be visited by a synthesized attribute. 

Let to £ E+ with ronJfc(tw) = 0. We define trees e' € T(E+ U {w}) and e" € 
T{Eu{ti/}), where both, e' and e", have exactly one occurrence of w, and e'" € T(E) 
with the help of pi, P2 and P3 as follows: 
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e' = e[pi u>] 
e" = subtree(e\pip2 *—u>], Pi) 
e"' = aubtree(e, pipa) 

Then the representation e = e'[w/e"[u;/e'"]] holds. The reader can find these 
patterns of e and the paths leading to them in Figure 3. 

In the sequel we need the sets Pi, P2, and P3 of paths, which lead from the root 
of e to the nodes in the three parts e', e", and e'", respectively: 

Pi = patha{e') - {pi} 
P2 = {{pi}p°ths{e"))-{pip2} 
Pa = {PlPa} • patha(e"') 

Note that the path pi leading to the root of e" is excluded from Pi and that the 
path P1P2 leading to the root of e'" is excluded from P2. 

Now we calculate, roughly speaking, the values of the inside attribute occur-
rences of the patterns e', e", and e'" as functions in the values of the outside 
attribute occurrences of the same patterns in order to gain the desired output pat-
terns that are needed for the pumping process. Therefore we restrict the derivation 
relation of M to the sets Pi, P2) and P3, respectively, as it is defined in Definition 
2.6. 

For the definition of the output patterns, we use symbols from the ranked al-
phabets (U„ranku,) and (Ui,rankui) with ranku.(s) = 0 for every a 6 U,, with 
ranki/i (*) = 0 for every t € 17,-, and with U = U, U 17,-. We choose exactly the at-
tributes as names for the symbols, to emphasize their strong connection, although 
they have different ranks. It is easy to decide from the context in which the names 
occur, whether symbols or attributes are concerned at a time. 

Now we can define (cf. Figure 3): 

I = nf{=>g,Pl, «¿„(eJMpi)/«' ; a' S U,\. 
For every a &U„ 

t. = nf{=>i,Pi, s(pi))[s ' (pip2)/i ' ; e U„ i'(pi)/i' •; »' € U{] and 
t. = n f l ^ P , , 3(PlP2))[*'(PlP2)/»'! »' € Ui]. 

For every t 6 Ui, 
U = n/(^e-,p3)t(p1p2))[s'(p1p2)/a' ; a' € U„ i'(pi)/i' ; i' € U{) and 
ti = nf{^Pl,i(pi))\a'(pi)la'a'&U,\. 

Note that, by the definition of =>i,p,, the inherited attribute occurrences *'(pi) can-
not be evaluated and thus may occur in nf{=>gtpJt s(pi)) and «/(=>•?,Pa)*(pip2))-
The same holds for =>•?,/>, and the inherited attribute occurrences t'(pip2) that may 
occur in «/(=•?,P,,«(pipa))-

By this definition, every pattern has the type, which is required by the pumping 
lemma. We only have to check that t $ T(A). Again the reason is that every 
symbol of the control tree must be visited by synthesized attributes. Thus, one 
of the synthesized attribute occurrences a(Pi) must be called directly from a,n(e) 
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via a sequence of attribute occurrences of e'. Otherwise the derivation would never 
reach e". 

Now we prove the sise conditions for the patterns: 

(a) a ize^t) > 1: 
We have atze&(i) > 1, because pi jt e and thus there must be at least one 
rule application to calculate nf(^g,Pn «»»(*)) ^ a,„(e). Note that M is 
producing. 

(b) For every t € U{, aize^(ti) > 1: 
We have stze&(ti) > 1, because n/(=>g,Pn*(pi)) can only consist of output 
symbols and attribute occurrences «'(pi) and thus cannot be equal to »(pi). 
Again there is at least one rule application to calculate the normal form. 

(c) For every a € Ut, 1 < sxze&(t,) < nw. 
We have aize&(t,) > 1, because p2 ^ e and thus there must be at least one 
rule application to calculate «/(=•?,/>,, a(px)) ^ a(pi). We have aize&(t,) < 
n M , because the calculation of nf{^g tp1 ,a{pi) ) only takes place on the part 
e" of the control tree. Since p is a longest path in e, its subpath p2p3 with 
|p3p3| < 2ki • (2fc* — 1) is a longest path of e"[u;/e"'] and thus e" can have 
no path with a length greater than 2ki • (2fc* - 1). Then height{e") < 2ki • 
(2** — 1) + 1 and (with a reverse argumentation to fix height(e) in the proof of 
Lemma 3.3 we get at*e(e") < = n'u> w e have less than 1+ 
(fc, + k{) n'u attribute occurrences of e", we have less than (cm)3 

rule applications to generate t, and thus aizc&(tt) < "(cm)' < 
nM-

(d) For every t 6 C/j, 1 < aize&(ti) < n^: 
We have a»ze^(tt) > 1, because p2 ji e and thus there must be at least 
one rule application to calculate n/(=>i,Pi>«(piP2)) / »(pips)- The proof for 
aize&(ti) < ixm is analogous to that in (c). 

(e) For every a e Ut, 1 < size&(t,) < nu-
We have aize&(tt) > 1, because n/(=>-g,/>,ia(piP2)) can only consist of out-
put symbols and attribute occurrences t'(pip2) and thus cannot be equal to 
a(pip2). Again there is at least one rule application to calculate the normal 
form. We have aize^{tt) < tiM, because the calculation of nf(=>g<pl, a(pip2)) 
only takes place on the part e"' of the control tree. Since p is a longest path 
in e, its subpath ps with |ps | < |p2p3| < 2ki • (2fc* — l) is a longest path of e'". 
Now we can apply the same argumentation as in (c). 

In the next step we have to check, whether the symbols a €.XJ, and t € 17« occur at 
least once in the desired patterns of t. We show the proof only for the occurrences 
of a 6 U, in the tree t or in a tree for some t' € 17«. The other cases can be 
treated analogous. The proof works by contradiction: 
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If there is an a G U, such that a does not occur in t and not in t,< for every 
»' G £/,, then, by the definition of the patterns of t, the attribute occurrence a(pi) 
does not occur in f»/(=>2,Pn«»«(«)) and not in nf(=>i,px,i'(pi)) for every »' G i/,. 
But the calculation of these normal forms are the only parts of the derivation d, in 
which the attribute occurrence a(pi) can be introduced into the derivation. Thus 
s(pi) cannot occur in d, in contradiction to a € attaet(d,pi) = attaet{e,pi). 

The last item of this proof is to show that t = tree{ 1) and that for every r > 0, 
the property tree (r) € LMt (A/) holds. 

We abbreviate the control tree, which is built up by repeating r > 0 times the 
pattern e", by er: 

er=e'lw/e"lw/...e"lw/e"' ]...] ] 

r times r times 
Thus, in particular, e = i\. 

First we have to verify the following Statements (la) and (lb) concerning the 
function tree': 

(la) For every a€U„ r > 0, 1 < / < r + 1, tree'{a. r, I) = nf(=>ir, a(pap2 - 1)). 
( lb) For every t 6 Uit r > 0, 0 < I < r, tree'{i,r, I) = nf{=>ir,x(plpl:t)). 

Since M is noncircular, there must exist an order in which, for every r > 0, the 
attribute occurrences of the set {a(pxp3) | a € U,,0 < I < r } U {»(pipa) | * G Ui, 
0 < I < r) can be evaluated. This order induces an order 6 on the set {tree'(ar r, /) | 
a G U„ l < / < r + l } U {tree'(x. r,l) \ i G Uit 0 < / < r } of function calls and thus 
it is guaranteed that the recursive function tree' is well defined. 

If, for example, the evaluation of tree'{a. r. I) forces us to evaluate tree'(a', r. 
1 + 1), then, for every 1 < I < r, the attribute occurrence «'(pipi,) has to appear 
earlier than the attribute occurrence «(pip!, -1) in an order of the above attribute 
occurrences. But this is guaranteed, because in this case t, must contain a symbol 
a' (compare the definition of tree' in Theorem 3.4) and by the definition of t„ we 
must have an attribute occurrence a'fpipa) in nf{=>gtpJ,a{pi)). Hence, a'(pip2) 
must be evaluated before a(pi) and thus, for every 1 < I < r, a'(pipl2) must be 
evaluated before a(pipj_ 1) . 

Now we take an arbitrary such order 6 of function calls which can be considered 
as a string of length (r + 1 ) • card[U). Then we can prove the Statements ( la) and 
( lb) by finite (mathematical) induction on v with 1 < v < (r + 1) • card(U), i.e., v 
is a position in this string. Depending on the function call at position i/, we have to 
prove either the statement tree'{a. r. I) = nf(=>zT, «(pipij -1)) (if the i/-th function 
call is tree'{a, r, /)) or the statement trce'(i. r. 1) = nf{=>ir,i{pipl3)) (if the i/-th 
function call is tree'(iT r, /)). If we want to prove the statement for the function call 
at position v in 6, then we can use the induction hypothesis which says that, for 
every function call at position 1/ with 1 < v ' < u, the corresponding statement 
holds. 
Case (a): The function call at position v is tree'{a. r, ¿) with a G U„ r > 0, and 
l<l < r+1. Thus we have to prove the statement tree'(a, r, /) = n/(=>er, «(pip!, - 1)) . 
There are two cases: 
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Case I: 1 <l<r 

tree'(s. r, /) 
= t,\s /tree {s'. r, I + 1) ; a' € U,, i'/tree'W. r, I - 1) ; i' £ Ui] 

(Definition of tree') 
= t.la'/nfi^a'fati)) ; s' £ U„ » 7 » / ( = * « r . » > i P L ~ 1 ) ) ! »' 6 H 

(Induction Hypothesis for function 
calls with positions less than u) 

= nf(=>ir,t,[a'/«^(pipa) ; s' £ U„ »'/»'(PiPa -1) ! *' e Ui]) 
= nf(=>ir,a(pip2 x)) (Calculation on the /-th occurrence of e") 

Case II: f = r + 1 

tree'(a. r, r + 1) 
= t,[i'/tree'(i'. r, r) ; t' £ Ui] (Definition of tree') 
= t,[»'/nf(=>ir ,»'(pipjj)) ; »' £ Ui\ (Induction Hypothesis for function 

calls with positions less than i/) 
= » / ( = • « „ t . [ » 'A ' (p ip5 ) ; » ' e t ; . ] ) 
= nf(=>iT, s(pipa)) (Calculation on e'") 

Case (b): The function call at position v is tree'(i.r,I) with t 6 Ui, r > 0, and 
0 < I < r. Thus we have to prove the statement tree'(iTrTl) = w/(=>e,i»(piPa))-
There are two cases: 
Case I: 1 < I < r 

tree'(i, r, I) 
= t.-ja'/tree'(a', r, I + 1) ; a' £ U„ i'/tree'{i'. r, I - 1) ; »' £ t/,] 

(Definition of tree') 
= ti[a'/nf(=>ir,a'(pipl2)) ; 6 U„ i'/nf^i'fap'f1)) ; t' £ U{\ 

(Induction Hypothesis for function 
calls with positions less than v) 

= nf{^ir,ti[a'/a'(p1pl3) ; £ U„ i'/i'fap'f1) ; i ' £ Ui}) 
= n/(=»g r ,t(piP2)) (Calculation on the Z—th occurrence of e") 

Case II: I = 0 

tree'(i, r. 0) 
= U[a'/tree'(a'f r, l ) ; s' £ U,\ (Definition of tree') 
= t , [ s ' / n i s'(pi)) ; a' € 17»] (Induction Hypothesis for function 

calls with positions less than v) 
= » / ( ^ ^ [ • ' / • ' ( p i ) ; « ' e ^ D 

= w/(^-? r ,t(pi)) (Calculation on e') 

Then we can prove for every r > 0 the equation tree(r) = nf(=>gr, 3,n(e)): 
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tree(r) 
= t [s/tree'(a, r, 1) ; a 6 Ut\ (Definition of tree) 
= */(=>?,j>, , «m(e))[a(pi)/« ; « 6 Ut][a/trecL{a, r, 1) ; a € U.) 

(Definition of t) 
= nf{=>itPl, ai„(e))[s(pi)/treei(«,»-.l) ; a € U0] 
= f»/(=>?,p,,«,n(e))[a(pi)/«/(=»2 r ,s(Pi)) \ a eUa\ (Statement (la)) 
= »/(=•?„/ ' , ,s.n(e))[a(pi)/»»/(=>« r ,a(Pi)) ; « 6 U.\ (Subterm e ' in er 

unchanged) 
= nf{=>ir,ain{e)) 

This equation has the two desired consequences that finish the proof of the pumping 
lemma: 

o tree(l) = a in(e)) = n/(=>g,a in(e)) = t. 

o For every r > 0, tree(r) = n/(=>-gr,s,„(e)) € LMt(M), 
because r(M)(e'r) = tree(r) where eT = root[e'r). • 

We want to conclude this section with an observation concerning the requirements 
of the attributed tree transducers to be producing and visiting. 

If we had dropped the "producing-condition", then the pumping process itself 
would not have been affected. But it would have been impossible to prove that the 
output patterns consist of at least one output symbol. In the- next section we shall 
see that the applications of the pumping lemma demonstrated there, are no more 
feasible without this size-condition.; 

If we had dropped the " visiting-^condition", then the proof of the pumping 
lemma itself Would have been impossible. Since for the control tree e and for 
every subpath p' of the chosen path p, dttaet(e,p') 0 cannot be guaranteed, the 
following construction is no more feasible. 

4 Applications 

Our pumping lemma is usable for the output language of every noncircular, pro-
ducing, and visiting attributed tree transducer. But, if we take output languages 
which are constructed over an arbitrary output alphabet, then the application of 
the pumping lemma is very difficult. Hence we apply our pumping lemma only to 
output languages with monadic trees. 

The following Theorem 4.1 is a specialized version of our pumping lemma for 
the case of monadic output languages. Observation 4.2 makes a statement about 
the number of occurrences of the output patterns in the trees tree(0) and tree(l) in 
the case of monadic output languages. We use this theorem and this observation 
in the following proofs. 
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4.1 Pumping lemma for monadic output languages 
In order to simplify the study of this paper we state here a complete monadic 
version of the pumping lemma instead of giving only the additional conditions. 

Theorem 4 .1 Let M = (A, A, root, R) be an ¿«-tree transducer with sys-
tem A = (A, A, ,Ai ) of attributes, pumping index n ^ , and A = A ' 1 ' U A*0 ' . 
For every t € Lout(M) with size(t) > nu 

• there exist three ranked alphabets 

- (U,,ranku.) with U, C A,, card(U,) > 1, and ranku,[8) = 0 for every 
sEU„ 

- (Ui, rankui) with Ui C A, and rank^ (») = 0 for every * E 17,-, and 
-U = U.\jUit 

- with card[U.) = card(Ui) or card(U,) = card(Ui) + 1, 

• there exist u E U, and t e T(A*1 ' U {u}> with size±(t) > 1, 

• for every t € Uiy there exist u E U U. and t, E T(&W U {u}) 
with size&(ii) > 1, 

• for every a E U„ there exist u E U and t, E T(AW U {u}) 
with 1 < size&(t,) < nu, 

• for every » e 17», there exist uEU and t, E T(A(1) U {u}) 
with 1 < a»zeA(t») < " m , 

• for every a E U„ there exist u 6 A^0' U [/,• and t, 6 T(A^ U {u} ) 
with 1 < size & (t,) < nu, 

such that 

• exactly one tree of the set {tf 11 6 Ui) U {t, | a E U,} is of type T(A), such 
that 
if card{U,) = card(Ui), then there is exactly one i E Ui such that t, E T(A), 
if card(Ut) = card(Ui) + 1, then there is exactly one a EU, such that t, E 
T( A), 

• for every a E U „ the symbol a occurs in exactly one tree of the set 

• for every a EU t , the symbol a occurs in exactly one tree of the set 
{t,, | a' 6 U.}\J {t<( | »"' E Ui}, 

• for every t E Ui, the symbol t occurs in exactly one tree of the set 
{t., | a' E U,}U {t<. | € Ui}, 

• for every tEUi , the symbol i occurs in exactly one tree of the set 
I € U.}, 
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such that t = trce(l) and for every r > 0, the tree tree(r) G L01tt{M). The function 

tree-. IN —• T(A) 

is for every r > 0 defined by tree(r) = t [a/tree'(a, r, 1) ; a G (/,], where the partial 
function 

tree' :U x JV x J\T • T(A) is defined as follows: 
For every s € U, and r > 0, if I G [r], 

tree'[a. r, /) = t.[a'/tree'(a'. r, / + 1) ; a' € U„ i'/tree'{i'. r, I - 1) ; i' G U{\. 
For every and r > 0, if / = r + 1, 

tree'(a. r, i) = L[i'/tree'{%'. r, I - 1) ; »' e 
For every » € 'U{ and r > 0, if I G [r], 

tree'ti. r, I) = ti\a'/tree'(a'. r, I + 1) ; a' S £/., i'/tree'{i'. r, I - 1) ; »' e C/,]. 
For every »' G J/,- and r > 0, if / = 0, 

tree'(i, r,l) - U[a'/tree'{ar, I + 1) ; a' e U,]. 

Proof . We only have to prove the additional conditions of the pumping lemma. 
The proof is based on the proof of Theorem 3.4. Thus we make use of some notions 
which were introduced there. 

We first prove the correctness of the substitutions of "occurs in a tree" in Theo-
rem 3.4 by "occurs in exactly one tree". We show the proof only for the occurrence 
of a in the tree t or in a tree t{>. The other cases can be treated analogous. The 
proof works by contradiction: 

Assume that there is an a e U, such that a occurs in at least two different trees of 
the set {t}u{t,-- | i' 6 i/, } . Then, by the definition of the patterns of t, the attribute 
occurrence a(pi) occurs in two different normal forms of rif(=>gtpl, a,„ (e)) and 
« / (=»2 ,^ i *'(pi)) for »' € U{. The calculation of these normal forms correspond to 
different parts of the derivation atn(e) t. Thus a(pi) occurs in two different 
sentential forms of the derivation ajn(e) =>£ t. There must exist tltt2 G (A'1')"*" 
with 3i„(e) tia(pi) ^-f titua(pi) t. Consequently, M is circular, which is 
a contradiction. The conditions that 

• there exist u G U, and t 6 U {u}) , 

• for every » G Uit there exist u G A<°> U U, and U G T{A*1) U {u}), and 

• for every a G 17,, there exist u G U U{ and t, G T(A ( 1 ) U {u} ) 

are direct consequences of the pumping lemma, because A is monadic. 

• For every a e Ut, there exist u G U and t, G T (A ( 1 ) U {u} ) and 

• for every t G Uit there exist u G U and tt G T(A<1) U {u}) , 

because each of the card(U) symbols of U occurs in exactly one of the card(U) 
trees of the set {t, \ a G U,} U {t< | » G £/<}, and because each of these trees can 
contain at most one (and thus exactly one) of the symbols. 
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We know that each of the card(Ui) symbols of U{ occurs in exactly one of 
the card(Ut) trees of the set { i , | a S U,}, and that each of these trees can 
contain at most one of the symbols. Thus we must have card(U,) > card(Ui). 
We also know that each of the card(U,) symbols of U, occurs in exactly one of 
the card{U{) + 1 trees of the set {t } U {t< | » € U,}, and that t contains exactly 
one and each of the other trees can contain at most one of the symbols. Thus we 
must have card{Ui) > card(U,) — 1. We can conclude that card(U,) = card(Ui) or 
card(U,) = card(Ui) + 1 holds. 

If card(U,) = card(Ui), then every tree t, contains exactly one of the symbols 
of Ui and every tree t< except one of them contains exactly one of the symbols of 
U,. Thus there is exactly one t e Ui with t* € T{A). 

If card(Ut) = card(Ui) + l, then every tree U contains exactly one of the symbols 
of U, and every tree t, except one of them contains exactly one of the symbols of 
Ui. Thus there is exactly one s 6 U, with t, 6 T(A). • 

Observation 4.2 Let M = (A, A , £ , Sin, root, R) be an at—tree transducer with 
system A = ( A , A „ A i ) of attributes and A = A*1' U A^0'. Then in Theorem 4.1, 

1. tree(0) is built up, using each of the trees of the set 
{ t } U {£,• 11 € Ui} U {t, | a 6 U,} exactly once and 

2. t = tree(l) is built up, using each of the trees of the set 
{ t } U 11 6 I/,} U {t , | a € U,} U {t< 11 € Ui} U {t. | a 6 U,} exactly once. 

Proof . Again we make use of some notions which were introduced in the proof of 
Theorem 3.4. 

(a) The tree t is used exactly once in iree(O) and tree(l), because t is introduced 
calling the function tree' the first time and nowhere else. 

(b) The argumentation for the statement that the trees of the set {t< |t 6 {/,•} 
U {t, | a € 17»} are used at most once in tree(O) works as follows by contra-
diction: 
W.l.o.g. we assume that a tree ti is used twice (or more than twice). Then the 
calculation of »»/(^-^/^¿(px)) corresponds to different parts of the deriva-
tion 8j„(e) tree(O). Thus t(pi) occurs in different sentential forms of 
the derivation 3{n(ff) tree(O). There must exist ti,Î2 € (A'1^)"*" with 
8 in w = «̂0 ti*(pi) ^ i o ^ « ( p i ) =>-g0 tree(o). Consequently, M is circular, 
which is a contradiction. 

(c) The same argumentation can be applied for the proof of the statement that 
the trees of the set {tf 11 € Ui} U {t . | a € U,} U {U \ i € U{} U {t , | a e 17,} 
are used at most once in tree(l). 

(d) The argumentation for the statement that the trees of the set {£< 11 € Ui) 
U { t , | a € 17,} are used at least once in tree(O) works as follows by contra-
diction: 
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By Theorem 4.1 we have card(U,) = card(Ui) or card(U,) = card(Ui) + 1. 
We show the proof only for the case card(U,) = card(Ui). The other case can 
be proved analogous. 
We let k = card(U,) = card(Ui), U, = { « i , . . . , a*}, and 17,• = { » i , . . . , »* } . 
Assume that not all of the desired output patterns occur in tree(O). The 
number of used trees with t € i/,- and the number of used trees t, with 
a e U , has to be equal, because the process of building up tree(0) starts with 
t, it must end with the only tree t,- £ T(A) by Theorem 4.1, and the use of 
trees ti with i E Ui and of trees t, with a & U, must alternate, as can be seen 
observing the function tree'. 

Thus we can assume that there is a kf G [Jk — 1], such that only the patterns 
t{1,..., Uk,, t,lt... ,t,k, occur in tree(O) (possibly by renaming the trees). We 
construct a circularity in cq with the remaining patterns Uk,+l, • • •, t«fc, t»k,+1, 
...,t,k which can not be of type T( A), as follows: 
Because of Theorem 4.1 and because the symbols a l f . . . , a*», » i , . . . , tV must 
occur in the patterns which are used to construct tree(0), we know: 

- For every j with k' +1 < j < k, the tree tij e T(A^ U {a f c . + i , . . . , a fc}), 

- for every j with Jf + 1 < j < k, the tree ttj € U {»fc'+1 ik}), 

- and every symbol a^'+i,. . . ,afc,tV+ii • • • >t* must occur in exactly one 
tree of the set {t , i I + l 

Thus, possibly by renaming the trees, there must exist k/' € [fc — A:'] with: 

- For every j with Jfc' + 1 < j < fc' + Jfc", the tree t,y 6 U {ay}), 

- for every j with k'+1 < j < k'+ k" -1, the tree tSj 6 T (A ' 1 ' U {t'y+i}), 

- and i ,k l + k„ e r ( A ^ ) U { u ' + i } } . 

By the definition of the patterns in the proof of Theorem 3.4 we know that 
these patterns correspond to normal forms of certain attribute occurrences 
and we can construct a derivation on the control tree ?o as follows: 

*V+x(pi) 
=>to + ! ffc' + l(Pl) 

We can conclude that M is circular, which is a contradiction. An example 
situation which would be a consequence of the assumption that not all of the 
desired output patterns occur in tree(O) is shown in Figure 10. 
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Figure 10: Circularity in é0 with Jb = 3, Jfc' = 1 and k" = 2. 

(e) The trees of the set {t, 11 € £/<} U {£, | s <= U,} U {t< | i G Ui) U {t , | s <= U,} 
are used at least once in tree(l). because these patterns correspond to parts of 
the derivation t = tree(l) by the definition of the output patterns 
in the proof of Theorem 3.4. • 

4.2 Arithmetic Proof 
It is known from Lemma 4.1 of [FÜ181] that, if M is an attributed tree transducer 
and if r(M)(e) = t for an input tree e and an output tree t, then there is a 
constant c > 0 such that hcight[t) < c • size(e) holds. Thus, there cannot exist 
an attributed tree transducer M, which calculates the tree transformation r (M) : 
T U ^ 1 ) , ^ 0 ) } ) — T ( { B W , E W } ) with r(M)(-r"a) = B 2 * E for every n > 0. We 
only mention here that there is a macro tree transducer (cf. Example 4.3 of [EV85]) 
which calculates this tree transformation. 

If we do not restrict the input trees to be monadic trees, then the lemma of 
Fülöp says nothing about whether an attributed tree transducer M ' exists com-
puting the tree transformation r(Af') : T(E) —• T ( { ő ( 1 ) , £<°)}) with Lout(M') = 
{B2 E | n > 0}. Such a producing and visiting attributed tree transducer cannot 
exist, because we can use our pumping lemma to prove that { B 2 E \ n > 0} ^ 
S I T ^ holds. 

We call the following kind of proof arithmetic proof, because we use arithmetic 
arguments while applying the pumping lemma. 

Theorem 4.5 {B2'E \ n > 0} £ SITC 
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P r o o f . Assume that there is an st-tree transducer M = (A, A, E, s ,„ , root, R ) with 
system A = (A, A,, Ai) of attributes and LMt{M) = {B2 E \ n > 0} . By Theorem 
4.1, for every t € ¿ o u t ( ^ ) with aize(t) ^ n^/, where ^ 1 is the pumping index 
of M, certain properties hold. Consider t = B E; clearly, aize[t) > n\f. 

According to Theorem 4.1 there exist U, Ç A, with card(Ut) > 1, 17,• Ç Ai, 
a tree t, trees t,,t,- for every i € Ui, and trees t,,t, for every a 6 U, fulfilling the 
conditions of Theorem 4.1, such that t = trcc(l). 

t = tree(l) is built up, using each of the trees of thé set {£} U {U | » e Ui} U 
{£, I a e u,} U{t< I » e Ui}u{t, I a 6 U,} exactly once, because of Observation 4.2. 
tree(O) is built up, using each of the trees of the set { i } u { t j 11 e C/, } u { i , | a € U,} 
exactly once, because of Observation 4.2. 

Thus we can estimate aize(tree(0)) with the sise conditions of Theorem 4.1 as 
follows: 

atze(iree(0)) 

= aize(tree(l)) - E.eu. aizea (*.) ~ T,i€Ui aize± (*<) 
> 2n" cardM+ l - { n u - l ) (card{U,) + card{Ui)) [size^t.) < nM - 1, 

aizeA(t,) < n M - l ) 
> 2n"cardM+l-{nu-l){card(A.) + card{Ai)) 
= 2ntd'card(A) + 1 - ( n M - 1) • card(A) 
> 2 n " car<,(i4) + 1 - (n M • card(A) - 1) 
> 2niccard(A) j 2 n * i — 1 
_ 2n»card(A)-1 + 1, and 

aize (tree ( 0)) 
= a»ze(tree(l)) - s*ze^(t,) - v. aize^U) 
< 2n» eardM + 1 - (card(U.) + card(Ui)) (s»'zeA(t.) > 1, 

8ize±(ti) > 1) 

Note that the requirement of M to be producing is necessary for this part of the 
proof. 

Thus 2n** c o r < i ( j 4 ) -1 + l < aize[tree{0)) < 2n" card^ + l and therefore tree(O) £ 
L^M) = {B2*E | n > 0}, contradicting the assumption. • 

4.3 Structural Proof 
In contrast to the (easier) arithmetic proofs, we want to demonstrate here, how 
structural properties of a certain output language can be used while applying the 
pumping lemma for attributed tree transducers. We use the results of this subsec-
tion to present a hierarchy for attributed tree transducers with bounded number 
of attributes. 

L e m m a 4.4 For every k > 1, {{BDn)2k+1E \ n > 0} £ S^I^T^. 
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Proof . Let k > 1. Assume that there is an i t - tree transducer M — (A, A, E, Sin, 
root,R) with system A = (A, A,, Aj) of attributes, Lout (M) = {(BDn)2k+1E | 
n > 0} and with k synthesized attributes and k inherited attributes. By Theorem 
4.1, for every t G ¿^(M) with size(t) > nu, where n^r > 1 is the pumping 
index of M, certain properties hold. Consider t = (BDn"(2k+1))2k+1E) clearly 
size(t) > 

According to Theorem 4.1 there exist U, C A, with card(U,) > 1, {/,• C A,-
with card(Ut) = card(U{) or card(U,) = card(Ui) + 1. Additionally, there exist 
a pattern t, patterns ti,U for every i G Ui, and patterns t,,t, for every s G U, 
fulfilling the conditions of Theorem 4.1, such that t = tree{ 1). 

t = tree(l) is built up, using each of the patterns of the set {£} U {t* |t G C/,} 
U {t, | a G C/,} U {t,- | i G Ui) U {t, | a G U,} exactly once, because of Observation 
4.2. In the following, we simply identify these patterns with the sequence of their 
output symbols from the root to the leaf by dropping the symbols a G U, and t G Ui. 
This notation is slightly inaccurate, but easier to read. We let k\ = card(U,), 
k2 = card(Ui), U, = { a i , . . . , a f c l}, and U{ = {t ' i , . . . ,»'*,}. 
Case 1: ki = ¿3 
In this case we can represent t as follows, where for every I G [¿1], t ' ' ' is a sequence 
of patterns taken from the patterns t # 1 , . . . , t , k i t { k i , t M , . . . , t , k i : 

t = tree( 1) = t tW U, t<2> ti3 ... t<fc'> tiki 

For every I G [fci], the tree t'1' is built up from at least one pattern. It is constructed 
from at most 2ki + 1 patterns, if the other trees t'' ' are built up from exactly one 
pattern, because each pattern can only be used once, according to Observation 
4.2. Since for every j G [fcj], 1 < sizc&(ttj) < n^, 1 < atze^fi^.) < n^f, and 
1 < 3ize&(tSj) < km, we know for every I G [fci]: 

1 < a»ireA(t<')) < (2fcx + 1) • nM < (2k + 1) • nM 

Thus every sequence t(') can overlap at most two parts of successive symbols D in 
tree(l). The ki sequences together can overlap at most 2k\ < 2k parts of successive 
symbols D in tree(l). Since there are 2A+1 parts of successive symbols D in tree( 1), 
there must exist one subsequence 

b = BDnu(2k+1)B or b = BDnt4'(2k+1)E 

of tree(l) which completely is a part of t or of a tree for some / G [A ]̂. 
We present an example situation with k = ki = 2 and with a subsequence 

b = B D...D B in t^: 

b 

B D...... D B D...... D B D...... D B D...... D B D.... ..D E 

i t<»> {,, 

This subsequence b must appear in tree(O), because tree(0) is built up, using 
each of the patterns t, t ^ , . . . , tik ,t,lt..., t,ki exactly once by Observation 4.2. 
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(It is not important for this proof that the relative positions of these patterns can 
change from tree( 1) to tree(O).) 

The patterns t „ , . . . . , t«ki . . ,iikl do not appear in tree(0) any more. These 
patterns can only contain symbols D and B, because size& (t ,- t) > 1 and thus the 
last symbol E must be a part of t , t i . 

If there is a symbol B in one of these patterns, then the number of symbols B 
decreases and thus tree{0) £ {(BDn)2k+1E \ n > 0}, contradicting the assumption. 

If these patterns only contain symbols D, then the number of symbols D de-
creases and the number of symbols B is constant. Thus we must have a block 
6' = B D ...D B or b' = B D ...D E with less than n M • (2A; + 1) successive 
symbols D. Since b and b' have a different number of successive symbols D, we 
have tree(0) ^ {(BDn)2k+1E \ n > 0}, contradicting the assumption. 

Note that the last steps of the above argumentation need the requirement of M 
to be producing. 
Case 2: ki = k2 + 1 
In this case we can represent t as follows, where for every I £ [fci], t'1' is a sequence 
of patterns taken from the 3k\ — 1 patterns t # 1 , . . . , t,ki, t , - , , . . . , Uk lttSli..., t,ki: 

t = tree( 1) = ttM th i(2) iit ...t(fct-D ¿,.ti i t(*i> 

For every / € — 1], the tree i'1 ' is built up from at least one pattern, and t'*1 ' is 
built up from at least two patterns. For every / £ [All-1], the tree № is constructed 
from at most 2ki — 1 patterns, if the other trees t '1 ) with I' E [fci — l] are built up 
from exactly one pattern and is built up from exactly two patterns, because 
each pattern can only be used once, according to Observation 4.2. The tree t'*1 ' is 
constructed from at most 2A;i patterns, if the other trees t' ' ' with V £ [k\ — 1] are 
built up from exactly one pattern. Then we can apply the same argumentation as 
in Case 1. • 

Lemma 4.5 For every k > 1, {(BDn)2kE \ n > 0} £ S ( k ) / ( k - i ) ^ . 

Proo f . The proof of this lemma is analogous to the proof of Lemma 4.4. • 

The following lemma completes the requirements for the desired hierarchy of at-
tributed tree transducers. 

Lemma 4.6 
• For every Jfc > 1, { ( B D n ) 2 k E | n > 0} £ S^I^T^. 

. For every k > 0, {(BDn)2k+1E | n > 0} £ S^I^T^. 

Proo f . For every A; > 1 we define an st-tree transducer 
, « i , root, R(2k)) with: 

A = { B W , D W , E W } , 
S = { 7 ( 1 ) , a e » } , 
*<»> = with A<2*> = {Sl ik}, 
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A<2fc) = { a i , . . . , s k } , and A|2fc) = (iu.. . , »* } , and 
RM = R™ U R?k) U Rl2k) with: 

(2fc) _ 
H-root 

(2 k) 

= { • ! ( « ) B a i (« l ) } u 

{•V(»i) BsH1(z\) | j € [ * - l ] } U 

{»•*(»!) E } 
= { * / ( * ) D s} (z\) | J € [ 4 ] } U 

№ ) Di;(z) 

= { - y W — Bi^z) l i e [A:]} 

Ri, 

R{ak) 

For every k > 0 we define an st-tree transducer 
M<2fc+1) = ( ^ 2 f c + 1 ) , A , E, si,root, i?(2fe+1)) with: 

S = { 7 ( i ) I a ( ° ) } ) 
A(2k+1) = (A(»+1)Iil(»+»)|^M+Dj with A(„+1) = { f i ak+1)il>...,ik}> 

Ai 2 f c + 1 ) = and A<2fc+1> = { t ! t f c}, and 

p(2fc+l) 
"•root = { « i M B S^zl) 

gfik+l) 
M» 1 ) — B a J + i ( * l ) 

gfik+l) 
= ( * , ( * ) — D Sj(zl) | y e [ f c + i ] } u 

o(2fc+l) ltd 
{ » V M — DiAz) 1 ie[k\} 

o(2fc+l) ltd = { * ( * ) — BiM 1 J e [fc]} u 
{»fc+l(«) — • E } 

Clearly, for every k > 1, ¿w(M<*>) = {(BDn)kE | n > 0} . Thus we can conclude 
the statement of the lemma. • 

From Lemma 4.4, Lemma 4.5, and Lemma 4.6 we gain the following hierarchy 
for classes of output languages of st-tree transducers with bounded number of 
attributes: 

Theorem 4.T S( f c)/ ( f c_1)T0«« C £(*)/(*) T^t C 5( f c + 1)/( f c )T0 t t t , for every fc > 1. • 

This theorem can be transformed into the following theorem that presents a hierar-
chy for classes of tree transformations of «'-tree transducers with bounded number 
of attributes (cf. also Figure 11): 

Theorem 4.8 5 ( f c ) / ( f c _ 1 ) T c S(k)I{k)T C 5 ( f e + 1 ) / ( f c ) T, for every k > 1. • 
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S{k)I(k)T 

S(3) I(3)T 

5 ( 2 ) / ( 2 ) r 

S ( i ) 7 ( i ) r 

S{k+i)I{k)T_ 

S{k)I(k-i)T' 

s(3)/(2)r 

S(2)I{i)T 

S( i )J ( 0 )T 

Figure 11: Hierarchy of tree transformation classes. 

5 Summary and further research topics 
In this paper we have developed a pumping lemma for output languages of non-
circular, producing, and visiting attributed tree transducers. We have restricted 
the applications of the pumping lemma to monadic output languages yielding two 
results for attributed tree transducers. In particular, 

• we have proved that the language { B 2 * E | n > 0} can be no output language 
of a noncircular, producing, and visiting attributed tree transducer, using our 
pumping lemma together with arithmetic properties of this language, and 

• we have proved a hierarchy for noncircular, producing, and visiting attributed 
tree transducers with bounded number of attributes, using our pumping 
lemma together with structural properties of languages. 

There are several further research topics in the area of pumping lemmata for at-
tributed tree transducers and other kinds of tree transducers: 

• Are there non-monadic languages which can be proved not to be output lan-
guages of attributed tree transducers with the help of our pumping lemma in 
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a justifiable expense? In the case of non-monadic languages the proofs be-
come very much harder, because the output patterns can no more be treated 
like concatenated strings as in the proof of Lemma 4.4. The output patterns 
are non-monadic trees which occur in a non- monadic output tree. The main 
problem is to find a complete case analysis for all possibilities to construct an 
output tree with output patterns. Then we have to derive a contradiction for 
every case. Additionally we have the difficulty that output patterns can occur 
more than once in an output tree tree( 1), as can be seen in Figure 9. Thus 
in the case of non- monadic output languages there is no helping observation 
aa Observation 4.2. 

• A similar pumping lemma as for attributed tree transducers can be developed 
for macro tree transducers (cf. [EV85]). It will be introduced in another paper 
which is in preparation (cf. [Küh94]). Is it possible to use this pumping lemma 
in a proof that the difference set SIJT-SFT of subclasses of macro attributed 
tree transducers is not empty, as it was conjectured in [KV94]? 

• As next step it should be possible to construct a pumping lemma for macro 
attributed tree transducers (cf. [KV94]) as combination of the lemmata for 
attributed tree transducers and macro tree transducers. Then as special case 
of it we have a pumping lemma for the class SIJT and perhaps it is possi-
ble to prove that the difference set SjT-SIjT is not empty, as it also was 
conjectured in [KV94]. 
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On Semi-Conditional Grammars with 
Productions Having either Forbidding or 

Permitting Conditions 

A. Meduna * A. Gopalaratnam* 

Abstract 

This paper simplifies semi-conditional grammars so their productions have 
no more than one associated word-either a permitting condition or a forbid-
ding condition. It is demonstrated that this simplification does not decrease 
the power of semi-conditional grammars. 

1 Introduction 
A semi-conditional grammar is a context-free grammar with productions having 
two associated words-a permitting condition and a forbidding condition. Such a 
production can rewrite a word, tu, provided its permitting/forbidding condition 
is/is not a subword of to. Semi-conditional grammars without erasing productions 
characterize the family of context-sensitive languages; when erasing productions 
are allowed, these grammars define all family of recursively enumerable languages. 

This paper studies a simplified concept of these grammars, whose productions 
have no more than one associated word-either a permitting condition or a forbid-
ding condition. It is shown that this simplification does not decrease the generative 
power of semi-conditional grammars. 

2 Definitions and Examples 
We assume that the reader is familiar with formal language theory (see [3]). 

Let V be an alphabet V* denotes the free monoid generated by V under the 
operation of concatenation, where A denotes the unit of V*. Let — V* — {A}. 
Given a word, tu G V*, |tu| represents the length of tu, and alph(w) denotes the set 
of symbols occurring in to. We set sub(w) = {y : y is a subword of tu}. Given a 
symbol, a EV, #au> denotes the number of occurrences of a in w. 

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G = 
(V, P, S, T), where V, T, and S are the total alphabet, the terminal alphabet (T C 
V), and the axiom, respectively, and P is a finite set of productions of the form 
(A -+ with A € V - T , a € e V + U {0}, and /i 6 V + U {0}, where 0 

'Department of Computer Science, University of Missouri-Columbia, Columbia, Mis-
souri 65211, USA 
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is a special symbol, 0 ^ V (intuitively, 0 means that the production's condition is 
missing). If (A —• ct,fi, fi) 6 P implies a £ K,G is said to be propagating. G has 
degree (t, 0), where t is a natural number, if for every (A a, fi, P,fi 6 V + 

implies < », and ft = 0. G has degree (0, j), where j is a natural number, if for 
every (A —» a,fi, fi) & P, fi = 0, and fi € V+ implies |/i| < j. G has degree (i,j), 
where » and j are two natural numbers, if for every (A —• a, fi, fi) € P, fi € V + 

implies < t, and /i € V+ implies |/i| < j. Let u, v €E V*, and (A -* a, fi, fi) 6 P. 
Then, u directly derives v according to (A —* a, fin), denoted by 

u=>v [(A->a,fi,n)} 

provided for some «1,1*2 € V*> the.following conditions (1) through (4) hold 

ill u = UiAu-i 

2) v = ujorua 
3) fi ± 0 implies fi € subful 
4) fi ^ 0 implies fx £ sub(u) 

When no confusion exists, we simply write u => v. As usual, we extend =>• to =>* 
(where » > 0), =»+ , and =>*. The language of G, denoted by L(G), is defined by 
L(G) = {tw S T*\S =>* to}. 

Now, we introduce the central notion of this paper-a simple semi-conditional 
grammar. Informally, a simple semi-conditional grammar is an sc-grammar in 
which any production has no more than one condition-either a permitting condition 
or a forbidding condition. Formally, let G = (V, P, S, T) be an sc-grammar. G is a 
simple semi-conditional grammar (an ssc-grammar for short) if (A —• x, a, fi) G P 
implies {0} C {a,fi}. 

To give an insight into sac grammars, let us present two examples. Example 1 Let 
G=({5 ,A ,X ,C,y ,a ,6} ,P ,5 , {a ,6} ) 

be an ssc-grammar, where 

P = { ( 5 - + A C , 0,0), 
(A —»aXb,Y,0), 
( C - y . A . O ) , 
(Y —* Cc,0, A), 
(A —» ab,Y,0), 
(Y-+c,0,A), 
(X^A,C,0)} 

Notice that G is propagating, and it has degree (1, 1). Consider aabbcc. G derives 
this word as follows: 

S => AG =>• AY =>• aXbY => aXbCc => oAbCc oAfcVc => aabbYc => aabbcc. 

Obviously, 
L(G) = {ani>"cn; n > 1}. 

Note that {anbncn; n > 1} is not a context-free language. 
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Example 2 Let 
G=( {S 1 A 1 0 l JT > y ;a } I J> I S I { a } ) 

be an ssc-grammar, where P is defined as follows: 
P = { ( 5 - » a , 0 , 0 ) , 

( S ^ X , 0,0), 
(X^YB.O.A), 
( X - o B , 0 , A ) , 
[Y-*XA,0,B), 
(Y^aA,0,B), 
(A-+BB,XA, 0)} 
(B —* AA, YB,0)} 
( B - » 0,0,0)} . 

G is a propagating ssc-grammar of degree (2,1). For aaaaaaaa, G makes the 
following derivation: 

S => X =>YB => YAA => XAAA => XABBA => XABBBB =» XBBBBBB => 
aBBBBBB => aBaBBBBB aBaBBBBa aaaBBBBa => 
aaaBBBaa => aaaaBaaa => aaaaaaaa. 

Clearly, G generates { o 2 " ;n > 0}, that is, 

L(G) = {a2*; n > 0}. 

Note that { o 2 " ; » > 0} is not context-free. 
The family of languages generated by ssc-grammars of degree (t, j ) is denoted 

by SSC(»',j). Set 
oo oo 

ssc= U Ussc(i,y). 
»=oy=o 

To indicate that only propagating grammars are considered, we use the prefix 
prop»-; for intance, prop-SSC (2, 1) denotes the family of languages generated by 
propagating ssc-grammars of degree (2, l) . 

The families of context-free, context-sensitive, and recursively enumerable lan-
guages are denoted by CF, CS, and RE, respectively. 

Let us finally recall that a context sensitive grammar in Penttonen normal form 
is a quadruple, G = (V, P, S, T), where V, S, and T have the same meaning as for 
an ac-grammar, and any production in P is either of the form AB —* AC or of the 
form A a, where A, B, C e V - T, a G (T U (V - T)2) (see [2]). In the standard 
manner, we define =>•, =>', =>+, =>*, and L(G). If we want to express that x => y in 
G according to p € P, we write x =» y [p]. 

3 Results 
fVom the definition, the results achieved in [l], and the examples given in the 
previous section, we see that 

CF C p r o p - S S C C p r o p - S C = prop—SC(2, l) = p r o p - S C ( l , 2 ) = CS 
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and 

prop—SSC C SSC C SC = SC(2,1) = SC( l , 2) = R E 

This section states that 

CF 

c 

prop - SSC = prop - SSC(2,1) = prop - SSC( l , 2) = 

p r o p - SC = p r o p - SC(2,1) = p r o p - SC(1,2) = CS 

c 

SSC = SSC(2,1) = SSC(1,2) = SC = SC(2,1) = SC(1,2) = R E 
In other words, we demonstrate that asc-grammars are as powerful as ac-grammars. 
To establish this result, we first prove that propagating sac-grammars of degree 
(2,1) generate precisely the family of context-sensitive languages. 
Theorem 1 CS = prop - SSC(2, l ) . 

Proo f . Clearly, p rop — SSC(2,1) C CS, so it suffices to prove the converse 
inclusion. 

Let G = (V, P, S, T) be a context-sensitive grammar in Penttonen normal form. 
We construct an sac-grammar, G' = (V U W, P',S, T), that generates L(G). Let 

W = {B-, AB — AC e P, A, B, C e V - T} 

We define P1 in the following way: 

1. ii A^a€P,AeV -T,aeTL>(V -T)2, 
then add (A -+ a, 0,0) into P', 

2. if AB —• AC e P,A,B,C eV - T, 
then add 

(B -* B,0,B),{B C,AB,0), and (B B,0,0) 

to F(B is the ~ version of B in AB —* AC). 

Notice that G is a propagating sac-grammar of degree (2,1). Moreover, from 
(2), we have for any B & W 

S a implies #ga<l 

because the only production that can generate B is of the form (B —* B, 0, B). 
Let g be the finite substitution from V* into (W U V)* defined as follows: 
for all D G V, 

1. if D € W(D is the ~ version of D), then g(D) = {£>, D}; 

2. if D&W, then g(D) = {£>}. 



Oil Semi-Conditional Grammars 311 

Next, we will show that for any to € V+, 

S =>q to if and only if 5 =>G, v with v € g(w) 

for some m, n > 0. 

Only if: This is proved by induction on m. 
Basis: Let m = 0. The only to is S as S S. Clearly, S =>G, S for n = 0, 

and S G g(S). 
Induction Hypothesis: Assume that the claim holds for all derivations of length 

m or less, for some m > 0. 
Induction Step: Consider a derivation S =>Q+1 a, a 6 V + . Because m + 1 > 1, 

there is some ß 6 V* and p & P such that S =>Q ß =>G a [p]- By the induction 
hypothesis, S ^q, ß' for some ß' e g(ß) and n > 0. Next, we distinguish two 
cases, case (i) considers p with one nonterminal on its left-hand side, and case (ii) 
considers p with two nonterminals on its left-hand side. 

(i) Let p = D -»h € P,D e V-T, ß2 e r u ( V - r ) 2 , ß = ßiDß3,ßuß3 e V , 
" = ßilhßs.ß' = ß'iXß'3,ß'i € g(ßi),ß'3 e g(ß3), and X e g(D). By (1), {D -
#2,0,0) <=P. If X = D, then 5 =»£' ß[Dß'3 =»G. ß[ß2ß3 [(£> — #2,0,0)]. Because 
ß'i € g(ßi),ß'3 € g{ß3), and ß2 e g(ß2), we obtain ß[ß2ß'3 € gtfMz) = g{a). If 
X = D, we have ( X £ > , 0 , 0 ) e P', so S ß[Xß'3 =>G> ß[Dß'3 [(£> — ß2,0,0)], 
and ß[ß2ß'3 e g(a). 

(ii) Let p = AB —* AC € P,A,B,C e V - T,ß = ß1ABß2,ß1,ß2 e V", a = 
ßiACß2,ß' = ß'iXYß^ß[ e g(ßi),ß'2 £ g(ß -2),Xe g(A), and Y € g(B). Recall 
that for any B, #äß' < 1 and (B B, 0,0) e P'. Then, ß' =>.«3, ßxABß2 for some 
i e {0 ,1 } so ßi e g{ßi),j = 1,2, and (g(A) U ff(s))n alph{ßiABß2) = {A,B}. At 
this point, we have: 

S ßiAB'ßa 

ßiABß2 [ ( B - Ä , 0 , B ) ] 
=>G . & A C & [ ( ß ^ C , A B , 0 ) ] 

where ft € ff(ft),ft € } ( A ) , C 6 S (C) , i.e., ftACft € ff(a). 

/ / : This is established by induction on n; in other words, we demonstrate that 

if S =»G, v with v 6 g(w) for some tu G V + , then S =>G to. 

Basis: For n = 0, v surely equals S as S =>-G< S. Because S 6 g(S), we have to = 5 . 
Clearly, 5 S. 
Induction Hypothesis: Assume the claim holds for all derivations of length n or less, 
for some n > 0. 
Induction Step: Consider a derivation, S =>-G+1 a', a' £ ?(<*), a 6 V+. As n + 1 > 
1, there exists some ß e V + such that S ß' =»G. a' [p],ß' € g(ß). By 
induction hypothesis, S =>*G ß. Let ß' = ß^B'ß^ß = ß1Bß2,ß,}- <= g(ßj),j = 
1,2 , f t S V\B' e g(B),B € V — T,a' = ß[ß'ß'2, and p = (B' 6 P'. 
The following three cases — (i), (ii), and (iii) —- cover all possible forms of the 
derivation step ß' =>c a' [p]. 
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(i) n' G <7(fl). Then, 5 faBfa, fan'ft G g(faBfa), i.e., a ' G g(faBfa). 
(ii) B' = B & V - T, n' e T U (V - T)2, p i = 0 = n2. Then, there exists a 

production, B -* y! G P, so 5 faBfa =>G Pin'fa[B ft']. Since \i' G g(n'), 
we have a = fafi'fa such that a ' G g(a). 

(iii) B' = B, n' = C, = AÂ, fi? = 0,A,B,C eV - T. Then, there exists 
a production of the form AB —* AC G P. Since #zF < 1, Z = B, and AB G 
aub(p'), we have = 6'A, fa = SA (for some S G V*), and S' G g(S). Thus, 
S =>o SAB fa =>g SACfa[AB -» AC],6 AC fa = faCfa. Because C G g{C), we 
get a = faCfa such that a ' G ff(a). 

By the principle of induction, we have thus established that for any w G 
V+,S =>q w if and only f 5 =>•q, v with v G g(w). Because g(x) = { x } , for 
any x G T°, we have for every w G T + , 

5 w if and only if S =>qi w. 

Thus, L(G) = L(G'), and the theorem holds. Q.E.D. 
Corol lary 2 CS = p r o p - S S C (2,1) = p r o p - S S C = p r o p - S C ( 2 , 1 ) = 
p r o p — S C . 
We now turn to the investigation of sac-grammars with erasing productions. We 
prove that these grammars generate precisely the family of recursively enumerable 
languages. 
T h e o r e m 3 R E = S S C (2,1). 

P r o o f . Clearly, we have the containment SSC(2, l ) Ç R E ; hence, it suffices to 
show R E C SSC(2,1) . Every language L G R E can be generated by a recursively 
enumerable grammar, whose productions are of the form AB AC or A —• a 
where A, B, C G V - T, a G T U (V - T)2 U {A} (see [2]). Thus, the containment 
R E Ç SSC(2,1) can be proved by analogy with the proof of Theorem 1 (the details 
are left to the reader). Q.E.D. 
Corol lary 4 R E = SSC(2 ,1 )= SSC = SC(2 ,1 )= SC . 
To demonstrate that propagating sac-grammars of degree (1,2) characterize CS, 
we first establish a normal form for context-sensitive grammars (see Lemmas 5 and 
6). 

L e m m a 5 Every L G CS can be generated by a context sensitive grammar, G = 
(Ncf u MES U T, P, S, T), where Ncf, Ncs, and T are pairwise disjoint alphabets, 
and every production in P is either of the form AB —» AC or A —• x, where 
B G Ncs, A,Ce Ncf, * € Ncs U T U ( u ? = 1 ^ F ) . 
P r o o f . Let L G CS. Without loss of generality, we can assume that L is generated 
by a context sensitive grammar G' = (V, P', S, T) in Penttonen normal form, that 
is, every production in f is either of the form AB —» AC or A —• BC or A —• o 
(where A, B, C G V' - T and a G T). 

Let G = (Ncf U ̂ cs U T, P, S, T) be the context sensitive grammar defined as 
follows: 

Ncf = V -T; 
Ncs = {B; B is the tilde version of B in AB —• AC G P'}] 

P = { A - + x ; A —* x G P1, A &V — T, x G T u ( K — T1)2} 
U {B -+Ê,É->AC-,AB^ACeP',A,B,C€V- T}. 
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Obviously, L[G') = L(G), and G is of the required form. Hence, the lemma holds. 
Q.E.D. 
Lemma 6 Every L £ CS can be generated by a context sensitive grammar G = 
( { 5 } U NGF U NCS U T,P,S,T), where { S } , N C F , N C S , T are pairwise dis joint 
alphabets, and every production in P is either of the form S —* AD or AB —* AC 
or A Z, where o € T, D <= NCF U {A}, B € NCs, A,C € NCF, X e NCs U T U 

Proof . Let £ be a context sensitive language over an alphabet, T. Without loss of 
generality, we can express L as L = L\ U L2, where L\ C T and L2 Q TT+. Thus, 
by analogy with the proofs of Theorems 1 and 2 in [2], can be represented as 
L2 = Uagroiai where each LA is a context sensitive language. Let LA be generated 
by a context sensitive grammar, GA = (NCF. u NCS* U T, PA, SA, T), of the form 
of Lemma 5. Clearly, we can assume that for all a's, the nonterminal alphabets 
[NCF* u ^CS^ ) are pairwise disjoint. Let S be a new start symbol. Consider the 
context sensitive grammar 

G = ({5} u NCF U NCS U T, P, S, T) 

defined as: 
NCF = U AERNCF.; 
Ncs = u aerNcs^i 

P = U A € T P A U { 5 - » aSa; a € T } U {S o ; o G L 

Obviously, G satisfies the required form, and we have 
L{G) = Li U (U a 6 r aL(Ga)) = U (u o € T aLa) = L1UL2 = L. 

Consequently, the lemma holds. Q.E.D. 

We are now ready to characterize CS by propagating sac-grammars of degree 
(1,2). 
Theorem 7 CS = prop - SSC(1,2). 
Proof . Clearly, prop — SSC(1,2) C CS; hence, it suffices to prove the converse 
inclusion. 

Let L be a context sensitive language. Without loss of generality, we can assume 
that L is generated by a context sensitive grammar, G = ({51} U NCF U NCS U 
T, P, S, T), of the form of Lemma 6. Set V = ( { 5 } U NCF U NCS U T). Let Q be the 
cardinality of V; q > 1. Furthermore, let / be an (arbitrary, but fixed) bijection 
from V onto { l . . . . , <j}, and let / - 1 be the inverse of / . 

Let G~ = (V~,P~,S,T) be a propagating aac-grammar of degree (1,2), in 
which 

V~ = (uJ=1Wi)uV 
where 

WJ, = { < a, AB AC, j >; a 6 T, AB AC € P, A,C 6 NCF, B e NCS, 

1 < 3 < 5}; 
W2 = {[a, AB —> AC, /]; o G T, AB —> AC e P, A, C, e NCF, B € Ncs, 

l < i < « + 3}; 
W3 = {B,B',B",B(=Ncs}; 
W4 = (a; o e T } 

and P~ is defined as follows: 
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1. H S aA e P, a & T, A e ( N C F U {A}), 
then add (5 a A, 0,0) to P~\ 

2. if o g T , A - » i G P,A G NCF,x G (V = {S})u(NCf)2, 

then add (A —» x, 3,0) to P~\ 

3. if o e R, ab —• AC e P, A, c, G NCF, B e Ncs, 
then add to P~ the following set of productions 
(an informal explanation of these productions can be found below): 

{ (a - + < a,AB -» AC, 1 > ,0 ,0) , 
(.B B', < a, AB —• AC, 1 >, 0), 
(B < a, AB AC, 1 >, 0), 
(< a, AB AC, 1 >—•< a, A—* AC, 2 > , 0, B), 
( £ - B " , 0 , B ' < ) , 
(< a, AB AC, 2 >-•< a, AB AC, 3 > , 0, &), 
(B" [a, AB — AC, 1], < a, AB —• AC, 3 > , 0)} 

U {([a, AB AC, j ] -> [a,AB - AC, j + 1],0, 
f~l[j)[a,AB - AC, j]); 1 < j < q,f(A) ? j} 

U {([a, AB - AC, / (A ) ] - [a, AB AC, / ( A ) + 1], 0,0), 
([a, A S —• AC, g + lj [o, AB AC, q + 2], 0, 
B'[a,AB -* AC,q+ 1]), 
([a, AB -> AC, q + 2] - » [ a , AB -* AC, q + 3], 0, 
< a,AB - » AC, 3 > [a, AB -+ AC, q + 2]), 
(< a, AB AC, 3 > — < o, A S AC, 4 > , 
[a, AB —• AC,q + 3],0), 
(B' B,< a, AB —• AC, 4 >, 0), 
(< a, AB — AC, 4 >—•< o, AB -> AC,5 > , 0 , B ' ) , 
([a, AB —• AC, g + 3] —• C, < a, AB —» AC, 5 > ,0) , 
(< a, AB - » AC, 5 > - • a, 0, [a, AB AC, g + 3])} 
(B', and B " correspond to B in AB —> AC); 

(4) if a G T, then add (a a, 0,0) to P~. 
Let us informally explain the Dasic idea behind point (3)-the heart of all con-

struction. The production introduced in this point simulate the application of 
productions of the form AB —• AC in G as follows: an occurrence of B is chosen, 
and its left neighbor is checked not to belong to V~ — { A } ; at this point, the left 
neighbor necessarily equals A, so B is rewritten with C. 

Formally, we define a finite letter-to-letters substitution g from V* into (V~)* 
as follows: 
if DeV, then add D to g(D)\ 
if < o, AB — AC,j >G Wi(a G T, AB AC & P,B & NCS,A, C G NCf, 

j G ( 1 , . . . 5}), then add < a,AB —• AC,j > to g(a); 
if [a, AB — AC,j} G W2{a G T, AB - AC G P, B G NCS,A, C G NCf, 

j G { 1 , . . . , q + 3}), then add [o, AB AC, j] to g(B)] 
if B', B " } C W3{B G NCS), then include {£, B', B"} to T/(B); 
if A G W4(a G T), then add a to g(a). 
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Let be the inverse of g. 
To show that L{G) = L(G~), we first prove three claims. 

Claim Is S =»+ x in G, x 6 V*, implies x € T(V - { 5 } ) * . 

P r o o f o f Claim 1. 
Observe that the start symbol, S, does not appear on the right side of any 

production and that S —* x € P implies x € T U T(V — { 5 } ) . Hence, the claim 
holds. 

Claim 2: If S =>+ z in G ~ , x g (Vr~)*> then x has one of the following seven 
forms: 

(i) x = ay, where a 6 T, y € [V - {S} )* ; 
(ii) x = &y, where a € j / € (V - {S } )* ; 

(iii) x =< a, AB AC, 1 > y, where < a, AB - AC, 1 >€ Wit 

ye((V- { 5 } ) U {B',6,B"})*,#B..y < 1; 
(iv) x =< a, AB -» AC, 2 > y, where <, AB -» AC, 2 > € Wu 

y £ {(V - {S, B}) U {B', 6, B')Y, #B. < 1; 
(v) x = < a, AB -» AC, 3 > y, where < o, AB —• AC, 3 > e Wiy 

ye{{V- {S, 5 } ) U {B1})* ({[a, AB - AC, j]-, 1 < j < q + 3}U 
{ A , B " } ) ( ( V - { S > f l } ) u { B ' } ) * ; 

(vi) x = < a, AB AC, 4 > where < a, AB —• AC, 4 >€ Wu 

ye((V- { 5 } ) U {B'})*[a, AB AC, q + 3]((V - { 5 } ) U {£ ' } )* ; 
(vii) x =< a, AB AC, 5 > y where < a, AB AC, 5 >eWi, 

y 6 (V - {5 } ) * { [ o , AB - AC, g3\, A}(V - {S})\ 

P r o o f o f Claim 2. 
The claim is proved by induction on the length of derivations. 

Basis: Consider S x. By inspection of the productions, we have S => aA [(5 —* 
aA,0,0)] for some a e WT, A S ({A} U Ncf)- Therefore, i = a or x = aA (where 
a € W4 and A e ( {A} U Ncf))', in either case, x is a word of the required form. 

Induction hypothesis: Assume the claim holds for all derivations of length at most 
n, for some n > 1. 

Induction step: Consider a derivation of the form S =>n + 1 x . Since n > 1, we 
have n + 1 > 2. Thus, there is some z of the required form (2 e such that 
5 =>•" z =>• x [p] for some p e P~ . 

Let us first prove by contradiction that the first symbol of z does not belong to 
T. Assume that the first symbol of z belongs to T, As z is of the required form, 
we have z = ay for some a G (V — {S } )* . By inspection of P~ , there is no p G P~ 
such that ay => x\p\, where x € (V~) . We have thus obtained a contradiction, so 
the first symbol of z is not in T. 

Because the first symbol of z does not belong to T, z cannot have form (i); as 
a result, z has one of forms (ii) through (vii). The following cases I through VI 
demonstrate that if z has one of these six forms, then x (in S =>n z => x[p|) has 
one of the required forms, too. 
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I. Assume that z is of form (ii), i.e., z = ay, à € W4, and y € (V — { 5 } ) * . By 
inspection of the productions in P^, we see that p has one of the following forms 
(a),..(b), and (c): 

a) p = (A —• u, a ,0 ) where A 6 and u € (V - { 5 } ) U ( N C f ) 2 ; 
b) p = (a - K a, AB —• AC, 1 > 0,0) where < a, AB — AC, 1 > 6 W i ; 
c) p = (a o, 0,0) where o 6 T. 
Note that productions of forms (a), (b), and (c) are introuced in construction 

steps (2), (3), and (4), respectively.) il p has form (a), then x has form (ii). If p 
has form (b), then x nas form (iii). Finally, if p has form (c), then x has form (i). 
In any of these three cases, we obtain x that has one of the required forms. 

II. Assume that z has form (iii), i.e., z =< a,AB —» AC, 1 > y for some 
< a, AB AC, 1 > 6 W1>y 6 ((V - { 5 } ) U {B",Ê,B"})\ and #B..y < 1. By 
the inspection of P~, we see that z can be rewritten by productions of these four 
forms: 

(a) (B — B ' , < a, AB — AC, 1 >, 0); 
(b) (B —* Ê,< a, AB —* AC, 1 >, 0); 
(c) ( B - B " , 0 , B ) (if B " ^ &lph(y),i.e.,#B"y — 0); 
(d) (< a, AB —• AC, 1 >—•< a, AB —• AC, 2 >, 0, B) (if B" £ 

alph(y),i.e.,#By = 0). 
Clearly, in cases (a) and (b), we obtain x of form (iii). If z =>• x [p] in G~, where 

p is of form ic), then #b»3e = 1, so we get x of form (iii). Finally, if we use the 
production oi form (d), then we obtain x of form (iv) because # B 2 = 0. 

III. Assume that z is of form (iv), i.e., z = < a, AB —• AC, 2 > y, where 
<a,AB^AC,2>e\V1,ye{{V-{S,B})u{B',B,B"})*, and # B » y < 1. By 
inspection of we see that the follwoing two productions can be used to rewrite 

(a) (B —• B",0, B" ) (ifB"talph(y))-, 
(b) (< a. AB —*• AC, 2 > —• < a, AB —* AC. 3 > , 0, B) (ifB$alph{y)). 
In case (a), we get x of form (iv). In case (b), we have = 0, so = 0. 

Moreover, notice that < 1 in this case. Indeed, the symbol B " can be 
generated only if there exists no occurrence of B " in a given rewritten word, so no 
more that one occurrence of B " appears in any sentential form. As a result, we 
have # b » < a, AB AC, 3 > y < 1, i.e., < 1. In other words, we get x of 
form («). 

IV. Assume that z is of form (v), i.e., z =< a,AB —• AC, 3 > y for some 
< a, AB - » AC,3 > € Wlty € ({V - {S,B}) U {B' } )*( { [a, AB - AC,j\-,l < 
j < q + 3} U {B" , A}) UV - {S,B}) U {B ' } )* . Assume that y = yiYy2 with 
î/ii Î/2 € ( (y - {5, B} ) U {B' } )* . If Y = A, then we can use no production from 
to rewrite z. Because z => x, we have Y ^ A. The following cases (A) through (F) 
cover all possible forms of Y. 

(A) Assume Y = B" . By inspection of P~, we see that the only production 
that can rewrite z has the form (B" - » [o, AB — AC, 1],< o, AB —• AC, 3 >,0) . 
In this case, we get x of form (v). 

(B) Assume Y = [o,AB — AC,j]w,j € {1 ,...,q}, and / ( A ) ^ j. Then z 
can be rewritten only according to the production ([o, AB —• AC,j\ —* [a,AB —» 
AC, j -I- 1 ] ,0 , / - 1 ( / ) [a , AB —• AC,j\) (which can be used unless the rightmost 
symbol of < o, AB —• AC, 3 > yx is f~l{j}). Clearly, in this case we again get x of 
form (v). 
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(C) Assume Y = [a, AB —* AC,j\,j £ { 1 , . . . , 9}, f(A) = j. This case forms an 
analogy to case (B), except that the production of the form ([a, AB —• AC, / (A ) ] —• 
[a, AB -* AC, / ( A ) + l],0,0) is now used. 

(D) Assume Y = [o, AB AC, q + ll. This case forms an analogy to case 
(B); the only change is the application of the production ( [a,AB —• AC,q + l] —• 
[a, AB —» AC, q + 2], 0. B'[a, AB — AC, g + l]V. 

(E) Assume Y = [a, AB -* AC,q-1-2]. This case forms an analogy to case 
(B) except that the production ([a, AB AC, q + 2} — [a, AB AC, q + 3], 0, < 
a, AB AC, 3 >[a, AB AC, q + 2]) is used. 

(F) Assume X = \a,AB —* AC,q + 3]. By inspection of P~ , we see that the 
only production that can rewrite z is (< a,AB —• AC, 3 >—•< a,AB —*• AC, A > 
, [a, AB —* AC, q + 3], 0). If this production is used, we get x of form (vi). 

V. Assume that 2 is of form (vi), i.e., z =< a,AB —• AC, 4 > y, where < 
a, AB - A C , 4 > G Wx and y € ( (V - { 5 } ) U { £ ' } ) * \a,AB — AC,q + 3]( (V -
{S}) U { # ' } ) * . By inspection of P~, these two productions can rewrite z: 

(a) (B' B,< a, AB —» AC, 4 >, 0); 
ib) (< a, AB — AC, 4 >—•< a,AB -* AC,5>,0,B') (if B' & alph(y)). 
Clearly, in case (a), we get x of form (vi). In case (b), we get x of form (vii) 

because # B . y = 0, so y € {V - {5} )*{ [a, AB —• AC, q + 3], A}(V - {5 } )* . 

VI. Assume that z is of form (vii), i.e., z =< a,AB —^ AC, 5 > y, where 
< a, AB —• AC, 5 > e Wi and y G (V - (5} )*{ [a, AB AC, q + 3], A}(V - {S } )* . 
By inspection of P~ , one of the following two productions can be used to rewrite 
z\ 

^ ( [ a , AB AC, g + 3] —• C, < a, AB -* AC, 5 > , 0); 
(< a, AB AC, 5 > - • a, 0, [a, AB —* AC, q + 3]) 

iif [o, AB —• AC, 9 + 3l ^ alphizYj. 
In case (a), we get x of form (vii). Case (b) implies #\a,AB-*AC,q+3]y = 0; thus, 

x is of form (ii). 
This completes the induction step and establishes Claim 2. 

Claim 3: It holds that 

S =>m to in G if and only if 5 v in G~ 

where v e g(to) and to e V+, for some m, n > 0. 

Proo f of Claim 3. 
Only if: The only-if part is established by induction on m; that is, we have to 

demonstrate that 5 =>m to in G implies S =>* v in G~ for some v G g[w) and 
t oe V+. 

Basis: Let m = 0. The only to is 5 because 5 =>° S in G. Clearly, S =>° S in 
and 5 e g(S). 

Induction Hypothesis: Suppose that our claim holds for all derivations of length 
m or less, for some m > 0. 

Induction Step: Let us consider a derivation, S =>m + 1 in G, x € V+. Because 
m + 1 > 1, there are y £ V+ and p G P such that 5 =>"* y x [p] in G, and 
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by the induction hypothesis, there is also a derivation S =>n y~ in G~ for some 
y~ 6 g(y). The following cases (i) through (iii) cover all possible forms of p. 

(i) Let p = S —* aA G P for some o € T, A G Àfcf U {A}. Then, by Claim 1, 
m = 0, so y = S and x = oA. By (1) in the construction of G~,(S —» 3A, 0,0) e 
P~ . Hence, 5 a~A in G~ where a~ A € <?(aA). 

(ii) Let us assume that p = D->y2GP,DG NCF, ya € ( K - { 5 } ) u ( A T C F ) 2 , « = 
ViDy3, yi, ¡/3 € V* and i = yiyays. R"om the definition of ¡7, it is clear that g{Z) = 
{Z} for all Z G iVci*; therefore, we can express y~ = z\Dz3 where z± G ff(i/il and 
z3 € ff(j/3)- Without loss of generality, we can also assume that yi = ar, o G T,r G 
( V - {5 } )* (see Claim l) , so zx = a 'V ' ,a " 6 g(a), and r" 6 fif(». Moreover, by (2) 
in the construction, we have (D —» ya, 2,0) G P~. The following cases (a) through 
(e) cover all possible forms of a". 

(a) Let a" = S (see (ii) in Claim 2). Then, we have S =>n âr"Dz3 => 
&r"y2z3 [(D -<• y2,a,0)], and ar"y2z3 = *iy223 6 g{yiy-2y3) = 

(b) Let o" = a (see (i) in Claim 2). By (4) in the construction of G~, we 
can express the derivation in G~ : S =>n ar"Dz3 as S =>n_1 ar"Dz3 => ar"Dz3 
[(a —• o,0,0)]; thus, there exists this derivation in G~ : S =>n_1 ar"Dz 3 =>• 
8r"y2Z3[(D —• ya, a,0)] with ar"y2«3 e g(x). 

(c) Let a" = < a, A S —» AC, 5 > for some AB —• AC € P (see (vii) in Claim 
2), and let r"Dz3 G (V - {S} )* , i.e., [o, AB — A C , g + 3] £ alph (r"Dz3 ) . Then, 
there exists this derivation in G~ : S =>"< a, AB —• AC, 5 > r"Dz3 =• ar"Dz3 [(< 
o, AB - t A C , 5 > - t a,0, [a, AB AC,g + 3])] =>• ar"y2z3\(D y2 ,3,0)], and 
ar"y2Z3 G g(x). 

(d) Let a" = < a, AB AC, 5 > (see (vii) in Claim 2). Let [a, AB - » AC, q + 
3] G alph (r"Dz3). Without loss of generality, we can assume that y~ = < a, AB —• 
AC, 5 > r"Da"[a, AB AC, q + Z\t", where s"[a, AB —• AC, q + 3]i" = z3, sBt = 
y3, s" G g(t), 3, t G (V — {5} )* . By inspection of P~ (see (3) in the construction of 
G~), we can express the derivation in G~ : S =>n y~ as: 

S =>' &r"Ds"Bt" 
< o, AB —• AC, 1 > r"Ds"Bt" 

[(a —•< a, AB AC1 >, 0,0)] 
^l+lm^l <a<AB^ AC, 1 >' Ds'Bt' 

[mi(B ê,<a,AB AC, 1 >, 0)ma] 
=> < a, AB - » AC, 2 > r'Ds'Bt' 

[(< a, AB AC, 1 >—•< a, AB AC, 2 > ,0 ,B ) ] 
=• <a,AB~* AC, 2 > r'Ds'B"t' 

[ B - B " , 0 , B " ) ] 
=» <a,AB^ AC, 3 > r'Ds'ff'e 

[(< a, AB AC, 2 > - • < a, AB - » AC, 3 > , 0, £ ) ] 
< a, AB-* AC, 3 > r'Ds'\a, AB AC, l]i' 

[(B" — [a, AB — AC, 1], < a, AB — AC, 3 > , 0)] 
=>«+2 < a, AB — AC, 3 > r'D«'[a, AB — AC, g + 3]t' 
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[([a, AB - » AC, 1] — [a, AB -» AC, 2], 0, / _ 1 ( l ) 
[a, AB — AC, 1 ] ) . . . 
([a, AB -» AC, f(A) - 1] — [a, AB — AC, f(A)}, 0, 
f-1(f(A)-l)[a,AB^AC,f(A)-l}) 
([a, AB — ACf{A) - » [a, AB AC, f(A) + 1], 0,0) 
([a, AB - AC, f(A) + 1] —• [a, AB - AC, / ( A ) + 2], 0, 
¡-'(/(A) + l)[o, AB - AC, f(A) + 1 ] ) . . . 
([a, AB —» AC, g] -+ [a, AB -+ AC, g + l], 0, 
rl{q)[a,AB^AC,q\) 
([a, AB —» AC, g + l] —• [a, AB -* AC, q + 2], 0, B' 
[a, AB —+ AC, q + 1]) 
([a, AB AC, 9 + 2] —• [a, AB AC, q + 3], 0, 
< a,AB -* AC, 3 > [a, AB — AC,g + 2])] 

=» <a,AB-y AC, 4 > r'Da'[a, AB -> AC, g 4- 3]t' 
[(< a, A B AC, 3 > - + < a, AB — AC, 4 > , 
[a,AB — AC, g + 3],0)] 

=>lm'l < a, AB — AC, 4 > r"I>s"[a, AB - > g + 3]t" [m3] 
=• < a, AB AC, 5 > r"Ds"[a, AB —• AC, q + 3]t" 

[(< o, AB AC, 4 > - K a, AB - » AC, 5 > , 0, B' ) ] 

where mi ,m2 <E { ( B — B ' , < o , A B - • AC, 1 > , 0 ) } * , m 3 e { ( B ' B,< a,AB ^ 
AC, 4 > , 0)}*, |m3| = K m a i y € ((alph(r") - { B } ) U {B'})\g'^r) -r,s' e 
((alph(s") - { B } ) U { B " } ) * , 0 - 1 ( s ' ) = r V ) = . , « ' € ((alph(i") - { B } ) U 

Clearly, ar" Da" Bt" € g(arDsBt) = g(arDy3) = g(y). Thus, there exists 
this derivation in : 5 =>* ar"Ds"Bt" => ar "y 2 s "Bt " \{D y2 la,0)] where 
zij/2«3 = ar"yis"Bt" e g(ary2sBt) = g(yiyiy3) = g{x). 

(e) Let a" = < a, AB -+ AC,» > for some AB -* AC e P and»' 6 { 1 , . . . , 4} (see 
(iii) - (vi) in Claim 2). By analogy with (d), we can construct the derivation S =>* 
ar"Da"Bt" => ar"y2a"Bt" [(£> — y2,3,0)1 such that ar"y2a"Bt" e Sf(yu/2J/3) = 
g(x) (the details of this construction are left to the reader). 

(iii) Let p = AB AC e P, A, C e NCF,B € NCs,y = yiABy3,yi,y3 G 
V*,x = yiACy3,y~ = ziAYz3,Y e g(B),Zi € g(y,) where i e {1 ,3 } . Moreover, 
let t/i = or (see Claim 1), Z\ = o " r " , a " € g(a),r" € jf(r). The following cases (a) 
through (e) cover all possible forms of a". 

(a) Let a" = o. Then, by Claim 2, Y = B. By (3) in the construction of G~, 
there exists the following derivation in G~: 

S =>n ar"ABz3 

=> < a, AB — AC, 1 > r"ABu3 

[(a - • < a, A B —• AC, 1 > 0,0)] 

=>.i+l™tl < a, A B — AC, 1 > r'A&z3 

[mi [B-* 6, < a, AB —» AC, 1 > ,0 ) ] 
=» < a, AB — AC, 2 > r 'A$u 3 
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[(< a, AB AC, 1 > - • < a, AB AC, 2 >, 0, B)] 
< a, AB —• AC, 2 > r'AB"u3 

[ { & B " , 0 , B") ] 

=> < a, AB —» AC, 3 > r'AB"u3 

[(< o, AB — AC, 2 > — < a, AB — AC, 3 >, 0, B) ] 
=> < a, AB —• AC, 3 > r'A[a, AB —• AC, l]u3 

[ ( 5 " — [a, AB — AC, 1], < a, AB —+ AC, 3 >, 0)] 
=>«+2 < a, AB —» AC, 3 > r'A[a, AB AC, q + 3]u3 

[([o, AB — AC, 1] - [o, AB AC, 2], 0, 
f-l(l)[a,AB^AC,l})... 
([a, AB - AC, / ( A ) - 1] - [a, AB - AC, f(A)\, 0, 
/-'(HA) - l)[a, AB - AC, f(A) - 1]) 
([a, AB - AC, f{A)\ - [a, AB - AC, / ( A ) + 1], 0,0) 
([a, AB - AC, / ( A ) + 1]) - [a, AB - AC, / ( A ) + 2], 0, 
/ ^ ( / ( A ) + l)[a, AB - AC, / ( A ) + 1 ] ) . . . 
([a,AB — AC, g] -+ \a,AB — A C , g + 1],0, 
/ " ^ [ a . A B - A C . g ] ) 
([a, AB —• AC, g + l] —• [a, AB —• AC, q + 2], 0, B ' 
[a, A B —» AC, g + 1]) 
([a, A B —• AC, g + 2] —• [a, AB AC, g + 3], 0, 
< a, AB — AC, 3 > [a, A B —• AC, g + 2])] 

=> < a, AB -* AC, 4 > r'A[a, AB —• AC, g + 3]u3 

[(< a, AB AC, 3 > - • < a, A B — AC,4 > , 
[a, A B —• AC, g + 3], 0)] 
< a, AB - » AC,.4 > r"A[a, AB —» AC, g + 3]z3 [m2] 

=> < a, AB - » AC, 5 > r " A[a, AB AC, g + 3]z3 

[(< a, AB AC,4 > - » < a, AB —• AC, 5 > , 0, B' ) ] 
=> < a, AB -* AC, 5 > r11 AC z3 

[([a, AB —• AC, g + 3| C, < o, A B — AC, 5 > , 0)] 

where mx € { ( B B',< a, AB —• AC, 1 > ,0 ) } * ,m2 € { ( B ' B,< a,AB -> 
AC,4 >,0)}*,|mi| = Im2l.ua £ ((alph(z3) - { B } ) U {B ' } ) * ,g - 1 (u 3 ) = g-1(z3) = 
y3,r> € ((alph(r") - { B } ) U { B ' l J ' . g - M r ' ) = ¡ T V ) = r. 

It is clear that < a, AB AC, 5 > S ff(o); thus, < a,AB -+ AC5 > r"ACz3 € 
g(arACy3) = j (x ) . 

(b) Let a" = o. Then, by Claim 2 , Y = B. By analogy with (ii.b) and (iii.a) in 
the proof of this claim (see above), we obtain: 5 => n _ 1 ar"ABz3 =>*< a,AB —* 
AC, 5 > r"ACz3 so < a, AB —» AC, 5 > 1" ACz3 e g(s). 

(c) Let a" = < o, AB AC, 5 > for some AB AC e P (see (vii) in Claim 
2), and let r"AYz3 e (V - { 5 } ) * . At this point, Y = B. By analogy with 
(ii.c) and (iii.a) in the proof of this claim (see above), we can construct S =>n+1 
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ar"ABz3 =>*< a, AB — AC, 5 > r"ACz3 so < a, AB —• AC, 5 > r"ACz3 g <7(1). 
(d) Let a" = < a, AB AC, 5 > for some AB —* AC g P (see (vii) in Claim 

2), and let [o, AB -* AC, q + 3] g alph(r"AY3). By analogy with (ii.d) and (iii.a) 
in the proof of this claim (see above), we can construct S =>•* ar"ABz3 and, then, 
S =>* ar"ABz3 =»*< o, AB —• AC, 5 > r"ACz3 so < a, AB AC, 5 > r"ACz3 g 
g(arACy3) = g(x). 

(e) Let a" = < a,AB - » AC,t > for some AB AC g P,i g { » ' , . . . ,4 } , see 
(III) - (IV) in Claim 2. By analogy with (ii.e) and (iii.d) in the proof of this claim 
(see above), we can construct S =>* ar"ACz3, where ar"ACz3 g ¡7(1). 

If: By induction on n, we next prove that 
if S =>n v in G~ with v g g(w) and to g V* (for some n > 0), 
then S =>* to in G. 

Basis: For n = 0, the only v is S as S =>° S in G~. Because { 5 } = we have 
to = S. Clearly, 5 =>-° S in G. 

Induction hypothesis: Assume the claim holds for all derivations of length n or less, 
for some n > 0. Let us show that it is also true for n + 1. 

Induction step: For n + 1 = 1 (i.e. n = 0), there onlv exists a direct derivation of 
the form S =• aA[(S -+ aA,0,0)] where A g NOF U {A}, a g T, and oA g g(aA). 

By (l)> we have in P a production of the form S —• a A and, thus, a direct 
derivation S => a A. 

Suppose n + 1 > 2 (i.e. n > 1). Consider a derivation in : 5 x' 
where x' g g(x),x g V*. As n + 1 > 2, there exist o g Wit A g NCF,y , such 
that S =>aA =>n~1 t/' => x'[p] in G~, where p g P~,y' g ^(t/), and by induction 
hypothesis, S =>* y in G. 

Let us assume that y' = ziZz2,y = yiDy2,z}- g g{y}),y}- g (V - { 5 } ) * , ; ' = 
1,2, Z g g{D),D g V - { 5 } , p = (Z - » r',ri,r2) g P<, rx = 0 or r2 = 0,x' = 
z\r'z2,r' g p(r) for some r g V* (i.e. x' g fif(t/iry2))- The following cases (i) 
through (iii) cover all possible forms of 1/ =>• x'[p] in G~. 

(i) Let Z g NQF• By inspection of P~, we see that Z = D,p = [D r', a,0) g 
P~,D->rePandr = r'. Thus, S =>* y^By2 => yxry2 jB — r] in G. 

(ii) Let r = D. Then, by induction hypothesis, we nave the derivation 5 =>* 
yiDy2 and yiDy2 = y^ry2 in G. 

(iii) Let p = (jo, AB —> AC,g + 3] —• C, < a, AB —* AC, 5 >,0),Z = [0, AB — 
AC, g + 3j. Thus, r' = C and D = B g Wcs- By case (VI) in Claim 2 and the form 
of p, we have z\ = < a, AB —• AC, 5 > t and yx = au, where t g sr(u), < a, AB —• 
AC, 5 > g ff(o), u e(V - {5 } )* , and a g T. PYom (3) in the construction of G~, it 
follows that there exists a production of the from AB —» AC g P. Moreover, (3) 
and Claim 2 imply that the derivation in G~ : 

5 =>• oA = f n _ 1 y' => i'[p] 

can be expressed in the form 

S => aA 
=>* atBz2 

=> < a, AB AC, 1 > vtBz2 

[(a - k o, AB AC, 1 >, 0,0)] 
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< a, AB —• AC, 1 > vÊtvi [*'] 

=> < a, AB AC, 1 > vB"w2 

| ( B - B " , 0 , B " ) ] 
=> < a, AB AC, 2 > vB"w2 

{{a, AB -» AC, 1 >—•< a,AB -* AC, 2 > , 0, B)] 
=>' < a, AB —• AC, 3 > vB"w2 

[(< a, AB — AC, 2 > - » < a, AB AC, 3 >, 0, £ ) ] 
=> < a, AB —* AC, 3 > v[a, AB AC, l]iu2 

[(B" - [o, AB - AC, 1], < a, AB — AC, 3 > ,0) ] 
=>lfll+2 < a, AB —• AC, 3 > v[a, AB —» AC, g + 3]to2 

[*] 

=» < a,ABAC,4> v{a,ABAC,q + 3]w2 

[(< a, AB AC, 3 > - • < a, AB — AC, 4 >, 
[a, AB —• AC, g + 3], 0)] 
< a , A B — A C , 4 > i [ a , A B — A C , g + 3]z2 

r\ 
=> < o, AB —• AC, 5 > t[a, AB AC, 9 + 3]z2 

[(< a, AB — AC, 4 > - • < o, AB - » AC, 5 > , 0, B')] 
=> < a, AB — AC, 5 > tCz2 

[([a, AB -+ AC, g + 3] —• C, < a, AB — AC, 5 > , 0)] 

where 9' G { ( B — B' , < a, AB —» AC, 1 > , 0 ) } * { ( B — È,<a,AB — AC, 1 > , 0)} 
{ ( B - B ' , < a, AB - AC, 1 >,0)}*,<;(B) n alph(vw2) Ç { B ' } , « T » = 
9~1(t),9~1M=9~l{z2), 
e = i i f la ,AB — A C , / ( A ) ] — [a, AB - A C , / ( A ) + 1],0,0)02([a, AB — AC, 9 + 
1] — [a, AB — AC, 9 + 2], 0, B'[a, AB — AC, 9 + l l ï ï [a,AB —• AC, 9 + 2] —• 
[a, AB AC, 9 + 3], 0, < a, AB — AC, 3 > [o, AB AC, 9 + 2]), 
i l = ([a, AB — AC, 1] - [a, AB — AC, 2],0, / - 1 ( l ) [ a , AB —• AC, l]) 
([a, AB — AC, 2] — [a, AB — AC, 3],0, / _ 1 ( 2 ) [ o , AB — AC, 2] ) . . . 
( a ,AB - A C , / ( A ) - 1] - [o, AB - AC, / (A) ] ,0 , / - 1 ( / ( A ) - l ) [a ,AB -ÀC,f(A)- 1]), 
where / ( A ) implies 91 = A, 
e2 = ((a, AB - AC, / ( A ) + l] - [a, AB - AC, / (A)+2] ,0 , / - x ( / ( A ) + l ) [a, AB - » 
A C , / ( A ) + l ] ) . . . ( j a , A B - AC,9] - [a,AB - AC,9 + 1 ] , 0 , / - 1 (9)[a,AB -
AC,9]), where / ( A ) = 9 implies g2 = A,6" G.{(B' — B , < a,AB AC,4 > ,0 ) } * . 

The above derivation implies that the rightmost symbol of t must be A. As 
t G £r(u), the rightmost symbol of u must be A as well. That is, t = s 'A, u = sA 
and a' G g (s) (for some s G (V — {5 } )* ) . By the induction hypothesis, there exists a 
derivation in G : S =>* asABy2. Because AB —» AC G P, we get S =>* asABy2 => 
asACy2\AB -* AC], where asACy2 = yiry2 . 

By (1), (ii), (iii) and inspection of P~, we see we have considered all possible 
derivations of the form S =>n+1 x' (in G~) , so we have established Claim 3 by the 
principle of induction. 
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The equivalence of G and G~ can be easily derived from Claim 3. By the 
definition of g, we have g(a) = {a} for all a € T. Thus, by Claim 3, we have for all 
z e T* : 

S =>' x in G if and only if S =•* x in G~ 
Consequently, L(G) = L(G~). We conclude that 

CS = p r o p - SSC(1,2) 
and the theorem holds. Q.E.D. 
Corollary 8 CS = p r o p - SSC(1,2)= prop - SSC = prop - SC(1,2) = p r o p - SC. 
We now turn to the investigation of ssc-grammars of degree (1,2) with erasing 
productions. 
Theorem 9 R E = SSC(1,2). 
Proo f . Clearly, we have the containment SSC(l ,2 ) C RE; hence, it suffices to 
show R E C SSC(1, 2). Every language L 6 R E can be generated by a grammar 
G = (V, T, P, S) in which each production is of the form AB —• AC or A —• x, 
where A,B,C £ V -T,x € {A} U T U (V - T)2 (see [2]). Thus, the containment 
R E C SSC(1,2) can be established by analogy with the proof of Theorem 7 (the 
details are left to the reader) Q.E.D. 
Corollary 10 R E = SSC(1,2) = SSC = SC(1,2) = SC. 
Corollaries 2,4, 8, and 11 imply the main result of this paper: 
Corollary 11 

CF 

c 
prop - SSC = p r o p - SSC(2,1) = prop - SSC(1,2) = 
prop - S C = prop - SC(2,1) = prop - SC(1,2) = CS 

c 
SSC = SSC(2,1) = SSC(1,2) = SC = SC(2, l) = SC(1,2) = R E 
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Invariance groups of threshold functions 

E. K. Horváth * 

Permutations of variables leaving a given Boolean function f(xi,...,xn) in-
variant form a group, which we call the invariance group G of the function. We 
obtain that for threshold functions G is isomorphic to a direct product of symmetric 
groups. 

A threshold function is a Boolean function, i.e. a mapping {0 ,1 } " —• {0 ,1} with 
the following property: There exist real numbers ti>i, ...,wn, t such that 

n 
f(xlt...,xn) = 1 iff ] [ > * . > t, 

»"= 1 

where Wi is called the weight of x< for i = 1 ,2 , . . . , n, and t is a constant called the 
threshold value.We can suppose without loss of generality that 

w1<w3<...<wn. [1],[2] 
Throughout this paper, we use the notation: (X) = ( x i , . . . , z n ) ; W = 

(u»i , . . . , u>„); = tojij. Let X stand for the set consisting of the symbols 
xi,..., xn . We define an ordering on the set X in the following way: x,- < xy iff 
Wi < Wj. For any permutation ir of X, the moving set of ir, denoted by M(ir), 
consists of all elements x of X satisfying t(x) / x. Denote by Sx the group of 
all permutations of the set X, and by Sk the symmetric group of degree k. If 
P = (p i . . . . ,P n ) e {0 ,1 } " and a € Sx, then let o(P) = (a(pi), . . . ,<r(p„)) and 
o{X) = (ff(xi),...,<T(xn)). 

Let ( A ; < ) be an ordered set. Consider a partition C of X. As usual, we shall 
denote the class of C that contains x e X by £. We call C convex if x,- < xy < x* 
and 2i = Xfc together imply 2,- = 2y. For any convex partition C of X, the ordering 
of X induces an ordering of the set of blocks of C in a natural way: £< < xy iff 
Xi < xy. 

Theorem 1 For every n-ary threshold function f there exists a partition Cf of X 
such that the invariance group G of f consists of exactly those permutations of Sx 
which preserve each block of Cf . 

Conversely, for every partition C of X there exists a threshold function fc such 
that the invariance group G of fc consists of exactly those permutations of Sx that 
preserve each block of C. 

Proof . First, consider an arbitrary n-ary threshold function / . Let us define the 
relation ~ on the set X as follows: t ~ j iff » = j or / is invariant under the 
transposition fax,). Clearly, this relation is reflexive, and symmetric. Moreover, 
it is transitive because 

•JATE, Bolyai Intézet, Aradi Vértanúk Tere 1, H-6720 Szeged, Hungary e-mail 
H7753KatQHUELLA.BITNET 
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(x,xy)(xyZk)(x<xy) = (x,x fc). 

Hence ~ is an equivalence relation. 

Claim 1. The partition C/ defined by ~ is convex. 

Proof . If it is not so then there exist a Boolean vector D = (di,dn) G {0, l } n 

and 1 <i<j<k<n with X{ ~ x* such that 

d + Widj + Wjdi + u>kdk < t, (1) 

d + Widi + Wjdj + wkdk > t, (2) 

if d = E „ « j , f c • Now (1) ^ (2) imply di= 0, dy = 1. Since x,- ~ x*, from 
(1) and (2) we infer: 

d + tutdfc + tuydi + tOfcdy < t, (3) 

d + u>idk + tuydy + tBfcd,- > t. (4) 
Assume dk = 0. Then d + to* < t < d+ w, by (3) and (2), whence wk < toy , 

which is a contradiction. On the other hand, suppose dk = 1. Then because of ( l ) 
and (4), d + Wi + wk < t < d + + u>y, which is also a contradiction. 

For the reason of convexity, the blocks of ~ may be given this way: 

C i = { x l t . . . 

<?2 = • • i +«»}• 
Ci = {*t'i+»j+...+»i_i+ii • • • i *«i+...+»i }• 

(5) 
Every permutation that is a product of some "permitted" transpositions pre-

serves the blocks of Cf, and belongs to G. We show that if a permutation does not 
preserve each blocks of Cf defined by then it cannot belong to G. 
Lemma 1 Let 7 = (xy,xy, ...xJk_lyx]k . . .xym) € Sx be a cycle of length m + 1 
with xy, G Cp, 1 < 3 < m, y € Cq, p jt q. Then 7 g G. 

Proof . Let us confine our attention to the following: 

(v*/*-i)(*A*/. • • • *}k-iVxik •••X,J = (xhxi, • • • * / J ( y ) . 
so 

{yxik-1) = (*/i*A •••xjm)(xjixi, •••xh-xyx3k •••X}J~1-
If 7 were an element of G, then (yxyt_,) would be also an element of G, which 
contradicts the definition of 

Claim 1. If a cycle ft £ Sx has entries from at least two blocks of Ct, then 
f}£G. 



In variance groups of threshold functions 327 

Proo f . Given the convex partition Cj of ( X ; < ) , for any cycle 0 of length k we 
construct a sequence of cycles of increasing length, called the downward sequence 
of 0, as follows: Let Sp, Zq (ip > £q) the two greatest blocks of C/ for which xp, xq 
are entries of 0. We cancel some entries of 0 in such a way that we keep all entries 
in £p and the greatest entry in £q, and we delete all the remaining entries of 0. This 
results in the initial cycle of the downward sequence /?(r) of length r; r > 2. We 
do not need to define members of the downward sequence with subscripts less then 
r. If we have constructed 0^, we obtain the next member 0(i+i) of the downward 
sequence by taking back the greatest cancelled (and not restored yet) entry of 0 in 
its original place. Thus, the final member of the downward sequence is 0(k) — 0-
Let us denote by x'*' (t > r), the "new" entry of 0 ^ . If t < r, then we do not have 
to define xI'L As an illustration take the following: 

X = {*!,..., ®s}, 

Ci = { x i , X 2 } , 
= {L3,X4}, 

c3 = {X5.X6.X7}, 
C4 = { x 8 } , 

and 
0 = (x4 X5X1X7X3) = (11X7X3X4X5). 

The downward sequence is: 

0(3) = {x7X4X6), 

fi(4) ~ (^7X3X4X5), = X 3 , 

0(6) ( = 0) = («1X73:32:415). a;'5' = x x . 

It is obvious from the construction of the downward sequence that the weight 
of an arbitrary variable occuring in 0^ is not smaller than the weight of x ' , + 1 l . 
By Lemma 1, the initial cycle of the downward sequence (in our example 0(3)) 
is not in G. In order to prove that 0 & G, we show that if there exist A^j = 
(«{*), 1, •••><*(.),«) and B(i) = (6(<),!,...,&(,•),„) with A(i),B(i) e { 0 , l } n such that 
/ (A( , j ) = 0 and f(B[i)) = 1 and y9(,)(A(jj) = £(<)> then we are able to construct 
-¿(i+i) = (°(t+i),i'--->0(,•+!),„) and B(i+i) = (&(t+i),i,---.6(i+i),r») with A ( i + 1 ) , 
B(i+1) € { 0 , 1 } " satisfying f[A{i+1)) = 0 and /(£(¿+1)) = 1 and (A ( < + 1 ) ) = 
B(,+ 1 ) . Let us denote with superscripts [i(j)], and [r(y)j the left, and the right 
neighbour of x^l in the cycle /9(y), respectively. In our example: = X5, 
xM*)! = x7 because x'6 ' = xx. (For the sake of clarity: [r([i(y)])J = [i([r(y)])| = y, 
moreover, and are the images of xM and , respectively.) We shall 
use this notation for the corresponding components of a concrete Boolean vector 
as well, i.e. for example: and We have four possibilities for A^y. 

Case 1. a'*}11 = 0, = 0. 
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C a s e 2. e g ; 1 1 = 1, a $ < + 1 » = 1. 

Case S. o ^ 1 ' — li = 

Case 4. a f t 1 ' = 0, « И ' 4 1 " = 1. 
We show that in the first three cases А,- is appropriate for A,+i . In Case 4 the 

only thing we have to do is to transpose two components of Ai in order to get a 
suitable Ai+i. 

Case 1. а}'.}"11 = 0, в Ц < + 1 " = 0. 
Even though bypasses x'*+1l, /?(j+i)(A(j)) = holds because 

" W 1 1 = fl(0 + 1 ) l - = A«)> t h e n = = Я«) -
So let us choose S(.+i) = Thus / (A (< + i ) ) = 0, f(B(i+\)) = 1, and 
#(< + 1 ) (A(,+i) ) = B(i+1) are satisfied. 

il '(»+i)l хИ<+1)1 

A{i) 0 0 

B(i) 0 0 b(i) 
¿(<+i) °i<+i) 0 0 

% n ) 0 0 |,ИН-1)| 

C a s e 2 . a ^ 1 ' = 1, a ^ < + 1 ) l = 1. 

The situation is the same as in Case 1: o^j"1' = Let A( i + 1 ) = A(,j. 
Then # ( i + 1 ) (A( t + 1 ) ) = #(,)(A^j) = hence let us choose B(,+i) = . Thus 
/ ( A ( i + 1 ) ) = 0, / ( B ( , + 1 ) j = 1, and 0(i+i)(A(,+ 1 ) ) = are satisfied for the 
reason as in Case 1. 

«IW+iJI хИ<+1)| 

A(i) aH) 1 1 

1 1 "(i) 
A(i+1) J'(»+i)l 

a ( . + i ) 1 1 

B(i+i) 1 1 IHH-IJJ 
6<i+l) 

C a s e S. a}*!1 ' = 1, a g i + l ) > = 0. 
Now, A(i) is appropriate for hut we cannot guarantee the same for B ^ 

and B(,+i). Let A( j + i ) = A(,), and B(i+1) = # ( i + 1 ) (A( , + 1 ) ) . We can get the 
Boolean vector -B(<+i) from if we transpose fcj^1' and i.e.: 

fc['(»'+i)l _ i M d b\i+M _ 0 
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while 
k J P > = 0 , and 6 ^ = 1; 

furthermore, all the other components of -B(.+i) and B ^ are identical. Since zl ,+1l 
has the smallest weight in /?(t+i)> w e get 

n n 

y=l J=1 

which means that /(-B(,+i)) = 1. Moreover, / (A ( t + 1 ) ) = 0, and /3(,+i)(A(,+ I)) = 
•B(i+i) are satisfied. 

xi<+1i zki'+i)! 
-I'C+IJI l 0 

B(i) 0 l 

¿(i+1) l 0 

B(i+1) l 0 

Case 4. a}^1' = 0, a$< + 1 ) 1 = 1. 
Let us construct A( t + 1) from A ^ as follows: Put = li a(v+i)1" = 

a(<+i),y = a(«).y * °(»+i),y / °(<+i) o r °(»+i),y ^ «(i+i)1"- (Transpose a[l.|1] 

and in the Boolean vector (and keep all the other components of it 
unchanged) to get A( i + 1 j . ) Since z ' t + 1 ' has the smallest weight in we get 

n n 

H w y a ( . + i ) , y ^ Ylwia№' 
y=l y=l 

hence / ( A ( t + l ) ) = 0. Let B(.+i) = ^(,+i)(A(,+1)). With this choice = B¿, 
hence J(B(i+i)) = 1. 
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Claim 2 is proved. 
Every permutation that is a product of disjoint cycles such that any of them 

preserves each blocks of Cj belongs to the invariance group G of / . We have to 
show, that if not all of the factors have this property, then the permutation does 
not leave the threshold function / invariant. 

L e m m a 2 Let ir € SX of the form ir = » j iri , where ÍRi,jt2 G SX, with M(IRI) n 
M(*2) = 0 and 0 G. Then % & G. 

P r o o f . Suppose that it is not so, i.e. r G G. Now t-l G means that there exist 
X 0 , e {0, l } n with f(X0) = 0 , f ( X 1 ) = 1, and ir^Xo) = X}. Let X2 = 
i.e. X2 = ir(Xo). Since f(X2) = 1 contradicts the assumption x € G, we infer 
A ¥ 2 ) = 0- Let X3 = *I(A2)- AS AT(*I) n M(ir2) = w e have -K\v2 = ir2iri. 

erefore X3 = 7r(Xi). The assumption r & G implies f(X3) = 1. Looking at the 
infinite series of Boolean vectors 

Xo 1 > • • • > Xn,... 

we can establish in the same way that if » = 2k, k e N, then / ( X , ) = 0, while if 
i = 2k + 1 then f(Xi) = 1. On the other hand, 

W(X) = + 5(A")I21 + S{X)W, 

where S(X)M = Ztj€M{wi) » / « y , S(X)I21 = E x y 6 M ( ) r j ) «y*y, = 

£* y eM(* ) wy*y. With this notation: S ( X 0 ) m < S{Xi)!1!, S(X0)12 ' = S(Xi ) [ 2 1 , 
S(Xo)|3> = 5(A"i)'3 ' . For the series of 5(X i ) l 1 l : 

(6) S(Xo) 1 1 1 < S ^ ) ! 1 ! = S ( X 2 ) m < S ( X 3 p = S p ^ ) ' 1 ' < ..., 

as applying ir2 changes only S(Xi)I2 ' ; moreover, f(X2t) = 0 and f(X2k+i) = 1 
imply W{X2k) < W(X2k+1), hence S(X2fc) ( l1 < Sp^/H-i) '1 1 . On the other hand, 
if 2 is the order of * i , then S(-Xo)'1' = 5(X2») '1 ' , which contradicts (6). 

Claim S. For ir S Sx, let x = 71 . . . 7 r where 7< are disjoint cycles. If there exists 
a fy with 1 < j < r and 7y ^ G, then r & G. 

P r o o f . It is easy to see if there is only one such 7y. If there is more, then ir £ G 
is an immediate consequence of Lemma 2. 

Claim 1, Claim 2, and Claim 3 together provide a proof of the first part of the 
Theorem. 

For proving the converse of the theorem, we show first that for any n there exist 
a n-ary threshold function which is rigid in the sense that its invariance group has 
only one element (the identity permutation). 

Suppose n is odd. With n = 2k + 1, consider the following weights: 

(7) 

Let t = 0. We prove that for any transposition r of form (xyxy_i) where 2 < j < n 
there exists a Boolean vector U = ( u i , . . . , u „ ) € {0, l } n such that f(U) = 1 and 

U»1 W2 to* töfc+i Wfc+2 «>2 k t"2fc+l 
-k -k+1 - 1 0 1 k - 1 Jfc 
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f(r(U)) = 0. For a fixed j let uy = 1, u n + i - y = 1, ttj = 0 if t ^ j, i ^ n + 1 - j. 
It is obvious that f (U) = 1; however, / (r( {7)) = 0. Hence / is rigid. 

If n = 2k, then the weights can be cnosen as 

U>1 U¿2 tWfc-l ffc Wfc+l Wfc+2 U>2fc-1 «>2 k 
-k -Jb + 1 - 2 - 1 1 2 ... k- 1 k 

Let t = 0. The method .is almost the same as before, i.e. consider the following 
U = (ui, • • •, ««)•= If 3 ¿ k + 1 then let uy = 1, u n + w = 1, u{ = 0 if t ¿ j , - j . 
If j = k + 1 then let tifc+i = 1 and Ui = 0 i f t ^ J f c + l . I f r = (xyxy_i), where 
2 < j < n , then f(U) = 1 while f(r(U)) = 0. 

Now, we construct a threshold function gc for an arbitrary partition C of an 
arbitrary ordered set X of variables. Denote now by the equivalence relation 
on X defined by C. First, suppose that C is convex. Let ii,...,i¡ denote the 
number of elements of the blocks of C, respectively. Consider the rigid function / 
of I variables that is defined in (7) or (8), depending on the parity of I. Take the 
weight ti>i t'i times, the weight t3 times and so on in order to define a threshold 
function g of n = t'i + t'a + . . . + if variables. Variables of g with the same weight 
are permutable. However, transpositions a of form (®,®y_i), where 2 < j < n and 
j j — 1, are "forbidden" for g because if we consider the corresponding U and 
construct a Boolean vector V of dimension n from U by rewriting it in the following 
way: instead of u m (m = 1 , . . . , / ) , write 0 t m times, whenever, u m = 0; and write 
1 (oncej then 0 im — 1 times otherwise; then we shall get a Boolean vector V of 
dimension n, for which g(V) = 1 while g(a{V) = 0. If C is not convex, the only thing 
we have to do is to reindex the variables m order to get a convex partition. After 
constructing a threshold function for the rearranged variables with the procedure 
described above, put the original indexes back and the desired threshold function 
is ready. Theorem is proved. 

The invariance group G¿ of an arbitrary Boolean function is not necessarily of 
the form 

(9) GBZSilx...xSil. 

For example, let h be the following: h(x i , . . . , ® „ ) = 1 iff there exists i such that 
H = 1, ®,©i = 1, ®y = 0 if j jí i,i + 1 where © means addition mod n. The 
invariance group of h contains the cycle ( x i , . . . , x „ ) and its powers but it does not 
contain transpositions of form (x¿ x¿+ 1) . 

However, there exist Boolean functions with invariance groups of the form (9), 
which are not threshold functions. 

Permutable variables of a threshold function does not mean equal weights. Here 
is an example: h(x) = X\x2X4V13X4. This is a threshold function with the following 
weights, and thresnold value: 

U>! U>2 tu3 w4 t 
1 2 3 4 7 

The transposition (xix 2 ) is "permitted" but the others are not. 
But the weights can always be chosen to be identical for variables belonging to 

the same equivalence class. If the j-th class Cy = {x i 1 + j , + 4 . + , j . _ 1 + 1 , . . . , Xi1 + . . .+ t j } 
by te notation of (5), then let ti>[y| = ^ Replace 
u 'u+.j+...+iy-i+i,---,«'.-,+...+iy. *>y «>[y|. Since x < 1 + f j + . „ + i y _ l + 1 , . . . , x i l + . . . + , j . 
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are from the same equivalence class, for fixed x%, ... and 
*»i+...»y+ii •••*»!+...<i i the fact that W(X) exceeds t (or not) depends only on 
the number r of l-s among the coordinates • ,+ . . . + < y _ 1 + i , . . . , x , l + . . . + t i ; more-
over, W(X) has a maximum (minimum) if we put all our l-s to places with the 
greatest (smallest) weights possible. Obviously 

«>«,+...¿r_, + l + • • • + U>t,+...«• _x + l+r 
^ " 'mi 

moreover, 

« w ^ 2 ; -• 
Hence 

Consequently, after replacing . . . , by tz)jj|, we still have 
the same threshold function. 
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On the Complexity of Dynamic Tests for Logic 
Functions 

V.A.Vardanian* 

Abstract 

A generalization of the concept of dynamic test is proposed for detecting 
logic and parametric faults at input / output terminals of logic networks 
realizing k— valued logic functions (k > 2). Upper and lower bounds on the 
complexity (i.e., length) of minimal dynamic tests are obtained for various 
classes of logic functions. 

1 Introduction 
In dynamic testing of combinational logic networks (see [1,2]) the fault-free and 
faulty circuits are distinguished if they have different dynamic (i.e., time varying) 
behaviors (output level variations) under the same input stimulation by a transition 
signal. It should be noted (see [1-3]) that there are statically undetectable logic 
faults, as well as parametric faults (e.g., inadmissible variations of the magnitude 
of time delays), which may become detectable only in dynamic testing. In [3l 
a notion of dynamic test was introduced for input/output terminals (I/O faults) 
of combinational networks since in many cases faults are more likely to occur at 
the input/output terminals rather than inside. The dynamic test [3,4] is defined 
to be a set of input patterns sensitizing the output of the network with respect 
to simultaneous switching of every feasible subset of input variables. Evidently, 
the dynamic test for I /O faults does not depend on the internal structure of the 
network, but depends only on the function realized by the output. In [3-7] some 
classes of logic and parametric 17O faults are described to be detectable by dynamic 
tests, and the complexity (i.e., length) of minimal dynamic tests is investigated for 
various classes of logic functions. 

In this paper, a generalization of the notion of dynamic test called (dynamic) 
test of regularity, is proposed for k— valued logic functions, k > 2. As a result, 
the class of detectable I /O faults is considerably enlarged. A notion of stability 
dual to that of sensitivity is introduced, and the test of regularity is defined to be 
a set of input patterns that are sufficient to both sensitize and stabilize the logic 
function with respect to simultaneous switching of every feasible subset of input 
variables. Upper and lower bounds on the complexity of minimal tests of regularity 
are obtained for some classes of k-valued logic functions. 

'Institute of Informatics and Automation Problems of the Armenian National Academy 
of Sciences, Yerevan, Armenia 
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2 Notations and Definitions 
Let Ek = {0,1,..., k - 1}, k > 2, denote 

E£ = {a/a = (<*!,...,«„), a< € Ek,i = 17^}; 

Pk(n) = {f/f:£%~Ek}-, 

Gj(S) = {0/0 e ES, ^ / a,) - (j e / ) } 

where I C N n = {1,2,..., n}, / / 0, a € 
For k > 2,5 e E%,I = {» i , . . . , » , } C JV„,/ / 0, the set G / ( 5 ) n ^ 3 has only 

one element denoted in the sequel by 

S 1 = (oil, •••! a u - i i i <*»i+i> •••iQi»',-ii (*»',» oti.+i, an) 

where a = 1 — a,a £ E 2 . 

Definition 2.1 . The function f(xi,...,x„) € Pk(n) is sensitive (stable) at vector 
a £ E£ with respect to the subset of variables {x<t x , , } C { x i , . . . , x n } if there 
exists a vector P 6 such that f(a) jt f(f)) ( respectively , / ( a ) = 
/ (£ ) ) . The function / is sensitive (stable) with respect to {x<,,..., Xi,} if there exists 
a vector a e at which / is sensitive (stable) with respect to {x t l } . 

Definition 2.2. The function / € Pk(n) is said to be regular if it is both sensi-
tive and stable with respect to every nonempty subset of variables {x,-,,..., x<,} C 

*n}-
Denote by Rk(n) the set of all regular functions / € Pk(n). 
We shall say that almost all functions from a class f ( n ) C Pk(n) have a property 

R if the fraction of functions from F(n) with property R tends to 1 as n —• oo. 
It is easy to prove the following assertion. 

Lemma 2.1. Almost all functions / € Pk(n) are regular. 

Definition 2.8. The set of vectors T*(s,f) C ( respectively, T**(a, / ) C 
is called an s— test of sensitivity ( stability ) for f € Pfc(n), if for each sub-
set { » ! , . . . , t r } C Nn, 1 < r < s, the sensitivity {[stability! of / with respect 
to {x t l xt- } implies the existence of a vector a 6 T*(s,f) ( respectively, 
a e T**(s, / ) ) at which / is sensitive (stable) with respect to {x<,,..., x<r}. 

Definition 2.4. The set of vectors T(s, / ) C £ £ is called a ( dynamic ) s- test of 
regularity for the function / £ Pk(n), if it is both an s— test of sensitivity and an 
s— test of stability for / . 

For a = 1 (respectively a = n) the a— tests will be called single (complete) 
tests. The test To (a . / ) is called a minimal a - test for / , if |T0(a,/)| = t(a, / ) = 
min{|T(a, f)\/T(s, f) € Z(a, / ) } , where Z(a, / ) is the set of alia— tests of regularity 
for / , and \A\ denotes the cardinality of the set A. 

The main objective of this paper is to find bounds on the complexity measure 
t(a, / ) of minimal a— tests of regularity for logic functions / £ Pk(n),k > 2,1 < 
a < n. 
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3 The Complexity of Single Tests 
The set of functions P*(n) may be considered as a probability space with every 
element / £ P*(n) having the same probability expu(—kn). Denote by Hn the 
Hamming code in the n-cube ES. It is known (see [9]) that liTJ = exp2(n — 

A/ ^ 

[log2(n + l ) ] ) . The pair of vectors a,f} € Hn, a / /9, will be called a regular pair 
for the Boolean function / € P3(n) iff AT=i(/(S) ® /(5{<}) © f{P) ® / ( 0 { * } ) ) = 1 
where © is the modulo 2 sum. Obviously, if (a , 0 } is a regular pair for / e P2(n) 
then { a , P } is a single test of regularity for / . 

For every a, 0 e Hn, a / / € P2(n) define the following random variables 

« a w - i i if {a , f}} is a regular pair for / 
otherwise 

Obviously, f 2 ( / ) = ~ „ ~ ~( / ) determines the number of regular pairs 
for / g P2(n). 

From Definition 2.4 with fc > 3, s = 1, it follows that if for every «, 1 < » < n, 
the function / € Pfc (n) is both sensitive and stable at vector a € with respect 
to variable zt-, then { a } is a minimal single test of regularity for / . 

For every a € and / € Pk (n) define the following random variable 

if { a } is a single test for / 
otherwise 

Obviously, the random variable & ( / ) = (~(f) determines the number of 
single tests of regularity for / £ Pfc(n), k > 3. Now let us compute the expectations 
M£k(f) and dispersions D£k(f) for the random variables £k(f), k > 2. 
Lemma S. l 

- \ ¿ " (1 - ((* - l ) / * ) * " 1 - * - f c + 1 ) n if jfc > 3 

Lemma 3.2 . 

^ - ( ( l - i - M if A: = 2 
~ \ M & ( / ) + (d ( fc )n3 + c2(k)n - 1 )k~»(Mtk(f))* if k > 3 

where ci(k) and c2(k) depend only on k. 
Lemma 3.3. For almost all functions f £ Pk[n),k > 2,n oo, 

Proo f is based on the second - moment method (see, e.g., [8]). From Lem-
mas 3.1 and 3.2 it follows that M£k(f) oo, and D£k{f) = o( (M£ f c ( / ) ) 2 ) . 
Let < (̂n) —• oo, <f>[n) = o(s/M£k(f)), then according to Chebyshev's inequal-
ity (see [8]) the fraction of functions / € Pk[n) satisfying the inequality 
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|&(/) - Aif f c ( / )| < U(n\)~1Mik(f) tends to 1 as n oo. Consequently, by 
definition, £k(f) ~ Mfck[f) for almost all functions / 6 flt(n), n oo, fc > 2. 
Theorem S. l . For almost all functions / € P* (n) 

t ( L , J ) \ 1 if Jb > 3 

P r o o f for k > 3 follows immediately from Lemma 3.3. For k = 2 from Lemma 3.3 
it follows that t( 1, / ) < 2 for almost all functions / 6 Pajn). From Lemma 2.1 and 
Definition 2.4 with Jfc = 2, a = 1, it follows that t( l , / ) > 2 which completes the 
proof. 

4 Upper Bounds on the Complexity of s— Tests 
The set of vectors Q C will be called an (n,2s + l,r)— code if |Q| = r and 
p(a, p) > 2a + 1 for all a, p € Q, a jt P, where p(a, P), called the distance between 
a and fi, is the number of coordinates t, 1 < * < n, such that <*< ^ 
Lemma 4 .1 . Let Q C be an (n,2a + 1,r)— code,a >2,k>2 and ^(n) —• oo 
as n —• oo. If 

r _ / l w 2 E ; = I ( ? ) + ^ W J for k=2 
~ \ L(fc - l ) " 1 logfc^fc.!, n + *(»)J for A: > 3 

then for almost all functions / € Pfc(n) Q is an a— test of regularity. 
Proo f . Let I = {* i , . . . , » m } Q N n , 1 < m < a. Denote by $ * ( / ) ( respectively, 
i i f c ( / ) ) the number of functions / £ PK{N) that are not sensitive (stable] at each 
vector a e Q with respect to the subset of variables {z j , , . . . , i , m } . Then it is easy 
to compute 

* f c(J) = expk (kn - r(k - l ) m ) , ¥fc(J) = * f c" exp ( f c_1 ) /k(r(fc - l)m). 

Let PFC(n, Q) be the probability of an event that Q is an a— test of regularity for a 
random function from Pfc(n). Now it is easy to verify that if r satisfies the conditions 
of the lemma, then 

P f c ( n , Q ) > l - e x P f c ( - n £ ( * * ( / ) + ¥* ( / ) ) = 
/cw„,i<|/|<« 

=1 - E (•) (exp*(-»-(* - 1 ) * + « P ( f c - i ) / f c ( ' ( * - in) = i -
Denote by ffcfn, 2a + 1) a code in of maximal cardinality with a code distance 
2a + 1 . The following statement is a straight-forward generalization of a well-known 
result for k = 2 (see [9]). 
Lemma 4.2 . For all Jb > 2 

«=o ^ ' 
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Theorem 4.1 . For almost all functions / € /^(n) and n —» oo 

tla n~ialog2' tfa = 0(n) \nH(A) if a = [Anj,0 < A < 1/4 

where H(A) = - A log3 A - (1 - A) log2(l - A). 
Proof . Applying the well - known (see [10]) inequality 
127Lo (?) — * * P a ( n ^ ( m / n ) ) where m < n/2, and taking into account Lemma 4.2 
we obtain that if s = IAnJ,0 < A < 1/4,n —» oo and r satisfies the conditions of 
Lemma 4.1 for k = 2, then 

|F2(n, 2s + 1)| > exp2(n(l - H(2s/n))) > exp2(n(l - #(2A))) > r. 

Thus, if the conditions mentioned above are satisfied, then there can be constructed 
an (n, 2s +1 , r)— code which according to Lemma 4.1 will be an s-test of regularity 
for almost all functions / € P2(n). Hence, t(s, f) < r = [log2 (7) + ^(«JJi 
whence the proof follows directly. 
Theorem 4 .2 . For almost all functions / 6 Pfc(n), fc > 3, 

2 < a < [n(log2 k - l)/(21og3(A - l))J, n - oo, 

t(s, f)~(k - 1 ) _ 1 l og^ fc . j ) n. 

P r o o f is analogous to that of Theorem 4.1. 

5 Lower Bounds on the Complexity of s— Tests 
Let {»'i,.. . ,»r} C JVn,cy € Ek,j = ITr, 1 < r < n,k > 2. Denote by ^ ( t ' l , cx ; ...; 
tr, cr) the set of all vectors /? 6 with = cy, j = l ,r , called an (n — r) — 
dimensional subcube in ££ . The set of indices {ti , . . . ,«r} will be called the set of 
fixed indices of the subcube. Any two subcubes in will be called parallel if they 
have the same set of fixed indices. Obviously, any two parallel subcubes do not 
intersect, and j£J(t1 ,e1 ; . . . ;t r ,c r)| = 

The following statement is a straightforward generalisation of a lemma from 
[10]. 
Lemma 5 . 1 . For any set M C |Af| = m < n+1, fc > 2, there exists a family of 
(n —m+1)— dimensional parallel subcubes of cardinality with each subcube 
containing at most one vector from M. 

Let Tfc(m) be the probability of an event that a random function from Pt(n) 
has an s— test of regularity consisting of m vectors. 
Lemma 5.2 . For k > 2,m < n + 1 and n —• oo 

s \ 9 /»-m+l\ 

* ' 1=1 
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P r o o f . Denote by M(M) the set of functions / G Rk(n) having M as an a— test 
of regularity. Then, taking into account Lemma 2.1 , it is easy to verify that 

*fc(m) < exP f c ( - fc" ) £ |X(M)| + 0(1). 
hdCE£,\M\=m 

According to Lemma 5.1 there can be found a family of (n — m + l)— dimensional 
parallel subcubes of cardinality Jfcm_1 with each subcube containing at most one 
vector from M. Let {p\,}2, —¡jm-i} be the set of fixed indices corresponding to 
every subcube from the family. Denote N* = Nn \{ji,..., jm-i}- Let M*(M) be 
the set of functions / G ü t (n) having M as an a— test of regularity with respect to 
JV*, i.e., for every subset { í j , . . . , / „ } C N*, 1 < v < a, f is both sensitive and stable 
with respect to the set of variables { x j j , . . . , ! / , } . Obviously, M(M) C M*(M). 

It is easy to compute that 

|x*(M)|<n(«p*MA-in-«pfc-iMfc-in-i)1 ' jx 
«=1 

x e x P f c r - m é ( n - 7 + 1 ) ( ) f c - i n = 
»=1 * ' 

kk' JJ ( l _ ( * Z l ) m ( f c - D 4 _ j f c — ( f c - l ) y ' 
t=l 

Whence the proof of the lemma follows immediately. 
The proof of the following statement is obvious. 

L e m m a 5.3 . If Wfc(m) = o( l ) for k > 2, m = m(n) ,n —• oo, then for almost all 
functions / G Pfc(n) 

t(a,f) >m+ 1. 

T h e o r e m 5.1 . For n —• oo and almost all functions / G P2 (n) 

' (a — 1) log2 n if a = conat > 2 
3 l o g a ? if a = °(»)> a — oo 

t[a'11 nH{X)/{l + H(X)) if a = [AnJ, 0 < A < 1 /2 
. n/2 if a > n /2 

Proo f . From Lemma 5.2 with k = 2 we obtain 

* f c(m) < 2™ exp e (—2 - m + 1 £ ( " ~ 7 + ^ ) + ° ( 1 ) ' 
»=1 ' ' 

Putting 

[(a - 1) log2 n - log2 log2 n - r(n)J, 
r(n) = o(logn), r(n) - » o o if a = conat > 2 

mo = [a log2 j - 21og2 n + a log2 ( l - ± log2 if a = o(n), a -+ oo 
[ n # ( A ) / ( l + H[A)) - 3 log2 nj if a = [AnJ, 0 < A < 1/2 

„ [n/2 — v log2 nj, v = conat > 5 / 4 if a > n /2 
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it is easy to verify that ^ ( m o ) = o ( l ) ,n —• oo. Hence in view of Lemma 5.3 we 
obtain the assertion of the theorem. 
Corol lary 5.1 . If a = const > 2, n —• oo, then for almost all functions / G Pi{n), 

t(s, f) x logn. 

Corol lary 5.2 . If a = o( n), a —• oo, n —• oo, then for almost all functions 
/ e P2(n), 

t(a, / ) ~ s log3 j . 

Corol lary 5.3 . If a = [Anj,0 < A < 1/4,n —• oo, then for almost all functions 
/ e P 2 ( n ) , 

t(a, / ) x n. 
Corollaries 5.1-5.3 are obtained from Theorems 4.1 and 5.1. 

Theorem 5.2 . If a > 2, k > 3, n —• oo, then for almost all functions / € Pk(n), 

t(a, f)~(k - l ) - 2 log f c / ( f c_1 } n. 

Proo f . Prom Lemma 5.2 with k > 3 we obtain 
H < expe ( - ( n " 7 + f - ^ r ^ ) + 0(1). 

It is easy to verify that iTk(m) = o( l ) for m = [ (¿ — 1) 2 log fc/( fc_i) n — logfc logfc nj , 
n - t oo. Thus, in view bf Lemma 5.3, the theorem is proved. 
Corol lary 5 .4 . If k > 3,2 < a < [n ( l og 2 f c - l ) / ( 21og 2 ( f c - 1))J, n - » o o , then for 
almost all functions / € Pfc(n), 

t[s,f) x logn. 

P r o o f follows directly from Theorems 4.2 and 5.2 . 

6 Upper Bounds on the Complexity of Complete 
Tests 

For Boolean functions / e P2 in) denote u{(x) = f(x) ® / ( i 7 ) , I C Nn, I ji 0. Now 
let us describe an algorithm for constructing a complete test of regularity for an 
arbitrary function / 6 P3(n). 
A lgor i thm 6.1 . S tep 1. Choose an arbitrary vector Si € and put 

Ti(f) = {Z&, 

T1° = { / / / C A T n , / / 0 , w / ( a 1 ) = O } ; 
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T11 = {I/lCNn,I?t,wfI(S1) = l}. 

If Tj0 U Ti1 ^ 0 and there exists a subset J3 € Ti"- for some a e {0 ,1 } such that 
( î ) ^ a, then we pass to the next step, otherwisè the algorithm terminates. 
Step »(»' > 2). Choose a vector Si € such that Wj (Si) = <r, where U € 

V - i . ^ fx) 1). If 

11i/// e = *>l - l ^ è IT̂ IJ +1 
<7=0 <7=0 

then put 

3 i ( / ) = T<_ i ( / ) ( J {5< } ; 

7<0 = { / / / e T i ® l l « / ( S i ) = 0} ; 

V = { / / / € 7 ^ , ^ ( 5 . ) = ! } . 

otherwise 

£(/) = {of*/a € 2 i - i ( / ) } J J i 3 . - ' } ; 

Ti° = {IAIi/I € 7 ^ 1 ( / # (Si) = <7}; 

T<1 = { / A / , / / 6 T^^Si) = a), 

where A is the set-theoretical operation of symmetric difference. 
If T° (J Ti1 ^ 0 and there exists a subset /<+1 e 7J" for some a 6 { 0 , 1 } such 

that <jj j+i ( ï ) ^ cr, then we pass to Step »' + 1, otherwise the algorithm terminates. 
Finally, Algorithm 6.1 will determine a set Tm(f) of m > 1 vectors which, as 

we are going to prove below, is a complete test of regularity for / 6 /^ (n ) . 
We shall say that the subset / Ç Nn, I / 0, is a feasible fault of sensitivity 

(stability) for / 6 Psi» ) if W/ ( î ) ^ 0 (respectively, u { ( x ) ^ l ) , and the vector 
S 6 25J detects the fault of sensitivity (stability) I for / if w ' ( a ) = 1 (respectively, 
W i / ( a ) = 0 ) . 
Theorem 6.1 . For all functions / € P2(n), 

« ( » , / ) < • » + 1 . 

Proo f . Let m = m(f) be the number of steps performed by Algorithm 6.1 for 
/ . It is easy to see that for each », 1 < t < m, the vectors from Ti(f) do not 
detect the faults of sensitivity I 6 T{° and the faults of stability J € T^, and the 
total number of faults not detected by the vectors from TA}) is reduced more than 
twice after each step. Since the algorithm terminates iff Tm(f) detects all feasible 
faults of sensitivity and stability for / , then Tm(f) is a complete test of regularity 
for / . Consequently, t(n, f ) < |Tm(/)| = m. It is easy to prove by induction on 
», 1 < » < m, that \T?\ + I V | < 2 n + 1 - ' - 1. The conditions causing Algorithm 6.1 
to terminate imply 0 < |7^| + |7„J| < 2 n + 1 _ m - 1 whence the bound m < n + 1 is 
derived directly. 
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Corollary 6.1 . For almost all functions / G ¿^(n), 

n /2~t (n , / ) < n + 1 . 
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Proo f follows directly from Theorems 5.1 and 6.1. 
Let £*(«, / ) (respectively, t**(s, / ) ) be the complexity of a minimal s— test of 

sensitivity ( stability ) for / G Pfc(n). 
Lemma 6.1 [7]. For almost all functions / G Pk(n), k > 3, 

t*(n,f)<n. 

We will say that the function / 6 J^(n), fc > 3, is stable in i?2 if for every 
7 C Nn, 7 ^ 0 , there exists a vector S 6 .EJ detecting the fault of stability I for / 
in 25?, i.e. , / ( 5 ) = / ( a 1 ) , where a 1 is the sole vector from Gj (a) f\En. Denote 
by 9[f,I) the number of vectors a G detecting the fault of stability I for / . 
Lemma 6.2 . For almost all functions / G Pk[n), k > 3, the inequality ff(f, I) > 
12" " 1 holds for all I C Nn, I ± 0. 

Lemma 6.3 . Almost all functions / G P*(n),A; > 3, are stable in 
Lemma 6.4 . Almost all functions / € Pk(n),k > 3, take all k values from Ek at 
vectors from 
Proofs of Lemmas 6.2-6.4 are not difficult, so they are omitted. 

Now let us describe an algorithm for constructing a complete test of stability 
for almost all functions / € Pk(n),k > 3. To this end, each function / G Pk{n) is 
associated to a table J(f) with 2 rows, one for each vector from E%, and 2n — 1 
columns, one for each feasible fault of stability / C Nn, I ^ 0; At the intersection 
of the ith row and jth column corresponding to a 6 E% and I C Nn, respectively, 
there stands a 'l '( 'O') iff / ( 5 ) = / ( a 1 ) (respectively, / ( 5 ) ^ ¡(a1)). Let T0(f) = 0 
and J0(f) = J(f). 

Algorithm 6.2 . Step i ( t > 1 ) . Select a vector 2j G with the corresponding 
row in J i - i { f ) having the maximum number of l's, and put TAJ) = Ti-i(f) U{S,-}. 
Denote by X(f) the table obtained from by deleting all the columns having 
l's in the row corresponding to a^. If Ji(f) = 0 or Ji(f) has only O's , then the 
algorithm terminates, otherwise we pass to Step » + 1. 

Note that according to Lemma 6.3, for almost all functions / G Pfc(n) Algorithm 
6.2 terminates iff Jm[f) = 0 for some m > 1. Hence, the following assertion holds. 
Lemma 6.5 . For almost all functions / G Pk{n),k > 3, Algorithm 6.2 constructs 
a complete test of stability. 
Lemma 6.6 . For almost all functions f & Pk(n),k> 3, 

* * > , / ) < r»lo«a*/(afc-i)2l + l. 

Proof . Let f^ be the fraction of faults of stability I C Nn, I ^ 0, detected by 
vectors a i , . . . ,a r G E% which are selected after the rth step of Algorithm 6.2. 
Then, obviously, (1 — fir)(2n — 1) is the number of faults of stability remain-
ing still undetected , i.e., the number of nonempty subsets / C Nn such that 
/ (ay) ^ / ( S j ) for all j, 1 < j < r. From Lemmas 6.2 and 6.3 it follows that for 
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almost all functions / 6 Pfc(n) the total number of feasible faults of stability, de-
tectable by the remaining vectors from is not less than ¿ (1 — Mr)(2" — l ) 2 n _ 1 . 
Consequently, among the remaining vectors there can be found a vector detecting 
not less than ( l — /¿r)(2" — l)/(2Jb) faults of stability which are not detected by the 
first r selected vectors. Thus, we obtain 

<*« > + ¿(i - *) - ,(i - ¿ K + £ > ••• a 

»=0 

( since Lemma 6.4 implies ni > j > ) 

1 ' 1 i 1 r+1 

l i s E P - i s i - ' - c - H » • 
t = 0 

Thus, Hr > 1 - ( 1 - Putting ro = f l o g ! _ ^ < r»log2fc/(2ifc-l) 21» w e 

find out that after the choice of ro vectors there will still remain undetected not 
more than 

(1 - - 1) < (1 - ¿ ) r o ( 2 " - 1) < 1 

faults of stability. Taking into account Lemma 6.5, we obtain that for almost all 
functions / e Pfc(n) 

t**(n, / ) < ro + (1 - Mr„)(2n - 1) < r » k f c f c / ( a k - i ) 21 + 1-

T h e o r e m 6.2 . For almost all functions / S Pk{n),k > 3, 

t(n, / ) ~ n ( l + logafc/^fc.i) 2). 

P r o o f follows directly from Lemmas 6.1 and 6.6 . 
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Some Remarks on Functional Dependencies in 
Relational Datamodels* 

Vu Due Thi t Le Thi Thanh t 

Abstract 
The concept of minimal family is introduced. We prove that this family 

and family of functional dependencies ( F D s ) determine each other uniquely. 
A characterization of this family is presented. 

We show that there is no polynomial time algorithm finding a minimal 
family from a given relation scheme. We prove that the time complexity of 
finding a minimal family from a given relation is exponential in the number 
of attributes. 

Key Words and Phrases: relation, relational datamodel, functional depen-
dency, relation scheme, closure, closed set, minimal generator, key, minimal key, 
antikey. 

1 Introduction 
The functional dependency introduced by E.F.Codd is one of important semantic 
constraints in the relational datamodel. 

The family of FDs has been widely studied in the literature. In this paper we 
give a family of sets and show that it is determined uniquelyby family of FDs. This 
paper presents some results about computational problems related to this family. 

Let us give some necessary definitions and results used in what follows. 
Let R = {o i a „ } be a nonempty finite set of attributes. A functional 

dependency is a statement of the form A B, where A,BCR. The FD A —* B 
holds in a relation r = {hi,... ,hm} over R if V/i<, h}- 6 r we have hi (o) = h3(a) for 
all o e A implies h{(b) = hj(b) for all b e B. We also say that r satisfies the FD 
A—*B. 

Let Fr be a family of all FDs that hold in r. Then F = Fr satisfies 

(1) A—*A&F, 

(2) (A —* B e. F, B C G F) => (A—*C€. F), 

(3) BeF, ACC, DCB)=>{C-^ D&F), 

'Research supported by Hungarian Foundation for Scientific Research Grant 2575. 
^Computer and Automation Institute Hungarian Academy of Sciences, H - l l l l Bu-

dapest, Lágymányosi u. 11. Hungary. 
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(4) (A - » B e F, C D £ F) = • (A U C — B U D e F). 

A family of FDs satisfying (l)-(4) is called an f-family (sometimes it is called 
the full family) over R. 

Clearly, FT is an /-family over R. It is known [1] that if F is an arbitrary 
/-family, then there is a relation r over R such that FT = F. 

Given a family F of FDs, there exists a unique minimal f-family F+ that con-
tains F. It can be seen that F+ contains all FDs which can be derived from F by 
the rules (l)-(4). " 

A relation scheme a is a pair < R,F>, where R is a set of attributes, and F is 
a set of FDs over R. Denote A + = {a: A —* {a } e A + is called the closure of 
A over a. It is clear that A B e F+ iff B C A+. 

Clearly, if a = < R,F> is a relation scheme, then there is a relation r over R 
such that Fr = F+ (see, [1]). Such a relation is called an Armstrong relation of a. 

Let R be a nonempty finite set of attributes and P(R) its power set. The 
mapping H : P[R) —* P[R) is called a closure operation over R if for all A, B £ 
P(R), the following conditions are satisfied : 

(1) A C H(A), 

(2) A C B implies H(A) C H(B), 

(3) H(H(A)) = H(A). 

Let a = < R, F > be a relation scheme. Set H,(A) = {a : A —» {a } € we 
can see that H, is a closure operation over R. 

Let r be a relation, a = < R, F > be a relation scheme. Then A is a key of r ( a 
key of a) if A R € Fr ( A R e F+). A is a minimal key of r(s) if A is a key 
of rla) and any proper subset of A is not a key of r(a). 

Denote Kr(K,) the set of all minimal keys of r(s). 
Clearly, KT,K, are Sperner systems over R, i.e. A, B € Kr(K,) implies A g B. 
Let K be a Sperner system over R. We define the set of antikeys of K, denoted 

by i f - 1 , as follows: 

A " 1 = (A c R : (B e K) => {B 2 A) and (A c C) = > (3B e K)(B C C ) } . 

It is easy to see that K~1 is also a Sperner system over R. 
It is known [5] that if K is an arbitrary Sperner system over R, then there is a 

relation scheme a such that K, = K. 
In this paper we always assume that if a Sperner system plays the role of the 

set of minimal keys (antikeys), then this Sperner system is not empty (doesn't 
contain R). We consider the comparison of two attributes as an elementary step 
of algorithms. Thus, if we assume that subsets of R are represented as sorted lists 
of attributes, then a Boolean operation on two subsets of R requires at most 
elementary steps. 

Let L C P(R). L is called a meet-irreducible family over R ( sometimes it is 
called a family of members which are not intersections of two other members ) if 
VA, B,C € I , then A = B n C implies A = B or A = C. 

Let I C P(R), Re I, and A,B € I => AnB € 1.1 is called a meet-semilattice 
over R. Let M C P(R). Denote M + = {nAf' : M' C M). We say that M is a 
generator of / if M+ = I. Note that R S M+ but not in M, by convention it is 
the intersection of the empty collection of sets. 

D e n o t e N = { A E I : A ^ n { A ' € l : Ac A ' } } . 
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In [5] it is proved that N is the unique minimal generator of I. 
It can be seen that N is a family of members which are not intersections of two 

other members. 

Let H be a closure operation over R. Denote Z(H) = {A : H(A) = A} and 
N{H\ = {A e Z(H) : A / n {A ' <= Z(H) : A c A ' } } . Z{H) is called the family of 
closed sets of H. We say that N(H) is the minimal generator of H. 

It is shown [5] that if £ is a meet-irreducible family then L is the minimal 
generator of some closure operation over R. It is known [l] that there is an one-to-
one correspondence between these families and f-families. 

Let r be a relation over R. Denote ER = {EFy : 1 < » < j < |r|}, where 
Eij = {a € R : hi(a) = Ay (a)}. Then ER is called the equality set of r. 

Let Tr = {A e P(R) : 3£<y = A, /3EM : A C EPQ}. We say that Tr is the 
maximal equality system of r. 

Let r be a relation and K a Sperner system over R. We say that r represents 
K if Kr = K. 

The following theorem is known ([7]) 

Theorem 1.1 Let K be a non-empty Sperner system and r a relation over R. Then 
r represents K iff K-1 = Tr, where Tr is the maximal equality system of r. 

In [6] we proved the following theorem. 

Theorem 1.2 Let r = {hi,..., /im} be a relation, and F an f-family over R. Then 
FT = F iff for every AC R 

where Hf(A) = {a &R: A—* { o } € f } and ER is the equality set of r. 

2 Results 
In this section we introduce the concept of minimal family. We show that this 
family and family of FDs determine each other uniquely. We give some desirable 
properties of this family. We present some results about the relationship between 
this family, meet-semiattice and family of FDs. 

Definition 2.1 Let Y C P(ií) x P(R). We say that Y is a minimal family over 
R if the following conditions are satisfied : 

(1) V(A, B), (A', B') e Y : A c B C R, A C A' implies B C B', A C B' implies 

(2) Put R(Y) = {B : (A, B) e Y). For each B 6 R{Y) and C such that C c B 
and /BB' e R(Y) : C c B' C B, there is an A £ LIB) : A C C, where 
L(B) = {A:(A,É)eY}. 

AC Btj, 
R otherwise, 

B C B'. 
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Remark 2.2 (1.) R £ R(Y). 

(£.) From A cB' implies B C B' there is no a B' £ R(Y) such that A C B' C B 
and A = A' implies B = B'. 

(S.) Because A C A' implies B C B' and A = A' implies B = B', we can be see 
that L(B) is a Sperner system over R and by (£) L(B) ^ 0. 

Let / be a meet-semilattice over R. 
Put A í * m = {(A, B) : 3C € / : A C C, A ¿ n {C :C el, AcC},B = n{C : 

c e I, A c c}}. 
Set M[I) = {{A, B) e M*[I) :fl{A',B) £ M*(J) - A' C A}. 
Note that if C e I, then C u an one-term intersection. It is possible that A = 0. 
It can be seen that for any meet-Bemilattice I there is exactly one family M(I). 

Theorem 2.S Let I be a meet-semilattice over R. Then M(I) is a minimal family 
over R. 

Conversely, if Y is a minimal family over R, then there is exactly one meet-
semilattice I so that M(I) = Y, where I = {C C R : V(A, B)eY.ACC implies 
BCC). 

Proof: Assume that I is a meet-semilattice over R. We have to show that Af (I) 
is a minimal family over R. It is obvious that A C B C R. 

PVom B' = n{D :D e I, A' C £>}}, we have B' C D. If A C B', then A C D 
and by B = n { C : C e I: A C C } we obtain B C B'. By fl(A', B) 6 M*(I) : A' C 
A and from A' C A C B implies B' C B we can see that if A' C A then B' C B. 
Thus, we obtain (l) . Clearly, Lj(B) - {A : (A ,B) e M(I)} is a Sperner system 
over R. 

If there is a Be R{M(I)) and D satisfying D C B and V£ ' e R{M(I)) : D C 
B', B'CB imply B = B', then for all A e L¡(B) : A % D(*). 

It can be seen that D ¿ n{C : C e I, D C C} and B = n{C :C eI,D <ZC). 
If L¡(B) U D is a Sperner system over R, then by definition of M(I) we have 

D e Li(B). Prom (*) this is a contradiction. 
If there exists an A £ Lj(B) : D C A, then this conflicts with the definition of 

M(I ) . Thus, we have (2) in Definition 2.1. Consequently, M(I ) is a minimal family 
over R. 

Conversely, y is a minimal family over R. Clearly, / is a meet-semilattice over 
R. It is obvious that (A, B) e Y implies A £ I. 

Now we have to prove that M(I) = Y. Assume that (A, B) 6 Y. By ( l ) in 
Definition 2.1 V(A', B') € Y : A' C B implies B' C B. From this and definition of 
I we obtain Bel. 

According to definition of I there is no C e I such that A C C C B. On the 
other hand, A C B and B is an intersection of Cs, where C e I, A C C. Thus, 
B = D{C : C e I, A C C) and A ^ n { C :C e I, A cC}. Hence, (A, B) € M* ( / ) 
holds. 

Clearly, if A = 0 then (A, 5 ) e M{I). Assume that A ^ 0 and (A', B) e M*(I). 
It is obvious that by the definition of M*(I) A' C B and flB' : A' C B' C B. By 
(2) in Definition 2.1 there is an A" £ L{B) : A" C A'. Because L(B) is a Sperner 
system over R and A £ L[B) we have A' £ A. Thus, (A, B) € M(N) holds. 

Suppose that A C R and A & I. Based on the above proof, B £ R(Y) implies 
B e I. Clearly, R € R(Y). Consequently, for A there is a Be R(Y) such that 
AC B (**). We choose a set B so that |B| is minimal for (**), i.e. flB' € R(Y) : 
AC B' C B. According to (2) in Definition 2.1 there exists an A' € L{B) : A' C A. 
If there ia C e I: A C C C B, then A' C C C B. This conflicts with the definition 
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of I. Consequently, for all C G / and C jt B, A C. C implies B C C. From this and 
according to the definition of M*(I) (A,B ) G M*(I) implies B G R{Y). 

Assume that (A, B) G M(I). By the above proof, B G R(Y) holds. We consider 
the set L(B) = {A ' : (A', B) G Y } . According to definition M(I) we have A C B 
and flB' G J2(Y) : A C B' C B. By (2) in Definition 2.1 there is an A' G L(B) 
such that A' C A. If A' C A, then according to the above proof (A', B) G Y implies 
(A1, B) G M(N). A' C A contradicts the definition of M(N). Thus, A' = A holds. 
Consequently, we obtain (A, B) G Y. 

Suppose that there is a meet-semilattice / ' such that M ( I ' ) = Y. We have to 
show that I = I'. By definition of M ( r ) E e l ' implies E e l . Thus, / ' C I 
holds. Suppose that there is a D e l and D 0 / ' . According to the definition 
of meet-semilattice R G / ' . Put D" = D { £ e P : D C E}. By D & I' we have 
D CD'. According to M * ( / ' ) (D,D") G Af *( / ' ) . From definition of Af(I ' ) there 
is a £>':£>' C D and (Z/.X»") G A/ ( / ' ) . Thus, D1 C D C D' holds. This conflicts 
with the fact that D e l . Hence, 1 = 1 ' holds. • 

It is known [1] that there is an one-to-one correspondence between families of 
FDs and meet-semilattices and by Theorem 2.3 we obtain the following. 

Proposition 2.4 There is an one-to-one correspondence between minimal families 
and families of FDs. 

Because there are one-to-one correspondences between meet-irredundant fami-
lies, closure operations and families of FDs, we also have the following. 

Proposition 2.5 There are one-to-one correspondences between minimal families, 
meet-irredundant families and closure operations. 

Remark 2.6 Let s =< R, F > be a relation scheme over R. A functional depen-
dency A —* B e F+ is called basic of s if 

(1) A c B, 

(2) flA': A' C A and A' B e F+, 

(S) /BB':B<Z B' and A-* B' e F+, 

Denote by B(s) the set of all basic FDs of s. 
If a relation scneme is changed to a relation we have a basic functional depen-

dency of r. Denote the set of all basic FDs of r by B(r). 
It can be seen that the set {A —• R : A G K,} is a subset of B(s). 

Remark 2.7 Let s =< R,F>bea relation scheme over R. Put Z(s) = {A : A + = 
A}. Z(s) is a meet-semilattice over R. M(Z(s)) is called the minimal family of s. 
According to definitions of M(I) and B(s) we can see that M(Z(s)) = {(A, B) : 
A-*BeB(s)}. 

It is known [17] that there is no a polynomial time algorithm finding a set of 
all minimal keys of a given relation scheme. FYom this and by Remark 2.6 we have 
the following corollary. 

Corollary 2.8 Let a =< R,F> be a relation scheme over R. There is no a 
polynomial time algorithm to find the minimal family of s. 
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Definition 2.9 Let R be a relation over R and FT a family of all FDs that hold in 
r. Put A^ = {a : A — {a} e Fr}. Set Zr = {A : A = A+}. Then M(Zr) is called 
the minimal family of r. 

It is easy to see that the set {A—*R:A & Kr} is a subset of B{r 
We construct a following exponential time algorithm finding a minimal family 

of a given relation. 
In relation scheme a = < R,F>, a functional dependency A —• B € F is called 

redundant if either A = B or there it C B & F such that CCA. 

Algorithm 2.10 (Finding a minimal family of r) 

(Input:) a relation r = {/»x,..., hm) over R. 

(Output:) a minimal family of r. 

(Step 1:) Find the equality set ET = {Ei} : 1 < t < j < m}. 

(Step £:) Find the minimal generator N, where N= {A € Er : A jt n { 5 6 Er : A C 
B}}. Denote elements of N by Ai,...,At. 

(Step S: For every B C R if there is an Ai fl < i < t) such that B C Ai, then compute 
C = ("| Ai and set B —* C. In the converse case set B —• R. Denote 

BCAi 
by T the set of all such functional dependencies 

(Step 4:) Set F = T - Q, where Q = {X Y G.T \ X Y is a redundant functional 
dependency }. 

(Step 5:) Put M(ZT) = {(J3, C) : B C € f } . 

According to Theorem 1.2 and definition of M(Zr), Algorithm 2.10 finds a 
minimal family of r. 

It can be seen that the time complexity of Algorithm 2.10 is exponential in the 
number of attributes. 

Let a = < R, F > be a relation scheme over R. We say that a is in Boyce-Codd 
normal form ( BCNF ) if A — {a } g F+ for A+ ji R, a & A. 

If a relation scheme is changed to a relation we have the definition of BCNF for 
relation. 

Proposition 2.11 Given a BCNF relation r over R. The time complexity of find-
ing a minimal family of r is exponential tn the number of elements of R. 

Proof: iVom a given BCNF relation r we use Algorithm 2.10 to construct the 
minimal family of r. By definition of BCNF, we obtain 

M[Zr) = {(B, C) : B -*C GlF) = {(B,R) : B e Kr}. 

Let us take a partition R = X\ U . . . U Xm U W, where |J2| = n, m = In/3], and 
\Xi\ = 3 (1 < i < m). 

Set M = ( J f - 1 ) , i.e. K - 1 is a set of minimal keys of M, we have 
M = {C: [CI = n - 3, C n Xi = 0 for some i} if \W\ = 0, 
M = {C: |C| = n - 3, C n Xi = 0 for some » (1 < » < m - 1) or |C| = 

n — 4,C H (Xm U W) = 0} if \W\ = 1, 
M = {C: |C| = n —3,Cn Ai = 0 for some t' (1 < i < m) or |C| = n-2,CnW = 

0} if = 2. 



Some Remarks on Functional Dependencies in Relational Datamodels 351 

It it clear that 3ln/4l < If f"1 ! , \M\ < m + 1. 
Denote elements of M by C\,..., Ct. 
Construct a relation r = {h0,hi,... ,ht) as follows: 
For all a e R Ao(o) = 0, for » = 1 , . . . , t 

{ » otherwise. 

Clearly, |r| < |i2| holds. According to Theorem 1.1 M is the set of antikeys of r 
and K - 1 is the set of minimal keys of r. From definition of BCNF, we can see that 
M(zr) = {(B,R) ifler1}. 

Thus, we can construct a relation r in which the number of rows of r is less 
than |i?|, but the number of elements of M(Zr) is exponential in the number of 
attributes. • 

Since the class of BCNF relations is a special subfamily of the family of relations 
over R, the next corollary is obvious. 

Corollary 2.12 The time complexity of finding a minimal family of a given rela-
tion r is exponential tn the number of attributes. 
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