
Volume 20 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: János Csirik (Hungary)

Managing Editor: Csanád Imreh (Hungary)

Assistant to the Managing Editor: Attila Tanács

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Hans L Bodlaender (The Netherlands)
Horst Bunke (Switzerland)
Bruno Courcelle (France)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)
Ferenc Gécseg (Hungary)
JozefGruska (Slovakia)

Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Zoltán Kato (Hungary)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2011

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the time
it takes to locate qualified reviewers. Usually, a review process takes 6 months to be
completed. There are no page charges. An electronic version of the puplished paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

o title of the paper
o author name(s) and affiliation
o name, address and email of the corresponding author
o An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in IM^X format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-670I Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: actaSinf.u-szeged.hu-

Web access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http://www.inf.u-szeged.hu/actacybernetica/ .

http://www.inf.u-szeged.hu/actacybernetica/

EDITORIAL BOARD

Editor-in-Chief: János Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged. Hungary
esi ri k@i nf. u-szeged. h u

Managing Editor: Csanád Imreh
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
cimreh@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanäcs
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@i nf. u-szeged. h u

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Bruno Courcelle
LaBRI
Talence Cedex, France
courcell@labri.u-bordeaux.fr

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@i nf. u-szeged. hu

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

mailto:cimreh@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:hansb@cs.uu.nl
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr
mailto:demetrovics@sztaki.hu
mailto:ze@inf.u-szeged.hu
mailto:fulop@inf.u-szeged.hu

I

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@ inf.u-szeged.hu

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava. Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyi mothy@inf. u-szeged. h u

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@i nf. u-szeged. h u

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven. The Netherlands
gwoegi@win.tue.nl

mailto:gruska@savba.sk
mailto:helmut@csd.uwo.ca
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:Heiko.Vogler@tu-dresden.de
mailto:gwoegi@win.tue.nl

WEIGHTED AUTOMATA:
THEORY AND APPLICATIONS

Guest Editors:

Manfred Droste

Institut für Informatik
Universität Leipzig

Germany
droste@informatik.uni-leipzig.de

Heiko Vogler

Fakultät Informatik
Technische Universität Dresden

Germany
Heiko.Vogler@tu-dresden.de

mailto:droste@informatik.uni-leipzig.de
mailto:Heiko.Vogler@tu-dresden.de

Preface

This special issue contains papers on topics of the workshop

"Weighted Automata: Theory and Applications (WATA 2010)"

which took place at the Universität Leipzig, Germany, from May 3-7, 2010.

As for its predecessors WATA 2002, WATA 2004, WATA 2006, and WATA 2008,
the goal of this workshop was to highlight the field of weighted automata, ranging
from the theory of formal power series and probabilistic logics to applications for
real-time systems and natural language processing.

The workshop was attended by 48 participants from 11 countries. Three tuto-
rials were given by

Paul Gastin (Cachan, France),
Kim Larsen (Aalborg, Denmark),
Mark-Jan Nederhof (St. Andrews, UK).

In addition, six invited lectures were presented by

Christel Baier (Dresden, Germany),
Patricia Bouyer-Decitre (Cachan, France),
Miroslav Ciric (Nis, Serbia),
Zoltän Esik (Szeged, Hungary),
Dietrich Kuske (Bordeaux, France),
Andreas Maletti (Tarragona, Spain).

Furthermore, 21 talks were selected as contributed communications.

This workshop was financially supported by the ESF activity "Automata: from
Mathematics to Applications (AuloMathA)" and by "Vereinigung von Förderern
und Freunden der Universität Leipzig e.V.".

After the workshop, a call for papers for a special issue of "Acta Cybernetica"
on "Weighted Automata: Theory and Applications" was issued. Following the
standard refereeing procedure, we were pleased to accept the present two papers
for this special issue.

Manfred Droste (Leipzig) October 2011
Heiko Vogler (Dresden)

209

Acta Cybernetica 20 (2011) 211-221.

The Support of a Recognizable
Zero-sum Free. Commutative

/

Recognizable"''

Daniel Kirsten*

Abstract

We show that the support of a recognizable series over a zero-sum free,
commutative semiring is a recognizable language. We also give a sufficient
and necessary condition for the existence of an effective transformation of a
weighted automaton recognizing a series S over a zero-sum free, commutative
semiring into an automaton recognizing the support of S.

Keywords: weighted automata, recognizable series, support

1 Introduction
One stream in the rich theory of formal power series deals with connections to
formal languages. To each formal power series, one associates a certain language,
called the support, which consists of all words which are not mapped to zero.

It is well-known that the support of a recognizable series is not necessarily a
recognizable language. However, for large classes of semirings, it is known that
the support of a recognizable series is always recognizable, see [3, 5, 9] for recent
overviews. These classes include all positive semirings (semirings which are both
zero-divisor free and zero-sum free), all finite, and more generally, all locally finite
semirings.

W A N G introduced the notion of a quasi-positive semiring (that is, for every
k € K \ {0}, i e K, n € N, we have kn + i ^ 0), and showed that the support of a
recognizable series over a commutative, quasi-positive semiring is always a recog-
nizable language [11]. Every quasi-positive semiring is zero-sum free by definition.

In 2 0 0 8 , M A N F R E D DROSTE raised the question whether W A N G ' S result holds
for commutative, zero-sum-free semirings. In the present paper, we answer this

*The results were achieved in 2008 when the author was employed in MANFRED DROSTE'S
group at Leipzig University. An extended abstract was presented at DLT'09 [6].

1 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, D-10099 Berlin,
Germany

Series over a
Semiring is

212 Daniel Kirsten

question positively (see Theorem 3 . 1 (1) , below). The proof relies on DICKSON'S
lemma.

Further, we investigate under which assumptions we can effectively transform
a weighted automaton recognizing a series S over a zero-sum free, commutative
semiring into an automaton recognizing the support of S. For this, we introduce
the zero generation problem (see Sect. 3) and show that the decidability of the
zero generation problem is a sufficient and necessary condition for the existence of
such an effective transformation. Surprisingly, the computability of the semiring
operations is not related to the effectivity of the transformation.

The paper is organized as follows: in Sect. 2, we deal with some preliminaries.
In Sect. 3, we present known results and the contribution of the paper. To keep
Sect. 3 as a succinct survey, the main proofs are shifted to Sect. 4.

2 Preliminaries

2.1 Notations

Let N = {0 ,1 , . . . } . .
Let n G N. Given a tuple x G N", we denote by Xi the z-th component of x

for i G {1 , . . . ,n}. Given two tuples x,y G Nn, we write x < y if Xi < yt for every
i G { 1 , . . . , n}. If x < y and Xi < yi for some i G { 1 , . . . , n} , then we write x < y.

Given a subset M C Nn, we denote by M i n (M) the set of all minimal tuples of
M, that is, Min(M) = {x G M | for every y G M.y < x implies x = y}.

The following lemma is well-known in combinatorics, order theor}', and commu-
tative algebra. We include its proof for the convenience of the reader.

Lemma 2.1 (DICKSON'S lemma). For every M C N". the set Min(M) is finite.

Proof For n = 1, the claim is obvious.
Choose some n G N, and assume by induction that the claim holds for all subsets

of N™. We show the claim for an arbitrary M C N"+ 1 .
For z G N, let

Mz := {(xl,....xn)\(x1.,...,xn.,z) G Min(M)}.

Clearly, Min(Mz) = Mz, and hence, Mz is finite by induction. Let

MN := |J Mz.
2gN

By induction Min(M^) is finite, and thus, there is some z ' e N such that

Mm(MN) C |J Mz.
z<z'

Now, we show the claim by showing that

Min(M) Ç [j Mz x { z } , (1)

The Support of a Recognizable Series 213

i.e., Min(M) is included in a finite union of finite sets. The notation Mz x {z}
means to adjoin z as (n + l)-st component to each n-tuple in Mz.

Choose any x G Min(M). Clearly, (x\,... ,xn) G MXn+l C Mn- There is some
y G Min(Mpi) satisfying y < (x\ ..., xn). There is some z < z' such that y G Mz. If
z < xn+\ then (yi • •. ,yn,z) < x contradicts x € Min(M). Hence, xn+\ < z < z'.
Consequently, x belongs to the right hand side of (1). •

Let S be a finite alphabet. We denote the empty word by e. We denote by |u»|
the length of a word w € E*. For every w G E*, a G E, let |io|a be the number of
occurrences of the letter a in w.

A monoid (M, •, 1) consists of a set M together with a binary associative oper-
ation • and an identity 1.

We call a monoid (M, •, 1) commutative if kt = ik for every k, t G M.
We call 0 G M a zero, if kO = Ok = 0 for every k e M.
Given a monoid M, m G N, and s i , . . . , sm € M, we denote by (s i , . . . , sm) the

submonoid of M generated by s i , . . . , s m , that is, the smallest monoid M' C M
satisfying s i , . . . , sm £ M'.

Given a monoid M, an s G M, and a submonoid M' C M, we denote by s • M'
the set {s • s' \ s' G M'}.

A semiring (K, +, 0,1) consists of a set K together with two binary operations
+ and • such that (K, +,0) is a commutative monoid, (K, •, 1) is a monoid with zero
0, and (K, •, 1) distributes over (K, + ,0).

We call a semiring (K, +, •, 0,1) commutative if (K, -, 1) is a commutative monoid.
We call K zero-divisor free if for every k, I G K \ {0}, we have M ^ 0. We call K
zero-sum free if for every k,i G IK \ {0}, we have k + t ^ 0. Semirings which are
both zero-divisor free and zero-sum free are called positive semirings.

We call K locally finite if for every finite subset C C K , there is a finite semiring
K' satisfying C C K ' C I .

2.2 Weighted Finite Automata

We recall some notions on (weighted) automata and recommend [1, 2, 4, 7, 8, 10]
for overviews.

Let (K, + , •, 0,1) be a semiring. Mappings from £* to IK are often called series.
We denote the class of all series from XT to K by K((E*)).

A weighted finite automaton (for short WFA) over IK is a tuple [Q, E, A, o], where

• Q is a non-empty, finite set of states,

• E is a finite subset of Q x E x IK x Q, and

• X,o : Q K.

We call the tuples in E transitions. For every q G Q, we call A(q) resp. g(q)
the initial weight resp. accepting weight of q. We call states q G Q which satisfy
A(q) ^ 0 (resp. g(q) ^ 0) initial (resp. accepting) states.

214 Daniel Kirsten

Let A = [Q, E, A, o] be a WFA. Let n > 1. A path tt of length n is a sequence

(qo,ai,Si,qi)(qi, ao-.Si.qo) ... (qn-i,an. sn,q„)

of transitions in E. We call the word a\...an the label of n. We define a(w) =
M<7o) ' si ' s2 s„ • o(qn), the weight of n. For every state q £ Q, we assume
some path from q to q which is labeled with e and weighted with 1.

For every p,q £ Q and every w; £ E*. we denote by p q the set of all paths
with label w which start at p and end at q. Then, A defines a series |.A| : E* —>• K
by

I - 4 M = £
PIQ€Q, TT £ p -S+ q

for every w G E*.
We call a series 5 : E* —> K recognizable if S = for some WFA A.
We define the support of a series S : E* —> K as

supp(S) = {ts e E ' | S(w) ± 0}.

An (unweighted) automaton is a tuple A — [Q , E , I , F] , where Q is a finite set,
E C Q x E x Q, I C Q, and F C Q.

Let A = [Q,E, A, o] be an automaton. Let n > 1. A path n of length n is a
sequence

(qo,ai,qi) (91,02,92) . . . (qn-i,an,qn)

of transitions in E. As above, we call a\.. .an the label of TT. We call 7r successful,
if qo G I and qn £ F. We denote by L(A) the language of A, that is, the language
consisting of all labels of successful paths.

3 Overview, Main Results, and Discussion
The supports of recognizable series are well-studied objects, see [3, 9] for recent
overviews.

It is well known that there are recognizable series S such that supp(5) is not a
recognizable language.

Example 3.1. A folklore example is the series S over the semiring of the integers
(Z , + , - , 0 , l) defined by S(w) = 2 H ° 3 H ' - a M ^ H 6 . For every w £ E*, we have
S(w) = 0 iff \w\a = \w\b. Hence,

Supp (S) = { «) € S * | M a ^ M b }

which is not a recognizable language. Nevertheless, 5 is a recognizable series: just
consider the WFA given below.

a, 2 6,3 a,3 b, 2

The Support of a Recognizable Series 215

However, for large classes of semirings, the support of a recognizable series is
always a recognizable language. It is well known that these classes include all
positive semirings, all finite and moreover even all locally finite semirings [3, 5, 9].

Moreover, W A N G [11] defined the notion of a quasi-positive semiring: a semiring
K is called quasi-positive if for every k G K \ {0}, £ G K, n G N, we have kn + t /
0. Every positive semiring is quasi-positive, and every quasi-positive semiring is
zero-sum free. There are quasi-positive semirings which are not positive. Just let
HC = N x N equipped with componentwise addition and multiplication of integers.

Moreover, there are zero-sum free semirings which are not quasi-positive.

Example 3.2. Let IK be the semiring of (2 x 2)-matrices over the non-negative
rational numbers (Q+, + ,- ,0,1) and let

;) - <-($
Clearly, k2 + £ yields the zero matrix, and hence, IK is not quasi-positive but zero-
sum-free.

In the context of our main result, it raises the question for a commutative, zero-
sum free semiring which is not quasi-positive. Indeed,1 let IK' be the subset of IK
consisting of all matrices of the form

(o l) f o r

It is easy to verify that IK' is a commutative subsemiring of K. It is zero-sum-free,
and since k, I G IK', it is not quasi-positive.

W A N G showed that for every recognizable series S over a commutative, quasi-
positive semiring, supp(S) is recognizable [11]. In 2 0 0 8 , M A N F R E D D R O S T E raised
the question whether W A N G ' S result holds for commutative, zero-sum-free semirings
in a lecture script on weighted automata theory. In the present paper, we answer
this question positively (see Theorem 3 . 1 (1) , below). Our approach is quite different
from W A N G ' S paper [11], since W A N G was mainly interested in other but related
questions and achieved his result as a byproduct.

One key observation is that for zero-sum-free semirings, a word w belongs to
the support of the series of some WFA iff the WFA admits at least one path for
w with a non-zero weight. In contrast to Example 3.1, it cannot happen that the
weights of all paths for w are summarized to 0.

Further, we examine under which assumptions we can effectively construct an
automaton recognizing supp(S) from a WFA recognizing S. Surprisingly, the com-
putability of + or • is not related to the effectivity of the construction. To achieve an
effective construction, we introduce the zero generation problem (for short ZGP):

Let M be a monoid with a zero. An instance of the ZGP consists of two integers
m, m! G N and s i , . . . , sm , s [, s'm, G M. The ZGP means to decide whether

1 T h e semiring K' was provided by an anonymous referee.

216 Daniel Kirsten

0 G 5i • • • s m • (s ' j , . . . , s'm,), i.e.. whether there exists some s G (s i , . . . , s'm,) such
that the product si • • • sm • s yields zero. The presentation of the ZGP seems to be
circumstantial, but we want to avoid using the computability of the product in M.

Note that the integers m and ml in the ZGP are allowed to be 0. Consequently,
the problem to decide whether for given m G N and s i , . . . , s m G M, we have
Sj • • • s m = 0 is a particular case of the ZGP.

We can show that the decidability of the ZGP of the monoid (K, •, 1) is a suffi-
cient and necessary condition for the effectivity of the construction of the automaton
recognizing the support of some recognizable series over a semiring K.

To sum up:

Theorem 3.1. Let E be an alphabet and (K, + , •, 0,1) be a zero-sum free, commu-
tative semiring.

1. For every recognizable series S G K((£*))_. supp(S) is a recognizable language.

2. Assume |E| > 2. Given a WFA A over K. we can effectively construct an
automaton which recognizes supp(|./4|) iff (K, •, 1) has a decidable ZGP.

Clearly, the construction in (2) is also effective for |E| = 1. But if |E| = 1 we
cannot show that the decidability of the ZGP is a necessary condition.

Unfortunately, we cannot give any reasonable upper bound in the construction
in Theorem 3 . 1 (2) . Given a WFA A over a zero-sum free, commutative semiring K,
the number of states of an automaton recognizing supp(|.A|) does not only depend
on the number of states of A and the weights in A, but also it highly depends
on structural properties of the semiring K. The construction of the automaton
recognizing supp(j-4.|) in the proof of Theorem 3 . 1 (2) involves a certain bound which
is computed in a brute search using some algorithm for the ZGP. The existence of
this bound is guaranteed by DICKSON'S lemma (Lemma 2 . 1) .

4 The Main Proof
4.1 Dickson's Lemma and Computability
Throughout this section, let (M, •, 1) be a commutative monoid with a zero 0 and
let C = (ci,... ,cn) G M n for some n G N.

The homomorphism f Jj : (Nn, + , (0 , . . . ,0)) ->• (M, •, 1) defined by

for every x = G N™ plays a central role in the entire construction.
Let us remark that the commutativity of M is crucial for the fact that |J is a
homomorphism which will be of crucial importance, e.g., in the proof of Lemma 4.1,
below.

We are interested in the set of all x G N™ satisfying [5]] = 0, i.e., we are
interested in the set |0j]-1.

Given x G [0 j _ 1 and y G Nn satisfying x < y, we have y G [0J - 1 .

The Support of a Recognizable Series 217

By Lemma 2.1, the set Min(fO] is finite. We denote by dg(C) the degree of C
which is defined as the least non-negative integer such that Min([0]_1) is a subset
of { 0 , . . . , d g (C) } n .

Example 4.1. Let us consider a commutative monoid which admits large degrees.
Let M : = { g G Q | 0 < q < l } . We define an operation * on M by setting
p*q min{p-f q, 1} for p,q G M. Clearly, (M,*,0) is a commutative monoid with
zero 1.

Now, let n G N and Cj € M for i G { 1 , . . . , n}. If c* ^ 0, then

(0 , . . . , 0 , [I] , 0 , . . . , 0) G Min[l] - l

ith position

where

dg(C) > Î
denotes the least integer larger than or equal to -r-. Consequently,

Given x G N™ and 2 G N, we denote by _x\z the tuple defined by ([x j z) i =
min{xj, z} for every i G { 1 , . . . , n).

Lemma 4.1. For every x G N", we have [xj = 0 iff [|xJdg(C)] = 0.

Proof. We have "<=", since x > |iJdg(C)-
We show Since x G |0]_1, there is a y G Min([0]]_1) satisfying y < x.

Let i G { l , . . . , n } . If Xi < dg(C), then yt < xt = ([xjd g(c))i- If > dg(C), then
Ui < dg(C) = (L®Jdg(C))i by the definitions of dg(C) and [¿Jdg(c)- Consequently,
V < [^Jdg(C)5 and hence, L^Jdg(C) € I0]"1. •

For the effectivity of our construction of the support automaton, it is very
important to compute dg(C) from a given tuple C.

Lemma 4.2. If the ZGP is decidable in M, then we can effectively compute dg(C)
from C.

Proof. It suffices to show that for given n G N, C = (c\,..., cn) G M n , and z G N,
we can decide whether z < dg(C). The algorithm can then check for increasing
z £ { 0 , 1 , 2 , . . . } whether z < dg(C), and put out the least z which does not satisfy
* < dg(C).

So assume n, C, 2 as above. We want to show that 2 < dg(C) iff there exists a
tuple x G { 0 , . . . , z}n which satisfies the following properties:

1. We have Xi = 2 for some i G { 1 , . . . , n}.

2. We have [x] ^ 0 . Given C and x, it is decidable whether [5J ^ 0 by the
decidability of the ZGP.

3. There is some y G N™ such that x = [_y\z and [yj = 0 .

218 Daniel Kirsten

Given C and x, this condition is decidable as follows: Let m = Xi. Let
sj....,sm be the list over M constructed by putting xi times c\, xo times C2,
. . . . and xn times cn. We have si • • • s m = f i j .
Let m' > 1 and s ' j , . . . , s'm, G M be a list of the Cj's for the i G { 1 , . . . , n}
satisfying Xi = z.

Clearly, there exists some y G Nn such that x = \ij\z and = 0 iff 0 G
Sl • • • sm ' (s i) • • •) sm')- T h e latter condition is decidable.

Assume z < dg(C). Choose a y £ Min([0j_ 1) such that at least one entry of
y equals dg(C). Let x = [y]z- Obviously, x satisfies (1) and (3). Since x < y, we
have x fOj]-1, and hence, x satisfies (2).

Assume z > dg(C). Let e N" such that (1) and (3) are satisfied. From
Lemma 4.1, it follows |[yJdg(C)l = 0- Since dg(C) < z, we have \jj\dg{C) < _y\z =
x, and hence, [i j = 0, i.e., x does not satisfy (2).

An algorithm to decide whether 2 < dg(C) can check by brute force whether
there is an x G { 0 , . . . , z}n which satisfies (1), (2), and (3). •

4.2 The Construction of a Support Automaton
Proof of Theorem 3.1. In the first part of the proof we prove (1) and "<=" in (2).

Let S be the series computed by a WFA A — [Q, E, A, p].
Let C be a sequence (without repetition) of all weights occurring in A. That

is, let n G N and C = (c i , . . . , c„) G K n such that:

• For every i G { l , . . . , n } , there is a transition (p,a,Ci,q) G E or there is a
q G Q satisfying A(q) = Ci or o(q) = Ci.

• For every (p, a, s, q) G E, there is exactly one i G { 1 , . . . , n} satisfying Cj = s.

• For every q G Q. there is exactly one i G { 1 , . . . , n} satisfying A(q) = c,, and
there is exactly one i G { 1 , . . . , n} satisfying o(q) = c\.

We construct an (unweighted) automaton As- We will use dg(C) in a crucial
way. If the ZGP is decidable, we can effectively compute dg(C) by Lemma 4.2 and
then, our construction is effective.

The state set of As is Qs = { 0 , . . . ,dg(C)}n x Q.
A state (x,q) G Qs is an initial state iff there exists some i G { 1 , . . . , n } such

that

• Xi — 1, A(q) = Ci, and

• for every j G { 1 , n}, j / i, we have Xj = 0.

Consequently, p] = c, = A(g). We denote the set of initial states by I s .
We could also define the set of initial states by I's = {(.T,q) G Qs \ [xj = A(§)}

which is a superset of Is. One can easily construct examples for which./s C I's. Just
consider the case that for some (x, q) G Qs, we have x\ = x-i = 1, = • • • = xn = 0

The Support of a Recognizable Series 219

and C\C2 = A(q). Our construction below remains correct even if we use I'a instead
of Is. However, the definition of I's involves the decision problem [£] = X(q) which
we want to avoid to get an effective construction.

We define a partial mapping © : { 0 , . . . , dg(C)}n x K --+ { 0 , . . . , dg(C)}" . The
key idea behind © is that given m G N. s i , . . . , s m G K, the operation

(• • • ((5 © s i) f f i s 2) - - - © S m)

counts (up to dg(C)) the number of occurrences of the Cj's in the sequence s i , . . . , sm.
Let x G {0 , . . . ,dg(C)}™ and s G K. We define x © s iff there is some i G

{ 1 , . . . , n} satisfying Ci = s. Let y G { 0 , . . . , dg(C)}n be defined by

We define x © s = LyJdg(C)-
A state (x, q) G Qs is an accepting state iff [Sffigi(g)]] ^ 0. Using the decidability

of the ZGP, we can decide whether (x, q) is an accepting state. We denote the set
of accepting states by Fs.

Let (x ,p) , (y ,q) G Qa and a G S. The triple ((x,p), a, (y, q)) is a transition in
Ea iff there exists a transition (p, a, s,q) G E satisfying x © s = y. We say that
((x,p),a, (y, q)) stems from (p, a, s, q) G E.

Let As = [Qs, ES:IS, Fs}. We want to show L(AS) = supp(S).
Let w G L(AS). There are (xo,go) G Is, (z ^ , q ^ i) G Fs, and some path

7r G (x0,qo) ^ (x\w\,1\w\) satisfying © 0(9^1)] ^ 0.
We denote the states of 7r by (xo,qo), {xi,qi), • • •, (i|to|i 9|iu|)-
For j G {l,. . . ,|to|}, let tj G E such that the j-th transition of n stems from tj.

Clearly, ti • • • t\w\ G qo q\w\ is a path in A.
For every j G { 1 , . . . , |w|}, let Sj G K be the weight of tj. For j G { 0 , . . . ,

let j/j G N" be the tuple such that for every i G {1 , . . . , n} , y^i is the number of
occurrences of Cj among X(qo), si, • • •, Sj. In particular yo — xq.

Let y G Nn such that for every i G { 1 , . . . , n). yi is the number of occurrences of
Ci among A(go), si>• • •, , Clearly, [yj is the weight of the path t\ • • • t\w\.

By a straightforward inductive argument, we can show that for every j G
{ 0 , . . . , |w|}, Xj = %Jdg(c), and x\w\ © Q{q\w\) = |j/jdg(C)-

Since (ii^i^i^i) G Fs, we have [z^i ©e(<7|w|)] ^ 0, and hence, [U/Jdg(C)] + 0.
By Lemma 4.1, we have [y| 0, i.e., the weight of the path t\ • • -t\w\ is different
from 0. Since K is zero-sum-free, we have w G supp(|.4|).

Thus, we have shown L(AS) Q supp(|.A|). To show L(AS) 2 supp(|.4|), we can
proceed in the same way. We assume some w G supp(j.4|), some accepting path
t\... t\w\ with non-zero weight for w in A. For j G { 1 , . . . , |u>|}, we denote tj =
(qj-1,aj,Sj,qj). Let x0 = (0 , . . . ,0)®A(g0)- For j G { 1 , . . . , |w;|}, let % = %_ i©S j .
We can argue as above to show that the transitions ((xi -\,qi - i) ,a j , (Xi,Qi)) form
an accepting path for w in As• To sum up, L(AS) — supp(|*4|).

220 Daniel Kirsten

We have shown (1) and in (2). It remains to show "=>" in (2). Assume an
instance of the ZGP, i.e.. let m . m ' e N and s i , . . . , s m , s ' l 5 s'm, G K.

Let wi,..., wm' G E* be mutually distinct, non-empty words of equal length.2

We sketch the construction of a WFA A. It has just one initial and one accepting
state. The initial and accepting weights are 1. Let a be some letter from E. For
now, there is exactly one path from the initial to the accepting state. This path is
labeled with am . The transition weights along this path are S i , . . . , sm. For every
j G {1 , . . . , to'}, we add a loop at the accepting state which is labeled with Wj. The
first transition of the loop is weighted with s'j, the remaining transitions of the loop
are weighted with 1.

For every n and i\,..., in G {1 , . . . , to'}, we have

|A\{amwu ...win) = si • • • sm • s'u •••s'in.

Moreover, we have supp(|.4|) = a m { u) 1 : . . . ,wm'Y iff 0 ^ si • • • sm • (s'j • • • s'm,).
By the assumption of "=>" in (2), we can effectively construct an automaton As

which recognizes supp(|.4|). By checking L{AS) = am{wi,..., wm<}*, we can check
whether supp(|.4|) = am{wi,... ,ww}*, i.e., whether 0 ^ si • • • s m • (si • • • s'm,). •

Acknowledgements
The author thanks the anonymous reviewers of the present paper and its extended
abstract at DLT'09 [6]. The author greatly acknowledges the example of a commu-
tative, zero-sum free semiring which is not quasi-positive provided by an anonymous
referee shown in Example 3.2.

References
[1] Berstel, J. Transductions and Context-Free Languages. B. G. Teubner,

Stuttgart, 1979.

[2] Berstel, J. and Reutenauer, C. Rational Series and Their Languages, volume 12
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin Heidelberg New York, 1984.

[3] Berstel, J. and Reutenauer, C. Noncommutative Rational Series With Ap-
plications, volume 137 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2010.

[4] Droste, M., Kuich, W., and Vogier, H., editors. Handbook of Weighted Au-
tomata. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2009.

2 A t this point, we need |£| > 1.

The Support of a Recognizable Series 221

{5] Kirsten, D. An algebraic characterization of semirings for which the support
of every recognizable series is recognizable. In Kralovic, R. and Niwiriski, D.,
editors, MFCS'09 Proceedings, volume 5734 of LNCS, pages 489-500. Springer-
Verlag, Berlin, 2009.

[6] Kirsten, D. The support of a recognizable series over a zero-sum free, com-
mutative semiring is recognizable. In Diekert, V. and Nowotka, D., editors,
DLT'09 Proceedings, volume 5583 of LNCS, pages 326-333. Springer-Verlag,
Berlin, 2009.

[7] Kuich, W. Semirings and formal power series. In Rozenberg, G. and Salo-
maa, A., editors, Handbook of Formal Languages. Vol. 1. Word, Language,
Grammar, pages 609-677. Springer-Verlag, Berlin, 1997.

[8] Reutenauer, C. A survey on noncommutative rational series. DIM ACS Series
in Discrete Mathematics and Theoretical Computer Science, 24:159-169,1996.

[9] Sakarovitch, J. Rational and recognisable power series. Chapter 4 in [4], 2009.

[10] Salomaa, A. and Soittola, M. Automata-Theoretic Aspects of Formal Power
Series. Texts and Monographs on Computer Science. Springer-Verlag, Berlin
Heidelberg New York, 1978.

[11] Wang, H. On rational series and rational languages. Theoretical Computer
Science, 205(l-2):329-336, 1998.

Acta Cybernetica 20 (2011) 223-250.

Survey:
Weighted Extended Top-down Tree Transducers

Part I — Basics and Expressive Power

Andreas Maletti*

Abstract
Weighted extended top-down tree transducers (transducteurs généralisés

descendants [Arnold, Dauchet: Bi-transductions de forêts. ICALP'76. Edin-
burgh University Press. 1976]) received renewed interest in the field of Natural
Language Processing, where they are used in syntax-based machine trans-
lation. This survey presents the foundations for a theoretical analysis of
weighted extended top-down tree transducers. In particular, it discusses es-'
sentially complete semirings, which are a novel concept that can be used to
lift incomparability results from the unweighted case to the weighted case
even in the presence of infinite sums. In addition, several equivalent ways
to define weighted extended top-down tree transducers are presented and the
individual benefits of each presentation is shown on a small result.

Keywords: tree transducer, weighted tree transducer, expressive power

1 Introduction
Tree automata theory [24, 25] and computational linguistics [42, 30] were tightly
intertwined at their inception. In particular, top-down tree transducers were de-
vised by THATCHER [47] and.ROUNDS [44] for applications in natural language
processing (NLP). However, this tight connection was lost early on and the two
fields went separate ways. NLP research focussed on the algorithmic and scaling
issues, whereas the tree automata theory research focussed on refining and extend-
ing models of automata and transducers. In particular, the following devices were
investigated:

• bottom-up tree transducers [48] and attributed tree transducers [18],
• macro tree transducers [7, 15] and modular tree transducers [16],

* Universität Rovira i Virgili, Departament de Filologies Romániques, Avinguda Catalunya 35,
43002 Tarragona, Spain. E-mail: andreas.malettiSurv.cat. The author now is at: Universität
Stuttgart, Institut for Natural Language Processing, Azenbergstraße 12, 70174 Stuttgart, Ger-
many

224 Andreas Ma let ti

• tree bimorphisms [3], and various models with synchronization (e.g.. [43]).
Due to the technical difficulties and algorithmic and scaling complexities encoun-
tered with tree automata, computational linguists had reverted to finite-state string
transducers [29], which are simple to understand, easy to train even on large
amounts of data, and have nice theoretical properties. However, finite-state string
transducers are not expressive enough for many applications in natural language
processing [32]. This realization recently sparked a revival of tree automata in NLP
research.

SHIEBER [46] and others have argued that the classical top-down tree transduc-
ers [47, 44] are generally inadequate for linguistic tasks without the use of copying
and deletion. In general, copying causes many operations to become intractable or
impossible, which severely limits even the use of copying top-down tree transducers.

A promising alternative is the extended top-down tree transducer, which was
originally conceived by [44] and has been further pursued by [8, 2, 27, 33, 41]. In
this survey we provide an in-depth review of some of the results for weighted ex-
tended top-down tree transducers. In fact, we assume that the reader has some
fundamental understanding of unweighted tree automata theory. The goal is to
present the common definitions and provide an overview of the various techniques
used in the weighted setting. In this aspect this survey differs significantly from [41],
which provides a detailed explanation of unweighted extended top-down tree trans-
ducers, their expressive power, and their essential features. In addition, [23] surveys
results on weighted top-down tree transducers. Contrary to traditional research pa-
pers, we do not aim for the most general results here, but rather try to keep the
material accessible.

In this survey, we introduce the theoretical foundations and showcase a general
method that allows to lift inequalities from the unweighted case to the weighted
setting. This is prepared in the first section with a detailed review of semirings and
some required properties. Then we introduce the basic notions and notations for
handling trees before we finally introduce the main model, the weighted extended
top-down tree transducer, in Section 3. Our reference semantics is based on rewrit-
ing, but we provide an alternative semantics that corresponds to the initial-algebra
semantics [23] of weighted top-down tree transducers. In addition, we relate the
linear and nondeleting version of weighted extended top-down tree transducers to
linear and complete bimorphisms [3]. The benefits of those additional representa-
tions and semantics are illustrated on typical constructions in Section 4. Moreover,
in Section 4 we demonstrate a general method to lift known results from the un-
weighted setting to the weighted setting. We use a part of the HASSE diagram
of [41] for classes of tree transformations computed by unweighted extended top-
down tree transducers and show how to translate it to the weighted setting using
the semiring basics introduced in Section 2.

Overall, we provide proof details whenever instructive, but it is generally safe to
skip them. However, the main purpose of this survey is to showcase the techniques,
so the proofs generally contain important information. Moreover, we provide ex-
amples for, some-interesting concepts and constructions. We refer to the original
research papers for the details and the most general forms of the statements re-

Weighted Extended Top-down Tree Transducers 225

produced or reported here. In addition, we refer to [23] for a survey of weighted
top-down tree transducers and to the forth-coming paper [21], which discusses an
even more general weighted model and contains some of the results reported here.

2 The Basics
In this section, we first recall the definition and cover some basic properties of our
weight structures: semirings [28, 26]. Recently, more general weight structures such
as bi-monoids have been proposed [10] for weighted automata and transducers on
strings and trees, but we will focus exclusively on semirings in this survey. To keep
the presentation self-contained, we try to present proof details whenever possible.

2.1 Semirings
Let •: A2 A be a binary operation on a set A, which we write using juxtaposi-
tion (i.e., ab stands for a • b). It is associative if (ab)c = a(bc) for every a,b,c £ A.
Moreover, the operation • is commutative if ab = ba for every a,b £ A. An el-
ement 1 £ A is a neutral element if la = a = al for every a £ A. Finally, an
element 0 G A is absorbing if a0 = 0 = 0a for every a £ A. In general, operations
that use "multiplicative" operation signs (like •, x , <g), e t c -) have precedence
over operations written using "additive" signs (like + , ©, etc.). Thus, ab + c
stands for (a • b) + c and stands for ^2 i e I (ai • ¿¿). As with • we often
drop multiplicative symbols altogether and write a product a ® b simply as the
juxtaposition ab. As usual, the product a - • • a containing n £ N factors a £ A is
abbreviated by an.

A semiring [28, 26] is an algebraic structure (A, + , - ,0,1) with two binary op-
erations + , •: A2 —» A and two constants 0,1 G A such that

• + and • are associative operations, of which + is also commutative,
• • distributes over + from both sides, which means that (a + b)c = ac +be and

a(b + c) = ab + ac for every a,b,c £ A,
• 0 and 1 are the neutral elements for + and •, respectively, and
• 0 is absorbing for •.

In other words, the semiring (A, + , •, 0,1) consists of the commutative (additive)
monoid (A, + , 0) and the (multiplicative) monoid (^4,-,1) such that • distributes
(both-sided) over finite sums ai• The absorption property

o o
a • 0 = a • ^ ^ ai = ^ ^ aai — 0

i=l i=1

corresponds to distributivity over the empty sum a, = 0. If • is also commuta-
tive, then the semiring is commutative. It is a ring if there exists an element — 1 G A
such that (—1) + 1 = 0 . By distributivity this yields that in a ring every element
a £ A has an additive inverse —a G A. A ring is a field if for every a £ A there ex-
ists a multiplicative inverse a - 1 G A such that a a - 1 = 1 = a~1a. Finally, given two

226 Andreas Ma let ti

semirings (A, + , •,0,1) and (5. © . © . 0 . 1) and a mapping h: A S, the mapping h
is a semiring homomorphism if h(0) = 0, h(1) = 1, h(a + b) = h(a) © h(b), and
h(a • b) = h(a) O h(b) for every a,b £ A. Consequently, a semiring homomorphism
is compatible with finite sums and products. For every mapping / : B —» A, we let
supp(/) = {6 6 B I f{b) Í 0}.

Commonly used semirings include
• the commutative BOOLEAN semiring ({ 0 , 1 } , m a x , m i n , 0 , 1) where 0 can be

understood as false and 1 as true,
• the commutative semiring of natural numbers (N ,+ , - , 0 ,1) with the usual

addition and multiplication,
• the tropical semiring (N U {oo} , min, +, oo, 0), which is also commutative,
• the commutative field (R, + , •, 0,1) of real numbers, and
• the (typically non-commutative) semiring (AQxQ, + , 0,1) of Q x Q-matrices

over a semiring (A + , •, 0,1) for every finite set Q where + and j. are the usual
operations of matrix addition and multiplication, respectively, 0 is the zero
matrix, and 1 is the unit matrix.

A semiring (S, ©, ©, 0 ,1) is a subsemiring of a semiring (A, + , •, 0,1) if 5 C A
and the identity mapping id: S —» A such that id(s) = s for every s £-S is a
semiring homomorphism. In other words, 0 = 0, 1 = 1, a © b — a + b, and
aQb = abior every a.b £ 5 , which states that the subsemiring shares the constants
0 and 1 and uses the same operations restricted to its (smaller) carrier set. Given
a set S C A, we denote by (S) the carrier set of the subsemiring generated by S;
i.e., the carrier set of the smallest subsemiring of (A, + , •, 0,1) that contains S. The
subsemiring (5, © , O , 0 , l) is finitely generated if there exists a finite set C C A
such that S = (C). Due to the distributivity law, every element a € (S) with
S C A can be presented as (r i j i i aij) with k> ni> • • •, nk and a¿j e S for
everj' 1 < i < k and 1 < j <rn. This representation as a sum of products will be
important later on.

Next, we discuss infinite sums in a semiring (A , " , 0 , 1) . Since we will only
encounter sums with countably many summands, we only define eountably complete
semirings [11, 36, 28, 26, 31]. Recall that a set / is countable if |/| < No where
Ko = |N| (i.e., if it has at most as many elements as the natural numbers). Moreover,
a partition of a set I is a set J of nonempty, pairwise disjoint subsets of I such
that their union is I. Formally, J is a partition of I if (i) 0 ^ J, (ii) J fi J' = 0 for
every J, J' & J with J ^ J', and (iii) I = \JJej J• Note that any partition of a
countable set is itself countable. An infinitar}' sum operation is a family (J2i)f
of mappings '• A1 —>• A for every countable index set I. We generally write

'nstead of /• The semiring (A, + , •, 0,1) together with the infinitary
sum operation ^ is countably complete if

(B) Yjie{j,j'} ai = + ai' for a11 J ^ j' and aó,ar e A,

(P) Hie iai = Hjej(J2ieJ a0 every countable index set I, partition J of I,
and element ai £ A with i £ I, and

(D) a (]T i 6 í a¿) = H i e i a a i and (Y , i & i a i) a = f o r e v e r y flÉ/1> count-
able index set I, and £ A with i £ I.

Weighted Extended Top-down Tree Transducers 227

The axioms (B), (P), and (D) are also called binary sum, partition, and distribu-
tivity axiom, respectively, and they guarantee that the usual laws of associativity,
commutativity and distributivity also hold for sums of countably many summands.
The literature often also lists the following two additional axioms (E) ai = 0
and (U) a i = aj• ^'ext w e show that they are valid in any countably com-
plete semiring, and we will use them freely after the proof. In addition, we present
another interesting known property [28, 26] of such semirings.

Proposition 1. If (A, +, -, 0,1) is countably complete with respect to then
• IZiei 0 = 0 for everV countable index set I.
• = ai for every 3 and aj ^ A. and
• a + b = 0 implies a = 0 = b for every a,b G A.

Proof. To illustrate the handling of infinite sums, we prove these statements for-
mally. For the third item, we present the proof of [26, Proposition 22.28]. First,
the distributivity axiom immediately yields

^ 0 = ^ 0 a i (=) 0 - ^ a i = 0
iei. iei içi

for every countable index set I and ai G A with i € I. This proves the first item
and Axiom (E), which is a special case of the first item. Next, let j be an arbitrary
element and aj G A. We prove the unary sum axiom (U) by adding the neutral
element 0 to a. In this way, we can form binary sums. Let j' be such that j' ^ j
and aji = 0: Then

£ * = (E " 0 + ° = l (5 >) + (£ *) = £ (5 »
ie{j} ¿e{j} i€{j} i£{j'} J£{{j},ti'}} »eJ

(P) (B) = > ai = aj + aj' = aj + 0 = aj

where we used the first item in the step marked f. For the last statement, let
a, b G A be such that a + b = 0. Consider the following two partitions of N:

J = {{2j,2j + l}\j€N}
J' = {{0}}U{{2j + 1,2j +2} |jGN} .

Moreover, for every i G N, let â = a if i is even and ai = b otherwise. Intuitively,
consider the sum The partition J always pairs a2j and o^j+i, which are
a and b, respectively. Thus, all subsums under this partition will be a + b = 0. The
partition J' is similar. It pairs a2j+i and a2j+2, which are b and a, respectively,
but it keeps ao = a separate. Thus, the subsum for {0} will be a and the remaining
subsums will be b + a = 0. Using the first item, we can then prove that X^eN = 0
using the partition J because all the subsums are 0, but we can also prove that
YlieNai = a u s ing the partition J'. Clearly, this proves that a = 0. Formally, let

•228 Andreas Maiefcfci

J" = J' \ { { 0 } } . Then

a = a+0(ui't (£ ai)+ E o = (E a 0 + E (6 + a)
ie{o} Jej" ie{0} Jej"

= , (E « .) + E (E « .) - (E « .) + E<.«= E (5 >)
¿€{0} JíJ" ieJ ¿6{0} ¿€N+ Je{{o},N+} ieJ

® E « s E (E *) í s E < ' ' + » > = E ° í ° .
ieN JeJ ieJ Jej JeJ

where we used the first item in the steps marked f. Clearly, this also yields that
b = 0 + b = a + b = 0. •

Now let Q be a finite set and (A - f , -,0,1) be a countably complete semiring
with respect to J2- Then the matrix semiring (A®*®, + , 0,1) is a (typically
non-commutative) semiring that is countably complete with respect to the usual
generalization of matrix addition to countable sums. Consequently, we can define a
Q x Q-matrix M* for every Q x Q-matrix M e AQxQ over A by M* = Mn-
Recall that M° = 1 and Mn+l — M Mn for every n e N. If we interpret M as
the incidence matrix of a weighted graph, then the entry M* q with p,q g Q equals
the sum of the weights of all paths leading from p to q where the weight of a path
is obtained by multiplying the weights of the edges. For example, in the tropical
semiring, M* q equals the smallest weight of path from p to q.

Proposition 2. Every ring (A, +, •, 0,1) with 0 / 1 á not countably complete with
respect to any

Proof. Suppose that it is countably complete with respect to some Y2- Since there
exists an element — 1 £ A such that (—1) + 1 = 0, we conclude by Proposition 1
that —1 = 0 = 1, which contradicts the assumption 0 ^ 1 . •

Finally, we consider semiring homomorphisms that preserve certain countably
infinite sums. Let {A, + , - ,0 ,1) be a countably complete semiring with respect
to Y2 a n (i (51, © , 0 , 0 , 1) be a countably complete semiring with respect to (£). In
addition, let h: A —» S be a semiring homomorphism and B C A. Then h is
B-complete if h(J2i^¡ai) = f° r e v e r Y countable index set I and every
a¿ G B with i G I. A semiring homomorphism is essentially complete [21] if it
is (S)-complcte for every finite set B C A. The traditional notion of a complete
semiring homomorphism [34, 17] requires that it is A-complete. In other words,
an essentially complete homomorphism preserves countable sums, of which the
summands all belong to a finitely-generated subsemiring, whereas the traditional
notion requires that all countable sums need to be preserved. The relaxed notion
of 'essential completeness' is typically sufficient for weighted finite-state devices
because their finitely many transitions carry only finitely many weights. Thus,
most weighted finite-state devices [36, 9] (whether over trees, strings, pictures,
etc.) compute in a finitely-generated subsemiring.

Weighted Extended Top-down Tree Transducers 229

We say that a semiring is proper if it is not a ring. For example, the B O O L E A N
semiring is proper. W A N G proved in [49, Theorem 2.1] and [50, Lemma 3.1] that
for every proper commutative semiring there exists a semiring homomorphism from
it to the B O O L E A N semiring. This important result essentially yields that weighted
devices over proper commutative semirings behave as the corresponding unweighted
(i.e., B O O L E A N weighted) devices. Here, we extend this result to include infinite
summation, which is present in some finite-state models [9]. However, we first recall
the original construction of the semiring homomorphism by [49, 50]. To this end,
we introduce some additional notions for a commutative semiring (A, + , 0,1). A
set C C A is a co-ideal if

• cc' £ C for all c, d £ C and
• a + c £ C for every a £ A and c£ C.

In other words, co-ideals are closed under multiplication of its elements and closed
under addition of one of its elements with any semiring element. Dually, an
ideal I C A is such that

• ai £ I for every a £ A and i £ I and
• i + i' € I for all i, i' £ I.

Note that if 0 £ C for a co-ideal C, then C = A. Now consider the smallest co-
ideal C({1 }) that contains 1. An easy exercise (using distributivity) shows that
C({1 }) = {1 + a | a £ A}. More generally, for every S C A, the smallest co-ideal
containing S is

C(S) = {si • • • sk + a | k £ N, s i , . . . , sk £ 5, a £ A} .

If (A , + , - , 0 , 1) is a ring, then 0 e C({1}) , and thus C ({ 1 }) = A. However, if it
is proper, then clearly 0 ^ C ({ 1 }) , and thus C ({ 1 }) ^ A. Now ZORN'S Lemma
guarantees that in the latter case there exists a maximal co-ideal C such that
C({1 }) C C C A \ {0}. The remaining elements A\C form an ideal that con-
tains 0. This is verified as follows. Let a £ A and i, i' £ A \ C. Since i,i' C there
exist c, c' e C, n, n' £ N, and b,b' £ A such that inc + b = 0 and (z ')nV + b' = 0
by maximality of C. Indeed, if such elements do not exist, then i or i' can be
added to C to induce an even larger, proper co-ideal C(C U { i }) or C(C U {¿'}).
We show that ai £ C and i + i' £ C, which proves that A \ C is an ideal. Since
(ai)nc + anb = an(inc + b) = 0, we have (ai)n C because c £ C. In fact,
if (ai)n £ C, then also (ai)nc £ C and (ai)nc + anb £ C, which contradicts
0 £ C because (ai)nc + anb = 0. Consequently, ai £ C because if ai £ C, then
(ai)n £ C for every n £ N. Similarly, (i + (i'))mcc' where m = n + n' can be
presented as a sum of elements of the form aj = P(i')m~:>cc' where j £ [TO]. Mind
that the same summand can occur multiple times in the sum. Let j > n. Then
P(i')m-icc' + bij-n(i')m-jc' = (inc + b)ij-n(i')m-jc/ = 0. Let bj = bij-n(i')m-jc'.
An analogous argument applies to the case j < n, which yields that m — j > n'.
Thus, for every summand aj there exists an element bj £ A such that aj + bj = 0,
which proves that also for (i + (i '))mcc', which is finite sum of summands aj, there
exists an element b" £ A such that (i + (i'))mcc'"+ b" = 0, which proves that
1 + i'iC.

230 Andreas Ma let ti

Now we can define the semiring homomorphism h by

h(a) = i 1 i f a £ C
I 0 otherwise

for every a £ A. Since C is a co-ideal and A \ C is an ideal, this mapping h is a
semiring homomorphism.

Theorem 1. For every countably complete semiring (A, +, - ,0,1) with respect to ^
there exists an essentially complete semiring homomorphism to the B O O L E A N semi-
ring. which is countably complete with respect to max.

Proof. We start with the semiring homomorphism h that we constructed above.
Recall that C C A \ {0} is maximal co-ideal with 1 £ C. It remains to prove that
h is essentially complete. Let I be an index set, S C A be finite, and â £ (5) for
every i £ I. We have to prove that

h^^a^ =max.h(ai) , (1)
¿6/ l G I

which yields two (mutually exclusive) cases:
• there exists i £ I such that h(ai) = 1 (i.e., Cj £ C) or
• h(ai) = 0 (i.e., a* £ I) for all i £ I.

In the former case, the right-hand side of (1) evaluates to 1. This yields that
we have to prove that J2ieia' e - Let j £ I be such that aj £ C. Then
H i e i a i = a i + Hiei\{j} ai using the axioms (P), (B), and (U). Since aj £ C, also
aj + J2iei\{j} ai £ C because C is a co-ideal, which proves that e C.

In the second case, the right-hand side of (1) evaluates to 0. Thus, we need to
prove that J2i£ia i ^ C. Since each aj is in (S), we can represent it as a (finite)
sum bij of products bij of elements of S as already remarked. Clearly, bij £ C
for every 1 < j < ni because otherwise a, € C. Consequently, we can write

iei iei j=i ie/'

for some index set I', and bi £ S \ C and a, £ A for every i £ / ' . The existence
of the factors bi £ C follows from the fact that at ^ C. The set B = {bi | i £ I'}
is finite because B C S. Let B = {e\...., en}. Since C is maximal, we know that
for each b £ B there exist-4 £ N, Cb £ C, and db £ A such that blbCb + db = 0.
Otherwise, the co-ideal C(Cu{6}) would still be different from A, which contradicts
the maximality of C. By Proposition 1, we know that be'jCh = 0 (and db = 0). Let
? = HbeB Zb a n d c = ribes cf>- T h e n

Z £
(J 2 a i) c = (E b ia ' i) n Cb = e i n • • • en"a"Cei • • • Ce„

i€l iei' b€B i&l"

Weighted Extended Top-down Tree Transducers 231

for some index set I", ¿n,...,£in £ N and a" € A for every i £ I" such that
^ij — F r o m the last expression it is clear that each summand contains a

factor bmcb = 0 for some b £ B and m > l\j. Thus, each summand is 0 and the sum
is 0 by Proposition 1, which proves that (Y^iei a i Y c = 0. However, since c € C,
we proved that Y ^ i e i c a n n o t be in C because it would yield 0 e C, which is a
contradiction. Consequently, J2ieiai which proves the statement.

Consequently, we proved that h is (S)-complete, and since 5 was chosen arbi-
trarily, we also proved that h is essentially complete. •

For the rest of this paper, let (̂ 4, + , - ,0 ,1) be an arbitrary nontrivial
(i.e., 0 / 1) commutative semiring.

2.2 Sets, relations, and trees

We denote the set of all nonnegative integers (including 0) by N. For every n £ N,
the subset {i £ N | 1 < i < n} is denoted by [nj. We fix the set X = { x i , x 2 , . . . } of
(formal) variables and let X n = {x, | i £ [n]} for every n £ N.

Now, let 5, T, and U be countable sets. A relation from S to T is a subset
of 5 x T. Let R C 5 x T and R' C T x U. The inverse relation of R, denoted
by .R -1, is {(i, s) | (s, t) £ i?} and the composition of R and R', denoted by R;R\ is
{(s,u) | e T: (s,t) £ R, (t,u) £ R'}. These notions extend to classes of relations
in the standard manner. A relation on S is a subset of 5 x 5 . For ever}' set L C. S
we denote by idi, the relation {(s, s) | s £ L}. The reflexive and transitive closure
of a relation R C 5 x 5 is denoted by R*.

Next, we extend these notions to the weighted setting. A weighted relation
from S to T is a mapping of p: S x T A. Let p: S x T A and p': TxU -» A.
The inverse relation of p, denoted by p - 1 , is such that p _ 1 (i , s) = p(s,t) for every
s £ S and t £ T, and the composition of p and p', denoted by p; p', is such that
(p; p')(s,u) = p(s,t)p'(t,u) for every s £ S and u £ U. Depending on the
set T and the weighted relations p and p', the sum in the definition of p\p' might be
infinite. If it is, then we typically assume that (̂ 4, + , •, 0,1) is countably complete
with respect to J2- discuss this issue in more detail later on. Again, these
notions extend to classes of weighted relations in the standard manner. A weighted
relation on S is a mapping p : S x S -) A . For every weighted set <p\ S —»• A, we
denote by idv the weighted relation such that id¥,(s, s) = ip(s) and idv(s, s') = 0
for every s,s' £ S such that s / s'. If <p(s) = 1 for every s £ 5, then we also just
write id instead of idv. Given that (A, +, •, 0,1) is countably complete with respect
to the reflexive and transitive closure of a weighted relation p: S x 5 —» A
is denoted by p* and is defined by p*(s,s') = SneN Pn(s>s') where p° = id and
pk+1 _ p . pk FOR e v e r y k £N. Note that all weighted notions over the B O O L E A N
semiring correspond to the unweighted notions via the mapping 'supp'. For ex-
ample, the weighted relation p: 5 x T {0,1} corresponds to the (unweighted)
relation supp(p).

The set of all finite sequences (words) over 5 is denoted by 5*, of which e denotes
the empty sequence (the empty word). The concatenation of the words v,w £ S*

232 Andreas Ma let ti

is denoted by v.w or simply by vw. The length of a word w £ S* (i.e.. the number
of occurrences of elements of S in w) is denoted by

An alphabet E is a nonempty and finite set. of which the elements are called
symbols. Next, we define trees using only alphabets. In contrast to many definitions
in the literature [12, 24, 25, 23], we do not assume a ranked alphabet, which means
that a symbol can have different numbers of children in a tree. This is only a
simplification because our automata model will still have only a finite number of
rules, which thus determine a maximal rank for each used symbol. Let Q be an
alphabet and L a countable set of leaf labels. For every set T, we let

The set Tb(L) of E-trees with leaf labels L is the smallest set T such that L Ç T and
a{t\,... ,tk) £ T for every k £ N, a £ S, and t\,..., tk £ T. We generally assume
that E fi L = 0, and thus we write a() simply as a for every a £ E. Given another
alphabet A and T Ç TA(L), we treat elements of T%(T) and Q(T) as particular
trees of TQIJY:UA(L). For every 7 £ E, we abbreviate the tree 7(7(- • • 7(£) • • •)) with
n symbols 7 on top of t £ Te(L) simply by 7™(i). Finally, we write T^ for Ïe (0) .
Note that T^(L) is countable and that the elements of L can only appear as leaves
in trees of T%(L).

The set pos(i) Ç N* of positions of a tree t £ 3E(L) is inductively defined by
pos(£) = {e } for every I £ L and

for every k £ N, a £ E, and ti,...,tk £ TS(L). Let t,t' £ T S (L) and w £ pos(i).
The label of t at position w is t(w), and the subtree of t that is rooted at w is t\w.
We can define these notions inductively as follows: £(e) = = t for every t £ L
and

where t = a(t\,..., ifc) for every k £ N, a £ E, and t\,..., tk £ T^{L). For every
set of labels S C E U L, we let pos s (i) = [w £ pos(i) | i(io) £ 5 } . For S = { s }
we abbreviate pos s (i) simply by poss(t). We say that s £ S occurs |poss(i)| times
in t. Finally, t{u]w denotes the tree that is obtained from t £ T^(L) by replacing
the subtree t\w at w by u £ T&(L).

The height ht(i) of t is max{|w) + 1 | w £ pos(i)}, and the size |£| of the
tree t is |i| = |pos(f)|. Recall the special set X of formal variables. We let
var(t) = {2 £ X | posx(i) ^ 0} for every t £ U X). The tree t is linear
(respectively, nondeleting) in V C X, if every x £ V occurs at most (respectively,
at least) once in t. Every t £ T^(V) that is linear and nondeleting in V is a
V-context of Tx{V). The set of all K-contexts of T 2 (V) is denoted by C^(V).
For every such context and x £ var(i), we identify the unique element of posx(i)
with posx(i). If t is linear and nondeleting in X*. for some k £ N and the vari-
ables occur in order (i.e., p o s ^ i) < posXj(t) in the usual lexicographic ordering

Q(T) = {q(t)\q&Q,teT} .

pos(cr(ii,.. - ,ifc)) = {e } U {iw I i £ [k],w £ pos(í¿)}

and

Weighted Extended Top-down Tree Transducers 233

a

5 7 /J a
/ l \

4 8 12 a

Figure 1: Graphical representation of the tree CT(5,7(4),<T(8, 12, a)).

for all 1 < i < j < k), then t is called normalized. For every V C X, a map-
ping 9: V —• Ts(L) is a substitution. The substitution 9 can be applied to a
tree t £ Ts(L U X), written tO, which yields the tree that is obtained by replacing
(in parallel) all occurrences of a variable x £ V by 6{x). Formally, x9 = 9(x) for
every x £ V, and a(ti,...,tk)8 = cr(ti9,... ,tk9) for every k £ N, a £ E, and
ti, • • •, tk 6 Js (L U X). To avoid explicitly defining a substitution 9: Xk — T ^ (L) ,
we sometimes write i [0 (x i) , . . . , 0(xfc)] for t9:

Example 1. Let E = {a , 7, a } . Then t = cr(5,7(4), a(8,12, a)) is a tree of T s(N).
Its graphical representation is displayed in Figure 1. Its set pos(t) of positions is
{£,1,2,2.1,3,3.1,3.2,3.3} and posa(t) = {e, 3}. The tree <r(xi,x3,x2,x2) is linear
and nondeleting in {x i ,x3} , but not linear in X 3 .

In this section, we will recall the main model of this survey: the weighted extended
top-down tree transducer [2, 3, 38, 40]. However, we first recall the corresponding
automaton model: the weighted tree automaton [6, 34, 17, 23]. A weighted tree
language (or tree series) is simply a weighted set of trees; i.e., a mapping cp: T^ A
for some alphabet E.

Definition 1. A weighted (bottom-up) tree automaton (wta) is a tuple (Q, E, 5, F)
such that

• Q is an alphabet of states,
• E is an alphabet of input symbols such that Q fi E = 0,
• 5: Q* x T, x Q ^ A is a transition weight mapping with finite supp(5), and
• F C Q is a set of final states.

The transition weight mapping S of the wta M = (Q, E, 5, F) is extended to a
mapping 5: Ts x Q • A as follows:

for every q £ Q, k £ N, o £ E, and ti,...,tk £ In the sequel, we will sim-
ply write 6 instead of 6. The weighted tree language <pu: Ts A recognized
by M is such that <pM{t) = for every t £ A weighted tree lan-
guage 1p: Ty, —> A is recognizable if there exists a wta M such that <pm = <P-

3 The Model

k
6{a(tu... ,tk),q) = £ '5(qi •• -qk,cr,q) •

Ql i=1

234 Andreas Ma let ti

The recognizable weighted tree languages are the natural generalization of the
recognizable tree languages [24, 25]. For the BOOLEAN semiring the two notions
coincide. An excellent introduction into the subject is presented in [23]. Here we
just present a quick example.

Example 2. Let us consider the artic semiring (N U {—oo}, max,+, —oo, 0) and
the wta (Q,S,<5,F) with

• Q = {z,h} and F = { / i} ,
• E = {<r, a } , and
• 6 returns —oo except in the following cases:

5(e,a,z) = 0 S(z,a,z)= 0 S(zz, a, z) = 0
S{e, a, h) = 1 6(h, a, h) = 1 5{zh, a,h) = l

5(hz, a, h) = 1 .

This wta rejects (i.e., assigns weight —oo to) all trees t that contain a symbol a
with at least two children [i.e., trees t that have a position w G posa(i) such that
a.2 is also in pos(i)] or a symbol a with anything but 2 children. Moreover, it
assigns the height ht(t) to the remaining trees t.

Next, we recall the weighted extended top-down tree transducer [8, 2, 27, 33].
For simplicity, we will henceforth just call them "extended tree transducer" (xtt).
We essentially follow the definitions of [38, 41], in which the corresponding un-
weighted device is discussed in detail. We will lift the results obtained in [38, 41] to
the weighted setting either directly or using the semiring homomorphism introduced
in Section 2. We start with the definition of the general device.

Definition 2. A (weighted) extended (top-down) tree transducer (xtt) is a tuple
M = (Q, E, Д, R) where

• Q is an alphabet of states,
• E and A are alphabets of input and output symbols such that Qf i (EuA) = 0,
• I С (J is a set of initial states, and
• R: Q(T^(X)) x ТД(<5(Х)) —> A assigns rule weights such that supp(i?) is

finite, I is linear in X and var(r) С var(I) for every (l ,r) 6 supp(ii).
If for every (l,r) G supp(i?) there exist к G N, q £ Q: and a G E such that
I = q(cr(xi,... ,х^)), then M is a top-down tree transducer [35. Ц].

In the sequel, we often write I - » r G supp(i?) instead of (l ,r) G supp(i?), and
we write I A r G R instead of R(l,r) = a. The xtt M is linear (respectively, non-
deleting if г is linear (respectively, nondeleting) in var (I) for every I r G supp(ii).
A rule of the form q(x) —>• r with q G Q, x G X, and R G TA(Q(X)) is called input
c-rule, and any rule of the form I —>• q(x) with q G Q, x G X, and I G Q(T^(X)) is
called output e-rule. A rule that is both an input and an output e-rule is called a
pure e-rule. The set of all pure c-rules of supp(i?) is denoted by R£. Any remaining
rule contains at least one input or output symbol.

Weighted Extended Top-down Tree Transducers 235

Example 3 (see [41, Section 3]). Let us consider the field (M,+,- ,0 ,1) of real
numbers. The xtt (Q , E, A, {q}, R) with

Q = {q,qs,qv,QNp}
E = r U {saw, the, boy, door}
A = T U {ra'aa, atefl, albab}
T = {CONJ, S, VP, V, DT, NP, N}

and the following weighted rules of R

<?(xl)
.2

—>• <?s(xi) (Pi)

<7(xi)
.8 —• S(CONJ(wa-),qs(x1)) (P2)

g s (S(x 1 ,VP(x 2 ,x 3))) 1 —» S'(qv(x2), (?np (xi), (?np (x3)) (P3)

qv(V(saw)) .7 —• V (ra'aa) {PA)

qNP(NP(DT(the),N(boy))) .6 NP(N (atefl)) (p5)

qNP(NP(DT(the), N (door))) .5 NP(N (albab) (Pe)

is linear and nondeleting. In addition, it has 2 input e-rules, 1 output e-rule, and
1 pure e-rule. It is not a top-down tree transducer.

Our reference semantics of the xtt M = (Q, E, A, I, R) is given by rewriting [13,
22, 41]. Let e T&(Q(Tz)) and p = (I r) £ supp(.R). The leftmost redex in <
is the least position w £ posg(C) with respect to the lexicographic (total) ordering
on N*. In other words, the leftmost redex is the leftmost position in the tree that
is labeled with a state. We say that (rewrites to £ using p, denoted by £ =^PM if
there exist a minimal position w £ posQ(C) and a substitution 0: var(I) —> such
that C|tu = M and £ = C[r#]iu- Intuitively, we identify a rule, of which the left-hand
side matches the subtree at the leftmost, redex, and then we replace this subtree
by the corresponding instantiated right-hand side. The weighted relation TM (or
weighted tree transformation) computed by M is given by

TM(t,u) = £ R(Pl) • • • R(pk) (2)
ge/,/cGN,pi,...,pfcesupp(/i)

i W O - O

for every i e T j and u £ T&. Two xtt M and M' are equivalent if tm = I'M'-
The sum in (2) can be infinite. Let us present a short example before we dis-
cuss the finiteness of the sum of (2) in some detail. The semantics shows that
variables can be consistently renamed without effect. Consequently, for every
xtt M = (Q,E, A,I,R) there exists an equivalent xtt M' = (Q, E, A, I, R') such
that for every (l,r) £ supp(/?') there exists k £ N with var(/) = { x i , . . . , x^}. In
the following, we will silently assume this normal form.

236 Andreas Ma let ti

NP VP
/ \ / \

DT N V NP
I I I / \

the boy saw DT N
I I

the door

'M

CONJ

wa-
[and] V NP

ra aa
[saw] N

NP

N

albab atefl
[the boy] [the door]

Figure 2: English-to-Arabic translation on syntax trees.

Example 4. Let us reconsider the xtt M of Example 3, and let

t = S(NP(DT(i/ie),N(6oi/)),VP(V(saw),NP(DT(</ie),N(door)))) ,

which is depicted in Figure 2. Then

q(t) S(CONJ(roa-),9s(t))
^S(CONJ(« ;a -) ,S ' (gv(V(s a W)) ! 9 N p(NP(DT(i / i e) ,N(6o2 /))) ,

gNp(NP(DT(ifte),N(iioor)))))
=>5J S(CONJ(wa-), S'(V(ra'aa), qnp(NP(DT(i/ie),N(boy))),

<7Np(NP(DT(i/ie), N(door)))))
S(CONJ(toa-), S'(V(ra'aa), NP(N(atefl)), c?Np(NP(DT(£/ie), N(door)))))
S(CONJ(«;a-), S'(V(ra ;aa), NP(N(aie/?)), NP(N(a/6a6)))) = u .

Since this is the only derivation from q(t) to u, we conclude that

rM(t,u) = R(p2)R{pz)R(p4)R(p-0)R(p<>) = 0.8 • 1 • 0.7 • 0.6 • 0.5 = 0.168 .

For illustration, t and u are displayed in Figure 2.
Let us return to the sum in (2). Clearly, the length k of the derivation is at

most |i| -f if no pure e-rule is used (i.e., if pi £ R£ for all i e \k]). In this case, the
sum in (2) is finite, which yields that the semantics of any top-down tree transducer
is well-defined. In the presence of pure e-rules, we assume that (A, + , - , 0,1) is
countably complete with respect to Yl- Consequently, the sum is well-defined.
We will get rid of this case distinction after an important characterization result
that relates linear nondeleting xtt to another device that computes weighted tree
transformations: the weighted linear complete bimorphism.

A linear and complete tree homomorphism f-.T? —> is such that for every
fcG N and 7 £ f there exists fk(7) £ C s (X f c) such that

f(j(si,...,sk))=Mj)[f(s1),...,f(sk)} .

Weighted Extended Top-down Tree Transducers 237

If additionally fk{l) / for every k G N and 7 G T, then / is e-free.
Since wta are rather unsuitable for the next result, we use another model: the

weighted regular tree grammar [1]. Such a grammar is tuple G = (N , E, S, P) where
N is a finite set of nonterminals, S is an alphabet of input symbols, S Ç N is &
set of start symbols, and P: N x 2s (N) — A assigns weights to productions such
that supp(P) is finite. It computes in a step-wise fashion. Given £ G Ts(N), let
w G poSjv(£) be the leftmost position (i.e., the smallest of posJV(£) with respect to
the lexicographic ordering on N*). If there exists a production p — (n, s) G supp(P)
such that n = then we write £ Ç where Ç = In other words, the
nonterminal is replaced by the corresponding right-hand side of the production.
The semantics of G is then given by

VG(t)= J2 P(pi)---P(pk)
seS,fceN,pi,...,p fcesupp(P)

for every t G Ï£ . To avoid a discussion of infinite summations here, we assume that
s N for every (n, s) G supp(P), which guarantees that the above sum is finite. It
is known that such weighted regular tree grammars also compute the recognizable
weighted tree languages [1, Proposition 3.1j (also see [23] for a detailed account).
The following important result is well-known from the literature [35, 17].

Theorem 2 (see [35] and [17, Corollary 6.10]). For every linear, complete, and
s-free tree homomorphism f: Tr —» TE and every recognizable weighted tree lan-
guage ip: Tr • A. the weighted tree language tp: Ts —> A, which is given by
<f{t) = J2sçTr,f(s)=t ^(s),- is again recognizable.

Proof. Intuitively, we translate a symbol 7 G F with the help of / into a context,
which we then process in a single step charging the original weight. Now let us
construct a weighted regular tree grammar for <p. Formally, let M = (Q, F, 5, F) be
a wta recognizing ij). The weighted regular tree grammar G = (Q, E, F, P) is such
that

p(<l,s)= £ 5{qi---qk,J,q)

s=/fc(7)[9i. —.9fcl
for every q G Q and s G T^(Q). Clearly, s £ Q for every (q,s) G supp(P).
Moreover, it should be clear that tpc = <p, which proves that ip is recognizable. •

A weighted linear and complete bimorphism [3, 21] is a tuple B = (f,<p,g) such
that / : Tr —> Tj; and g : Tp TA are linear and complete tree homomorphisms
and tp : Tr —> A is recognizable. The weighted tree transformation computed by B
is

TB{t,u)= £ <p(s)
s€Tr

f{s)=t,g(s)=u

for every t G Tb and u G Ta-

238 Andreas Ma let ti

Theorem 3 (see [38. Theorem 4] and [21]). For every linear and nondeleting xtt
there exists an equivalent weighted linear and complete bimorphism and vice versa.

Proof. We have to prove both directions. Let B = (/, <p, g) be a weighted linear
and complete bimorphism with / : Tp —> and g: Tp —> 2A- Moreover, let
N = (Q,r , 8, F) be a wta such that tpfj = tp. Roughly speaking, we use the control
structure of Ar as control structure of the xtt M that we construct and use / and g
to determine the left- and right-hand sides of the rules, respectively. Formally,
we construct the linear nondeleting xtt M = (Q, E, A. F, R) as follows. For every
I £ Q(TS) and r G TA (Q(X)) , let

R(l,r) = £ ¿(<Zi •'•<??;.7,<?) •
(<7i-<7fc,7,g)esupp(<5)

¿=«(/fc(7))i'-=afe(7)[gi(x1),...,gfc(xt)]

Note that M is linear and nondeleting.
For the converse, let a linear and nondeleting xtt M = (Q, E, A, I, R) be given.

Without loss of generality, we suppose that for every I —» r £ supp(i?) there exists
k £ N with var(Z) = { x i , . . . , xt} . We construct / , g, and a wta N = (Q, T, 6,1)
with T = supp(i?) as follows. For every p £ supp(ii), we have p = q(l) rd with
I £ C^(Xk), r £ CA(X/o), and q,qi,...,qk £ Q where 6 is the substitution such
that Xj0 = qi(xi) for every i £ [A;]. For this rule p, let fk(p) = 1, 9k{p) — r, and
8(q\ • • • qkp, q) = R{p). The remaining values of fk{l) and gk(l) are irrelevant and
all unmentioned values of 8 are 0.

For both directions it remains to prove that TM = TB- TO this end, it can be
shown for every q £ Q, t £ T^, and u £ T& that

E R(pi)---R(pn)= £ 8(s,q) .
n€N,p1,...,p„esupp(fl) s£Tr

g(t)=^}-=>57u f(s)=t,g(s)=u

The proof of that statement is omitted here. The unweighted case is proved in [38,
Theorem 4] and the weighted case is discussed in [20, 21]. •

It follows immediately from Theorem 3 that linear and nondeleting xtt are
symmetric; i.e., for every linear and nondeleting xtt M = (Q, E. A. I, R) there
exists a linear and nondeleting xtt M' such that TM'{U, t) = TM(£,W) for every
i 6 TE and u £ T&. This property is not quite obvious from the definition of such
xtt, but can trivially be observed on the bimorphism representation.

Now, we will eliminate pure e-rules in the standard manner in order to avoid
infinite sums, which only occur in the semantics of xtt with pure £-rules. To this
end, let (A, +, •. 0,1) be countably complete with respect to and let

EP,q= £ R(l,r)

l(e)=p,r(e)=q

Weighted Extended Top-down Tree Transducers 239

for every p,q £ Q. Using the matrix E*, which is well-defined due to the countable
completeness, we can construct the equivalent xtt M' = (Q, E, A, I, R!) such that

R'(l, r) = 0 for ali i , r e Q (X)

R'W)> t) = £ E;t9R(q(e), r) for all p,q£Q:l£ TE(X), and r e TA(Q(X)) .
geQ

In fact, the countable completeness is only required if there are cyclic pure e-rules.
We omit the proof that M and M' are equivalent. Clearly, the xtt M' has no pure
£-rules.

Theorem 4. If (A,+,-,0,1) is countably complete with respect to J2: then for
every xtt we can construct an equivalent xtt without pure e-rules.

Example 5. Recall the xtt (Q, E, A, {(?}, R) of Example 3, which has the pure
e-rule pi. Pure e-rule elimination as outlined above yields the xtt with the rules
{p2)-(pe) with their original weight and the new rule

g(S(x 1 ,VP(x 2 ,x 3))) 4 S'(gv(x2),4Np(xi),ciNp(x3)) • (Ps)

For the rest of the section, we will assume that all used xtt do not have pure
£-rules. This assumption is often made immediately in the literature [40, 20] to
ensure that the sum in (2) is always well-defined. The countable completeness of
the semiring is thus only needed in the elimination of the pure £-rules. The class
of weighted tree transformations computed by xtt is denoted by XTOP. The sub-
classes computed by linear and linear nondeleting xtt are denoted by 1-XTOP and
ln-XTOP, respectively. The corresponding classes of weighted tree transformations
computed by top-down tree transducers are TOP, 1-TOP, and ln-TOP.

The rewrite semantics is very illustrative, but difficult to handle in proofs due
to its essentially non-recursive specification. Next, we are going to present an
alternative way to recursively define the semantics and then show that for every
xtt both semantics indeed define the same weighted tree transformation. We need
one additional notion. Let E be an alphabet and t £ T^. Then

match(i) = { (c ,0) | k £ N,c € C E (X f c) ,0 : Xfc TE with t = c0} .

Note that match(i) is finite. Recall that a normalized tree is linear and nondeleting
in Xfc for some k £ N and its variables { x i , . . . , x/;} occur in order.

Definition 3. Let M = (Q, E, A, / , R) be an xtt (without pure e-rules). We define
the mapping h,R: Q{T%) x TA —• A for every £ £ Q(Tand u STA by

£ R&r)- n hR{xee',xe") .
I— r̂€supp(/?) x€var(s)

(/,0')6match(O
(s,0/')Gmatch(u)

s normalized 6: var(s)—>Q(var(J))
r=s0

240 Andreas Ma let ti

Note that this recursion is well-defined because \x99'\ < |i| and \x9"\ < |u|
and one of the inequalities is strict due to the fact that { l , r } % Q(X) for every
I —> r G supp(.R). Consequently, we can define the weighted tree transforma-
tion T'M : T s x TA A by

T'M{t,u) = £ h R (q (t) , u)
qei

for every t G 2S and u G TA-

Theorem 5. For every xtt M (without pure e-rules) we have TM = r'M.

Proof. The statement follows immediately from the following statement, which we
prove by induction on |£| + |u|.

M£,«)= £ R(Pl) • - - R(Pk)
fcGN,pi,...,pfcesupp(i?)

i^M ^M u

for every £ G Q(Je) , and u G Xa-

£ R(Pl)---R(Pk)
>l,Pi,...,Pfc€supp(fi)

£ R(Pl)---R(Pk)
fc€N,pi,...,pfc€supp(fi)

pi =i— r̂,0: var(/)-+Tx:,5=i0

E Ä(Z , r) - (. £ R(p2)---R(pk))

(i,0)ematch(£)

E [J (£ «(Pi)-"^))
/->resupp(fi) tuSposQ(r) neN.p'i ,...,p^€supp(fl)

(¿,e')ematch(C) ,. / „ ,
(s,e")ematch(u) ™\»=>M =>Ai "1»

s normalized
0: var(s)->Q(X)

r=s0

E II (E i?(pi)---i?(p'n))
Z->rSsupp(/i) x€var(s) neN,pi,...,p^€supp(fi)

(Z,0')ematch(£) xflfl'^"!
(s,0")Gmatch(u)

s normalized
6: var(s)-+Q(X)

r=s0
I.H.

E Ä(Z,r)- n hR(xM'-xe")
/->rSsupp(fi) igvar(s)

(i,0')Gmatch(£)
(s,0")Gmatch(ti)

s normalized
0: var(s)-s-Q(X)

r=s0

Weighted Extended Top-down Tree Transducers 241

= u) ,

where we isolated the first derivation step in the first 2 steps, split the subderivations
in the third step, and simplified the obtained expression in the fourth step before
we used the induction hypothesis in the fifth step. •

In the following, we will often use this alternative semantics of xtt to prove the
correctness of constructions. We will not explicitly recall that it jdelds the same
results as our reference semantics based on rewriting.

Example 6. Let us reconsider the xtt M of Example 5, and let

t = S(NP(DT {the), N (boy)), VP (V (saw), N P (D T (the), N (door))))
u = S(CONJ(u;a-), S'(V(ra'aa), NP(N(atefl)), NP (N(albab))))

u' = S'(V(ra'aa), NP(N(aie/2)), NP(N(albab)))

as in Example 4. Then

hR(q(t),u)= £ R(l,r)- n hR(x6d',xe")
l—»rSsupp(R) xGvar(s)

(1,8') 6match(C)
(ŝ 'OGmatchtu)

s normalized
6-, var(s)—+<5(var(i))

T=S0

= R(p2) •hR(qs(t),u')

= R(P2) • hR(qNP(NP(DT(the),N(boy))),NP(N(atefl)))
• hR(q\r(V(saw)),V(ra:aa))
•hR(qNF(NP(DT(the),'N(door))),'NP(^(albab)))

where we see that the subtrees are evaluated independently and in parallel, whereas
the derivation processed the leftmost subtree first. In addition, nondeterminism
inside a particular subtree translation is handled locally, whereas nondeterminism
is always handled globally in the rewrite semantics.

4 Expressive Power
In this section, we explore the expressive power of xtt and compare the introduced
classes of weighted tree transformations. The number of classes was intentionally
kept low in order to illustrate a particular approach. A more complete picture is
shown in [21], but can also easily be obtained' using the techniques recalled here.

Let us first recall the HASSE diagram for the unweighted case of [41, Figure 4.5].
Figure 3 shows the relevant subpart that we are interested in. The contribution [41]
contains a much more refined HASSE diagram that relates many more classes. The
interested reader might consult [41, Figure 4.5] and translate those additional re-
sults to the weighted setting using the approach demonstrated here.

242 Andreas Ma let ti

XTOP

1-XTOP

1-TOP

TOP

In-XTOP

In-TOP

Figure 3 : HASSE diagram of the classes of weighted tree transformations computed
by xtt.

Theorem 6 (see [41. Theorem 4 . 1 1]) . Figure 3 is a HASSE diagram if (A, + , •, 0,1)
is the B O O L E A N semiring.

The approach that we want to demonstrate only concerns the strictness of the
inclusions or the incomparability of classes. Variations of the approach are (implic-
itly and explicitly) used, for example, in [19, 37, 23]. Since the approach only covers
inequalities, the inclusions have to be shown in the standard way. We choose the
set of classes of weighted tree transformations such that all inclusions of Figure 3
trivially hold in every semiring. Now let us show how to lift a statement of the form
C <2 C from the B O O L E A N semiring to proper semirings. Recall that a nontrivial
semiring is proper if it is not a ring and that every countably complete semiring is
proper by Proposition 2.

First we lift the application of a semiring homomorphism h: A—> B from semi-
ring elements to weighted tree transformations and to xtt. Given a weighted tree
transformation r : T j x TA —> A, we write h(r) for the weighted tree transfor-
mation /I(T):''T2 x TA —i B such that h(r)(t,u) = h(r{t,u)) for every t G T-%
and u G XA- Moreover, given an xtt M = (Q, £, A, I, R) we write h(M) for the
xtt h{M) - (Q,T,,A,I,h(R)) where h(R) is such that supp(h(R)) C supp(i?) and
h(R)(p) = h(R(p)) for every p G supp(ii).

The next theorem shows that applying an essentially complete semiring ho-
momorphism h to an xtt M yields an xtt h(M) that computes the weighted tree
transformation h{TM). In other words, such a homomorphism is also compatible
with xtt and its computed weighted tree transformations. n

Theorem 7. Let h: A —» B be an essentially complete semiring .homomorphism.
Then Th(M) = h{r-M) for every xtt M.

Proof. Let M = (Q, E, A, I, R), t G Ts, and u G TA. Then

Weighted Extended Top-down Tree Transducers 243

I E h{R(Pl)---R(Pk))
9G/,fc6N,pi,...,pfeesupp(fl)

ije/.fceN.pi ,...,pfcesupp(ii)

ge/,FE6N,pi,...,pfcesupp(h(R))

= ThiM){t,u) ,

where we used the essential completeness of h in the step marked f. The sum-
mands R(pi) • • • R(pk) in the previous step clearly are in the finitely generated
subsemiring (C) where C = {R(p) | p G supp(i?)}, which is a finite set. •

With the help of the previous theorem we can now prove that if an inclusion is
valid in the proper semiring (A, + , 0 , 1) , then it must also be valid in the BOOLEAN
semiring. Intuitively, this is achieved by just applying the essentially complete
semiring homomorphism h of Section 2. We will typically use this statement as
contraposition, if two classes are not contained in the BOOLEAN semiring, then they
also are not contained in the proper semiring (A, + , •, 0,1), which is the desired lift
result.

Theorem 8. Let C,C' G {ln-TOP, 1-TOP, TOP, ln-XTOP, 1-XTOP, XTOP} . If
C C C' holds in the proper commutative semiring (A, +, •,0,1), then it also holds in
the BOOLEAN semiring.

Proof. Let h be the essentially complete semiring homomorphism discussed in Sec-
tion 2. For every xtt N with the properties required by C over the BOOLEAN
semiring, we can easily construct an. xtt M (with the same properties) over the
proper semiring (A , + , -, 0,1) such that h(M) = N. This can be achieved by rein-
terpreting N (up to the identity of the unit elements 0 and 1) as an xtt over
the semiring (A , + , •, 0,1)., By Theorem 7, we have /i(tm) = T^M) = tN• Since
C C C' is true in the proper semiring (A, + , •, 0,1), there exists an xtt M' with the
properties required by C' such that TM' = tm- Note that both M and M' com-
pute over (A, + , •, 0,1). Again we use Theorem 7 to conclude that the xtt h(M')
computes t^m1) = h(rM') = h(T\i) = tm over the BOOLEAN semiring. It is an
easy exercise to verify that h(M') has the same properties (linear, nondeleting, top-
down tree transducer) as M'. Thus, we proved that for every xtt over the BOOLEAN
semiring with the properties required by C we can construct an equivalent xtt also
over the BOOLEAN semiring with the properties required by C', which proves the
statement. •

Since the inclusions of Figure 3 are trivial and the inequalities can be lifted from
the unweighted case using Theorem 8, we can immediately conclude the following
theorem.

244 Andreas Ma let ti

Theorem 9. Figure 3 is a H A S S E diagram for every proper commutative semiring

As already indicated the presented method applies just as well to other weighted
devices such as weighted string transducers, weighted tree-walking automata, etc.
In fact, it would be relatively easy to lift even the full H A S S E diagram of [4 1 ,

Figure 4.5] to the weighted case but since that involves a number of additional
notions such as look-ahead, we leave this exercise to the reader.

We end this section with a demonstration of the usefulness of the different
semantics and presentations of xtt. Again we do not strive to obtain the most
general results, but rather we want to illustrate the principles. We start with
domain and range. Let R: Tj; x TA —> A be a weighted tree transformation. Then
the domain of r is the weighted tree language <p: 7>- —> A such that

<P(t)= £ r(t,u)
U £ T A

for every t £ TE. Mind that the sum might be infinite. It is finite if for every t € Ts
there exist only finitely many u £ TA such that (/,, u) £ supp(r). For example, if
r is computed by an xtt without input e-rules, then this property holds and the
sum is finite. Intuitively, if an xtt does not have input e-rules, then each derivation
step consumes at least one input symbol. Thus, the number of derivation steps
is limited by |i|, which can be used to derive an upper bound for the size of any
output tree. If the sum is infinite, then we assume that the semiring (A, + , -,0,1)
is countably complete with respect to ^ as usual. Dually, the range of r is the
weighted tree language ip: TA —> A such that

ip(u) = £ r(t,u)
teTz

for every u £T&.
To keep the presentation simple, let r = TM for some linear and nondeleting xtt

without input e-rules. As already remarked the absence of input e-rules guarantees
that the sum in the definition of the domain is finite. Using our approach the
result for arbitrary linear and nondeleting xtt over countably complete semirings
can be derived using a result of [35] (see [1 7 , Corollary 6 . 1 0]) . Here we focus on
the domain ip of TM- Since M is linear and nondeleting we can use Theorem 3 to
obtain an equivalent weighted linear and complete bimorphism B = (/ , •0, g) with
IP: Tr —>• A. Since TQ = TM, we can equivalently consider the domain of TB- By
definition

<P{T) = £ TB(T,U) = £ (£ </>(*)) = £
U€T A U€TA s£Tr s€Tr,u<ET&

f(s)=t,g(s)=u f(s)=t,g(s)—u

= £ Ms),
seTr,f(s)=t

which can be rewritten as <p = J2seTr ib(s).f(s) where

Weighted Extended Top-down Tree Transducers 245

• ip(s).f(s) is the weighted tree language that is 0 everywhere besides f(s)
where the weight is and

• weighted tree languages are added componentwise.
This last presentation shows that the domain is just the application of the linear,
complete, and e-free tree homomorphism / to the recognizable weighted tree lan-
guage ip, where e-free means that fk(l) for every fc e N and 7 £ T and it
follows from the fact that M has no input e-rule.

Theorem 10 (see [20, Corollary 8]). The domain of a linear and nondeleting xtt
without input e-rules is a recognizable weighted tree language.

Proof. Using the steps presented above and Theorem 2 we immediately obtain the
statement. •

Clearly, the range of a linear and nondeleting xtt without output e-rules is
recognizable due to symmetry.

Finally, let us consider the input and the output product, which together with
domain and range can be used to prove preservation of recognizability [20, 21].
But let us first define the mentioned input and output product. Given a weighted
tree transformation T : Ts x TA —> A and weighted tree languages ip: T-% —> A and
IP: TA —» A, the input product <p < r of T by <p and the output product R>ip oi T
by ip are defined by

(ip<T)(t, u) = ip(t) • r(t,u) a n d (r>^)(t,u)=T(t,u)-ip(u) ,

respectively, for every t £ Tj; and u £ TA-
Often input and output products are handled by specialized B A R - H I L L E L con-

structions [5, 45] or compositions [4, 12]. We will discuss the composition approach
in the third part of this survey, but let us present an input product construction
for weighted tree transformations computed by linear and nondeleting weighted
top-down tree transducers and recognizable weighted tree languages. We will show
that every such input product can again be computed by a linear and nondeleting
weighted top-down tree transducer. A more detailed overview on input and output
products can be found in [39].

From now on, let M = (Q, E, A, I, R) be a linear and nondeleting weighted top-
down tree transducer and N — (P, £, S, F) be a wta. We want to construct a linear
and nondeleting weighted top-down tree transducer M' such that TM' = <Pn < rM-
Since M is linear and nondeleting, it visits each input subtree exactly once.

Definition 4. The input product N < M is the weighted top-down tree transducer
(Q1, E, A, / ' , R') where

• Q' = QxP,
• I'= {{q,p)\q £ I,p£ F}, and
. R'(l,r) = S(Pi • ••pk,<T,p) • R(l\ r') for all I £ Q'(TE(X)) and r £ TA(Q'(X))

where
— I' and r' are obtained from I and r, respectively, by dropping the second

component in the states that occur in I' and r',

246 Andreas Ma let ti

- p G P. k G N, and a G £ are such that I = (q,p)(cr(xi,... ,xt)) for some
q G Q, and

- /or every i G [A;], i/ie state Pi is such that there is a position Wi G posg,(r)
in the right-hand side with r\Wi = (<?i,f>i)(xi) for some qi G Q.

To illustrate the use of the alternative semantics, we will prove that the input
product transducer indeed computes the input product as desired.

Theorem 11 (see [39, Theorem 2]). T(N < M) — <PN <T~M-

Proof. Let N <M = {Q', A, / ' , R') as in Definition 4. We prove that

hw((q,p)(t),u) = 5(t,p) • hR(q(t),u)

for every t G u G Xa, q G Q, and p G P. Let £ = (q,p)(t).

£ R'{l,r) • [] hR,(x99',xe")
i—*-r£supp(/?') zevar(s)
(i,0')ematch({)
(s,0")€match(u)

s normalized
6: var(s)->Q'(var(i))

r=s£>
k

i-)-rGsupp(ii) ¿=1
(¡,0')ematch(q(t))
(s,0")€match(u)

s normalized
0: var(s)-><2(var(i))

fc=|var(s)|,pi,...,pfceP
r=s0

k
=. £ 5 (p i - "Pfc , i (l) ,p) - iZ (/) r) . J J i i X i f l ' . p O - M X i ^ . X j O

i-+rGsupp(.R) <=1
(¡ , e ') e m a t c h (9 (i))
(s,0")ematch(u)

3 normalized
0- var(s)->Q(var(/))

fc=|var(s)|,pi,...,pfceP
r=s6

= S(t,p) • hR{q(t),u) ,

where we used the induction hypothesis in the step marked f- With the auxiliary
statement established, the proof of the main statement is now easy. Let t G Ts and
u G 7a- Then

T-(Ar<Ai)(i,w) = £ hR'(<l'(t)'u) = £

= £ 6(t,p) • h,R(q(t),u) = (pN(t) • TM(t,u) = {ipN <STM)(t,u) .
qeI,p£F

•

Weighted Extended Top-down Tree Transducers 247

Acknowledgments
The author would like to express his gratitude to the reviewers. Their insight and
remarks improved the article. In addition, the author would like to acknowledge
the financial support of the Ministerio de Educación y Ciencia (MEC) grant JDCI-
2007-760.

References
Alexandrakis, Athanasios and Bozapalidis, Symeon. Weighted grammars and
Kleene's theorem. Inf. Process. Lett., 24(l):l-4, 1987.

Arnold, André and Dauchet, Max. Bi-transductions de forêts. In Proc. 3rd
Int. Coll. Automata, Languages and Programming, pages 74-86. Edinburgh
University Press, 1976.

Arnold, André and Dauchet, Max. Morphismes et bimorphismes d'arbres.
Theoret. Comput. Sci, 20(4):33-93, 1982.

Baker, Brenda S. Composition of top-down and bottom-up tree transductions.
Inform, and Control, 41(2):186-213, 1979.

Bar-Hillel, Yehoshua, Perles, Micha, , and Shamir, Eliyahu. On formal prop-
erties of simple phrase structure grammars. In Bar-Hillel, Yehoshua, editor,
Language and Information: Selected Essays on their Theory and Application,
chapter 9, pages 116-150. Addison Wesley, 1964.

Berstel, Jean and Reutenauer, Christophe. Recognizable formal power series
on trees. Theoret. Comput. Sci., 18(2):115-148, 1982.

Courcelle, Bruno and Franchi-Zannettacci, Paul. Attribute grammars and
recursive program schemes. Theor. Comput. Sci., 17(1):163-191 & 235-257,
1982.

Dauchet, Max. Transductions inversibles de forêts. Thèse 3ème cycle, Univer-
sité de Lille, 1975.

Droste, Manfred, Kuich, Werner, and Vogler, Heiko, editors. Handbook of
Weighted Automata. EATCS Monographs on Theoret. Comput. Sci. Springer,
2009.

Droste, Manfred, Stiiber, Torsten, and Vogler, Heiko. Weighted finite au-
tomata over strong bimonoids. Inf. Sci., 180(1):156-166, 2010.

Eilenberg, Samuel. Volume A: Automata, Languages, and Machines, volume 59
of Pure and Applied Math. Academic Press, 1974.

Engelfriet, Joost. Bottom-up and top-down tree transformations: A compari-
son. Math. Systems Theory, 9(3):198-231, 1975.

248 Andreas Ma let ti

[13] Engelfriet, Joost. Top-down tree transducers with regular look-ahead. Math.
Systems Theory, 10(l):289-303, 1976.

[14] Engelfriet, Joost, Fülöp, Zoltán, and Vogler, Heiko. Bottom-up and top-down
tree series transformations. J. Autom. Lang. Combin., 7(1):11—70, 2002.

[15] Engelfriet, Joost and Vogler, Heiko. Macro tree transducers. J. Comput.
System Sci, 31(1):71-146, 1985.

[16] Engelfriet, Joost and Vogler, Heiko. Modular tree transducers. Theor. Comput.
Sci., 78(2):267-303, 1991.

[17] Esik, Zoltán and Kuich, Werner. Formal tree series. J. Autom. Lang. Combin.,
8(2):219-285, 2003.

[18] Fülöp, Zoltán. On attributed tree transducers. Acta Cybernet., 5(l):261-279,
1981.

[19] Fülöp, Zoltán, Gazdag, Zsolt, and Vogler, Heiko. Hierarchies of tree series
transformations. Theoret. Comput. Sci, 314(3):387-429, 2004.

[20] Fülöp, Zoltán, Maletti, Andreas,'and Vogler, Heiko. Preservation of recog-
nizability for synchronous tree substitution grammars. In Proc. 1st Workshop
Applications of Tree Automata in Natural Language Processing, pages 1-9.
Association for Computational Linguistics, 2010.

[21] Fülöp, Zoltán, Maletti, Andreas, and Vogler, Heiko. Weighted extended tree
transducers, submitted, 2011.

[22] Fülöp, Zoltán and Vogler, Heiko. Weighted tree transducers. J. Autom. Lang.
Combin., 9(l):31-54, 2004.

[23] Fülöp, Zoltán and Vogler, Heiko. Weighted tree automata and tree transducers.
In Droste et al. [9], chapter 9, pages 313-403.

[24] Gécseg, Ferenc and Steinby, Magnus. Tree Automata. Akadémiai Kiadó, Bu-
dapest, 1984..

[25] Gécseg, Ferenc and Steinby, Magnus. Tree languages. In Rozenberg, Grze-
gorz and Salomaa, Arto, editors, Handbook of Formal Languages, volume 3,
chapter 1, pages 1-68. Springer, 1997.

[26] Golan, Jonathan S. Semirings and their Applications. Kluwer Academic,
Dordrecht, 1999.

[27] Graehl, Jonathan and Knight, Kevin. Training tree transducers. In Proc. 2004
Human Language Technology Conf. NAACL, pages 105-112. Association for
Computational Linguistics, 2004.

[28] Hebisch, Udo and Weinert, Hanns J. Semirings — Algebraic Theory and
Applications in Computer Science. World Scientific, 1998.

Weighted Extended Top-down Tree Transducers 249

[29] Hopcroft, John E. and Ullman, Jeffrey D. Introduction to Automata Theory.
Languages, and Computation. Addison-Wesley. 1979.

[30] Jurafsky, Daniel and Martin, James H. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Processing. Prentice-Hall, 2000.

[31] Karner, Georg. Continuous monoids and semirings. Theoret. Comput. Sei.,
318(3):355—372, 2004.

[32] Knight, Kevin. Capturing practical natural language transformations. Ma-
chine Translation, 21(2):121-133, 2007.

[33] Knight, Kevin and Graehl, Jonathan. An overview of probabilistic tree trans-
ducers for natural language processing. In Proc. 6th Int. Conf. Intelligent
Text Processing and Computational Linguistics, pages 1-24. Association for
Computational Linguistics, 2005.

[34] Kuich, Werner. Formal power series over trees. In Proc. 3rd Int. Conf. Develop-
ments in Language Theory, pages 61-101. Aristotle University of Thessaloniki,
1998.

[35] Kuich, Werner. Tree transducers and formal tree series. Acta Cybernet.,
14(1) :135—149, 1999.

[36] Kuich, Werner and Salomaa, Arto. Semirings, Automata, Languages, volume 5
of Monographs in Theoretical Computer Science. An EATCS Series. Springer,
1986.

[37] Maletti, Andreas. The power of tree series transducers of type I and II. In
Proc. 9th Int. Conf. Developments in Language Theory, volume 3572 of LNCS,
pages 338-349. Springer, 2005.

[38] Maletti, Andreas. Compositions of extended top-down tree transducers. In-
form. and Comput., 206(9-10):1187-1196, 2008.

[39] Maletti, Andreas. Input and output products for weighted extended top-down
tree transducers. In Proc. 14th Int. Conf. Developments in Language Theory,
volume 6224 of LNCS, pages 316-327. Springer, 2010.

[40] Maletti, Andreas. Why synchronous tree substitution grammars? In Proc.
Human Language Technology Conf. NAACL, pages 876-884. Association for
Computational Linguistics, 2010.

[41] Maletti, Andreas, Graehl, Jonathan, Hopkins, Mark, and Knight, Kevin. The
power of extended top-down tree transducers. SIAM J. Comput., 39(2):410-
430, 2009.

[42] Manning, Chris and Schütze, Hinrich. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

250 Andreas Ma let ti

[43] Raoult, Jean-Claude. Rational tree relations. Bull. Belg. Math. Soc., 4(1):149-
176, 1997.

[44] Rounds, William C. Mappings and grammars on trees. Math. Syst. Theory,
4(3):257—287, 1970.

[45] Satta, Giorgio. Translation algorithms by means of language intersection.
Manuscript, 2011. available at: http: / /www.dei .unipd. i t /~satta.

[46] Shieber, Stuart M. Synchronous grammars as tree transducers. In Proc. 7th
Int. Workshop Tree Adjoining Grammar and Related Formalisms, pages 88-95,
2004.

[47] Thatcher, James W. Generalized2 sequential machine maps. J. Comput. Sys-
tem Sci, 4(4):339-367, 1970.

[48] Thatcher, James W. Tree automata: an informal survey. In Aho, Alfred V.,
editor, Currents in the Theory of Computing, pages 143-172. Prentice Hall,
1973.

[49] Wang, Huaxiong. On characters of semirings. Houston J. Math., 23(3):391-
405, 1997.

[50] Wang, Huaxiong. On rational series and rational languages. Theoret. Comput.
Sci., 205(l-2):329-336, 1998.

http://www.dei.unipd.it/~satta

REGULAR PAPERS

Acta Cybernetica 20 (2011) 253-267.

Classes of Tree Languages and DR Tree Languages
Given by Classes of Semigroups

Ferenc Gecseg*

Abstract

In the first section of the paper we give general conditions under which
a class of recognizable tree languages with a given property can be defined
by a class of monoids or semigroups defining the class of string languages
having the same property. In the second part similar questions are studied
for classes of (DR) tree languages recognized by deterministic root-to-frontier
tree recognizers.

Keywords: recognizable tree languages, DR recognizable tree languages,
syntactic semigroups, syntactic monoids

1 Introduction
In [3] we characterized the class of recognizable monotone string languages and that
of recognizable monotone tree languages by means of syntactic monoids. It turned
out that both classes can be defined by the class M of monoids whose right unit
submonoids are closed under divisors, i.e. a recognizable string or tree language
is monotone if and only if its syntactic monoid is in M. This was the observation
which motivated the writing of paper [1], where such characterizations from more
general classes of string languages have been lifted to classes of (frontier-to-root)
tree languages.

In [4] we obtained results for the classes of definite and nilpotent deterministic
root-to-frontier (DR) tree languages similar to those in [3]. The aim of this paper
is to strengthen the main result of [1], on one hand, and to give general conditions
under which a class of DR tree languages with a given property can be defined
by a class of monoids or semigroups defining the class of string languages having
the same property, on the other hand. The proofs are based on the observation
that the syntactic monoids (syntactic semigroups) of recognizable tree languages
and the syntactic path monoids (syntactic path semigroups) of DR tree languages
can be given as subdirect products of the syntactic monoids (syntactic semigroups)

'Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary

254 Ferenc Gécseg

of suitable recognizable string languages. We shall show for the classes of DR-
monotone, DR-nilpotent and DR-definite tree languages that they satisfy these
conditions.

It should be noted that the classes of tree languages considered in this paper
are not necessarily varieties. For readers interested in varieties of recognizable tree
languages, we refer to the fundamental papers [11] and [13].

2 Notions and Notation
Sets of operational symbols will be denoted by E. If E is finite and nonvoid, then it
is called a ranked alphabet. For the subset of E consisting of all to-ary operational
symbols from E we shall use the notation ETO (m > 0). By a E-algebra we mean
a pair A = (A, {aA\a G £ }) , where oA is an m-ary operation on A if a G E m .
If there will be no danger of confusion then we omit the superscript A in aA and
simply write A — (A, E). Finally, all algebras considered in this paper will be finite,
i.e. A is finite and £ is a ranked alphabet.

Take a E-algebra A = (A,S), a a G £m { m > 0), an i (1 < i < to) and
a i , . . . , a¿_i, a¿+ i , . . . , am G A. Then a (a i , . . . , i,x, a¿+ i , . . . , a m) is an elemen-
tary translation symbol of A. The set of all elementary translation symbols of A
will be denoted by ETS(A). In the sequel elementary translation symbols will
be considered as unary operational symbols. Moreover, ETalg(A) will denote the
unary algebra (A,ETS(.A)) with

a(ai,..., a¿_i, x, ai+1,..., am)E T a l g (-A) (a) =
crA(ai,... ,a,_i,a, ai+1,... ,am)

(cr(ai, . . . ,ai-i,x,ai+i,... ,am) G ETS(.4), a G A).

Let X be a set of variables. The set Ty,(X) of EX-irees (or E-trees over X) is
defined as follows:

(i) x c T E (X) ,

(ii) a(pi,... ,pm) G Ts(X) if m > 0, a G E r o and pi:... ,pm G TS(X), and

(iii) every EX-tree can be obtained by applying the rules (i) and (ii) a finite
number of times.

In the sequel X will stand for the countable set {3:1,0:2,...}, and for every
n > 0, Xn will denote the subset { x i , . . . ,xn} of X. A subset of Tv(Xn) is called
a T,Xn-language. If E or Xn is not specified then we speak of a tree language.

Take a E-algebra A = (A , £) and a tree p G T^(Xn). Let us define the mapping
pA : A71 —> A in the following way: for any a — (a 1 , . . . , an) G An,

(i) if p = Xi G Xn, then pA(a) = a¿,

(ii) if p - a(pi,. ...Pm) G E m , Pi,. ..,Pm G T^(Xn)), then

Classes of Tree Languages and DR Tree Languages 255

If there is no danger of confusion, then we omit A in pA.
A EXn-recognizer is a system A = (A, a, A') , where

(1) A = (A, E) is an algebra,

(ii) a = (a (1) , . . . , a (n)) (a (1) , . . . , a (n) G A) is the initial vector,

(iii) A' C A is the set of final states.

If n = 1, then we usually write a^1' for (a M o r e o v e r , it is said that A is
connected if (p(a) | p G T^(Xn)} = A.

If E and Xn are not specified then we speak of a tree recognizer. Furthermore,
if E = Ei and n = 1, then A is a finite state recognizer, shortly recognizer. If we
are dealing with recognizers, then (unary) trees are sometimes written as words:
for a tree cti(. .. (<7fc(xi))...) we may write . . . <j\.

The tree language T(A) recognized by the £X„-recognizer A = (A, a, A') is
given by

T(A) = {p G TE(Xn) | p(a) G A ' } .

The class of recognizable tree languages will be denoted by Treelang, and
Lang is its subclass consisting of all tree languages recognizable by finite state
recognizers.

Let Prop be a property of recognizable tree languages. The best way is to define
Prop as a subclass of Treelang. If K is a subclass of Treelang, then Prop(K)
will denote the class of all tree languages which are simultaneously in Prop and
K.

If not otherwise specified, A will be the £AT„-recognizer (A, a, A'). Here A is a
E-algebra (A, E), a = (a ^ , . . . , a^) and A' C A. Consider a EX„-recognizer A.
For each x G Xn UEo, define the finite state ETS(.A)-recognizer Ax = (Ax,ax, A'x)
in the following way:

, . _ f aW, if x = Xi (1 < i < n),
W a * ~ \ a A , if x = a G Eo-

(2) A , = { P E ™ < ^ > (A X) | p G T E T S U) (X I) } .

(3) Ax = (Az, ETS(A)) is a subalgebra of ETalg(A).

(4) A'x=Axn A'.

These Ax are called translation recognizers-of A.
Let Ts (^n) denote the set of all E-trees over X „ U { * } (* ^ Xn) in which * occurs

exactly once. Elements in T^(Xn) are special trees of Thomas [14] and Heuter [9].
Let us define the product q-p of q G Tz(Xn)\JTz(Xn) and p G T^(Xnj by q-p = p(q).
(Here and in the sequel, for any p G Tj;(Xn) and q G T^{Xn) UTj : (Xn) , p(q) is
obtained by replacing the occurrence of * in p by q (p{q) = p(* <— q)).) Obviously,
under this multiplication Ts(Xn) is a monoid with the identity element *.

256 Ferenc Gécseg

Let T C TE(Xn) be a tree language. Define the binary relation HT on Tz(Xn)
in the following way: for any p, q £ T^(Xn),

p = q(fix)

(V p ' . p " 6 TZ(xn), X€Xnu S O w • p • p"){x) E R (p ' • 9 • P ") (S) G T).

This fix is a congruence of the monoid T^(Xn), which is called the syntactic con-
gruence of T. Moreover, the quotient monoid T-£,(Xn)/HT is the syntactic monoid
of T, which will be denoted by Syntm(T).

The restriction of fir to T^(Xn) \ { * } will be denoted by the same fix- The
quotient semigroup Ts(Xn) \ {*}/HT is the syntactic semigroup of T. The syntactic
semigroup of T will be denoted by Synts(T).

We say that a property Prop of recognizable tree languages can be defined by
a class M of monoids, if for all T G Treelang, T G Prop <=*> Syntm(T) G M .
Similarly, a property Prop of recognizable tree languages can be defined by a class
S of semigroups, if for all T G Treelang, T G Prop <=}• Synts(T) G S. For any
EX„-recognizer A and p G Tz(Xn), let p(a) stand for p(x i a^1', ...,xn<-
and p(a)(a) for p(a)(* a) (a £ A), i.e. p(a)(a) is obtained from p by replacing
the occurrences of Xi by a^' and that of * by a.

Let Y be an ordinary alphabet, Y* the free semigroup generated by Y and
L C Y* a language over Y. Furthermore, let / / ¿ b e the binary relation on Y* given
by u = V(HL) (u,v G Y*) iff for any u',u" G Y* the equivalence u'uu" £ L
u'vu" G L holds. As it is well known, fii is a congruence relation on the free monoid
Y*, and the quotient monoid Y*/m, is called the syntactic monoid of L. Let the
same HL denote the restriction of HL to the semigroup Y+ = Y* \ {e}, where e
is the empty word. The quotient semigroup Y+ /m is the syntactic semigroup of
L. It is obvious, if finite state recognizers are taken as special tree recognizers,
then the above two definitions of syntactic monoids coincide. The same is true for
syntactic semigroups.

For notions and notation not defined in this paper, see [6] and [7].

3 Tree languages
Let A be an arbitrary connected £Xn-recognizer. Define the mapping
£a : fs(Xn) T E T s (^) (*) in the following way:

1) e A (*) = *.

2) If p = a(pi,... ,pi-i:pi,pi+i,... ,pm) (cr G E m , pj £ T S (X „) , j £ {l,...,i-
1, z + 1 , . . . , m} , pi GT E (X n)) , then

c A (p) = * (?] * (») , . . . , p £ i (a) , e A (P t) i P i + i (a) i • • • , P m (a)) .

Since A is connected, CA is an onto mapping. If there is no danger of confusion
we shall omit A in €a-

Classes of Tree Languages and DR Tree Languages 257

Let T C Tz(Xn) be a tree language. For each x G Xn U Eo, define the binary
relation fxT,x on T E (X n) in the following way: for any p,q £ T E (X „) ,

P =

(Vp',p" G fs(Xn))((p' • p • p")(x) <ET<=*(p'-q- p"){x) G T).

Clearly, these relations ¡JLT,x are congruences of the monoid T^(Xn).
By the definitions of the syntactic monoid and the syntactic semigroup of a

EXn-language T we obviously have the following two results.

Lemma 1. The syntactic monoid Syntm(T) is isomorphic to a subdirect product
of the monoids T^(Xn)/p,T,x> % G Xn U Eo- 0

Lemma 2. The syntactic semigroup Synts(T) is isomorphic to a subdirect product
of the semigroups T E (X „) \ {*}/pr,x, % G Xn U E0 , where the restriction of pr,x
to TE(X„) \ {*} is denoted by the same pr,x- 0

We now show

Lemma 3. Let A be an arbitrary connected T,Xn-recognizer. Then for all x G
Xn U Eo,

Tz(Xn)/pT,x = Syntm(T(Ax)) .

Proof. It is obvious that for any two p, q G T E (X n) we have e(p • q) = e(p) • e(q).
We show that for all p, q G T^(Xn),

P = q(PT,x) = t{q)(PT(ax))-

Remember that e is an onto mapping since A is connected. Thus,

P = q(PT,x) '
I

(Vr, a G f E (X „)) ((r • p • s)(x) G T (r • q • s)(x) G T)
t

(Vr, s G T E (X„)) ((r • p • s) (a) (a x) G A' (r • q • s){a)(ax) G A')
it

(Vr, s G f E (X n)) (e (r • p • s)(ax) eA'x^e(r-q- s)(ax) G A'x)
t

(Vr, s G f E (X n)) ((e (r) • e(p) • e(s)) G A'x (e(r) • e(q) • e(s)) G A'x)
t

e(p) = t(q)(PT(Ax))- .

Therefore, p/pr,x - » e(p)/pr(AX) (P £ T^(Xn)) is an isomorphic mapping of
Ts(Xn)/pT,x onto Syntm(T(Ax)). 0

The following lemma can be proved in a similar way.

258 Ferenc Gécseg

Lemma 4. Let A be o/n arbitrary connected YjXn- recognizer. Then for all x €
X U £o

Tx(Xn) \ { * } / M T , X = Synts(T(Ax)).

•

Let S be a class of semigroups. We say that S is closed under subdirect products,
if all subdirect products of semigroups from S with finitely many factors are in S.
Moreover, S is closed under subdirect factors, if whenever a subdirect product of
two semigroups is in S, then both of them are in S.

In this paper all classes of semigroups will contain only finite semigrouups.
We are now ready to state and prove

Theorem 1. Let Prop be a property of recognizable tree languages. Assume that
the following conditions are satisfied:

(1) For every Y,Xn-language T there exists a connected T,Xn-recognizer A with
T(A) = T such that

T G Prop (Va: G Xn U Y,0)(T{AX) G Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be defined by M.

Proof. Assume that the conditions of our theorem are satisfied.
First take a T G Treelang with Syntm(T) G M, and let A be a connected

£Jf„-recognizer such that T = T(A) satisfies (1). By Lemma 1 and 3, Syntm(T)
is isomorphic to a subdirect product of the monoids Syntm(T(Ax)) (x G Xn UEo)-
From this, by (3), we obtain that Syntm(T(Ax)) G M, and thus, by (2), T(AX) G
Prop(Lang) for all x G Xn U £0 , which, by (1), implies that T = T(A) G Prop.

Conversely, assume that T G Prop, and let A be a connected tree recognizer
with T = T(A) satisfying (1). Then, for each x G I „ U E 0 , T(AX) G Prop(Lang).
Thus, by (2), Syntm(T(Ax)) G M. Again, by Lemma 1 and 3, Syntm(T) is iso-
morphic to a subdirect product of Syntm(T(Ax)) (x G X n U£o) - Moreover, by (3),
M is closed under subdirect products. Therefore, Synt(T) G M. 0

The next theorem can be proved in a similar way.

Theorem 2. Let Prop be a property of recognizable tree languages. Assume that
the following conditions are satisfied:

(1) For every T,Xn-language T there exists a connected Y,Xn-recognizer A with
T(A) = T such that

T G Prop (Vx G Xn U E0){T(AX) G Prop(Lang)).

Classes of Tree Languages and DR Tree Languages 259

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be defined by S. 0

In [lj we proved
Theorem 3. Let Prop be a property of recognizable tree languages. Assume that
the following conditions are satisfied.

(1) For all minimal tree recognizers A,

T(A) € Prop (Vz £ X n l l E 0) (r (A a) € Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.
Then Prop can be defined by M. 0

It is easy to show that the previous theorem is true for properties defined by
semigroups:
Theorem 4. Let Prop be a property of recognizable tree languages. Assume that
the following conditions are satisfied.

(1) For all minimal tree recognizers A,

T(A) € Prop (V® a „ U E0)(T(AX) G Prop(Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.
Then Prop can be defined by S. 0

We shall need
Lemma 5. If A and B are equivalent connected T,Xn-recognizers then for all
x e X n U So, Syntm(T(Ax)) ^ Syntm(T(B,)).

Proof. For a p e Tz(Xn) set p = £A(P) and p = £B(P)- Let p,q G Ts(Xn) and
x G Xn be arbitrary. We have

(Vr, 5 G Tfc(Xn))(((r • p • s)(x))A(a) eA'^((r-q- s)(x))A(a) G A') T(A^(B)

(Vr, 5 G fs(XnM(r • p • s)(x)f(b) G B> & ((r • q • s)(x))B(b) G B')
t

(Vr, s G fE(Xn))r^TsA'(ax) G A' r~rsA*(ax) G A')
(Vr, s G Tx{Xn))T^=f* (bx) G B! & Wf=fx{bx) G B')

I
(Vr,s_e_fE(Xn))((r • p • s)A*(ax) Ê i ' « (r -q -s)A_*(ax) G A')

(Vf, s G TE (X„)) ((r • p • s)Bx(bx) eB'^(r-q- s)B*(bx) G B')

V = J ^ P = ?(MB J-

260 Ferenc Gécseg

Therefore the mapping p/max —> p/mbx (P G T^(XN)) is an isomorphism between
the monoids Syntm(T(Ax)) and Syntm(T(Bx)). 0

The following result can be proved in a similar way.

Lemma 6. If A and B are equivalent connected T,Xn-recognizers then for all
x e X n U £ 0 , Synts(T(Ax)) ^ Synts(T(Bx)). 0

Now we show

Theorem 5. Theorems 1 and 3 are equivalent.

Proof It is obvious that Theorem 1 implies Theorem 3.
To prove the opposite direction, suppose that Theorem 3 is valid and the con-

ditions of Theorem 1 are satisfied. Take a recognizable £X„-tree T and let A be
the minimal EX„-recognizer for T.

First assume that T G Prop. Let B be a connected EX„-recognizer recognizing
T such that T(BX) G Prop(Lang) for all x G TE(Xn). Therefore, by (2) in Theo-
rem 1, Syntm(T(Bx)) G M. By Lemma 5, Syntm(T(Ax)) ^ Syntm(T(Bx)), thus
Syntm(T(Ax)) G M, which by (2) in Theorem 1 implies T(AX) G Prop(Lang).

Conversely, suppose that T(AX) G Prop(Lang) for all x G Ts(Xn). By (2)
in Theorem 1, Syntm(T(Ax)) G M. Let B be a connected £X„-recognizer with
T(B) = T(A) which satisfies (1) in Theorem 1. By Lemma 5, Syntm(r(Ax)) and
Syntm(T(Bx)) are isomorphic. Then Syntm(T(Bx)) G M. Therefore, by (2) in
Theorem 1, T(BX) G Prop(Lang). From this, using (1) in Theorem 1, we obtain
that T(A) = T(B) G Prop.

We have obtained that the conditions of Theorem 3 are also satisfied. Therefore,
Prop can be defined by M. 0

Using a similar proof, one can show

Theorem 6. Theorems 2 and 4 are equivalent. <>

We now show that Theorem 3 is equivalent to

Theorem 7. Let Prop be a property of recognizable tree languages and M a class
of monoids. Assume that the following conditions are satisfied:

(1) For every T,Xn-language T and all connected T,Xn-recognizers A with T(A) =
T we have

T G Prop (Vz G Xn U E 0) (T (A X) G Prop(Lang)).

(2) Prop(Lang) can be defined by M.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be defined by M.

Classes of Tree Languages and DR Tree Languages 261

Proof. It is obvious that Theorem 3 implies Theorem 7.
The opposite direction can be shown by the same idea as the second part of

the proof of Theorem 5. Suppose that Theorem 7 is valid and the conditions of
Theorem 3 are satisfied. Take a recognizable E.X"n-tree T.

First assume that T G Prop. Let B be a connected £X„-recognizer recog-
nizing T. Moreover, let A be the minimal EXn-recognizer for T. By our as-
sumption, T(AX) G Prop(Lang) for all x G Ts(X n) . Then, by (2) in Theorem
3, Syntm(T(Ax)) e M. By Lemma 5, Syntm(T(Ax)) ^ Syntm(T(Bx)), thus
Syntm(T(Bx)) G M, which by (2) in Theorem 3 implies T(BX) G Prop(Lang).

Conversely, let B be a connected £Xn-recognizer with T(B) = T such that
T(BX) G Prop(Lang) for all x G T^(Xn). By condition (2) in Theorem 3,
Syntm(T(Bx)) G M, and thus Syntm(T(Ax)) G M since Syntm(T(Ax)) and
Syntm(T(Bx)) are isomorphic. Therefore, again by (2) in Theorem 3, T(AX) G
Prop(Lang). From this, using (1) in Theorem 3, we obtain that T(B) = T(A) G
Prop.

We have obtained that the conditions of Theorem 7 are satisfied. Therefore,
Prop can be defined by M. ^

Summarizing our equivalence results, we have

Theorem 8. Theorems 1, 3 and 7 are equivalent. ()

Using the same technique as in the proof of Theorem 5, one can show that
Theorems 2 and 4 are equivalent to

Theorem 9. Let Prop be a property of recognizable tree languages. Assume that
the following conditions are satisfied:

(1) For every T.Xn-language T and all connected EXn-recognizers A with T =
T(A) we have

T G Prop (Va; G Xn U E0){T(AX) G Prop(Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be defined by S.

4 DR tree languages
First of all, we recall several well known concepts from the theory of root-to-frontier
tree recognizers.

In what follows, the frequently recurring phrase deterministic root-to-frontier
is usually abbreviated directly to DR. As before, E is a ranked alphabet and X
is a (nonempty) frontier alphabet. As usual, in this section we shall suppose that
Eq = 0.

262 Ferenc Gécseg

In the study of DR tree languages, which form a proper subclass of all recog-
nizable tree languages, a natural counterpart of syntactic semigroups are syntactic
path semigroups introduced in [8]. Thus, for defining classes of DR recognizable
tree languages we shall use path semigroups. We have also changed the definition
of properties of tree languages defined by tree automata (monotonicity, nilpotency
etc) in such a way which is more natural for DR recognizers. To distinguish them
from the general definition, we shall use the prefix DR.

A finite DR T,-algebra consists of a non-empty finite set A and a E-indexed
family of root-to-frontier operations

aA:A-^Am (a G £ m) .

Again we write simply A = (A, E). A DR EXn-recognizer is now defined as a
system A = (A, ao,a), where A = (A , E) is a finite DR E-algebra, ao G A is the
initial state, and a = (A ^ , . . . , A'™') G (p A) n is the final state vector. (pA denotes
the power-set of a set A.)

To define the tree language recognized by A , we introduce a mapping a A of
Tx(Xn) into pA:

(1) aA(Xi) = AW for X i G Xn,

(2) aA(p) = {a £ A \ aA(a) G aA(pi) x ... x aA(pm)} for p = cr(pi,... ,pm)
(a G £ m , pi,... ,pm G Tz(Xn)).

The tree language recognized by A is now defined as the set

T (A) = {p G Tx(Xn) | a0 G aA(p)}.

A EX„-tree language is DR recognizable if it is recognized by some DR E J „ -
recognizer. Such tree languages are called DR tree languages.

All DR S-algebras considered in this paper are supposed to be finite.
Set E = U({<TI,... ,crm} | a G £ m , m > 0). For any x G Xn the set gx(p) C E*

of x-paths in a given EX„-tree p is defined as follows:

(1) gx(x) = e,

(2) gx(y) = 0 for y G Xn, y / x,

(3) 9x{p) - Pl9x{pi) U . . . U CTm9x(Pm) for p = o(pi, . . . ,pm).

For T C T E (X „) and X G Xn, set Tx = \J(gx(p) | p G T).
For a DR £Xn-recognizer A = (A, ao, a) and x G Xn, now define the recognizer

Ax = (E, A, a0 ,5, A ^) by 5(a, Oj) = iTj{a{a)) (a G A, a G E), where x = Xi and
7Tj is the j th projection of a vector. (Since Ax are used to recognize words (paths)
they are written in the standard form of finite state recognizers.)

We shall use the following obvious result.

Lemma 7. For all DR recognizable EXn-tree language T and X £ Xn, Tx d
recognizable' language. <(>

Classes of Tree Languages and DR Tree Languages 263

The syntactic path congruence of a £X„-tree language T is the relation on E*
defined by the following condition. For any w\,w2 G E*,

wi [iT W2 (Vx G X)(Vu, v G £*)(uwxv G Tx w ^ u G Tx).

The syntactic path monoid, Synpm(T) of T is E*/£:r- Denote by the same [LT
the restriction of [IT to E + . Then E + / / i r is called the syntactic path semigroup of
T and it is denoted by Synps(T).

The following facts are obvious since in both cases fir is the intersection of the
usual syntactic congruences of the languages Tx (x G X).

Lemma 8. For any DR EXn-tree language T, E*/[IT is isomorphic to a subdirect
product of the syntactic monoids E* /[LTX (Z G Xn). Similarly, E + / / 2 r IS isomorphic
to a subdirect product of the syntactic semigroups E + /[LTx (X G Xn). 0

A DR property is a class of DR tree languages. We say that a DR property
Prop can be path-defined by a class M of monoids, if for all DR tree languages
T, T G Prop •£=>• Syntpm(T) G M. Moreover, a DR-property Prop can be path-
defined by a class S of semigroups, if for all DR tree languages T, T G Prop <̂ =>
Syntps(T) G S.

Using Lemma 8, the next result can be proved in the same way as Theorem 1.

Theorem 10. Let Prop be a DR property. Assume that the following conditions
are satisfied:

(1) For every DR T,Xn-language T there exists a DR T,Xn-recognizer A with
T (A) = T such that

T G Prop <i=> (Vx G Xn)(T(Ax) G Prop(Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

Then Prop can be path-defined by M . 0

By the proof of Lemma 7, the above result can be formulated as follows.

Theorem 11. Let Prop be a DR property. Assume that the following conditions
are satisfied:

(1) For every DR HXn-language T,

T G Prop (Vx G Xn)(Tx G Prop (Lang)).

(2) Prop(Lang) can be defined by a class M of monoids.

(3) M is closed under subdirect products and subdirect factors.

264 Ferenc Gécseg

Then Prop can be path-defined by M.

One can also show

Theorem 12. Let Prop be a DR property. Assume that the following conditions
are satisfied:

(1) For every DR T,Xn-language T,

T £ Prop (Vz e Xn){Tx £ Prop (Lang)).

(2) Prop(Lang) can be defined by a class S of semigroups.

(3) S is closed under subdirect products and subdirect factors.

Then Prop can be path-defined by S.

4.1 DR monotone tree languages
It is said that a DR SX„-recognizer A = (A, ao, a) is DR monotone if there exists
a partial ordering < on A such that 7rj(cr(a)) > a for all a £ £ m , 1 < i < m and
a £ A. Moreover, a tree language T C T^(Xn) is DR monotone, if T = T (A) for a
DR monotone EX„-recognizer A.

Let S be a semigroup and s £ S an arbitrary element. It is said that r £ S
is a divisor of s if s = rt or s = tr for some t £ S. A subsemigroup 5" of S is
closed under divisors if S' contains all divisors of each of its elements. Moreover,
we say that a subsemigroup S' of 5 is a right-unit subsemigroup if there exists an
s £ S such that S' = {r £ S \ s = sr}. More precisely, in this case S' is called the
right-unit subsemigroup of S belonging to s.

The class of monoids whose all right-unit subsemigroups are closed under divi-
sors will be denoted by Mci<i.

The following result from [3] gives a semigroup-theoretic characterization of
monotone languages.

Theorem 13. A recognizable language L is monotone iff every right-unit subsemi-
group of the syntactic monoid of L is closed under divisors. 0

Thus the class of monotone languages is defined by the class Mcid of monoids.
The next result is from [1].

Theorem 14. The class of all monotone tree languages together with M ^ satisfies
the conditions of Theorem 3. 0

For DR monotone tree languages we have

Theorem 15. The class Prop of all DR monotone tree languages with M = Mcid
satisfies the conditions of Theorem 11.

Classes of Tree Languages and DR Tree Languages 265

Proof. It has been shown in [1] that (2) and (3) are true.
For showing (1), take a DR monotone EX„-language T. For all x £ Xn, Tx are

monotone. Therefore, Tx £ Prop(Lang).
Conversely, assume that for all x, £ Xn, TXi are monotone. Therefore, there are

monotone recognizers B¿ = (E, Bi,bi0,Si, B!¡) with partial orderings <¿ on Bi such
that T(Bi) = TXi. Define the DR EX„-recognizer B = (B, b0, b) in the following
way:

(1) B = (B, E) where B = BiX ... x Bn and for all (6 i , . . . , bn) £ B and a £ £ m ,

(7B(6i, ...,bn) =
((5i(bi,ai),..., 5n(bn,cri)),..., (Si(bi,am),... ,5n(bn,crm))).

(2) b0 = {blo...,bno).

(3) J5(i) = B i X . . . x Bi-1 x Bi x Bi+1 x...x Bn.

It is a routine work to show that T(B) = T. Define the relation < on B by

((&!,...,6„)< (6'i b'n)) ((Vi £ {1 , . . . ,n}) (b i <i &;))

((b1,...,bn),(b'1,...,b'n)£B).

Easy to show that < is a partial ordering and (6 i , . . . , bn) < nj(a(bi,..., bn)) for
all (&!,. . . , bn) £ B, a £ £ and j £ { l , . . . , n } . Thus, T £ Prop. 0

Since the class of DR tree languages is a proper subclass of the class of all
tree languages both the class of all monotone tree languages and the class of DR
monotone tree languages can be defined by the same class Mcid of monoids, one
could come to the hypothesis that the class of all DR monotone tree languages
is the restriction of the class of all monotone tree languages to the class of DR
tree languages. However, in [3] it was shown that the class of DR monotone tree
languages and that of monotone tree languages are incomparable.

4.2 D R nilpotent tree languages
Let A = (A, E) be a DR E-algebra, a £ A an element and p £ T^(Xn) a tree.
Define the word fr(ap) £ A* in the following way:

1) if p = x £ Xn: then fr(ap) = a,

2) if p = . . . ,Pm) and (a i , . . . , a m) = crA(a), then

fr(op) = fr(aipi) . . . fr (ampm) .

A DR EX„-algebra A = (A, E) is DR nilpotent if there are an integer k > 0
and an element a £ A such that for all a £ A and p £ T^(Xn) with mh(p) > fc,
fr(ap) = a} for a natural number I. (a is called the nilpotent element of A and mh(p)

266 Ferenc Gécseg

is the length of the shortest path of p.) A DR £Xn-recognizer A = (A, ao, a) is DR
nilpotent if A is DR nilpotent. Moreover, a EX„-tree language T is DR nilpotent
if it can be recognized by a DR nilpotent EXn-recognizer.

A semigroup S is nilpotent if it has a zero-element 0 and there is a non-negative
integer k such that s i . . . St = 0 for all s i , £ S.

The class of all nilpotent semigroups will be denoted by Snii-
The following result from [12] gives a semigroup-theoretic characterization of

nilpotent languages. (See, also [5].)

Theorem 16. A recognizable language L is nilpotent iff the syntactic semigroup
of L is nilpotent. 0

Thus the class of nilpotent languages can be defined by the class Sn¡i of semi-
groups.

Theorem 17. The class of all DR nilpotent tree languages with S = Sn¡i satisfy
the conditions of Theorem 12.

Proof. It has been proved in [1] that (2) and (3) are true.
Condition (1) can be shown in a similar way as (1) in the proof of Theorem

15 by replacing "DR monotone" with "DR nilpotent", taking (6 1 ; . . . , 6^) to be the
nilpotent element if is the nilpotent element of B¿, and disregarding the partial
ordering.

4.3 DR definite tree languages
Let 5 be a semigroup. It is said that 5 is right regular if the equality ssi = s¡ holds
in S for any element s and idempotent s/ . The class of all right regular semigroups
will be denoted by Srr

Let k > 0 be an arbitrary integer. A DR E-algebra A = (A, £) is DR k-definite
if fr(ap) = h(a'p) for all a, a' £ A and p £ Ts(Xn) with mh(p) > k. A DR
£Xn-recognizer A = {A, Go, a) is DR k-definite if A is DR /c-definite. Moreover, a
£Xn -tree language T is DR k-definite if it can be recognized by a DR /c-definite
EXn-recognizer. Finally, T is DR definite if it is DR /c-definite for some k.

It is well known that the class of all definite languages can be defined by the
class of all right regular semigroups. Thus, condition (2) of Theorem 12 is satisfied
by Srr. We now show

Theorem 18. The class of all DR definite tree languages with S = Srr satisfies
the conditions of Theorem 12.

Proof. Condition (3) of Theorem 12 is obviously satisfied by Srr.
It is obvious that if T C Ts(Xn) is DR /c-definite then so are Tx for all x £

Xn. Conversely, assume that TXi are fcj-definite. There are /¡¿-definite recognizers
B¿ = (E, Bi, bio,5i, B¡) such that T(B¿) = Tx¡. Again take the DR EXn-recognizer
B = (S,6o,b) obtained by the construction used in the proof of Theorem 15. Let
k — max(/c¿ | i = 1 , . . . ,n). It is easy to show that B is /c-definite and T(B) = T.

Classes of Tree Languages and DR Tree Languages 267

References
Gécseg, F. Classes of tree languages determined by classes of monoids. Inter-
national Journal of Foundations of Computer Science. 18 (2007), 1237-1246.

Gécseg, F. and Imreh, B. On a special class of tree automata. In 2nd Conf. on
Automata, Languages and Programming Systems (Salgótarján, 1988), 141-152.

Gécseg, F. and Imreh, B. On momotone automata and monotone languages.
Journal of Automata, Languages and Combinatorics, 7 (2002), 71-82.

Gécseg, F. and Imreh, B. On definite and nilpotent DR tree languages. Journal
of Automata, Languages and Combinatorics, 9 (2004), 55-60.

Gécseg, F. and Peák, I. Algebraic theory of automata. (Akadémiai Kiadó, Bu-
dapest, 1972).

Gécseg, F. and Steinby, M. Tree automata. (Akadémiai Kiadó, Budapest,
1984).

Gécseg, F. and Steinby, M. Tree languages. In Handbook of Formal Languages,
Vol. 3, eds. G. Rozenberg and A. Salomaa (Springer-Verlag, Berlin, 1997),
1-68.

Gécseg, F. and Steinby, M. Minimal Recognizers and Syntactic Monoids of DR
Tree Languages. In Words, Semigroups, & Transductions, World Scientifics,
(2001), 155-167.

Heuter, U. Definite tree languages. Bulletin of the EATCS, 35 (1988), 137-142.

Pin, J.-E. Syntactic semigroups. In Handbook of Formal Languages, Vol. 1,
eds. G. Rozenberg and A. Salomaa (Springer-Verlag, Berlin, 1997), 679-746.

Salehi, S. Varieties of tree languages definable by syntactic monoids. Acta
Cybernetica, 17 (2005), 21-41.

Sevrin, L. N. On some classes of abstract automata (Russian). Uspehi matem.
nauk, 17:6(108) (1962), 219.

Steinby, M. A theory of tree language varieties. In Tree Automata and Lan-
guages, eds. M. Nivat and A. Podelski (Elsevier, Amsterdam, 1992), 5781.

Thomas, W. Logical aspects in the study of tree languages. In Ninth Collo-
quium on Trees in Algebra and in Programming (Cambridge University Press,
Cambridge 1984), 270-280.

Received 2nd November 2010

Acta Cybernetica 20 (2011) 269-283.

Cooperating Distributed Grammar Systems with
Random Context Grammars as Components

Zbynék Krivka* and Tomás Masopust 1

Abstract

In this paper, we discuss cooperating distributed grammar systems where com-
ponents are (variants of) random context grammars. We give an overview of known
results and open problems, and prove some further results.

Keywords: Cooperating distributed grammar system, random context grammar, left-
random context grammar.

1 Introduction
Rewriting systems based on a simple form of productions play an important role in formal
language theory. Therefore, it is no surprise that context-free grammars and their variants
are frequently studied models. However, many systems describing real-life applications,
such as parsers of natural and programming languages, require some additional mecha-
nisms that allow to check for context dependencies. From that viewpoint, context-free
grammars are not fully convenient for those applications because they are too simple to
handle such dependencies.

A natural method of handling more context dependencies with rewriting systems is
to compose systems of several components, and to define a cooperation protocol for these
components to generate a common sentential form. Such devices are known as cooperating
distributed (CD) grammar systems [2, 3, 12]. Components are represented by grammars
or other rewriting devices, and the protocol for mutual cooperation describes (roughly
speaking) the number of steps one component has to perform before allowing another
component to work. For instance, the most interesting protocol is the so-called terminal
derivation mode (i-mode, for short) making the component work until it is not able to
perform another derivation step. It is well-known that the cooperation has a significant
effect on context-free grammars. Namely, working in non-trivial modes, context-free CD
grammar systems are more powerful than ordinary context-free grammars [3].

'Faculty of Information Technology, Brno University of Technology, BozetSchova 2, 612 66 Bmo, Czech
Republic. E-mail: kr ivkaQf i t . vutbr . cz

^Institute of Mathematics of the Czech Academy of Sciences, Zizkova 22, 616 62 Brno, Czech Republic.
E-mail: masopustflipm. cz

270 T. Masopust, Z. Kfivka

Thus, rewriting systems that are simple and able to check for context dependencies are
of interest as components of CD grammar systems [10]. One of such systems are random
context grammars [14], which are a natural generalization of context-free grammars with
respect to context dependency checking. Specifically, in random context grammars, two fi-
nite sets of non-terminals are attached to each context-free production—a permitting and a
forbidding set—and such a production is applicable only if all permitting symbols appear
in the current sentential form, while no forbidding symbol does. The family of random
context languages contains properly the family of context-free languages and is properly
included in the family of context-sensitive languages (coincides with the family of recur-
sively enumerable languages, respectively, if erasing productions are allowed [1, 14]). In
addition, random context grammars with all permitting (forbidding) sets empty result in
the introduction of forbidding (permitting) grammars, which are less powerful than ran-
dom context grammars (the reader is referred to [7, 15], respectively, for more details and
for some pumping-like properties of those languages).

In this paper, we discuss the generative power of several variants of CD grammar sys-
tems with random context grammars as components, give an overview of known results
and open problems, and prove some further results.

2 Preliminaries and Definitions
We assume that the reader is familiar with formal language theory [6, 12, 13]. An alphabet
is a finite non-empty set. For an alphabet V, V* represents the free monoid generated by V.
The unit of V*, the empty string, is denoted by A, and the free semigroup generated by V is
denoted by V+ = V* - {A}. For a string w € V*, let |vv| denote the length of w and alph(w)
denote the set of all symbols occurring in w. Let CF, CS, and RE denote the families of
context-free, context-sensitive, and recursively enumerable languages, respectively.

A random context grammar [14] is a quadruple G = (N, T, P, S), where N is the alpha-
bet of non-terminals, T is the alphabet of terminals such that NHT = 0, V =NUT, S GN
is the start symbol, and P is a finite set of productions of the form (A —> .v. Per, For), where
A —> .v is a context-free production, AGN and.v G V*, and Per, For C N. For u, v £ V* and
a production (A —> x, Per, For) G P, the relation uAv => uxv holds provided that

Per C alph(u\>) and alph(uv) n For = 0. (1)

The transitive closure and the reflexive and transitive closure of =4» are denoted by and
respectively. The language generated by G is defined as L(G) = {vv GT* : S =>* vv}.

A permitting (forbidding) grammar is a random context grammar G = (N,T,P.S), where
for each production (A —> .v, Per, For) G P, it holds that For = 0 (Per = 0, respectively).
The language families generated by random context grammars, permitting grammars, and
forbidding grammars are denoted by RC; , PER;, and FOR^, respectively, and by RC,
PER, and FOR, respectively, if they are generated by corresponding grammars without
erasing productions.

A left-random context grammar [4, 8] is a quadruple G = (N,T,P,S), where N, T,
P, and 5 are the same as in random context grammars. For u,v G V* and a production
(A —» x,Per, For) G P, we define the relation uAv => uxv provided that Per C alph(u)

CD Grammar Systems with Random Context Grammars as Components 271

and alph(u) n For = 0. That is, only the symbols on the left side of the rewritten non-
terminal are considered. The language generated by G is defined as L(G) = {w G T* :
S =>* vi'}. A left-permitting (left-forbidding) grammar is a left-random context grammar
G = (N.T.P.S), where for each production (A —> x, Per, For) ç P, it holds that For = 0
(Per — 0, respectively). The language families generated by left-random context grammars,
left-permitting grammars, and left-forbidding grammars are denoted by ¿RC;_, ¿PER; ,
and £FOR;, respectively, and by ¿RC, ¿PER, and ¿FOR, respectively, if they are gener-
ated by grammars without erasing productions.

2.1 Cooperating Distributed Grammar Systems

A cooperating distributed (CD) grammar system is a construct T = (N, T, P\, Pi,..., Pn, S),
n > 1, where N is the alphabet of non-terminals, T is the alphabet of terminals, NilT = 0,
S G N is the start symbol, and for 1 <i<n, each component Pj is a finite set of context-free
productions. For u,v G V*,V = NUT, and 1 < k < n, let u =>k v denote a derivation step
performed by the application of a production from As usual, extend the relation
to (the m-step derivation), m > 0, and In addition, we define the relation
u v so that u => j v and there is no w G V* such that v =4>/; w. The languages generated
hy r working in the /-mode, / G {*, / } U {<m, =m, >m \ m > 1}, denoted by L/(r), is
defined as follows.

r-mode L, (F) = {w GT* : there are ¿ > 1 and sentential forms a,-, 1 < i < I,
such that a,- a,+i, 1 <kj < n, ai = S, and (X(= w}.

-mode L(r) = {w £T* : there are ¿ > 1 and sentential forms a,-, 1 < ; < I,
such that AI a,-+i, 1 <KT < N, (X\ = S, and AT = w}.

=m-mode L= m (r) = {iv 6 T* : there are ¿ > 1 and sentential forms a,-, 1 < i < ¿,
such that a,- 1, 1 < k\ < n, a\ = S, and a(= w}, m > 1.

</«-mode L<„,(r) = {w € T* : there are ¿ > 1 and sentential forms a,-, 1 < i < I,
such that ai a,+ i, 1 < ki < n, 1 < ji <m,a\— S, and ap = w}.

>w-mode L>m(F) = {vv G T* : there are ¿ > 1 and sentential forms a,, 1 < i < £,
such that a, , 1 < kj < n, 1 < m < ji, a\ = S, and a/ w}.

Language families generated by CD grammar systems with n context-free components
working in the /-mode are denoted by C D / (C F ^ , /:), or C D / (C F , n) if the components are
non-erasing. The following results are well-known [3].

1. CD /(CFA ,«) = CD /(CF,«) = CF, f o r « > 1 and/G {=l,>l,*}U{<k : k > 1},
2. CF c CD7(CF,2) Ç CDy (CF. r) Ç MAT and

C F C C D / I C F X , 2) Ç C D / (C F A , r) C M A T a , for / G { = * : , >k : k > 2 } and r > 3,

3. CD,(CFA,2) = CDr(CF,2) = CF and CD;(CFA,n) - CD,(CF,«) = ETOL, forn > 3,

where ETOL denotes the family of languages generated by extended tabled interaction-
less Lindenmayer systems [12], and MAT and MAT^ denote the families of languages
generated by matrix grammars without and with erasing productions [6], respectively.

272 T. Masopust, Z. Kfivka

Obviously, the definition of CD grammar systems can be generalized so that the com-
ponents are sets of productions of any type. This leads to several new definitions of CD
grammar systems with (permitting, forbidding, left-permitting, left-forbidding, left-) ran-
dom context grammars as components. The family of languages generated by CD grammar
systems with n components of type X working in the /-mode, / £ {*,t} U {<k, =k, >k :
k > 1}, is denoted by CDy(X^,n), or CDy(X,n) if the components are non-erasing.

3 Results
First, let us recall that CF c PERA = PER c R C c CS, CF C FORA C RCA = RE,
and CF c FOR C RC [7, 15, 16]. In addition, in the case of left-forbidding grammars
¿FOR,* = ¿FOR = CF [8], i.e., left-forbidding languages coincide with context-free lan-
guages. However, it is of interest to compare this with results concerning context-free CD
grammar systems and left-forbidding CD grammar systems (below), where it turns out that
although the components are of the same power, left-forbidding CD grammar systems are
more powerful than context-free CD grammar systems. Furthermore, in the case of left-
permitting grammars CF c ¿PER [4], which is surprising in comparison with the result
concerning left-forbidding grammars. The inclusion is clear from the definition, and the
strictness follows from the following example [4].

Example 1. Let G = ({S,A,C,A',C'}, {a,b,c},P,S) be a left-permitting grammar, where

P = {(5 AC, 0), (A -> aA'b, 0), (A ->• ab, 0), (A' -> A, 0),
(C —>• cC', {A'}), (C —» c,0), (C' C, {A }) } .

We can see that L(G) = {a"b"cin :n>m> 1}, which is a non-context-free language.

Note that not all the relations among language families PER, FOR, ¿PER, RC, ¿RC,
CS (and analogously among their erasing variants) are known. More specifically, only the
relations depicted in Figure 1 are known. The reader is also referred to [1] for more details.

Open problem 1. What are the relations among the above mentioned language families?

3.1 Alternative Definition of the Direct Derivation Step

In the case of random context grammars, the direct derivation step is in the literature also
defined so that the rewritten symbol is considered by the context-dependency checking
mechanism (cf. [14] and [11]), i.e., for u,v € V* and a production (A —»x,Per,For) € P,
the relation uAv => uxv holds provided that

Per C alph(uAv) and alph{uAv) n For - 0. (2)

Lemma 1. Definitions (1) and (2) are equivalent for random context (permitting, forbid-
ding) grammars.

CD Grammar Systems with Random Context Grammars as Components 273

Figure 1: A hierarchy of language families. If two families are connected by a line (an
arrow), the upper family includes (includes properly) the lower family. If two families are
not connected, they are not necessarily incomparable.

Proof. (1) (2): Let G = (N, T, P, S) be a random context (permitting, forbidding) gram-
mar using definition (1). Construct the grammar G' = (JVU N',T,P',S) of the same type
using definition (2) so that iV' = { A ' : A 6 N}, NnN' = 0, and P' is defined as follows.

(a) P' = {(A -»A',<d,N'),(A' ->• x,Per,For): (A x, Per, For) G P) for forbidding and
random context grammars.

(b) P' = {(A —> A',0,0), (A' —>x,Per,<b): (A —• x, Per,0) G P} for permitting grammars.

It is not hard to see that L(G) = L(G').
(2) => (1.): Let G be a random context (permitting, forbidding) grammar using defini-

tion (2). Construct the grammar G' of the same type using definition (1) so that for each
production p = (A —> x, Per,For) of G with A $ For, add p' = (A —¥ x,Per— {A}, For) to
productions of G'. Clearly, p is applicable in G if and only if p' is applicable in G'. •

Similarly, we can modify definition (2) of the direct derivation step for left-random
context grammars, i.e., for u,v G V* and a production (A —¥ x, Per, For) G P, the relation
uAv uxv holds provided that Per C alphiuA) and alph(uA) fl For = 0. As above, we
refer to those two definitions as to definitions (1) and (2). The reader can see that the
implication (2) => (1) of the previous lemma holds for left-random context (left-permitting,
left-forbidding) grammars. Thus, definition (2) is weaker than definition (1) in the sense
that every left-random context (left-permitting, left-forbidding) grammar using definition
(2) can be converted to an equivalent grammar of the same type using definition (1). As
left-forbidding grammars generate only context-free languages, we have that these two
definitions are equivalent for left-forbidding grammars. In addition, the implication (1) =>
(2) holds for left-permitting grammars. Thus, we have the following result.

274 T. Masopust, Z. Kfivka

Lemma 2. Definitions (1) and (2) are equivalent for left-permitting and left-forbidding
grammars.

However, the construction (1) => (2) does not work for left-random context grammars.

Open problem 2. Are these two definitions equivalent for left-random context grammars?

As definition (2) is weaker than definition (1), in the sense mentioned above, we im-
plicitly use definition (1) from now on. However, definition (2) is also discussed.

3.2 (Left-)Random Context Components

Let r = (N, T, Pi, P2,..., P„, S), n > 1, be a CD grammar system with (left-)random context
components and consider an /-mode, / £ {*. = 1.> 1} U {<k : k > 1}. The behavior of
r is then characterized by choosing a component and applying any of its productions; the
cycle is repeated. Thus, F behaves as the (left-)random context grammar G = (N, T, Pi U
P2 U • • • U Pn, S). The following holds.

Lemma 3. Forn> 1 and f £ {*, = 1, >1} U {<k : k > 1},

1. CDf(RCx,n) = RCX and CDf(RC,n) =RC,
2. CD f(FORx, n) = FORi and CD ¡(FOR, n) = FOR,
3. CDf(PERx ,n) = PER, = PER = CD/(PER, n) [16],
4. CDf(lPER\, n) = tPERx and CD/¿PER, n) = ¿PER,
5. CDf(tFOR\,n) = CF = CDf(IFOR,n) [8].

By the well-known result RC; = RE [6], we have the following result.

Lemma 4. Forn> 1 and f e { i } U{=k,>k : k > 2}, CDf(RCx,n) = RCX-

Given a random context grammar without erasing productions, the grammar can be
considered as the only component (with productions (A —> A, 0,0) added, if needed), which
gives the following.

Lemma 5. For n > 1 and / £ {?} U {=k, >k:k> 2}, RC C CDf(RC,n).

We prove that the other inclusion holds true, too.

Lemma 6. For n > 1, CD,(RC,n) C RC

Proof Let T = (N, T,Pi,P2,... ,P„,S) be a CD grammar system with n random context
components. Construct the random context grammar G = (JVU {S},T U{c},P',.S), where
c, 5 are new symbols, c,S g TUN, N = NUN'U {[&•], (p,Qi),[p,Q,•],[/] : 0, C Ph p e
Qi, 1 < / < n}, N' = {X' :X € N}, and P1 is constructed as follows:

1. For each (A x. Per, For) e P„ add (A -> .v, Per U {[/]}, For) to P'.
2. For 1 < i,l < n, add to P'

CD Grammar Systems with Random Context Grammars as Components 275

a) (S->S[/],0,0), c) ([0] [£],0,0),
b) ([¿] ^] , 0 , 0) , d) ([/] ^ c , 0 , 0) .

3. For Q¡ Ç P¡ and p=-(A-r x, Per,For) G Q¡, 1 < i < n, add also to P'

e) ([Qi]^\Qi~{p}}A{A}),
f) ([0¿] ->(p,0 /) , {A} ,0) ,
g) (A->A ' , { (p ,ß ,) } , {A ' }) ,

i) ((p,Qi)^[p,Qi},{A',x},(d),

for X e Per,

for X G For,

j) (A' —» A,0,0),

k) ([p, &] - * [& • - { / > }] , 0 , K }) -

The main idea of the proof is to simulate the CD grammar system so that the non-
terminal [/] denotes the simulated component, the grammar uses productions of P¡, and in
some moment it non-deterministically decides that no other productions of P, are applica-
ble, see production (2.b). This is then verified by productions in (3) so that a production
p is removed from the non-terminal Q¡ if it is not applicable. If no productions of P¡ are
applicable, production (2.c) can change the component.

We prove that L,(T)c = L(G). As non-erasing random context grammars are closed un-
der restricted homomorphisms (Lemma 1.3.3 in [6]), we get that there is a random context
grammar H such that L¡ (F) = L(H).

The simulation of T by G starts with a production constructed in (2.a) applied only
once because S does not occur on the right side of any production. Furthermore, every
successful derivation is finished by the application of a production constructed in (2.d).
If uAv =>, uxv in R, for 1 < i < n, A G N, u, v,x G (N U T)*, then uAv[i) uxv[i] in G by
(A —> x,Per U {[/]},For). If F changes components from P¡ to Pt, for some 1 < i,£ < n,
and the sentential form is w e (Â U T)*\ then no production from P¡ can be applied. This is
verified in G by the following sequence of productions: w[i] =>c w[P,] w[0] =>c, w\(],
by (2.b), (3)*, and (2.c). In more detail, for every p — (A —> x, Per, For) G P¡, if A does not
occur in w, then w[Q¡\ =>Q W[Q¡ — {p}\, by (3.e); otherwise, if W = uAv, we need to check
that it is not applicable because of permitting and forbidding sets:

where (3.h) is applied if there is X G Per missing in uv, whereas (3.i) is applied if there is
Y G For occurring in uv. As p is not applicable to w in T, at least one of (3.h) and (3.i)
must be applicable in G.

On the other hand, to prove L(G) C L,(r)c, let h be a homomorphism defined as h(X) =
X,X G NUT, h(A') = A , A ' G N', h(B) = X otherwise, and let NQ=N-(N\J N'). We
prove that if yY => zZ in G by (2.b), (2.c), (2.d), or (3), then h(y) h(z) in T, for G
(A ^ U A ^ ' U T) * , Y G Nq, and Z G N Q (J { C } . A S yY contains exactly one symbol from Nq
and this is preserved by (2.b), (2.c), and (3), yY zZ by (2.b), (2.c), (2.d), or (3) implies
that |}>y| = \zZ\. Consider the form of Y: (I) If Y = [/], productions (1), (2.b), and (2.d)

uAv[Qi] =5>G uAv(p,Qi) =$>G uA'v(p,Qi)

uA'v[p, Qj]
=>G uAv[p, Qi] =>G uAv[Qi - {/?}]

(by (3.f) and (3.g))
(by (3.h) or (3.i))
(by (3.j) and (3.k))

276 T. Masopust, Z. Kfivka

can be applied. (1) is applied if yY = t/Av[/] => mxv[j] = zZ in G, which corresponds to
y = uAv =>,- uxv = z in T by (A —» x, Per,For) £ P¡, (2.b) implies that y = z and Z = [P,-].
(2.d) is the last step of any successful derivation of G replacing the rightmost non-terminal
with c; here, y = z and Z = c. (II) If Y = [Q¡], p = (A —» x,Per,For) £ (2/ is tested for its
non-applicability to y. If (3.e) is applied, A does not occur in y, which implies that p is not
applicable; this is remembered by removing p from Q¡. Here, y = z and Z = [Q¡ — {/;}].
If (3.0 is applied, then A appears in y, y = z, and Z = (p,Q¡) (see III below). If (2.c)
is applied, then Q¡ = 0, y = z, and Z = [£], for some 1 < t < n. This means that there
is no applicable production and the component can be changed to í. (Ill) Y = {p,Qi),
p = (A —• x,Per, For) £ Q\. If (3.g) is applied, then A' does not occur in y, A' occurs in z,
h(y) = h(z), and only (3.h), (3.i), and (3.j) can be applied. If (3.h) is applied, A occurs in
h(y) and at least one symbol X £ Per is missing in uv, for h(y) = h(z) = uAv. Thus, p is not
applicable in F, and Z = [p, Q¡] (see IV below). Analogously, if (3.i) is applied, then there
is X € For occurring in uv. Again, p is not applicable in T, andZ = [p, Q¡}. (IV) Y = [p, Q¡],
p = (A —> x,Per, For) £ Qj. If (3.j) is applied, then A' occurs in y, h(y) = h(z) = z, and
Z = Y. If (3.k) is applied, then A' does not occur in y = z and Z = [Qj — {p}]. Thus,
we remember than p is not applicable. This cycle is repeated until the non-terminal [0] is
reached (see II above). As the successful derivation starts by (2.a), the proof proceeds by
induction. Thus, for w[¿],v[£] £ (NUT)*NQ, we have proved that if u[i] =>* v[i\ in G, then
u =>'¡ v in r by productions from P¡, which completes the proof. •

The following lemma discusses the effect of the remaining two derivation modes.

Lemma 7. For n > 1 and f € {=k, >k : k > 2}, CDf(RC, n) Ç RC.

Proof. Let r = (N. T,P\,P2,... ,P,,,S) be a CD grammar system with n random context
components working in the >À:-mode, for k> 2. Construct the random context grammar
G = (i V U { S } , r u { c } / , S) , where c,S <£ TUÑ, Ñ = NUNrhsU{[i,m},(i,m) : 1 < i <
n,0<m<k}, Nrhs = {(x) : (A x, Per, For) €P¡, 1 <i< n}, and for all/5,, 1 < i <n, and
all (A x,Per, For) £ P¡, add the following productions to P':

1. (S —> S[z,&],0,0),
2. (A (x),Peril {[i,m}},For UNrhs), where 1 < m < k

3. ((x) x, { (i , m)},0), where 0 < m < k

4. ([i,k)^(i,k),{{x)},9),

5. ([t,m]-> (i,m-l),{(x)},0), where 1 <m<k,

6. ((i,m) ->• [i','m],0, {(x)}), where 0 <m< k,

7. ([/,0] [;,Â:j,0,0), where 1 <j<n,

8. ([¿,0]-»c,0,0).

Each non-terminal of the form [/, in] or {i, m) consists of the index, i, of the simulated
component of F and the counter, m, of the number of productions of P¡ which need to be
applied by T to allow another component to work. They are used to simulate productions
of the ith component and to count the number of simulated components, respectively.

CD Grammar Systems with Random Context Grammars as Components 277

To prove that L>^(r)c Ç L(G), we demonstrate that if uAv =>,- uxv in Y by a production
(A -> Per, For) G P„ then

where o — m— 1, for m < k, or o G {k,k — 1}, for m = k. If T makes k + i steps by pro-
ductions from Pj, for some Í > 0, then in k + i repetitions of the derivation of G shown
above, the first I is made using production (4), while the last k is made using production
(5). Furthermore, when F changes its component from P¡ to Pj, for some 1 < i,j < n, then
G derives .v[z,0] => x[j,k] by production (7). As every derivation of G starts by a produc-
tion constructed in (1), the proof proceeds by induction. Finally, the last non-terminal is
rewritten to c by (8) as the last step of the simulation.

To complete the proof, we demonstrate that L(G) Ç L>K(Y)c. Let NQ = Ñ — (NUNRI,S),

and let h be a homomorphism defined as h(X) = X, X G N U T, h((x)) =x, (x) G N,-I,S, and
h(B) = A otherwise. As S => S[i,k] starts the simulation, we prove that if y Y => z,Z in G,
then h(y) =>* h(z) in T, fory,z£ (NUNRHSUT)*, Y € NQ, andZ G NQU{C}. Clearly, S[i,k]
contains one symbol from NQ and this is preserved by productions (4) and (2) through (7).
The last non-terminal, Y, and the occurrence of a symbol from NR/TS control the derivation
of G in the following way: (I) Y = [i,m], 1 < m < k. If y contains no symbol'(j:), (2)
simulates the corresponding production of P, including permitting and forbidding checks,
i.e., y = uAv u(x)v = z and h(y) = uAv => uxv = h(z)', Z = [i,m]. If it contains (x),
(4) or (5) is applied to count the number of remaining steps of the current component.
Thus, h(y) = h(z), and Z = (i,m) or Z = (i,m - 1). (II) Y = {i,m), 0<m<k. If (x)
occurs in y, (3) finishes the simulation of a production from P¡, i.e., y = u(x)v =$> uxv = z
and h(y) = h(z); Z = {i,m). If there is no (x) in y, Y is rewritten by (6), y = z, and
Z = [i,m\. (Ill) Y = [/,0]. Then, either (7) is applied to replace [z',0] with Z = [j,k], for
some 1 < j < n, or (8) finishes the simulation by replacing [/, 0] with Z = c. Thus, for
a[i,m) G (NUT)*NQ, we have proved that only the sequence of productions (2), (4) or (5),
(3), and (6) is applicable, resulting in a string over (N U T)*NQ. A S the derivation starts by
(1), generating a string over (NUT)*NQ, the proof proceeds by induction. As, in addition,
productions (4) do not change the counter, (5) decrease the counter, and (2) (simulating
productions from P¡) are applicable only if the counter is not zero, G simulates at least k
applications of productions from P¡. Thus, we have proved that L(G) = L>¿(r)c and, again,
by [6, Lemma 1.3.3], there exists a random context grammar H such that L>¿.(r) = L(H).

Finally, by omitting productions constructed in (4), G simulates exactly k applications
of productions of the given component. Thus, it proves the statement for =Á:-mode, where
k > 2. Hence, the proof is complete. •

uAv[i,m] => u(x)v[i,m} (by (2))
(by (4) or (5)) => u(x)v(i,o)

=> uxv(i,o) (by (3))
(by (6)) => uxv[i,o

The constructions of proofs of Lemmas 6 and 7 can be modified so that the results also
hold for random context components using definition (1). Productions constructed in (3.g)
and (3.j) are removed from the construction of the proof of Lemma 6, and symbol A' is

278 T. Masopust, Z. Kfivka

replaced with A in the productions constructed in (3) of that proof. The proof of Lemma 7
holds for definition (1) as it is.

We summarize the results in the following theorem.

Theorem 1. For n> 1 and / G {?} U {=k, >k:k> 2}, CDf(RC, n) = RC.

3.3 (Left-)Forbidding Components
Considering terminal derivation mode, the following theorem is proved in [9]. Note that
definition (2) of the direct derivation step is used there. However, by simple modifications,
constructions are also valid for forbidding components using definition (1).

Theorem 2. For n > 2, CD,(FORx ,n)=RE and CDt(FOR, n) =RC C CS.

The following theorems discuss the remaining modes.

Theorem 3. RC = Ui.„> i CD=k(FOR, n) and RCX = U.„>i CD=k(FORx, n).

Proof. The inclusions CD=i(FORx ,n) C RCA and CD=*(FOR,n) C RC follow by Lem-
mas 4 and 7, respectively. To prove the other inclusions, let G = (N,T,P,S) be a random
context grammar, and construct the CD grammar system T with n = |P| + 1 forbidding
components. The main idea of the proof is to introduce a new component for each produc-
tion of G in which the presence of all the permitting symbols is verified by replacing them
one by one (see more details below). Thus, r = (NU/V'U Nrhs U Ncn,, T, P{,P2,..., P„, S),
where

• N' — {A' : A € N}, Nrhs = {(.*) : (A x, Per, For) € P},
• m = max{ |Per - {A } | : (A x, Per, For) G P},

• Nc„, = U/Li for N® = {A^ : A G N}, I <i< m,

and r works in =A:-mode, where k = m + 1. Let j3 be a bijection from P to {1,2, . . . , |P|}.
The components of T are constructed as follows:

1. For each production (A —> x, Per, For) G P, add to Pp(A-ix.Per.For)

a) (A-^A("'-lft''-iA>l)i0iAicmuA?r/!iUA''), for m-[Per-{A}| > 0,
b) (A« -^A^-l\<d,NrhsUN'), where 1 < i <m-\Per - {A}\,
c) (B B',®,NrhsU{B'}), where B G Per-{A},
d) (A^ ^ (x),<d,For{JNrhs),
e) (A (x),Q,For\JNrhs), f orm-\Per - {A}\ = 0.

2. To P„ add:

a) (B' B,%,Nau), where B G N,
b) (<JC> -»• {x),<d,N'UNcm), where (.v) G Nrhs.
c) ((JC) x,d),N'LiNa„), where (x) GNrhs,

CD Grammar Systems with Random Context Grammars as Components 279

Note that the crucial point of the construction is that exactly |Per — {A}| productions
of type (l.c) have to be applied, where the forbidding context guarantees that only one
occurrence of any nonterminal can be primed.

To prove L(G) = L=k(T), we show that each component Pj, i = 1 ,2, . . . , n - 1, simulates
exactly one production of G. Let p = (A —»x, Per, For) be a production of G. The simula-
tion is done by a sequence of productions from Pp(p) as follows. (A) For m — \ Per— {A}| >
0: A production constructed in (1 .a), then m — |Per — {A}| — 1 productions constructed in
(l.b), then |Per — {A}| productions constructed in (l.c), finished by a production con-
structed in (l.d). Summarized, 1 + (m- | Per - {A}| - 1) + (\Per - (A}|) + 1 — m+l
productions are applied, and the component is changed. (B) For m— \Per — {A}| = 0:
\Per—{A}\ productions constructed in (l.c), finished by a production constructed in (l.e).
Again, \Per- {A}| +1 =m-\Per-{A}| + \Per— {A}| +1 — m + l productions are applied,
and the component is changed. After that, the current sentential form contains \Per — {A}|
primed non-terminals and one symbol (x), for some x. The following sequence of pro-
ductions of P„ is applied to remove these symbols: |Per — {A}| productions constructed
in (2.a), m— |Per — {A}| productions constructed in (2.b), and a production constructed in
(2.c).

On the other hand, we show that this is the only possible behavior of F. (A) For
m — \Per—{A} \ > 0: Considering the work of P,, a production constructed in (l.a) has to be
applied first; otherwise, if (l.c) is applied first, then (l.a) (and also (l.b) and (l.d)) cannot
be applied. However, as \Per— {A}| < m and Pj has to perform m + l steps, the derivation
is blocked. (B) For m- | Per - {A}| = 0: Considering the work of Pi, if \Per—{A}\ > 0,
then productions constructed in (l.c) have to be applied first; otherwise, if (l.e) is applied
first, then (l.c) cannot be applied. However, as |Per — {A}| = m > 0, the derivation is
blocked. Thus, each component Pj, i = 1.2,«— 1, generates no more than m primed
non-terminals and one symbol (x), for some v. Considering the component Pn, productions
constructed in (2.a) have to be applied first. Then, if (2.c) is not applied as the (m + l)st
production, the derivation is blocked. On the other hand, if (2.c) is not applied at all, i.e.,
only (2.b) is applied, then only Pn contains applicable productions. Thus, until a production
constructed in (2.c) is applied as the (m+ l)st production, Pn is chosen repeatedly to work.

As we do not introduce any new erasing productions, the proof is complete. •

Corollary 1. RC = U M > , CD>k(FOR,n) andRCx = UM>i CD>k(FORx,n).

Proof. In the proof of the previous theorem, each component Pj, i = 1,2,...,n — 1, per-
forms exactly k steps, only Pn can perform more than k steps. •

Corollary 2.

/. RC = U„>i CD=2(FOR,n) = U„>i CD>2(FOR,n), and

2. RCX = U„>i CD=2(FORx,n) = U„>i CD>2(FORx,n).

Proof. It is shown in [5] that, for any random context grammar G', there is an equivalent
random context grammar G — (N, T, P, 5") using definition (2) such that G is with erasing
productions if and only if G' is, and for (A —y w, Per, Fov) £ P, \Per\JFor\ — 1. Thus, in the
proof of the previous theorem, we have m < 1, and if m — 1, then T works in =2-mode. •

280 T. Masopust, Z. Kfivka

Open problem 3. Can the number of components be reduced?

The following is proved for left-forbidding CD grammar systems in [8].

Theorem 4. Forn> 2 and f G { / } U >k:k> 2}, RE = CDf(tFORx ,n) and CS =
CDf(£FOR,n). In addition, any recursively enumerable language can be generated by a
left-forbidding CD grammar system working in terminal derivation mode with two compo-
nents and twelve non-terminals.

3.4 (Left-)Permitting Components

Although the relation between the families PER and FOR is not known, permitting CD
grammar systems and forbidding CD grammar systems working in terminal derivation
mode are of the same power [4].

Theorem 5. For n> 2, CD,(PERX, n) = CD,(IPERX ,n)=RE and CD,(PER, n) =RC c
CS = CDt(£PER,n). In addition, any recursively enumerable language can be generated
by a left-permitting CD grammar system working in terminal derivation mode with six
components and nineteen non-terminals.

Open problem 4. What is the generative power of permitting (left-permitting) CD gram-
mar systems working in the f-mode, for f G {=/:, >k : k > 2} ?

In this paper, the components use definition (1) of the direct derivation step. In com-
parison with forbidding CD grammar systems working in terminal derivation mode where
these two definitions are equivalent, we do not know whether they are equivalent in the
case of permitting CD grammar systems with at least two components, although they are
equivalent for permitting grammars (see Lemma 1).

Open problem 5.

1. What is the power of permitting CD grammar systems if the components (permitting
grammars) use definition (2) of the direct derivation step?

2. What is the power of left-permitting CD grammar systems if the components use
definition (2) ?

4 Conclusion and discussion
In this paper, we have discussed CD grammar systems where components are (variants of)
random context grammars. Recall that CD grammar systems with only permitting and with
only forbidding components have been studied in [4] and [9], respectively. Originally, the
components of forbidding CD grammar systems used definition (2). of the direct derivation
step. However, the constructions can be modified so that the results hold for forbidding CD
grammar systems with components using definition (1) as well. In addition, all the results
concerning CD grammar systems with random context components proved in this paper
hold for both definitions. On the other hand, to achieve results concerning the generative

CD Grammar Systems with Random Context Grammars as Components 281

power of CD grammar systems with permitting components proved in [4], definition (1)
of the direct derivation step is used. Unfortunately, in this case, we do not know whether
the same results can also be achieved for CD grammar systems with permitting compo-
nents using definition (2), although definitions (1) and (2) are equivalent for permitting
grammars (see Lemma 1). Note that it is not hard to see that definition (1) allows us to
check for at least two occurrences of a given non-terminal symbol (the rewritten one and
the one occurring on the left or on the right of the rewritten symbol), while definition (2)
seems to be too weak to check for that property. However, it might be possible to check
for that property by using some mechanisms of CD grammar systems instead. The cases
of CD grammar systems with left-permitting and left-forbidding grammars as components
are studied in [4] and [8], respectively. In these cases, only definition (1) of the direct
derivation step is considered. An overview of the results follows.

For any n > 1, derivation modes / G { * , = l , > l } U { < / : : & > 1}, and language families
X G {RCA,RC,FORA,FOR,PERA,PER,£RC^, ¿RC,¿PER¿,¿PER,¿FOR¿,¿FOR},

CD / (X , «)=X ,

and for any n > 2 and derivation modes / G {t} U {=&, >k : k> 2},

1. CD/(RCA,N) = UM>I CD/(FOR¿,M) = CD/(¿RCX,N) = CDY^FOR*,«) = RE,

2. CD, (FORA, n) = CD, (PERA , n) = CD, (¿PERA, n) = RE,

3. CD/(¿RC,n) = CD/(¿FOR,n) = CD,(¿PER, RÍ) = CS,

4. CD/(RC,M) = UM>ICD/(FOR,RN) = RC,

5. CD,(FOR, n) = CD,(PER,7Í) = RC.

Recall that it has recently been shown in [16] that the generative power of permitting
grammars coincides with the generative power of non-erasing permitting grammars. In
other words, the erasing productions can be removed from permitting grammars. In addi-
tion, although left-permitting grammars are similar to permitting grammars, it is an open
problem whether a similar relation holds for left-permitting grammars with and without
erasing productions. Note that the proof from [16] cannot be directly applied to the case of
left-permitting grammars because it uses the following property of permitting grammars
that does not hold for left-permitting grammars: for any permitting production (A —> w, U),
if the production can be used to one of the occurrences of A, then it can be used to any oc-
currence of A in the sentential form.

Finally, given two families of grammars generating the same family of languages,
an interesting question is whether or when it is also the case that the language families
generated by CD grammar systems, using these two types of grammars as components,
also coincide. From the results mentioned above, we can immediately see that, e.g., al-
though CF = ¿FOR = ¿FOR*, we have that for any n > 2, CD, (CF, n) C CD,(¿FOR, n) C
CD,(¿FOR¿,n). Similarly, although PER = PER; , the proper inclusion CD,(PER,n) C
CD,(PER; ,«) holds for any n > 2. On the other hand, it is obvious that the equality of
language families generated by CD grammar systems with different types of components
does not imply that the language families generated by grammars of these types coincide.
Thus, the question when the same power of components implies the same power of CD

282 T. Masopust, Z. Kfivka

grammar systems is open. Moreover, note that the discussion in Section 3.1 can also be
considered in this way.

Acknowledgments
The authors gratefully acknowledge very useful suggestions and comments of the anony-
mous referees.

The research by the first author has been supported by the MSMT Research Plan no.
MSM0021630528, and by the MSMT grants 2C06008 and MEB041003. The research
by the second author has partially been supported by the Czech Academy of Sciences,
Institutional Research Plan no. AV0Z10190503, and by the GACR grant no. 202/11/P028.

References
[1] Bordihn, H. and Fernau, H. Accepting grammars and systems: An overview. In

Developments in Language Theory, pages 199-208, 1995. Technical Report 9/94,
Universität Karlsruhe, Fakultät für Informatik, 1994.

[2] Csuhaj-Varjü, E. and Dassow, J. On cooperating/distributed grammar systems. Jour-
nal of Information Processing and Cybernetics (EIK), 26(l-2):49-63, 1990.

[3] Csuhaj-Varjü, E., Dassow, J., Kelemen, J., and Päun, Gh. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Sci-
ence Publishers, Topics in Computer Mathematics 5, Yverdon, 1994.

[4] Csuhaj-Varjü, E., Masopust, T., and Vaszil, Gy. Cooperating distributed grammar
systems with permitting grammars as components. Romanian Journal of Information
Science and Technology, 12(2): 175-189, 2009.

[5] Dassow, J. and Masopust, T. On restricted context-free grammars. In Developments
in Language Theory, pages 434^135, 2010.

[6] Dassow, J. and Päun, Gh. Regulated Rewriting in Formal Language Theory. Springer,
Berlin, 1989.

[7] Ewert, S. and van der Walt, A. P. J. A pumping lemma for random permitting context
languages. Theoretical Computer Science, 270(l-2):959-967, 2002.

[8] Goldefus, F., Masopust, T., and Meduna, A. Left-forbidding cooperating distributed
grammar systems. Theoretical Computer Science, 411(40-42):3661-3667, 2010.

[9] Masopust, T. On the terminating derivation mode in cooperating distributed gram-
mar systems with forbidding components. Internation Journal of Foundations of
Computer Science, 20(2):331-340, 2009.

[10] Mihalache, V. Programmed grammar systems. In Developments in Language Theory,
pages 430-437, 1993.

CD Grammar Systems with Random Context Grammars as Components 283

[11] Paun, Gh. A variant of random context grammars: Semi-conditional grammars. The-
oretical Computer Science, 41:1-17, 1985.

[12] Rozenberg, G. and Salomaa, A., editors. Handbook of Formal Languages, volume
1-3. Springer, Berlin, 1997.

[13] Salomaa, A. Formal languages. Academic Press, New York, 1973.

[14] van der Walt, A. P. J. Random context grammars. In Proceedings of the Symposium
on Formal Languages, pages 163-165, 1970.

[15] van der Walt, A. P. J. and Ewert, S. A shrinking lemma for random forbidding context
languages. Theoretical Computer Science, 237(1-2): 149-158, 2000.

[16] Zetzsche, G. On erasing productions in random context grammars. In International
Colloquium on Automata, Languages and Programming (2), pages 175-186, 2010.

Received 24th of June 2010

Acta Cybernetica 20 (2011) 285-283.

Weak Functional Dependencies on
Trees with Restructuring

Attila Sali* and Klaus-Dieter Schewe^

Abstract

We present an axiomatisation for weak functional dependencies, i.e. dis-
junctions of functional dependencies, in the presence of several constructors
for complex values. The investigated constructors capture records, sets, mul-
tisets, lists, disjoint union and optionality, i.e. the complex values are indeed
trees. The constructors cover the gist of all complex value data models in-
cluding object oriented databases and XML. Functional and weak functional
dependencies are expressed on a lattice of subattributes, which even carries
the structure of a Brouwer algebra as long as the union-constructor is absent.
Its presence, however, complicates all results and proofs significantly. The
reason for this is that the union-constructor causes non-trivial restructuring
rules to hold. In particular, if either the set- or the the union-constructor
is absent, a subset of the rules is complete for the implication of ordinary
functional dependencies, while in the general case no finite axiomatisation for
functional dependencies exists.

Keywords: functional dependency, weak functional dependency, axiomati-
sation, complex values, restructuring, embedded dependency, rational tree

1 Introduction
In the relational data model (R D M) a lot of research has been spent on the theory of
dependencies, i.e. first-order sentences that are supposed to hold for all database
instances (see [3, 25]). Various classes of dependencies for the R D M have been
introduced (see [32] for a survey), and large parts of database theory deals with the
finite axiomatisation of these dependencies and the finite implication problem for
them. That is to decide that a dependency tp is implied by a set of dependencies
£ . where implication refers to the fact that all finite models of £ are also models of

The easiest, yet most important class of dependencies is the class of functional

'Alfréd Rényi Institute of Mathematics, Budapest, P.O.B. 127, H-1364 Hungary, E-mail:
sal i®renyi .hu

^Software Competence Center Hagenberg, Hagenberg, Austria and Johannes-Kepler-
University Linz, Research Institute for Applied Knowledge Processing, Linz, Austria, E-mail:
kd.schewe@scch.at, kd.scheweSfaw.at

mailto:kd.schewe@scch.at

286 Attila Sali and Klaus-Dieter Sehe we

dependencies (FDs). Armstrong (see [6]) was the first to give a finite axiomatisation
for FDs.

Dependency theory is a cornerstone of database design, as the semantics of the
application domain cannot be expressed only by structures. Database theory has to
investigate the implications arising from the presence of dependencies. This means
to describe semantically desirable properties of "well-designed" databases, e.g. the
absence of redundancy, to characterise them (if possible) syntactically by in-depth
investigation of the dependencies, and to develop algorithms to transform schemata
into normal forms, which guarantee the desirable properties to be satisfied.

However, the field of databases is no longer the unique realm of the RDM.
First, so called semantic data models have been developed (see e.g. [9, 22]), which
were originally just meant to be used as design aids, as application semantics was
assumed to be easier captured by these models (see the argumentation in [7,10, 35]).
Later on some of these models, especially the nested relational model (see e.g. [25]),
object oriented models (see e.g. [30]) and object-relational models, the gist of which
are captured by the higher-order Entity-Relationship model (HERM, see [33, 34])
have become interesting as data models in their own right and some dependency
and normalisation theory has been carried over to these advanced data models (see
[14. 23, 24, 25, 31] as samples of the many work done on this so far). Most recently,
the major research interest is on the model of semi-structured data and XML (see
e.g. [1]), which may also be regarded as some kind of object oriented model.

We refer to all these models as higher-order data models. This is, because the
most important extension that came with these models was the introduction of con-
structors for complex values. These constructors usually comprise bulk constructors
for sets, lists and multisets, a disjoint union constructor, and an optionality or null-
constructor. In fact, all the structure of higher-order data models (including XML
as far as XML can be considered a data model) is captured by the introduction of
(some or all of) these constructors.

The key problem is to develop dependency theories (or preferably a unified
theory) for the higher-order data models. The development of such a dependency
theory will have a significant impact on understanding application semantics and
laying the grounds for a logically founded theory of well-designed non-relational
databases.

So far, mainly keys and FDs for advanced data models have been investigated
(see [5, 8, 12, 13, 15, 19, 20, 26, 27, 37, 38]), and this has led to several normal
form proposals (see [4, 5, 16, 37]). The work in [16] contains explicit definitions of
redundancy and update anomalies and proves (in the spirit of the work in [36]) that
the suggested higher-level normal form (HLNF) in the presence of FDs is indeed
equivalent to the absence of redundancy and sufficient for the absence of update
anomalies. The work in [18] deals with disjunctions of FDs leading to so-called weak
functional dependencies (wFDs), while in [17], [21], [39] and [40] first attempts are
made to generalise multi-valued dependencies.

The work in this article still deals with functional dependencies and weak func-
tional dependencies, in particular with the axiomatisation problem. The motiva-
tion for this work is that all the approaches made so far only deal with part of the

Weak. Functional Dependencies on Drees with Restructuring 287

problem. In other words, we still do not have one coherent theory, but merely a
patchwork of partial (though nevertheless non-trivial) results:

• The different approaches use different definitions of functional dependencies
none of which subsumes the other ones. Arenas and Libkin (see [5]) and
similarly Vincent and Liu (see [37]) formalise FDs using paths in XML trees,
while Hartmann et al. (see [19]) exploit constructors for lists, disjoint unions
and optionality. Despite some initial attempts (see e.g. [41]) so far no common
framework subsuming all these different classes of FDs exists. In particular,
the class of FDs in [19] has a finite axiomatisation, while the one investigated
in [5] has not.

• No approach so far deals with all mentioned constructors at the same time.
Hartmann et al. (see [20]) prove a finite axiomatisation taking all construc-
tors into account except the disjoint union constructor. The proof exploits
the underlying algebraic structure of Brouwer algebras. Hartmann et al. (see
[19]) prove a finite axiomatisation taking all but the set and multiset con-
structors into account, but at the same time deal with embedded functional
dependencies and recursion. Finally, Sali and Schewe (see [27]) take all con-
structors into account and prove a finite axiomatisation for a restricted class
of FDs, which still subsumes the one in [20].

The first objective of the research reported in this article was to remove the
remaining restrictions in previous work (see [27]) and to achieve a finite axioma-
tisation for FDs on models, in which all constructors are present. We will show
that such an axiomatisation does not exist. More precisely, we show that we have
non-axiomatisability, if the set and the union constructor are combined, whereas if
one of them is absent, we obtain a finite axiomatisation. However, switching to the
slightly extended class of weak functional dependencies we obtain a finite, though
not fc-ary axiomatisation. This axiomatisation contains a large number of struc-
tural axioms reflecting the non-trivial equivalences between subattributes, which
caused significant challenges for the completeness proof. These equivalences result
from restructuring rules, which were mostly known already long ago (see e.g. [2]).

Our second objective was to provide a framework that subsumes the existing ap-
proaches to dependency theory at outlined below. For this we extend the framework
of nested attributes resulting from the various constructors, which in fact captures
finite trees, to rational trees, i.e. we capture recursion. Furthermore, we deal with
wFDs and FDs that are defined on embedded attributes. With these extensions
the classes of FDs developed by Arenas, Libkin and Vincent, Liu, respectively, can
be represented as special cases of the general class of FDs. The axiomatisation of
the. enlarged class of wFDs is straightforward, once the axiomatisation of wFDs in
the presence of all constructors is known.

288 Attila Sali and Klaus-Dieter Sehe we

Overview
In Section 2 we define the preliminaries for our theory of wFDs. We start with
the definition of nested attributes that are composed of simple attributes using the
constructors that have been mentioned above. Each nested attribute defines a set
of complex values called its domain, and each complex value can be represented as
a finite tree. We then define subattributes, which give rise to canonical projection
maps on the domains. The presence of the union constructor leads to restructuring
rules, which define non-trivial equivalences the set of subattributes of a given nested
attribute. Finally, we investigate the algebraic structure of the set of subattributes
of a given nested attribute. We obtain a lattice, which is even a Brouwer algebra,
if the union constructor is absent. Nevertheless, also in the general case it is
advantageous to define the notion of relative pseudo-complement.

In Section 3 we study certain ideals in such lattices of subattributes, focusing
on the set of subattributes, on which two complex values coincide. These ideals
are therefore called coincidence ideals. The objective is to obtain a precise charac-
terisation in the sense that whenever an ideal satisfies the given set of properties,
we can guarantee the existence of two complex values that coincide exactly on the
given ideal. This leads to the Central Theorem on coincidence ideals, which will be
a cornerstone of the completeness proof. The proof of this result, however, appears
in [28].

In Section 4 we introduce FDs and wFDs formally and first derive sound deriva-
tion rules, most of which are structural axioms reflecting the properties of coinci-
dence ideals. The main result in this section will be the Completeness Theorem for
the implication of wFDs. We then approach the simpler class of FDs and first show
the completeness of a subset of the rules in case not both the set and the union con-
structors are used. If both appear together, we show non-axiomatisability. Thus,
the results in Section 4 fulfil our first objective.

In Section 5 we approach our second objective. We first introduce embedded
dependencies and show that they do not affect our axiomatisation of wFDs. In a
second step we extend the definition of nested attributes capturing also rational
tree values, as they are used in the object models (see e.g. [3] and [30]). We will
show that the axiomatisation of wFDs will also be preserved by this extension.

In Section 6 we discuss the relationship with related work. We show that the
classes of FDs defined by Arenas, Libkin and Vincent, Liu, respectively, are cap-
tured in our framework with all extensions discussed. We discuss the impact of this
result.

Finally, we summarise our work and discuss conclusions in Section 7. This
includes a brief discussion of additional restructuring rules, problems of keys and
Armstrong instances, and an outlook on other classes of dependencies.

2 Algebras of Nested Attributes
In this section we define our model of nested attributes, which covers the gist of
higher-order data models including XML. In particular, we investigate the structure

Weak. Functional Dependencies on Drees with Restructuring 289

of the set S(X) of subattributes of a given nested attribute X. We show that
we obtain a lattice, which in general is non-distributive. This lattice becomes a
Brouwer algebra, if the union constructor is not used.

2.1 Nested Attributes
We start with a definition of simple attributes and values for them.

Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A £U. The elements of II are called simple attributes.

For the relational model a universe was sufficient, as a relation schema could be
defined by a subset R C U . For higher-order data models, however, we need nested
attributes. In the following definition we use a set L of labels, and tacitly assume
that the symbol A is neither a simple attribute nor a label, i.e. A ^ l t u £ , and that
simple attributes and labels are pairwise different, i.e. U fl L = 0.

Definition 2. Let U be a universe and £ a set of labels. The set j\f of nested
attributes (over II and £) is the smallest set with A £ X, U C DNf, and satisfying the
following properties:

. for X g £ and X[,..., X'n £ X we have X{X[,. •., X'n) £ N;

• for X £ L and X' £JJ we have X{X'} £ N, € N, and X(X') £ N;

• • for X\,...,Xn £ L and X[,...,X'n £ 3\f we have X ^) © - ••®Xn(X'n) £ J4.

We call A a null attribute, X(X[,... ,X'n) a record attribute, X{X'} a set at-
tribute, X[X'] a list attribute, X(X') a multiset attribute and Xi(X[)(B- • -(BX^X^)
a union attribute.

In the following we will overload the use of symbols such as X, Y, etc. for
nested attributes and labels. As record, set, list and multiset attributes have a
unique leading label, this will not cause problems anyway. In all other cases it is
clear from the context, whether a symbol denotes a nested attribute in N or a label.
Usually, labels never appear as stand-alone symbols.

We also take the freedom to change the leading label X in a set, list or multiset
attribute to if the component attribute is a union attribute, say X i (X () ©
• • -@Xn(X^). This emphasises the factors in the union attribute. We will see in the
next two subsections that this notation will become important, when restructuring
is considered.

We can now extend the association dom from simple to nested attributes, i.e.
for each J f G N w e will define a set of values dom(X).

Definition 3. For each nested attribute X £ X we get a domain dom(X) as
follows:

• dom(X) = { T } ;

290 Attila Sali and Klaus-Dieter Sehe we

• dom(X(X[,...,X'n)) = {(ui......,vn) | Vi £ dom{Xi) for i = l , . . . , n } ;

• dom(X{X'}) = {{t>i, . . . ,Vk} | k £ N and £ dom(X') for i = 1 , . . . , k and
Vi ^ Vj for i ^ j } , i.e. each element in dom(X{X'}) is a finite set with
(pairwise different) elements in dom(X')\

• dom(X[X')) = {[wi,. ..,vk}\k£N and Uj £ dom{X') for i = 1 , . . . , k}, i.e.
each element in dom(X[X'}) is a finite (ordered) list with (not necessarily
different) elements in dom(X');

• dom(X(X')) = {(«!,... ,vk) \ k £ N and £ dom(X') for i = 1 , . . . , k}, i.e.
each element in dom(X{X')) is a finite multiset with elements in dom(X'),
or in other words each v £ dom(X') has a multiplicity m(v) s N i n a value in
dom{X(X'))-

• dom(Xi(XJ) © • • • © Xn(X'n)) = : Vi) | v{ £ dom{X¡) for i = 1 , . . . , n}.

Note that the relational model is covered, if only the record constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X,
assuming that the universe U and the set of labels L are fixed. Instead of an
i?-relation r we will consider a finite set r C dom(X).

Further note that each complex value v £ dom(X) for some nested attribute
X £ N can be represented as a finite tree. This will be extended in Section 5 to
rational trees.

2.2 Subattributes
In the relational model a functional dependency X —» Y for X,Y C R C II is
satisfied by an R-relation r iff any two tuples , to £ r that coincide on all the
attributes in X also coincide on the attributes in Y. Crucial to this definition is
that we can project i?-tuples to subsets of attributes.

Therefore, in order to define FDs on a nested attribute X £ Ji we need a notion
of subattribute. For this we define a partial order > on nested attributes in such a
way that whenever X > Y holds, we obtain a canonical projection 7ty : dom(X) —>
dom(Y). However, this partial order has to be defined on equivalence classes of
attributes, as some domains may be identified.

Definition 4. = is the smallest equivalence relation on N satisfying the following
properties:

•A = X() ;

• X(X[,..., X'n) = X(X[,..., X'n, A);

• X(X[,..., X'n) = X{X'a{ly ..., X'a{n]) for any permutation a £ S„;

. Xx(Xi) © • • • © Xn{X'n) = Xa{1)(X'a{1)) © • • • © Xa{n){X'a{n)) for any permu-
tation a £ S„;

Weak. Functional Dependencies on Drees with Restructuring 291

. X(X[,. ..,X'n) = X(YU ... ,Yn) if X[= Yt for all i = 1 , . . . ,n;

. X i (X i) © - ' - e X n i X ' J = ^ (n) © - • - © X n (y n) if X[= Yi for all i = 1 , . . . , n;

• X{X'} =X{Y) iiX' = Y-

• X[X') =X\Y] if X' = Y-

• X(X') =X(Y) if X ' = Y\

. ,... ,YX{Y{) © • - • © Fm(0,... ,X'n) = Y^Xi, ...,Y{,...,X'n)® ...
• • • © Ym(X[,..., V^j,..., X'n);

• A- { l i . . . ,n }{Xi(A:i) © • • • © Xn(X'n)} = ^ ^ „ . „ „ ^ X x f X i } , • • •, Xn{X'n})-,

• *{!,...,n} © • • • © xn(K)) = ^ {1 , . . . , « }№ • • •. - ^ n T O) .

Basically, the first four cases in this equivalence definition state that A in record
attributes can be added or removed, and that order in record and union attributes
does not matter! The last three cases in Definition 4 cover restructuring rules, two
of which were already introduced by Abiteboul and Hull (see [2]). Obviously, if we
have a set of labelled elements with up to n different labels, we can split this set
into n subsets, each of which contains just the elements with a particular label, and
the union of these sets is the original set. The same holds for multisets. Of course,
we can also split a list of labelled elements into lists containing only elements with
the same label, thereby preserving the order, but in this case we cannot invert the
splitting and thus cannot claim an equivalence.

X{XAA},X2{B})

Figure 1: The lattice S (X {X i (, 4) © X2{B)}) = S (X (X ! { A } , X 2 { B }))

In the following we identify N with the set N / = of equivalence classes. In
particular, we will write = instead of = , and in the following definition we should
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y. In
particular, for X'= Y we obtain X > Y and Y > X.

Definition 5. For X, Y G N we say that Y is a subattribute of X, iff X > Y holds,
where > is the smallest partial order on satisfying the following properties:

292 Attila Sali and Klaus-Dieter Sehe we

• X > A for all X € N;

• X(Y1,...,Yn) > for some injective a : { l , . . . , m } ->•
{1 , . . . ,n} and Ya(i) > X'a(i) for all i = 1 , . . . , m;

• X i (y 1) © - - - © X n (y n) > X a (1) (X ; (1)) © - - - © X a (n) (X ; (T l)) for some permu-
tation a € S„ and y, > X- for all i = 1 , . . . , n;

• X { y } > X{X'} i f f y > X ' ;

• X [y] > X [X '] iff y > X ' ;

• X{Y)>X(X') iff y > X ' ;

• X{i,...,n}[*i(*i) © • • • © Xn{X'n)] > X i X a l X j] , . . . ,X n [X ;]) ;

• X { i fejfX^Xi)©- • -©X f c (X£)] > X { 1 ¿> }[Xi(X0©-- - © X ^ X ;)] for k >

. X (X i l { A } , . . . , X i t { A }) > X { i l i f c }{A};

. X (X i l (A>, . . . J X i f c (A))>X { i l , . . . , i t } (A>;

. X (X i l [A] i . . . ! X l f c [A])>X { i l , . . . , i t } [A] .

Note that the last four cases in Definition 5 cover further restructuring rules
due to the union constructor. Obviously, if we are given a list of elements labelled
with X j , . . . , X „ , we can take the individual sublists - preserving the order - that
contain only those elements labelled by X, and build the tuple of these lists. In
this case we can turn the label into a label for the whole sublist. This explains the
first of the last four subattribute relationships.

For the other restructuring rules we have to add a little remark on notation here.
As we identify X{X1 (X[) © • • • © X „ (x ;) } with X (X j {X[},..., X „ { x ; }) , we ob-
tain subattributes X (X i j { X ^ }, , Xik{X{k}) for each subset I — { ¿ i , . . . , ik} Q
{ l , . . . , n } . However, restructuring requires some care with labels. If we simply
reused the label X in the last property in Definition 5, we would obtain

X{Xl{X[)®X2{X'2)} = X{Xl{X[}.X2{X'2}) >
X{X\{X[}) > X (X i { A }) > X { A } .

However, the last step here is wrong, as the left hand side is an indicator for the
subset containing the elements with label Xi being empty or not, whereas the right
hand side is the corresponding indicator for the whole set, i.e. elements with labels
X] or X->. No such mapping can be claimed. In fact, what we really have to do is to
mark the set label in an attribute of the form X { X i (X {) f f i - • - f f iXn (X^)} to indicate
the inner union attribute, i.e. we should use X{X,...,„} (or even X{A'I,...,A'„}) instead
of X . As long as we are not dealing with subattributes of the form X^... ,fe}{A), the
additional index does not add any information and thus can be omitted to increase
readability. The same applies to the multiset- and the list-constructor.

Weak. Functional Dependencies on Drees with Restructuring 293

X^^pij^JffiX^A)] X(X1[A ,X2[B)) X{h2][X1(X)®X2(B)}

* {I,2}[*I(A) © X2(A)] X(XI[A ,X2[B\)

X{X2\B))

X(Xi[A]) X {1 i2}[A] X(X2[A])

Figure 2: The lattice S(X[Xi(4) © X2{B)])

Subattributes of the form X/ {A} , X/[A] and X / {A } were called counter at-
tributes in [27], because they can be considered as counters for the number of
elements in a list or multiset or as flags that tell, whether sets are empty or not.
Note that X 0 {A} = A, X { l i . . . , „ } {A} = X{A} and X { i } { A } = X(Xi{A}). Analogous
conventions apply to list and multiset attributes.

Further note that due to the restructuring rules in Definitions 4 and 5 we may
have the case that a record attribute is a subattribute of a set attribute and vice
versa. This cannot be the case, if the union-constructor is absent. However, the
presence of the restructuring rules allows us to assume that the union-constructor
only appears inside a set-constructor or as the outermost constructor. This will be
frequently exploited in our proofs.

Obviously, X > Y induces a projection map -ity '• dom(X) —» dom(Y). For
X = Y we have X > Y and Y > X and the projection maps 7Ty and n^ are
inverse to each other.

We use the notation B(X) = {Z £ N | X > Z} to denote the set of subattributes
of a nested attribute X. Figure 1 shows the subattributes of X{X\(A) @X2(B)} =
X(XI{A},X2{B}) together with the relation > on them. Note that the subat-
tribute X { ! 2}{A} would not occur, if we only considered the record-structure,
whereas other subattributes such as X(Xi{A}) would not occur, if we only con-
sidered the set-structure. This is a direct consequence of the restructuring rules.

Figure 2 shows the subattributes of X\Xi(A)®X2(B)) together with the relation
> on them. The subattributes X{ii2}[A] would not occur, if we only considered the
list-structure, whereas other subattributes such as X(Xj[A]) would not occur, if we
ignored the restructuring rules. Figure 3 shows the subattributes of X{Xi(A) ©
X2{B) © X3(C)} together with the relation > on them. The subattribute X / {A }
for \I\>2 would not occur, if we only considered the record-structure.

294 Attila Sali and Klaus-Dieter Sehe we

X(X,fA),̂ |B},X,(C})

Figure 3: The subattribute lattice S ^ - f X ^ A) © X2(B) © X 3 (C) })

2.3 The Lattice Structure
The set of subattributes S(X) of a nested attribute X plays the same role in the
dependency theory for higher-order data models as the powerset 7(R) for a relation
schema R plays in the dependency theory for the relational model. CP(i?) is a
Boolean algebra with order C, intersection n, union U and the difference —. So,
the question arises which algebraic structure B(X) carries.

Definition 6. Let £ be a lattice with zero and one, partial order < , join U
and meet IT C has relative pseudo-complements iff for all Y. Z £ £ the infimum
Y <r- Z = II{U | U U Y > Z} exists. Then Y 1 (1 being the one in C) is called
the relative complement of Y.

If we have distributivity in addition, we call L a Brouwer algebra. In this case
the relative pseudo-complements satisfy U > (Y Z) iff (U U Y > Z), but if we
do not have distributivity this property may be violated though relative pseudo-
complements exist.

Theorem 1. The set S(X) of subattributes carries the structure of a lattice with
zero and one and relative pseudo-complements, where the order > is as defined in
Definition 5, and A and X are the zero and one, respectively. If X does not contain
the union constructor, S(X) defines a Brouwer algebra.

Weak. Functional Dependencies on Drees with Restructuring 295

Proof. For X = A and simple attributes X = A we obtain trivial lattices with only
one or two elements. Applying the record constructor leads to a cartesian product
of lattices, while the set, list and multiset constructors add a new zero element to
a lattice. These extensions preserve the properties of a Brouwer algebra.

In the case of set, list and multiset constructors applied to a union attribute we
add counter attributes. This preserves the properties of a lattice and the existence
of relative pseudo-complement, while distributivity may be lost.

•
Example 1. Let X = XiX^A) © X2{B)} with S(X) as illustrated in Figure 1,
Yi = X{A} , Y2 = X(X2{Bj), and Z = Then we have

Zr\{Y\\J Y2) = n (X{A} U X (X 2 { B })) =
X(Xi {y l }) n Z (X i { A } , X 2 { B }) = X (X i { A }) / A = AU A -

(X № { A }) n X { A }) u n X (X 2 { B })) = (z n n) U (Z n Y 2) .

This shows that § (X) in general is not a distributive lattice. Furthermore, Y'UZ >
Yi holds for all Y' except A, X (X i {A }) and X{Xx{A}). So Z Yi = A, but not
all Y' > A satisfy Y' U Z > Y1.

It is easy to determine explicit inductive definitions of the operations n (meet),
U (join) and (relative pseudo-complement). This can be done by boring technical
verification of the properties of meets, joins and relative pseudo-complements and
is therefore omitted here.

3 Coincidence Ideals
In this section we investigate sets of subattributes, on which two complex values
coincide. It is rather easy to see that these turn out to be ideals in the lattice S(X),
i.e. they are non-empty and downward-closed. Therefore, we will call them coin-
cidence ideals. However, there are many other properties that hold for coincidence
ideals.

There are two major reasons for looking at coincidence ideals. The first one is
that properties of subattributes, on which two complex values coincide, may give
rise to axioms for functional dependencies. We will indeed see that the properties
of coincidence ideals in Definition 7 are very closely related to the sound axioms
and rules that we will derive in Theorems 3, 5 and 6.

The second reason is that in the completeness proof we will have to construct
two complex values that coincide exactly on a given set of attributes, so that a set
of dependencies is satisfied by these values, while a non-derivable dependency is
not. This step appears also in the corresponding completeness proof for the RDM,
but in that case it is'trivial, because it simply amounts to getting two tuples that
coincide on a given set of attributes, but differ on all others.

Thus, what we want to achieve is a characterisation of a coincidence ideal that
allows us to construct two complex values that coincide exactly on it. This will be
the main result of this section, called the Central Theorem 2 on coincidence ideals.

296 Attila Sali and Klaus-Dieter Sehe we

The proof of this result in [28] is very technical. In a nutshell, what we did was
to discover properties of coincidence ideals, "translate" them into axioms for (weak)
functional dependencies, ensure that we can rediscover these properties from the
particular set of subattributes that arises naturally in the completeness proof (see
Lemma 2), which required to weaken the axioms as much as possible, and finally
show that the properties are sufficient for the desired Central Theorem.

Definition 7. A subset 7 Q S(X) is called a coincidence ideal on 8>(X) iff there
exist complex values ij,¿2 6 dom(X) such that 1 = {Y £ §(X) | fl"y(ii) =
7Tyf (i2)} C S(X) is the set of subattributes, on which they coincide.

In [18] and in [26] the term "SHL-ideal" was used instead; in [19] in a restricted
setting the term "HL-ideal" was used. Note that in all these cases not all the
conditions in Theorem 2 were yet present.

In order to characterise sufficient and necessary properties of coincidence ideals
we will need the notion of reconsilable subattributes, which was already used in the
axiomatisations of restricted cases (see [19, 20]). The following Definition 8 extends
this notion to capture all constructors, in particular the union constructor.

Definition 8. Two subattributes Y, Z G §{X) are called reconsilable iff one of the
following holds:

1. Y > Z or Z >Y;

2. X = X\X'], Y = X[Y'], Z = X\Z'\ and Y\ Z' G S(X ') are reconsilable;

3. X = X (X u . . . , X n) , Y = X (Y u . . . , Y n) , Z = X(Zll...,Zn) and YuZi G
§ (Xj) are reconsilable for all i = 1 , . . . , n;

4. X = X1(X[) © • • • © Xn(X'n), Y = X!(Y{) © • • • © Xn(Y;), Z = Xx(Z'x) ©
• • • © Xn(Z'n) and Y(, Z[G S(X-J are reconsilable for all i = 1 , . . . , n;

5. X = X[X,(X[) © • • • © Xn(X^)}, Y = X(Y1,..., Yn) with Yt = X^Y'] or
Yi=X = Y!,Z = X [X i (Z i) © • • • © Xn{Z'n)}, and Y/, Z[are reconsilable for
all i = 1 , . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconsilability
for subattributes in a >-relation.

Theorem 2 (Central Theorem). Let X be a nested attribute. Then J C S(X)
is a coincidence ideal iff the following conditions are satisfied:

1. A G J ;

2. if Y G J and Z G S(X) with Y > Z, then Z G J ;

3. if Y. Z £ 3 are reconsilable. then Y U Z G J;

4. a) if X i {X} G 3" and X j { A } for I C J, then
X(XU {X'u } , . . . , xik {X'ik }) G J for I = {*!,..., ik);

Weak. Functional Dependencies on Drees with Restructuring 297

b) if X[{\} G 7 and X(Xj{A}) ^ 7 for all i G I, then there is a partition
I = h U I2 with Xh {A} i 7, Xh {A} i 7 and XP{\} G 7 for all I' CI
with V n h /-0 / /' n I2;

c) if X{h,„M{A} G 7 and X , - { A } £ 7 (for I~ = {i G { l , . . . , n } |
X (X , { A }) ^ 7}), then there exists some i G I+ = {i G {1, . . . , n } |
X (X j { A }) G 7} such that for all J C I~ X J u W { A } G 7 holds;

d) if Xj{A} 7 and ^ 7 for all j G J and for all i e I there
is some Ji C J with X j .u^yjA} ^ 7, then X / u j j A } ^ 7, provided
I n J = 0;

e) if X / - { A } G 7 and / ' C / + such that for all i G / ' i/iere ¿s some
J C with X j u f ^ f A } f 7, then X / ' u j ' { A } ^ J for all J' C with
X / , { A } £ 7;

5. a) ifXi{A} G 7 and X / { A } G 7 with I n J = 0, then XlL1j{X} G 3";

b) ifXi\A] G 3" and X/[A] G J with I n J = 0, ifcen X /UJ[A] G J;

c) if Xi(A) G J and Xj(A) G J with I n J = 0, i/ien X / u j (A) G J;

d; X/[A] G 3̂ and X/[A] G 3" with J CI, then X/_j[A] G J;
ej if XI {X) G J and Xj(A) G J with J CI, then X / _ j (A) G J ;
f) if Xi[X) G J and Xj[A] G J , i^en X / r U [A] G J t j f - f y ^ ^ t A] G
<?J if Xi (X) G 3r andXj(X) G 3", i/ien X/nj{A) e 3

riJ0
FX(j_j)U(j-/)<A> G J;

6. a; / o r X = X { X { X i (X i) © - - - © X „ (X ;) } } , whenever I C { l , . . . , n } , there
is a partition I = U /_) U U L swcft that

i. X { X w { A } } g 7 iff i $ I-,
ii. X{X/'{A}} G J, whenever I'r\I+ 0,

m . X{X,-{A}} G 7 iffX{X/ti(/+_u/-){A}} G J, whenever I' C I+_ u

b) for X = X(X{Xi(X[)®- • - ®Xn(X^)}), whenever I C { l , . . . , n } , i/iere
is a partition I = I~ U /_| U / + U / _ such that

i X(X{i}{X})£7 iffi^T,
ii. X(X/'{A}) G 7, whenever V n 1+ / 0,

m. X(X/-{A}) G 7 iff X{XI,n{I+_UI-){X}) G 7, whenever I' C /+_ u

7. ^ i / X = X{X'1,...,X'n), then ^ = { Y G S(X^) | X (A , . . . , Y , . . . , A) G
7} is a coincidence ideal;

b) if X = X[X'\, such that X' is not a union attribute, and 7 ^ {A}, then
S = { Y G S(X ') | X[Y] G 7} is a coincidence ideal;

c) If X = Xx(X[)®---® Xn(X'n) and 7 ^ {A}, then the set 7X = { Y £
S(X-) | Xx(A) © • • • © Xi(Yi) © • • • © X n (A) 6 J } is a coincidence ideal;

298 Attila Sali and Klaus-Dieter Sehe we

d) if X = X{X'}. such that X' is not a union attribute, and 3 ^ {A}, then
S = {Y G S(X') | X { y } G 7 } is a defect coincidence ideal;

e) if X = X(X'), such that X' is not a union attribute, and J ^ (A), then
S = { y £ S(^f') | X(Y) € J} is a defect coincidence ideal.

In property 7 of the theorem a defect coincidence ideal on S(X) is a subset
J C S(X) satisfying properties 1, 2, 4(a)-(d), 6(a),(b), 7(d)-(e) and

8. a) i f X = X (X i , . . . , X ;) , t h e n J j = {yieS(X!0|X(A,...,yi,...,A)e3
r}

is a defect coincidence ideal;
b) if X = X[X'}, such that X' is not a union attribute, and 3" {A}, then

S = {Y e §{X') | X[Y) G J} is a defect coincidence ideal;
c) If X = X i (X i) © • • • © Xn{X'n) and J + {A}, then the set J, = {Y* G

§(X[) | Xi (A) © • • • © Xi(Yj) © • • • © Xn(X) G J } is a defect coincidence
ideal.

The proof of Theorem 2, in particular, showing that the conditions are suffi-
cient, is very technical and lengthy (see [28]). The general idea is to use structural
induction extending the corresponding proofs in [19] and in [20]. However, a diffi-
culty arises with the set and multiset constructors, as for them defect coincidence
ideals have to be dealt with. The work in [20, Lemmata 21 and 24] contains a
proof for the case that the union constructor does not appear at all. This has been
generalised in [27, Lemma 4.3] to the general case but excluding counter attributes,
i.e. attributes of the form X / { A } , Xr(X) or X/[A] with |/| > 2.

4 Functional Dependencies and Weak Functional
. Dependencies

In this section we will define functional and weak functional dependencies on S(X)
and derive a sound and complete system of derivation rules for wFDs.

Definition 9. Let X G 3\f. A functional dependency (FD) on §(X) is an expression
y —> Z with y,Z C §(X). A weak functional dependency (wFD) on §(X) is an
expression {jy» —» 2., | i G /J with an index set I and yi, Zj C §(X).

In the following we consider finite sets r C dorn(X), which we will call simply
instances of X.

Definition 10. Let r be an instance of X. We say that r satisfies the FD y —> Z
on §(X) (notation: r |= y -> Z) iff for all h,t2 G r with 7r£(ij) = 7r£(i2) for all
Y G Y we also have n£(FX) = TT£ (t2) for all Z G Z.

An instance r C dom(X) satisfies the wFD ffli —>• Zi | i G /|} on S(X) (notation:
r N fl^t -> I i £ Ify) iff for all ti,t2 £ r there is some i G I with {£1; t2} |= y*
Zi.

Weak. Functional Dependencies on Drees with Restructuring 299

According to this definition we identify a wFD -fly —> Z}, i.e. the index set
contains exactly one element, with the "ordinary" FD y —> Z.

Note that our notion of weak functional dependencies is indeed more general
than the one used in [32, p.75] based on the work by Demetrovics and Gyepesi
(see [11]). The straighforward generalisation of the dependencies introduced by
Demetrovics and Gyepesi would only lead to wFDs of the form fly —¥ {Zij | i S I},
i.e. the left hand side of all involved FDs is always the same, while the right
hand side only contains a single subattribute. Our notion of wFDs covers also so
called dual functional dependencies (dFDs) (see [11]), which would take the form

Let £ be a set of FDs and wFDs. A FD or wFD ijj is implied by £ (notation:
£ |= i[>) iff all instances r with r |= <p for all ip 6 £ also satisfy ip. As usual we write
£* = {</; | £ h

As usual we write £ + for the set of all FDs and wFDs that can be derived
from £ by applying a system £R of axioms and rules, i.e. £ + = {-0 | £ ip}.
We omit the standard definitions of derivations with a given rule system, and also
write simply I- instead of h<R, if the rule system is clear from the context.

Our goal is to find a finite axiomatisation, i.e. a finite rule system such that
£* = £ + holds. The rules in IR are sound iff £ + C £* holds, and complete iff
£* C £+ holds.

4.1 Sound Derivation Rules
Let us first look only at FDs. In general, two complex values in dom(X) that
coincide on subattributes Y and Z of X need not coincide on Y U Z. So we
cannot expect a simple generalisation of Armstrong's extension rule for FDs in the
relational model. However, the notion of "reconsilability" introduced in Definition
8'will permit such a generalisation.

Theorem 3. The following axioms and rules are sound for the implication of FDs
on S(X):

reflexivity axiom:

subattribute axiom:

{ Y } {Zj

join axiom:

zcy (1)

Y > Z (2)

{Y, Z} {Y U Z}
Y,Z reconsilable (3)

A axiom:

300 Attila Sali and Klaus-Dieter Sehe we

extension rule:

^ (5)
y - > y U Z v '

transitivity rule:

y - > u (6)

Proof. The soundness of the axioms (1), (2) and (4) is trivial.
For (3) let t\,t2 G r for some instance r C dom(X) with 7i"y(ii) = 7Ty (¿2) and
(ii) = (¿2) for reconsilable subattributes Y, Z £ S(X) .

1. In case Y > Z we have y u Z = y and thus 7Tyuz(ii) = 7TyuZ(i2).

2. In case X = X [X '] we must have Y = X\Y'} and Z = X\Z'\ with recon-
silable subattributes Y',Z' £ S(X ') . Furthermore, t\ = [ii,i, • • - , i i ,n] and
¿2 = [¿2,1, • • • M,m\- This gives n = m, (ti:j) = (t2,j) and ^ ' (^ j) =
n z ' (tzj) f° r all 3 = l,...,n. By induction we obtain 7Ty,uZ,(t\j) =
7T f,uZ,(t2,j) for all j = 1 , . . . ,71. From this and Y U Z = X [Y ' U Z'\ fol-
lows 7r^uZ(ii) = 7r£u z(i2).

3. In case X = X (X i , . . . , X n) we must have Y = X (Y i , . . . , Yn) and Z =
X(Z\,..., Zn) with reconsilable subattributes Yi, Zj £ S(Xj) for i = 1 , . . . , n.
Furthermore, t\ = (i i , i , . . . , ti,n) and ¿2 = (¿2,1, • • • ,¿2,«), which implies
7Ty* (¿l,z) = TTy (i 2,i) and 7r|.i(iiii) = 71" for a11 « = 1, . . . , 71. By in-
duction we obtain 7ry'uZ.(ii,j) = (¿2,2) for all i = 1 , . . . ,n. From this
and Y U Z = X(Yi U Z 2 , . . . , Yn U Zn) follows 7r£u z (i i) = 7r£u2(i2)-

4. In case X = Xi (X() f f i - • - © X „ (X 4) we must have Y = X j (Y i) © - • •®X„(Y n)
and Z = Xi(Zi)@-• - © X „ (Z „) with reconsilable subattributes Yu Zi £ S(Xt ')
for i = l , . . . , n . Furthermore ii = (X j : t[) and t2 = (Xj : t2) for some

x' x' x' i £ { 1 , . . . ,n } , which implies ny'it^) = TTy/(¿2) a n d /xz*(t[) — ^z-i^)- By
x' x'

induction we obtain 7ry.*uZ.(t'x) = 7ry.'uZ (¿3). Finally, Y U Z = Xi(Yi U Z i) ©
• • • © Xn(Yn U Zn) implies 7TyuZ(ii) = KyuZ(t2) as desired.

5. In case X = X [X i (X () © • • • © X „ (X ;)] we must have Y = X (Y j , ...,Yn)
with Yi = Xi[Y!\ or Yi = A = Y/, and Z = X [X j (Z i) © • • • © Xn(Z'n)}, such
that Y/, Z[are reconsilable for all i = 1 , . . . , n. We get Y U Z = X [X i (Y / U
Z[) © • • • © Xn (Y^ U Z;)] . As Z > X[A], we also have 7r£[A)(ii) = 7r£[A)(i2),
so t\ and t2 are lists of equal length. Therefore, assume tj = [tj\,..., tjm]
for j = 1,2 and tjk = (Xt : t'jk). This gives TT$uZ(tj) = [t^,..., t'jm] with

tjk = • ^Y'uz^'ik))- W e k n o w ^z'^'ik) = *%t(t'2k)< s o w e a r e d o n e f o r

Yf = A. For Y(^ A the sublists containing all (X? : t'-k) coincide on Y'f . As
x' x'

Yg and Z'e are semi-disjoint, we have ^y'uz'^'ik) = nY'uz'(^2k) ^ induction,
which implies 7ryuZ(ii) = nyuzih) -

Weak. Functional Dependencies on Drees with Restructuring 301

For the extension rule (5) let t\,t2 £ r for some instance r C dorn(X) with
r [= y —¥ Z, and assume 7Ty(ii) = ffyfo) holds for all Y £ y. Then we must
have as well -K^(t\) = ^ (¿ 2) f°r Z £ Z, which implies ny(ti) = iryfa) for all
Y £ yuZ, i.e. UZ.

For the transitivity rule (6) let £1, ¿2 € r for some instance r C dom(X) with
r f= y Z and r |= Z U, and assume 7r£(ti) = rf(t2) holds for all Y £ y . Then
we must have as well TT^ (ii) = (¿2) for all Z £ Z by the first premise, and hence
7Ty (ii) = 7Ty (¿2) for all U £ IX by the second premise, which shows r \= y —» II as
desired.

•
In [20] it was shown that the six of axioms and rules in Theorem 3, i.e. (1) - (6)

are complete for the implication of FDs, if the union constructor is not present. In
this case (2), (3) and (4) are axioms that deal with the Brouwer algebra structure
on S(X), while (1), (5) and (6) are the well known Armstrong axioms and rules.

Theorem 4. The following rules for the implication of FDs on §(X) can be derived
from the rules in Theorem 3:

union rule:

fragmentation rule:
y Z U l l 1 '

y -> Z

join rule:

Z £ Z (8)

{ Y } {Y U Z}

Proof. For the union rule (7) we use the following derivation:

Y, Z reconsilable (9)

yuz->y y->lL
yu Z->U

yuz->yuzuli y U Z U U - Î - Z U l i
y^-yuz y u z - > z u u

y -+ZUU

For the fragmentation rule (8) we use the following derivation:

y^z Z->{Z}

Finally, for the join-rule (9) we use the following derivation:

{Y}-+{Z}
{Y}-+{Y^T {Y,Z}^{YUZ}

{ Y } - > { Y u Z }
•

302 Attila Sali and Klaus-Dieter Sehe we

If the union constructor is present, we obtain further subattributes, for which
we obtain additional axioms. These will be set, multiset and list axioms (10) - (18)
in the following Theorem 5. Furthermore, we obtain rules that derive FDs on S(X)
from FDs on S(X') for embedded attributes X', i.e. X' results from X by stripping
away the outermost constructor. The following definition clarifies in an exact way,
how embedded attributes and induced instances for embedded attributes have to
be understood. This will become important also for the extensions in Section 5.

Definition 11. Let X G N be a nested attribute. The set of embedded attributes of
X is the smallest set emb(X) with X G emb(A') satisfying the following properties:

1. If X = X(X\,... ,Xn) is a record attribute, then emb(Xi) C emb(X) holds
for all i = 1, . . . ,n.

2. If X = Xi) © • • • © Xn(X'n) is a union attribute, then emb(X-) C emb(X)
holds for alH = 1 , . . . , n.

3. If X = X{X'} is a set attribute, then emb(X') C emb(X) holds.

4. If X = X{X'} is a list attribute, then emb(X') C emb(X) holds.

5. If X = X(X') is a multiset attribute, then emb(X') C emb(X) holds.

If r Q dom(X) is an instance of X, then for each Y G emb(X) we obtain the
induced instance r | Y in the following way:

1. r IX =r;

2. r | Z = (r 4, Y) | Z for Z G emb(Y) and Y G emb(X);

3. r 4- Xi = {U G dom(Xi) | 3t G r.t — (t i U,..., tn)} for a record attribute
X = X(Xi,... ,Xn)\

4. r I Xi = {ti G dom(Xi) | 3t G r.t = (Xi : i j) } for a union attribute
X = X1(X'1)®---®Xn(X^):

5. r IX' = {t' G dom(X') | 31 G r.t' G t} for a set attribute X =

6. r IX' = {t' G dom(X') | 3t G r.t' G t} for a multiset attribute X = X(X')\

7. r | X' = {t' G dom(X') | 3t G r.t = [..., t',...]} for a list attribute X =
X[X').

In dealing now with FDs y Z defined embedded attributes U G emb(X) we
let r |= y —» Z mean r 4- U \= y —¥ Z. This generalises canonically to wFDs.

Theorem 5. In addition to the axioms and rules in Theorem 3 the following
axioms and rules are sound for the implication of FDs on S>(X):

Weak. Functional Dependencies on Drees with Restructuring 303

set axiom:

multiset axioms:

{XI{X},Xj{X}}^ {XIUJ{\}}
in J =

/ n J =

I n J = 1

list axioms:

{X / (A) ,X J (A) ,X / n J (A)} { X (/ _ J) U (J _ /) (A) }

{X / (A>,X J (A) ,X (/ _ J) u (J _ f) (A)} {X / n J (A} }

in J = < {-^/[A],Xj[A]} ->• {X/u j fA] }

i n ; = i

M > X j [A], X m j [A]} { X (/ _ J) u (i / _ i) [A]}

{A- /[A]1XJ[A]>X (/_J)U(J_0[A]} {X ; n j [A]}

set lifting rule:

{ X { y } } {X{Z} \ Z GZ]

record lifting rule:

y i ^

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

X = X{X'j, Y eS(X'),ZCS(X') (19)

{X(X,... ,YU ..., A) | Yi G y*} {X{\, ...,Zi,...,X)\Zi£Zi}

with conditions C : X = X(X\,..., Xn) and yit Zi C §(Xi)

union lifting rule:

Vt ^ Zj

e (20)

{• • • © Xi(Yi) © • • • | Yi G y j {• • • © Xi(Zi) © • • • | Zi G Zi}

with conditions 6 : X = X(Xx,..., Xn) and Zi C Vj / 0

e (21)

304 Attila Sali and Klaus-Dieter Sehe we

multiset lifting rule:

ín
{X(F)} -> {X(Z) \ZGZ}

list lifting rule:

{X[Y} | Y G y } -> {X[Z} | ZeZJ

X = X(X'), Y G S(X'),Z C B(X') (22)

X = X [X '] , y , Z C S (X ') , y ^ 0 (23)

Proof. For the set axiom (10) let ¿i,£2 G dom(X) with 7rx ;{A}(^i) =

and ^ { A } ^ 1) = n X j { I n c a s e ^Xi {A}) = ^Xj {*}(*!) = 0 t h e r e a r e n °
values of the form (Xi : Vi) with i G I U J in £1, hence also not in In case at
least one of these projections leads to a non-empty set we must have (Xi : Vi) G £1
for at least one i G / U J and one value Vi G dom(X'i). The same holds for t2, hence
in both cases w* u j { A } (i i) =

For the first list axiom (15) lét £1,£2 G dom(X). Then ^ ^ (i i) = ^ / [A] ^ 2)
means that t\ and t2 contain the same number of elements of the form (Xt : Uj)
with % G I. If the same holds for IU J, then-t\ and t2 must also contain the same
number of elements of the form (Xi : v^) with i G J, i.e. t t^A]^ 1) = nXj[A](^2)-
The soundness of the second list axiom (16) follows from the same argument.

Analogously, for the third list axiom (17) for Y G {-X/[A], X j [A] , X / n j [A] }
TTy (¿1) = - y (¿2) means that £1, t2 contain the same number of elements with
labels in J, J and I Pl J, respectively. So they also contain the same number of
elements with labels in (I — J) U (J — I). The soundness of the fourth list axiom
(18) follows from the same argument.

The proof for the four multiset axioms (11) - (14) is completely analogous to
the proof for the list axioms.

For the set lifting rule (19) let £1,£2 G dom(X) with írx{y}(¿1) = nx{Y}(^2)-
Without loss of generality - repeat elements, if necessary - we may write £, =
{¿a, • • •, tik} (i = 1,2). Then for all j = 1 ,...,k we have TT* (i y) = 7r̂ (t2j).
From the premise of the rule we get 7r̂ (ii j) = TT§ (t2j) for all j — 1 and all
Z G Z, which implies 7r£ {Z}(£i) = ^ { Z } ^) for all X{Z} with Z £ Z.

For the record lifting rule (20) let t\,t2 G dorn(X) with TT^ÍX Y- a) ^ i) =

nx(x Y x) ^ í e ^i- ^ tj = (tij) • • • itnj) for j = 1,2, then it follows
•Ky(tii) = TTy''(£¡2) for all Yi G Vi and thus also tt^'(£,i) = (£12) for all Zx G Zi
by the premise of the rule. This gives Zi A)(M ~ ^xix z A)(^2) f ° r

all Zi G Zi as desired.
For the union lifting rule (21) let £1,£2 G dom(X) with (í j) =

(t2) for all Yi G Vj. In particular, t\ and t2 must have the same label, 7T A'
)Xi(Yi)®...

and we can assume tj = (Xj : tj) for j = 1,2. Then we get Hy (t\) = TTy (t'2) for
all Yi G y, and thus also TT^'(t\) = tt^'(t'2) for all Z% G Zt by the premise of the
rule. This implies n^.mx-(z-)m = n"-<bX-(z-)m a " ^ e ^ a s desired.

Weak. Functional Dependencies on Drees with Restructuring 305

For the multiset lifting rule (22) let ti,t2 G dom(X) with 7r^ y > (i i) — ^(Y.) (¿2).
In particular, t \ and t 2 must contain the same number of elements, so we may write
ti = (tn, • • •, Uk) (i = 2). Then for all j = 1,..., k we obtain 7Ty (tij) = ixy (t2j).
From the premise of the rule we get TTz (t i j) = TTz (t2j) for all j = 1,..., k and all
Z &Z, which implies ^ (Z) ^) = ^xizjl^) for a11 x i z) w i t h Z G Z.

For the list lifting rule (23) let ti,t2 G dom(X) with 7rjqyj(ti) = TTjqy](i2) for
all X [Y] with y G y. As y / 0, it follows that t \ and t 2 must have the same
length, say U = [£¿1, • • • , U k \ (i = 1,2^), and for all j = 1 , . . . ,k and all y G y we
have 7Ty (tij) = 7Ty (t2j). Hence (tij) = (t2j) for all j = 1,... ,k and all
Z G Z, which implies 7r$[Z](ii) = n%^(t2) for all X[Z] with Z G Z.

•
According to the observation made before we may still say that all axioms and

rules in Theorem 5 arise from the lattice structure on S (X) .
The axioms and rules in Theorem 3 only apply to "ordinary" FDs. For the

implication of wFDs we need additional axioms and rules.

Theorem 6. The following axioms and rules are sound for the implication of
wFDs on S(X):

weakening rule:

shift rule:

^y U Ui { Z j I Z G Z U (U - Ui)l>.. j y U Ufc -> { Z j I Z G 2 U (U - Ufc)fr fly {Z}, I Z G z\ (26)
with condition 6 : T(U) = { H i , . . . ,11^}

union axiom for X = X{Xx(X[) © • • • © Xn(X'n)} and I = {z1;... ,ik}:

left union rule:

-> R / { A } } , № { A } } {X(Xil{X'u},... ,Xlk{X>k})}} 1
 Ç 3

(27)

partition axiom for X = X{Xi(X[) © • • • © Xn(X'n)} and I C{ 1,... ,n} :

{j{X,{A}} { X / ; u / , {A} | 0 ± I'i Ç h , 0 + V2 Ç I2),
{X / {A} } {X(Xi{A})} | I = h U I 2 , h n / 2 = %,h ? 0 £ I 2 , i G 1}

(28)

306 Attila Sali and Klaus-Dieter Sehe we

G (29)

(30)

first plus/minus axiom for X = X{X1(X[) © • • • © Xn(X'n)}:

fl{A} -> {XJU{i}{A} | J Ç I-},{X{1 n}{A}} {X,-{A}},
{X(Xj{\})} {X},{\} {X(Xfc{A})} | i,j G I+,k G I~\

with condition C : {1,..., n} = I+ U I"

second plus/minus axiom for X = X{X\(X[) © • • • © X^X^)}:

fl№u./{A}} {X/{A}}, {Xiuy{A}} {X{jy{\}},
{XIUJ{\}} {^'u{i0){A} | J' ç J} | ¿o G I,j G J\

with condition I fl J = 0

third plus/minus axiom for X = X{X1(X[) © • • - © Xn(X'n)}:

FLIX/-{A}, X / - U ^ { A } , { A } | i G / + } { X j . { A } } ,
{ X / - { A } , X / # U J . { A }) X { I } { A } | i G / + } - > { X J U { , } { A } | J C / " } ,
{ X / - { A } , X / . U J I { A }) X { I } { A } | i G / + } {X (f c }{A}} | k e r j € I'|

(31)

with conditions 1+ U I~ = { 1 , . . . , n}, / + n I~ = 03 / ' C / + . J' C J~

partition axiom for sets for X = X{X{X1(X'l) © • • • © Xn(X'n)}} and P C

fl{A}^{X{Xr{A}}|/'n/+^0}U (3 2)

{ A ' { X J U J _ { A } } , X { X J { A } } | J _ C / _ , J G Q , J C / + _ u J - } ,
{A} { X { X K { A } } } ; { X { X ^ { A } } } { X } |
/ = I~ U 1+ U / _ U J+_,Q c 7(7),
A" G (7(1+_ U / ")) - Q, tf' G (?(/+_ U / -)) n Q|

partition axiom for multisets /or AT = X(X{Xi(X[) © ••• © Xn(X'n)}) and
P C 3>(J):

{|{A} —> {X(X / ' {A}) | fl / + 0}U (3 3)

{ A " < * J U . / _ { * } > , * < * / { * } > | J _ C / _ , J G Q , J C J + _ U / - } ,
{A} { X (X ^ { A }) } , { X (X ^ { A }) } ^ { X } |
I = I- U 1+ U J_ U /+_ , Q C y(J),
K G (?(!+_ u / -)) - <5, K' G (?(/+_ U / -)) n Q\

Weak. Functional Dependencies on Drees with Restructuring 307

Proof. The soundness proof for the weakening rule (24) is trivial.
For the left union rule (25) assume r ^ {jy, - » 2., | i £ J}, i.e. there exist

t\, ¿2 € r such that for all i £ I we get TT̂ (¿I) = nyfa) f°r ^ G & and
TTZj(ti) ± 7T£.(¿2) for some £ 2j. In particular, 71y'(ii) = fty(t2) for all V £ y,
hence r ^ {¡V 2.» | i £ i j .

For the shift rule (26) assume r Y= {]y -t {Z} | Z £ 2} , i.e. there exist h,t2 £ r
such that 7r£(ii) = 7r£(i2) for all F € y and 7r^(ii) ± Trf(i2) for all Z £ Z.
Take a maximal II' C U such that 7r$"(ii) = 7r^(i2) for all U £ U'. If we had
r |= $ U U' {Z} | Z £ 2 U (U - U')|, we would have U' C U, and there would
exist some V £ U — U' with Wy (ti) = 7Ty (t2), which contradicts the maximality of
U.

Let X = XiX^Xi) © • • -®Xn(X^)} = X(X1{X[},..., Xn{X'n}), Y = Xr{\},
Zi = Xj{\}. and Z2 = X(X(Xil{X'ii},... ,Xik{X'ik}) for the union axiom (27).
Let ti,t2 £ r with 7Ty(ij) = 7Ty (¿2) and 7r|i (ii) ^ 71^ (¿2)- Thus, one of t\ or
t2 — without loss of generality let this be t2 — must not contain elements of the
form (Xj : Vj) with j £ J. On the other hand, either t\ and t2 both contain
elements of the form (Xi : v{) with i £ I or both do not. As 7 C J, it follows
^ (X i i A }) ^) = ^xix^x})^) = 0 for a11 i e which imPhes 7r^2(ii) = 7rg(t2).

For the partition axiom (28) let ti,t2 £ r with ^ / { A } ^ 1) = nx,{\}(^2) a n d
^xix { A })) ^ ^x(x-{A})for all i £ I. Let Ij C I be such that tj contains an

element of the form (Xi : Vi) for all i £ Ij (j = 1,2). Obviously, I = I\ U I2 and
7 { A } (i i) = 'Tx;,{A}(i2) for all I' CI with V n h j- 0 ^ V D I 2 .

For the first plus/minus axiom in (29) let t\, t2 satisfy ^x^x}^ 1) = 7rAJ{A}(!'2)
and 7rx f c{A}(i l) ^ ^ X f c f A } f ° r ah j £ I+ and k £ I~. Assume that for all
i £ I+ there is some J C T with 7rxJU{.}{A}(^1) ^ 7rxJU{){A}(^2)' o n e

these projections must be 0. As we have ^ . { ^ (i i) = ^x.fA}^2), these must both
be 0, which implies 7r£ / + { A } (i j) = 0 for j = 1,2. Now t t * ^ ^ ^) ^ 7r£fc{A}(i2)
for all k £ I~, so if 7 ^ wx holds, one of these projections
must be 0 again, which implies that one tj is 0, the other not empty. That is

For the second plus/minus axiom in (30) assume that it does not hold. Then we
find two complex values t\,t2 that coincide on X/u.y{A}, but differ on Xj{A} and
all {A} with j £ J. Furthermore, for each i £ I there is at least one Jj C ,7
such that ti,t2 differ on {A}. It follows that one of the two complex values -
without loss of generality let this be t\ - contains values (Xj : Tj) for all j £ J, while
the other one does not contain such values. Then we obtain ' rxJ ,u t .){A}(i i) 0
for all J' C J and all i £ I. As ti,t2 coincide on X/u,/{A}, this also gives
nXj, { }{A}(^2) ^ ® for all J' C J and at least one i £ I contradicting the assump-
tion that for at least one such J' = Ji we have ^ ^ (. j f i j ^ i) i2 n Xj , u l

For the third plus/minus axiom in (31) assume that it does not hold. Then we
find two complex values t\,t2 that coincide on Xj- {A}, all Xi^{A} for i £ I+, and

308 Attila Sali and Klaus-Dieter Sehe we

on Xi'Uj'{X}, but differ on X / / { A } and all X{fcj{A} with k £ I . Furthermore, for
each £ £ I' there is at least one Jt C I~ such that t\,t2 differ on -A^u^^A} . Define
I j = {i£l~ 17Tx'{.){A}(ij) i 0} (j = 1,2) to define a partition I~ = I f U I f . As
¿1, ¿2 differ on X j ' { A } , this implies J' C I{ or J ' C I'2. Without loss of generality
we can assume the first of these possibilities. As t\,t2 coincide on X[>DJ'{\}, we
must have ^Xi{x}(i '2) ^ ®> s o a^so n x { } {A}(i 2) ^ ® s o m e ^ € I'. Then also
T* { j } { A} (i i) ^ ® d u e t 0 I' Q I+- Hence we get irg^ . { A } (i j) ^ 0 for j = 1,2 and
all J C I~ contradicting the assumption that at least one such J = Ji exists, such
that t\, ¿2 differ on . X j . ^ ^ f A } .

For the set partition axiom in (32) take any Si, S2 £ dom(X). In case Si =
S2 = 0 we simple choose I+ = I, so we must have I~ = I_ = I + _ = 0. Further
take Q' = {0} . In case exactly one of the Si is empty, we choose I~ = I, I+ =
I_ = I+- = 0, and

Q' = {JCI~ | 7T^{jifj{A>}(Si) = 7Tx{A'J{A}}(52)}-

In both cases we immediately get the satisfaction of the first involved FD, if
Q D (? (/ + _ U I-)) = Q'. However, if there is some K £ Q' with K <£ Q, the FD
{A} -> {X{Xftr{A}_}} is satisfied. Similarly, if there is some K' £ Q with K' $ Q',
then the FD { X { X ^ { A } } } - » { X } is satisfied.

In the remaining case with Si ^ 0 ^ S2 we take

I+ = { i £ l \ ^ { ^ { I } { A } } (S !) = { { T } } = T T | { X { I } { A } } (S 2) } ,

I _ = { I E 1 1 ^ { ^ { I } { A } } (S I) = { 0 } = ^ { X { I) { A } } (S 2) } ,

I - = {i £ I I 4 ' { X { l } { A } } (S l) / * * { * („ { * > } №) } ,

and I + _ = I —1~ —I + — I_ . Then S I , S 2 obviously coincide on all X { X / ' { A } }
with / ' n / + ^ 0. If we take again

Q' = { J C / - U / + _ I 4 ' { A . J { A } } (S I) = ^ : { ^ { A } } (S 2) } ,

then Si ,S 2 coincide on all X { X j u j _ { A } } and all X { X j { A } } with J_ C I_ and
J £ Q'. As in the previous two cases we obtain the satisfaction of the first involved
FD, if Q fl (? (! + - U I~)) = Q' holds. If this is not the case, one of the other FDs
will be satisfied by {Si ,S2}-

Finally, for the multiset partition axiom in (33) we proceed analogously. Let
MUM2 £ dom(X). In case Mi = M2 = () we simple choose 1+ = I , so we
must have / " = / _ = I+_ = 0. Further take Q' — {0} . In case exactly one
of the Mi is the empty multiset, we choose I~ = I , 1+ = I_ = I + _ = 0, and
Q' = {JCI-\ 7T* ^{A})(Mi) = TT^VJ{A})(M2)}.

Weak. Functional Dependencies on Drees with Restructuring 309

In case Mi ^ () ^ M2 we take

I+ = {i£l\ 7T* ^ ^ (M i) = ({ T }) = ^ < J f { i } { A } > (M 2) } ,
x times

/ _ = { » € / | 7rx(A"{i}{A})(-^l) = (^) = ^ < J f { i } { A }) (M 2) } ,
x times

7 - = {i € 11 ^ ^ ^ (M x) ^ 7 r ^ t i } { A }) (A f 2) } ,

and J+_ = I — I~ — I+ — I-. As before we define Q' = { J C J - U /+_ |

In all three cases Mi ,M 2 coincide on all X (X / ' { A }) with I ' n I + ^ 0, on all
X(Xju j_ {A}> and all X (X j { A }) with J_ C I_ and J G Q'. Hence {M1,M2}
satisfies the first involved FD, if Q n (7(1+- U I -)) = Q' holds, while for other Q
one of the other FDs will be satisfied.

•
Note that the first three rules (24), (25) and (26) in Theorem 6 are a slight

generalisation of the rules used for wFDs in the RDM (see e.g. [32, p.lOOf.]). The
other axioms (27) - (33) arise again from the structure of the subattribute lattice.

4.2 The Completeness Theorem for the Derivation of wFDs

We now want to show that the axioms and rules for the implication of wFDs in
Theorems 3, 5 and 6 are also complete. This gives our main result. Before we come
to the proof let us make a little observation on the union-constructor.

If X = Xi(XJ) © • • • © Xn(X'n), then each instance r of X can be partioned
into r-j (i = I , . . . , n), where rj contains exactly the X,-labelled elements of r. Then
r satisfies a FD ip = y —>• Z iff each rj satifies the i'th projection <pi of tp, which
results by replacing all subattributes Y = Xi(Yi) © • • • © Xn(Yn) in y or Z by
Xi(Yi). Similarly, we see (p G E + iff <pi G E+" for all i = 1 , . . . , n.

Lemma 1. Let r C dom(X) be an instance of X = X\(X[) © • • • © Xn(X'n)
and let y Z be a FD on S(X). Define n = { (Xi : Vi) | (Xi : Vi) G r} ,
y< = {Xi(Xi) I X i (y i) © ••• © Xn(Yn) G y for some Yj(j = 1 , . . . ,n, j £ i)}, and
U = {Xi(Zi) | X1(Z1) ® • • • ® Xn(Zn) G Z for some Zj(j == 1 ,...,n,j ± i)}
(i = 1 , . . . , n). Furthermore, for a set E of FDs on B(X) let Ej = {Vi Zi \ y
Z G E}. Then the following holds:

1.r [= y —¥ Z iff n |= -»• Zi holds for all i = 1 , . . . , n;

2. y -> Z G E+ iffyt G E+ for alii = 1 , . . . , n.

Proof. For the first claim let us first assume r {= y -t Z. Take t\ = (Xi : i'j) G rj
and t2 = (Xi : t'2) G rj with tt^'Vi) = for all Yj with Xi(Y) G Then
^ (n) ® - © * ^) ^ = ^ (Y o e - e x ^) ^) holds for all Xl(Y1)®-• •®Xn(Yn) G

310 Attila Sali and Klaus-Dieter Sehe we

y, and thus r |= y Z implies ^v l (2a)® •©xn(zn)(i0 = Kxuz^e-ex^z^) f o r

all Xi(Zi) © ••• © Xn(Zn) G Z. This gives = TT%(t'2) for all Zi with
Xi{Zi) £ Zi, hence r* y* Zi holds for all i = 1 , . . . , n.

Conversely, assume r, —,• Zi holds for all i = 1 , . . . , n, and take t\ — (Xi :
t[) £ r and £2 = (X j : t'2) £ r . If i ± j, then £x,¿2 differ on all subattributes except
A, i.e. {t\,t2} \= y — Z . So assume j = i, i.e. TI ,T 2 G rit and ix*{t\) = T Y (£2) for
all Y £ y, i.e. for Y = X ^) @ • • • ® Xn{Yn) we obtain 7T*''(£'i) = ^V/ '^) - As

A'' X '

Xi(Yi) G Vj, the premise implies nz!(t'1) = '¡¡^{t'.f) f ° r ^i(Zi) G Zi and
further 7rf (ti) = 7rf (£2) for all Z £ Z, hence r 1= y Z.

For the second claim first assume ^ —¥ Zi G for all i = 1 , . . . , n. Then y —>
Z G £ + results from successive applications of the union lifting rule (21) together
with the subattribute axiom (2), the refiexivity axiom (1) and the transitivity rule
(6).

Conversely, in a derivation of y —¥ Z from £ all involved subattributes other
than A will have the form -Xi(i/i) © • • • © Xn(Un) with X[> [/¿. Reducing this to
Xi(Ui) in each step gives a valid derivation of ^ —¥ Zi from £j .

•

Theorem 7 (Completeness Theorem). The set of axioms and rules in Theorems
3, 5 and 6 is complete for the implication of wFDs on §(X).

Proof. Let £ be a set of wFDs on S(X) and assume fly* —¥ Zi \ i G 7| ^ £ + . Due to
the union rule (7) we must have {]& - » {Zi} | i G /J £ £ + for some selected Zi G Zi.
Furthermore, due to the left union rule (25) we get fly —¥ {Zf} \ i £ 1} £ £ + with
y - U Vi-

iei
Let Z = {Z | Z > Zi for some i G 1} and U = S(X) - y - Z. Due to the

rgflexivity axiom (1) we obviously have Zi ^ y, and then y n Z = 0 due to the
subattribute axiom (2). Due to the shift rule (26) there must exist some U' C. U
with fly U U' {Z} | Z G Z U (U - IX')| g £+ . Otherwise we could derive
fly -i- {Z} \ Z £ Z\, and thus fly - » {Zt} \ i G I\ £ £ + contradicting our
assumption.

Lemma 2. Let U' be maximal with the given property. Then 3 = y U U' is a
coincidence ideal.

We first prove Lemma 2, then continue the proof of Theorem 7.

of Lemma 2. 1. Assume J = 0. This implies Z.UU = S(X) and thus {]0 -> {Z} |
Z £ S (X)| i £+ . This wFD, however, can be derived from 0 ->• {A} G £ +
(due to the A-axiom (4)) using the weakening rule (24). Thus, 3" is not empty.

2. Now let Y £ J and Y > Y' Assume Y' £ 3 . So Y' £ It, otherwise we get
Y' £ y UZ, which implies Y' > Zi for some i £ I and furtheron Y >Y' > Zit

which gives the contradiction Y £ Z.

Weak. Functional Dependencies on Drees with Restructuring 311

Now take U" = It' U {Y'}. The subattribute axiom (2) together with the
extension and transitivity rules (5) and (6) implies y UU' —» y Lilt" G E + . As
It' was chosen maximal, we also have fly U U" {Z} \ Z G Z U (U - U") } G
E + . Using the transitivity rule (6) again, this gives fly U U' —> {Zj | Z £
2.U (It — IX")} £ E + . Then the weakening rule (24) leads to the contradiction
fly U It' {Z} | Z £ Z U (It - U')| G E+.

3. Let Vi, y2 G 3 be reconsilable. Assume Y = Yi U Y2 $ 3. If Y £ It, we take
U" = It' U { Y } . Due to the maximality of It' we get fly U It" —> {Z} | Z £
Z U (U - It")| G E+, thus by the weakening rule (24) also fly U It" {Z} \
Z £ Z U (U - U ') } G E+.

On the other hand, the join axiom (3) implies {Y] ,Y 2 } - * {Y} G E + . Using
the reflexivity axiom (1), the extension rule (5) and the transitivity rule (6)
we obtain y U U' —> y U U" G E + , from which we get the contradiction
fly U U' {Z} | Z £ Z U (U - It')} G E+ by another application of the
transitivity rule.

If Y g It, we get Y G Z, thus { Y } is among the right hand sides in fly Ult' -»•
{Zj | Z £ Z U (U - U')} ^ E + . However, the join rule (9) together with
the reflexivity axiom and the transitivity rule imply y U U' —> { Y } G E + ,
hence the weakening rule leads to the contradiction fly U It' —» {Zj | Z £
Z U (U - U ') } G E+.

4. a) Assume X / { A } G 3, but (X j { A) g 3 for {ii,...,ik} = I C J. As
S(X) is partitioned into Z U (It — U') and J = y U It', we must have
X j { A } G Z U (It — U'). Prom the union axiom (27), the transitivity rule
and X (X / { A }) G 3 we conclude

fly U It' — { Z j I Z£ {XJM,X(Xil{Xil},...,Xik{Xikm 6 E + .

Due to the weakening rule (24) it follows fly U U' —» {Z} | Z G W } G
E+ for all W C §(X) with XjiXj^XiXiAXiJ,... ,Xik{Xlk}) £ W.
According to the definition of U' we must have either X j { A } ^ Z U
(It - It') or X(XU {X'h},.. -,Xik{X'ik}) <£ Z U (It - It'), which implies
X{Xh{X>i},...,Xik{X>k})£3.

b) Assume X / { A } G 3, but X (X j { A }) ^ 3 for all i £ I. In particular
X (X i { A }) G ZU(l t - l t ') . Using the partition axiom (28), the transitivity
rule and -Xj{A} G 3 we conclude fly UU' { X / ; u / ^ { A } | 0 ^ I[C Iu<b ±

¿2 C /2} , y U U' -> { X (X i { A }) } | / = h U /2, i £ I, h i 0 / /2} G E+.
If for all partitions / = /] U /2 we had at least one X/ju/^{A} G Z U
(U — It'), we can apply the reflexivity axiom, the transitivity rule and
the weakening rule to derive fly U U' {Zj | Z £ Z U (U - U')} G E+
contradicting the assumption on It'. Therefore, there is a partition I =
A U /2 with {XI[UI,{A} | 0 ± I[C Iu 0 ± I>2 C /2} C 3.

312 Attila Sali and Klaus-Dieter Sehe we

Choose such a partition. If we had X / j { A } £ 3, we could choose a
maximal J C / , with X,/{A} ^ 3, and ^ ^ { A } ^ 3 for all j € J. So,
we can partition I\ into J and I' = I\ — J. Now use property 4(d) -
which we prove soon not using 4(b). Due to this property we find some
i € / ' such that Xj'u{i} {A} € 3 holds for all J' C J. In particular, for
J' = 0 we obtain a contradiction. Hence we must have Xj1 {A} $ 3 and
by symmetry also X;2 {A} ^ 3.

c) Assume X ^ . ^ j l A } € 3, X / - {A} ^ J and for all i £ I+ there is some
J C J" with X/u{ j } {A} £ 3. Let this J be denoted as J*. Taking the
first plus/minus axiom (29), the left hand side of the FDs are always in
3. Therefore, using the reflexivity axiom and the transitivity rule we
derive p J ^ u m W } , 3 -> {X},3 -> { X ^ A } } , 3 { X , - { A } } |
i £ I+ ,j £ I" | € £ . Now the right hand sides of the FDs are all not in
J, so the weakening rule implies §3 {Z} \ Z ^ 3~| £ £ + contradicting
the construction of 3, according to which S(X) — 3 = Z U (It — U'). and
{3 -> {Z} | Z £ Z U (U - lt ')| i E+.

d) Let I n J = 0 and X j { A } £ 3, X { j } { A } £ 3 for all j £ J, and for
all i £ I there is some Jj C J with Xj^fi} {A} ^ 3. Furthermore,
assume X / u j { A } £ 3. Then from the second plus/minus axiom (30),
the transitivity rule (6) and the reflexivity axiom (1) we derive -fliF —>
{ X j { A } } , 3 -> { X { j } { A } } , J { ^ i U { i } { A } } | i £ I,j G J\ G S+.
Here the right hand sides of all involved FDs have the form {Z} with
Z $ 3, so the weakening rule (24) gives flGF —> {Z} \ Z 3\ £ £+
contradicting the construction of 3. Hence we must have X / u j { A } ^ 3.

e) Assume Xj- {A} £ 3, and let I' C I+ such that for all i £ I' there is some
Ji C I~ with X j -u^ j iA} ^ 3. Let J' C I~ with X y { A } ^ Jand assume

€ 3. Then for i £ I', k £ I~ using the the third plus/minus
axiom (31), the reflexivity axiom (1) and the transitivity rule (6) we
derive {X j - {A } } , 3 - { X J i U (i } { A } } , 3 { X { f c } { A } } | £ £+.
Again the right hand sides of all involved FDs have the form {Z} with
Z g 3 leading to the contradiction p {Z} \ Z <£ 3\ £ £+ by
applying the weakening rule (24). Hence we must have Xinjj*{A} ^ 3
for all J ' C with X / , { A } £ 3.

5. a) Let X / { A } , X / { A } € 3 with I n J = 0, but assume X/UJ{A} £ 3, i.e.
X / u j { A } e ZU (U — It'). From the set axiom (10), the reflexivity axiom
(1) and the transitivity rule (6) we derive 3 { X / y j { A } } £ £ + and
further { j j -> {Zj | Z £ € £ + by the weakening rule (24). This
contradicts the construction of 3, so we must have X / y j { A } £ 3.
The proof of properties 5(b) and (c) is completely analogous using (15)
and (11), respectively, instead of (10).

d) Let X/[A],Xj[A] £ 3 with J C J, but assume X/_ / [A] £ 3. From the
second list axiom (16). the reflexivity axiom (1) and the transitivity rule
(6) we derive 3 —> {X /_ / [A] } £ £ + . Applying the weakening rule (24)

Weak. Functional Dependencies on Drees with Restructuring 313

leads to the contradiction {¡J —» {Z} | Z ^ 3j} e Hence we must
have X j - i [A] € J.
The proof of property 5(e) is completely analogous using (12) instead of
(16).

f) Let X/[A], ATy[A] € 3" and assume A'/nj[A] e but A"(/ u j)_(/n j)[A] <£
3". The the third list axiom (17), the reflexivity axiom (1) and the
transitivity rule (6) allow us to derive 3" —> {X(/uj)_(/n j) [A]} € £ + .
Further application of the weakening rule (24) leads to the contradiction
{]? {Zj | Z i 3| € Hence we must have Ar (/ u J)_ (J n J)[A] e 3".
Analogously, assuming A"/nj[A] ^ 3" and (/nj)[A] € 3' leads to
the same contradiction using the fourth list axiom (18) instead of (17).
The proof of property 5(g) is completely analogous using (13) and (14)
instead of (17) and (18), respectively.

6. If property 6(a) were not satisfied, then for all partitions I n l + = /+U/_U/_|
one of the properties ii or iii in Definition 7 6(a) would be violated. In case
property ii is violated there is some I' with I' fl I+ ^ 0 and X { Â > { A } } ^ J.
In case property iii is violated there exists some / ' Ç I+_ U I~ U / _ such that
either X{XP{A}} e 3 and X { X / / N (/ + _ U / -) { A } } g 3 or X { X 7 - { A } } 0 J and
X{X / 'n (/ + _u / -) {A } } G 3". Then define J_ = I' - /+_ - I~ and J = 1' - /_,
which gives X { X j { A } } ^ J in the first case and X{XJ_UJ{A}} ^ 3r in the
second case.
Let Q = {J Ç I | X { X j { A } } € 3 } . Then the right hand side of the first
FD in the set partition axiom (32) contains a subattribute Z £ 3, and the
same holds for the involved FDs of the form {A} —> {A"{X^-{A}}}. For the
remaining involved FDs we can replace the right hand side by {Z} with some
Z ^ 3" using the subattribute axiom (2) and the transitivity rule. Thus,
using (32), (2), the reflexivity axiom, the transitivity rule, and the weakening
rule, we derive the contradiction {]3 —̂ [Zj | Z ^ 3 } G £ + . Hence there
is a partition I = I" U I+ U / _ U /+_ satisfying the properties i, ii or iii in
Definition 7 6(a).

The proof of property 6(b) is completely analogous using the multiset parti-
tion axiom (33) instead of (32).

7. For the proof of property 7 observe that the proofs of properties 1 - 6 follow
a simple pattern. Assuming that the property does not hold we obtain an
instance of a particular axiom, which together with the reflexivity axiom (1),
the transitivity rule (6) and the weakening rule (24) allows us to derive the
contradiction {]3 {Zj | Z £ 3 j € £ + .
To be precise, we used the A axiom (4) for property 1, the subattribute axiom
(2) for property 2, the join axiom (3) for property 3, the union axiom (27) for
property 4(a), the partition axiom (28) for property 4(b), the first plus/minus
axiom (29) for property 4(c), the second plus/minus axiom (30) for property
4(d), the third plus/minus axiom (31) for property 4(e), the set axiom (10)

314 Attila Sali and Klaus-Dieter Sehe we

for property 5(a), the four list axioms (15) - (18) for properties 5(b),(d) and
(f), the four multiset axioms (11) - (14) for properties 5(c),(e) and (g), the
set partition axiom (32) for property 6(a), and the multiset partition axiom
(33) for property 6(b).

We can apply the record lifting rule (20), the union lifting rule (21) and the
list lifting rule (23) to all these axioms to derive additional axioms, and we can
apply the set lifting rule (19) and the multiset lifting rule (22) to the axioms
except (3), (31) and (10) - (18). The resulting axioms diifer from the original
ones only by "wrapping" constructors around the involved attributes. Then
using exactly the same arguments as before, we obtain additional properties
for J that correspond to the required properties for the embedded ideals J ,
or S used in properties 7(a)-(e) and 8(a)-(c), which completes the proof.

•
Proof of Theorem 7 (continued): Due to the restructuring rules in Definition
4 we may assume that the union-constructor appears in X only inside a set-, list-
or multiset-constructor or as the outermost constructor.

Let us first assume that the outermost constructor is not the union-constructor.
Then we can apply the Central Theorem 2, which gives us v = { i j , i 2 } C dom(X)
with 7Ty {t\) = 7r$(t2) iff Y G J = V U It'. In particular, K$\ti) = n$(t2) for
all i G I and Y G y i t and n^.(ti) ^ 7r§.(t2) for all i G I. That is, r ^ fly,
{Zi} | i G / } . Prom the soundness of the fragmentation rule (8) we conclude
r £ Pi Zi | i G / } .

Now assume that the outermost constructor of X is the union-constructor, say
X = Xi(X[) © • • • © Xn(X'n). We know from Lemma 2 that J = V U U' is a
coincidence ideal on S(X). If 3 = {A}, then take t\ = (X\ : t[) and t2 = (X2 : t'2)
with arbitrary tj G dom(X'j). Then TT£(fj) = 7r£(£2) iff V = A. As before this
implies r fl^i I i G / } with r = {ti,t2}.

For 5" / {A} take the embedded coincidence ideal 1i on S(X-) according
to Definition 7. Using the Central Theorem 2 we find tu,ti2 G dom(X'i) with

=*£ , !(ii2) i f f ^ e
As we have ftF ->• {Z} \ Z G Z U (It - U')|} (f. E+, we must also have

{Zj | Z G (2, U (It - l t ')) j l $ S t for at least one j according to Lemma 1. In
particular, for Zt = Xi(Z'n) © • • • © Xn(Z'in) we find some j such that Z[3 ^ rJ3 for
all i £ / .

Now take r = { (X , : tji), (XJ : tj2)}. Then for all i G I and all Y = X ^ Y j) ©
• • • © Xn(Yn) we have Y3 G 3j, and we obtain

tt*{(Xj : tj0) = (Xj : irgfei)) = (Xj : n%(tj2)) = 7t$((Xj : tj2)) .

On the other hand, Z'{] ^ Jj implies

*ZtttXi : hi)) = (XJ : * (XJ • = : tJ2))

Weak. Functional Dependencies on Drees with Restructuring 315

for all i G I. That is r ^ fly* {Zi} \ i G J|, and hence r fc fly, Zt \ i G i j
by the soundness of the fragmentation rule (8).

The next Lemma 3 shows r (= E in both cases. This implies r f= £*, and thus
{|Vi ->• Zi | i G 7| $ E*, which completes the proof of Theorem 7.

•

Lemma 3. r \= E.

Proof. First assume again that the outermost constructor is not the union-con-
structor. Let flVj W j | j G J\ G E.

1. If Vj- g V U U' for some j G J, we get TT£(£I) ^ 7r£(i2) for some V € Vj.
Thus r |= Vj —» Wj and due to the soundness of the weakening rule also
r b Pj W,- | j G J}.

2. If Vj C y u U' for all j G J, we get y U U' Vj G E+ from the reflexivity
axiom, fly Ult' -> Wj | j G J| G E + from the transitivity rule, and fly Ult' ->•
{Wj} | j G Jf G E + for any choices Wj G Wj from the fragmentation rule.
Assume we could select W: G "Wj — y — It' for all j G J. Then the weakening
rule implies fly U It' {W} \ W G S(X) - y - U'} G E+. However, §(X) -
y — It' = Z U (It — U'), so we get a contradiction to the choice of It'.
Therefore, we must have W j C y u U' for some j G J. By construction of r
we get nw(ti) = 7r^,(£2) for all W G Wj , thus r (= Vj Wj. This implies
r |= flVj —> W j | j G J| due to the soundness of the weakening rule.

If the outermost constructor is the union-constructor, then according to Lemma
1 we have to show r3 |= E j . The proof is analogous to the case before.

•

4.3 The Case of Functional Dependencies
Theorem 7 shows the axiomatisation of wFDs. If E is a set of "ordinary" FDs, we
can apply the axioms and rules to E and then the FDs in E + will be the implied
FDs. Of course, we would like to have an axiomatisation for FDs that avoids such
a detour via the wFDs.

We first observe that most of the axioms and rules for wFDs in Theorem 6
depend on the joint occurrence of the set and the union constructor. Only the
weakening rule (24), the left union rule (25) and the shift rule (26) do not make such
a special assumption. In particular, in a derivation of FDs for a nested attribute X
that does not contain both the union and the set constructor, the special axioms in
Theorem 6 will not be needed. We now show that indeed none of the rules for the
derivation of wFDs are needed either, i.e. the set of axioms and rules in Theorems
3 and 5 excluding the set axiom (10) are sound and complete for the derivation of
FDs in this case.

In order to prove this, observe that properties 4, 5(a) and 6 in Theorem 2 can
be ignored, if the union and the set constructor do not appear jointly.

316 Attila Sali and Klaus-Dieter Sehe we

Theorem 8. Let X £ N be a nested attribute not containing both the set and the
union constructor. Then the set of axioms and rules in Theorems 3. 5 excluding
the set axiom (10) is complete for the implication of FDs on B(X).

Proof. Let £ be a set of FDs on S(X) and assume y -¥ Z £ + . Then due to
the union rule (7) there exists a subattribute Z £ Z with y —¥ {Zj $ Thus,
z $ y = {Z' I y -¥ {Z'j e £ + } . We show that J = y is a coincidence ideal on
B(X):

1. A £ 3" follows immediately from the reflexivity axiom (1), the A axiom (4),
and the transitivity rule (6).

2. For Zi and Zi > Z2 the subattribute axiom (2) and the transitivity rule
(6) imply Z2€J.

3. For reconsilable Z i , Z 2 € 3" the join axiom (3) and the transitivity rule (6)
imply Zi U Z2 £ J.

5. Property (b)-(g) result immediately from applying the multiset axioms (11)
- (14) and the list axioms (15) - (18) together with the transitivity rule (6).

7. The proof of property 7 in Definition 7 is analogous to the corresponding
proof for Lemma 2. We apply lifting rules (19) - (23) to the axioms used in
the proof of properties 1, 2, 3 and 5, then apply the same argument as before.

If the outermost constructor is not the union-constructor, we can apply the
Central Theorem 2, which gives us r = {h,t2} C dom(X) with 7Ty (i i) = 7r^'(i2) iff
Y £ J. In particular, Tr£(ii) = tt£(f2) for all Y £ y, and ttf (i j) ^ 7rf (t2). That
is, r ^ y {Zj. From the soundness of the fragmentation rule (8) we conclude
r £ y Z.

If the outermost constructor of X is the union-constructor, say X = Xi(X[) ©
• • • ffi Xn(X'n) with n > 2, then either J = {A} or we obtain embedded coincidence
ideals on S(X-) (i = 1 , . . . ,n) according to Definition 7: In the first case take
U = (A"i : t[) and t2 = (X2 : t2) with arbitrary tj £ dom(X'j). Then 7T^(ii) =
7 (t 2) iff U = A. As before Z <£ J implies r ^ y Z with r = { t j , t2).

In the second case the Central Theorem 2 gives us tn,ti2 £ dom(X'i) with
V' A''

iry^ttf) = nY ' (tip) iff Yi £ 3"i. As we have J —¥ {Z} ^ E + , we must also have
Jj -¥ { Z j } i £+ for at least one j according to Lemma 1, in particular Zj 3^.

Now take r = { (X j : i ^) , (Xj : tj2)}. Then for all Y = X i (Y i) © - • -©A" n (y „) £
y C J we have Yj £ J j , and we obtain

7 r ? ((X s : t»)) = (Xj : TTJ^O) = (Xj : TT%(t j2)) = 7 r ? ((X j : tj2)).

On the other hand, Zj (fi J j implies

(PO : tji)) = № = 4 / M) * Vi •• -Xzjttj2)) = ^ ((X j : tj2)).

Weak. Functional Dependencies on Drees with Restructuring 317

That is r y {Zj, and hence r y —» Z by the soundness of the fragmen-
tation rule (8).

We finally show r ¡= E in both cases, which proves the theorem. Wc show
this for the case that the outermost constructor is the not union-constructor. If
the outermost constructor is the union-constructor, then according to Lemma 1 we
have to show r} j= Ej for all j = 1 , . . . , n. the proof of which is analogous to the
first case. So let "U —»"V G E. We distinguish two cases:

• If It C J, then 7Ty(t\) = 7Ty (¿2) for all U £ It. The reflexivity axiom and
the transitivity rule allow us to derive y —• V G £ + , which means V C J and
thus = 7T£(i2) for all V £ V, i.e. r |= It -> V.

• If U C J, then there is some U G U with 7Ty (ii) ^ TT^ (i2), which immediatelj'
implies r f= It —> V.

•
In fact, the proof shows a bit more than claimed. We only needed that properties

4, 5(a) and 6 of Theorem 2 are immediately satisfied, because the corresponding
attributes can both appear as subattributes of an attribute X' G emb(X). This
gives the following theorem.

Theorem 9 (Completeness Theorem for FDs). Let X G X be a nested attribute
such that no subattribute Y G S(X') of an embedded attribute X' G emb(X) has
the form X'j{X} with |/| > 2. Then the set of axioms and rules in Theorems 3, 5
excluding the set axiom (10) is complete for the implication of FDs on §(X).

Let us now investigate the question, whether the restriction on the attribute X in
Theorem 9 can be dropped. Unfortunately, this is not the case, i.e. if both the union
and the set constructor are present, more precisely, if the union constructor does
appear immediately inside a set constructor, then there is no finite axiomatisation.

Theorem 10. If X G X is a nested attribute such that there exists a subattribute
G S(X') with |/| > 2 of an embedded attribute X' G emb(X), then there does

not exist a finite, sound and complete system of axioms and rules for the implication
of FDs on 8(X).

The proof will exploit a general result about closures under k-ary implication,
which was proven in [3, Proposition 9.3.2]. We first define the necessary notions
for this result.

Definition 12. Let X G 3sf be a nested attribute, T a class of dependencies on
§(X), and k > 0.

A set E C F of dependencies on S(X) is closed under implication with respect
to T iff E h V implies ip G E for all <p G T.

E is closed under k-ary implication with respect to F iff for all tp G T whenever
E' |= ip holds for some £ ' C E with |E'| < k, then this implies tp £ E.

318 Attila Sali and Klaus-Dieter Sehe we

Furthermore, we will exploit ground derivation rules that result from the deriva-
tion rules we used so far by instantiating the variables in the premise and the
conclusion in such a way that the side conditions are satisfied.

Theorem 11. Let X £ N be a nested attribute, T a class of dependencies on
S(X). and let k>0. Then there exists a k-ary ground axiomatisation for T iff each
E C r that is closed under k-ary implication is also closed under implication.

The proof of Theorem 11 was given in [3, Proposition 9.3.2]. In fact, the propo-
sition was formulated for the relational model, but the proof does not depend on
that.

of Theorem 10. If for the class F of FDs on S(X) we had a finite axiomatisation,
then there would exist some k > 0 such that T has a fc-ary ground axiomatisation.
According to Theorem 11 E C T that is closed under fc-ary implication would also
be closed under implication. So take X = X{X-i(X[) © • • • (B Xk+2(X'k+2)} and the
set

Sfc = {{X { 1 , . . . i f e + 1 }{A}, X{uk+2}{\}} { X } | i = 1 , . . . , k + 1}.
By looking at instances that satisfy only k of these k + 1 FDs we see that there

is no k-ary implication of ipk = {^{i,...,/c+i}{A}} {AT{/c+1}{A}} from Efc. So the
k-ary closure of Efc will not contain ip^-

On the other hand we obviously have Efc |= (pk, so the closure of Efc will contain
ipk- That is, the fc-ary closure of Efc is not closed under implication contradicting
our assumption.

•

5 Extensions
In this section we extend the work on FDs and wFDs in several directions. First
we will consider dependencies also on embedded attributes that were introduced
in Section 3. We will ¿ee that this has very little impact on the theory, as we can
show a.completeness result also for these dependencies without extending the set of
axioms and rules. Secondly, we will abandon the restriction on the trees to be finite
and look at rational trees. Also this extension will not require additional rules.

5.1 Embedded Dependencies
i.

The set emb(X) of embedded attributes of a nested attribute X is simply charac-
terised by: X' € emb(X) iff X' occurs somewhere within the nested structure of
X . Embedded attributes are used in the proof of Theorem 2 in [28], but the theory
of FDs and wFDs in the previous section did not make much further use of these
attributes.

However, the lifting rules (19)-(23) implicitly contained FDs on embedded at-
tributes. Nevertheless, we only looked at sets E of dependencies on S(X), so only
trivial dependencies on embedded attributes played a role. We now make depen-
dencies on embedded attributes explicit.

Weak. Functional Dependencies on Drees with Restructuring 319

Definition 13. Let I e N . An embedded functional dependency (eFD) on S(X) is
an expression X' : y -> Z with X' G emb(X) and y, Z C S(X'). An embedded weak
functional dependency (ewFD) on §(X) is an expression X' : -{]y» T-> 2.» | i e Jfi-
with X' G emb(X), an index set I and y,, Zi C S(X').

In the following we consider again instances of X, i.e. finite sets r = r(X) C
dom(X). For each embedded attribute X' G emb(X), r induces an instance r(X') C
dom(X') in the obvious way: v' G r(X') iff there exists some v G r(X) such that v'
occurs in v at the position indicated by X' in the nesting of X. Using this extension
of instances, the satisfaction definition for eFDs and ewFDs is straightforward.

Definition 14. Let r be an instance of X. We say that r satisfies the eFD
X' : y ->• Z on §(X) (notation: r \= X' : y Z) iff for all tut2 G r(X') with
7T^(ii) = 7T$(t2) for all Y G y we also have tt£ (ix) = w%(t2) for all Z £ Z.

An instance r C dom(X) satisfies the ewFD X' : —> Zi | i G i j on S(X)
(notation: r (= X' : {Jy» Zt \ i G I}) iff for all tx,t2 G r(X') there is some i G I
with {ti,t2} \=yi-+Zi.

According to this definition we may again identify an ewFD X' : {]y —• Z}, i.e.
the index set contains exactly one element, with an "ordinary" eFD X': y —> Z.

If E is a set of eFDs or ewFDs on S(X), we write again E |= ip, if the eFD or
ewFD ip is implied by E, and E h ip, if the eFD or ewFD ip can be derived from E
by means of some set iK of axioms and rules. In this way we retain the definition
of E* and E+ for a set of eFDS or ewFDs on §(X).

We may further introduce another extension to FDs and wFDs by means of
contexts. A context is a set of embedded attributes, i.e. C C emb(X). A context
C is non-trivial for X' G emb(X) iff no X" G C is a subattribute of X' nor can it
be rewritten as a record attribute with X' as one of its components.

Definition 15. Let X G X. A contextual functional dependency (eFD) on S(X)
is an expression C \ X' : y —>• Z with X' G emb(X), a non-trivial context C, and
y,Z C S(X'). A contextual weak functional dependency (ewFD) on S(X) is an
expression C \ X' : {]yj —>• Zj | i G 1} with X' G emb(X), a non-trivial context C,
an index set I and yi,Zj C S(X').

A context C partitions an instance r(X) into disjoint instances using an equiva-
lence relation defined as follows: v\ ~ c v2 iff for each Y G C there exists some
v G dom(Y) appearing in both v\ and v2 as the only value with this property. An
equivalence class of r(X) with respect to ~ c is called a C-restricted fragment of
r(X).

Definition 16. Let r be an instance of X. We say that r satisfies the eFD
C | X' : y -> Z on §(X) (notation: r C | X' : y - » Z) iff each C-restricted
fragment of r(X) satisfies the eFD X' : y Z.

r satisfies the ewFD C | X' : {¡y, Zt | i G /]} on S(X) (notation: r |= C \
X' : Zi | i G / }) iff each C-restricted fragment of r(X) satisfies the ewFD
X':Wi^Zi\i£ I).

320 Attila Sali and Klaus-Dieter Sehe we

5.2 Extended Completeness Result
Let us first look at the derivation rules in Theorems 3. 5 and 6. In all these rules
except the lifting rules (19)-(23) all dependencies are defined on S(X) with X left
implicit, and the soundness proofs use arbitrary instances of X . In making X
explicit, we turn the rules into derivation rules for eFDs and ewFDs. We can even
turn them into derivation rules for cFDs and cwFDs by adding the prefix C \ X
to all occurring dependencies. The soundness proof remains in all cases the same,
because the notion of satisfaction defined in Definitions 14 and 16 only requires to
consider only specific instances of X .

For the lifting rules the situation is similar; the only difference is that the
dependencies in the rule conclusions are defined on some attribute X , while those in
the premises are defined on some X' G emb(X). More precisely, we have X = { X ' } ,
X = X (X j , . . . , Xn) with Xi = X', X = x/(x{) © • • • © x„(x;) with X[= X ' ,
X = (X') , and X = [X'], respectively. Nevertheless, making these attributes
explicit and adding a context prefix defines derivation rules for eFDs, ewFDs, cFDs
and cwFDs. These rules are obviously sound, as the soundness proof (Theorem 5)
does not require any change except the mentioned syntactic modifications.

For cwFDs (and hence also for cFDs) we can add another derivation rule linking
different contexts together. For this we define that context C' is more restrictive
than context C (notation: C'<C) iff holds. Obviously, the empty context
is the least restrictive one. Then we get the following derivation rule (context rule):

C ' l X ' ^ ^ l i e / r " (3 4)

Theorem 12. The rules in Theorems 3, 5 and 6 (with the syntactic modifications
above) and rule (34) are sound for the implication of eFDs. ewFDs, cFDs and
cwFDs.

Proof We only have to show the soundness of the context rule (34). So assume
that r = r(X) satisfies C | X ' : pi -4 Zi \ i G JJ. Take a C'-restricted fragment
rc(X) of r (X) and t\,¿2 G rc(X'). As holds, t\ and t2 must be in the
same C-restricted fragment rc(X') of r(X). Furthermore, there is some i € I such
that { i i , i 2 } satisfies the FD & -> Zu hence r C' \ X' : pi Zi | i G I}.

•

Now we can even extend the completeness result in Theorem 7 to cwFDs.

Theorem 13 (Completeness Theorem). The set of axioms and niles in Theorems
3. 5 and 6 (with the syntactic modifications above) and rule (34) is complete for
the implication of cwFDs on S(X).

Proof. Let E be a set of cwFDs on S(X) and assume C | X ' : pi —¥ Zi | i €
i j £ £ + . Due to the context rule also 0 | X ' : pi Zi \ i e 7| £ £+ holds, so
we actually have to deal with an ewFD. Due to the union rule (7) we must have
X': pi -» {Zi} | i e /|} 0 £ + for some selected Zt G Zi. Furthermore, due to the

Weak. Functional Dependencies on Drees with Restructuring 321

left union rule (25) we get X' : fly {Zx} \ % £ i j £ £+ with y = (J Due to the

lifting rules we may assume that there is no cwFD C' \ X" : {Ĵ - —• Z'j \ j £ JJ £ £
with X " £ emb(X')-, otherwise we could use a restricted set of dependencies.

Let Z = {Z | Z > Zi for some i £ 1} and U = S(X') - y - Z. Due to the
reflexivity axiom (1) we obviously have Zi ^ y, and then y n 2. = 0 due to the
subattribute axiom (2). Due to the shift rule (26) there must exist some U' C U
with {¡y U U' -¥ {Z} | Z £ £ U (li - U')f £ £+. Otherwise we could derive
X' : {¡y -» {Z} | Z £ Zj , and thus X ' : fly {Z{} | i £ I\ £ £+ contradicting our
assumption.

Let U' be maximal with the given property. Then using Lemma 2 we obtain
that 3" = y U U' is a coincidence ideal.

Without loss of generality we may assume X ' ^ X ; otherwise we are back to
the case that was already handled in the proof of Theorem 7. Therefore, due to
the restructuring rules we can assume that the outermost constructor in X ' is not
the union constructor. Then we can apply the Central Theorem 2, which gives us
r' = {t[,t'2} C dom(X') with = ?Ty (£2) iff F £ 3r = y U U'. In particular,
7r£(ii) = 7Ty (t'2) for all ? £ / and Y £ yu and TT$.{t[) ^ n%.{t'2) for all i £ I. That
is, r' fly* —> {Zi} | i £ JJ-. From the soundness of the fragmentation rule (8) we
conclude r ' ^ p i - > Z i \ i e I\.

We now "lift" r' to an instance r of X such that r (X ') = r' holds. For this take a
chain X 0 , . . . , Xfc of maximal length with Xo = X , X k = X ' , and X j £ emb(Xj_ 1) —
{Xi} for i = 1 , . . . , k. Then for i = k,... ,0 define inductively tn,ti2 £ dom(Xi)
starting with tkj = t'j for j = 1,2.

• For Xi = Xi{X[,. ..,X'e) define Uj = (tjj,... ,if -) with

• For Xi = X j { X j + i } define tl3 = {¿(i+i)j} ; if Xi £ C holds; otherwise take

• For Xi = X j (X j + i) define Uj = (i(i + i) j) , if Xi ^ C holds; otherwise take

• For Xi = X j { X i + i } define tij = [¿(¿+i)j], if Xi £ C holds; otherwise take

Finally, take tj = toj for j = 1,2 and r = {ti,t2}. Then obviously r (X ') = r'
holds. Consequently, r ^ X ' : fly» Zi \ i £ i j .

If C contains an attribute X with X ' £ emb(X), then r only contains one
element, so it is its only C-restricted fragment. In this case we obviously get
r C | X ' : fly* —¥ Zi | i € I\. However, if C does not contain such an attribute,
then due to our construction we also get that r equals its only C-restricted fragment,
hence again r ^ C | X ' : fly* -> Z, | i € J|.

¿¿1 — ¿¿2 — {¿(j+i)i> ¿(¿+1)2}-

Ul — ti2 — (¿(¿+1)1, ¿(1+1)2)-

Ul — ti2 — [¿(¿+1)1, ¿(¿+1)2]-

322 Attila Sali and Klaus-Dieter Sehe we

Now take C' | X" : {JV,- ->• Wj \ j € J } € E. If X' £ emb(X") holds, then due to
our construction r(X") will only contain one element, hence r trivially satisfies this
cwFD. Thus we can assume X' G emb(X"). In this case we unnest the attributes
in Vj and Wj, until we obtain V'j.Wj C S(X'). As in Lemma 3 we consider two
cases:

1. If VJ g yu l l ' for some j G J, we get (t\) ± ir$'.(t2) for some V' G Vy We
can assume that r(X") contains two elements, say r(X") = {t'{, t2}. Then we
get T7y"(t") + nf {to) for some V G Vr Thus r \= X" : {jVj W^ | j G J } ,
hence also r |= C' | X" : flV^ Wj- | j G J\.

2. If V'j C y U U' for all j G J, then using the same arguments as in the proof
of Lemma 3 we must have W^ C y u U' for some j G J. By construction of
r' we get 7r$„ (£j) = 7r^/,(t'2) for all W' G Wj. Due to our construction oif r
this implies ir$'(tf{) = (t%) for all W G Wj. Thus r (= X" : Vj W s .
This implies r |= C' \ X" : { ¡V/ -» Wj | j G J } due to the soundness of the
weakening rule and the context rule.

So r 1= E, hence also r j= £*, from which we get C \ X' \ fly, Zi | z G / } ^ E*.
This completes the proof of the theorem.

•

Note that this completeness proof is only a slight modification of the proof of
Theorem 7 exploiting the additional context rule, while the major arguments remain
the same. Therefore, it is straightforward to apply these modifications also to the
proof of Theorem 9, which leads to the following theorem on the completeness of
cFDs (with the necessary syntactic modifications of the rules).

Theorem 14. Let X G N be a nested attribute such that no subattribute Y G S(X')
of an ̂ embedded attribute X' G emb(X) has the form with |/| > 2. Then the
set of axioms and rules in Theorems 3, 5 excluding the set axiom (10) together with
the context rule (34) is complete for the implication of cFDs on S(X).

5.3 Rational Trees
So far, all nested attributes had a fixed depth, and all complex values were repre-
sentable as finite trees. In order to capture object oriented structures as in [30] and
XML as in [1]. we have to allow recursively defined attributes that take rational
trees as their values, i.e. trees with only finitely many distinct subtrees. The notion
of nested attributes has already been extended in this direction in [19]; we simply
have to add £ C 3\f to Definition 2 of nested attributes.

Definition 17. Let U be a universe and L a set of labels. The set Jvf of nested
attributes (over U and £>) is the smallest set with A £ N. U C N, £ C W, and
satisfying the following properties:

• for X G £ and X[,..., X'n G N we have X(X[,. • •, X'n) G N;

Weak. Functional Dependencies on Drees with Restructuring 323

• for X G £ and X ' € tt we have X { X ' } G N, X[X '] G N, and X (X ') G !N;

• f o r X ! , . . . ^ , , G £ a n d X i , . . . , X ; G W w e h a v e X i (X i) © - - - © X n (X ;) GK.

We say that a label Y £ L occurring inside a nested attribute X , is a defining
label iff it is introduced by one of the three cases in Definition 2. Otherwise it
is a referencing label. We require that each label Y appears at most once as a
defining label in a nested attribute X , and that each referencing label also occurs
as a defining label. In other words, if we represent a nested attribute by a labelled
tree, a defining label is the label of a non-leaf node, and a referencing label is the
label of a leaf node.

We still have to extend Definition 3. For this assume X £ and let Y be a
referencing label in X . If we replace Y by the nested attribute that is defined by
Y within X , we call the result an expansion of X . Note that in such an expansion
a label may now appear more than once as a defining label, but all the nested at-
tributes defined by a label can be identified, as the corresponding sets of expansions
are identical.

In order to define domains assume set of label variables ip(Y) for each Y £ L.
Then for each expansion X ' of a nested attribute X we define dom(X') as in
Definition 3 with the following modifications:

• for a referencing label Y we take dom(Y) = ip(Y)\

• for a label Y defining the nested attribute Y' take dom(Y) = {y : v \ y £
ip(Y),v £ dom(Y')}-

• allow only such values v in dom(X'), for which the values of referencing labels
also occur inside v exactly once at the position of a defining label.

Finally, define dom(X) = 1JX, dom(X'), where the union spans over all expansions
X ' of X .

There is no need to change the definition of subattributes. We only have to be
aware of the fact that now a nested attribute has several expansions, and they all
can be used to define subattributes. Also the definitions of FDs and wFDs do not
require more than the tiny addition that the sets of subattributes used in them
must be finite (which they were automatically so far).

With these modifications we can easily repeat the whole theory of coincidence
ideals and dependencies. The decisive property we exploit is the finiteness of a set
S of wFDs. Then we can always find an expansion of X that is large enough such
that the remaining referencing labels can actually be treated in the same way as
simple attributes. In particular, the domain associated with these labels is infinite.
This leads immediately to the following result.

Theorem 15. The soundness and completeness theorems 3, 5. 6. 7 and 9 also
hold for nested attributes X with the extensions from Definition 17.

324 Attila Sali and Klaus-Dieter Sehe we

The same arguments also apply to embedded and contextual FDs and wFDs. We
only have to be careful with the notation of embedded attributes in their definition,
as these are no longer unique. Thus, instead of X' G emb(X) we consider embedding
paths Xo,..., Xk of maximal length with Xq = X, Xk = X' and X, G em6(Xj_j) —
{X*} for i — 1 , k. We also define § (X 0 , . . . , Xfc) = S(X/j) as the associated set
of subattributes.

Definition 18. Let X G N. An embedded functional dependency (eFD) on S(X) is
an expression P : y —> Z with an embedding path P and y, Z C S(P). An embedded
weak functional dependency (ewFD) on S(X) is an expression P : pi —> Zi \ i G 7|
with an embedding path P, an index set I and Zj C S(P).

This definition carries over naturally to contextual dependencies. Using the
same argument as for wFDs we can also generalise the soundness and completeness
results for contextual dependencies.

Theorem 16. The soundness and completeness theorems 12. IS and 14 also hold
for nested attributes X with the extensions from Definition 17.

6 Related Work
Apart from previous work by us and our colleagues Link and Hartmann that has
been intensively used in this article there are two major related research groups
working on dependencies on trees. Both Arenas and Libkin (see [5]) and Vincent,
Liu and Liu (see [37]) place their work ^directly in the context of XML, while we
take a more general approach using various constructors and rational trees. This
implies that depending on the choice of incorporating order or not, these related
approaches only handle one of the three bulk constructors, either lists or sets, while
we take all three into account simultaneously. In fact, both Arenas and Libkin and
Vincent et al. do not consider order, so the related case in our work refers to the
use of the set constructor, apparently exactly the case, for which FDs cannot be
finitely axiomatised. Furthermore, none of the other groups handles weak functional
dependencies.

As emphasised in [37], but not proven, the different notions of XML FDs in
the work by Arenas and Libkin and Vincent et al., respectively, coincide in case of
complete information. Vincent, Liu and Liu claim that their notion of FDs actually
captures incomplete information, while Arenas:s and Libkin's work does. In our
work, incomplete information is captured by the null attribute A, so it boils down
to the question, whether our definition of FDs can capture those defined by the
other groups.

As emphasised in Section 5 the notion of FD from Definition 9 is bound to
finite trees of fixed depth, while the work by the others deal with the variable
depth of XML trees. So, without the extension to rational trees our notion of FDs
cannot capture the other ones nor vice versa, because our definition of FDs involves
complex subattributes, so equality is "generated" even on sets. However, taking

Weak. Functional Dependencies on Drees with Restructuring 325

cFDs on rational trees, it is not too difficult to see that the XFDs defined in [5]
are actually representable in our framework. We may always restrict ourselves to
XFDs P\ •. - Pk P, i-e. the right hand side is a singleton. Then the right hand
side defines an embedded attribute X', while the paths on the left hand side then
give rise to either a subattribute of X' or the context subattributes. We illustrate
this relation by a final example referring to the DTD in [5, Example 1.1] and the
XFDs in [5, Example 4.1].

Example 2. The DTD in [5, Example 1.1] can be represented by the nested
attribute

courses{course(CNO,title(S), takenJby{student(SNO, name(S), grade(S))})}.

Then the following eFDs and cFDs represent the XFDs in [5, Example 4.1]:

course : {course(CNO)} —>
{course(CNO, title(S), takenJ)y{student(SNO, name(S), grade(S))})}

course | student : {student(SNO)} —» {student(SNO,name(S),grade(S))}
student: {student(SNO)} -> {student(name(S))}

7 Conclusions
In this article we completed our work on the axiomatisation of functional depen-
dencies and weak functional dependencies on trees with restructuring. These trees
arise from constructors for complex values comprising arbitrarily nesting of finite
sets, multisets, lists, disjoint unions and records and a "null" attribute. Restruc-
turing, i.e. non-trivial equivalence between these attributes are mainly due to the
presence of the union constructor. While our previous work in [27] captured the
case, where so called counter-attributes were excluded, we now were able to provide
a sound and complete set of derivation rules for weak functional dependencies with-
out this restriction. The price for this result was a very deep and very technical
investigation of certain ideals in the algebra of subattributes leading to the cen-
tral theorem on coincidence ideals, which gives an exact characterisation of sets of
subattributes, on which two complex values coincide. We were further able to gen-
eralise the axiomatisation to capture dependencies on embedded attributes thereby
including classes of FDs defined by others (see e.g. [5]).

Though our results require quite a heavy mathematical machinery, the technical
characterisation of coincidence ideals in [28] to remove a seemingly not severe re-
striction in our previous results, we should emphasise that the unrestricted classes
of FDs and wFDS treated in this article capture counting by means of subattributes.
That is, whenever we have a multiset or list attribute, the projection of a complex
value to a counter-attribute tells us how many values of a certain kind appear in
this multiset or list. This is a concept that has not been handled in the context of
functional dependencies before.

326 Attila Sali and Klaus-Dieter Sehe we

Unfortunately, for set attributes this is slightly different, as the counter-attrib-
utes in this case merely function as flags indicating, whether the subset of values
of a certain kind is empty or not. This shows us that there is still more work
needed to capture counting completely. In [29] we started work in this direction
by deliberately adding more restructuring rules - so far, only intrinsic, unavoidable
equivalences have been used. However, we may even take a list and forget the
order of its elements, thus mapping it to a multiset, or map a multiset to its
set of elements, i.e. we obtain an extension of the subattribute order by adding
X[Y] > X(Y) > X{Y}. Similarly, we could treat a set attribute as a multiset
attribute, and then define FDs on it by using the subattributes of this corresponding
multiset attribute.

The work in [29] only contains the first step in this direction, as only functional
dependencies not involving the union constructor are handled. That is, the more
interesting counter-attributes and the intrinsic restructuring rules are absent. The
natural question is, how our results in this article can be generalised to deal also with
these extensions to restructuring in general. Other open problem to be addressed
in future are linked to other classes of dependencies, e.g. multi-valued and join
dependencies as in [21] and [40] and to the existence of Armstrong instances (see
e.g. [27]).

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: Prom Relations

to Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

[2] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theo-
retical Computer Science, 62(l-2):3-38, 1988.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[4] M. Arenas and L. Libkin. A normal form for XML documents. In PODS 2002.
ACM, 2002.

[5] M. Arenas and L. Libkin. A normal form for XML documents. ACM Trans-
actions on Database Systems, 29(1):195—232, 2004.

[6] W. W. Armstrong. Dependency structures of database relationships. Infor-
mation Processing, pages 580-583, 1974.

[7] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design: An Entity-
Relationship Approach. Benjamin Cummings, 1992.

[8] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In
Tenth WWW Conference. IEEE, 2001.

[9] P. P. Chen. The Entity-Relationship model: Towards a unified view of data.
ACM Transactions Database Systems, 1:9-36, 1976.

Weak. Functional Dependencies on Drees with Restructuring 327

[10] P. P. Chen. English sentence structure and Entity-Relationship diagrams.
Information Science, 29:127-149, 1983.

[11] J. Demetrovics and G. Gyepesi. On the functional dependency and some
generalizations of it. Acta Cybernetica, 5:295-305, 1981.

[12] W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.
In PODS 2001. ACM, 2001.

[13] W. Fan and J. Simeon. Integrity constraints for XML. In PODS 2000. ACM,
2000.

[14] S. Hartmann. Decomposing relationship types by pivoting and schema equiv-
alence. Data & Knowledge Engineering, 39:75-99, 2001.

[15] S. Hartmann and S. Link. On functional dependencies in advanced data mod-
els. Electronic Notes in Theoretical Computer Science, 84, 2003.

[16] S. Hartmann, S. Link, and K.-D. Schewe. Generalizing Boyce-Codd normal
form to conceptual databases. In Information Modelling and Knowledge Bases
XV, volume 105 of Frontiers in Artificial Intelligence and Applications, pages
88-105'. IOS Press, 2004.

[17] S. Hartmann, S. Link, and K.-D. Schewe. Reasoning about functional and
• multi-valued dependencies in the presence of lists. In D. Seipel and J. M.

Turull Torres, editors, Foundations of Information and Knowledge Systems,
volume 2942 of LNCS, pages 134-154. Springer Verlag, 2004.

[18] S. Hartmann, S. Link, and K.-D. Schewe. Weak functional dependencies in
higher-order datamodels. In D. Seipel and J. M. Turull Torres, editors, Foun-
dations of Information and Knowledge Systems, volume 2942 of LNCS, pages
116-133. Springer Verlag, 2004.

[19] S. Hartmann, S. Link, and K.-D. Schewe. Functional dependencies over XML
documents with DTDs. Acta Cybernetica, 17(1):153-171, 2005.

[20] S. Hartmann, S. Link, and K.-D. Schewe. Axiomatisation of functional de-
pendencies in the presence of records, lists, sets and multisets. Theoretical
Computer Science, 355:167-196, 2006.

[21] S. Hartmann, S. Link, and K.-D. Schewe. Functional and multi-valued depen-
dencies in nested databases generated by record and list constructor. Annals
of Mathematics and Artificial Intelligence, 46:111-164, 2006.

[22] R. Hull and R. King. Semantic database modeling: Survey, applications and
research issues. ACM Computing Surveys, 19(3), 1987.

[23] W. Y. Mok, Y. K. Ng, and D. W. Embley. A normal form for precisely
characterizing redundancy in nested relations. ACM Transactions on Database
Systems, 21:77-106, 1996.

328 Attila Sali and Klaus-Dieter Sehe we

[24] Z. M. Ózsoyoglu and L. Y. Yuan. A new normal form for nested relations.
ACM Transactions on Database Systems. 12:111-136, 1987.

[25] J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the
Relational Database Model. Springer-Verlag, 1989.

[26] A. Sali. Minimal keys in higher-order datamodels. In D. Seipel and J. M.
Turull Torres, editors, Foundations of Information and Knowledge Systems,
volume 2942 of LNCS., pages 242-251. Springer Verlag, 2004.

[27] A. Sali and K.-D. Schewe. Counter-free keys and functional dependencies in
higher-order datamodels. Fundamenta Informaticae, 70(3):277-301, 2006.

[28] A. Sali and K.-D. Schewe. A characterisation of coincidence ideals for complex
values. Journal of Universal Computer Science, 15(l):304-354, 2009.

[29] K.-D. Schewe. Functional dependencies with counting on trees. Journal of
Universal Computer Science, 11(12):2063-2075, 2005.

[30] K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented
databases. Acta Cybernetica, ll(4):49-85, 1993.

[31] Z. Tari, J. Stokes, and S. Spaccapietra. Object normal forms and dependency
constraints for object-oriented schemata. ACM Transactions on Database Sys-
tems, 22:513-569, 1997.

[32] B. Thalheim. Dependencies in Relational Databases. Teubner-Verlag, 1991.

[33] B. Thalheim. Foundations of entity-relationship modeling. Annals of Mathe-
matics and Artificial Intelligence, 6:197-256, 1992.

[34] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer-Verlag, 2000.

[35] A. M. Tjoa and L. Berger. Transformation of requirement specifications ex-
pressed in natural language into an EER model. In Entity-Relationship Ap-
proach, volume 823 of LNCS. Springer-Verlag, 1993.

[36] M. Vincent. The semantic justification for normal forms in relational database
design. PhD thesis, Monash University, Melbourne, Australia, 1994.

[37] M. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their
application to normal forms in XML. ACM Transactions on Database Systems,
29(3):445-462, 2004.

[38] M. W. Vincent and J. Liu. Functional dependencies for XML. In Web Tech-
nologies and Applications: 5th Asia-Pacific Web Conference, volume 2642 of
LNCS, pages 22-34. Springer-Verlag, 2003.

Weak. Functional Dependencies on Drees with Restructuring 329

[39] M. W. Vincent and J. Liu. Multivalued dependencies and a 4NF for XML.
In Advanced Information Systems Engineering: 15th International Conference
CAiSE 2003, volume 2681 of LNCS, pages 14-29. Springer-Verlag, 2003.

[40] M. W. Vincent and J. Liu. Multivalued dependencies in XML. In British
National Conference on Database Systems: BNCOD 2003, volume 2712 of
LNCS, pages 4-18. Springer-Verlag, 2003.

[41] J. Wang and R. Topor. Removing XML data redundancies using functional
and equality-generating dependencies. In G. Dobbie and H. Williams, edi-
tors, Database Technologies 2005 - Sixteenth Australasian Database Confer-
ence, volume 39 of CRPIT, pages 65-74. Australian Computer Society, 2005.

Received 11th September 2009

Acta Cybernetica 20 (2011) 331-283.

Mining High Utility Itemsets in Massive
Transactional Datasets*

Vu Due Thi' and Nguyen Huy Due*

Abstract

Mining High Utility Itemsets from a transaction database is to find item-
sets that have utility beyond an user-specified threshold. Existing High Utility
Itemsets mining algorithms suffer from many problems when being applied
to massive transactional datasets. One major problem is the high memory
dependency: the gigantic data structure built is assumed to fit in the com-
puter main memory. This paper proposes a new disk-based High Utility
Itemsets mining algorithm, which achieves its efficiency by applying three
new ideas. First, transactional data is converted into a new database layout
called Transactional Array that prevents multiple scanning of the database
during the mining phase. Second, for each frequent item, a relatively small in-
dependent tree is built for summarizing co-occurrences. Finally, a simple and
non-recursive mining process reduces the memory requirements as minimum
candidacy generation and counting is needed. We have tested our algorithm
on several very large transactional databases and the results show that our
algorithm works efficiently.

Keywords: High Utility Itemset Mining, COUI-tree

1 Introduction
A framework for high utility itemset mining was proposed recently by Yao et al
(H. Yao and H. J. Hamilton, 2006) [6]. In this, the value of one item is a number
(the quantity of the sold item, we can call it an objective value), otherwise, it has
a utility table that contains utility of all items in the dataset (we can call it a
subjective value, determined by manager). Utility of a itemset is the sum of all
utility of all items in that itemset. The high utility itemset mining problem is to

"This work was funded by the Vietnam's National Foundation for Science and Technology
Development (NAFOSTED) via a research grant for fundamental sciences, grant number: 102.01-
2010.09

^Institute of Information Technology. Viet Namese Academy of Science and Technology., •
E-mail: vd th i® io i t . a c . vn

^Faculty of Information and Computer, National Ttaining College for Teachers, Ha Noi, Viet
Nam., E-mail: ducnghuy0yalioo.com

332 Vu Due Thi and Nguyen Huy Due

find all itemsets that have utility larger than a user specified value of minimum
utility.

In [6], H. Yao and H. J. Hamilton proposed a mining method and described
pruning strategies based on the mathematical properties of utility constraints. They
also developed an algorithm named Umining and another heuristic based algorithm
Umining-H to discover high utility itemsets.

Recent research has focused on efficient high utility mining algorithms using
intermediate anti-monotone measures for pruning the search space. In [7]. Liu et
al. (Y. Liu, Liao, & Choudhary, 2005) propose a two phase algorithm to mine high
utility itemsets. They use a transaction weighted utility (TWU) measure in the
first phase to find the supersets of high utility itemsets, followed by a rescan of the
database to determine the actual high utility itemsets among them. However, their
algorithm is based on the candidate generation-and-test approach and so suffers
from poor performance when mining dense datasets and long patterns in the same
way as the Apriori algorithm for frequent pattern mining.

In this paper, we propose an efficient algorithm for utility mining in massive
datasets. This algorithm rearranges database and saves it the external memory,
in mining process only a small part of data is put into the internal memory and
mining is based on the idea of COFI-tree algorithm by Mohammad El-Hajj and
Osmar R. Zaiane presented in 2003. After all data is rearranged and stored in
the external memory, we can mine high utility itemsets with a different threshold
without reorganizing the database.

The rest of the paper is organized as follows: In Section 2, we define the relevant
terms. Section 3 summarizes the COFI-tree algorithm used in mining frequent
patterns. Section 4 describes our new algorithm for mining high utility itemsets in
large datasets. The performance studies of the algorithm are given in Section 5.
Section 6 contains the conclusions of the paper.

2 High Utility Itemset Mining
In this Section, we give the basic notations and the definitions of terms to describe
high utility itemset mining, based on (H. Yao and H. J. Hamilton, 2006) [6]. Let
I = { ¿ i , . . . , in} be a set of items. A transaction T is a subset of I, T C I. DB =
{ X i , . . . , TTO} is a transaction database. Each transaction is assigned by an I D
called TID. A subset X C I which contains k different items is called fc-itemset.
Transaction T contains X if X C T.

Definition 1. The value of item ip in transaction Tq (at column ip row Tq of
database) is an objective value denoted as (ip,Tq).

Definition 2. Calling value, which is assigned by manager for item ip in database,
based on estimating utility gaining from one unit of that item is a called subjective
value denoted as s(ip).

Normally, the subjective value is given in a table called the utility table. For

Mining High Utility Itemsets in Massive Transactional Datasets 333

example, in Table 1 and 2, the objective value of item B at transaction To is
o(B,T2) = 12, the subjective value of item B is s(B) = 5.
Definition 3. Let x be an objective value and y be a subjective value of one item-
Function f(x, y) : R x R —> R is called the utility function calculated as follow:
f(x,y)=xx.y.

Table 1: Transactional database

TID A B C D E
Tl 0 12 2 0 2
T2 0 12 0 2 1
T3 2 0 1 0 1
TA 1 0 0 2 1
T5 0 0 4 0 2
T6 1 2 0 0 0
T7 0 20 0 2 1
T8 3 0 25 6 1
T9 1 2 0 0 0
T10 0 0 16 0 1

Table 2: Utility table

Item Profit ($/unit)
A 3
B 5
C 1
D 3
E 5

Definition 4. Let f(x, y) be an utility function. The utility of item ip in transac-
tion Tq (denoted as u(ip,Tq)) is the value of f(x,y) at o(ip,Tq) and s(ip), that is
u(ip,Tq) = f(o(ip, Tq), s(ip)).

Definition 5. Let X be an itemset in transaction Tq. Utility of X in transaction
Tq. denoted as u(X,Tq), is defined as: u(X,Tq) = ^ipe.\'CT, u(ip<Tq).

An itemset X has an associated set of transactions in DB, denoted as dbx ,
where dbx = {Tq : X CTq,Tq £ DB}.

Definition 6. Utility of itemset X in database DB. denoted as u(X), is utility
sum of X itemset at all transactions of dbx, that is: u(X) = ^2T(iedbx u(X,Tq)

— J2rqedbx A' U(ipiTq).

334 Vu Due Thi and Nguyen Huy Due

For example, in Table 1 and 2, u(B,T2) = 12 • 5 = 60. Consider X = {B, £>},
u{X,T2) = u(B, T2) + u(D, To) = 12-5+2-3 = 66, there are two transactions To and
T7 which contain itemset X , so dbx = {T2, T7}, u(X) = u(X, T2) + u(X, T7) = 172.

Definition 7. Given a minutil (> 0) and a itemset X. X is called high utility
itemset ifu(X) > minutil; otherwise, X is called low utility itemset.

Definition 8. Given a transaction database DB and a minutil. The problem of
mining high utility itemsets is to find HU set such that it contains all high utility
itemsets, i.e.:

HU = {X : X C I,u{X) > minutil}.

The problem of mining frequent itemsets can be seen as a special case of mining
high utility itemsets when all items have the objective value of 0 or 1 and subjective
value of 1. The main property used for mining frequent itemsets is Apriori. The
Apriori property states that all nonempty subsets of a frequent itemset must also be
frequent. It is not hard to see that this property is not correct in the case of utility.
For example, in database of Table 1, we have, u(BC) = 62 < 72 = u(BCE), while
u(BC) = 62 > 0 = u(BCD). The following section will present the fundamental
idea of IM algorithm [9] for mining frequent itemsets using COFI-tree structure.

3 Mining frequent itemsets based on the structure
of COFI-tree.

In 2003, Mohammad El-Haj and Osmar R. Zaiane in Department of Computing
Science University of Alberta Edmonton, AB, Canada proposed IM (Inverted Ma-
trix) algorithm [9] for mining frequent itemsets in large databases.

IM algorithm can be divided into two phases:
Phase 1: (pre-processing) It rearranges data into matrix and saves this matrix

in the external memory.
Phase 2: This phase is mining matrix by using COFI-tree (Co-Occurrence Fre-

quent Item Tree) for each item [8].
In the first phase, the Inverted Matrix is a disk-based data layout made of two

parts: the index and the transactional arrays. The index contains the items and
their respective frequencies. The transactional array is a set of rows in which each
row is associated with one item in the index part. Each row is made of a pairs of
pointers holding following information: the physical address in the index part of
the next item in the same transaction, and the physical address in the row of the
next item in the same transaction. Building the Inverted Matrix is accomplished
in two passes of the database during the pre-processing phase. The first pass
scans the whole database to find the frequency of each item. The item list is then
ordered in ascending order according to their frequency. The second pass reads
each transaction from the database and also orders it into ascending order based
on the frequency of each item. In the index part, the location of the first item in
the transaction is sought and an entry to its transactional array is added that holds

Mining High Utility Itemsets in Massive Transactional Datasets 335

the location of the next item in this transaction. For the second item, the same
process is applied, in which an entry in the transactional table of the second item is
added to hold the location of the third item in the transaction. The process is then
repeated for all items in this transaction. The following transaction is read next
and the same applies to all of its items. This process repeats for all transactions in
the database.

In the second phase, it mines the data matrix (transactional array) by using
the structure of COFI-tree. It traverses the index part and ignores all non-frequent
items, with each frequent item, it reads all transactions that contain the items and
build a COFI-tree for this item, after that it mines all frequent itemsets in this
tree. The trees are discarded as soon as mining ends and exactly the same process
is repeated for other items.

COFI-tree of one item is a tree constructed by this item and all the others
that have frequencies equal or greater than of that item. Each tree has a header
table which contains a collection of frequent items, these items in header table
are also sorted in ascending order of their frequency. Each entry in the header
table have three data fields: item's name, local frequency in the COFI-tree and a
pointer pointing to the first and the same item in the tree. A link list is maintained
between all positions of those items in the tree. Each node of COFI-tree contains
4 data fields: item's name, S (it's support), P (it's participation, this field keeps
track of how many times this item participates in a candidate generation), pointers
pointing to the next same label node or null if not. More details of the algorithm
could found in [8, 9].

4 Mining high utility itemsets in large dataset
Liu et al. (Y. Liu, Liao, & Choudhary, 2005) proposed the concepts of Transaction
Utility (TU) and Transaction Weighted Utility (TWU) to prune the search space for
mining high utility itemsets. Transaction Utility of a transaction, denoted tu(Tq)
is the sum of the utilities of all items in Tq, tu(Tq) = X^eT, u(ip,Tq). Transaction
Weighted Utility of an itemset X, denoted as twu(X) is the sum of the transaction
utilities of all the transactions containing X, twu(X) = eDBAxcr tu(Tq).

For example, in Table 1 and 2, tu{T2) = 12 • 5 + 2 • 3 + 1 • 5 = 71. "
Let X = DE, dbx = {T2,T4,T7,T8},twu(X) = tu(T2) + tu(T4) + tu(T7) +

tu{T8) = 253.
Note: u(X, Tq) < tu{Tq)
=> u (x) = T,TqeDBAXCTq u{X,Tq) < T,TqeDBAXCTq tu(Ti) = twu{X).
Consider twu(X) as the upper bound of u(X). If X is a high utility itemset for

a threshold minutil, then X is also a high utility TWU because twu(X) > u(X) >
minutil. Vice versa, if X is not a high utility TWU then X is also not a high
utility itemset.

TWTJ-utility constraint has anti-monotone property [7], i.e.: All itemsets that
contain a low utility TWU itemset (twu(X) < minutil) is a low utility itemset.
So, if X is a low utility TWU itemset (twu(X) < minutil), X and all itemsets

336 Vu Due Thi and Nguyen Huy Due

that contain it are low utility itemsets, and could be removed while mining high
utility itemsets.

Based on this idea, we propose a new COUI-Mine algorithm (Co-Occurrence
Utility Item Mine) for mining high utility itemsets in large datasets. This algorithm
can be divided into 2 phases:

Phase 1: Construct transactional array and saves it in the external memory.
Phase 2: Mining high utility itemsets by using the structure of COUI-tree.

4.1 Construct transactional array:

The algorithm separates disk-based data into two parts: the index and the transac-
tional array. Each entry in index part contains 5 data fields: item's name, quantity,
profit of one unit, frequency and its TWU. In this part, items are sorted in ascend-
ing order of their frequencies. The transactional array is a set of rows in which each
row is associated with one item in the index part. Each element in the transactional
array stores 4 data fields : quantity in transaction, TU of transaction and location
[row, column] of the next item in this transaction. If that item is the last element
in a transaction, its location should be empty.

In the first scanning of the database, we calculate transaction utility, total quan-
tity, frequency, TWU of each item. Sort the items in ascending order of frequencies
and build the index part.

During the second scanning of the database, we sort each transaction, in as-
cending order of item's frequency and put it into transactional array as follows:

Based on the Index part we determine the position of the first item. Then in
the item's row, we find the first empty place (cell) and save item's information here.
Then the location of next item is determined in exactly the same way as it was
done for the first item (note that this location will be stored in the cell of the first
item). We repeat this for all items in the transaction, in the cell of the last item
the location fields are empty.

This transactional array is constructed and saved in the external memory.
The Tables below are used for the demonstration of our algorithm.
To give an example, suppose we have a database in Table 1 and 2, threshold =

30% (of total utility), and minutil = 30% x 398 = 119,4.
The algorithm scans the database for the first time, calculates the transaction

utility (in Table 3), total quantity, frequency, and TWU of each item (in Table
4). It then sorts items in ascending order of frequencies and builds the index part
(Table 5).

The algorithm then scans the database for the second time, and for each trans-
action, it sorts the items into ascending order of frequencies and put them into the
transactional array. Table 6 illustrates the sorted transactions. In case of trans-
action Tl = (B : 12, C : 2, E : 2) the search in the index part gives that B is in
position 3, C is in position 4 and E is in position 5, so the 3 blocks which are used
to save the information of these items are in row 3, row 4 and row 5 of the trans-
actional array. First we find the first empty block in row 3 and we have [3,1], this
block will save B's information and the address (or location) of C as well. The first

Mining High Utility Itemsets in Massive Transactional Datasets 337

Table 3: Utility of transactions of database in table 1 and 2

TID A B C D E tu
Tl 0 12 2 0 2 72
T2 0 12 0 2 1 71
T3 2 0 1 0 1 12
T4 1 0 0 2 1 14
T5 0 0 4 0 2 14
T6 1 2 0 0 0 13
Tl 0 20 0 2 1 111
T8 3 0 25 6 1 57
T9 1 2 0 0 0 13

n o 0 0 16 0 1 21
Sum 8 48 48 12 10 398

Table 4: Quantity, twu and Frequency of items

Item Quantity Frequency twu
A ' 8 5 109
B 48 5 280
C 48 5 176
D 12 4 253
E 10 8 372

Table 5: Index part of transactional array

Pos Item Quantity Profit/Unit Frequency Twu
1 D 12 3 4 253
2 A 8 3 5 109
3 B 48 5 5 280
4 C 48 1 5 176
5 E 10 5 8 372

empty block in row 4 is [4,1] so [3,1] will contain the following parts: 12 (quantity
of B), 72 (Transaction Utility), [4,1] (Address of next item in transaction). Then
the same process is applied to C and E. Since E is the last item, the location field
of E will be empty. We repeat that for all other transactions to obtain the final
transactional array given in Table 7.

All needed information from Table 1 and 2 has been transformed into the trans-

338 Vu Due Thi and Nguyen Huy Due

Table 6: Sorted transaction in order of frequency.

TID D A B C E tu
Tl 0 0 12 2 2 72
T2 2 0 12 0 1 71
T3 0 2 0 1 1 12
TA 2 1 0 0 1 14
T5 0 0 0 4 2 14
T6 0 1 2 0 0 13
Tl 2 0 20 0 1 111
T8 6 3 0 25 1 57
T9 0 1 2 0 0 13
T10 0 0 0 16 1 21

actional array so that we can use this array for mining high utility itemsets (even
with different threshold).

Table 7: Transactional array of table 1 and 2

Transactional Array
Pos Index 1 2 3 4 5 6 7 8 9

1 D, 12, 3
4, 253

2, 71
[3,2]

2, 14
[2,2]

2, 111
[3,4]

6, 57
[2,4]

2 A, 8, 3
5, 109

2, 12
[4,2]

1,14
[5,4]

1,13
[3,3]

3, 57
[4,4]

1, 13
[3,5]

3 B, 48, 5
5, 280

12, 72
[4,1]

12, 71
[5,2]

2, 13
[0,0]

20,111
[5,6]

2, 13
[0,0]

4 C, 48, 1
5, 176

2, 72
[5,1]

1, 12
[5,3]

4, 14
[5,5]

25, 57
[5,7]

16, 21
[5,8]

5 E, 10, 5
8, 372

2, 72
[0,0]

1, 71
[0,0]

1. 12
[0,0]

1,14
[0,0]

2, 14
[0,0]

l , m
[0,0]

1, 57
[0,0]

1, 21
[0,0]

The following is our algorithm for building transactional array:
Algorithm 1. (Build transactional array).
Input: Database DB.
Output: Transactional array in external memory.
Method:
1. for each T £ DB // First time scanning database
2. begin
3. - Calculate transaction utility tu(T)\
A. - Calculate frequency, quantity, TWU of each item;
5. end;
6. Sort all items in ascending order of frequency;

Mining High Utility Itemsets in Massive Transactional Datasets 339

7. Based on sorted items list, build index part of transactional array;
8. for each T G DB // Second time scanning database
9. begin
10. Sort items in T in order of index part, we have following list:

Tlist = (Ai : SI,A2 : s2,-,Ak : sk) ;
// Si is quantity of item in transaction T.

11. Determine address [di,Ci] to save information of item A\ in
transactional array;

12. for ¿:=1 to k — 1 do / / With each item in TList .
13. begin
14. - Determine address [e£j+i,Cj+i] where save information of Ai+ j ;
15. - Save at [di,Ci\ :Quantity s, ,Transaction Utility tu(T),

Address [dj+i,Cj+i];
16. end;
17. Save at [dk,Ch]'- Quantity sk , Transaction Utility tu(T) , empty

address [0,0];
18. end;

4.2 Mining transactional array
Consider all items of the index part of transactional array (top down). For each item
ip, if TWU(ip) > minutil the algorithm gets all transactions from the transactional
array that contains that item. From these transactions, it builds the COUI-tree
for that item and mines that tree for high utility itemset. It then discards the tree
as soon as it has been mined and moves to the next item. COUI-tree of item x
must have x as its root. Each COUI-tree has a header table that contains three
data fields: item's name, TWU and pointer (pointing to the first and same item
in COUI-tree). Each node of COUI-tree includes 4 data fields: item's name, TWU
(Utility of transaction that it's inside), an array of quantity of all items from this
node up to the root, pointers pointing to the next same label node or null if not.
Each transaction is read and inserted into COUI-tree as follow:

Let [x | L] be a transaction, where x is the first item and L is the rest of the
transactions. The algorithm checks whether item x is one of child nodes of the
root. If it is, then update the information for that node correspondingly, otherwise,
add a new node as a child of root and labels it x. Consider the present node as the
root, repeat the process on the next item in L if it is not empty. When adding a
new node, an update of horizontal link of the corresponding item in header table
is needed.

The COUI-tree building process is illustrated by an example with the transac-
tional array in Table 7.

To mine the high utility itemsets on the transactional array in Table 7 we need
to build COUI-tree for the items: D, B and C. We call COUI-tree corresponding for
each item as D-COUI-tree, B-COUI-tree and C-COUI-tree respectively. It is not
necessary to build A-COUI-tree since twu(A) = 109 < minutil, not for E-COUI-
tree because there is only one node (E as root) in this tree. D-COUI-tree contains

340 Vu Due Thi and Nguyen Huy Due

ail items co-occurring with D in the transactions. B-COUI-tree contains all items
co-occuring with B in the transactions except for D and A. C-COUI-tree contains
all items co-occuring with C in the transactions except for D. B and A.

- Building process of D-COUI-tree:
From the index part we know that D's frequency is 4, so there are 4 transactions

that contains D inside. Start at the first block in row 1 of transactional array, read
information in this block and the address saved in the Location field to reach the
next item. Here we get the following sequence.

Starting at [1, 1] we get item D with quantity of 2, this block refers to [3, 2].
At [3. 2] we get item B with quantity of 12. this block refers to [5, 2]. At [5, 2] we
get item E with quantity of 1 and an empty Location field so the algorithm stops
at this point.

At this first link we get the first transaction of D, T\ = (D : 2, B : 12, E : 1)
and tu{T\) = 71. Likewise, we could get all D's transactions and have: T4 = (D :
2, A : 1,E : 1) with tu{TA) = 14, T7 = (D : 2, B : 20, E : 1) with tu{T7) = 111,
and T8 = (D : 6, A : 3 ,C : 25, E : 1) with tu(Ts) = 57. Each transaction is read
and inserted into D-COUI-tree. It is noted that twu of the header table needs to
be adjusted correctly. Figure 1 shows the D-COUI-tree.

Figure 1: D-COUI-tree

- Mining D-COUI-tree:
Mining D-COUI-tree is to find all high utility itemsets that contain D inside.

In D-COUI-tree, twu of item A and C is smaller than minutil, so the itemsets
that contain them cannot be high utility itemsets and in the candidate generating
process we do not generate candidates containing these items.

In turn, consider all items in the header table but this time we do it bottom
up, therefore, E will be the first item we encounter. From the pointer in the header
table of item E we find 3 nodes in D-COUI-tree labeled E. In the path from the
first E to the root we will have (E:2, B:32, D:4) with twu = 182; Push it and all its
subsets plus D into D — list (a list contains all high utility candidates containing
D) and we will have:

Mining High Utility Itemsets in Massive Transactional Datasets 341

D - List = {{E:2,B: 32, D: 4) : 182; (E : 2, D : 4) : 182; (B : 32, D : 4) : 182}.
Adjust twu and the array of quantity of each node E, B and D on that path.

Twu is subtracted to 182 and the array of quantity is subtracted corresponding
(step 1).

The path to root of the second E (E:l, A:l, D:2) with twu = 14 does not
generate any candidate that contains A, so only (E:l, D:2) is pushed into D — List.
In D — List, (E:l, D:2) has twu = 182 so this value will be adjusted to 196; Adjust
all the values for items E, A and D (step 2).

Likewise, for the third E and we add (E:l, D:6):57 into D — List. At this point
we have done with item E and move to the next item in the header table. The next
items in the header table are C, B and A but all of them have twu = 0 so there is
no need to generate any candidates from them. Figure 2 shows this process.

Finish mining D-COUI-tree we have a candidate list in D — List. Traverses all
candidates and with each X € D — List, we calculate actual utility, if u(X) >
minutil then X is a high utility itemset. With D-COUI-tree we find HU =
{EBD(182),BD(172)}. Repeat this process for the next items, in the end, the
result will be:

HU = {£B.D(182),BD(172),£B(240), £(240)}.
We can describe the algorithm for building and mining COUI-tree as follows

Algorithm 2 (Build and mine COUI-tree).
Input: Transactional array, utility function, threshold minutil.
Output: HU set contains all high utility itemsets of database DB.
Method:
1. From top down, A = first item in index part satisfy twu(A) > minutil;
2. repeat
3. if twu(A) < minutil then goto 15;
4. Calculate utility of A; / / base on quantity and unit utility.
5. if u(A) > minutil then HU := HU U {A};
6. Read frequency s and location of row d that contains A in transaction;
7. Create root R with label A of (A)-COUI-tree, assign twu = 0, quantity = 0;
8. for i :=l to s do //traverse all s blocks in row d of transactional array;
9. begin
10. - Start at [d, i], determine T = (Ai : s\, A2 : s2,, Ak : Sfc) and

transaction utility tu(T)\ /¡A\ is item A.
11. - Call insert-tree(T, R) function to insert T into (A)-COUI-tree;
12. end;
13. Call MineCOUI-tree (A); / / a function mines (A)-COUI-tree.
14. Free (A)-COUI-tree;
15. A = next item in index part;
16. Until (A is the last one in index part);
17. Calculate utility of A;
18. if u{A) > minutil then HU := HU U {A};

Here is MineCOUI-Tree function.

342 Vu Due Thi and Nguyen Huy Due

Figure 2: 4 steps to mining D-COUI-tree

Item Twu Pointer

A 71
B 182
c 57

E 253

Item TOTJ Pointer

A 71 „-*
B 0
C 57

E 71

Item Twu Pointer

A 57
B 0
C 57
E 57

Item Tun Pointer

A 0
B 0
C 0

E 0

LvVu patterns:
(E X B 32, D:4):182
(E : 2 , D 4) 182
(B 32. D:4) 182

D-Lisr
<£ :2 ,B :32 ,D :4) : 182.]

i (E : 2 , D : 4) : l f f i , \
I<B:32,D:4) 182 j

57 I .V<m patterns
(E:l . D:2):14

D-Lisr.
' (E : 2 , B : 3 2 , D : 4) : 182,';

£ 3 ,D fi 196 \

<P:32,D:4>:182 j

AW patterns
(E l . D 6) 57

D-List:
[GE:2,B:3G,D:4): 182,1

^ ¡ £ : 4 , D : 12): 253, [

[0 : 3 2 , D : - 0 : 1 8 2 j

Sw patterns.

D-Lisr.

' < E : 2 , B : 2 , D 4): 182,]
K : 4 . D : I 2) : 2 6 , [
[(B :32 ,D:4) : 182 I

,E 0 v
OE 0 >1

E.O [0.0,0] ¡0,0,0] 0,0,0.0]

Function: MineCOUI-tree (A);
Method:
1. (̂ 4) — List := 0 //Initialize the empty candidate list.
2. for each (item B in header table of (A)-COUI-tree) //bottom up.
3. for each (node N on (A)-COUI-tree that labeled B)

//follow the pointer from header table.
4. begin

Mining High Utility Itemsets in Massive Transactional Datasets 343

5. - Read twu and quantity array of all items of node N;
6. - Determine pattern X in the path from N up to the root;
7. - Generate subset of X that contains A //discard all low utility TWU
items.
8. - Push all subsets generated above into (A) — List;
9. - Adjust twu and array of quantity of all items on the path of N to
the root;
10. end; //Finish mining (A) — COUI — tree.
11. for each Y e (A) — List // Traverse all candidates in (A) — List.
12. begin
13. - Calculate utility u(Y) of candidate Y;
14. - if u{Y) > minutil then HU := HU U { Y } ;
15. end;
16. Return HU;

5 Algorithm Evaluation and Performance Study

5.1 Algorithm Evaluation
a) Algorithm 1: Transaction Array construction

+ Pass I:
- Calculation of transaction utility tu(T), calculation of frequency, quantity,

TWU of each item. Hence, the total time complexity of this step is 0(n).
- Sorting of all items in ascending order of frequency costs 0(n.logn) in time.
- Based on the sorted item list, the building index part of transactional array

has time complexity of 0(n).
+ Pass II: For each T of DB, we need to identify Tlist = (Ai : SI,A2 :

S2,....,Ak : 5fc), Si is number of At item in transaction T. With each item in
TList, address [di+i, Cj+i] where save information of Ai+i needs to be determined,
that makes the total time complexity of 0(n2). In summary, the time complexity
for algorithm 1 is 0(n2).

b) Algorithm 2: Mining the transaction array.
+ Building the COUI-tree: At the turn of a top-down data items, time com-

plexity for tree construction of algorithm is 0(n2). Since there are n data items,
the total time complexity to build all trees COUI-tree is 0(n3).

+ Minning the COUI-tree: Algorithms considers in turn each data item in
the header table, with each B data item to browse nodes in COUI-tree labeled
B. Suppose the height of the tree is h, to generates any candidate patterns then
generated sub patterns , need a running time complexity of 2h~l.

The greatest height of COUI-trees is equal to the length of the longest trans-
action in the database transaction: max(h) = max{\T\,T € D B } , 1 < h < n. In
the worst case, the database have transactions that include all items, max{\T\,T £
DB] = n, so max(h) = n. In that case, time complexity to mine highest COUI-tree
is 0(2"_1), thefore, the time complexiyty for algorithm 2 is 0(2n).

344 Vu Due Thi and Nguyen Huy Due

Algorithm time complexity is the total time complexity of algorithm 1 and
algorithm 2 making it as 0 (2 ") (n is the number of data items).

Although in theory the worst case time complexity of the algorithm is 0 (2 ") .
in reality, transactions databases are often extremely sparse, the height h of the
tree COUI-tree could be very small compared to n, so the practical running of the
algorithm often does not suffer from combinatorial explosion.

5.2 Performance Study

The algorithm was written in Microsoft Visual C + + 6.0, running on a PC with a
Pentium dual core 2,0 GHz CPU, 1 GB of RAM, using Windows XP Professional
operating system. The program reads data from files and outputs to a data file.
The algorithm was experimented on several real and synthetic data sets. Retail
is a market basket dataset from a Belgian supermarket (Brijs, Goethals, Swinnen,
Vanhoof, & Wets, 1999). Retail transaction file contains 88,162 transactions, 16,470
items and the average length of transactions is 10.31 [5]

We generated two synthetic datasets using our own program and IBM Quest
data generator [10]: (a) T10I500D100K, the average length of transactions is 10.74,
with 500 items and the number of transactions is 100K, (b) 10I1000D100K, the aver-
age length of transactions is 10.10, with 1000 items and the number of transactions
is 100K.

Table 8 shows the characteristics of the datasets. Since all these datasets are
normally used for testing traditional frequent itemset mining algorithms, we added
quantity and item utility values to the dataset. We generated a utility table based
on lognormal distribution with the utility values ranging from 0.1 to 10. The
quantities of items were generated randomly in the range of 1 to 10. Test results
are shown in Figure 3.

Transactional data is converted into a new database layout set in the external
memory, so the algorithm can mine very large datasets. Running time of COUI-
Mine algorithm includes data conversion time for the transaction array and the
mining of transaction array. Once data has been converted into a new database
layout, it can be mined with different utility thresholds without converting the
data, hence, running time of the algorithm is reduced to the time to mine the
transaction array only. On the dataset Retail, the data conversion time was 4744
seconds. Table 9 shows the running time of the algorithm on dataset Retail with
different utility thresholds.

6 Conclusion
Based on the results of the experiments and analyses of the algorithm, some con-
clusions could be drawn as follow:

+ It needs to be scanned database twice to build transactional array and this
array contains enough information for mining high utility itemsets. This transac-
tional array is stored in the external memory, so the algorithm can mine very large

Mining High Utility Itemsets in Massive Transactional Datasets 345

Table 8: Characteristics of Datasets

Dataset Number of Number of Average
transactions Items Length

Retail 88.162 16.470 10,31
T10I500D100K 100.000 500 10,74
T10I1000D100K 100.000 1000 10,10

Table 9: Execution time on dataset Retail

Utility COUI-Mine
Threshold Phase 1 Phase 2 Total

0,2 702 5446
0,4- 697 5411
0,6 4744 237 4981
0,8 99 4843
1 76 4820
5 12 4756
10 11 4755

Figure 3: Execution time with varying minimum utility thresholds on real and
synthetic datasets

5600
~ 5400
£ 5200
I 5000
I ' 4800
I 4600
~ 4400

Utility Threshold(%)

Retail

databases.
+ Mining transactional array is based on small structure of COUI-tree. At each

time, only one tree is in the memory, it means that we only store in the memory
a small part of the data. Otherwise, mining COUI-tree is using non-recursive
algorithm so it reduces time and memory needed in the mining process.

+ After the transactional array is built, the algorithm can mine with arbitrary
thresholds.

346 Vu Due Thi and Nguyen Huy Due

+ The algorithm avoids massive computations because it does not need to
generate candidates and check for constraints like in some other approaches.

4- The algorithm also uses the concept of TWU effectively to reduce the time
complexity to generate candidates.

In conclusion, COUI-Mine is an effective algorithm for mining high utility item-
sets in large datasets.

References
[1] Nguyen Huy Due, "Mining Association Rule in Large Databases'In Proceed-

ing of the First National Symposium Fundamental and Applied Information
Technology Research (FAIR), Ha Noi, 2003.

[2] Nguyen Thanh Tung, "Mining High Utility Remsets in Databases". Journal
of Computer Science and Cybernetics, Viet Nam, vol. 23, no. 4, pp. 364-373,
2007.

[3] Vu Due Thi and Nguyen Huy Due, "Efficient Algorithm for Mining High Utility
Remsets Based On Prefix-trees", Journal of Computer Science and Cybernet-
ics, Viet Nam, vol. 24, no. 3, pp. 204-216, 2008.

[4] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules".
In pro-ceedings of 20th International Conference on Very Large Databases,
Santiago, Chile, 1994.

[5] Frequent Itemset Mining Implementations Repository, 2003. h t t p : / / f i . m i .
c s . h e l s i n k i . f i / d a t a /

[6] H. Yao and H. J. Hamilton, Mining itemset utilities from transaction
databases". Data & Knowledge Engineering, vol. 59, pp. 603- 626, 2006.

[7] Y. Liu, W.-K. Liao, and A. Choudhary, "A Fast High Utility Itemsets Mining
Algorithm", Proc. UBDM'05, Chicago Illinois, 2005.

[8] M. El-Hajj and Osmar R. Zaiane. "COFI-tree Mining: A New Approach to
Pattern Growth with Reduced Candidacy Generation". In Proc. 2003 Intl Conf.
on Data Mining and Knowledge Discovery (ACM SIGKDD), August 2003.

[9] M. El-Hajj and Osmar R. Zaiane. "Inverted matrix: Efcient discovery of fre-
quent items in large datasets in the context of interactive mining". In Proc.
2003 Intl Conf. on Data Mining and Knowledge Discovery (ACM SIGKDD),
pp. 109-118, August 2003.

[10] IBM Synthetic Data Generator, http://www.almaden.ibm.com/software/
quest/resources/index.html

Received 18th May 2009

http://fi.mi
http://www.almaden.ibm.com/software/

CONTENTS

Weighted Automata: Theory and Applications 207
Preface 209
Daniel Kirsten: The Support of a Recognizable Series over a Zero-sum Free,

Commutative Semiring is Recognizable 211
Andreas Maletti: Survey: Weighted Extended Top-down Tree Transducers

Part I — Basics and Expressive Power 223

Regular Papers 251
Ferene Gécseg: Classes of Tree Languages and DR Tree Languages Given by

Classes of Semigroups 253
Zbynék Kñvka and Tomás Masopust: Cooperating Distributed Grammar Sys-

tems with Random Context Grammars as Components 269
Attila Sali and Klaus-Dieter Schewe: Weak Functional Dependencies on Trees

with Restructuring 285
Vu Due Thi and Nguyen Huy Due: Mining High Utility Itemsets in Massive

Transactional Datasets 331

ISSN 0324—721 X

Felelős szerkesztő ¿s kiadó: Csirik János

