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Abstract

For more than 30 years, the problem of providing a formal framework for modeling dialogues has
been a topic of great interest for the scientific areas of Linguistics, Philosophy, Cognitive Science,
Formal Languages, Software Engineering and Artificial Intelligence. In the beginning the goal was
to develop a "conversational computer", an automated system that could engage in a conversation
in the same way as humans do. After studies showed the difficulties of achieving this goal Formal
Language Theory and Artificial Intelligence have contributed to Dialogue Theory with the study and
simulation of machine to machine and human to machine dialogues inspired by Linguistic studies
of human interactions.

The aim of our thesis is to propose a formal approach for the study of dialogues. Our work is
an interdisciplinary one that connects theories and results in Dialogue Theory mainly from Formal
Language Theory, but also from another areas like Artificial Intelligence, Linguistics and Multipro-
gramming.

We contribute to Dialogue Theory by introducing a hierarchy of formal frameworks for the
definition of protocols for dialogue interaction. Each framework defines a transition system in
which dialogue protocols might be uniformly expressed and compared. The frameworks we propose
are based on finite state transition systems and Grammar systems from Formal Language Theory
and a multi-agent language for the specification of dialogue protocols from Artificial Intelligence.
Grammar System Theory is a subfield of Formal Language Theory that studies how several (a
finite number) of language defining devices (language processors or grammars) jointly develop a
common symbolic environment (a string or a finite set of strings) by the application of language
operations (for instance rewriting rules). For the frameworks we propose we study some of their
formal properties, we compare their expressiveness, we investigate their practical application in
Dialogue Theory and we analyze their connection with theories of human-like conversation from
Linguistics.

In addition we contribute to Grammar System Theory by proposing a new approach for the
verification and derivation of Grammar systems. We analyze possible advantages of interpreting
grammars as multiprograms that are susceptible of verification and derivation using the Owicki-
Gries logic, a Hoare-based logic from the Multiprogramming field.

ix
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Chapter 1

Introduction

1.1 Context, state of the art

Dialogue Theory has it roots in Aristotelian times (300 BC) but it became a very active research
area in the 1970s with applications in various fields.

Linguistics has contributed to Dialogue Theory introducing and supporting the conjecture that
it is not possible to get a complete simulation of human language. The main argument of this
position focuses on the impossibility of formalizing the context needed for human-level language
understanding, as explained in [Dre92]. Larsson’s ideas in that regard are very interesting:

‘If we accept the argument that ‘the background is not formalizable’ and that computers
will never achieve human-level language understanding, does it follow that formal and com-
putational research on dialogue and dialogue systems is useless? Of course not; it provides a
great potential for improving on human-computer interaction. But granted this, has theories of
human language use now been shown to be of no use to research on human-computer dialogue?
Again, of course not. For one thing, if we want dialogue systems that are reasonably human-
like in their behavior, these systems will need to be designed on the basis of theories of human
language. [...] We may use these theories as providing important clues about how to best build
dialogue systems.’ [Lar05]

The conjecture that the background of human dialogues is not formalizable has produced a re-
formulation of the goals in Dialogue Theory. Currently one of the main goals of formal Dialogue
Theory is the definition of effective human to machine and machine to machine goal-oriented di-
alogue systems. As technologies become more complex command-line or menu-based graphical
interfaces become increasingly impractical. This justifies the introduction of human-machine inter-
faces based on intelligent conversational agents.

Formal Language Theory has contributed with different grammatical models to the development
of the modules involved in human-machine interfaces. The usual modules in a human-machine
interface are:

• Speech recognition module: takes an audio input and transforms it into a string of words.

1
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2 Chapter 1. Introduction

• Natural language understanding module: produces a semantic representation which is appro-
priate for the dialogue task.

• Natural language generator: chooses what to say and how to say it to the user.

• Task manager: keeps information related to the domain of application of the interface.

• Dialogue manager: controls the architecture and structure of the dialogue. It takes input from
the two first modules, maintains some sort of state, interfaces with the task manager and
passes output to the natural language generator module.

The first interfaces for human to machine dialogues are database question-answering systems;
see for instance [Woo67], [Woo73], [Wei66]. These systems consist on a machine asking questions
to a user, interpreting what the user said, and retrieving the corresponding answer from a data base
when the information is enough. These interfaces are system-initiative, the machine completely
controls the conversation. The system asks the user questions ignoring (or misinterpreting) any-
thing the user says that is not a direct answer to the machine’s question and goes on with the next
question. The dialogue structure of question-answering systems corresponds to sequences of pairs
of questions followed by answers. The dialogue manager of these interfaces is implemented as di-
alogue grammars or finite-state automata where the states represent dialogue states and the speech
acts become the labels of the transitions.

Because pure system-initiative dialogue architectures are too restricted, mixed initiative ar-
chitectures are introduced: frame-based architectures, plan-based architectures, information state
frameworks and dialogue state models. In mixed initiative architectures the conversational initiative
can shift between the machine and the human.

Frame-based or form-based architectures rely on the structure of frames to guide the dialogue.
The machine associates questions to gaps in a frame. Then the machine asks the user questions
in order to fill in the gaps in the frame. When all the gaps in a frame are filled in the system can
perform a data base query and return the result to the user. The user is allowed to guide the dialogue
by giving extra information that fills in another gaps in the frame. If the user happens to answer
more than one question at a time, the system must fill in the corresponding gaps and remember
not to ask the user the questions associated with the gaps that were already filled in. Frame-based
dialogue systems are only capable of limited domain-specific conversations. This is because the
semantic interpretation and generation processes in frame-based dialogue systems are based only
on what is needed to fill in the gaps. Examples of frame-based interfaces are [CC00] and [SP00].

More flexible than frame-based architectures are the plan-based systems [CP79]. Developed
in Artificial Intelligence field, plan-based systems are based on the idea of constructing plans to
generate and interpret sentences. On these systems the machine should come up with a plan for
getting from the interlocutor the information needed to perform a data base query. Besides, the
machine can interpret a speech act by running the planner in reverse, using inference rules to infer
what plan the interlocutor had to say what he said. Some examples of plan-based architectures can
be found in [AFS01] and [LRG06].

Other mixed-initiative approach is the one based on the view of dialogue management functions
in terms of information states. Information states are more complex representations of the dialogue
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1.1. Context, state of the art 3

context than the ones that can be defined with static states in dialogue grammars and forms in
frame-based systems. According to [TL03] an information state framework consists of:

• Informational components. Corresponding to the common context (obligations and commit-
ments, linguistic and intentional structure, shared knowledge) and internal motivating factors
(beliefs, intentions, user models).

• Formal representations of informational components. Sets, strings, lists, typed feature struc-
tures, record, expressions in some logic or any arbitrary data types can be used to represent
informational components.

• Dialogue moves. Set of external stimulus, in general natural language utterances, that trigger
the updating process of information states.

• Update rules. According to the information state, the history of dialogue moves, and the
update strategy, some of these rules are selected to modify the information state.

• Update strategy. Function that determines the criteria to select updating rules. It can be as
simple as to "select an arbitrary rule" or as complex as to involve probabilistic studies.

Information states frameworks are a very generic and abstract notion that can embrace a broad
class of dialogue transition systems. So far information state models have not been formally defined.
Any dialogue transition system where the previously mentioned components can be found defines
a dialogue move engine. Examples of dialogue system toolkits that allow the definition of dialogue
move engines are mentioned in [BCEL99].

With respect to dialogue state frameworks, according to [LT00] it differs from information state
models in the following way:

“It is important to distinguish information state approaches to dialogue modeling
from other, structural, dialogue state approaches. These latter approaches conceive a
“legal” dialogue as behaving according to some grammar, with the states representing
the results of performing a dialogue move in some previous state, and each state licens-
ing a set of allowable next dialogue moves. The "information" is thus implicit in the
state itself and the relationship it plays to other states. It may be difficult to transform
an information state view to a dialogue state view, since there’s no necessary finiteness
restriction on information states [...] and the motivations for update and picking a next
dialogue move may rely on only a part of the information available, rather than to the
whole state. On the other hand, it is very easy to model dialogue state as information
state: the information is the dialogue state, itself. [...], the dialogue moves will be the
same moves that are used in the dialogue state framework, the update rules will be the
transitions in the dialogue state model, formulated as an update to a new state, given
the previous state and performance of the action, and the update strategy will be much
the same as in the transition network.”

The formal dialogue models introduced in [AJR01] and [JL00, CVJLMV99] are information
state frameworks. Both works are based on Grammar Systems Theory, a subfield of Formal Lan-
guage Theory. Informally a Grammar system consists of several grammars that work in a distributed
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4 Chapter 1. Introduction

and cooperative way contributing to generate or accept a language. In [JL00, CVJLMV99] and
[AJR01] grammars were interpreted as speakers and a shared dialogue context was provided. Both
approaches focused on the dialogue structure avoiding the problems of human speech recognition
and synthesis (voice recognition, representation of semantics, classification of speech acts, etc).
Besides in [JL00, CVJLMV99] they presented linguistic evidence that Grammar systems provide
many of the structural design and behavioral features that human speech has: coordination, coopera-
tion, interaction, dynamism, flexibility, emergence, coherence, copresence, contextuality, audibility,
instantaneity, evanescence, simultaneity, extemporariness and turn-taking. Whether this framework
is practical has not been investigated yet.

Within Computer Science, Dialogue Theory has recently been taken up as a broader subject
of investigation. From the 80’s computer scientists are getting seriously interested in Dialogue
Theory, and even seeing it as a necessary part of their research initiatives in fields like expert systems
technology, multi-agent systems, robotics and argumentation-based systems.

The growing field of expert systems provides a natural application for Dialogue Theory. In an
expert system a user of advice or information consults an expert source (human or machine). During
the dialogue the user asks questions that the expert answers. Another application of Dialogue Theory
are the multi-agent systems. Communication in multi-agent systems is crucial to allow agents to
collaborate and share their partial knowledge in order to solve complex problems that otherwise
they could not solve in isolation. Agent communication languages like [PFPS+92][BS96] [Woo99]
and dialogue protocols of the type of [Vas04, ERS+01] [Wal04c] have been introduced for message
and knowledge exchange between agents.

With respect to Argumentation Theory, according to [vEGH96b]:

“Argumentation is a verbal and social activity of reason aimed at increasing (or
decreasing) the acceptability of a controversial standpoint for the listener or reader,
by putting forward a constellation of propositions intended to justify (or refute) the
standpoint before a rational judge.”

Since its start in the middle 80’s Argumentation Theory has found a wide range of applica-
tions in both theoretical and practical branches of Artificial Intelligence and Computer Science
[vEGH+96a]. In particular in multiagent systems argumentation theories provide a powerful frame-
work for defining the way agents get engage in deliberations, resolve conflicts interchanging argu-
ments in favor or against some conclusion, negotiate, shared data and knowledge and take decisions
based on potentially incomplete or inconsistent information. In recent years the study of Argumen-
tation Theory in the context of dialogues has been quite intensive -including that of Kraus [KNS93],
Maudet [ME98], McBurney [McB02], Reed [Ree98], Schroeder et al. [SPR98], Sycara [Syc89]
and Parsons [PWA02] [PWA03a] [TP05].

It seems that Dialogue Theory, although it has ancient roots, has recently being regarded as
an important subject of research with multiple applications and potential uses in different areas of
study.

In this thesis we analyze, mainly from the perspective of Formal Language Theory, some aspects
related to the dialogue interaction. But we also look for connections and contributions between this
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1.2. Overview and main contributions 5

subject and fields like Artificial Intelligence, Linguistics, Multiprogramming and Argumentation
Theory. Therefore our approach can be framed in the area of Dialogue Theory and be considered
an interdisciplinary work.

1.2 Overview and main contributions

Our work is an interdisciplinary one. We contribute to Dialogue Theory introducing a hierarchy of
formal frameworks in which dialogue protocols might be uniformly expressed and compared. Some
of the frameworks we define are based on finite state transition systems, while others are based on
Grammar systems.

While in Dialogue Theory sets of desirable dialogue features are used to compared the frame-
works used for specifying dialogues, in Formal Language Theory the usual approach when defining
a new formal framework is to analyze its connection with other existing grammatical systems in or-
der to compare expressiveness and complexity results. Here we follow the later approach comparing
the expressiveness of the frameworks we define and studying some of their formal properties.

For the frameworks that we introduce we analyze their expressive power in terms of the Chom-
sky hierarchy and in terms of features like: number of speaker, the way agents perceive the context
in order to take decisions (perception in blocks or scattered, length of the context they can perceive),
etc. Besides we mention the practical use of the frameworks for the specification of dialogues and
we compare them with respect to more informal properties considered in the area of Dialogue The-
ory, which are:

• restrictions on the maximum number of speakers,

• capacity of the agents to learn or modify their own knowledge bases or the shared knowledge
base through the dialogue,

• restrictions over shared memory (memory seen as an unrestricted record of dialogue history,
memory seen as a frame of questions to be answered, memory restricted to the last uttered
locution, etc)

• backtracking (the capacity to reply to locutions uttered at any earlier step of the dialogue and
not only the previous one),

• turn-taking rules used (the way that agents shift turns to talk),

• policies for replying (multiple replies or a unique reply),

• flexibility in the selection of locutions used,

• the type of agent knowledge bases allowed,

• the complexity of agent reasoning strategies,

• allowance of interchange of arguments, contraarguments and implementation of agent rea-
soning strategies with incomplete or inconsistent knowledge bases,
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6 Chapter 1. Introduction

• dialogue initiative (system initiative, user initiative, mixed initiative),

• provision of features that, according to linguistic theories of Dialogue Theory, are close-to-
human conversation.

Our intention is to contribute to Dialogue Theory providing the designers of dialogue protocols
with a hierarchy of formal frameworks from where they can choose the model that suits better their
requirements of expressiveness minimizing computational complexity and undecidability of results.

With the hierarchy we introduce we also contribute to Formal Language Theory with the devel-
opment of grammatical frameworks to define dialogue protocols. Some of the frameworks we pro-
pose are based on Grammar system variants, and others are defined as finite state transition system.
Those frameworks that we propose as Grammar systems variants can be seen as the continuation of
the models presented in [JL00, CVJLMV99] and [AJR01]. From them we took the idea of defining
a formal framework for the specification of dialogue protocols as a Grammar system variant where:
each populationAi, 1 ≤ i ≤ n, represents a role that agents can play in the dialogue, each grammar
A j belonging to population Ai is interpreted as a speaker who participates in the conversation as
described by roleAi, and the message interchange is done through a shared conversational context.

In particular we introduce Conversational Extended Reproductive Eco-Grammar (ConvEREG)
systems as variants of Reproductive EG system where we replace rewriting rules for strings for
describing the speakers behavior. In our model each speaker has a string description of his expected
behavior during the conversation. This string description is a protocol definition in a Multi-Agent
Protocol calculus that we developed for this purpose and that we called MAPa. While strings can be
changed during run-time according to the dialogic state, rewriting rules are defined at design time
and they remain fixed during all the conversation. Since our framework does not have this restriction
it can be applicable to define dialogue protocols whose dialogic space is not known beforehand but
emerges from the process of communication and from the agent knowledge. Another difference of
ConvEREG systems with respect to previous approaches [JL00, CVJLMV99] and [AJR01] is that
we consider agents(speakers) as “grey boxes” whose inner implementation details are unseen. We
specify only those agent details that are directly affected by the interaction with the environment
and that determine their observable behavior. The main advantage of our approach is that in case
of dialogues involving agents that are not fully knowable or whose complexity of representation is
hight, we can still construct an abstract representation and reason about the dialogue interaction.

ConvEREG systems correspond to information state theory and can be considered an improve-
ment with respect to previous grammatical approaches defined for the simulation of dialogues, be-
cause they are:

• Focused on dialogue structure and not concerned with natural language processing.

• An abstract architecture for specifying agent observable behavior. In this way we avoid the
representation of agents with complex internal behaviors and we can still define and study
dialogues and interactions where some or all the agents cannot be fully knowable, like for
instance legacy components or open systems.

• Generic, highly expressive, dynamic, emergent, reusable, modular, flexible and adequate for
applicative use.
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1.2. Overview and main contributions 7

• Linguistically well founded. Because a ConvEREG is defined as a Grammar system variant
made up of a community of evolving agents that interact with each other and with their shared
evolving environment. According to [CVJLMV99]:

“This is similar to what happens if people participate in a conversation. The
interlocutors of the conversation correspond to the agents and the shared context,
that is, the speech and the knowledge on the topic of the conversation, corresponds
to the environment. Evolution and actions, together, realize the modification of the
context.”

Therefore this framework exhibits some features characteristic of human speech like copres-
ence, contextuality, audibility, instantaneity, evanescence, simultaneity, extemporariness and
emergent behavior.

• The combination of different approaches developed for the study of dialogues. In particular
the MAPa language that we define for describing cooperation and communication in Multi-
agent systems in Artificial Intelligence, the Conversational Grammar systems [JL00] from
Formal Language Theory and studies of human dialogues from Linguistics.

Because Extended ConvEREG (EConvEREG) systems prove to have the same expressive power
as Turing Machines, we introduce some restrictions to decrease their expressive power getting two
subclasses: one based on Eco-Grammar systems that we called Conditional Eco-grammar (Con-
dEG) system, and other based on Reproductive Eco-Grammar systems that we called regularly
Controlled Reproductive Eco-grammar (rCREG) system. Extended CondEG (ECondEG) systems
with non erasing rewriting rules prove to be a subclass of Context Sensitive (CS) grammars. While
Extended rCREG (ErCREG) systems prove to be a type of mildly CS grammar.

Based on finite state transition systems we introduce the Conversational Finite State Transition
(ConvFS T ) systems to formally specify dialogue protocols between a fixed number of n ≥ 1 agents.
Each agent Ai, 1 ≤ i ≤ n, is provided with a private knowledge base Ki containing its beliefs. These
knowledge bases are fixed during the dialogue; this means that the agents do not learn through the
dialogue. The dialogue moves are described by a finite state transition system where the states
correspond to stages in the conversation and transitions are conditional and labeled by locutions
from a locution set. For a labeled transition to be triggered the precondition associated with the
locution that labels it must be satisfied. And the preconditions of the locutions are computable
function, not necessarily complete, over some logic which are evaluated according to the agent
knowledge and shared knowledge. If a transition is triggered a new state is reached and some
operation can be performed over a string of shared knowledge. This string of shared knowledge
records the information exchanged and the knowledge learned by the agents during the dialogue.
This framework is very flexible, it allows the definition of dialogue protocols with: backtracking (the
capacity to reply to locutions uttered at any earlier step of the dialogue and not only the previous
one), different turn-taking rules (agents can make several moves before the turn shifts), arbitrary
sets of locutions, arbitrary type of agent knowledge bases and reasoning strategies, multiple replies
(indeterministic transition systems).
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8 Chapter 1. Introduction

ConvFS T systems correspond to dialogue state theory and they are a variant of finite state tran-
sition system. We have shown the suitability of this framework to simulate the argumentation-based
dialogue systems introduced in [Amg98]. EConvFS T systems prove to have the same expressive
power as Turing Machines, therefore we introduce three subclasses of the ConvFS T systems where
we fix some restrictions to decrease their expressive power: Conditional Finite State Transition
(CondFS T ) systems, where Extended CondFST (ECondFST) systems with non erasing rules are a
subclass of CS grammars, limited memory Finite State Transition (lmFS T ) systems where Extended
lmFST (ElmFST) systems the same expressive power as CS grammars and regularly Controlled
Finite State Transition (rCFST) systems, where Extended rCFST (ErCFST) systems are a type of
mildly CS grammar. We also show the suitability of rCFS T systems to simulate frame-based mixed
initiative dialogues.

The frameworks that we mentioned above are variants of finite state transition systems and can
be seen as the continuation of the models presented in [Vas04, ERS+01] [HK98][MW97][PC96].

Although the main aim of this thesis is to explore possible ways to apply Grammar System
Theory to the formal study of dialogues, we also contribute to Grammar System Theory. We do it by
addressing the problem of formally proving that a Grammar system verifies certain properties or that
it produces a desired outcome. In the programming field there are two ways to prove that a program
satisfies a specification: verify that some existing program meets its specification, or simultaneously
derive a program and the proof of satisfaction of the specification given. In Grammar systems
mainly analysis by cases is used as verification strategy and so far no formal derivation strategy has
been tried. Inspired in the programming field we propose a new approach for the formal verification
and derivation of Grammar systems. Our proposal consists on interpreting Grammar systems as
programs in order to make use of the formal verification and derivation strategies available in the
programming field.

1.3 Structure of the thesis

This thesis is divided in six chapters.

Chapter 2: Grammar systems
We introduce Grammar System Theory and we explain the Grammar system models that are

used through the thesis.

Chapter 3: A new approach for the verification and derivation of Grammar systems
We show that it is possible to interpret some Grammar system variants (Cooperating Distributed

Grammar systems, Parallel Communicating Grammar systems, Parallel Communicating Grammar
systems with communication by command and Eco-Grammar systems) as multiprograms. We ex-
plain and exemplify the use of a Hoare-based logic, called Owicki-Gries Theory, over those Gram-
mar systems that can be interpreted as multiprograms. We introduce Owicki-Gries Theory as an
alternative approach to analysis by cases, to verify the satisfaction of properties in Grammar sys-
tems. We explain a novel idea consisting of using Owicki-Gries Theory to simultaneously construct
Grammar systems and the proof that they satisfy a property.
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1.3. Structure of the thesis 9

Through the next two chapters we show the applicability of Formal Language Theory, and
Grammar System Theory in particular, to the development of a hierarchy of formal frameworks for
the modelization of dialogue protocols. For the frameworks that we define in both chapters we study
mainly their expressive power and the effect that the restrictions that we impose on them have over
their applicability in the modelization of dialogue protocols: which features considered in Dialogue
Theory as desirable are lost when we restrict the expressive power of the framework we introduce.

Chapter 4: Using Grammar systems for specifying dialogue protocols
We define Enlarged Reproductive Eco-Grammar (EREG) systems, a new variant of Reproduc-

tive Eco-Grammar systems. We formally introduce Conversational Enlarged Reproductive Eco-
Grammar (ConvEREG) systems as EREG systems where the agent behavior is not described by
rewriting rules, but by process descriptions in a language that we define for this purpose: the Multi-
Agent Protocol (MAPa) calculus. Under the restriction that the agents can only invocate computable
functions, not necessarily complete, it turns out that EConvEREG systems have the same expres-
sive power as Turing Machines, therefore we impose restrictions in order to reduce their expressive
power. We define two subclasses of ConvEREG: Conditional Eco-Grammar (CondEG) systems
and regularly Controlled Reproductive Eco-Grammar (rCEREG) systems.

CondEG systems are a variant of Eco-Grammar system where each agent’s private knowledge
base is restricted to two finite sets of conditional rules. In each derivation step every agent inspects
its two sets of conditional rules in order to decide its participation in the conversation and how
to change its mental state. The first set of rules is used by the agent to decide how to change
the dialogue context (environment) according to the presence and\or absence of information in its
mental state (agent state). The second set of rules is used by the agent to change its mental state
according to the presence and\or absence of information in the dialogue context. ECondEG systems
with non erasing rules are a subclass of CS grammars.

rCEREG systems correspond to a variant of Reproductive Eco-Grammar system to which we
attach a turn talking policy given by a regular set that determines the order that speakers must take to
participate in the dialogue. Under the restriction that agents can only invocate computable functions,
it turns out that ErCEREG systems have the same expressive power as regularly Controlled (rC)
grammars with non-erasing CF rules [GS68][DPS97]. Class rC corresponds to a type of mildly CS
grammar where the membership problem is decidable, the emptiness problem is NP-hard and the
finiteness problem is NP-hard.

Chapter 5: Using finite state transition system for specifying dialogue protocols
We devote this chapter to the definition of frameworks based on a finite state transition sys-

tem for the definition of dialogue protocols. First we introduce the so-called Conversational Finite
State Transition (ConvFST) system. ConvFS T systems allow the specification of dialogue proto-
cols where the number of agents is fixed, agents are provided with fix sets of private believes, the
interaction model is described by a finite state transition system whose transitions are conditionals
and labeled with locutions, and the shared knowledge is saved in a string whose content can be
modified. The states of the automata correspond to possible stages of the conversation, and the
transitions to dialogue moves. For a labeled transition to be triggered the precondition associated
with the locution that labels it must be satisfied. The preconditions of the locutions are formulas
over some logic which are evaluated according to the agent’s knowledge and shared knowledge.
Checking the satisfaction of the locution’s precondition is computable. If a transition is triggered
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10 Chapter 1. Introduction

a new state is reached and some operation can be performed over the shared knowledge. After
showing the applicability of ConvFST systems in Dialogue Theory, and in Argumentation Theory
in particular, we analyze its expressiveness. We discover that Extended ConvFST (EConvFS T ) sys-
tems have the same expressive power as EConvEREG systems, therefore we define three subclasses
of ConvFST: Conditional Enlarged Finite State Transition (CondFST) systems, limited memory Fi-
nite State Transition (lmFS T ) systems and regularly Controlled Finite State Transition (rCFST)
systems.

In CondFS T systems the agents are provided with finite sets of conditional rules that they use
to decide their participation in the dialogue. The agents use these rules to decide how to modify
the string corresponding to the shared knowledge depending on the presence and\or absence of
substrings(information) in that string. Extended CondFST (ECondFST) systems with non erasing
rules are a subclass of CS grammars.

In lmFS T systems the knowledge shared by the agents is limited to at most the last uttered
locution and the decision procedures used by the agents to determine when to utter a locution are
decidable. Because there are no restrictions over the locutions used very complex dialogues can
be modeled, where locutions can contain information of previously uttered locutions and even the
whole dialogue history. Extended lmFST (ElmFST) systems have the same expressive power as CS
grammars.

In rCFS T systems the locutions have no parameters and each locution is associated with a
CF rule such that the locution’s precondition consists on checking if the associated CF rule can
be applied over the string of shared knowledge. If the precondition associated with a locution
is satisfied, then the locution is uttered and a new string of shared knowledge is obtained from
the application of the CF rewriting rule associated with that locution. Extended rCFST (ErCFST)
systems have the same expressive power as regularly Controlled grammars and therefore correspond
to a type of mildly CS grammar.

Finally Chapter 6: Conclusions and Future Work.
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Chapter 2

Grammar systems

2.1 Introduction

Grammar systems [CVD90] were introduced as a new subfield of Formal Language Theory. They
were developed to provide a formal framework for the abstract representation of computing models
from a new paradigm which was born in the 80s based on distribution, decentralization, emergent
behavior, parallelism, modularity and communication. The new paradigm tried to computationally
reflect the observation of real-life features like the reproduction of living beings, the behavior of
molecules, the activity of the brain, different ways of communication, etc. This paradigm introduced
a new way of thinking about solving problems and it proved to increase the efficiency in the time to
find the solutions. Following these ideas, different computing strategies were developed in robotics,
artificial intelligence, computer science, etc. While parallel models have proved to be more powerful
than those traditionally used, their main disadvantage has been, in general, their lack of theoretical
foundations. Take for example the case of genetic algorithms from the area of Artificial Intelligence,
as we pointed out in [DG05a] and [DG05b]. Grammar systems were the grammatical counterpart
of this new computing paradigm and they provided a new approach different from the traditional
one in Formal Language Theory. While before one language was generated by one grammar or
generating mechanism, Grammar systems consist on several grammars that work in a distributed
and cooperative way to contribute to generate or accept a language. According to [CVD90] all
Grammar system variants, independently of their type, share a common definition:

“A Grammar system consists of several (a finite number) of language determining
devices (language processors) which jointly develop a common symbolic environment
(usually, a string or a finite set of strings) by applying language theoretic operations
to it. The symbolic environment can be shared by the components of the system or
it can be given in the form of a collection of separated sub-environments, each be-
longing to a language processor. At any moment of time, the state of the system is
represented by the current string describing the environment (the collection of strings
of the sub-environments). The functioning of the system is realized by changes of its
states. Depending on the variant of multi-agent systems which is represented by the
actual Grammar system, in addition to performing derivation steps, the language pro-
cessors are allowed to communicate with each other. Usually, this is done by exchange

11
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12 Chapter 2. Grammar systems

of strings which can be data (for example, sentential forms in derivation) or programs
(productions or coded form of some operation). The behavior of the Grammar system
can be characterized by the set of sequences of environmental states following each
other starting from an initial state or by the set of all states of the environment or that
of a sub-environment which originate from the initial state and satisfy certain criteria.
The second case defines the language of the system.”

Since its creation, Grammar systems have proven to be a flourishing area. Different variants
of Grammar systems have been introduced, their computational power and grammatical properties
have been studied and compared, and some empirical applications have been found.

Section 2.2 starts with some preliminary basic knowledge of Formal Language Theory. Section
2.3 gives the Grammar system definitions that will be used during the rest of the work. Finally
section 2.3.6 mentions some Grammar systems definitions that have been successfully introduced
for applicative use.

2.2 Preliminaries

Prior to the formal definition of Grammar systems, we fix some basic notation and concepts from
Formal Language Theory. For all unexplained notions the reader is referred to [RS97].

An alphabet is a finite and nonempty set of symbols. Any sequence of symbols from an alphabet
V is called a string (word) over V . The set of all strings over V is denoted by V∗ and the empty
string is denoted by λ. Further, V+ = V∗ \ {λ}. The number of occurrences of a symbol a ∈ V in a
word w ∈ V∗ is denoted by (w)#a and the length of w is denoted | w | .

A Chomsky grammar is a quadruple G = (N, T, S , P), where N is the nonterminal alphabet, T
is the terminal alphabet, S ∈ N is the axiom, and P is the (finite) set of rewriting rules. The rules
are presented in the form u → v and used in derivations as follows: x =⇒ y is written if x = x1ux2,
y = x1vx2 and u→ v is a rule in P (one occurrence of u in x is replaced by v and the obtained string
is y). Denoting by =⇒∗ the reflexive and transitive closure of =⇒, the language generated by G is
defined by:

L(G) = {x ∈ T ∗ | S =⇒∗ x}.
A Chomsky grammar can be:

• Regular, if it is a right linear grammar or a left linear grammar.

• Right linear, if every production is presented in the form: A → a, A → aB where A, B ∈ N
and a ∈ T ∗.

• Left linear, if every production is presented in the form: A→ a, A→ Ba where A, B ∈ N and
a ∈ T ∗.

• Linear, if it has at most one non terminal on the right hand side of any production.

• Context free, if every production has the shape: A→ x where A ∈ N and x ∈ (N ∪ V)∗.
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2.3. Main Grammar system models 13

• Context sensitive (CS), if every production has the shape: αAβ → αγβ or S → λ where
A ∈ N, α, β ∈ (N ∪ T )∗, γ ∈ (N ∪ T )+ and S is not in the right-side of any production.

• Type-0 or arbitrary Chomsky grammar, if it is one without any restriction over its productions.

The families of languages generated by regular, left linear, right linear, linear, context free,
context sensitive and type-0 Chomsky grammars are denoted by REG, LL, RL, LIN, CF, CS , RE,
respectively. The family of finite languages is denoted by FIN.

Similarly a 0L system (an interactionless Lindenmayer system) is a triple H = (V, P,w) where V
is a finite alphabet, P is a set of context free rules over V and w ∈ V∗ is the axiom. Moreover P has
to be complete, that is, for each symbol a in V there must be at least one rule a → x in P with this
letter a on the left-hand side. 0L systems use parallel derivations: it is said that x directly derives y
in a 0L system H = (V, P,w) with x, y ∈ V∗, written as x⇒H y, if x = x1x2...xn, y = y1y2...yn where
xi ∈ V , yi ∈ V∗ and the rules xi → yi are in P for 1 ≤ i ≤ n.

A 0L system H = (V, P,w) is propagating or P0L system if all the productions in P are λ-free.
A 0L system whose alphabet is divided into a nonterminal and a terminal alphabet H = (N,T, P,w)

is called an E0L system (an extended 0L system) and its language is defined by L(H) = {x ∈ T ∗ |
w⇒∗ x} where the derivation takes places as in a 0L system.

A T0L system (a tabled 0L system) is a tuple H = (V, P1, ..., Pn,w), where each triple (V, Pi,w)
is a 0L system; a string x derives a string y if x ⇒ y with respect to some 0L component scheme
(V, Pi). Extended versions can be defined for T0L systems too. They are called ET0L systems. We
denote by 0L, E0L,T0L, ET0L the families of languages generated by 0L, E0L, T0L, ET0L systems,
respectively. The following basic relations have been proved:

FIN ⊂ REG ⊂ CF ⊂ CS ⊂ RE,
0L ⊂ T0L ⊂ ET0L,

CF ⊂ E0L ⊂ ET0L ⊂ CS ,
CF is incomparable with both 0L and T0L

We denote as N and Z the set of natural and integer numbers, respectively.
We consider:
2A = {X | X ⊆ A},
card(A) the cardinality of set A, i.e. the number of elements of A,
max(A) = x↔ (∀y ∈ A : x ≥ y), where A is a set of numeric elements, is the maximal element in A,
size(α), where α is a stack of elements of type T , is the number of elements saved in α.

2.3 Main Grammar system models

2.3.1 Cooperating Distributed Grammar systems

The first and simplest Grammar system variant was introduced in [CVD90]. It was inspired by a
model already used in Artificial Intelligence, the so-called blackboard model of problem solving.
The idea is that there is a teacher that writes a problem on a common blackboard and all the students
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14 Chapter 2. Grammar systems

contribute individually, in turn, to the solution of the problem. The students only communicate
through the blackboard, they cannot chat between themselves about the problem.

CD Grammar systems model the syntactic aspects of this problem: a CD Grammar system
is a finite set of (usually generative) grammars which cooperate in deriving words of a common
language. At any moment of the generation process there is exactly one sentential form. The
component grammars generate the common string in turns, under a cooperation protocol, called the
derivation mode. Formally:

Definition 1 (Cooperating Distributed Grammar system) A CD Grammar system Γ of degree n,
n ≥ 1, and derivation mode f , is a construct

Γ = (T,G1,G2, ...,Gn, S )

where:

• T is the terminal alphabet,

• S is the start symbol and

• Gi = (Ni, Ti, Pi, fi), 1 ≤ i ≤ n

where:

– Ni is the nonterminal alphabet of Gi,

– Ti is the terminal alphabet of Gi,

– Pi is the production set of Gi and

– fi ∈ {t, ∗} ∪ {= k,≤ k,≥ k | k ≥ 1} is the mode of derivation. According to the value it
takes it limits the way the grammars work on the sentential form:

∗ t-mode: x
t

=⇒
Pi

y iff x
∗

=⇒
Pi

y and there is no z ∈ (N ∪ T )∗ with y =⇒
Pi

z,.

For this mode of derivation the grammar contributes to the solution of the problem
as much as it can.

∗ = k-mode: x
=k

=⇒
Pi

y iff there are x1, ..., xk+1 ∈ (N ∪ T )∗ such that x = x1, y = xk+1,

and for each 1 ≤ j ≤ k x j =⇒
Pi

x j+1.

In this case, the contribution of the grammar is fixed to k successive derivation
steps.

∗ ≤ k-mode: x
≤k

=⇒
Pi

y iff x
=q

=⇒
Pi

y for some q ≤ k.

In this case a restriction of less than k contributions is provided.
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2.3. Main Grammar system models 15

∗ ≥ k-mode: x
≥k

=⇒
Pi

y iff x
=q

=⇒
Pi

y for some q ≥ k.

In this mode a minimal contribution from the agent is required, not less than k
derivation steps.

∗ The ∗ mode of derivation, describes the case when the agent performs derivations
on the world as long as it wants.

In the architecture of a CD Grammar system one can recognize the structure of the blackboard
model. Each grammatical component Gi can be seen as a student. The axiom S is the formulation of
the initial problem given by the teacher, and all the students (grammars) contribute to the solution of
the problem by performing rewriting rules. While nonterminals Ni are seen as questions introduced
by agent Gi, terminals Ti are the answers it provides. Finally, a solution is obtained when a sentential
form w containing no question is obtained. At this point, w is a string of characters from the terminal
set T .

Definition 2 (Language) The language generated by a CD Grammar system Γ with degree n and
derivation mode f ∈ {∗, t} ∪ {≤ k,= k,≥ k | k ≥ 1} is defined as:

L f (Γ) =


w ∈ T ∗ | S f

=⇒
Pi1

w1
f

=⇒
Pi2

...
f

=⇒
Pim

wm = w,

m ≥ 1, 1 ≤ i j ≤ n



A component Gi may start working (gets enabled) on a sentential form w whenever w contains
an occurrence of the left-hand side of a production from Pi. Which of the enabled components gets
the current sentential form is decided in a nondeterministic way. The moment when the grammar
Gi stops working on w is determined by the stop condition fi.

The Grammar system is homogeneous when all its components work in the same mode and
hybrid when each component can use different basic derivation modes.

We denote by CDn( f ) the family of languages generated by homogeneous Cooperating Dis-
tributed Grammar systems with at most n components working in the f mode of derivation, where:

- n ∈ N ∪ {∗}, where ∗ means that the number of components is irrelevant and
- f ∈ {t, ∗} ∪ {≤ k,= k,≥ k | k ≥ 1}.

2.3.2 Parallel Communicating Grammar systems

Parallel Communicating (PC) Grammar systems were introduced in [PS89] as a grammatical rep-
resentation of the so-called classroom model of problem solving, which is a modification of the
blackboard model. Here each student is given a problem written in his own notebook. Each student
works on his own problem, but can ask for help from other students in the classroom in order to
solve the problem.
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16 Chapter 2. Grammar systems

Definition 3 (Parallel Communicating Grammar system) A PC Grammar system of degree n, n ≥ 1,
is an (n + 3)-tuple

Γ = (N,K,T, (P1, S 1), (P2, S 2), (P3, S 3), ..., (Pn, S n))

where:

• N is a nonterminal alphabet,

• T is a terminal alphabet,

• K = {Q1,Q2, ...,Qn} (the sets N,T,K are mutually disjoint) and

• Pi is a finite set of rewriting rules over N ∪ K ∪ T , and S i ∈ N, for all 1 ≤ i ≤ n.

Let VΓ = N ∪ K ∪ T. The sets Pi, 1 ≤ i ≤ n, are called the components of the system, and the
elements Q1,Q2, ...,Qn of K are called query symbols, the index i of Qi points to the component Pi

of Γ. An n-tuple (x1, x2, ..., xn) with xi ∈ V∗
Γ

for all i, 1 ≤ i ≤ n, is called a configuration of Γ. A
configuration (x1, x2, ..., xn) directly yields other configuration (y1, y2, ..., yn) if either:

- No query symbol appears in x1, x2, ..., xn and then a componentwise derivation occurs, xi =⇒ yi

in each component Pi, 1 ≤ i ≤ n (one rule is used in each component Pi), except for the case when
xi is terminal, xi ∈ T ∗; then xi = yi, or

- Query symbols occur in some xi. Then a communication step is performed: every xi (con-
taining query symbols) is modified by substituting x j for each occurrence of a query symbol Q j,
providing x j does not contain query symbols. After all words xi have been modified, the component
P j continues its work on the current string (in the non-returning case) or resumes working from
its axiom (in the returning case). The communication has priority over the effective rewriting: no
rewriting is possible as long as at least one query symbol is present. If some query symbols are not
satisfied at a given moment, then they have to be satisfied as soon as other query symbols have been
satisfied.

If only the first component is entitled to introduce query symbols, then the system is called
centralized, otherwise it is called non-centralized.

Definition 4 (Language) Given a PC Grammar system Γ the language generated by Γ is given by
the following expression:

L(Γ) = {x ∈ T ∗ | (S 1, S 2, ..., S n) =⇒ (x, α2, ..., αn), αi ∈ V∗Γ, 2 ≤ i ≤ n}.

Hence, one starts from the n-tuple of axioms, (S 1, S 2, ..., S n), and proceeds by repeating rewrit-
ing and communication steps, until the component P1 produces a terminal string. The component
P1 is called the master of the system.

We denote by PCn(Y) the family of languages generated by non-centralized returning Parallel
Communicating Grammar systems with at most n components, each component with productions
of type Y, where:

- n ∈ N ∪ {∗}, where symbol ∗ refers that the parameter is irrelevant and
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2.3. Main Grammar system models 17

- Y ∈ {FIN,REG,CF,CS ,RE}.
When the PC Grammar system is centralized, non-returning and non-returning centralized the

prefixes C, N and NC, respectively, are added.

In PC Grammar systems the communication is on request. This means that communication
takes place when an agent requests information from other agents in the network by introducing a
query symbol. But there is also another way of communication, called communication by command,
which was introduced as part of the WAVE paradigm [Err93]. Parallel Communicating Grammar
systems with communication by Command (CCPC) were introduced in [CVKP96] to provide a
syntactic model for this type of communication. Here each grammar in the system works on its
own sentential form and it has one language playing the role of a filter. When the rewriting time is
interrupted agents communicate by sending their sentential form to those agents whose filter allow
them to receive that sentential form.

Definition 5 (Parallel Communicating Grammar system with Communication by Command) A CCPC
Γ is a construction of the form:

Γ = (N,T, (S 1, P1,R1), (S 2, P2,R2), ..., (S n, Pn,Rn))

where:

• N is the nonterminal alphabet,

• T is the terminal alphabet and

• (S i, Pi,Ri), 1 ≤ i ≤ n are the components of the systems

where:

– S i ∈ N is the axiom,

– Pi is the set of production rules over (N ∪ T )∗ and

– Ri ⊆ (N ∪ T )∗ is the selector language of the component i.

A rewriting step in Γ is defined by (x1, ..., xn) =⇒ (y1, ..., yn) iff for each i, 1 ≤ i ≤ n, xi =⇒∗ yi

in Pi and there is no zi ∈ (N ∪ T )∗ such that yi =⇒ zi in Pi.

A communication step denoted by (x1, ..., xn) ` (y1, ..., yn) is defined as follows:
Let, for 1 ≤ i, j ≤ n,

δ(xi, j) =

{
λ, if xi < R j or i = j
xi, if xi ∈ R j and i , j

Let, for 1 ≤ j ≤ n, ∆( j) = δ(x1, j)δ(x2, j)...δ(xn, j)
(this is the total message to be received by the j-th component)

And let, for 1 ≤ i ≤ n, δ(i) = δ(xi, 1)δ(xi, 2)...δ(xi, n)
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18 Chapter 2. Grammar systems

(this is the total message sent by the i-th component).

Then for 1 ≤ i ≤ n, we define

yi =


∆(i), if ∆(i) , λ
xi, if ∆(i) = λ and δ(i) = λ

S i, if ∆(i) = λ and δ(i) , λ

Thus yi can be:

• the concatenation of the messages received by the i-th component, if it receives at least one
message, or

• the previous string, when the i-th component is not involved in communication, or

• S i, if the i-th component sends messages but it does not receive message.

It should be observed that a component cannot send messages to itself.

Definition 6 (Language) Given a CCPC Grammar system Γ the language generated by Γ is given
by the following expression:

L(Γ) =



w ∈ T ∗ | (S 1, ..., S n) =⇒ (x(1)
1 , ..., x(1)

n ) ` (y(1)
1 , ..., y(1)

n ) =⇒
=⇒ (x(2)

1 , ..., x(2)
n ) ` (y(2)

1 , ..., y(2)
n ) =⇒ ... =⇒ (x(s)

1 , ..., x(s)
n ),

for s ≥ 1 and w = x(s)
1



We denote by CCPCn(Y) the family of languages generated by Parallel Communicating Gram-
mar systems with Communication by Command with at most n components, each component with
productions of type Y, where:

- n ∈ N ∪ {∗} where symbol ∗ indicates that the parameter is irrelevant.
- Y ∈ {FIN,REG,CF,CS ,RE}.

We introduce now Eco-Grammar systems, which can be seen as a generalization of both CD
and PC Grammar systems.

2.3.3 Eco-Grammar systems

Eco-Grammar systems were introduced in [CVJKP94] as a formal framework for studying systems
made up of a community of living organisms and their environment. They were inspired by eco-
systems, economy, social behavior, multi-agent systems and collective robotic systems.

Definition 7 (Eco-Grammar system) An EG system of degree n ≥ 1 is a tuple Σ = (E, A1, . . . , An),
where:
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2.3. Main Grammar system models 19

• E = (VE , PE), is the environment that uses VE as a finite alphabet, and PE as a finite set of
0L rewriting rules over VE;

• Ai, 1 ≤ i ≤ n, are agents consisting of Ai = (Vi, Pi,Ri, ϕi, ψi) where:

– Vi is a finite alphabet,

– Pi a finite set of 0L rewriting rules over Vi,

– Ri ∈ V+
E × V∗E is a finite set of rewriting rules,

– ϕi and ψi are computable functions, not necessarily complete, that respectively select
production sets according to the environment state ϕi : V∗E −→ 2Pi , and according to
the agent state ψi : V+

i −→ 2Ri .

ωE

PE

P1

R1

ϕ1

ψ1

P2

R2

ϕ2

ψ2

ω1 ωn

Pn

Rn

ϕn

ψn

ω2
…

…

…

ENVIRONMENT

AGENTS

Figure 2.1: Description of an Eco-Grammar system

At this point, this definition provides only the description of the Eco-Grammar system’s compo-
nents. In order to describe the dynamic evolution of EGs, we give the definitions of configuration,
derivation and language generated.

Definition 8 (Configuration) A configuration of an Eco-Grammar system is a tuple
σ = (wE ,w1, . . . ,wn), wi ∈ V∗i , i ∈ {E} ∪ {1, . . . , n}, where wE is a string that represents the
environment state and w1, . . . ,wn are strings that represent the agents’ state.

Below we define the direct derivation of a configuration in an Eco-Grammar system:

Definition 9 (Derivation) Considering an Eco-Grammar system Σ and two configurations of Σ de-
noted by σ = (wE ,w1, . . . ,wn) and σ′ = (w′E ,w

′
1, . . . ,w

′
n), we say that σ directly derives σ′ written

as σ =⇒Σ σ
′ iff
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20 Chapter 2. Grammar systems

• wi =⇒ w′i according to the selected set of rules for the i-th agent by the ϕi mapping,

• wE = z1x1z2x2, . . . , zmxmzm+1 and w′E = z′1y1z′2y2, . . . , z′mymz′m+1, such that
z1x1z2x2, . . . , zmxmzm+1 =⇒ z1y1z2y2, . . . , zmymzm+1 as the result of applying in parallel the
rewriting rules selected by the ψi mappings, for all 1 ≤ i ≤ n , and z1z2, . . . , zm+1 =⇒
z′1z′2, . . . , z

′
m+1 according to the environment’s rules.

The transitive and reflexive closure of =⇒Σ is denoted by =⇒+
Σ

and =⇒∗
Σ

respectively.

Definition 10 (Configuration sequences) For a given EG system Σ and an initial configuration σ0
we define the set of configuration sequences of Σ as

S eq(Σ, σ0) = {{σi}∞i=0|σ0 ⇒Σ σ1 ⇒Σ ...}

Definition 11 (Language) The language generated by the environment is defined as

LE(Σ, σ0) =

{
wE ∈ V∗E | σ j = (wE ,w1, ...,wn),

σ0 =⇒Σ σ1 =⇒Σ ... =⇒Σ σ j, j ≥ 0

}

2.3.4 Reproductive Eco-Grammar system

Here we present a variant of EG system that allows to model agents’ reproduction and birth, one
characteristic feature of living organisms. This variant is known as Reproductive EG system and
was introduced in [CVKKP97].

Definition 12 (Reproductive EG system) A Reproductive EG system of degree n ≥ 1 is a (n+1)-tuple
Σ = (E,A1, ...,An) where:

• E = (VE , PE) is the environment, as defined for EG systems,

• Ai is a multiset (a set whose elements can occur in several copies each), called the population
of the agents of the i-th type, 1 ≤ i ≤ n, where each agent Ai in Ai has the same form
Ai = (Vi ∪ {t}, Pi,Ri, ϕi, ψi), with the components Vi, Pi, Ri, ϕi, ψi defined as for EG systems
and

• t, called the reproduction symbol, can occur only on the right-hand side of productions of
Pi, 1 ≤ i ≤ n.

The appearance of the new agents is indicated by the occurrence of reproduction symbol t in
the current state of the agent. Whenever the current evolution stage w of an agent A has the form
w1 t ... t wn, the agent is reproduced as a collection (a multiset) of agents A(1), ..., A(n) of the same
type, where the agent A(i) is in evolution stage wi, 1 ≤ i ≤ n. The new agents A(1), ..., A(n) inherit all
properties of their ancestor, namely they have the same sets of evolution rules and action rules.

The definition of configuration, derivation, configuration sequences and language for Reproduc-
tive EG systems is the same as for EG systems.
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2.3. Main Grammar system models 21

2.3.5 Conditional Tabled Eco-Grammar system

Conditional Tabled Eco-Grammar (CTEG) systems were introduced in [CVPS95] in the following
way:

Definition 13 A Conditional Tabled Eco-Grammar (CTEG) system of degree n ≥ 1 is an EG system
Σ = (E, A1, ..., An) where:

• E = (VE , (e1, f1 : P1), ..., (em, fm : Pm)) is a conditional T0L scheme with n-ary context
conditions, ei, fi ∈ V∗1 × ... × V∗n , 1 ≤ i ≤ m and

• Ai = (Vi, (gi1, hi1 : Pi1), ..., (giri , hi,ri : Pi,ri)), 1 ≤ i ≤ n, is a conditional T0L scheme with
unary context conditions, gi1, hi1 ∈ V∗E , for all i, j.

To specify the dynamic aspects of a CTEG system we need to introduce first the following
definition:

Definition 14 Given an alphabet V, we define the following predicates over V∗ × V∗:
πb(x, y) = 1 i f f y = y1xy2,

πs(x, y) = 1 i f f y = y1x1y2x2...yr xryr+1,

x = x1x2...xr where xi, yi ∈ V∗ for all i.

Whilst the definition of configuration and environment language for CTEG systems is the same
as for EG systems, the notion of derivation is different:

Definition 15 For a CTEG system Σ, c ∈ {b, s} and configurations σ = (wE ,w1, ...,wn),
σ′ = (w′E ,w

′
1, ...,w

′
n) we write σ⇒c σ

′ iff:

1. There is a table (e j, f j : P j) in E such that πc(e ji,wi) = 1, πc( f ji,wi) = 0, for all 1 ≤ i ≤ n,
and wE ⇒P j w′E and

2. every Ai, 1 ≤ i ≤ n, has a table (gi j, hi j : Pi j) for some 1 ≤ j ≤ ri, such that πc(gi j,wE) = 1,
πc(hi j,wE) = 0, and wi ⇒Pi j w′i .

We denote by CT EGn(i, j, c), n ≥ 1, c ∈ {b, s}, i, j ≥ 0 the family of languages LE(Σ, σ0) where
Σ ∈ CT EG has degree n, initial configuration σ0, all the permitting contexts have length at most i,
all the forbidden contexts have length at most j and predicate πc is used to verify the presence or
absence of contexts. When the number of agents or the length of permitting or forbidding contexts
is not bounded, then we replace the corresponding parameter with∞.

When we are interested only in strings over some subalphabet T of VE , hence in the language
LE(Σ, σ0)∩T ∗, then we speak about Extended Conditional Tabled Eco-Grammar (ECTEG) systems.
We denote by ECT EGn(i, j, c), n ≥ 1, c ∈ {b, s}, i, j ≥ 0 the family of languages LE(Σ, σ0) ∩ T ∗

where Σ ∈ ECT EG has degree n, initial configuration σ0, all the permitting contexts have length
at most i, all the forbidden contexts have length at most j and predicate πc is used to verify the
presence or absence of contexts. When the number of agents, the length of permitting context or the
length of the forbidding contexts is not bounded, we replace the corresponding parameter with∞.
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22 Chapter 2. Grammar systems

2.3.6 Some applications of Grammar System Theory

Much of the research in the area of Grammar systems is theoretical but there are practical applica-
tions such as: problem solvers [Mih95, SS04], simulators of real or artificial environments [Das95,
CA00], dialogue models for the study of linguistic matters like: natural language processing, human
dialogue simulations, cultural influences in linguistic phenomena [CVJL98, CVJLMV99, JL99,
AJR01], etc. Even a special chip, the eco-chip, is proposed in [SM94] in order to physically realize
an Eco-Grammar system.

With respect to the area of Artificial Intelligence, an Eco-Grammar system definition has been
given in [Sos96] for modeling artificial neural networks. Similarly in [DG05b] we present an ap-
proach that relates evolutionary algorithms from Artificial Intelligence area with EG systems from
Formal Language Theory. An Evolutionary Algorithm (EA) [B9̈6] is a computational model in-
spired by the Darwinian evolutionist theory. In nature, individuals coexisting in an environment
respect a genetic theory of natural selection. The most adapted organisms have better chances
to survive, to reproduce and to have offspring. Evolutionary algorithms maintain a population of
structures that evolve according to the rules of recombination, mutation and selection. Although
simplistic from a biologist’s point of view, these algorithms are sufficiently complex to provide
robust and powerful adaptive search mechanisms.

In [DG05b] we prove that starting from an arbitrary EA it is possible to construct an EG system
that simulates the EA’s behavior. For formal details refer to [DG05b]. Our motivation for connect-
ing these two models is that on one hand theoretical basis for EAs can explain only partially the
empirical results from numerous applications. And on the other hand the empirical use of EGs is
very limited. By simulating EAs with EG systems we open the possibility to use these grammat-
ical frameworks not just as language generators but also as searching problem solvers. The range
of possible applications as problem solvers is broad, we mention here only several including the
location-allocation problem (an NP-complete problem), game playing, face recognition, financial
time-series prediction, etc. On one hand we believe that EAs can benefit by the theoretical results
obtained in the framework of Grammar systems. On the other hand Grammar systems can take
inspiration from applications using EAs for their theoretical research. Despite the large number of
existing references in the area of EAs, it represents a research domain where theoretical proofs are
still missing. Those computational models suggested by the Darwinian paradigm of evolution have
been shown to be powerful and perform well on a broad class of problems. Yet, when the com-
plexity of the applications increases, EAs exhibit some limitations, such as premature convergence.
Convergence of an EA is defined as the process of multiplication of the same individual in the pop-
ulation. If the convergence process finds a local optimum, this is called premature convergence.
Often, it is difficult for EAs to escape from such local optimum. Some approaches like variable
control parameters [SP94] or parallel populations try to avoid the stagnation observed at the end of
the evolution. In [DG05a] we continue with the approach presented in [DG05b] and we generalize
it studying Eco-Grammar systems as models for parallel evolutionary algorithms.

In [CVJL98] and [JL99] a formal framework for studying cultural evolution is presented, using
Eco-Grammar systems as a base. The introduced model is called Cultural Eco-Grammar system.
Some new components are added to the original definition of EG systems and the relationships
among the components are modified, in order to capture the characteristics of cultural systems.
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2.3. Main Grammar system models 23

The model can be seen as a multi-agent system where agents interact among themselves and with
their interrelated environments (environment, cultures, subcultures...), playing an important role
in cultural change. This formal model is introduced with the purpose of studying the evolution
of natural languages, for explaining linguistic matters like syntax, pragmatics (“the study of the
contribution of context to the understanding of language”) and language changes.

In [JL00, JL01] the notion of Grammar system is extended to the notion of Linguistic Grammar
system. A Linguistic Grammar system is a Grammar system whose components are not gram-
mars, but Grammar systems as well. Therefore a Linguistic Grammar system can be seen as a
macro-Grammar system composed of several micro-Grammar systems that are composed of sev-
eral grammars. They show that Linguistic Grammar systems have all the features needed to be a
formal model of natural language, namely: modularity, parallelism, interaction between modules,
coordination, generation of non-context free structures with context free components, cooperation,
distribution, etc.

In particular we are interested in the use of Grammar systems for modeling dialogues. In Chap-
ter 4 we introduce some Grammar system variants for the specification of dialogue protocols and we
present a brief summary of the state of the art in this field in the area of Grammar System Theory.
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Chapter 3

A new approach for the verification and
derivation of Grammar systems

3.1 Introduction

Although our aim in this thesis is to explore possible ways of applying Formal Language Theory to
the formal study of dialogues, in this chapter we analyze an idea to contribute to Formal Language
Theory, and in particular to Grammar System Theory, with theories from the Programming field. We
address the problem of formally proving that a Grammar system verifies certain properties or that it
produces a desired outcome using formal strategies of proof developed for concurrent programs.

In Formal Language Theory rewriting rules are a precise and unambiguous way to describe
local changes. But getting an intuition of the global state of a grammar from its set of rewriting
rules is undecidable and harder when the complexity of the grammar definition increases. In the
case of Grammar systems the emergent, parallel and distributed behavior increases even more the
computational complexity of the model and the level of difficulty in the proofs. Therefore the
problem of formally proving properties in a Grammar system is a very important issue to take into
consideration. Until now two formal strategies have been used for proving properties in a Grammar
system:

• Analysis by cases: this technique consists in an exhaustive study of all the possible deriva-
tions in the system. Although being a formal proving strategy, most of the explanations of the
considered cases are provided in natural language. We provide an example of its use with the
proof of theorem 5 taken from [DP97].

• Abstractions: a particular kind of abstraction called coverability tree was first introduced
in [TE93] for PC Grammar systems. In this tree the vertices correspond to vectors, where
these vectors store the number of occurrences of each nonterminal in each sentential form of
the system in a given configuration. The tree is made finite (and effectively constructible) by
cutting off infinite paths, substituting them with leaves. An infinite path can be cut off, if the
numbers of nonterminals in the sentential forms are not decreasing and no communications
are involved. If the number of occurrences of a symbol is unboundedly increased in the path,
it is denoted by a symbol w in the vector of the replacing leaf. Coverability trees allow to

25
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26 Chapter 3. Verification and derivation of Grammar systems

get decidable results about derivation steps and they were used for NPC Grammar systems
with context free and context sensitive rules [TE93, TEIP94, TKI97] and for NPC Grammar
systems with regular and linear production rules [Mih99b]. Coverability trees were also used
for CD grammar systems in [Mih99a].

The Programming field is very developed in the area of formal derivation and verification of
programs. Verification is used to prove that some program meets their specification and formal
derivation is used when a program is developed hand in hand with the proof of satisfaction of its
specification. A major drawback of verification is that it usually requires reconstructing the program
that is being verified. And when the proposed program is not correct (or just cannot be shown to be)
quite wasteful backtracking takes place. For this reason later efforts have concentrated on formal
derivation, which has proved to be a much more economic way of constructing correct programs.

The imperative programming paradigm assumes that the computer can maintain through envi-
ronments of variables any changes in a computation process. Computations are performed through a
guided sequence of steps, in which these variables are referred to or changed. The order of the steps
is crucial, because a given step will have different consequences depending on the current values of
variables when the step is executed.

Inspired by the Programming field we want to contribute to Grammar System Theory with an al-
ternative approach for the verification of properties and to introduce a novel strategy for performing
formal derivation in Grammar systems.

We devote section 3.2 to explain how to perform the automatic translation of some Grammar
systems to concurrent imperative programs because in the next sections we use this mechanism of
translation to prove results. In section 3.2.1 we introduce the Dijkstra Guarded Command (DGC)
language [DE76] that we use to define the multiprograms. In section 3.2.2 we explain with propo-
sitions 1, 2, 3 and 4 that CD Grammar systems, PC Grammar systems (centralized, non centralized,
returning and non returning), CCPC Grammar systems and Eco-Grammar systems can be inter-
preted as imperative concurrent programs where each grammar is a program running concurrently.
In the case of Reproductive Eco-Grammar systems, they can not be translated to the DGC language
because this language does not provide instructions to dynamically create agent instances during
run-time.

For those Grammar system variants that can be automatically translated to multiprograms we
select the Hoare logic [Hoa69] as an axiomatic method for the formal verification and derivation
of multiprograms. We chose Hoare logic because since its introduction in 1969 it has had a sig-
nificant impact upon formal methods of formal verification and derivation of imperative sequential
programs. Hoare’s approach is perhaps the most well known verification formalism for imperative
programming languages. In Hoare’s work programs are seen as transformer of states or predicates.
A program S is a finite sequence of statements. A statement denotes single commands (like assign-
ments, conditional, loops, etc.). Statements take place one after another. That is, a statement does
not begin until the preceding one has ended. To denote that a program S transforms a predicate
P into a predicate Q the so-called Hoare triple {P}S {Q} is used where P is the precondition of the
program and Q is the postcondition. The precondition describes the set of initial states in which the
program S is started and the postcondition describes the set of desirable final or output states. The
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3.1. Introduction 27

analogy between programs as transformers of predicates and Grammar systems as derivation sys-
tems is clear: just as each statement in a program modifies the state of the system, every rewriting
rule in the Grammar system modifies the string(s) under derivation. Informally a program is correct
if it satisfies the intended input/output relation. To verify program correctness different Hoare-based
verification systems have been defined, for instance [Rey82], [AL97], [dB99], [PdB03], [PHM99],
[RWH01] and [vO01]. A verification system is defined as a set of verification rules, one rule for each
type of statement in a programming language. The correctness of {P}S {Q} is proved in the follow-
ing way: using the verification rules a set of predicate logic formulas called verification conditions
are generated. The proof of these verification conditions ensures the correctness of a program.

Owicki-Gries Theory[OG76] is the first complete, undecidable Hoare-based logic for proving
partial correctness properties of concurrent programs with shared variables. Through this chapter
we use this verification strategy for analyzing concurrent programs.

In section 3.3.1 we explain Owicki-Gries Theory. In section 3.3.2 we explain how Grammar
systems can benefit from derivation, reasoning and proving strategies from the multiprogramming
framework. For example: given a Grammar system one can prove that it generates a specific
language by direct reasoning or one can translate the Grammar system into a multiprogram and
prove the same statement by some programming strategies developed in the Owicki-Gries Theory.
We exemplify this with the language {anbncn | n ≥ 0}. First with theorem 5 we introduce an example
of proof using analysis by cases taken from [DP97]. After that we use the new strategy to present a
different proof for the same theorem.

Furthermore, we propose another approach to solve problems of the following type: given a
language specification find a Grammar system that generates the given language. The strategy
widely used so far is as follows: first one proposes a Grammar system and then proves by means
of language theory that the proposed Grammar system generates indeed the given language. With
theorems 6, 7 and 8 we give three examples of how Owicki-Gries logic of programming could guide
us in obtaining simultaneously a Grammar system that generates the given language and the proof
that it generates it. This new approach might be of a great benefit for the Grammar System Theory.
The strategy consists on translating the problem of finding a Grammar system Γ of certain type that
generates a language L, into the problem of finding a multiprogram P. P has as many programs
Progi as the number of grammars the Grammar system Γ has and P must be correct with respect to
the specification:

{(w1 = S 1) ∧ (w2 = S 2) ∧ ... ∧ (wn = S n) ∧ n ≥ 1} P {w1 ∈ L}.

Then this multiprogram is translated back into the Grammar system Γ, the whole behavior of Γ being
similar to that of P. Actually, the language generated by Γ is included in L, but for the examples we
present here equality is reached, as detailed reasonings prove.

With theorem 6 we show how to apply this strategy to a well-known non-context free language,
namely Lcd = {anbmcndm | n,m ≥ 1}. In [Chi97] it was proved that Lcd can be generated by a return-
ing non-centralized PC Grammar system with three context free components (Lcd ∈ PC3(CF)). We
improve this result showing that Lcd can be generated by a non-returning non-centralized PC Gram-
mar system with five right regular components (Lcd ∈ NPC5(Reg)). We provide thus a solution to
an open problem mentioned in that work. This can be considered an improvement because though
the number of grammars increases to five, its complexity is reduced from context free grammars
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28 Chapter 3. Verification and derivation of Grammar systems

to regular grammars. During the workshop "Grammar System Week" that took place in Budapest
(Hungary) on July 2004 we presented this approach [GM04a]. With the help of Dr. Gheorghe Păun
we found a better solution with respect to the number of right regular components of the Grammar
system, proving that Lcd ∈ NPC3(Reg) based on a similar strategy. We give here the solution that
we found in collaboration with Păun and with Theorem 9 we prove that it is the most economical
one. Both results are included in the proceedings of the workshop [GM04b] and were selected by
the workshop committee for later publication in [GM07].

Theorem 8 is an example of the use of simultaneous development and proof of multiprograms
(Grammar systems) correctness, but also shows the combined use of Owicki-Gries strategy with
some other programming techniques used for improving parallelism to obtain more time-efficient
Grammar systems.

In section 3.3.3 we show how the concurrent Programming framework can benefit from Gram-
mar System Theory to get negative results; in the first field there is no strategy to deal with negative
results of the type: a given language cannot be generated by any multiprogram (Grammar system)
of a specified type. This kind of problem has to be analyzed in the Grammar system framework,
with the tools available there. We exemplify this with theorem 9 proving that Lcd < X2(Reg), for
X ∈ {PC,CPC,NPC,NCPC}, i.e. that the cross-agreement language can not be generated by any
type of PC Grammar system with two regular grammars.

In this chapter we analyze the formal verification and derivation of Grammar systems that can
be translated to a multiprogramming in the DGC language. Reproductive Eco-Grammar systems
can not be translated to the DGC language because this language does not provide instructions for
the dynamic creation of agent instances that takes place in Reproductive Eco-Grammar systems.
But Reproductive Eco-Grammar systems can be automatically translated to other programming
paradigm that is called Object Oriented (OO) paradigm, which provides instructions to perform
dynamic creation of objects (agent instances) during the execution of the program. We do not
address this problem in this chapter but we conjecture that this is an interesting topic of research
that should be investigated because some Hoare-based formal verification strategies are available
for the OO paradigm, like for instance the ones explained in [Rey82], [AL97], [dB99], [PdB03],
[PHM99], [RWH01] and [vO01].

3.2 Automatic translation of Grammar systems to concurrent imper-
ative programs

In classic computing devices were centralized and computation was accomplished by one central
processor. But in contemporary Computer Science distributed computing systems that consist on
multiple communicating processors play a major role. The reason is illustrated by the advantages
of this kind of system: efficiency, fault tolerance, scalability in the relation between price and per-
formance, etc.

Since 1960, when the concept of concurrent programming [DE76] was introduced, a huge va-
riety of topics related to parallelism and concurrency have been defined and investigated, such as
operating systems, machine architectures, communication networks, circuit design, protocols for
communication and synchronization, distributed algorithms, logics for concurrency, automatic ver-
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3.2. Automatic translation of Grammar systems to concurrent imperative programs 29

ification and model checking. The same trend was observed in classic Formal Language and Au-
tomata Theory as well. In the beginning grammars and automata were modeling classic computing
devices of one agent or processor, hence a language was generated by one grammar or recognized by
one automaton. Inspired by different models of distributed systems in AI, Grammar System Theory
[CVJJP94] has been developed as a grammatical theory for distributed and parallel computation.
More recently, similar approaches have been reported for systems of automata [MVM00].

In the concurrent programming framework Owicki-Gries Theory [OG76], the first complete pro-
gramming logic for formal development of concurrent programs, and another programming strate-
gies were developed to help programmers in the analysis and derivation of multiprograms.

In order to provide Grammar systems with formal verification and derivation strategies from the
programming field we need to have ways to translate them to programs in some programming lan-
guage. We have chosen the Dijkstra’s Guarded Command (DGC) language [DE76] for translating
sequential programs running in parallel into a multiprogram. Our selection is justified by the fact
that the Owicki-Gries Theory that we have selected to verify properties in multiprograms (Grammar
systems) is defined in terms of the DGC language.

3.2.1 Dijkstra’s Guarded Command language

The distinguishing features of DGC language are notational and mathematical austerity, and the in-
corporation of nondeterminacy in sequential programs. This language resembles ALGOL60, Pascal
and C.

In DGC language elementary statements are:

• skip, which does nothing.

• abort, which is used to finish program execution abruptly.

• Assignment x := E. It evaluates expression E and then assigns its value to variable x.

• Multiple assignment x, y := E, F. It evaluates E and F simultaneously and then assigns their
values to x and y respectively.

Out of existing statements one can construct new statements. They are:

• Sequential composition S 0; S 1. First S 0 is executed and then S 1.

• Alternative construct
if B0 → S 0
| ...

| Bn → S n

fi
The B’s are called guards and the S’s are the guarded statements. Any guard Bi that evaluates
to true is nondeterministically selected, and the associated guarded statement S i is performed.
There are two possible interpretations for the case when no guard evaluates to true. In a se-
quential program it is interpreted as an abort. In a concurrent program the alternative con-
struct where all the guards are false is equivalent to a busy wait, it keeps evaluating until one
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30 Chapter 3. Verification and derivation of Grammar systems

of the B’s becomes true. This second interpretation is inspired by the fact that when a program
cooperates with other programs, it is possible that the activity of the other programs changes
the false value of the guards to true, in which case continuation of the delayed alternative
construct is possible.

• Loop
do B0 → S 0
| ...

| Bn → S n

od
This is just a loop, which keeps iterating until no guard Bi evaluates to true. During iteration
it selects nondeterministically any guard Bi that evaluates to true and performs its associated
guarded statement S i. If no guard is true then the loop behaves like a skip command.

Below we formally introduce the semantics associated with each statement in the DGC lan-
guage, which is expressed by Hoare triples:

• For skip:
{P} skip {Q} ↔ [P⇒ Q]

• For abort:
{P} abort {Q} ↔ [P↔ False]

• For assignment:
{P} x := E {Q} ↔ [P⇒ Qx

E]

where Qx
E is the predicate resulting by replacing all the occurrences of variable x for expres-

sion E.

• For multiple assignment:

{P} x, y := E, F {Q} ↔ [P⇒ Qx,y
E,F]

where Qx,y
E,F is the predicate resulting from the simultaneous replacement of all the occur-

rences of variables x and y for expressions E and F, respectively.

• For sequential composition:

{P} S 0; S 1 {R} ↔ ∃ Q such that {P} S 0 {Q} ∧ {Q} S 1 {R}

• For alternative construct:

{P} if B0 → S 0 {Q} ↔ P⇒ [B0 ∨ ... ∨ Bn]
| ... ∧ {P ∧ B0} S 0 {Q}
| Bn → S n ...

fi ∧ {P ∧ Bn}S n {Q}
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3.2. Automatic translation of Grammar systems to concurrent imperative programs 31

In case all the guards are false the guarded statements S 0, ..., S n may fail to establish the
desired precondition Q. So no guarded command can be selected for execution and the al-
ternative construct becomes stuck. But according to the definition of correct Hoare triple the
execution of the alternative construct can either terminate in a state satisfying Q or not termi-
nate at all. So a very viable implementation of the alternative construct when all the guards
are false is a busy wait.

• For loop:
We use the so-called invariance theorem for repetitive constructs which was formulated by
Hoare in [Hoa69]. This theorem says that for an invariant of the repetition P the following
condition must be satisfied:

{P} do B0 → S 0 {Q} ↔ [P ∧ ¬B0 ∧ ... ∧ ¬Bn ⇒ Q]
| ... ∧ {P ∧ B0} S 0{P}
| Bn → S n ...

od ∧{P ∧ Bn} S n {P}

In [DS90] another definition for loop is given, based on the definitions of weakest liberal
precondition (wlp) and fixpoint equation.

3.2.2 How to translate Grammar systems to multiprograms

Before explaining how to automatically translate some Grammar system variants to equivalent con-
current programs written in DGC language, we introduce below the formal definition of equivalence
that we use:

Definition 16 A Grammar system Γ ∈ {CD, PC,CPC,NPC,NCPC} is equivalent to a multipro-
gram P iff for every string w j ∈ L(Γ) there is a computation in P which generates the string w j

as output, and for every computation in P that generates as output the string wk it happens that
wk ∈ L(Γ).

Now we can introduce the corresponding results:

Proposition 1 For every CD Grammar system Γ = (T,G1,G2, ..,Gn, S ) a concurrent program that
is equivalent to Γ can be constructed.

Proof. From an arbitrary CD Grammar system Γ of degree n ≥ 1 we can define the multiprogram
ProgΓ from figure 3.1 that is equivalent to Γ. In ProgΓ a global string w is introduced to represent
the sentential form that in Γ grammars G1,G2, ..,Gn collaborate to derive. In Γ the sentential form
w is arbitrarily assigned in turns to the grammar components. After a grammar finishes performing
derivations over w the turn is nondeterministically assigned to other grammar in Γ. In ProgΓ an
integer variable grammar is introduced to denote the grammar component that is nondeterministi-
cally selected to derive string w. Function Value is used to arbitrarily select a number between 1
and n. While the string w contains non terminals the programs Prog1, ..., Progn corresponding to
grammars G1, ...,Gn iterate. ProgΓ finishes when w is a string of terminal symbols from set T . In
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32 Chapter 3. Verification and derivation of Grammar systems

this way every computation in ProgΓ that generates as output a string w halts in a state satisfying
{w ∈ L(Γ)}.

Each program Progi in the multiprogram ProgΓ corresponds to a grammar Gi in the CD Gram-
mar system Γ. Depending on the derivation mode fi of grammar Gi a different program Progi is
defined. In figures 3.2 to 3.6 we introduce the corresponding programs Progi for grammars Gi with
derivation modes t, = k, ≤ k, ≥ k and ∗ respectively. Independently of the derivation mode all
the grammars Gi have to wait for being assigned the sentential form w before executing rewriting
rules. Therefore all the programs Progi are defined as an infinite loop with an alternative command
with condition grammar = i that guarantes that the program keeps waiting until that condition is
satisfied. When grammar = i program Progi is assigned the processor until it finishes rewriting
string w in the same way as grammar Gi would derive sentential form w. In Progi the sequence of
commands that simulates the way grammar Gi derives sentential form w is embraced by symbols 〈
and 〉. In Owicki-Gries Theory the commands embraced by symbols 〈 and 〉 are considered atomic,
during its execution the processor can not be assigned to other active processes. By the alterna-
tive construction if programs Progi presented in figures 3.2 to 3.6, nondeterministically choose to
rewrite string w as rewriting rules Pi are nondeterministically chosen by grammars Gi to rewrite the
sentential form w under derivation. Therefore for every string w ∈ L(Γ) there is a computation in
ProgΓ which generates as output w and halts in a state satisfying {w ∈ L(Γ)}.

The program corresponding to a Grammar system Gi with terminal derivation mode is intro-
duced in figure 3.2. The loop with condition f lag simulates the t-mode derivation performed by
the grammar Gi. In the alternative command there is one guarded command for each rule in Pi

plus one extra guarded command. Each guarded command, except the last one, has the shape
Contains(w, α) → Rewrite(α, β,w) where α → β is a rewriting rule from Pi. The last guarded
command does not correspond to a rewriting rule in Pi because it falsifies the boolean variable f lag
when no rewriting rule from Pi can be applied over sentential form w. When f lag is false the pro-
gram exits the loop and the variable grammar is actualized with a new arbitrary value between 1
and n, corresponding to the next grammar that can rewrite string w.

The program corresponding to a Grammar system Gi with = k derivation mode is introduced
in figure 3.3. An integer variable cont is used to count the number of times the program rewrites
string w. Initially cont = 0. The loop with condition cont , k simulates the derivation performed
by grammar Gi in = k-mode. In the alternative command there is one guarded command for each
rule in Pi. In the loop the alternative command is followed by an increment of variable cont. When
cont = k the program exits the loop after k rewriting rules have been applied over string w. After
the execution of the loop, the variable grammar is actualized with a new arbitrary value between 1
and n, corresponding to the next grammar that can rewrite w.

The program corresponding to a Grammar system Gi with ≤ k derivation mode is introduced
in figure 3.5. A variable cont, initialized with value zero, is used to count the number of times the
program rewrites string w. The loop with condition cont , k simulates the derivation performed
by grammar Gi in ≤ k-mode. In the alternative command there is one guarded command for each
rule in Pi plus one extra guarded command. The last guarded command can be arbitrarily selected
to simulate the execution of no rewriting rule. In the loop the alternative command is followed by

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



3.2. Automatic translation of Grammar systems to concurrent imperative programs 33

an increment of variable cont. When cont = k the program exists the loop after ≤ k rewriting rules
have been applied over string w. After exiting the loop the variable grammar is actualized with a
new arbitrary value between 1 and n, corresponding to the next grammar that can rewrite w.

The program corresponding to a Grammar system Gi with ≥ k derivation mode is introduced
in figure 3.5. A variable cont, initialized to zero, is used to count the number of times the program
rewrites string w. The loop with condition cont , k simulates the derivation performed by grammar
Gi in ≤ k-mode. In the alternative command there is one guarded command for each rule in Pi plus
one extra guarded command. The last guarded command can be arbitrarily selected to simulate the
execution of no rewriting rule. In the loop the alternative command is followed by an increment of
variable cont. When cont = k the program exists the loop after k rewriting rules have been applied
over string w. After exiting the first loop a boolean variable f lag is initialized with value true. The
second loop with condition f lag simulates the derivation performed by grammar Gi in ∗-mode. In
the alternative command there is one guarded command for each rule in Pi plus one extra guarded
command. The last guarded command can be arbitrarily chosen to falsify the variable f lag. It can
be selected when no rewriting rule from Pi can be used or when there are rewriting rules to apply but
none of them is selected. The alternative command in the second loop is followed by an increment
of variable cont. When the variable f lag is f alse the program exits the second loop and finishes.
When the program finishes ≥ k rewriting rules have been applied over string w. After exiting the
loop the variable grammar is actualized with a new arbitrary value between 1 and n, corresponding
to the next grammar that can rewrite w.

The program corresponding to a Grammar system Gi with ∗ derivation mode is introduced in
figure 3.6. The behavior of this program is identical to the second loop in the program from figure
3.5.

ProgΓ : n : Constant;
w : S tring;
grammar : Integer;
N1, ...,Nn : S et o f Character;

N1, ...,Nn,w := N1,0, ...,Nn,0, S ;
{w = S }
grammar := Value(1, n);
do Contains(w,N1 ∪ ... ∪ Nn)→

Prog1 ‖ Prog2 ‖...‖ Progn;
od;
{w ∈ L(Γ)}
Print(w)

Figure 3.1: Multiprogram for a CD Grammar system
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Progi : Pi : S et o f Rule;
f lag : Boolean;
do true→

i f grammar = i→ 〈 {w = α ∧ grammar = i}
f lag := true;

do f lag→{
Inv : w = β ∧ α ∗

=⇒
Pi

β
}

i f ...
| ...
| ¬CanApply(w, Pi)→ f lag := f alse;

f i;
od;{
w = β ∧ α ∗

=⇒
Pi

β ∧ (@δ : β
∗

=⇒
Pi

δ) ∧ grammar = i
}

grammar := Value(1, n); 〉
f i;

{w = β ∧ α t
=⇒

Pi
β ∧ grammar = j}

od;

Figure 3.2: Program for a CD grammar component with terminal mode of derivation

Progi : k, cont : Integer;
Pi : S et o f Rule;
{wi = α}
k := value;
do true→

i f grammar = i→ 〈 {w = α ∧ grammar = i ∧ k = value}
cont := 0;
do cont , k →{

Inv : w = β ∧ α cont
=⇒

Pi
β ∧ cont < k ∧ k = value

}

i f ...
| ...

f i;
cont := cont + 1;

od;{
w = β ∧ α cont

=⇒
Pi

β ∧ cont = k ∧ grammar = i ∧ k = value
}

grammar := Value(1, n); 〉
f i;

{w = β ∧ α =k
=⇒

Pi
β ∧ grammar = j ∧ k = value}

od;

Figure 3.3: Program for a CD grammar component with = k mode of derivation
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Progi : k, cont : Integer;

{w = α}
k := value;
do true→

i f grammar = i→ 〈 {w = α ∧ grammar = i ∧ k = value}
cont := 0;
do cont , k →

Inv : w = β ∧ α s
=⇒

Pi
β∧

s ≤ cont ∧ cont < k ∧ k = value


i f ...

| ...
| true→ skip;

f i;
cont := cont + 1;

od;
w = β ∧ α s

=⇒
Pi

β ∧ s ≤ cont ∧ cont = k∧
grammar = i ∧ k = value


grammar := Value(1, n); 〉

f i;

{w = β ∧ α ≤k
=⇒

Pi
β ∧ grammar = j ∧ k = value}

od;

Figure 3.4: Program for a CD grammar component with ≤ k mode of derivation
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Progi : k : Integer;
f lag : Boolean;

{w = α}
k := value;
do true→

i f grammar = i→ 〈 {w = α ∧ grammar = i ∧ k = value}
cont := 0;
do cont , k →{

Inv : w = β ∧ α cont
=⇒

Pi
β ∧ cont < k ∧ k = value

}

i f ...
| ...
| true→ skip;

f i;
cont := cont + 1;

od;{
w = β ∧ α =k

=⇒
Pi

β ∧ grammar = i ∧ k = value
}

f lag := true;
do f lag→{

Inv : w = δ ∧ β ∗
=⇒

Pi
δ ∧ f lag ∧ k = value

}

i f ...
| ...
| true→ f lag := f alse;

f i;
cont := cont + 1;

od;
w = δ ∧ α =k

=⇒
Pi

β
∗

=⇒
Pi

δ ∧ ¬ f lag∧
grammar = i ∧ k = value


grammar := Value(1, n); 〉

f i;

{w = β ∧ α ≥k
=⇒

Pi
β ∧ grammar = j ∧ k = value}

od;

Figure 3.5: Program for a CD grammar component with ≥ k mode of derivation
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Progi : Pi : S et o f Rule;
Flag : Boolean;

{w = α}
do true→

i f grammar = i→ 〈 {w = α ∧ grammar = i}
f lag := true;
do f lag→{

Inv : w = β ∧ α ∗
=⇒

Pi
β ∧ f lag

}

i f ...
| ...
| true→ f lag := f alse;

f i;
od;{

w = β ∧ α ∗
=⇒

Pi
β ∧ ¬ f lag

}

grammar := Value(1, n); 〉
f i;

{w = β ∧ α ∗
=⇒

Pi
β ∧ grammar = j}

od;

Figure 3.6: Program for a CD grammar component with ∗ mode of derivation

Proposition 2 For every PC, CPC, NPC and NCPC Grammar system Γ = (N,K, T, (P1, S 1), ..., (Pn, S n))
a concurrent program that is equivalent to Γ can be constructed.

Proof.
From an arbitrary PC Grammar system Γ of degree n ≥ 1 we can construct the multiprogram

ProgΓ depicted in figure 3.7 that is equivalent to Γ. For each grammar component (Pi, S i) in Γ

a program Progi like the one in figure 3.9 is defined in multiprogram ProgΓ. In ProgΓ n strings
w1, ...,wn are introduced, one string wi per each grammar component. If it is a centralized PC
Grammar system then Condition = Contains(w1,N). While the string w1 contains non terminals
the programs Prog1, ..., Progn corresponding to the n grammar components iterate. ProgΓ finishes
when w1 is a string of terminal symbols from set T . On the other hand if Γ is a non centralized
PC Grammar system then Condition = Contains(w1,N) ∨ ... ∨ Contains(wn,N). While strings
w1, ...,wn contain non terminals the programs Prog1, ..., Progn iterate. The program ProgΓ finishes
when some string contains only terminal symbols from set T . In ProgΓ the concurrent execu-
tion of programs Prog1, ..., Progn is followed by an alternative command with different conditions
contains(w1,K) ∨ ... ∨ contains(wn,K) and ¬(contains(w1,K) ∨ ... ∨ contains(wn,K)). In this way
what in Γ is a derivation step followed by a possible communication step is simulated in ProgΓ. In
case the condition contains(w1,K) ∨ ... ∨ contains(wn,K) is true, a loop that simulates the com-
munication step is performed. The definition of this loop depends on Γ being a non returning or a
returning PC Grammar system.
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38 Chapter 3. Verification and derivation of Grammar systems

Each execution of program Progi simulates one derivation step over string wi according to rules
Pi. Therefore each program Progi is defined as an alternative command. In the alternative com-
mand there is one guarded command for each rule in Pi plus one extra guarded command. The last
guarded command is used when no rewriting rule can be applied. Every computation in ProgΓ that
generates an output w halts in a state satisfying {w1 ∈ L(Γ)}. By the alternative construction pro-
grams Progi nondeterministically choose to rewrite string wi as grammars Gi nondeterministically
choose to rewrite the sentential form wi using rules Pi. Therefore for every string w1 ∈ L(Γ) there is
a computation in ProgΓ that generates an output w1 and halts in a state satisfying {w1 ∈ L(Γ)}.

ProgΓ : n : Constant;
N,K,T : S et o f S tring;
w1, ...,wn : S tring;

N,K,T,w1, ...,wn := N0,K0,T0, S 1, ..., S n;
{(w1, ...,wn) = (S 1, ..., S n)}
do Condition→

{(w1, ...,wn) = (α1, ..., αn)}
Prog1 ‖ Prog2 ‖...‖ Progn;
{(w1, ...,wn) = (β1, ..., βn) ∧ (α1, ..., αn)=⇒

Γ
(β1, ..., βn)}

i f contains(w1,K) ∨ ... ∨ contains(wn,K)→ communicate(w1, ...,wn);
| ¬(contains(w1,K) ∨ ... ∨ contains(wn,K))→ skip;

f i;
((w1, ...,wn) = (δ1, ..., δn) ∧ (β1, ..., βn) ` (δ1, ..., δn))∨(

(w1, ...,wn) = (β1, ..., βn)∧
¬(contains(w1,K) ∨ ... ∨ contains(wn,K))

)


od;
{w1 ∈ L(Γ)}
Print(w1)

Figure 3.7: Multiprogram for a PC Grammar system

Progi : Pi : S et o f Rule;

{wi = α}
i f ...

| ...
| ¬CanApply(wi, Pi)→ skip;

f i;
{(wi = β ∧ α=⇒

Pi
β) ∨ (wi = α ∧ (@β : α=⇒

Pi
β))}

Figure 3.8: Program for a PC grammar component
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Proposition 3 For every CCPC Grammar system Γ = (N,T, (S 1, P1,R1), ..., (S n, Pn,Rn)) a concur-
rent program that is equivalent to Γ can be constructed.

Proof.
From an arbitrary CCPC Grammar system Γ of degree n ≥ 1 we can construct the multiprogram

ProgΓ from figure 3.10 that is equivalent to Γ. For each grammar component (S i, Pi,Ri) in Γ a
program Progi like the one from figure 3.9 is defined in multiprogram ProgΓ. In ProgΓ n strings
w1, ...,wn are introduced, one string wi per each sentential form in Γ. While the string w1 contains
non terminals the programs Prog1, ..., Progn iterate. The program ProgΓ finishes when w1 is a
string of terminal symbols from set T . In Γ the grammar components contribute to the derivation
process performing rewriting steps followed by communication steps. In ProgΓ when the concurrent
execution of programs Prog1, ..., Progn has finished a rewriting step in Γ has been simulated. After
that the last loop in ProgΓ simulates a communication step in Γ.

In program Progi each execution of the loop with condition f lag simulates over strings wi the
rewriting that component Gi = (S i, Pi,Ri) can perform over the sentential form wi in a rewriting step
in Γ. With the execution of the loop the program Progi rewrites the string wi an arbitrary number of
times, simulating the ∗-derivation mode of component Gi. In the alternative command that defines
the body of the loop for each rewriting rule in Pi an alternative command is defined, except the
last guarded command. The last guarded command is used to arbitrarily exit the loop. Therefore
every computation in ProgΓ that generates an output w1 halts in a state satisfying {w1 ∈ L(Γ)}. By
the alternative construction if programs Progi nondeterministically choose to rewrite string wi as
grammars Gi nondeterministically choose to rewrite the sentential form wi using rewriting rules Pi.
Then for every string w1 ∈ L(Γ) there is a computation in ProgΓ which generates the string w1 and
halts in a state satisfying {w1 ∈ L(Γ)}.

Progi : f lag : Boolean;

〈 {wi = α}
f lag := true;
do f lag→
{Inv : wi = β ∧ α ∗

=⇒
Pi

β ∧ f lag}
i f ...

| ...
| true→ f lag := f alse;

f i;
od;
{wi = β ∧ α ∗

=⇒
Pi

β ∧ ¬ f lag} 〉

Figure 3.9: Program for a CCPC grammar component
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40 Chapter 3. Verification and derivation of Grammar systems

ProgΓ : n : Constant;
w1, ...,wn : S tring;
T,N : S et o f Character;
i : Integer;
R1, ...,Rn : S tring;

T,N,R1, ...,Rn,w1, ...,wn := T0,N0,R1,0, ...,Rn,0, S 1, ..., S n;
{(w1, ...,wn) = (S 1, ..., S n)}
do contains(w1,N)→
{(w1, ...,wn) = (α1, ..., αn)}

q := 0;
Prog1 ‖ Prog2 ‖...‖ Progn;

{(w1, ...,wn) = (β1, ..., βn) ∧ (α1, ..., αn)⇒ (β1, ..., βn)}
i := 1;
do i ≤ n→

i f ∆(i) , λ→ wi := ∆(i);
| ∆(i) = λ ∧ δ(i) = λ→ skip;
| ∆(i) = λ ∧ δ(i) , λ→ wi := S i;

f i;
i := i + 1;

od;
{(w1, ...,wn) = (π1, ..., πn) ∧ (β1, ..., βn) ` (π1, ..., πn)}

od;
{w1 ∈ L(Γ)}
Print(w1)

Figure 3.10: Multiprogram for a CCPC Grammar system

Definition 17 An Eco-Grammar system Γ = (E, A1, . . . , An) is equivalent to a multiprogram P iff
the set L(Γ) is equal to the set of outputs generated by multiprogram P.

Proposition 4 For every Eco-Grammar system Γ = (E, A1, . . . , An) with initial configuration
σ0 = (wE,0,w1,0, ...,wn,0) a concurrent program that is equivalent to Γ can be constructed.

Proof. From an arbitrary Eco-Grammar system Γ of degree n ≥ 1 we can construct the multi-
program ProgΓ in figure 3.11 that is equivalent to Γ. In ProgΓ n+1 strings wE ,w1, ...,wn are defined.
Each string wi represents the state of agent Ai in Γ. The string wE represents the environment state
in Γ. The strings wE ,w1, ...,wn are initialized with the values wE,0,w1,0, ...,wn,0 from initial config-
uration σ0. According to definition 9 derivations in Eco-Grammar systems are potentially infinite.
Therefore multiprogram ProgΓ is defined as the infinite execution of the sequential composition of
concurrent programs Progϕ1 , Progψ1 , ..., Progϕn , Progψn with program ProgPE . Each pair of pro-
grams Progϕi and Progψi in ProgΓ correspond to the execution in Γ of mappings ϕi and ψi in agent
Ai. And program ProgPE corresponds to the execution in Γ of environment rules PE . Therefore the
set of strings wE printed by program ProgΣ is included in the set L(Σ).

Program ProgPE introduced in figure 3.12 corresponds to the execution of the environment
evolution rules PE over string wE . For each rule r from set PE a loop with condition δ = αxβ ∧
¬Contain(α, x) is performed to simulate the parallel rewriting of rule r in wE .
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Programs Progϕi and Progψi are introduced in figures 3.13 and 3.14 to simulate the execution
in Σ of mappings ϕi and ψi respectively. With each rule r selected from sets Pi and Ri according to
the content of strings oldwE and oldwi, the programs respectively rewrite strings wi and wE . It is
not mandatory for the computer where program ProgΣ is executed to assign one processor to each
program Progϕ1 , Progψ1 , ..., Progϕn , Progψn . In case the computer has less than n ∗ 2 processors
they will be assigned in turns to the different programs to simulate a concurrent execution. Then it
is possible for a program Progψ j to modify string wE before program Progϕ j selects rules according
to the environment state or it is possible for a program Progϕ j to modify string wi before program
Progψ j selects rules according to the agent state. In order to avoid these problems auxiliary variables
oldwE , oldw1, ..., oldwn are introduced and used to select rules from sets Pi and Ri respectively.

The inclusion of the set L(Σ) into the set of outputs generated by program ProgΣ is guarranted
because function Take used in the programs ProgPE , Progϕi and Progψi arbitrarily selects a rule
from a set of rewriting rules selected by evolution rules PE or by mappings ϕi and ψi, to be applied
over strings wE and wi respectively.

ProgΓ : n : Constant;
wE ,w1, ...,wn, oldwE , oldw1, ..., oldwn : S tring;

wE ,w1, ...,wn := wE,0,w1,0, ...wn,0;
{(wE ,w1, ...,wn) = (wE,0,w1,0, ...wn,0)}
do true→

{(wE ,w1, ...,wn) = (δ, α1, ..., αn)}
oldwE , oldw1, ..., oldwn := wE ,w1, ...,wn;
Progϕ1 ‖ Progψ1 ‖...‖ Progϕn ‖ Progψn ;

(wE ,w1, ...,wn) = (π, β1, ..., βn)∧
δ =⇒
ψ1×...×ψn

π ∧
(
∀1 ≤ i ≤ n : δi =⇒

ϕi
βi

)


ProgPE ;{
(wE ,w1, ...,wn) = (ρ, β1, ..., βn) ∧ π =⇒

PE
ρ ∧ wE ∈ L(Γ)

}

Print(wE);
od;

Figure 3.11: Multiprogram for an Eco-Grammar system
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42 Chapter 3. Verification and derivation of Grammar systems

ProgPE : R, PE : S et o f Rule;
δ, α, β, ε : S tring;
r : Rule;
x : Character;

{wE = α}
wE = 0L_rewrite(wE , PE);
{wE = β ∧ α=⇒

PE
β}

Figure 3.12: Program for the environment rules PE

Progϕi : R, Pi : S et o f Rule;
r : Rule;

{wi = α ∧ oldwi = α}
R := ϕi(oldwE , Pi);
wi := 0L_rewrite(wi,R);
{wi = β ∧ α =⇒

ϕi(wE)
β ∧ oldwi = α}

Figure 3.13: Program for mapping ϕi

Progψi : R,Ri : S et o f Rules;
r : Rule;

{wE = α ∧ wi = ξ ∧ oldwi = δ ∧ δ =⇒
ϕi(wE)

ξ}
R := ψi(oldwi,Ri);
wE = parallel_rewrite(wE ,R);{

wE = β ∧ α =⇒
ψi(oldwi)

β ∧ wi = ξ ∧ oldwi = δ ∧ δ =⇒
ϕi(wE)

ξ
}

Figure 3.14: Program for mapping ψi
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3.3. A new formal approach to connect Grammar systems with concurrent programs 43

3.3 A new formal approach to connect Grammar systems with con-
current programs

3.3.1 Owicki-Gries Theory

This verification strategy is defined for concurrent programs written in DGC language. It assumes
the use of First Order Logic as the assertion language for the definition of predicates.

Concurrent execution or multiprogramming means that various sequential programs run simul-
taneously. Actions change the state of the multiprogram, so the critical question is what happens if
two overlapping actions change the same state of the multiprogram in a conflicting manner.

We consider a multiprogram annotated in such a way that the annotation provides a precondition
for the multiprogram as a whole and a precondition for each action in each individual program.
Then, by Owicki and Gries, this annotation is correct whenever each individual predicate is correct.

To say that the predicate Q in a program is locally correct we distinguish two cases:

– If Q is the initial predicate of the program, it is locally correct whenever it is implied by the
precondition of the program as a whole. Also we may say that Q satisfies the hypothesis of the
problem which is to be solved.

– If Q is preceded by {P} S, i.e. by atomic action S with precondition P, it is locally correct
whenever {P} S {Q} is a correct Hoare-triple.

A sequential program is partially locally correct if all its predicates are locally correct and the
last predicate satisfies the requirements of the problem solved, provided that it halts. A sequential
program is totally locally correct if it is partially correct and always halts.

We say that a predicate Q in a multiprogramM is globally correct whenever for each {P} S, i.e.
for each action S in programM with precondition P, {P ∧ Q} S {Q} is a correct Hoare-triple.

To understand how powerful is the concurrent programming paradigm, and also how hard it is
to prove global correctness we give this simple example:

Example 1 Consider this program:

P1 : x := y + 1; a
x := y2; b
x := x − y c

If we start in an initial state {x = 7 ∧ y = 3}, it will deliver {x = 6 ∧ y = 3} as a final state.

Example 2 Let us consider now the following simple program:

P2 : y := x + 1; u
y := x2; v
y := y − x w
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44 Chapter 3. Verification and derivation of Grammar systems

When started in the same initial state {x = 7 ∧ y = 3}, it yields {x = 7 ∧ y = 42}.
Now if we run these programs concurrently we will get 20 possible values for x and y. For

instance, one possibility is to run the two programs as follows: a, u, b, v,w, c (the letters represent
the program lines) starting from the same state and get the output {x = −224, y = 240}. While each
of the individual programs is of an extreme simplicity, its composition leads to a rather complicated
output. For more examples we refer to [BD93].

Here we can see the analogy: the components of a Grammar systems are similar to the simple
programs in a multiprogram. In section 3.3.2 we introduce proofs that show how to take advantage
of this analogy.

3.3.2 Can Grammar systems benefit from concurrent programming?

We know from [DP97] the following theorem:

Theorem 5 {anbncn | n ≥ 0} ∈ CD2(= 2).

In [DP97] theorem 5 is proved using the strategy analysis by cases. We transcribe below the
proof given in [DP97], in order to emphasize the difference between the use of analysis by cases
and our approach.

Proof. Grammar system Γ1 ∈ CD2(= 2) is defined in this way:

Γ1 = ({a, b, c}, ({S , A, A’, B, B’}, ∅, P1,= 2),
({S , A, A’, B, B’}, {a, b, c}, P2,= 2), S )

where:
P1 = {S → S , S → AB, A’→ A, B’→ B},
P2 = {A→ aA’b, B→ cB’,A→ ab, B→ c}.

It is proved that L=2(Γ1) = {anbncn | n ≥ 0} in the following way:

We have to start from S . Only P1 can be used. Applying the rule S → S twice changes nothing,
hence eventually we shall perform the step S =⇒

P1
S =⇒

P1
AB.

From now on, S will not appear again. Only P2 can be applied to AB. If we use the nonterminal
rules, we get: AB =⇒

P2
aA’bB =⇒

P2
aA’bcB’.

In general, from a string of the form aiAb jckB (initially we have i = j = k = 0), we can obtain
in this way aiAb jckB =⇒

P2
ai+1A’b j+1ck+1B’.

To such a string we have to apply P1 again and then we get:

ai+1A’b j+1ck+1B’ =⇒
P2

ai+1Ab j+1ck+1B.

This is the only possibility of using P1. However, P2 can be applied to a string aiAb jckB in
the = 2 mode using only one nonterminal rule (replacing either A or B by A’ or B’, respectively),
and one terminal rule (removing the remaining symbol A or B). To a string containing only one
nonterminal (which is different from S ), none of the two components can be applied. Consequently,

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



3.3. A new formal approach to connect Grammar systems with concurrent programs 45

we have to use, in turn, the first component and the nonterminal rules of the second one, and we
have to finish the derivation by using the terminal rules of P2.

MProgΓ1 : {Begin Main Program}
w : S tring;
grammar : Integer;
N1,N2 : S et o f Character;

w := S ;
P : {w = S}
grammar := Value(1, 2);
do Contains(w,N1 ∪ N2)→

Prog1,Γ1 ‖ Prog2,Γ1

od;
Print(w);
Q : {w ∈ {anbncn | n ≥ 0}}
{End Main Program}

Figure 3.15: Translation of grammar Γ1 to multiprogram MProgΓ1

Prog1,Γ1 : {program f or G1}
k, cont : Integer;
P1 : S et o f Rule;

{w = α}
k := 2;
do true→

i f grammar = 1→ 〈 {w = α ∧ grammar = 1 ∧ k = 2}
cont := 0;
do cont , k →

i f w = xS y→ w := xS y;
| w = xS y→ w := xABy;
| w = xA’y→ w := xAy;
| w = xB’y→ w := xBy;

f i;
cont := cont + 1;

od;
grammar := Value(1, 2); 〉

f i;

{w = β ∧ α =k
=⇒

P1
β ∧ grammar = j ∧ k = 2}

od;

Figure 3.16: Translation of grammar component G1 from Γ1 to program Prog1,Γ1
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46 Chapter 3. Verification and derivation of Grammar systems

Prog2,Γ1 : {program f or G2}
k, cont : Integer;
P2 : S et o f Rule;

{w = α}
k := 2;
do true→

i f grammar = 2→ 〈 {w = α ∧ grammar = 2 ∧ k = 2}
cont := 0;
do cont , k →

i f w = xAy→ w := xaA’by;
| w = xBy→ w := xcB’y;
| w = xAy→ w := xaby;
| w = xBy→ w := xcy;

f i;
cont := cont + 1;

od;
grammar := Value(1, 2); 〉

f i;

{w = β ∧ α =k
=⇒

P2
β ∧ grammar = j ∧ k = 2}

od;

Figure 3.17: Translation of grammar component G2 from Γ1 to program Prog2,Γ1

Below we provide another proof for {anbncn | n ≥ 0} ∈ CD2(= 2), different from the one pre-
sented in theorem 5 and based on the system invariant notion from Owicki-Gries theory. But before
we introduce some definitions.

According to the Owicki-Gries Theory the Definition 16 can be equivalently expressed in the
following way:

Definition 18 A Grammar system Γ ∈ {CD, PC,CPC,NPC,NCPC} with initial configuration
(S 1, ..., S n), n ≥ 1, is equivalent to a DGC multiprogram P iff {(w1, ...,wn = S 1, ..., S n)} P {w j ∈
L(Γ) ∧ 1 ≤ j ≤ n} is globally correct and for all w ∈ L(Γ) program P computes w.

For some problems, like {anbncn | n ≥ 0} ∈ CD2(= 2) with Grammar system Γ1 defined as
before, it is possible to prove global correctness through an invariant, what is called system invariant
proof strategy. Applying this strategy requires to find a predicate that remains invariant through all
the computation and that synthesizes the behavior of the multiprogram. If such predicate is found
the number of proofs reduces to linear.

Definition 19 (System Invariant) By definition a relation I is a System Invariant whenever:
- it holds initially, i.e. is implied by the precondition of the multiprogram as a whole,
- it is maintained by each individual atomic statement {Q}S of each individual component, i.e.

whenever for each such {Q}S, {I ∧ Q} S {I} is a correct Hoare-triple.

Proof. As explained in proposition 1, from Grammar system Γ1 we construct the equivalent
concurrent program MProgΓ1 in figure 3.15. Grammars G1 and G2 in Γ1 with = 2-mode of deriva-
tion correspond in MProgΓ1 to program Prog1,Γ1 in figure 3.16 and to the program Prog2,Γ1 in figure
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3.17, respectively. Both programs Prog1,Γ1 and Prog2,Γ1 run in parallel in MProgΓ1 and perform
exactly 2 rewritings selected from rewriting rules P1 and P2 respectively over the common string w
when the variable grammar indicates its turn to do so.

We prove global correctness of multiprogram MProgΓ1 using the following system invariant:

Inv I : w = S ∨ (w = anA’bncnB’ ∧ n ≥ 1) ∨ (w = anAbncnB ∧ n ≥ 0)∨
∨(w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1)∨
∨(w = anbncn ∧ n ≥ 1)

According to definition 19 proving that the predicate I is invariant is equivalent to proving that:

1. (w = S )→ I,

2. {I} do Contains(w,N1∪N2)...od {I} which, according to the loop semantic (Definition 3.2.1),
requires to prove the following statements:

(a) I ∧ ∼ Contains(w,N1 ∪ N2)⇒ I,

(b) {I ∧Contains(w,N1 ∪ N2)} Prog1,Γ1 {I},
(c) {I ∧Contains(w,N1 ∪ N2)} Prog2,Γ1 {I}.

We also want to prove that if the program finishes, it produces one string in L(Γ1) :

I ∧ (MProgΓ1 terminates)−→ (w = anbncn ∧ n ≥ 1).

One possible proof is the following:

1. (w = S )→ I
↔ { Logic property: p⇒ p ∨ q}
true

2. {I} do Contains(w,N1 ∪ N2)...od {I}, which requires to prove that:

(a) I∧ ∼ Contains(w,N1 ∪ N2)⇒ I
↔ { Logic property: p ∧ q⇒ p}
true

(b) {I ∧Contains(w,N1 ∪ N2)} Prog1,Γ1 {I}
↔ { Replacing, simplifying}
{w = S ∨ (w = anA’bncnB’ ∧ n ≥ 1) ∨ (w = anAbncnB ∧ n ≥ 0) ∨
∨ (w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1)}
Prog1,Γ1

{w = S ∨ (w = anA’bncnB’ ∧ n ≥ 1) ∨ (w = anAbncnB ∧ n ≥ 0) ∨
∨ (w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1) ∨ (w = anbncn ∧ n ≥ 1)}
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– If (w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1) then Prog1,Γ1 gets into a busy
waiting, therefore the only way to make this statement true is by adding in the guard of
Prog1,Γ1 the condition w , anA’bncn ∧ w , anbncnB’. By adding this condition, clearly
Prog1,Γ1 always terminates.
– If it starts in a state satisfying w = S ∨ (w = anA’bncnB’ ∧ n ≥ 1) it finishes in a state
satisfying w = S ∨ (w = anAbncnB ∧ n ≥ 0).
– And if it starts in a state satisfying (w = anAbncnB ∧ n ≥ 0)∨
(w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1) if finishes in the same state.

When constructing formal proofs of programs it is not rare to add extra code in order
to prove correctness. Examples can be found in [OG76]. We introduce in figure 3.19 a
new program Prog1,Γ1 that differs from program Prog1,Γ1 in figure 3.16 in the new guard
cont , 2 ∧ w , anA’bncn ∧ w , anbncnB for the loop. Because variable n counts the
number of occurrences of a’s which is equal to the number of b’s and c’s, n has to be
incremented each time new a’s are added. Prog2,Γ1 in figure 3.17 is modified with this
purpose, getting a new program Prog2,Γ1 which is shown in figure 3.20. Main Program
MProgΓ1 is modified adding the declaration of the new variable n which is initialized to
zero, producing the program shown in figure 3.18.

(c) {I ∧Contains(w,N1 ∪ N2)} Prog2,Γ1 {I}.
Prog2,Γ1 always terminates.
– If it starts in a state satisfying w = anAbncnB ∧ n ≥ 0 it finishes in a state satisfying
w = anA’bncnB’ ∧ n ≥ 1.
– And if it starts in a state satisfying w = S ∨ (w = anA’bncnB’ ∧ n ≥ 1)∨
(w = anbncnB’ ∧ n ≥ 1) ∨ (w = anA’bncn ∧ n ≥ 1) if finishes in the same state.

We also want to prove that if the program finishes, it computes one string in L(Γ1):

I ∧ (MProgΓ1 terminates)−→ (w = anbncn ∧ n ≥ 1).

I ∧ (MProgΓ1 terminates)−→ (w = anbncn ∧ n ≥ 1)
↔ { Replacing }
I∧ ∼ Contains(w,N1 ∪ N2) −→ w = anbncn ∧ n ≥ 1
↔ { Replacing, simplifying }
{w = anbncn ∧ n ≥ 1 −→ w = anbncn ∧ n ≥ 1}
↔ { p −→ p}
true

This proves that {w = S } MProgΓ1 {w = anbncn ∧ n ≥ 1} is globally correct. The proof that
for all w ∈ {anbncn | n ≥ 0} there is a string w computed by program MProgΓ1 is based on the
alternative construction if of program Prog2,Γ1 . This alternative command chooses nondeterminis-
tically between replacing symbol A in w for string aA’b or for string ab; or replacing symbol B for
strings bB’ or b. Therefore all the strings w = anbncn with n ≥ 1 number of a’s, b’s and c’s can be
generated. This completes the proof of {anbncn | n ≥ 0} ∈ CD2(= 2).
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MProgΓ1 : {Begin Main Program}
w : S tring;
n : int;
grammar : Integer;
N1,N2 : S et o f Character;

w, n := S , 0;
P : {w = S}
grammar := Value(1, 2);
do Contains(w,N1 ∪ N2)→

Prog1,Γ1 ‖ Prog2,Γ1

od;
Print(w);
Q : {w ∈ {anbncn | n ≥ 0}}
{End Main Program}

Figure 3.18: Annotated program MProgΓ1 resulting from global correctness proof

Prog1,Γ1 : {program f or G1}
k, cont : Integer;
P1 : S et o f Rule;

{w = α}
k := 2;
do true→

i f grammar = 1→ 〈 {w = α ∧ grammar = 1 ∧ k = 2}
cont := 0;
do cont , k ∧ w , anA’bncn ∧ w , anbncnB’→

i f w = xS y→ w := xS y;
| w = xS y→ w := xABy;
| w = xA’y→ w := xAy;
| w = xB’y→ w := xBy;

f i;
cont := cont + 1;

od;
grammar := Value(1, 2); 〉

f i;

{w = β ∧ α =k
=⇒
P1

β ∧ grammar = j ∧ k = 2}
od;

Figure 3.19: Annotated program Prog1,Γ1 resulting from global correctness proof
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Prog2,Γ1 : {program f or G2}
k, cont : Integer;
P2 : S et o f Rule;

{w = α}
k := 2;
do true→

i f grammar = 2→ 〈 {w = α ∧ grammar = 2 ∧ k = 2}
cont := 0;
do cont , k →

i f w = xAy→ w, n := xaA’by, n + 1;
| w = xBy→ w := xcB’y;
| w = xAy→ w, n := xaby, n + 1;
| w = xBy→ w := xcy;

f i;
cont := cont + 1;

od;
grammar := Value(1, 2); 〉

f i;

{w = β ∧ α =k
=⇒
P2

β ∧ grammar = j ∧ k = 2}
od;

Figure 3.20: Annotated program Prog2,Γ1 resulting from global correctness proof

Owicki-Gries logic of programming, as analysis by cases, contemplates the way to prove some
matters related with dynamic aspects of a grammar such as: reachability of a configuration, absence
of progress because of circularity (in the case of PC Grammar systems with communication by
query), situations of deadlock, termination, etc.

When considering progress the only instruction in the DGC language that can stop the progress
of a program is the alternative construction. In case all the guards of an if are false it waits until
some guard becomes true.
So we can state the rule of progress in the following way:

Definition 20 (Rule of Progress) Statement {Q} if B1 → S 1, ..., B1n → S n fi in a component is
guaranteed to terminate iff the rest of the system, when constrained to Q, will converge to a state in
which B1 ∨ ... ∨ Bn is stably true in a finite number of steps .

From the annotated program MProgΓ1 in figure 3.18 which proved to behave like the Grammar
system Γ1 the progress of programs Prog1,,Γ1 and Prog2,,Γ1 , or equivalently grammars G1 and G2,
can be deduced:

Corollary 1 Programs Prog1,,Γ1 and Prog2,,Γ1 satisfy the rule of progress.
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Proof. With respect to program Prog1,Γ1 we need to prove for the alternative construction that the
following statement terminates:

{I ∧ cont , 2 ∧ w , anA’bncn ∧ w , anbncnB’}
i f w = xS y→ w := xS y;

| w = xS y→ w := xABy;
| w = xA’y→ w := xAy;
| w = xB’y→ w := xBy;

f i;
cont := cont + 1;

This is equivalent to proving that program MProgΓ1 when constrained to [I ∧ cont , 2 ∧
w , anA’bncn ∧ w , anbncnB’] will, in a finite number of steps, converge to a state in which
[w = xS y ∨ w = xA’y ∨ w = xB’y] is stably true. This is satisfied, because the following statement
evaluates to true: [I∧cont , 2∧w , anA’bncn∧w , anbncnB’]⇒[w = xS y∨w = xA’y∨w = xB’y].

Following the same reasoning progress of program Prog2,Γ1 is guaranteed because when it is
constrained to [I ∧ cont , 2] in a finite number of steps it converges to state [w = xAy∨w = xBy].

Termination is for some programs a desirable property. We can prove that the termination of
program MProgΓ1 can not be guaranteed, or equivalently that the derivation of a string of terminal
symbols in Γ1 can not be guaranteed.

Corollary 2 Program MProgΓ1 does not necessarily halt.

Proof. Two possible situations can occur:

1. For each loop execution the alternative construction if from program Prog2 indefinitely se-
lects the guarded instructions that replace symbol A for string aA’b and symbol B for string
bB’. In this way no terminal string w = anbncn is ever obtained.

2. The following instance of executions can take place:
{w = an−1A′bn−1cn−1B′ ∧ n ≥ 01}
Prog1,Γ1

{w = an−1Abn−1cn−1B ∧ n ≥ 0}
Prog2,Γ1

{(w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1)}
Prog1,Γ1 ‖ Prog2,Γ1

{(w = anA’bncn ∧ n ≥ 1) ∨ (w = anbncnB’ ∧ n ≥ 1)}
From this state of the system program Prog1,Γ1 and program Prog2,Γ1 do not perform any
action, but they keep evaluating the guards of the loop, getting the value false. This is equiv-
alent to performing a skip instruction, so that the state of the system can no longer change:
{(w = anA’bncn ∧ n ≥ 0) ∨ (w = anbncnB’ ∧ n ≥ 0)}.
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According to proposition 1 we can automatically translate a CD Grammar system Γ to a concur-
rent program PΓ. In this way the problem of proving that Γ generates a language L is transformed
into the problem of first proving that the program PΓ obtained from the translation is correct with
respect to the precondition {w = S } and the postcondition {w ∈ L} and second that PΓ gener-
ates all the strings in L. Therefore besides analysis by cases the global correctness strategy from
Owicki-Gries Theory can be also used to prove that a Grammar system generates a language. It is
not only the generation of a given language but also derivation properties like starvation, deadlock,
progress, termination, etc, formulated for Grammar systems that can be equivalently expressed in
the programming framework. Corollaries 1 and 2 exemplify the use of this strategy for proving the
properties of progress and termination of a Grammar system.

From the previous analysis we can remark on some advantages of the system invariant strategy
over the analysis by cases technique:

• With analysis by cases we can capture the system global behavior by a general sequence of
derivations including detailed information, such as how grammars interact, which productions
they apply, how they change the sentential form, etc. When we apply the system invariant
technique we capture the global behavior of the system by an invariant that shows all possible
values of the sentential form and hides information that analysis by cases gives. So we can
say that the invariant system captures global behavior in a more abstract way.

• With analysis by cases, apart from showing the shape that any sequence of derivation should
have, we need to prove that this is the only possible sequence of derivations, adding an ex-
planation in natural language. Equivalently with the system invariant technique we need to
prove in the framework of logic that each program Progi preserves the invariant, which is
achieved by formal proofs.

Another advantage of the Owicki-Gries logic of programming is that it can help to simultane-
ously construct the Grammar system that generates a given language specification and the proof that
the grammar generates the language. This is a great improvement, because there is no technique in
the framework of Grammar systems, to help us to solve this kind of problem. We present theorems
6, 7 and 8 to exemplify the use of this strategy.

Theorem 6 Lcd ∈ NPC3(Reg)

Proof. We want to find a non-returning, non-centralized Parallel Communicating Grammar
system Γ2 with regular components that generates Lcd. This problem is transformed into the problem
of finding a multiprogram MProgΓ2 that is equivalent to Γ2 and globally correct with respect to the
specification:

{(w1 = S 1) ∧ (w2 = S 2) ∧ (w3 = S 3)} MProgΓ2 {w1 ∈ Lcd}

Besides it has to be proved that for all w ∈ Lcd program MProgΓ2 computes w.
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The problem remains the same, but we change the tools to solve it: instead of analysis by
cases available in the framework of Grammar systems we use Logic, Owicki-Gries Theory and
programming strategies from the Programming framework.

The strategy we follow for this proof is called refinement of the problem and it is frequently used
for the development of programs. It consists on:

(I) First, start with an outline of the solution, which identifies the basic principle by which the
input can be transformed into the output. Define pre and post conditions for each of the subproblems
that are identified as part of the solution for the whole problem.

For our problem we propose this idea:
{(w1 = S 1) ∧ (w2 = S 2) ∧ (w3 = S 3)}
Subproblem 1: (Rewrite)p, with p ≥ 1{
(w1 = S 1) ∧ (wi = apS i) ∧ (w j = cpS j) ∧ (p ≥ 1) ∧ {i, j} = {2, 3}

}

Subproblem 2: (Rewrite; Communication)+

Find a way to stop the production of a’s and c’s, through synchronization by communication.
{(w1 = arN1) ∧ (w j = crN2) ∧ (r ≥ 1) ∧ (N1,N2 ∈ N) ∧ j ∈ {2, 3}}
Subproblem 3: (Rewrite)m, with m ≥ 1{

(w1 = arbmQk) ∧ (w j = crdm−1N3) ∧ (r,m ≥ 1) ∧ (Qk ∈ K) ∧ (N3 ∈ N) ∧ j ∈ {2, 3}
}

Subproblem 4: Communication{
(w1 = arbmcrdm−1N3) ∧ (r,m ≥ 1) ∧ (N3 ∈ N)

}

Subproblem 5: Rewrite
{(w1 = arbmcrdm) ∧ (r,m ≥ 1)}
or equivalently
{w1 ∈ {arbmcrdm ∧ r ≥ 1 | m ≥ 1}}
(II) Make precise the outline from (I), refine the subproblems trying to find simultaneously the

instructions that solve the subproblems and the proof of its local correctness.
In the refinement of subproblems 1 to 5 we propose three programs Prog1,Γ2 , Prog2,Γ2 and

Prog3,Γ2 . These programs form the multiprogram MProgramΓ2 , run simultaneously behaving like
a non-returning, non-centralized Grammar system with regular productions and behave locally cor-
rectly with respect to the subproblems that we have identified in the previous step.
In the case of Subproblem 1 we propose this refinement:

{(w1 = S 1) ∧ (w2 = S 2) ∧ (w3 = S 3)}
Subproblem 1: Rewriten, with n ≥ 1
Prog1,Γ2 rewrites n− 1 times S 1 to aS 1 and then rewrites S 1 to aA, Prog2,Γ2 rewrites n− 1 times

S 2 to cS 2 and then rewrites S 2 to cB. Prog3,Γ2 rewrites n−1 times S 3 to S 3, until it decides to finish
the production of a’s and c’s, rewriting S 3 to Q2.

To be sure that w2 = cnB when Prog3,Γ2 introduces Q2, Prog3,Γ2 should not be able to rewrite
S 2, and after Prog2,Γ2 introduces B it should rewrite it for other nonterminal and not introduce B
again.

The reason why w1 = anA and w1 , anS 1 is that this is the only possibility that does not lead to
deadlock, as the states of the next subproblem show.
{(w1 = anA) ∧ (w2 = cnB) ∧ (w3 = Q2) ∧ (n ≥ 1)}

For Subproblem 2 we propose this sequence of rewritings and communications as a refinement:
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{(w1 = anA) ∧ (w2 = cnB) ∧ (w3 = Q2) ∧ (n ≥ 1)}

Subproblem 2



Communication
{w1 = anA ∧ w2 = cnB ∧ w3 = cnB ∧ n ≥ 1}
Rewrite
Prog1,Γ2 rewrites A to A’, Prog2,Γ2 rewrites B to Q1 and
Prog3,Γ2 rewrites B to D
We do not allow any possibility other than
w1 = anA’ ∧ w2 = cnQ1 ∧ w3 = cnD.
To be sure that w1 = anA’ after the rewriting step,
we need Prog2,Γ2 to be defined only for A’, and after
Prog1,Γ2 introduces A’ it should rewrite it to other
nonterminal and do not introduce A’ again.
{w1 = anA’ ∧ w2 = cnQ1 ∧ w3 = cnD ∧ n ≥ 1}
Communication

{(w1 = anA’) ∧ (w2 = cnanA’) ∧ (w3 = cnD) ∧ (n ≥ 1)}

In the case of Subproblem 3 this is a possible refinement:
{(w1 = anA’) ∧ (w2 = cnanA’) ∧ (w3 = cnD) ∧ (n ≥ 1)}
Subproblem 3: Rewritem+1, with m ≥ 1
Prog1,Γ2 rewrites A’ to A” and rewrites m − 1 times A” to bA”, and then rewrites A” to bQ3.

Prog2,Γ2 always rewrites A’ to A’ and Prog3 rewrites D to D’, then D’ to D” and rewrites m − 1
times D” to dD”{

(w1 = anbmQ3) ∧ (w2 = cnanA’) ∧ (w3 = cndm−1D”) ∧ (n,m ≥ 1)
}

The refinements for Subproblem 4 and Subproblem 5 are very simple:{
(w1 = anbmQ3) ∧ (w2 = cnanA’) ∧ (w3 = cndm−1D”) ∧ (n,m ≥ 1)

}

Subproblem 4: Communication{
(w1 = anbmcndm−1D”) ∧ (w2 = cnanA’) ∧ (w3 = cndm−1D”) ∧ (n,m ≥ 1)

}

Subproblem 5: Rewrite
Prog1,Γ2 rewrites D” to d
{(w1 ∈ {anbmcndm) ∧ (n,m ≥ 1)}}

From the previous analysis we propose the multiprogram MProgΓ2 (Figure 3.21) with concur-
rent programs Prog1,Γ2 (Figure 3.22), Prog2,Γ2 (Figure 3.23) and Prog3,Γ2 (Figure 3.24) running
concurrently.

(III) Prove global correctness of multiprogram MProgΓ2 .
In this case we have to show using Owicki-Gries Theory that the multiprogram MProgΓ2 we

constructed satisfies the next specification:

{(w1 = S 1) ∧ (w2 = S 2) ∧ (w3 = S 3)}MProgΓ2{w1 ∈ Lcd}

We find the following invariant that guarantees the proof of global correctness:
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Inv I:



(w1 = anS 1 ∧ n ≥ 0) ∨ (w1 = anA ∧ n ≥ 1) ∨ (w1 = anA’ ∧ n ≥ 1)∨
∨(w1 = avbnA” ∧ v ≥ 1 ∧ n ≥ 0) ∨ (w1 = avbnQ3 ∧ v ≥ 1 ∧ n ≥ 1)∨

∨(w1 = avbncgdhD” ∧ v, n, g ≥ 1 ∧ h ≥ 0)∨
∨(w1 = aeb f cgdh ∧ e, f , g, h ≥ 1)


∧

∧
[

(w2 = cqS 2 ∧ q ≥ 0) ∨ (w2 = cqB ∧ q ≥ 1)
(w2 = cqQ1 ∧ q ≥ 1) ∨ (w2 = cqarA’ ∧ q, r ≥ 1)

]
∧

∧
[

(w3 = S 3) ∨ (w3 = Q2) ∨ (w3 = cnB ∧ n ≥ 1) ∨ (w3 = cnD ∧ n ≥ 1)∨
∨(w3 = cnD’ ∧ n ≥ 1) ∨ (w3 = cndmD” ∧ n ≥ 1 ∧ m ≥ 0)

]

For all w ∈ Lcd program MProgΓ2 computes w because program Prog1,Γ2 arbitrarily chooses
when to introduce query symbols that produce communication, stopping the production of the same
number of a’s and c’s, and the same number of b’s and d’s.

IV) As explained in proposition 2 the non-returning, non-centralized Parallel Communicating
Grammar system Γ2 with three regular components is equivalent to multiprogram MProgΓ2 (Figure
3.21) with concurrent programs Prog1,Γ2 (Figure 3.22), Prog2,Γ2 (Figure 3.23) and Prog3,Γ2 (Figure
3.24) running concurrently. Γ2 is defined in this way:

Γ2 = (N,K, {a, b, c, d}, (P1, S 1), (P2, S 2), (P3, S 3))

where:

N = {S 1, S 2, S 3, A, A’, A”, B,D,D’,D”}
K = {Q1,Q2,Q3}
P1 = {S 1 −→ aS 1, S 1 −→ aA, A −→ A’, A’−→ A”, A” −→ bA”, A” −→ bQ3,D” −→ d}
P2 = {S 2 −→ cS 2, S 2 −→ cB, B −→ Q1, A’−→ A’}
P3 = {S 3 −→ S 3, S 3 −→ Q2, B −→ D,D −→ D’,D’−→ D”,D”−→ dD”}
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MProgΓ2 : N,K,T : S et o f S tring;
w1,w2,w3 : S tring;

N := {S 1, S 2, S 3, A, A′, A′′, B,D,D′,D′′};
K := {Q1,Q2,Q3};
w1,w2,w3 := S 1, S 2, S 3;
do Contains(w1,N) ∨Contains(w2,N) ∨Contains(w3,N)→

Prog1,Γ2 ‖ Prog2,Γ2 ‖ Prog3,Γ2 ;
i f contains(w1,K) ∨ contains(w2,K) ∨ contains(w3,K)→

Communicate(w1,w2,w3);
| ¬(contains(w1,K) ∨ contains(w2,K) ∨ contains(w3,K))→ skip;

f i;
od;
Print(w1)

Figure 3.21: Multiprogram for Γ2

Prog1,Γ2 :
i f w1 = αS 1β → w1 := αaS 1β;

| w1 = αS 1β → w1 := αaAβ;
| w1 = αAβ → w1 := αA′β;
| w1 = αA′β → w1 := αA′′β;
| w1 = αA′′β → w1 := αbA′′β;
| w1 = αA′′β → w1 := αbQ3β;
| w1 = αD′′β → w1 := αdβ;

|


w1 , αS 1β ∧ w1 , αAβ∧
w1 , αA′β ∧ w1 , αA′′β∧
w1 , αD′′β

 → skip;

f i;

Figure 3.22: Program for grammar component G1 in Γ2

Prog2,Γ2 :
i f w2 = αS 2β → w2 := αcS 2β;

| w2 = αS 2β → w2 := αcBβ;
| w2 = αBβ → w2 := αQ1β;
| w2 = αA′β → w2 := αA′β;

| ¬
(

w2 = αS 2β ∨ w2 = αBβ∨
w1 = αA′β

)
→ skip;

f i;

Figure 3.23: Program for grammar component G2 in Γ2
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Prog3,Γ2 :
i f w3 = αS 3β → w3 := αS 3β;

| w3 = αS 3β → w2 := αQ2β;
| w3 = αBβ → w3 := αDβ;
| w3 = αDβ → w3 := αD′β;
| w3 = αD′β → w3 := αD′′β;
| w3 = αD′′β → w3 := αdD′′β;

| ¬


w3 = αS 3β ∨ w3 = αBβ∨
w3 = αDβ ∨ w3 = αD′β∨
w3 = αD′′β

 → skip;

f i;

Figure 3.24: Program for grammar component G3 in Γ2

The strategy we have presented to solve Theorem 6 differs from the traditional approach not
in complexity, since the number of cases considered in the proofs is the same, but in the way we
reason about the problem. We suggest that the Owicki-Gries methodology could provide more
possibilities for reasoning about problems, in comparison with the strategies commonly used so far
in the Grammar system framework because:

1. When a Grammar system Γ can be translated to DGC language, then Owichi-Gries Theory
can be used to reason about a derivation problem in terms of logic.

2. It allows reasoning in a forward or data-driven way, similar to the analysis by cases technique,
but also in a backward or goal-directed way. The notion of backward reasoning comes from
psychology, as is pointed out in [KC58] where this description of problem solving occurs:

“We may have a choice between starting with where we wish to end, or starting
with where we are at the moment. In the first instance we start by analyzing the
goal. We ask, “Suppose we did achieve the goal, how would things be different-
what subproblems would we have solved, etc.?”. This in turn would determine the
sequence of problems, and we would work back to the beginning. In the second
instance we start by analyzing the present situation, see the implications of the
given conditions and lay-out, and attack the various subproblems in a forward
direction.”

3. The division of problems into subproblems is possible because of the semantics of sequential
composition:

{P} S 0; S 1 {R} ↔ ∃ Q such that {P} S 0 {Q} ∧ {Q} S 1 {R}

Also goals and subgoals are discussed in the psychology text mentioned above [KC58]:

“ The person perceives in his surrounding goals capable of removing his needs
and fulfilling his desires [...] And there is the important phenomenon of emergence
of subgoals. The pathways to goals are often perceived as organized into a number
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of subparts, each of which constitutes an intermediate subgoal to be attained on
the way to the ultimate goal.”

These characteristics suggest that Owicki-Gries strategies are closer to the human way of
reasoning.

We introduce theorem 7 that shows the combined use of the Owicki-Gries strategy, the technique
called refinement of problems that we explained in Theorem 6, and the rule of orthogonality that we
state below:

Definition 21 (Rule of Orthogonality) An assertion is maintained by all assignments to variables
not occurring in it.

Theorem 7 {xcxc | x ∈ {a, b}∗} ∈ CCPC(CF).

Proof. We are looking for a CCPC Grammar system that generates {xcxc | x ∈ {a, b}∗}

(I) A possible division into subproblems could be:
{w1 = S 1 ∧ w2 = S 2 ∧ w3 = S 3 ∧ w4 = S 4}
Subproblem 1: (Rewrite)n+1, n ≥ 0
Prog4 generates xX, x ∈ {a, b}∗, | x |= n.
{w1 = S 1’∧w2 = S 2’∧w3 = S 3’∧w4 = xX ∧ x ∈ {a, b}∗∧ | x |= n ∧ X ∈ N}
Subproblem 2: Communication
Prog4 communicates with Prog2 and Prog3 sending two copies of w4.

{w1 = S 1’∧w2 = xX ∧ w3 = xX ∧ w4 = S 4 ∧ x ∈ {a, b}∗∧ | x |= n ∧ X ∈ N}
Subproblem 3: (Rewrite)p, p ≥ 0
Prog2 and Prog3 replace X by c.
{w1 = S 1’∧w2 = xc ∧ w3 = xc ∧ w4 = yX ∧ x ∈ {a, b}∗∧ | x |= n∧
∧X ∈ N ∧ y ∈ {a, b}∗∧ | y |= p}
Subproblem 4: Communication
Prog1 receives the content of w2 and w3 from Prog2 and Prog3.
{w1 = xcxc ∧ w2 = yX ∧ w3 = yX ∧ w4 = S 4 ∧ x ∈ {a, b}∗∧ | x |= n∧
∧X ∈ N ∧ y ∈ {a, b}∗∧ | y |= p}

From this analysis we simultaneously propose a multiprogram MProgΓ3 (Figure 3.25) with
programs Prog1,Γ3 (Figure 3.26), Prog2,Γ3 (Figure 3.27), Prog3,Γ3 (Figure 3.28) and Prog4,Γ3 (Figure
3.29).

(II) We need to prove the global correctness of the specification
{w1 = S 1 ∧ w2 = S 2 ∧ w3 = S 3 ∧ w4 = S 4}MProgrΓ3{w1 ∈ {xcxc | x ∈ {a, b}∗}}.

According to the analysis presented in (I) we need to prove the following:
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{[(w1,w2,w3,w4) = (S 1, S 2, S 3, S 4) ∨ (w1,w2,w3,w4) = (S ′1, xX, xX, S 4)] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
Prog1,Γ3 ‖ Prog2,Γ3 ‖Prog3,Γ3 ‖ Prog4,Γ3

{[(w1,w2,w3,w4) = (S ′1, S
′
2, S

′
3, xX) ∨ (w1,w2,w3,w4) = (S ′1, xc, xc, yX)] ∧ x, y ∈ {a, b}∗ ∧ X ∈ N}

i := 1;
do i ≤ 3→

i f ∆(i) , λ→ wi := ∆(i);
| ∆(i) = λ ∧ δ(i) = λ→ skip;
| ∆(i) = λ ∧ δ(i) , λ→ wi := S i;

f i;
i := i + 1;

od;
{[(w1,w2,w3,w4) = (S ′1, xX, xX, S 4) ∨ (w1,w2,w3,w4) = (xcxc, yX, yX, S 4)] ∧ x, y ∈ {a, b}∗ ∧ X ∈ N}

Based on the rule of orthogonality the proof of global correctness of:

{[(w1,w2,w3,w4) = (S 1, S 2, S 3, S 4) ∨ (w1,w2,w3,w4) = (S ′1, xX, xX, S 4)] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
Prog1,Γ3 ‖ Prog2,Γ3 ‖Prog3,Γ3 ‖ Prog4,Γ3

{[(w1,w2,w3,w4) = (S ′1, S
′
2, S

′
3, xX) ∨ (w1,w2,w3,w4) = (S ′1, xc, xc, yX)] ∧ x, y ∈ {a, b}∗ ∧ X ∈ N}

reduces to the following proofs of global correctness:

{[w1 = S 1 ∨ w1 = S ′1]}
Prog1,Γ3

{w1 = S ′1}
{[w2 = S 2 ∨ w2 = xX] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
Prog2,Γ3

{[w2 = S ′2 ∨ w2 = xc] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
{[w3 = S 3 ∨ w3 = xX] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
Prog3,Γ3

{[w3 = S ′3 ∨ w3 = xc] ∧ x ∈ {a, b}∗ ∧ X ∈ N}
{w4 = S 4}
Prog4,Γ3

{w4 = xX ∧ x ∈ {a, b}∗ ∧ X ∈ N}
The local correctness of the above specifications is guaranteed by the analysis presented in (I)

and by the definition of programs Prog1,Γ3 (Figure 3.26), Prog2,Γ3 (Figure 3.27), Prog3,Γ3 (Figure
3.28) and Prog4,Γ3 (Figure 3.29) that behave respectively like the grammar components G1,G2,G3
and G4 rewriting the corresponding sentential form with the rewriting rules P1 = {S 1 → S 1’},
P2 = {S 2 → S 2’, X → c}, P3 = {S 3 → S 3’, X → c}, and P4 = {S 1 → aS 4, S 4 → bS 4, S 4 → X}.

The global correctness of the specification below is guaranteed by two things. First by the def-
inition of functions ∆ and δ as specified in the definition of CCPC Grammar systems introduced
in section 5. Second by the declaration in multiprogram MProgramΓ3 (Figure 3.25) of variables
R1,R2,R3,R4 for the respective filters found in the analysis presented in (I) for the grammar com-
ponents G1,G2,G3,G4 in Γ3, such that R1 = {a, b}∗c, R2 = {a, b}∗X, R3 = {a, b}∗X and R4 = λ.
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{[(w1,w2,w3,w4) = (S ′1, S
′
2, S

′
3, xX) ∨ (w1,w2,w3,w4) = (S ′1, xc, xc, yX)] ∧ x, y ∈ {a, b}∗ ∧ X ∈ N}

i := 1;
do i ≤ 3→

i f ∆(i) , λ→ wi := ∆(i);
| ∆(i) = λ ∧ δ(i) = λ→ skip;
| ∆(i) = λ ∧ δ(i) , λ→ wi := S i;

f i;
i := i + 1;

od;
{[(w1,w2,w3,w4) = (S ′1, xX, xX, S 4) ∨ (w1,w2,w3,w4) = (xcxc, yX, yX, S 4)] ∧ x, y ∈ {a, b}∗ ∧ X ∈ N}

Because the selection of rewriting rules in programs Prog1,Γ3 , Prog2,Γ3 and Prog3,Γ3 is simulated
by an indeterministic alternative command if, then for all w ∈ {xcxc | x ∈ {a, b}∗} multiprogram
MProgrΓ3 computes w.

(III) As explained in proposition 3 the Grammar system Γ3 ∈ CCPC4(CF) is equivalent to the
multiprogram MProgramΓ3 (Figure 3.25) with programs Prog1,Γ3 (Figure 3.26), Prog2,Γ3 (Figure
3.27), Prog3,Γ3 (Figure 3.28) and Prog4,Γ3 (Figure 3.29). Γ3 is defined in this way:

Γ3 = ({S 1, S 2, S 3, S 4, S 1’, S 2’, S 3’, S 4’, X}, {a, b, c},
(S 1, P1,R1), (S 2, P2,R2), (S 3, P3,R3), (S 4, P4,R4))

where:

P1 = {S 1 → S 1’}, R1 = {a, b}∗c,
P2 = {S 2 → S 2’, X → c}, R2 = {a, b}∗X,
P3 = {S 3 → S 3’, X → c}, R3 = {a, b}∗X,
P4 = {S 1 → aS 4, S 4 → bS 4, S 4 → X}, R4 = λ.
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MProgΓ3 : w1,w2,w3,w4 : S tring;
T,N : S et o f Character;
R1,R2,R3,R4 : S tring;
i : Integer;

N := {S 1, S 2, S 3, S 4, S ′1, S
′
2, S

′
3, S

′
4, X};

T := {a, b, c};
R1 := {a, b}∗c;
R2 := {a, b}∗X;
R3 := {a, b}∗X;
R4 := λ;
w1,w2,w3,w4 := S 1, S 2, S 3, S 4;
{(w1,w2,w3,w4) = (S 1, S 2, S 3, S 4)}
do contains(w1,N)→
{(w1,w2,w3,w4) = (α1, α2, α3, α4)}

q := 0;
Prog1,Γ3 ‖ Prog2,Γ3 ‖Prog3,Γ3 ‖ Prog4,Γ3 ‖

{(w1,w2,w3,w4) = (β1, β2, β3, βn) ∧ (∀1 ≤ i ≤ n : wi = βi ∧ αi
∗

=⇒
Pi

βi)}
i := 1;
do i ≤ 3→

i f ∆(i) , λ→ wi := ∆(i);
| ∆(i) = λ ∧ δ(i) = λ→ skip;
| ∆(i) = λ ∧ δ(i) , λ→ wi := S i;

f i;
i := i + 1;

od;
{(w1,w2,w3,w4) = (π1, ..., πn) ∧ (β1, ..., βn) ` (π1, ..., πn)}

od;
{w1 ∈ L(Γ3)}
Print(w1)

Figure 3.25: Multiprogram for Γ3
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Prog1,Γ3 : f lag : Boolean;

〈 {w1 = α}
f lag := true;
do f lag→
{Inv : w1 = β ∧ α ∗

=⇒
P1

β ∧ f lag}
i f w1 = γS 1δ → w1 := γS ′1δ;

| true → f lag := f alse;
f i;

od;

{w1 = β ∧ α ∗
=⇒
P1

β ∧ ¬ f lag} 〉

Figure 3.26: Program for G1 in Γ3

Prog2,Γ3 : f lag : Boolean;

〈 {w2 = α}
f lag := true;
do f lag→
{Inv : w2 = β ∧ α ∗

=⇒
P2

β ∧ f lag}
i f w2 = γS 2δ → w2 := γS ′2δ;

| true → f lag := f alse;
f i;

od;

{w2 = β ∧ α ∗
=⇒
P2

β ∧ ¬ f lag} 〉

Figure 3.27: Program for G2 in Γ3
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Prog3,Γ3 : f lag : Boolean;

〈 {w3 = α}
f lag := true;
do f lag→
{Inv : w3 = β ∧ α ∗

=⇒
P3

β ∧ f lag}
i f w3 = γS 3δ → w3 := γS ′3δ;

| w3 = γXδ → w3 := γcδ;
| true → f lag := f alse;

f i;
od;

{w3 = β ∧ α ∗
=⇒
P3

β ∧ ¬ f lag} 〉

Figure 3.28: Program for G3 in Γ3

Prog4,Γ3 : f lag : Boolean;

〈 {w4 = α}
f lag := true;
do f lag→
{Inv : w4 = β ∧ α ∗

=⇒
P4

β ∧ f lag}
i f w4 = γS 1δ → w4 := γaS ′4δ;

| w4 = γS 4δ → w4 := γbS 4δ;
| w4 = γS 4δ → w4 := γXδ;
| true → f lag := f alse;

f i;
od;

{w4 = β ∧ α ∗
=⇒
P4

β ∧ ¬ f lag} 〉

Figure 3.29: Program for G4 in Γ3

In Grammar System Theory important efforts have been dedicated to finding Grammar systems
with the fewest possible number of grammars and more restricted productions, to show how distri-
bution and communication can make simple components very powerful when they work together.
For PC Grammar systems some measures of complexity based on the number of communications
between grammars have been presented and studied in [HKK94] and [Par93]. Apart from this the
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most investigated complexity measure has been the number of grammars that a Grammar system
consist on, which is clearly a descriptional complexity measure. So a very important matter has been
forgotten: the efficient use of time. The opposite happened in the programming area (see [Fos95]),
where an important part of the research has been focused on looking for techniques to parallelize
algorithms and to help programmers to design more efficient concurrent algorithms.

We state that although there are no recipes to follow, in some cases we can construct efficient
Grammar systems following some of the methodical approaches developed in the programming
framework that maximize the range of options considered and that provide mechanisms for evalu-
ating alternatives.

For example if we calculate the time that the Grammar system Γ3 defined above spends to
generate a string xcxc with x ∈ {a, b}∗ and | x |= n, it is of O(n) in the best case. If we want
to improve the efficiency of Γ3 in terms of time spent to produce a string, we can try to apply
some of the strategies developed in the programming framework to design parallel algorithms. For
this example we can apply the so-called functional decomposition. Functional decomposition is
a strategy for partitioning, used for the design of concurrent algorithms. This strategy focuses on
the computation to expose opportunities for parallel execution. Hence, the idea is to define a large
number of small tasks in order to yield a fine-grained decomposition of a problem. Formally:

Definition 22 (Functional decomposition) For a multivariate function y = f (x1, ..., xn) functional
decomposition refers to the process of identifying a set of functions {g1, g2, ..., gm} and a function φ
such that: f (x1, ..., xn) = φ(g1((x1, ..., xn)), ..., gm(x1, ..., xn))

We can apply the functional decomposition strategy over Γ3 to generate another Grammar sys-
tem Γ4 that solves this problem in less time as we prove below:

Theorem 8 {xcxc | x ∈ {a, b}∗} ∈ CCPC(CF).

Proof. We focus on the computation of the string x ∈ {a, b}∗ and we discover that this task can
be done by an arbitrary number m > 1 of grammars working simultaneously instead of only one
grammar. In this way we can reduce the time to O(n/m), in the best case.

For defining Γ4 we propose this refinement of Subproblem 1:

{w1 = S 1 ∧ w2 = S 2 ∧ w3 = S 3 ∧ w4 = S 4}
Subproblem 1: (Rewrite)n+1, n ≥ 0
Prog4 generates xX, x ∈ {a, b}∗, | x |= n.
{w1 = S 1’∧w2 = S 2’∧w3 = S 3’∧w4 = xX ∧ x ∈ {a, b}∗∧ | x |= n}

To improve efficiency we propose another refinement of the same subproblem:

{w1 = S 1 ∧ w2 = S 2 ∧ w3 = S 3 ∧ w4 = S 4 ∧ ... ∧ wi+4 = S i+4 ∧ ...
... ∧ wm+3 = S m+3 ∧ wm+4 = S m+4 ∧ 1 ≤ i ≤ m − 1 ∧ 1 ≤ m}

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



3.3. A new formal approach to connect Grammar systems with concurrent programs 65

Subproblem 1



(Rewrite)t+1, t ≥ 0
Progi+4, ..., Progm+3 generates xi, ..., xm−1 ∈ {a, b}∗,
1 ≤ i ≤ m − 1, 1 ≤ m and Progm+4 generates xmY,
xm ∈ {a, b}∗
{w1 = S 1’ ∧ w2 = S 2’ ∧ w3 = S 3’ ∧ w4 = S 4’ ∧ ...
... ∧ wi+4 = xi ∧ ... ∧ wm+3 = xm−1 ∧ wm+4 = xmY∧
∧1 ≤ i ≤ m − 1 ∧ 1 ≤ m ∧ x1, ..., xm ∈ {a, b}∗ ∧ Y ∈ N}
Communication
Prog4 receives the x1, ..., xm−1 ∈ {a, b}∗ produced by
Prog5, ..., Progm+3 followed by xmY,
xm ∈ {a, b}∗ produced by Progm+4
{w1 = S 1’ ∧ w2 = S 2’ ∧ w3 = S 3’ ∧ w4 = x1...xmY∧
∧... ∧ wi+4 = S i+4 ∧ ... ∧ wm+3 = S m+3 ∧ wm+4 = S m+4∧
∧1 ≤ i ≤ m − 1 ∧ 1 ≤ m ∧ x1...xm ∈ {a, b}∗ ∧ Y ∈ N}
(Rewrite)s+1, s ≥ 0
Prog4 replaces Y by X.

{w1 = S 1′ ∧ w2 = S 2′ ∧ w3 = S 3′ ∧ w4 = x1...xmX ∧ ... ∧ wi+4 = yi∧
∧... ∧ wm+3 = ym−1 ∧ wm+4 = ymY ∧ 1 ≤ i ≤ m − 1 ∧ 1 ≤ m∧
∧x1...xm ∈ {a, b}∗ ∧ y1, ..., ym ∈ {a, b}∗ ∧ Y ∈ N}

The rest is analogous to the analysis we made for Γ3, and according to our previous analysis we
get Γ4 ∈ CCPCm+4(CF), m ≥ 1 defined in this way:

Γ4 = ({S 1, S 2, S 3, ..., S m+4, S 1’, S 2’, S 3’, ..., S m+4’, X, Y}, {a, b, c},
(S 1, P1,R1), (S 2, P2,R2), ..., (S m+4, Pm+4,Rm+4))

where:

P1 = {S 1 → S 1’}, R1 = {a, b}∗c,
P2 = {S 2 → S 2’, X → c}, R2 = {a, b}∗X,
P3 = {S 3 → S 3’, X → c}, R3 = {a, b}∗X,

P4 = {S 4 → S 4’,Y → X}, R4 = {a, b}∗Y ∪ {a, b}∗,
Pi+4 = {S i+4 → aS i+4, S i+4 → bS i+4, S i+4 → a, S i+4 → b, S i+4 → λ}, Ri+4 = ∅, 1 ≤ i ≤ m − 1

Pm+4 = {S m+4 → aS m+4, S m+4 → bS m+4, S m+4 → Y}, Rm+4 = ∅, 1 ≤ m

We improve efficiency, because Γ4 generates strings xcxc with x ∈ {a, b}∗ and | x |= n in O(n/m),
in the best case. In more general terms we show with theorem 8 that we can use strategies available
in the programming framework to design Grammar systems that derive strings in less time.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



66 Chapter 3. Verification and derivation of Grammar systems

3.3.3 How can programming benefit from Grammar systems?

If for example we want to prove in the Grammar System Theory that there is no Grammar system
with n components with a certain protocol of communication that generates a language L, we use
analysis by cases and induction strategies. If we translate this problem to the programming frame-
work, we have to prove that it is not possible to find a multiprogram P with n programs running
concurrently, communicating following the same protocol, and that is correct with respect to this
specification:

{(w1 = S 1) ∧ (w2 = S 2) ∧ ... ∧ (wn = S n) ∧ n ≥ 1} P {w1 ∈ L}
But in the programming framework we have no strategies for reasoning in the negative way.

The only strategies available in this framework are: verification that, given a multiprogram consists
of proving its correctness with respect to a specification (for example the second proof of theorem
6), and the constructive approach that we have exemplified with theorems 6, 7 and 8 that consists
of constructing simultaneously a program and the proof of its correctness with respect to a specifi-
cation. Both strategies are useful for obtaining positive results.

The lack of strategies to prove these kind of negative results in the programming framework
suggests the possibility of translating them to the Grammar system framework and using the tools
available there solve them. We exemplify this approach with the language Lcd already introduced.
We want to prove that there is no Grammar system with two regular components that can generate
Lcd. In other words we want to prove that the solution we proposed, Lcd ∈ NPC3(Reg), is the most
economical one with respect to the number of components. If we translate this problem into the
programming framework, we have to prove that it is not possible to find a multiprogram P with two
programs Prog1 and Prog2 running concurrently, modifying w1 and w2 in a regular way, such that
{(w1 = S 1) ∧ (w2 = S 2)} P {w1 ∈ {anbmcndm | n,m ≥}} is correct. We solve this problem with the
tools available in the Grammar system framework, namely analysis by cases.

Theorem 9 Lcd < X2(Reg), for X ∈ {PC,CPC,NPC,NCPC}.

Proof. Since PC2(Reg) (hence CPC2(Reg), too), contains context free languages only [CVJJP94],
it suffices to prove that Lcd cannot be in NPC2(Reg). Assume that Lcd = L(Γ) for some non-
returning non-centralized Grammar system with two regular components Γ. Take w = anbmcndm

with arbitrarily large n,m. There exist two nonterminals A1, A2 such that in the process of generating
w the following holds:

(S 1, S 2) =⇒∗ (x1A1, x2A2), x1, x2 ∈ {a, b, c, d}∗,
(A1, A2) =⇒k1 (uA1, vA2), u, v ∈ {a, b, c, d}∗, uv , λ

for some k1 ≥ 1. Here =⇒p denotes a derivation of length p where the communication steps are also
counted. Let (A1, A2) be the first pair of such nonterminals met in the process with this property. By
the choice of w we infer that u ∈ a+ and v ∈ c+. First we note that both u and v, if non-empty, are
formed by one letter only. Second, if one is empty, then the other can be “pumped” arbitrarily many
times which leads to a parasitic word. Third, by the same argument, all the other choices, except
u ∈ a+ and v ∈ c+, lead to words not in Lcd. Since the subword of w formed by b is arbitrarily long
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there is a pair of nonterminals (B1, B2) such that the derivation continues as follows:

(S 1, S 2) =⇒∗ (x1A1, x2A2) =⇒rk1 (x1urA1, x2vrA2) =⇒k

(x1ury1B1, x2vry2B2) =⇒pk2 (x1ury1spB1, x2vry2tpB2) =⇒∗ (w, α)

for some terminal words y1, y2, s, t, s ∈ b+, positive integers r, p, k, k2, and word α. Moreover, no
communication step appears in the subderivation

(x1urA1, x2vrA2) =⇒∗ (x1ury1B1, x2vry2B2) =⇒pk2 (x1ury1spB1, x2vry2tpB2)

otherwise either an insufficient number of b’s is generated between the two subwords formed by a
and c or the generated word contains the subword cb which is contradictory.

Therefore, the following derivation is also possible in Γ:

(S 1, S 2) =⇒∗ (x1A1, x2A2) =⇒rk1 (x1urA1, x2vrA2) =⇒k1k2+k

(x1ur+k2y1B1, x2vry2tk1 B2) =⇒pk2 (x1ur+k2y1spB1, x2vry2tp+k1 B2)

=⇒∗ (w′, α′),

for terminal word w′ and word α′. However, w′ cannot be in Lcd, which concludes the proof.

As we have pointed out before, in the Grammar system framework an important part of the
research is concentrated on reducing the total number of components in the grammatical system to
prove the power of communication. The opposite happens in the programming framework where
programmers try to partition programs in as many tasks as possible to improve efficiency in time,
looking for strategies to parallelize programs. So it looks like research is directed in a different
direction. But there are some results of Grammar System Theory that can benefit the concurrent
Programming framework, like these theorems from [CVJJP94] that allow a transformation of a
Grammar system of at least m grammars into a Grammar system of at least n grammars that gener-
ates the same language:

CF = CD1,∗(t) = CD2,∗(t) ⊂ CD3,∗(t) and

CD3,∗(t) = CD∗,∗(t) = ET0L

There are another theorems of this type in Grammar System Theory that translated to the pro-
gramming framework speak about the number of programs needed to generate a certain language
(refer to [CVJJP94]). This can be considered a contribution from Grammar System Theory to pro-
gramming framework, where there are not results concerning the number of programs needed to
solve a problem. It would be very interesting for the design of concurrent programs if some of these
transformations can also consider efficiency. If there were some results about how to transform a
programP that has m multiprograms running concurrently into a program with n multiprograms that
solve the same problem more efficiently, this could be a great contribution to the Multiprogramming
Theory.
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Chapter 4

Using Grammar systems for specifying
dialogue protocols

4.1 Introduction

In this chapter we introduce a formal framework that we call Conversational Enlarged Repro-
ductive Eco-Grammar (ConvEREG) system for modeling goal-oriented dialogue protocols.
ConvEREG systems are based on a Grammar system variant that we introduce in section 4.2 as En-
larged Reproductive Eco-Grammar (EREG) systems. In ConvEREG the grammatical components
are interpreted as speakers whose participation in the conversation is described by protocols, strings
in a process calculus called Multi Agent Protocol (MAPa) language that we defined in [GW06b]
[GW06c] [GW06a] and we present in section 4.3.1. Our approach can be seen as a continuation of
similar models presented in [CVJLMV99], [JL00] and [AJR01].

Dialogue protocols specify complex concurrent and asynchronous patterns of communication
of social norms in a society. Protocols can be defined by means of finite automata [Vas04, ERS+01],
high level Petri Nets [HK98][MW97][PC96], diagrams provided by the Unified Modeling Language
[Woo99] [OPB00] [WCW01] [HWW01], logic [Woo99] [GK94], and process descriptions [Rob04]
[Wal04c]. A society protocol is examined in-advance by an agent in order to decide if it joins or
not the corresponding society. The protocol also acts as a guide for the agents to follow once they
are operating within the society. Based on the Multi Agent Protocol (MAP) language [Wal04c] we
define the MAPa calculus for specifying more flexible, dynamic and close-to-human process-based
protocols of communication and coordination between agents. In [GW06b] [GW06c] [GW06a] we
explain why the MAPa calculus represents an improvement with respect to the MAP language.

The ConvEREG systems that we define in section 4.3 allow the specification of protocols as
dialogue structures because they focus only on those agent’s observable behaviors that are part
of the interaction, abstracting from the implementation details. Dialogue protocols specified with
ConvEREG systems do not involve natural language processing, they correspond to information
state theory, they are linguistically well founded, generic and highly expressive. A preliminary defi-
nition of the framework that we present here has been published in [BEGJL06] [EGJL06] [EGJL07].
Compared to other grammatically based frameworks for the definition of conversations, the novelty
of our approach is given by defining the speakers’ (grammars) behavior in terms of string process
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70 Chapter 4. Grammar systems for dialogue protocols

descriptions (protocols) in the MAPa calculus, instead of defining it in terms of rewriting rules.
While rewriting rules remain fixed, strings can be modified during the course of the conversation
providing dialogues with great dynamism and flexibility. Also string descriptions provide a more
intuitive way to understand and describe the behavior of the agent than rewriting rules.

In section 4.3.3 we exemplify the use of ConvEREG systems with the definition of a dialogue
protocol. We show that one of the benefits of specifying dialogues in a formal framework is the for-
mal proof of dialogue properties. In section 4.4 we explain why our framework is an improvement
with respect to the previous grammatically based attempts to model dialogue. We devote section 4.5
to summarize the main characteristics of our framework. We prove that an Extended ConvEREG
(EConvEREG) system with an arbitrary number of n ≥ 1 active agents has the same expressive
power as Turing Machines.

In section 4.7 we introduce a type of ConvEREG system that we call Conditional Eco-Grammar
(CondEG) system. CondEG systems correspond to a variant of Eco-Grammar system where the
private knowledge bases of the agents are restricted to two finite sets of conditional rules that agents
use to perform computable decision procedures. According to the first set of rules an agent decides
its participation in the dialogue by checking the presence and\or absence of information in its mental
state. The agent uses the second set of rules to decide how to change its mental state according to
the presence and\or absence of information in the dialogue context. In section 4.7.2 we prove some
formal properties for Extended Conditional Eco-Grammar (ECondEG) systems. With theorem 11
we connect the family of classes of languages generated by ECondEG systems with the family of
classes of languages generated by Extended Conditional Tabled Eco-Grammar (ECTEG) systems,
proving that ECT EGn(i, j, c) ⊆ ECondEG1(i, j, c) for all i, j ≥ 0, n ≥ 1 and c ∈ {b, s}. With theorem
12 we prove that ECondEG systems with non erasing rules have the same expressive power as CS
grammars.

In section 4.8 we introduce a type of ConvEG system that we call regularly Controlled Re-
productive Eco-Grammar (rCREG) system. rCREG systems are a variant of Reproductive Eco-
Grammar system where all the rewriting rules Ri used by 1 ≤ i ≤ n agents are λ-free, mapping ψi

returns an arbitrary production from Ri, and a turn talking policy given by a regular set is attached
to determine the order that speakers must respect to participate in the dialogue. In section 4.8.3 we
introduce some formal properties for Extended regularly Controlled Reproductive Eco-Grammar
(ErCREG) systems. We prove with theorem 13 that ErCREG systems have the same expressive
power as rC regularly Controlled grammars with λ-free CF productions [GS68] [DPS97]. Where
rC is a mildly CS class in the Chomsky hierarchy. Therefore for ErCREG systems the problems of
membership, emptiness and finiteness are decidable, with the two last problems being NP-hard.

In this chapter we propose a hierarchy of formal frameworks for the specification of dialogue
protocols based on Grammar systems. Apart from investigating the expressiveness of the frame-
works, we analyze their suitability for the specification of dialogues. In the next chapter we enlarge
this hierarchy proposing another frameworks for the definition of dialogue protocols based on fi-
nite state transition systems. The overall intention of this and the next chapter is to contribute to
Dialogue Theory, mainly from the perspective of Formal Language Theory, to the formal study of
frameworks for the specification of dialogues
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4.2. Enlarged Reproductive Eco-Grammar systems 71

4.2 Enlarged Reproductive Eco-Grammar systems

In definition 23 we introduce the Grammar system variant that we use for the specification of our
framework, that we call Enlarged Reproductive Eco-Grammar (EREG) system. EREG systems are
the result of modifying the definition of Reproductive Eco-Grammar (REG) systems introduced in
[CVKKP97] and explained in detail in section 2.3.4. We introduce these modifications over REG
systems:

1. The set of action rules Ri is a finite set of rules of the form x → y with x ∈ V+
E and y ∈ V∗E ,

or x ∈ V+
i and y ∈ V∗i . In this way we extend the capacities of the agents such that they can,

apart from modifying the environment state, modify its own state. Then an agent Ai, j can
select using computable function ψi, j, not necessarily complete, a set of action rules R1 from
Ri to change its current state wi, j. Also the agent can select using computable function ψi, j,
not necessarily complete, a set of action rules R2 from Ri for rewriting symbols from the en-
vironmental state wE . The purpose of this change is to model how agents can simultaneously
participate in the conversation (change the state of the environment) and change their mental
state.

With regard to the possible conflict between action rules selected by mapping ψi, j and ac-
tion rules selected by mapping ϕi, j, the criteria to avoid this problem is the following: rules
selected by mapping ϕi, j are applied over wi, j and then action rules selected by mapping ψi, j.

2. The set of evolution rules Pi is a finite set of rules of the form x→ y with x ∈ V+
i and y ∈ V∗i .

The resulting EREG system definition inherits all the features that according to [CVJLMV99]
make Grammar systems appropriate to model conversation: distribution, modularity, parallelism,
interaction, coordination and emergent behavior.

Definition 23 An Enlarged Reproductive Eco-Grammar (EREG) system of degree n is a (n+1)-tuple
Σ = (E,A1, ...,An) that only differs from a Reproductive Eco-Grammar system in the following:

• In the definition of the agent Ai in class A j, 1 ≤ j ≤ n, the set Ri is a finite set of rules of the
form x→ y with x ∈ V+

E and y ∈ V∗E or, x ∈ V+
i and y ∈ V∗i .

• In the definition of the agent Ai the evolution rules Pi are given by a finite set of rules of the
form x→ y with x ∈ V+

i and y ∈ V∗i .

In order to describe the dynamic aspects of EREG systems we give below the following defini-
tions:

Definition 24 (System configuration) A configuration of an EREG system Σ = (E,A1, ...,An) is a
(n+1)-tuple: σt = (wE ,W1,W2, ...,Wn) where wE ∈ V∗E and Wi is a multiset of strings wi,1, ...,wi,ki ,
where wi, j ∈ V+

i for 1 ≤ j ≤ ki, 1 ≤ i ≤ n; wE is the evolution state of the environment at time t
and the strings wi,1, ...,wi,ki correspond to the evolution states of the active agents of the i-th type
at time t.
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Definition 25 (Agent Derivation) Agent state wi, j derives to a new state w′i, j denoted by wi, j ` w′i, j if
first wi, j `1 β′ as the result of the simultaneous application of as many rules as possible from the set
of rules selected by mapping ψi, j from agent Ai, j. Then β′ `2 w′i, j as the result of the simultaneous
application of as many rules as possible from the set of rules selected by mapping ϕi, j.

Definition 26 (Environment Derivation) Environmental state wE derives to new state w′E denoted
by wE |= w′E iff first wE |=1 α′ as the result of the simultaneous application of as many rules as
possible from the set of the environment rewriting rules selected by mappings ψi, j from all active
agents, and later α′ |=2 w′E according to the environment’s rules.

Definition 27 (System derivation) Let Σ = (E,A1, ...,An) be an EREG system and let
σt = (wE ,W1,W2, ...,Wn) and σ′t+1 = (w′E ,W

′
1,W

′
2, ...,W

′
n) be two configurations of Σ. We say

that σt is directly changed for (it directly derives) σ′t+1, denoted by σt =⇒Σ σ
′
t+1, iff w′E arises from

wE by evolution of the environment affected by all agents in σt, and W′i is the reproduction of the
states actually evolving from the states in Wi, 1 ≤ i ≤ n. Note that action rules have priority over
evolution rules.

We denote as
+⇒ and

∗⇒ the transitive and reflexive closure of =⇒.

Definition 28 (System language) The language generated by an EREG system Σ with initial con-
figuration σ0 is defined as

LE(Σ, σ0) =

{
wE ∈ V∗E | σ j = (wE ,W1, ...,Wn),
σ0 =⇒Σ σ1 =⇒Σ .... =⇒Σ σ j, j ≥ 0

}

Definition 29 (Final configuration) Given Σ ∈ EREG with n ≥ 1 populations, we say that a system
configuration (wE ,W1, ...,Wn) is final in Σ iff

¬(∃(w′E ,W
′
1, ...,W

′
n) : (wE ,W1, ...,Wn)⇒∗

Σ
(w′E ,W

′
1, ...,W

′
n) ∧ (wE ,W1, ...,Wn) , (w′E ,W

′
1, ...,W

′
n)).

We denote by EREGn, n ≥ 1, the family of languages LE(Σ, σ0) where Σ is an EREG system
with degree at most n and initial configuration σ0.

4.3 ConvEREG systems

We introduce first the Multi-Agent Protocol (MAPa) calculus that we use for describing the behavior
of speakers in the ConvEREG systems.

4.3.1 The MAPa Language

The MAPa language is a formal process calculus for the definition of goal-oriented dialogues. In
MAPa the processes are called protocols and they express social interactions between groups of
agents. The key concepts in MAPa are scenes, roles and protocols that we now describe.

A scene is conceptually a bounded space in which a group of agents interact on a single task.
We assume that a scene is initialized with a set of active agents which start the dialogue and is
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concluded when all the agents have concluded their participation in the scene. A scene definition
comprises a set of roles and protocols required to accomplish a task, a set of locutions and a set of
knowledge to be shared and understood by all the agents playing a role within the scene, and a way
to interchange common knowledge. An example scene is shown in figure 4.3 where a buyer agent
interacts with a set of sellers with the purpose of buying some items.

The concept of an agent role is also central to the definition of our protocols. Agents entering a
scene assume an initial role, though this role may change during the scene. By adopting a specific
role an agent compromises to perform the protocol associated with that role. This requires the agent
to know how to perform the decision operations involved in the role protocol. On the other hand
adopting a role allows the agent to have access to the role knowledge. For our example in figure 4.3
agents with the roles of buyer (B) and seller (S) are defined. When adopting the role of buyer an
agent learns the market situation and some commercial strategies that guide him in taking decisions.
Roles are defined as a hierarchy, where more specialized roles appear further down in the graph of
roles and inherit knowledge and decision procedures from upper roles. For example, an agent may
initially assume the role buyer but may change to the more specialized role car buyer during a
scene. This will allow the buyer to obtain knowledge and perform actions related specifically to the
car market, which a generic buyer does not need to know.

For each role in a scene, a protocol is defined that describes the sequence of operations that an
agent performing that role needs to follow in order to cooperate with other agents and not break
the conventions. Therefore protocols are the way used to express and guaranty the satisfaction
of societal norms and rules. It is important to note that a protocol only contains operations that
are specific to the mechanisms of communication and coordination between agents. This makes it
straightforward to understand the operation of the protocol without extraneous details, and makes
it possible to verify the protocols using automated means, e.g. model checking [Wal04a] [Wal04b].
All the other agent facilities, e.g. the reasoning processes, are encapsulated by decision procedures
that are external to the protocol. In effect, the decision procedures provide an interface between the
communicative and the rational process of the agent. In MAPa we distinguish two levels of decision
procedures: those private to the agent, and those shared between all the agents in the same role.

Every message has an associated locution that is used to indicate the type of the message and
parameters. For convenience, we do not assign any fixed semantics to these locutions. However,
individual agents can agree on a semantics for a particular scene.

The final concept in MAPa is the representation of knowledge. The language allows to define
knowledge as sets of axioms at the scene level, the role level, and the level of a particular agent.
In this way we can clearly establish differences between the knowledge. Scene and role knowledge
is common knowledge that can be accessed by all agents in the scene or role, respectively. Scene
knowledge and role knowledge cannot be modified. In contrast, the private knowledge of the agent
cannot be accessed externally and can be freely modified by the agent to whom it corresponds.

We show the formal syntax of MAPa in figure 4.1 in Backus Normal Form. Superscripts are
used to indicate a set, e.g. P(i) is a set with elements P of size i.

According to figure 4.1 a MAPa scene comprises a set of initial agents AI(h), a role hierarchy
R(i), a set of protocols P(i) that are parameterized on these roles, a set of axioms K(b) that is the
common knowledge in the scene and a set of locutions M(k) which defines the dialogic structure (i.e.
all the allowed locutions) for the scene.
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s ∈ S cene ::= 〈AI(h),R(i), P(i), K(b), M(k)〉 (Scene)
AI ∈ AgentInvocation ::= agent(φ1, φ2, Proc(v), K(p), φ(w)

3 ) (Agent Invocation)
R ∈ Role ::= 〈φ1, Proc(l), K(m), R(w)〉 (Role)
P ∈ Protocol ::= agent(φ1, φ2, φ

( f )
3 ) :: op (Protocol)

K ::= Axiom (Knowledge)
Proc ∈ Procedure ::= type :: p((φ1, type)(g)) (Procedure)
M ∈ S peech Act ::= ρ((φ1, type)(h)) (Locution)
op ∈ Operation ::= φ1 (Operational variable)

| op then op (Sequence)
| op or op (Choice)
| (op) (Precedence)
| α (Action)

α ∈ Action ::= null (No Action)
| φ1 = p(φ(g)

2 ) (Decision)
| ρ(φ(x)

1 )⇐= agent(φ2, φ3) (Receive)
| ρ(φ(y)

1 ) =⇒ agent(φ2, φ3) (Send)
| AI (Agent invocation)

φi ∈ Term ::= constant | variable | _ (Term)

Figure 4.1: MAPa language syntax

The role hierarchy is defined as a set of role definitions. Each role has a unique identifier, a set
of decision procedures which are shared within the role, a set of axioms which are common to the
role and, finally, a set of upper role identifiers, which appear above the role in the hierarchy. This
set will be empty for a top-level role.

A protocol is defined by a set of parameters and a body op. The parameters comprise a unique
identifier for the protocol, a role, and other parameters. These parameters can be a set of procedures
and axioms which are private to the agent.

As previously noted, knowledge is represented by axioms within a protocol. These axioms
represent facts which are believed to be true. The reasoning over this knowledge is performed
by decision procedures which are formally defined giving the type of their incoming an outgoing
parameters. Decision procedures are external to the protocol and have full access to the scene
knowledge, the knowledge of the played role and upper roles, and the agent private knowledge. The
result of the procedure evaluation is bound to variables.

The core of the protocols are constructed from operations which control the flow of execution,
and actions which have side-effects and can fail. The operations can be defined by a variable, by a
sequence then or by a non deterministic choice or. Parenthesis can be used to enforce precedence of
operations. It is possible to introduce operational variables during design time, which are replaced
during run-time by operations. This feature provides MAPa protocols with dynamism and with the
possibility of defining protocols where part of the behavior is not known beforehand but depends
on agents’ interaction during the scene execution. With respect to the other operations, they have a
standard interpretation. A sequence means that the first operation op1 is evaluated before the second
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operation op2. The non-deterministic choice means that either op1 or op2 is evaluated.
The actions an agent can perform are: null action, invocation of decision procedures, receiving

and sending messages, and introducing agent invocations. A null action is included because it is
convenient for protocol termination. Decision procedures are interfaces between the dialogue pro-
tocol and the rational processes of the agent, which allow each agent to modify its own knowledge.
The interchange of messages requires the indication of the identifier and the role of the agents that
send or receive the message, respectively. It also requires the content or locution ρ(φ(x)). With re-
spect to the action of introducing agent definitions, it is a very powerful mechanism that can be used
for creating new agent instances, changing the agent role or keeping the current role but changing
parameters for simulating recursive calls.

Here in after we will use the convention of denoting agent identifier values with letters a, b and
c, and role identifier values with letters r and l.

4.3.2 Formal Definition

Definition 30 From an arbitrary MAPa scene s = 〈InitAg(m),Role(n), Prot(n), S ceneK(w), DF(k)〉
where all the role and agent private decision procedures are computable functions, we can define
Σs ∈ EREGn and we say that Σs ∈ ConvEREGn, being Σs defined in the following way:

1. Σs = ((VE , PE),A1, ...,An)

2. τΣs,0 = (wE,0,W1,0, ...,Wn,0) where:

• wE,0 = S Roles + +S Prots + +S S cenK + +S DF + +α, with
VE = V1 ∪ V2,
S Roles, S Prots, S DF, S S ceneK ∈ V∗1 are the string representations of Role(n), Prot(n),

DF(k) and S ceneK(w) respectively,
V1 ∩ V2 = ∅,
If InitAg(m) = agent(a1, r1, PProc(s1)

1 , PKnow(t1)
1 ,Value(q1)

1 )...
agent(am, rm, PProc(sm)

m , PKnow(tm)
m ,Value(qm)

m )
then α ∈ V∗2 has the following shape:
α = 〈agent(a1, S r1, S cr1, S PProc1, S PKnow1, S V s1)〉NA,_,_

〈〉NA,r1,a1〈〉M,r1,a1〈〉AA,r1,a1 ...

〈agent(am, S rm, S crm, S PProcm, S PKnowm, S V sm)〉NA,_,_

〈〉NA,rm,am〈〉M,rm,am〈〉AA,rm,am

where each string S cri, 1 ≤ i ≤ m, is defined as [_, _, _] to indicate that the initial agent
instances are not created upon request of any agent.
Each string 〈agent(ai, S ri, S cri, S PProci, S PKnowi, S Valuei)〉NA,_,_ in α corresponds
to the string representation of the request to create a new agent instance
agent(ai, ri, PProc(si)

i , PKnow(ti)
i ,Value(qi)

i ) from InitAg(m).
Symbols 〈〉NA,ri,ai〈〉M,ri,ai〈〉AA,ri,ai are introduced to be used during the dialogue by the
agent with identifier ai playing role ri to request the creation of new agent instances,
send messages and request the activation of agent instances.
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76 Chapter 4. Grammar systems for dialogue protocols

• W j,0 = {〈Parent〉}, for all 1 ≤ j ≤ n.

3. Mappings ϕi, 1 ≤ i ≤ n, are computable functions defined by a set of rules that use the
following auxiliary functions:

getProceds :: Term→ 2Procedure

getProceds(r) = RoleProcs, if 〈r,RoleProcs,RoleK, ∅〉 ∈ Role(n)

getProceds(r) = RoleProcs ∪ getProceds(ur(1)) ∪ ... ∪ getProceds(ur(k)),
if 〈r,RoleProcs,RoleK, {ur(1), ..., ur(k)}〉 ∈ Role(n)

getKnowledge :: Term→ 2Axiom

getKnowledge(r) = RoleK, if 〈r,RoleProcs, RoleK, ∅〉 ∈ Role(n)

getKnowledge(r) = RoleK ∪ getKnowledge(ur(1)) ∪ ... ∪ getKnowledge(ur(k)),
if 〈r,RoleProcs, RoleK, {ur(1), ..., ur(k)}〉 ∈ Role(n)

Function getProceds retrieves the procedures accessible by a role through a recursive traver-
sal of the hierarchy of roles. The base case applies when there is no upper role, retrieving
the role’s procedures. When the recursive case occurs the procedures are retrieved from the
upper roles. Function getKnowledge behaves like function getProceds but retrieves all the
knowledge accessible by a role.

The rules that define mappings ϕi, 1 ≤ i ≤ n, are the following:

[ϕi.1] If an agent Ari,(a,x) contains the symbol 〈Parent〉 in wri,(a,x), it means that the agent
playing the role ri with identifier a, that was created at derivation time x, has received the
request to introduce new agent instances with role ri. The agent Ari,(a,x) detects this request
when mapping ϕi finds in wE the presence of g substrings
〈agent(S Namey, S r j, S cry, S PProcy, S PKnowy, S Valuesy)〉NA,cy,ky , 1 ≤ y ≤ g such that:

(a) identifiers S Nmae1, ..., S Nameg are all different,

(b) there are not active agents in Σs with identifiers S Nane1, ..., S Nameg playing role ri.
Then symbols 〈〉M,ri,S Namey , for all 1 ≤ y ≤ g do not occur in wE,0.

If these conditions are satisfied mapping ϕi selects the following set of rules to create the
requested new agent instances:



〈Parent〉 −→ tS Name1 S cr1 ↓ 〈〉M〈S Op1〉OP 〈Active〉 S UTerms1 S S k
S AKnow1 S AProc1 t ...
tS Nameg S crg ↓ 〈〉M〈S Opg〉OP 〈Active〉 S UTermsg S S k
S AKnowg S AProcg〈Parent〉



where:

• S Opy = 〈Opy〉OP is the string representation of the MAPa operation assigned to role ri

according to S Prots in wE,0.
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• S UTermsy is the string representation of the pairs matching formal invocation param-
eters of the protocol definition for role ri, with invocation values represented by strings
S Valuesy, S PProcy and S PKnowy. Each matching respects types. The string represen-
tations of the formal parameters from the protocol definition for role ri are taken from
the substring S Prots in wE,0.

• S S k is a copy of the string S S ceneK in wE,0.

• S AKnowy = 〈S axiom1,y〉AK ...〈S axiomq,y〉AK〈〉AK and S AProcy is given by
〈S proced1,y((S Vble1,y : S type1,y)...(S Vblet1,y : S typet1,y)) : (S rtype1,y)...(S rtypem1,y)〉AP

...

〈S procedk,y((S Vblek,y : S typek,y)...(S Vbletk ,y : S typetk , y)) : (S rtypek,y)...(S rtypemk,y)〉AP〈〉AP,
1 ≤ y ≤ g.
S AKnowy and S AProcy are, respectively, the string representations of the axioms and
the decision procedures that the agent knows during the dialogue. The string represen-
tation of the set of axioms and procedures of role ri is copied from substring S Roles
in wE,0. Using recursive functions getProced(ri) and getKnowledge(ri) the axioms and
procedures associated with the role ri plus those corresponding to all the upper roles in
the hierarchy of roles represented by the string S Roles can be obtained. The string rep-
resentation of the agent’s private knowledge and agent’s private decision procedures
are given by the substrings S PProcy and S PKnowy from the request to create a new
agent instance introduced in wE,0.

[ϕi.2] Mapping ϕi, is in charge of delivering at derivation time q + 1 all the messages
〈S per f1(S Values1), [b1, role1], [a, ri]〉M,role1,b1 , ..., 〈S per fk(S Valuesk), [bk, rolek], [a, ri]〉M,rolek,bk

that are in wE and were sent to agent Ari,(a,x) by potentially different agents in previous deriva-
tion step q. But before this can happen, mapping ϕi needs to check that the string represen-
tations of the received messages are valid ones according to string S DF in wE . In case this
condition is satisfied, mapping ϕi selects the following set of rules:
{ 〈〉IM → 〈S per f1(S Values1)[b1, role1], [a, ri]〉IM, ...,

〈S per fk(S Valuesk)[bk, rolek], [a, ri]〉IM〈〉IM

}

[ϕi.3] If the agent Ari,(a,x) is suspended and the mapping ϕi finds the substrings
〈〉NA,ri,a〈〉M,ri,a〈〉AA,ri,a〈〉S K,ri,a in wE , then the agent is reactivated by applying the following
rule:
{
〈S uspended〉 → 〈Active〉.

}

An agent Ari,(a,x) gets suspended when he starts to play a different role r j.

4. Mappings ψi, 1 ≤ i ≤ n, are computable functions defined by a set of rules that use the
following auxiliary functions:

eval : Procedure × 2Term × Term × 2Term×Term × 2Axiom → 2Term×Term × 2Axiom

eval(p, {v1, ..., vn}, φ,MatchingP(u),Know(w)) = (newMatchingP(e), newKnow(y))
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Act :: Operation→ Operation
Act(op1 then op2) = Act(op1)
Act(op1 or op2) = Act(op1)
Act(op1 or op2) = Act(op2)
Act((op1)) = (Act(op1))
Act(α) = α, if α ∈ Action.

NextOp :: Operation→ Operation ∪ {NoOperation}
NextOp(null) = NoOperation
NextOp(null then op2) = NextOp(op2)
NextOp(op1 then null) = NextOp(op1)
NextOp(op1 then op2) = NextOp(op1) then op2, if op1 , null
NextOp(op1 or op2) = NextOp(op1), if Act(op1 or op2) = Act(op1)
NextOp(op1 or op2) = NextOp(op2), if Act(op1 or op2) = Act(op2)
NextOp((op1)) = (NextOp(op1))
NextOp(φ) = NextOp(subst(φ,MatchingP(e)))
NextOp(α) = null, if α ∈ Action

In function eval the first component of the returned tuple is the set newMatchingP(e) resulting
from adding the pair (φ, p(v1, ..., vn)) to the set of matching pairs MatchingP(u). This new pair
represents the association to the variable φ of the value obtained from applying procedure p
to the values v1, ..., vn. The second component of the tuple is the set newKnow(y) resulting of
modifying the set of axioms Know(w) after the evaluation of p(v1, ..., vn). The computability
of function eval depends on the computability of procedure p. By hypothesis in scene s all the
procedures are computable functions, then function eval is computable.

Taking as parameter an operation op, function Act returns the first action in op to be per-
formed. While function NextOp takes as argument an operation op and it returns the oper-
ation that remains to be performed after the execution of the first action in op. According to
the definition of functions Act and NextOp, MAPa operations are interpreted in the following
way:

• null action can be eliminated from an operation,

• NoOperation is returned when the current operation is null,

• operator then is used as a sequential composition of operations,

• either of the operations composed by an or can be chosen for its execution,

• the effect of the execution of an operational variable is the replacement, using func-
tion subst, of the operational variable for the corresponding matching value from set
MatchingP(e), corresponding to the agent knowledge.
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The rules that define mappings ψi, 1 ≤ i ≤ n, are the following:

[ψi.1] If substrings S Op = 〈op〉OC and 〈S Vble1, b〉UT occur in wri,(a,x) and
Act(op) = agent(S Vble1, S r j, S Vble2, S Vble3, S Vble4,1, ..., S Vble4,e) with b , a, then it
means that agent Ari,(a,x) wants to create a new agent instance with a different identifier.
Therefore mapping ψi checks that the agent knows the values of the variables contained in
Act(op), i.e. the following substrings belong to wri,(a,x): 〈S Vble2, S PProcs〉UT ,
〈S Vble3, S PKnow〉UT and 〈S Vble4,y, S Values4,y〉UT , for all 1 ≤ y ≤ e.

If the previous conditions are satisfied, then ψi introduces in wE at time k a string corre-
sponding to the request to create a new agent instance. This string is added to wE rewriting
the symbol 〈〉NA,ri,a. Besides, mapping ψi introduces the pairs matching formal and real pa-
rameters used for the creation of the new agent instance, and it actualizes the operation being
enacted by the agent Ari,(a,x).

So mapping ψi selects the following set of rules:



〈〉NA,ri,a → 〈agent(b, r j, [ri, a, x], S PProcs, S PKnow, S Values〉NA,ri,a

〈〉NA,r j,b〈〉M,r j,b〈〉AA,r j,b,

〈〉UT → 〈S Vble1, b〉UT 〈S Vble2, S PProcs〉UT 〈S Vble3, S PKnow〉UT 〈S Vble4, S Values〉UT 〈〉UT ,

〈op〉OP → 〈newop〉OP | newop = NextOp(op)



where symbols 〈〉NA,r j,b〈〉M,r j,b〈〉AA,r j,b will be used by the new agent Ar j,(b,k+1) for introducing
in wE strings which correspond to: requests to create new agent instances, requests to active
agents, and messages sent.

[ψi.2] If the substrings 〈Active〉, 〈op〉OC and 〈S Vble1, a〉UT occur in wri,(a,x) and Act(op) =

agent(S Vble1, S r j, S Vble2, S Vble3, S Vble4,1, ..., S Vble4,e), then the agent Ari,(a,x) wants to
create a new agent instance with his same identifier. For example it can be the case that the
agent wants to change of role or to play the same role again (recursive call). Therefore map-
ping ψi verifies that the following substrings belong to wri,(a,x): agent’s private decision proce-
dures S MyProc, agent’s axioms S MyKnow, and agent’s matching pairs 〈S Vbles2, S PProcs〉UT ,
〈S Vbles3, S PKnow〉UT , and 〈S Vbles4,y, S Values4,y〉UT for all 1 ≤ y ≤ e.

If the preconditions are satisfied then ψi rewrites symbol 〈〉NA,ri,a in wE at time q introducing
a string corresponding to the request to create a new agent instance followed by symbols
〈〉NA,r j,a〈〉M,r j,a〈〉AA,r j,a. Also mapping ψi deletes symbols 〈〉M,ri,a, 〈〉AA,ri,a from wE and changes
agent’s current state from active to suspended. These rewritings are necessary because after
changing to a new role agent Ari,(a,x) has to interrupt the execution of the operation associated
with its current role ri. Only after the agent finishes performing the role r j it can reassume
the execution of role ri. Besides mapping ψi actualizes the agent’s current operation and
introduces the pairs matching formal and real parameters used for the creation of the new
agent instance.

So mapping ψi selects the following set of rules:
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

〈Active〉 → 〈S uspended〉,
〈〉M,ri,a → λ,

〈〉AA,ri,a → λ,

〈〉UT → 〈S Vble1, b〉UT 〈S Vble2, S PProcs〉UT 〈S Vble3, S PKnow〉UT

〈S Vble4,1, S Values4,1〉UT ...S Vble4,e, S Values4,e〉UT 〈〉UT

〈〉NA,ri,a → 〈agent(b, r j, [ri, a, x], S PProcs S MyProcs,
S PKnow S MyKnow, S Values)〉NA,ri,a〈〉NA,r j,a〈〉M,r j,a〈〉AA,r j,a

〈op〉OP → 〈newop〉OP | newop = NextOp(op)



where symbols 〈〉NA,r j,a〈〉M,r j,a〈〉AA,r j,a could be rewritten by the new agent Ar j,(a,q) in case it
wants to introduce in wE requests to create new agent instances, requests to reactivate agents,
and send messages.

[ψi.3] If wri,(a,x) contains the substrings 〈op〉OP, ↓ 〈S per f (S value1, ..., S valueh)[b, r j], [c, rl]〉IM

and 〈S Vble2, b〉UT and Act(op) = (per f (Vble1, ..,Vbleh)⇐ agent(Vble2, r j)) and
((c = ”_”) ∧ (rl = ”_”)) ∨ ((c = ”_”) ∧ (rl = ri)) ∨ ((c = a) ∧ (rl = ri)) then the reception of a
message is simulated by deleting in wri,(a,x) the string representation of the message. Mapping
ψi selects the following rules:

{ ↓ 〈S per f (S Value1, ..., S Valueh), [b, r j], [c, rl]〉IM,ri,a →↓,
〈op〉OP → 〈newop〉OP | newop = nextOp(op)

}

While if the previous conditions are satisfied but substring 〈S Vble2, b〉UT is not in wri,(a,x)
it means that the received message was sent by an unknown agent with identifier b. Then
mapping ψi selects the following rules:

↓ 〈S per f (S Value1, ..., S Valueh), [b, r j], [c, rl]〉IM,ri,a →↓,
〈〉UT → 〈S Vble2, b〉UT 〈〉UT ,

〈op〉OP → 〈newop〉OP | newop = nextOp(op)



where S Vble2 and b are the string representations of a variable and value of the same type.

[ψi.4] If wri,(a,x) contains the substrings 〈op〉OP, 〈S Vble2, b〉UT and 〈S Vble1,1, S Value1,1〉UT ...
〈S Vble1,e, S Value1,e〉UT such that Act(op) = (per f (Vble1, ..,Vblee) ⇒ agent(Vble2, r j)),
then the agent is sending a message. So mapping ψi copies the message in wE and actualizes
the agent’s current operation choosing the following set of rules:

{ 〈〉M,ri,a → 〈S per f (S Value1, ..., S valuee)[a, ri][b, r j]〉M,ri,a〈〉M,ri,a,

〈op〉OP → 〈newop〉OP | newop = NextOp(op)

}

In case the message is addressed to one agent then r j , _ and b , _. But if the message
is sent to all the agents with role r j then b = _ and it is called broadcast communication. It
can also happen that the message is sent to all the agents participating in the conversation,
in which case it is called multicast communication and r j = _ and b = _.
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[ψi.5] If the following substrings are present in wri,(a,x): 〈op〉OP and
〈(S rtype1) :: S proced(S vble1, S type1)...(S vbleh, S typeh)〉AP, 〈S vble j, S value j〉UT , for ev-
ery 1 ≤ j ≤ h, and Act(op) = (S Vble2 = S Proced(S Vble3)), then mapping ψi invocates
procedure proced obtaining: a new value represented by the string S NewValue, and a set of
axioms given by string NewAgentK corresponding to the new agent’s private knowledge base.

If there is a substring 〈S Vble1, S OldValue1〉UT in wri,(a,x), it means that the variable S Vble1
was given the value S OldValue1 previous to this assignation, then ψi modifies the old value
by the new one selecting the following rule:{
〈S Vble1, S OldValue1〉UT → 〈S Vble1, S NewValue〉UT ,

}

If there is no substring 〈S Vble1, S OldValue1〉UT in wri,(a,x), it means that no value was as-
signed to the variable S Vble1 previous to this assignation, then ψi selects the set of rules:{
〈〉UT → 〈S Vble1, S NewValue〉UT 〈〉UT

}

If the effects of the execution of the decision procedure over the agent’s private knowledge
are the deletion of axioms { f1, ..., fn}, the modification of axioms {g1, ..., gd} for new axioms
{h1, ..., hd}, and the addition of new axioms {i1, ..., ip}, then ψi chooses the following rules:

〈 f1〉AK → λ, ..., 〈 fn〉AK → λ,

〈g1〉AK → 〈h1〉AK , ..., 〈gd〉AK → 〈hd〉AK ,

〈〉AK → 〈i1〉AK , ..., 〈ip〉AK〈〉AK .



In addition the agent’s operation is actualized applying the rule:{
〈op〉OP → 〈newop〉OP | newop = NextOp(op)

}

[ψi.6] An agent Ari,(a,x) is inactive when substrings 〈Active〉 and 〈null〉OP occur in wri,(a,x).
The mapping ψi checks the substring [b, r j, k] in wri,(a,x) which provides information about the
agent Ar j,(b,k) that created the agent instance Ari,(a,x) with k ≤ x:

(a) In case the identifier b is equal to the identifier a it means that the creator of agent
Ari,(a,x) remains suspended, waiting to reassume its activity after agent Ari,(a,x) becomes
inactive. Then mapping ψi introduces in wE the symbols that could allow agent Ar j,(a,k)
to introduce: requests to create new agent instances, requests to reactivate suspended
agents, and messages. Meanwhile mapping ψi eliminates from wE the symbols that
could allowed agent Ari,(a,x) to perform the previously mentioned actions. So the follow-
ing rules are selected by mapping ψi:

〈〉AA,ri,a → 〈〉NA,r j,a〈〉M,r j,a〈〉AA,r j,a,

〈〉NA,ri,a → λ,

〈〉AA,ri,a → λ,

〈〉M,ri,a → λ


(b) In case the identifier b is different from the identifier a, no reactivation of the creator

needs to be done. Then mapping ψi eliminates from wE the symbols that allowed agent
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82 Chapter 4. Grammar systems for dialogue protocols

Ari,(a,x) to introduce: requests to create new agent instances, requests to reactivate sus-
pended agents, and messages. Then the following rules are selected by mapping ψi:
〈〉NA,ri,a → λ,

〈〉AA,ri,a → λ,

〈〉M,ri,a → λ



5. Evolution rules PE are defined in the following way:

[PE.1] At time q evolution rules PE deletes the substrings from wE that correspond to:
requests to create new agent instances, requests to reactivate agents, and messages inter-
changed at time q − 1.

When we are interested only in strings over some alphabet T , hence in the language LE(Σ, σ0)∩
T ∗, then we speak about an Extended Conversational Extended Reproductive Eco-Grammar
(EConvEREG) system. We denote by EConvEREGn, n ≥ 1 the family of languages LE(Σ, σ0)∩ T ∗

where Σ ∈ ConvEREGn.

4.3.3 An example of dialogue protocol

CD Grammar systems with memories, introduced in [CVJJP94], are finite sets of semi-conditional
grammars, each of them associated with a stack called memory. During the common derivation,
the component grammars send messages to each other and use their memories for storing/erasing
messages (words) they receive. The current sentential form is controlled both by the contents of the
memories and the context conditions associated with the productions.

In [AJR01] the use of CD Grammar systems with memories was exemplified with the simulation
of a dialogue protocol: a 2-party dialogue in a film shop, with one of the speaker (customer) trying
to buy a film and the other speaker (clerk) trying to guess the film that the customer needs in order
to sell it. For modeling this dialogue protocol they propose a CD Grammar system with memories
Γ = (T,GS ,GC , S ) where GC and GS are the grammars for customer C and clerk S, respectively.

The configuration of Γ is given by (w, υS , υC) where:

• w is used for the interchange of information or messages and for storing information shared
by S and C. It can be seen as the dialogic framework.

• υS and υC record the mental state of S and C, respectively. It can be knowledge, satisfied and
unsatisfied goals, or other information relevant for participating in the dialogue.

In figure 4.2 we introduce a dialogue instance that is specified by the dialogue protocol intro-
duced in [AJR01].

We exemplify the use of ConvEREG systems for the specification of dialogue protocols with
the protocol from [AJR01]. We base the scene S ell on the information-seeking dialogue from the
typology introduced by Walton and Krabbe in [WK95]. Their categorization identifies six primary
types of dialogues: information-seeking, inquiry, persuasion, negotiation, deliberation and eristic
dialogues. Information-Seeking Dialogues are those where one participant seeks the answer to
some question(s) from another participant, who is believed by the first to know the answer(s). We
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Speaker Utterance
C: I need a film.
S: Which kind of film?
C: One for 36 pictures.
S: Which brand and speed?
C: Speed? What do you mean?
S: Where will you take your pictures?
C: Outside.
S: I suggest the Kodak 100.
C: OK.

Figure 4.2: A dialogue instance between a customer C and a clerk S

define the scene S ell as an information-seeking dialogue where the role of the information seeker is
taken by the clerk and the role of the information provider is taken by the customer. Therefore, the
scene S ell is defined as:

S ell = 〈InitAgs,Roles, Protocols, S K,DF,MergeKEREG〉

with components specified in the following way:

• Roles = 〈Customer,CustomerP,CustomerK, urc, t〉〈Clerk,ClerkP,ClerK, ure〉
〈IP, IPProc, IPKnow, urIP〉〈IS , IS Proc, IS Know, urIS 〉 correspond to Customer, Clerk, In-
formation Provider and Information Seeker roles.

1. For the customer role the knowledge base is CustomerK = ∅ and the set of decision pro-
cedures is the minimal possible set of actions required to join the scene: CustomerP =

{Identi f ier :: choose_clerk(t, string)}. No upper roles are selected, urc = ∅. Extra
parameter t is considered to represent the topic under discussion.

2. For the clerk role the knowledge base is given by the set
ClerkK = S tock ∪ S elling_strategies∪ Competence_strategies ∪Competence_prices
and the set of known procedures is given by the set ClerkP = {Real :: price( f ilm, S tring),
List :: characteristics( f ilm, S tring)}. No upper roles are selected, ure = ∅.

3. While the roles customer and clerk are specific to the dialogue instance we model the
roles IS and IP as generic definitions. They can be used to simulate any dialogue be-
tween two agents working together to find the answer to a question that neither of them
know. For example, customer and clerk roles could be replaced for Patient and Doctor
roles, the topic of the conversation could change from finding an adequate film for a
set of buyer requirements, to diagnosing the disease that corresponds to a set of patient
symptoms. Therefore, for the IP role no knowledge is assigned , IPKnow = ∅, and the
minimal set of decision procedures required to performed the assigned protocol is given

by IPProc =

{
(S tring, S tring) :: get_answer(History, PairS et),
Boolean :: check_adequacy(r, S tring), null :: pay(amount,Real)

}
,

where History ∈ PairS et is a set used to register information interchanged during the
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dialogue and type PairS et = {(α, β) | α, β ∈ S tring}. No upper roles are selected,
urIP = ∅.

4. With the same criteria we choose no axioms for role IS, IS Know = ∅, the minimum set

of decision procedures IS Proc =

{
S tring :: next_question(History, PairS et),
S tring :: f inal_answer(t, S tring), (History, PairS et)

}

and no upper roles, urIS = ∅.
• Protocols for Customer, Clerk, IP and IS roles are presented in figure 4.3. In scene Sell one

speaker, the seller, seeks the characteristics of the item that a second speaker, the buyer, wants
to buy. The scene comprises four role definitions: Customer, Clerk, InformationSeeker (IS)
and InformationProvider (IP). The customer initiates the dialogue choosing a clerk, changing
its role to provider. The clerk role waits for a customer to ask for an item t to change to the
seeker role.

The core of the dialogue is between a provider who wants to buy an item t and a seeker who
inquires item characteristics to determine the product to sell. The results of the interchanges of
questions q from the seeker and answers a from the provider are collected during the dialogue
by both roles in their respective History sets.

The IP role is defined in four cases separated by the choice operator. In the first case, the
information provider receives from an information seeker a request for answering a question
q. The information provider will attempt to answer the request and will save the pair (q =?)
in the History set. The appropriate answer is determined in cases 2, 3 and 4. Second case is
triggered when the information provider has a direct answer a for the request q, in which case
this answer is returned to the seeker, incorporating (q = a) in History. In the third case more
information is required, so the provider becomes a seeker for this new information. Upon
obtaining this extra information, the speaker reverts back from a seeker to a provider again.
This is a clear example of a combination of dialogue types, in this case the embedding of
Information-Seeking dialogues is possible through the changing of role. In the final case the
provider receives, from the seeker, the answer r that matches the characteristics agreed in
History over the item t. He adds the pair (solution = r) to History and then he decides if he
accepts or rejects r.

The information seeker (IS) protocol is essentially the complement of the information provider
protocol, and there are four corresponding cases. In the first case, the seeker sends a request
newq for information to the provider adding (newq =?) to History. The second case deals
with the response from the provider, which actualizes the set History and restarts the proto-
col. In the third case, the speaker decides to be more explicit and clearer about what he is
asking for to the other speaker. After providing the required information he reassume the role
of seeker. Lastly, he can decide that the collected information contained in History is enough
to determine the item to sell. In this case, he informs the provider with the variable r which
is the object that matches the agreed characteristics and he incorporates (solution = r) to
History. He then waits for the decision taken by the IP, which can be acceptance or rejection
of r.

• S K = {currency = euro} indicates that all the speakers know that the accepted currency is the
euro.
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• DF =

{
ask(t, S tring), request(q, S tring), in f orm(q, S tring)(a, S tring),
solution(r, S tring), accept(), re f use()

}
is the set of com-

mon locutions.

• The scene is initialized with one speaker called Joe as the customer, and one speaker called
Ana as the clerk chosen by Joe. Therefore, the set of initial speakers associated with the scene
is defined as InitAgs = {agent(Joe,Customer, JoeProc, JoeK, f ilm) agent(Ana,Clerk, ∅, ∅)}.
The set JoeProc = {Real :: estimate_price( f ilm, S tring)} is provided to the speaker Joe as
his private decision procedures. This means that Joe knows for some photograph films the
estimated price in the market. Not all the customers know this, so it is considered part of the
private decision procedures of Joe. The private knowledge of Joe corresponds to the charac-
teristics of the film he wants to buy, the money he has, and an empty set of dialogue history

registers, so that JoeKnow =

{
ob ject = f ilm, quantity = 1, photos = 36,money = 5,
purpose = summer_holidays,History = ∅

}
.

While Ana is considered a new employee in the shop without much experience in the field.
Hence, she only knows what clerks are supposed to know when they start working in the
shop, the knowledge represented by strings ClerkProc and ClerkK. Ana has no private deci-
sion procedures or knowledge.

From the MAPa definition S ell, we get Σsell ∈ ConvEREG4 defined in the following way:

Σsell = (E,A1,A2,A3,A4)

where populationA1 corresponds to the seller role,A2 the clerk role,A3 the IP role andA4 the IS
role, and Wi,0 = {〈Parent〉}, for every 1 ≤ i ≤ 4.

The initial configuration of the Σsell system is given by:

σΣsell,0 = (wE,0, {〈Parent〉}, {〈Parent〉}, {〈Parent〉}, {〈Parent〉})

where:

• wE,0 = Roles + +Protocols + +S hareK + +DFramework + +α, where:

– Roles = 〈Customer,CustomerP,CustomerK, t〉R〈Clerk,ClerkP,ClerkK〉R
〈IP, IPProc〉R〈IS , IS Proc〉R

where:

∗ CustomerP = 〈Identi f ier :: choose_clerk(t, S tring)〉RP,

∗ CustomerK = 〈History = ∅〉RK ,

∗ ClerkP = 〈Real :: price( f ilm, S tring)〉RP 〈List :: characteristics( f ilm, S tring)〉RP,
∗ ClerkK = 〈stock〉RK 〈selling_strategies〉RK 〈competence_strategies〉RK

〈competence_prices〉RK ,
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agent(id1, Customer, Proc(a),K(b), t) :: agent(id1,Clerk, Proc(c),K(d)) ::
id2 = choose_clerk(t) then ask(t)⇐ agent(id1,Customer)
ask(t) =⇒ agent(id2, IS ) then then agent(id1, IS , Proc(c),K(d)).
agent(id1, IP, Proc(a),K(b)).

agent(id1, IP, Proc(t),K(z)) :: agent(id1, IS , Proc(m),K(s)) ::


request(q)⇐= agent(id2, IS ) then
History = History ∪ {(q =?)} then
agent(id1, IP, Proc(t),K(z))





newq = next_question(History ∪ K) then
History = History ∪ {(newq =?)} then
request(newq) =⇒ agent(id2, IP) then
agent(id1 IS , Proc(m),K(s))


or or

(q, a) = get_answer(History ∪ K(z)) then
History = History ∪ {(q = a)} then
in f orm(q, a) =⇒ agent(id2, IS ) then
agent(id1, IP, Proc(t),K(z))




in f orm(q, a)⇐= agent(id2, IP) then
History = History ∪ {(q = a)} then
agent(id1, IS , Proc(m),K(s))



or or[
agent(id1, IS , Proc(m),K(s)) then
agent(id1, IP, Proc(t),K(z))

] [
agent(id1, IP, Proc(t),K(z)) then
agent(id1, IS , Proc(m),K(s))

]

or or

solution(r)⇐= agent(id2 IS ) then
History = History ∪ {(solution = r)} then
a = checkadequacy(r) then[

accept() =⇒ agent(id2, IS ) or
re f use() =⇒ agent(id2, IS )

]





r = f inal_answer(t,History) then
solution(r) =⇒ agent(id2, IP) then
History = History ∪ {(solution = r)} then[

accept()⇐= agent(id1, IP) or
re f use()⇐= agent(id1, IP)

]



Figure 4.3: A MAPa scene for a dialogue in a shop

∗ IPProc = 〈(S tring, S tring) :: get_answer(History, PairS et)〉RP

〈Boolean :: check_adequacy(r, S tring)〉RP

〈null :: pay(amount,Real)〉RP,
∗ IS Proc = 〈S tring :: next_question(History, PairS et)〉RP

〈S tring :: f inal_answer(t, S tring)(History, PairS et)〉RP.

– Protocols = 〈Customer, 1, (t : string),OpCustomer〉PC 〈Clerk, 2,OpClerk〉PC 〈IP, 3,OpIP〉PC

〈IS , 4,OpIS 〉PC where OpCustomer,OpClerk,OpIP, and OpIS are the MAPa operations in-
troduced in figure 4.3 for roles Customer, Clerk, IP and IS, respectively.

– S hareK = 〈currency = euro〉S K fixes the currency that is accepted in the shop.

– DFramework = 〈ask(x, S tring)〉DF 〈request(x, S tring)〉DF 〈accept〉DF 〈re f use〉DF

〈in f orm(x, S tring)(y, S tring)〉DF 〈solution(x, S tring)〉DF fixes the dialogic framework
as the minimal set of locutions that speakers involved in the dialogue need to know.

– α = 〈agent(Joe, 1, [_, _, _], JoeP, JoeK, f ilm)〉NA,_,_〈〉NA,1,Joe〈〉M,1,Joe〈〉AA,1,Joe

〈agent(Ana, 2, [_, _, _])〉NA,_,_〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana where:
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JoeP = 〈Real :: estimate_price( f ilm, S tring)〉AK〈〉AK and JoeK = 〈ob ject = f ilm〉AK

〈quantity = 1〉AK 〈photos = 36〉AK 〈purpose = summer_holidays〉AK

〈money = 5〉AK〈History = ∅〉AK〈〉AK . JoeP is the string representation of JoeProc, and
JoeK is the string representation of JoeKnow.

1. In derivation step 1, two new agent instances are created according to the requests introduced
in the initial configuration wE,0; one agent instance corresponding to population A1, and the
other corresponding to population A2. Then by rules [ϕ1,(Joe,1).1], [ϕ2,(Ana,1).1] and [PE.1]
the following configuration is obtained:

σΣsell,1 = (wE,1, {w1,(Joe,1)}, {w2,(Ana,1)}, {〈Parent〉}, {〈Parent〉}) where:

• wE,1 = ε 〈〉NA,1,Joe〈〉M,1,Joe〈〉AA,1,Joe〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana,
where ε = Roles + +Protocols + +S hareK + +DFramework.

• w1,(Joe,1) = Joe[_, _, _] ↓ 〈〉IM〈id2 = choose_clerk(t) then γ1,1,1.〉OP〈Active〉〈id1, Joe〉UT

〈Proc(a), JoeP〉UT 〈K(b), JoeK〉UT 〈t, f ilm〉UT 〈〉UT S K AK1 〈〉AK AProc1 〈Parent〉where:

– S K and AK1 are, respectively, copies of strings ShareK and JoeK in wE,0.
– AProc1 = 〈Identi f ier :: choose_clerk(t, S tring)〉AP

〈Real :: estimate_price( f ilm, S tring)〉AP is the string representation of the decision
procedures for role Customer, CustomerP, and the private decision procedures of
Joe, JoeProc.

• w2,(Ana,1) = Ana[_, _, _] ↓ 〈〉IM〈ask(t)⇐ agent(id1,Customer) then γ1,2,1.〉OP〈Active〉
〈id1, Ana〉UT 〈〉UT S K AK2 〈〉AK AProc2 〈Parent〉 where:

– S K, AK2 and AProc2 are, respectively, copies of the strings ShareK, ClerkK and
ClerkP in wE,0.

2. In derivation step 2, the execution of action Ana=choose_clerk(film) by agent A1,(Joe,1) is
simulated by the execution of rule [ψ1,(Joe,1).5], getting the configuration:

σΣsell,2 = (wE,2, {w1,(Joe,1)}, {w2,(Ana,1)}, {〈Parent〉}, {〈Parent〉}) where:

• wE,2 = wE,1

• w1,(Joe,1) = Joe[_, _, _] ↓ 〈〉IM〈ask(t)⇒ agent(id2,Clerk) then γ1,1,2.〉OP〈Active〉
〈id1, Joe〉UT 〈Proc(a), JoeP〉UT 〈K(b), JoeK〉UT 〈t, f ilm〉UT 〈id2, Ana〉UT 〈〉UT S K
AK1 〈clerk = Ana〉AK 〈〉AK AProc1 〈Parent〉

• w2,(Ana,1) does not change.

3. In derivation step 3, the execution of action ask(film)=⇒ agent(Ana, IS) by agent A1,(Joe,1) is
simulated by rule [ψ1,(Joe,1).4] getting the configuration:

σΣsell,3 = (wE,3, {w1,(Joe,1)}, {w2,(Ana,1)}, {〈Parent〉}, {〈Parent〉}) where:
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• wE,3 = ε 〈〉NA,1,Joe〈ask( f ilm), [Joe, 1], [Ana, 2]〉M,1,Joe〈〉M,1,Joe〈〉AA,1,Joe

〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana

• w1,(Joe,1) = Joe[_, _, _] ↓ 〈〉IM〈agent(id1, IS , Proc(c),K(d)).〉OP〈Active〉
〈id1, Joe〉UT 〈Proc(a), JoeP〉UT 〈K(b), JoeK〉UT 〈t, f ilm〉UT 〈id2, Ana〉UT 〈〉UT S K AK1
〈clerk = Ana〉AK 〈〉AK AProc1 〈Parent〉

• w2,(Ana,1) does not change.

4. In derivation step 4, the simultaneous execution of actions agent(Joe, IP, JoeProc, JoeKnow)
by agent A1,(Joe,1) and the reception by agent A2,(Ana,1) of message ask( f ilm) from agent
A1,(Joe,1) are simulated. By application of rules [ψ1,(Joe,1).2], [ϕ2,(Ana,1).2], and [PE.1] the
following configuration is obtained:

σΣsell,4 = (wE,4, {w1,(Joe,1)}, {w2,(Ana,1)}, {〈Parent〉}, {〈Parent〉}) where:

• wE,4 = ε 〈agent(Joe, 3, [Joe, 1, 1], JoeP, JoeK)〉NA,1,Joe〈〉NA,3,Joe

〈〉M,3,Joe〈〉AA,3,Joe〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana

• w1,(Joe,1) = Joe[_, _, _] ↓ 〈〉IM〈null〉OP〈S uspended〉〈id1, Joe〉UT 〈Proc(a), JoeP〉UT

〈K(b), JoeK〉UT 〈t, f ilm〉UT 〈id2, Ana〉UT 〈〉UT S K AK1〈clerk = Ana〉AK〈〉AK AProc1 〈Parent〉
• w2,(Ana,1) = Ana[_, _, _] ↓ 〈ask( f ilm), [Joe, 1], [Ana, 2]〉IM〈〉IM

〈 ask(t)⇐ agent(id1,Customer)γ1,2,4).〉OP〈Active〉〈id1, Ana〉UT 〈〉UT S K AK2〈〉AK

AProc2 〈Parent〉

5. In derivation step 5, the simultaneous creation of a new agent instance from population A3
and the execution of operation ask( f ilm) ⇐ agent(Joe,Customer) by agent A2,(Ana,1) are
simulated by rules [ψ2,(Ana,1).3], [ϕ3,(Joe,1).1] and [PE.1]. The following configuration is ob-
tained:

σΣsell,5 = (wE,5, {w1,(Joe,1)}, {w2,(Ana,1)}, {w3,(Joe,1)}, {〈Parent〉}) where:

• wE,5 = ε 〈〉NA,3,Joe〈〉M,3,Joe〈〉AA,3,Joe 〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana

• w1,(Joe,1) does not change,

• w2,(Ana,1) = Ana[_, _, _] ↓ 〈〉IM〈agent(id2, IS , Proc(e),K(d)∪{History = ∅}).〉OP〈Active〉
〈id1, Ana〉UT 〈t, f ilm〉UT 〈id1, Joe〉UT 〈〉UT S K AK2〈〉AK AProc2 〈Parent〉

• w3,(Joe,1) = Joe[Joe, 1, 1] ↓ 〈〉IM〈OpIP〉OP〈Active〉〈id1, Joe〉UT 〈Proc(a), JoeP〉UT

〈K(b), JoeK〉UT 〈t, f ilm〉UT 〈id2, Ana〉UT 〈id3, Joe〉UT 〈Proc(t), JoeP〉UT 〈K(z), JoeK〉UT

〈〉UT S K AK1 〈〉AK IPProc AProc1 〈Parent〉 where:
IPProc = 〈get_answer(History : PairS et) :: (string)(string)〉AP

〈check_adequacy(r : string) :: boolean〉AP〈pay(amount : real) :: null〉AP is the string
representation of the decision procedures of role IP.
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Above we have shown the first five derivation steps of the Σsell system. In those derivation
steps the following MAPa operations have been simulated: initialization of the scene, invo-
cation of a decision procedure, interchange of messages and creation of new instances due to
change of role. Below we simulate how agents are inactivated in Σsell due to termination of
their operation.

For the purpose of illustration of a dialogue termination let us consider the derivation step
z when agents A1,(Joe,1) and A3,(Joe,1) are inactive, agent A2,(Ana,1) is suspended and agent
A4,(Ana,1) has finished the execution of its operation and its active. Then we consider the Σsell

system in the following configuration at derivation step z:

σΣsell,z = (wE,z, {w1,(Joe,1)}, {w2,(Ana,1)}, {w3,(Joe,1)}, {w4,(Ana,1)}) where:

• wE,z = ε 〈〉NA,4,Ana〈〉M,4,Ana〈〉AA,4,Ana

• w1,(Joe,1) = α1 〈null〉OP α2 〈Active〉 α3

• w2,(Ana,1) = Ana[_, _, _] ↓ 〈〉IM〈null〉OP〈S uspended〉〈id1, Ana〉UT 〈t, f ilm〉UT

〈id1, Joe〉UT 〈〉UT S K AK2〈〉AK AProc2 〈Parent〉
• w3,(Joe,1) = β1 〈null〉OP β2 〈Active〉 β3

• w4,(Ana,1) = Ana[Ana, 2, 1] ↓ 〈〉IM〈null〉OP〈Active〉NewUt4 Know NewAProc4〈Parent〉
• Know =

〈History = {(kind, ?), (kind, 36), (brand, ?), (speed, ?), (speed?, ?), (place, ?), (place, out)}〉AK

〈currency = euro〉AK〈〉AK

Then in derivation step z+1 agent A4,(Ana,1) becomes inactive. Rule [ψ4,(Ana,1).6] is applied
and the following Σsell configuration is reached:

σΣsell,z+1 = (wE,z+1, {w1,(Joe,1)}, {w2,(Ana,1)}, {w3,(Joe,1)}, {w4,(Ana,1)}) where:

• wE,z = ε 〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana

• w1,(Joe,1) and w3,(Joe,1) do not change.

• w2,(Ana,1) = Ana[_, _, _] ↓ 〈〉IM〈null〉OP〈S uspended〉〈id1, Ana〉UT 〈t, f ilm〉UT

〈id1, Joe〉UT 〈〉UT S K AK2 〈〉AK AProc2 〈Parent〉
• w4,(Ana,1) = γ1 〈null〉OP γ2 〈Active〉PrivateK γ3

6. In derivation step z+2 the Σsell system makes agent A2,(Ana,1) active. Rule [ϕ2,(Ana,1).3] is
applied and the following Σsell configuration is reached:

σΣsell,z+1 = (wE,z+1, {w1,(Joe,1)}, {w2,(Ana,1)}, {w3,(Joe,1)}, {w4,(Ana,1)}) where:

• wE,z+2 = ε 〈〉NA,2,Ana〈〉M,2,Ana〈〉AA,2,Ana

• w1,(Joe,1), w3,(Joe,1) and w4,(Ana,1) do not change.

• w2,(Ana,1) = Ana[_, _, _] ↓ 〈〉IM〈null〉OP〈Active〉〈id1, Ana〉UT 〈t, f ilm〉UT

〈id1, Joe〉UT 〈〉UT S K AK2〈〉AK AProc2 〈Parent〉
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7. In a similar way in derivation step z+4 agent A2,(Ana,1) becomes inactive in Σsell and the fol-
lowing final configuration is reached:

σΣsell,z+4 = (ε, {w1,(Joe,1)}, {w2,(Ana,1)}, {w3,(Joe,1)}, {w4,(Ana,1)})

where:

• w1,(Joe,1) = α1 〈null〉OP α2 〈Active〉 α3

• w2,(Ana,1) = β1 〈null〉OP β2 〈Active〉 β3

• w3,(Joe,1) = γ1 〈null〉OP γ2 〈Active〉 γ3

• w4,(Ana,1) = ξ1 〈null〉OP ξ2 〈Active〉 ξ3

4.4 Comparing ConvEREG systems with other grammatical frame-
works for the specification of dialogue protocols

In chapter 1 we mentioned different attempts to model dialogues with grammars. Excluding the
approaches introduced in [CVJLMV99], [JL00] and [AJR01], the rest of the dialogue systems men-
tioned in chapter 1 differ from our approach on the following:

• They were conceived for the practical purpose of modeling human-computer dialogues. While
our approach corresponds to a formal framework that could be used for studying formal prop-
erties of human-like dialogue interactions, but also modeling human-computer and computer-
computer dialogues.

• They have been implemented, and some of them are currently been used. Our framework
is theoretical and it provides the formal semantic of MAPa, an extension of an executable
language for multi agent systems.

• They are used in limited dialogue contexts with a fix number of speakers, in general 2-party
question-answering human-computer dialogues. The main reason for their dialogue context
restriction is the high complexity associated to the tasks of speech recognition and speech
synthesis, which can be considerably reduced when a limited context is considered. For in-
stance if the dialogue is related to a flight booking only the vocabulary related to this topic
needs to be considered. Our framework abstracts from speech recognition and synthesis prob-
lems, therefore no context restriction has been considered. Besides ConvEREG systems can
specify arbitrary n-party dialogues, n ≥ 0, where the behavior of agents is given by protocol
strings in the MAPa language. Also, in our model the number of speakers can dynamically
change during conversation. For example, at time t there are x speakers, and at time t + 1 the
number of participants can change to y , x due to some conversant leaving the conversation,
or new speakers joining the talk.

The first study of Grammar systems for modeling dialogues is presented in [CVJLMV99], where
the notion of an Eco-Rewriting system is presented as a variant of Eco-Grammar system. Agents

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



4.4. Comparing ConvEREG systems with other grammatical frameworks for the specification
of dialogue protocols 91

are seen as interlocutors and the environment is interpreted as the shared dialogue context. The
environment can reflect what the interlocutors say, their knowledge, the topic of conversation, etc.
The context and the state of the interlocutors is modified by action and evolution rules. In the Eco-
Rewriting systems agents are replaced for "linguistic agents", more generic rewriting systems that
can be, for example, a generative grammar, an insertion/deletion system, a contextual grammar, a
grammar with context conditions, and many more.

In [JL00], a formal framework for modeling dialogues is introduced as a variant of Grammar
system called Conversational Grammar system. Evidence is given for stating that the framework
is suitable for modeling conversations. Mechanisms like turn-taking, adjacency pairs or closings
can be simulated, and features like coordination, cooperation, interaction, dynamism, flexibility,
emergence or coherence can be provided. But their approach remains in the theoretical ground.
The practical adequacy of their framework has not been investigated. Our work can be seen as a
continuation of [JL00] due to the similarity between EREG systems and Conversational grammars.
While they do not provide any information of how to use their framework for practical purposes, in
this chapter we give a concrete example of the use of our framework.

In [AJR01] a Grammar system for simulating goal-oriented dialogues is presented and its practi-
cal adequacy is exemplified. Their framework is based on CD Grammar systems with memories. CD
Grammar systems with memories where introduced in [CVJJP94] as finite sets of semi-conditional
grammars, each of them associated with a stack called memory. During the common derivation, the
component grammars send messages to each other and they use their memories for storing/erasing
messages (words) that they receive. The shared sentential form is modified based on both the con-
tents of the memories and the context conditions being associated with the agent’s productions.

In [AJR01], they exemplify their approach defining a 2-party dialogue protocol between a cus-
tomer whose goal is to buy a film and a computer system whose goal is to discover the film that
the buyer needs. We presented their example of dialogue protocol in section 4.3.3. But apart from
the example no general definition of a CD Grammar systems with memories is given in [AJR01]
to simulate arbitrary conversations between n speakers. Their work can be seen as a step ahead in
the formal definition of a Grammar system for modeling dialogues. But as the authors pointed out,
their approach is very much in progress and their conclusions and results are still tentative.

With respect to the framework presented in [AJR01], below we list some of its features and we
mention how they differ with our framework:

• No concept of population. For this reason they can not model in a clear, reusable and modular
way common shared behavior. In our framework the notion of population is crucial.

• Grammars Gi,a, 1 ≤ i ≤ n + 1 , are defined. One grammar per speaker, plus one grammar for
modeling the conversational environment. In our model m ≥ 0 populations Ai are defined,
one per conversational role, plus the conversational environment E. A speaker is represented
by an agent state wi,a in class state Wi.

• The number of active speakers in a conversation can dynamically vary, but it is bounded by
the number n of grammars that define the CD Grammar system. In our framework the number
of active speakers can vary during the conversation in an arbitrary and unbounded way.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



92 Chapter 4. Grammar systems for dialogue protocols

• Agents are represented as “white boxes”. For each agent its internal dynamics and its way of
interacting with the environment is specified. We represent agents as “grey boxes”. We only
specify the agent’s observable behaviors that is directly related with the interaction and we
hide the rest of the agent’s implementation details. Therefore, their framework is not suitable
for modeling dialogues where agents show very complex internal behaviours or where agents
cannot be fully knowable- as for instance in open systems.

• Agents are defined as semi-conditional grammars Gi,a = (Ni,a, Ti,a, Pi,a) with rewriting rules
Pi,a for describing their behavior. In our framework the behavior of an agent Ai,a from pop-
ulation Ai is given by: a MAPa language protocol description stored as a substring of agent
state wi,a, and mappings ψi and ϕi for selecting rewriting rules. The limitations of the use of
rewriting rules for defining agent protocols are clear: they are statically defined during the
definition of the Grammar system and they remain fixed during the whole simulation. Only
fixed state-based conversational spaces can be simulated with fix rewriting rules. In contrast
with this, describing protocols as processes stored in strings permits:

– Specifying complex agent’s behaviors using the operators then and or to compose ac-
tions.

– Defining protocols in a modular and reusable way. The scene S ell introduced in figure
4.3 is a good example of this. Two roles IS and IP are provided to define a generic
information-seeking dialogue and two roles clerk and customer are used as particular
types of IS and IP roles. In figure 4.4 we introduce the scene Hospital to simulate the
dialogue between a doctor and a patient. The doctor asks questions to the patient in
order to know his symptoms and to diagnose his disease. To define the scene Hospital
we use the same roles IS and IP presented in 4.3 but this time we instantiate the infor-
mation seeker as a doctor and the information provider as a patient. Therefore, different
scenes can be defined reusing role definitions, and this is done by simply instantiating
the generic roles with more specific role definitions.

– Providing parametrization and recursion using agent invocation.

– Dynamically changing agent behavior during run-time using operation variables: this
enables to describe scenarios where it is impossible or impractical to define the protocol
beforehand. For example, we can consider again the MAPa protocols in figure 4.4. After
some questions the doctor gives a diagnosis and informs the patient the corresponding
treatment to follow, given by operation variable op. The number of treatments that the
doctor can choose is very large and it depends on the particular dialogue, it can be: a
diet, exercise, medication, more analysis and studies, consult other specialists, etc. For
dialogue definitions like this one the use of operation variables is crucial.

– Accessing and modifying shared knowledge. In our framework agents can access shared
scene knowledge, role knowledge and private knowledge, but they only modify their
own private knowledge.

The approaches introduced in [CVJLMV99], [JL00] and [AJR01] share with our framework the
following features:
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• Belong to information state theory, according to the dialogue classification introduced in
chapter 1.

• Divide the information state in a common environment and private agent states.

• Be a Grammar system.

• Focus on the dialogue structure avoiding the problems of human speech recognition and syn-
thesis.

• Be a formal theoretical model, without implementation.

agent(id1, Patient, Proc(a),K(b), t) :: agent(id1,Doctor, Proc(c),K(d)) ::
id2=choose_doctor(t) then ask(t)⇐ agent(id1,Patient)
ask(t) =⇒ agent(id2,IS) then then agent(id1, IS, Proc(c), K(d)).
agent(id1, IP, Proc(a), K(b)).

agent(id1, IP, Proc(t),K(z)) :: agent(id1, IS , Proc(m),K(s)) ::


request(q)⇐= agent(id2, IS) then
History = History ∪ {(newq =?)} then
agent(id1, IP, Proc (t), K(z))





newq=next_question(History ∪ K)then
History = History ∪ {(newq =?)} then
request(newq) =⇒ agent(id2, IP) then
agent(id1, IS, Proc (m), K(s))


or or

(q,a)=get_answer(History ∪ K) then
History = History ∪ {(q = a)} then
inform(q, a) =⇒ agent(id2, IS) then
agent(id1, IP, Proc (t), K(z))




inform(q, a)⇐= agent(id2, IP) then
History = History ∪ {(q = a)} then
agent(id1, IS, Proc (m), K(s))



or null or null
or or[

agent(id1, IS, Proc (t), K(z)) then
agent(id1, IP, Proc (t), K(z))

] [
agent(id1, IP, Proc (m), K(s)) then
agent(id1, IS, Proc (m), K(s))

]

or or

solution(prot)⇐= agent(id2, IS) then
a=checkadequacy(prot) then
History = History ∪ {(solution = prot)} then

[
accept() =⇒ agent(id2, IS)
then prot

]

or refuse() =⇒ agent(id2, IS)





car



prot=final_answer(t, History ∪ K) then
solution(prot) =⇒ agent(id1, IP) then
History = History ∪ {(solution = prot)} then[

accept()⇐= agent (id1, IP) or
refuse()⇐= agent(id1, IP)

]



Figure 4.4: A MAPa scene for a dialogue protocol in a hospital
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4.5 Main features of framework ConvEREG

By introducing ConvEREG systems, we define a grammatical framework for the specification of
dialogue protocols that proves to be:

• Based on interaction and agent observable behavior. The abstraction from agent implemen-
tation details that are not concerned with interaction simplifies the representation, analysis,
design and verification of the dialogues.

• Generic. It allows the interaction between agents implemented in different languages (het-
erogeneous agents). It does not assume any fixed semantic for: the locutions agents use for
message interchange, the technology used to deliver messages, the way agents modify shared
scene knowledge, and the way agents perform rational processes.

• Highly expressive. The agents participate in the conversation concurrently. Their operations
are sequentially composed and allow the implementing of nondeterministic choices, message
interchange, parameterized invocations of new agent instances, functions calls, and iterations
(defining a role that encapsulates the iterative process).

• Flexible. It allows the definition of n-party dialogues, with n ≥ 1. The number of agents
can dynamically vary during run-time, and there is no restriction over the maximal number of
active agents in the dialogues.

• Dynamic. Agents are dynamic entities that are created during run-time by other active agents.
Agents become inactive when they finish the execution of their associated protocol. Agents
can modify their private knowledge, share their knowledge, introduce new agents into the
conversations, and change their roles.

• Emergent. The dialogic space is not fixed, but emerges from the interaction. Agents follow a
protocol description in a dialogue, but nevertheless they can behave in an unpredictable and
autonomous way. They can choose what to do next according to the information state by the
invocation of decision procedures. Besides the use of operation variables allows the agents
to dynamically change their protocol definition during run-time. Operations are treated as
first order objects allowing an agent to inform others what to do in a given situation. This
feature provides agents with a way to react according to the current state of the dialogue.
Due to this characteristic dialogue protocols specified using ConvEREG systems can be used
for simulating dialogues where it is impossible or impractical to know beforehand the whole
dialogic space.

• Modular. Three different structural and behavioral layers are defined: scenes, roles and agent
instances. Each level is provided with a set of knowledge. The concepts of scene and role
allow, in a modular and reusable way, the definition of pieces of common behavior and knowl-
edge. When an agent joins a scene or adopts a role, it inherits the knowledge and behavior
associated with that layer.

• An improvement with respect to previous attempts from Formal Language Theory to simulate
dialogues. As was explained in section 4.4.
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• Provided with features characteristic of human conversations . From [JL00] [CVJLMV99]
we know that EREG systems inherit from Eco-Grammar systems the following features that
according to [Cla96] and [SSJ74] are characteristic of human conversations:

– Copresence. Participants share the same physical environment. In EREG systems this
is given by the environmental state wE .

– Emergent activity. The content and development of a conversation is not fixed in ad-
vanced, but emerges through conversational acts. According to wE , mapping ϕi selects
a set of rewriting rules to change the sate of agent Ai. According to wi, mapping ψi

selects a set of rewriting rules to modify agent state and environment state.

– Audibility. Participants can hear each other. Agents speak by mapping ψi rewriting
symbols in the common environmental state wE . Agents listen when they check the
content of wE by mapping ϕi.

– Instantaneity. Participants perceive each other’s actions at no significant delay. In EREG
systems the delay is of one time unit. An agent speaks in time unit t0 and the receiver
listens the message at time t0 + 1.

– Evanescence. Medium is evanescent, it fades quickly. In our model, PE deletes what
agents introduce to the environmental in the previous time unit. Or if an agent does not
want to pay attention to what other agent says, it hears the message in one time unit and
deletes it (forgets it) in the next one.

– Simultaneity. Participants can produce and receive instantly and simultaneously. Be-
cause mappings ϕi and ψi are applied in parallel, simultaneity is possible.

– Extemporariness. Participants formulate and execute their actions extemporaneously, in
real time. In EREG systems time is given by a common clock.

Copresence and audibility are part of what in pragmatics is called the dialogue context. Ac-
cording to [CVJLMV99], a context includes the linguistic code, the knowledge and cultural
beliefs of the participants, the assumptions of what the participants know or suppose, social
interaction principles that are universal or correspond to a certain culture, time and space con-
text in which the conversational act takes place, etc. In human-like talks all the participants in
the conversation can hear what is said, even if the message is addressed to another conversant.
In our framework the dialogue context at time t is given by the environment state wE,t. We
can think of LE(Σ, σ0) as a collection of dialogue contexts and call it the dialogue history.

Take, for example, the Σsell ∈ ConvEREG4 system presented in section 4.3.3. It describes
a dialogue that takes place in a public place, a shop, between a customer, Ana, and a clerk,
Joe. In general speakers do not know another speaker’s knowledge. But from communication
speakers can acquire knowledge about behavioral characteristics of others, find out about the
internal states of the other agents like feelings, attitudes, knowledge, etc. Dialogue context
can also be used to compare agent’s knowledge.

For instance if we consider Σsell, we can collect the locutions uttered by the agents in the
systems Σ1, ...,Σm that correspond to scenes where the agent Joe played the role of a clerk
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with different customers with identifiers b1, ..., bm. From the agents’ observable behaviors for
each system Σ1, ...,Σm with initial configurations σ1,0, ..., σm,0 we can determine, according
to some criteria, if the agent Joe is a good seller. We can choose, for example, the following
criteria: an agent with identifier a is a good clerk if it always guesses correctly what kind of
film fulfils the requirements of the customer. Formally:

good_seller(a)↔



∀i : 1 ≤ i ≤ m∧
∃wE,t,wE,q ∈ LE(Σi, σi,0) : t ≥ 0 ∧ q > t∧
〈solution( f ilmi)[a, IS ][bi, IP]〉M,IS ,a is a substring of wE,t∧
〈accept()[bi, IP][a, IS ]〉M,IP,bi is a substring of wE,q





The film shop can have a policy that a clerk with identifier a is a good seller if it always offers,
from all the films that fulfil the requirements of the customer, the most expensive one:

good_seller(a)↔



∀i : 1 ≤ i ≤ m∧
∃wE,t ∈ LE(Σi, σi,0) : t ≥ 0 ∧ 〈solution( f ilmi)[a, IS ][bi, IP]〉M,IS ,a

is a substring of wE,t∧(
∀ f ilm : similar( f ilm, f ilmi)→ price( f ilm) ≤ price( f ilmi)

)





For example if we take again the Σsell system presented in section 4.3.3 we can compute
the uttered locutions from systems Σ1, ...,Σm with initial configurations σ1,0, ..., σm,0 corre-
sponding to scenes where the agent Joe plays the role of a clerk with different customers with
identifiers b1, ..., bm. We can also compute the uttered locutions in the systems Σm+1, ...,Σ2m

with initial configurations σm+1,0, ..., σ2m,0 corresponding to the scenes where other agent
Luis plays the role of a clerk with the same customers with identifiers bm+1, ..., b2m. We can-
not know whether Joe or Luis knows more about films, because according to MAPa language
agent knowledge is private and inaccessible. But we can compute some dialogue contexts
and choose which agent performs better according to certain criteria. For example, we can
consider that the best clerk is the one who is faster to propose the right film to the customer.
For instance an agent can be faster because it has more experience or knowledge and it can
ask less questions in order to guess the right film. Formally:

better_seller(a, c)↔



∀i : 1 ≤ i ≤ m ∧ m + 1 ≤ l ≤ 2m∧
∃wE,t,wE,g ∈ LE(Σi, σi,0) : t ≥ 0 ∧ g ≥ t∧
〈solution( f ilm1)[a, IS ][bi, IP]〉M,IS ,a is a substring of wE,i,t∧
〈solution( f ilm2)[c, IS ][bl, IP]〉M,IS ,c is a substring of wE,l,g





The notion of dialogue context was introduced in Linguistics but it has already been con-
sidered in Dialogue Theory with names like agent observable behaviors [VO02], histories of
communication [EBHM03] or traces of communication [WGS87]. The use of dialogue con-
texts in Dialogue Theory has shown to be crucial for the application of formal strategies of
proof [WGS87] [MC81] [EBHM03].
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4.6 Formal Properties

With theorem 10 we prove that the family EConvEREGn, for all n ≥ 1, has the same computational
power as Turing Machines:

Theorem 10 EConvEREGn = RE for all n ≥ 1

Proof. According to definition 30 in an arbitrary Grammar system Σs ∈ EConvEREGn map-
pings ϕi and ψi, for all 1 ≤ i ≤ n, are computable functions, with erasing rewriting rules. So
EConvEREGn ⊆ RE.

From [CVD90] we know that the family of Extended Eco-Grammar systems with one active
agent, λ-rules for action, and λ-rules for evolution, has the same expressive power as Turing Ma-
chines. Knowing that EEGλ

1 = RE what remains to be understand is that EEGλ
1 ⊆ EConvEREG1.

Given an arbitrary Grammar system Σ ∈ EEGλ
1 with initial configuration σ0 = (wE,0,wi,0) such

that Σ = (VE , PE , A1) and A1 = (V1, P1,R1, ϕ1, ψ1), from Σ we can define the following MAPa scene
s = (AI,R, P,K,M) where:

• AI = agent(a1, r1, ∅, {ownstate = wi,0}),

• K = {envstate = wE,0},

• M = ∅,

• R = {〈r1, Procs, ∅, ∅〉}, with

Procs =

{
S tring :: Applyϕ1(x, S tring)(y, S tring), S tring :: Applyψ1(x, S tring)(y, S tring),
S tring :: ApplyPE(x, S tring)(y, S tring)

}

to simulate computable functions ϕ1, ψ1 and PE .

• P is the unitary set corresponding to the protocol for role r1:

agent(a1, r1, Procs,Knows) ::
oldw1 := w1 then
oldwE := wE then
w1 := Applyϕ1(wE ,w1) then
wE := Applyψ1(wE , oldw1) then
wE := ApplyPE(oldwE ,wE) then
K := {envstate = wE} then
agent(a1, r1, ∅, {ownstate = wi}).

From the way we have defined scene s and from definition 30 it is possible to construct a
Grammar system Σs ∈ EConvEREG1 such that LE(Σ, σ0) = LE(Σs, σ0)∩V∗E , for an arbitrary initial
configuration σ0.

Below we introduce two types of ConvEREG systems that we call Conditional Eco-Grammar
(CondEG) systems and regularly Controlled Reproductive Eco-Grammar (rCREG) systems.
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4.7 CondEG systems

In this section we introduce a type of ConvEREG system that we call Conditional Eco-Grammar
(CondEG) system. We define CondEG systems as a variant of Eco-Grammar system, therefore,
in CondEG the number of speakers is fixed during the conversation, although not all of them are
necessarily active. Dialogue protocols in CondEG systems with at most n ≥ 1 agents and condition
c ∈ {b, s} have these restrictions:

• Every agent Ai, 1 ≤ i ≤ n, is provided with two private sets of decision procedures. The first
set corresponds to a finite set of conditional rules of the type (e, f : P) such that e ∈ V∗E is
a permitting context, f ∈ V∗E is a forbidding context and (Vi, P) is a 0L component scheme.
The second set corresponds to a finite set of conditional rules of the type (g, h : R) such that
g ∈ V∗i is a permitting context, h ∈ V∗i is a forbidding context and (VE ,R) is a 0L component
scheme.

• Every agent Ai, 1 ≤ i ≤ n, is provided with a computable procedure to determine if it wants to
change its mental state (modify wi) according to its first set of private decision procedures. If
c = b, in each derivation step all the agents check if they have rules with the shape (e, f : P)
in their first set of decision procedures such that wE contains the block of information e
(wE = αeβ) and wE does not contain the block of data f (wE , α fβ). In parallel all the agents
who have a rule in the first set that can be applied execute it over wi. If c = s, in each derivation
step all the agents check if they have rules with the shape (e, f : P) in their first set of decision
procedures such that the information e = e0...es is scattered in wE(wi = α1e1α2...enαn+1) and
wE does not contain the data f = f0... ft scattered (wE , β1 f1β2... fnβn+1). In parallel all the
agents who have a rule in the first set that can be applied execute it over wE . In this way we
can simulate with CondEG systems how all the speakers simultaneously listen and change
their own mental states according to the state of the conversation.

• Every agent Ai, 1 ≤ i ≤ n, is provided with a computable procedure to determine if it wants to
participate in the conversation (modify wE) according to its second set of decision procedures.
If c = b, in each derivation step from all the agents that have some rule with the shape
(g, h : R) in their second set of decision procedures, and wi contains the block of information
g (wi = αgβ), and wi does not contain the block of data h (wi , αhβ), only one agent is
non-deterministically chosen to apply the rule R from (g, h : R) over wE . If c = s, in each
derivation step from all the agents that have rules with the shape (g, h : R) in their first
set of decision procedures such that the information g = g0...gs is scattered in wi, (wi =

α1g1α2...gnαn+1) and wi does not contain the data h = h0...ht scattered (wi , β1h1β2...hnβn+1),
only one agent is non-deterministically chosen to apply the rules R over wE . Imposing the
restriction that per time unit only one agent can modify the shared knowledge wE guaranties
that in all the dialogue protocols specified using CondEG systems speakers take turns. Turn-
taking is a feature characteristic of human talks that the dialogues defined using ConvEREG
systems do not necessarily have.
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4.7. CondEG systems 99

4.7.1 Formal Definition

Definition 31 By a Conditional Eco-Grammar system (CondEG) of degree n ≥ 1 and condition
c ∈ {b, s} we mean an Eco-Grammar system Σ = (E, A1, ..., An) where:

• E = VE , with VE a finite alphabet;

• Agent Ai, 1 ≤ i ≤ n, is defined as

Ai =

(
Vi, {(g, h : R) | g ∈ V∗i ∧ h ∈ V∗i ∧ (VE ,R) is a 0L component scheme },
{(e, f : P) | e ∈ V∗E ∧ f ∈ V∗E ∧ (Vi, P) is a 0L component scheme }

)

In order to describe the dynamic aspects of CondEG systems we give the following definitions:

Definition 32 (System configuration) A configuration of a CondEG system Σ = (E, A1, ..., An) of
degree n ≥ 1 with condition c ∈ {b, s} is an (n+1)-tuple: σ = (wE ,w1,w2, ...,wn) where wE ∈ V∗E
and wi ∈ V+

i for 1 ≤ i ≤ n; wE is the current evolution state of the environment and the string wi

corresponds to the evolution states of the active agent Ai.

We introduce the definition of agent derivation interpreting the conditional predicate πc, c ∈
{b, s} , as explained in Definition 33.

Definition 33 Given an alphabet V, we define the following predicates over V∗ × V∗:
πb(x, y) = 1 i f f y = y1xy2,

πs(x, y) = 1 i f f y = y1x1y2x2...yr xryr+1,

x = x1x2...xr where xi, yi ∈ V∗ for all i.

Definition 34 (Agent Derivation) Agent state wi derives to a new state w′i denoted by wi ` w′i if
there is a rule (g, h : R) in agent Ai such that πc(g,wE) = 1, πc(h,wE) = 0. Then wi ` w′i is
obtained as the result of the application of the 0L component scheme (Vi,R). The agent derivation
is a computable process.

Definition 35 (Environment Derivation) Environmental state wE derives to new state w′E denoted by
wE |= w′E iff there is a rule (d, e : P) corresponding to some active agent Ai such that πc(d,wi) = 1,
πc(e,wi) = 0 and wE |=P w′E is the result of the application of the 0L component scheme (VE , P).
The environment derivation is a computable process.

Definition 36 (System derivation) Let Σ = (E, A1, ..., An) be a CondEG system with condition c ∈
{b, s} and let σt = (wE ,w1,w2, ...,wn) and σ′t+1 = (w′E ,w

′
1,w

′
2, ...,w

′
n) be two configurations of Σ.

We say that σt is directly changed for (it directly derives) σ′t+1, denoted by σt =⇒Σ σ′t+1, iff w′E
arises from wE by evolution of the environment produced by some active agent in σt, and w′i is the
result of the agent derivation over wi, 1 ≤ i ≤ n.

We denote as⇒+
Σ

and⇒∗
Σ

the transitive and reflexive closure of =⇒ in Σ.

Definition 37 (System language) The language generated by Σ ∈ CondEG with condition c ∈ {b, s}
and initial configuration σ0 is defined as

LE(Σ, σ0) =

{
wE | σ j = (wE ,w1, ...,wn),

σ0 =⇒Σ σ1 =⇒Σ .... =⇒Σ σ j, j ≥ 0

}
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100 Chapter 4. Grammar systems for dialogue protocols

We denote by CondEGn(i, j, c), n ≥ 1, c ∈ {b, s}, i, j ≥ 0 the family of languages LE(Σ, σ0)
where Σ ∈ CondEG has degree n, initial configuration σ0, all the permitting contexts have length
at most i, all the forbidden contexts have length at most j and predicate πc is used to verify the
presence or absence of contexts. When the number of agents, the length of the permitting context,
or the length of the forbidding contexts is not bounded, we replace the corresponding parameter
with∞.

When we are interested only in strings over some alphabet T , hence in the language LE(Σ, σ0)∩
T ∗, we speak about an Extended Conditional Eco-Grammar (ECondEG) system. We denote by
ECondEGn(i, j, c), n ≥ 1, c ∈ {b, s}, i, j ≥ 0, the family of languages LE(Σ, σ0) ∩ T ∗ where
Σ ∈ CondEGn(i, j, c).

4.7.2 Formal Properties

The following basic relations directly follow from the definition of ECondEG system:

Lemma 1

1. ECondEGn(i, j, c) ⊆ ECondEGm(i′, j′, c), for all c ∈ {b, s}, 1 ≤ n ≤ m and i ≤ i′, j ≤ j′.
2. ECondEGn(i, j, b) ⊆ ECondEGn(i, j, s), for all n ≥ 1 and i, j ∈ {0, 1}.
3. ECondEGn(0, 0, c) = ET0L, for all n ≥ 1, c ∈ {b, s}.

The result below connects ECondEG systems with the Extended Conditional Tabled Eco-
Grammar (ECTEG) systems introduced in chapter 2.

Theorem 11 ECT EGn(i, j, c) ⊆ ECondEG1(i, j, c), for all i, j ≥ 0, n ≥ 1, c ∈ {b, s}

Proof. In [Mih94], it was proved that ECT EGn(i, j, c) = ECT EG1(i, j, c) for arbitrary n ≥ 1,
i, j ≥ 0 and c ∈ {b, s}. Thus we can prove this theorem replacing n for 1. Given an arbitrary
W ∈ ECT EG1(i, j, s) such that W = (E, A1) with:

• E = (VE ,RulesE),

• RulesE = {(e1, f1 : P1), ..., (ek, fk : Pk)},
• A1 = (V1,Rules1),

• Rules1 = {(g1, h1 : R1), ..., (gs, hs : Rs)},
• VE ∩ V1 = ∅.
From W we can define W′ ∈ ECondEG1(i, j, c) such that W′ = (VE , A′1) with A1 = (V1,RulesE ,Rules1).
Clearly for an arbitrary initial configuration σ0 it is true that LE(W, σ0) = LE(W′, σ0).

We can prove now the connection between ECondEG systems with non erasing rules and the
Chomsky hierarchy:
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4.8. rCREG systems 101

Theorem 12 ECondEGe,n(i, j, c) ⊆ CS , for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.

Proof.
To prove that ECondEGe,n(i, j, c) ⊆ CS we prove first that ECondEGe,n(i, j, c) ⊆ EGe(1) where

EGe(1) is the family of Extended Eco-grammar systems with non-erasing rules and 1 agent, because
according to [CVKKP97] EGe(1) = CS .

From an arbitrary Σ ∈ ECondEGe,n(i, j, c) such that Σ = (E, A1, ..., An) we can always construct
Σ′ ∈ ECondEGe,n(i, j, c) that only differs from Σ on the alphabets Vi used by the agents A1, ..., An

which are disjoint.
We consider Σ′ = (VE , A1, ..., An) such that for all 1 ≤ i ≤ n: Ai = (Vi,R1,i,R2,i). From

Σ′ we can define an Eco-grammar system Γ ∈ EGe(1) such that Γ = ((VE , ∅), B1) where: B1 =

((V1 ∪ ... ∪ Vn), (R1,1 ∪ ... ∪ R1,n), (R2,1 ∪ ... ∪ R2,n), ϕ1, ψ1) and functions ϕ1 and ψ1 simulate the
derivations that can be performed in Σ′ such that LE(Σ′) = LE(Γ).

4.7.3 Applicability in Dialogue Theory

Family CondEGn provides a formal framework for specifying dialogue protocols with the following
features:

• The number of speakers is fixed to n.

• The agents can learn or modify their own knowledge bases and the shared knowledge base
through the dialogue.

• Any dialogue initiative, backtracking, turn-taking and reply policy can be implemented.

• There is no restriction over the representation of the agent’s mental states or shared knowl-
edge, which correspond to strings over two potentially different finite alphabets.

• The knowledge base of an agent is restricted to two finite sets of conditional rules. One
of these sets is used by the agent to decide how to change its mental state according to the
absence and presence of information in the dialogue context. The other set is used by the agent
to decide what to say according to the absence and presence of information in its mental state.

• The complexity of the agent reasoning strategies is limited to find a conditional rule from its
knowledge base that can be applied, in the sense of definition 36, over the shared knowledge.

4.8 rCREG systems

We introduce a type of ConvEREG system that we call regularly Controlled Reproductive Eco-
Grammar (rCREG) system. We define rCREG systems as Reproductive Eco-Grammar (REG)
systems, where a policy of turns is specified by a regular set X over A1, ...,An. If according to
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102 Chapter 4. Grammar systems for dialogue protocols

L(X) it is the turn of an arbitrary agent from population Ai to talk, then an agent A j,i in Ai is non-
deterministically chosen to change his mental state and participate in the conversation by applying
an arbitrary λ-free CF rule over wE .

Dialogue protocols defined using rCREG systems mainly differ from protocols specified using
ConvEREG systems on the following:

• Agents are provided with a turn talking policy, given by a regular set X over populations
A1, ...,An, so that agents cannot speak simultaneously or in an arbitrary order.

• The behavior of the speakers is given by λ-free rewriting rules, and not by protocol descrip-
tions in the MAPa language.

• The participation of each agent Ai in the dialogue is fixed and it corresponds to the application
of an arbitrary rewriting rule from the finite set of λ-free CF rules Ri over the environment
state. Therefore, the mental states of the agents do not influence agents participation in the
dialogue.

• The set of environment rules PE is empty.

4.8.1 Formal Definition

Definition 38

rCREG(X) =



Σ ∈ REG | Σ = (E,A1, ...,An) ∧ E = (N ∪ T, ∅)∧( ∀1 ≤ i ≤ n : Ai = (Vi ∪ {t}, Pi,Ri, ϕi, ψi) ∧ Ri : N → (N ∪ T )+∧
ψi returns an arbitrary production in Ri

)
∧

LE(Σ, σ0) =



wE, j ∈ N ∪ T ∗ | j ≥ 0 ∧ σ j = (wE, j,W1, j, ...,Wn, j)∧
wE,0 ∈ N ∧ σ0 =⇒py1 ,x1

Σ
σ1 =⇒Σ ... =⇒py j ,x j

Σ
σ j∧( ∀1 ≤ k ≤ j : wE,k−1 |=pyk ,xk

1 wE,k ∧ pyk ,xk ∈ Rxk∧
Ax1 , ...,Ax j ∈ L(X)

)





,

for all X regular set over populationsA1, ...,An.

We denote by rCREGn(X), n ≥ 1, X a regular expression over n populations, the family of
languages LE(Σ, σ0) where Σ ∈ rCREG(X) has degree n and initial configuration σ0. When the
number of populations is not bounded, then we replace the corresponding parameter with∞.

When we are interested only in strings over some alphabet T ⊆ E, hence in the language
LE(Σ, σ0)∩T ∗, then we speak about an Extended regularly Controlled Reproductive Eco-Grammar
(ErCREG) system. We denote by ErCREGn(X), the family of languages LE(Σ, σ0) ∩ T ∗ where
Σ ∈ rCREGn(X).

4.8.2 An example of dialogue protocol

We consider P ∈ rCREG3(A1(A1A2)∗A3A3) such that P = (E,A1,A2,A3) with:

• Initial configuration σ0 = (S , {S 1}, {S 2}, {S 3}),
• E = (VE , ∅),
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4.8. rCREG systems 103

• VE = N ∪ T = {S , A, B} ∪ {a, b, c},
• for all 1 ≤ i ≤ 3, Ai = (Vi ∪ {t}, Pi,Ri, ϕi, ψi), Vi = {S i}, Pi = {S i → S i}, ϕi(wE) = Pi for all

wE ∈ V∗E ,

• R1 = {S → AB, A→ aAb}, R2 = {B→ cB}, R3 = {A→ ab, B→ c}.
With the regular set (A1(A1A2)nA3A3), n ≥ 0, the only possible derivation is the following:

(S , {S 1}, {S 2}, {S 3})⇒ (AB, {S 1}, {S 2}, {S 3})⇒n (anAbncnC, {S 1}, {S 2}, {S 3})⇒2

(an+1bn+1cn+1, {S 1}, {S 2}, {S 3})
Therefore, LE(P, γ0) = {anbncn | n ≥ 0}, LE(P, γ0) ∈ CS .

4.8.3 Formal Properties

In [GS68] [DPS97], regularly Controlled (context free) grammars are formally introduced as a type
of mildly context sensitive grammar. Regularly controlled (context free) grammars are basically
context free grammars provided with a sequence of productions, and we only take those words in
the generated language that can be obtained by context free derivation using productions according
to defined sequences. By rC we denote the family of languages generated by regularly Controlled
grammars without erasing rules.

Theorem 13 ErCREGn(X) = rC ⊂ CS , for all n ≥ 1, regular set X over n populations.

Proof. In [DPS97] it was proved that rC ⊂ CS .
First we prove that ErCREGn(X) ⊆ rC.
Given an arbitrary dialogue protocol M ∈ ErCREGn(X) such that M = (E, ,A1, ...,An) with:

• E = (N ∪ T, ∅) and

• σ0 = (wE,0,W1,0, ...,Wn,0).

From M we define GM ∈ rC, GM = (N,T, P,wE,0,Q) such that:

• P = {p j,Ai | 1 ≤ i ≤ n ∧ p j ∈ Ri},
• Q is the regular expression resulting from replacing in X each occurrence of population Ai,

1 ≤ i ≤ n, for expression (p1,Ai + ... + pt,Ai) such that Ri = {p1, ..., pt}.
We need to prove the following: (∀α : α ∈ LE(M, σ0) ∩ T ∗ ↔ α ∈ L(GM)).
Clearly it is satisfied that:


∀ j ≥ 0 :



σ j = (wE, j,W1, j, ...,Wn, j) ∧ wE, j ∈ T ∗ ∧ σ0 =⇒M σ1 =⇒M ... =⇒M σ j∧(
∀1 ≤ k ≤ j : wE,k−1 |=pyk ,xk

1 wE,k ∧ pyk ,xk ∈ Rxk ∧Ax1 ...Ax j ∈ L(X)
)
↔

wE,0 =⇒py1 ,Ax1
GM

wE,1 =⇒py2 ,Ax2
GM

... =⇒py j ,Ax j
GM

wE, j∧
py1,Ax1

...py j,Ax j
∈ L(Q)






.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



104 Chapter 4. Grammar systems for dialogue protocols

Therefore LE(M, σ0) ∩ T ∗ = L(GM).

Then we prove that rC ⊆ ErCREGn(X).
Given an arbitrary grammar G ∈ rC such that G = (N,T, P, S ,Q) and

P = {p1, ..., pn}, n ≥ 1. From G we define M ∈ ErCREGn(X) such that:

• M = ((N ∪ T, ∅),A1, ...,An);

• σ0 = (S , {S }, ..., {S });
• Agent A1, j in every classA j, 1 ≤ j ≤ n, is defined as A1, j = ({S },R j, ∅, ϕ j, ψ j) with

R j = {p j | p j ∈ P} and card(R j) = 1;

• X results from replacing in Q the occurrence of each production p j ∈ P for population A j,
1 ≤ j ≤ n.

We need to prove the following: (∀α : α ∈ L(G)↔ α ∈ LE(M, σ0) ∩ T ∗).
Clearly it is satisfied that:


∀ j ≥ 0 :

(
w0 =⇒px1

G w1 =⇒G ... =⇒px j
G w j ∧ px1 ...px j ∈ L(Q) ∧ w j ∈ T ∗

)
↔(

σ j = (w j, {S }, , ..., {S }) ∧ σ0 =⇒M σ1 =⇒M ... =⇒M σ j∧
(∀1 ≤ k ≤ j : wk−1 |=pxk

1 wk ∧ pxk ∈ Rxk ) ∧Ax1 ...Ax j ∈ L(X)

)
.

Then L(G) = LE(M, σ0) ∩ T ∗.

From theorem 13 and the results from [DPS97] which state that for the rC grammars the mem-
bership problem is decidable, the emptiness problem is NP-hard and the finiteness problem is NP-
hard, we get the following corollary:

Corollary 3 In family ErCREGn(X), for all n ≥ 1, for all regular set X over n populations, the
membership problem is decidable, the emptiness problem is NP-hard and the finiteness problem is
NP-hard.

From theorem 10 and theorem 13 we deduce:

Corollary 4 ErCREGn(X) ⊂ EConvEREGm, for all n,m ≥ 1 and X regular set of agent popula-
tions.

4.8.4 Applicability in Dialogue Theory

rCREG systems provide a formal framework to specify dialogue protocols with the following fea-
tures:

• There are no limits on the maximum number of speakers.

• The agents can learn and modify their own knowledge bases and the shared knowledge base
through the dialogue.
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4.8. rCREG systems 105

• Backtracking, turn-taking and different replying policies can be implemented.

• There is no restriction over the representation of agent’s mental state and shared knowledge.

• Any locution set and dialogue initiative can be chosen.

• The way agents participate in the dialogue is not influenced by the agent’s mental state and it
is limited to the application of an arbitrary CF rule to modify the string of shared knowledge.
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Chapter 5

Using finite state transition systems for
specifying dialogue protocols

5.1 Introduction

In chapter 4 we introduced the Conversational Enlarged Reproductive Eco-Grammar
(ConvEREG) systems as a variant of Reproductive Eco-Grammar system. The grammar com-
ponents in ConvEREG are interpreted as speakers whose behaviors are specified by strings corre-
sponding to process descriptions in the Multi-Agent Protocol (MAPa) language that we introduced
in [GW06b] [GW06c] [GW06a]. We start this chapter defining a framework for the specification
of dialogue protocols that corresponds to a variant of finite state transition systems, that we call
Conversational Finite State Transition (ConvFST) systems. ConvFS T systems have the same ex-
pressive power as the framework ConvEREG. This approach can be seen as a continuation of similar
formal models based on finite state automata for the simulation of dialogues, like [Vas04, ERS+01]
[HK98][MW97][PC96].

Finite state transition systems have been popular mechanisms to describe frameworks for the
definition of dialogue protocols because they are considered to have the following features:

• They are easy and understandable methods for describing protocols.

• They are provided with a formal semantics.

• They can be subject of a verification strategy called model checking.

• They allow to specify dialogues where speakers take turns.

ConvFS T systems allow the specification of dialogue protocols where the number of agents is
fixed, agents are provided with fix sets of private believes, the interaction model is described by a
finite state transition system whose transitions are conditionals and labeled with locutions, and the
shared knowledge is saved in a string whose content can be modified. The states of the automata
correspond to possible stages of the conversation, and the transitions to dialogue moves. For a
labeled transition to be triggered the precondition associated with the locution that labels it has to
be satisfied and checking its satisfaction is computable. And the preconditions of the locutions
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108 Chapter 5. Finite state transition systems for dialogue protocols

are formulas over some logic which are evaluated according to the agent knowledge and shared
knowledge. If a transition is triggered a new state is reached and some operation can be performed
over the shared knowledge. ConvFS T systems correspond to dialogue state approaches.

In sections 5.2.1 and 5.2.2 respectively, we define ConvFS T systems and we provide an ex-
ample of the use of this framework defining an information-seeking argumentation-based dialogue
protocol that we call ISP. With ISP we explain that once a dialogue protocol is defined in a
framework like ConvFS T formal properties can be expressed and proved. In section 5.2.3 we make
a brief introduction to a subfield of Dialogue Theory called Argumentation Theory. Argumentation
Theory is based on the interchange of arguments and contraarguments between speakers, with the
purpose of arriving to conclusions even in the presence of incomplete or inconsistent information. In
section 5.2.3 we provide an example that shows that ConvFS T systems can be used as a transition-
based formal framework for the definition of protocols defined in the argumentation-based formal
framework introduced by Amgoud in [Amg98].

In section 5.2.4 we prove some formal properties for ConvFS T systems. With theorem 15
we specify under which restrictions the family ConvFS Tn of ConvFS T systems with at most n ≥
1 agents collapses into the family ConvFS T1 of ConvFS T systems with at most 1 agent. With
theorem 16 we prove that the expressive power of ConvFS T systems of any degree is equal to the
expressive power of Turing Machines.

For ConvFS T systems the membership problem is undecidable, therefore we define three sub-
classes of ConvFS T with less expressive power: Conditional Finite State Transition (CondFS T )
systems, limited memory Finite State Transition (lmFST) systems and regularly Controlled Finite
State Transition (rCFST) systems.

In section 5.3 we define CondFS T systems as ConvFS T systems where the agents are pro-
vided with a finite set of conditional rules that they use to decide their participation in the dialogue.
The agents use these rules to decide how to modify the string corresponding to the shared knowl-
edge depending on the presence and\or absence of substrings (information) in that string. With
theorem 17 we prove that the family ECondFS Tn of Extended CondFS T systems with at most
n ≥ 1 agents collapses into the family ECondFS T1 of ECondFS T systems with at most 1 agent.
Theorem 18 proves that the family ECT EGn(i, j, c) of classes of languages defined by Extended
Conditional-Tabled Eco-Grammar systems with n ≥ 1 agents, forbidding and permitting context
of length at most i, j ≥ 0 and with block or scattered condition c ∈ {b, s} is included in the family
ECondFS T1(∞,∞, c). Where ECondFS T1(∞,∞, c) is the family of classes of languages gener-
ated by ECondFS T systems with at most n ≥ 1 agents, permitting contexts of length at most i ≥ 0,
forbidding contexts of at most j ≥ 0, conditions c ∈ {b, s} blocked or scattered. Theorem 19 proves
that ECondFS T systems without erasing rules are a subclass of CS grammars.

In section 5.4 and in [Gra08] we introduce lmFS T systems as ConvFS T systems where the
string of shared knowledge is replaced for a memory limited to at most the last uttered locution.
Because there are no restrictions over the locutions used very complex dialogues can be modeled,
where locutions can contain information of previously uttered locutions and even the whole dia-
logue history. Then we provide an example that shows the possible implications that considering
a memory with this restriction, instead of a string of locutions, can have over the specification
in lmFS T of argumentation-based dialogues. In section 5.4 we prove some formal properties for
lmFS T systems. With theorem 20 we prove that the family lmFS Tn of lmFS T systems with at
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5.2. ConvFS T systems 109

most n ≥ 1 active agents collapses into the family lmFS T1. With theorem 21 we prove that the fam-
ily ElmFS Tn of Extended limited memory Finite State Transition (ElmFST) systems with arbitrary
n ≥ 1 agents has the same expressive power as CS grammars.

In section 5.5 we introduce rCFS T systems as ConvFS T systems where the locutions have no
parameters and each locution is associated with a λ-free CF rule such that the locution’s precondition
evaluates true iff the associated CF rule can be applied over the string of shared knowledge. If
the precondition associated with a locution evaluates true, then the locution is uttered and a new
string of shared knowledge is obtained from the application of the CF rewriting rule associated
with that locution. After explaining the suitability of this framework to specify frame-based mixed-
initiative dialogue protocols, we prove in section 5.5.3 some of its formal properties. With theorem
22 we prove that the family of Extended rCFST systems with at most n ≥ 1 agents (ErCFS Tn) is
equivalent to the family rC of languages generated by regularly Controlled grammars with λ-free
CF productions [GS68] [DPS97]. Therefore ErCFS Tn ⊂ CS and the problems of membership,
emptiness and finiteness are decidable, with the last two problems being NP-hard. With theorem
23 we prove how the family rCFS Tn collapses with the family rCFS T1 when we consider the
language of shared knowledge generated.

The overall intention of chapters 4 and 5 is to contribute to Dialogue Theory, mainly from the
perspective of Formal Language Theory, in the formal study of frameworks for the specification
of dialogues. In this chapter we enlarge the hierarchy of Grammar system variants presented in
chapter 4 which frameworks based on finite state transition systems for the specification of dialogue
protocols.

5.2 ConvFS T systems

In Conversational Finite State Transition (ConvFS T ) systems the number of agents is fixed. Each
agent Ai, 1 ≤ i ≤ n, is provided with a private knowledge base Ki containing its beliefs. These
knowledge bases are fixed during the dialogue, which means that the agents do not learn through
the dialogue. The dialogue moves are described by a finite state transition system where the states
correspond to stages in the conversation and transitions are conditional and labeled by locutions
from a locution set. For a labeled transition to be triggered the precondition associated with the
locution that labels it has to be satisfied. The preconditions of the locutions are formulas over
some logic which are evaluated according to the agent knowledge and shared knowledge. Checking
the satisfaction of locution’s precondition is computable. If a transition is triggered a new state is
reached and some operation can be performed over a string of shared knowledge. This string of
shared knowledge records the information exchanged and knowledge learned by the agents during
the dialogue.

ConvFS T systems allow the definition of dialogue protocols with: backtracking (the capacity
to reply to locutions uttered at any earlier step of the dialogue and not only the previous one),
different turn-taking rules (agents can make several moves before the turns shift), arbitrary sets of
locutions, arbitrary types of agent knowledge bases and reasoning strategies and multiple replies
(indeterministic transition systems).
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110 Chapter 5. Finite state transition systems for dialogue protocols

5.2.1 Formal Definition

Definition 39 A dialogue protocol W ∈ ConvFS T of degree n ≥ 1 is a tuple:

W = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, S K0, F)

where:

• Σ is a finite set of symbols;

• Kidi ∈ 2Σ+

, for all 1 ≤ i ≤ n, are sets of strings over alphabet Σ. We call to Kidi the private
knowledge base of the agent with identifier idi;

• Q is a finite set of states;

• LSL is a finite set of locutions,
LSL =

{
ρidi(φ

(m)) | m ≥ 0 ∧ 1 ≤ i ≤ n ∧ prec(ρidi(φ
(m))) is a wff in logic L}

}

The locution ρidi(φ
(m)) ∈ LSL with constants ρ, idi and terms φ(1), ..., φ(m) has associated

a well formulated formula prec(ρidi(φ
(m))) in logic L. We call to prec(ρidi(φ

(m))) the pre-
condition of locution ρidi(φ

(m)), which can be evaluated using knowledge from Kidi and S K.
Checking a locution’s precondition is a computable function. There cannot be a locution
ρidi(φ

(m)) ∈ LSL with more than one precondition;

• Γ is a finite set of symbols used for the representation of the string S K ∈ Γ∗ corresponding to
the dialogue shared knowledge;

• S K0 ∈ Γ∗ is the string corresponding to the initial shared knowledge;

• q0 ∈Q is the initial state;

• F ⊆ Q, are the final states, and

• δ is a finite transition relation (Q × LSL × Γ∗)→ 2Q×Γ∗ .

Considering that a sequence of locutions ρid(v(m))β ∈ (LSL)+ is being processed, for any q ∈ Q,
ρid(v(m)) ∈ LSL, with parameter values v(m) , β ∈ (LSL)∗, S K ∈ Γ∗, the interpretation of

δ(q, ρid(v(m)), S K) = {(p1, newS K1), ..., (pm, newS Km)}

is that if the dialogue protocol W is in state q with current locution ρid(v(m)) ∈ LSL, with shared
knowledge S K, and the formula prec(ρid(v(m))) evaluates true, then W can for any 1 ≤ j ≤ m replace
S K with newS K j, take the first locution in β and enter state p j.

To formally describe the configuration of a dialogue protocol W at a given instant we define what
we call an instantaneous description. An instantaneous description records the state, the sequence
of locutions that is being processed, and the shared knowledge:

Definition 40 An instantaneous description for a dialogue protocol is a tuple (q, α, S K) where
q ∈ Q is the current state, α ∈ (LSL)∗ is the remaining sequence of locutions, S K ∈ Γ∗ is the
current shared knowledge.
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5.2. ConvFS T systems 111

Definition 41
The relation ` satisfies (q, ρid(v(m))α, S K) ` (p, α, newS K) iff (p, newS K) ∈ δ(q, ρid(v(m)), S K).

We denote as⇒+
W and⇒∗W the transitive and reflexive closure of ` in W.

Definition 42 The language of dialogues generated by a system W ∈ ConvFS T specified as
W = (Kid1 , ...,Kidn ,Σ,Q, LSL, Γ, δ, q0, S K0, F) is defined as:

LDg(W) = {α ∈ (LSL)∗ | (q0, α, S K0)⇒∗
Σ

(q f , λ, S K) ∧ q f ∈ F}.
Definition 43 The language of share knowledge generated by a system W ∈ ConvFS T specified as
W = (Kid1 , ...,Kidn ,Σ,Q, LSL, Γ, δ, q0, S K0, F) is defined as:

LS K(W) = {S hareK ∈ Γ∗ | (q0, α, S K0)⇒∗
Σ

(k, β, S hareK)⇒∗
Σ

(q f , λ, S K) ∧ q f ∈ F}.

If a dialogue protocol definition D can be defined by a ConvFS T system of degree n, n ≥ 1,
with language of share knowledge generated LS K(D) we write D ∈ ConvFS Tn.

We denote by ConvFS Tn, n ≥ 1the family of languages L(W) where W ∈ ConvFS T has degree
n. When the number of agents is not bounded, then we replace the corresponding parameter with
∞.

When we are interested only in strings over some alphabet T , hence in the language LS K(W) ∩
T ∗, then we speak about an Extended Conversational Finite State Transition (EConvFST) systems.
We denote by EConvFS Tn, n ≥ 1 the family of languages LS K(W) ∩ T ∗ where W ∈ ConvFS Tn.

5.2.2 An example of dialogue protocol

This example of dialogue protocol specified by a ConvFS T system corresponds to an argumentation-
based 2-party information seeking protocol, in the sense of [WK95], which we call ISP. In such
dialogue the Information-Seeker IS does not know the truth about a proposition p and asks an
Information-Provider IP about p. If the IP knows if p is true or false, it will inform the IS and
provide, upon request, the reasons that justify the value of p. The IS can accept or challenge the
provided reasons. It can also happen that the IP does not know the value of truth of p, and in this
case the dialogue finishes with the agent IS still not knowing the truth value of p.

Definition 44 We define ISP as the tuple:

ISP = (KIS ,KIP,Σ,Q, LS FOL,Γ, δ, q0, S K0, F)

where:

• Σ = PropVbles ∪ Operators, where PropVbles is a finite set of propositional variables and
Operators = {→,↔,∨,∧,¬, (, ), true, f alse};

• KIS ∈ 2Σ+

and KIP ∈ 2Σ+

are consistent sets of well defined propositional formulas over
alphabet Σ, so it is not possible that (∃α ∈ Ki : Ki |= α ∧ Ki |= ¬α), i ∈ {IS , IP}. Predicate
|=: 2Σ+ × Σ+ → Boolean is interpreted as logical deduction in propositional logic. Therefore
Ki |= ϕ indicates that the propositional formula ϕ ∈ Σ+ can be deduced from the set of axioms
Ki ∈ 2Σ+

using logical deduction in propositional logic;
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112 Chapter 5. Finite state transition systems for dialogue protocols

• Q = {q0, q1, q2, q3, q4, q5};
• S K0 = λ;

• Γ = Σ ∪ {?, !};
• We denote FOL the first order logic, then

LS FOL =

{
aski(ϕ), claimi(ϕ), retracti(),whyi(ϕ), arguei(ϕ), concedei(ϕ),
unknowni(ϕ) | i ∈ {IS , IP} ∧ ϕ ∈ Σ+ ∧ ϕ is a propositional formula

}
.

Considering i ∈ {IS , IP}, S K the string of shared knowledge and variables ϕ, β, ψ proposi-
tional formulas over alphabet Σ, the semantic of the locutions in LS FOL is the following:

prec(aski(ϕ)) = S K = λ ∧ (∃ϕ : ¬(Ki |= ϕ) ∧ ¬(Ki |= ¬ϕ))

prec(claimi(ϕ)) = S K = ψ?α ∧ (∃ϕ : (Ki |= ϕ) ∧ (ϕ = ψ ∨ ϕ = ¬ψ))

prec(unknowni(ϕ)) = S K = ϕ?α ∧ ¬(Ki |= ϕ) ∧ ¬(Ki |= ¬ϕ)

prec(retracti()) = S K = ϕ?α ∧ ¬(∃β : ¬(β↔ ϕ) ∧ (Ki |= (β→ ϕ) ∧ β))

prec(whyi(α2)) = S K = ψα ∧



∃α1, α2 : (ψ↔ α1 ∧ α2)
∧(Ki |= α1) ∧ ¬(Ki |= α2)∧
¬

[ ∃α3, α4 : (α2 ↔ α3 ∧ α4) ∧ (Ki |= α4)∧
(α4 ↔ f alse)

]


prec(arguei(ϕ)) = S K = ψ?α ∧ (∃ϕ : (Ki |= (ϕ→ ψ) ∧ ϕ))

prec(concedei(ϕ)) = S K = ϕα ∧ (∃ϕ : (Ki |= ϕ))

• Considering variables ϕ, ψ as propositional formulas over alphabet Σ, and shared knowledge
T ∈ Γ∗, then function δ is defined in the following way:

δ(q0, askIS (ϕ), S K0) = {(q1, ϕ?)}
δ(q1, claimIP(ϕ), ψ? T ) = {(q2, ϕ ψ? T )}
δ(q1, unknownIP(ψ), ψ? T ) = {(q5, ψ? T )}
δ(q2,whyIS (ϕ), ψ T ) = {(q4, ϕ? ψ T )}
δ(q4, argueIP(ϕ), ψ? T ) = {(q2, ϕ ψ? T )}
δ(q2, concedeIS (ϕ), ϕ T ) = {(q3, ϕ! ϕ T )}
δ(q4, retractIP(), ψ? T ) = {(q5, ψ? T )}, and

• F = {q3, q5}.

The interchange of locutions in ISP can be represented by the graph in figure 5.1.

From the definition of ISP, it immediately follows that ISP ∈ ConvFS T2.
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- q0 q1askIS
q2claimIP

q4whyIS

argueIP

q3

concedeIS

q5

unknownIP retractIP

Figure 5.1: Transition graph for the interchange of locutions in ISP

Once a dialogue protocol is formally specified in a formal framework, in this case the a ConvFS T
system, some formal analysis and proofs can be done. For dialogue protocol ISP we prove which
is the set of dialogue instances that it defines:

Theorem 14 The set of dialogue instances satisfying ISP∈ ConvFS T2 protocol is given by

LDg(ISP) =

{
askIS (ϕ)unknownIP(ϕ) | ¬(KIS |= ϕ) ∧ ¬(KIS |= ¬ϕ)
∧¬(KIP |= ϕ) ∧ ¬(KIP |= ¬ϕ)

}
∪



askIS (ϕ)claimIP(α1)whyIS (β1)argueIP(α2)whyIS ,2(β2)...
whyIS (βn)argueIP(αn+1)concedeIS (αn+1) | ¬(KIS |= ϕ)∧
¬(KIS |= ¬ϕ) ∧ (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1)∧
∀1 ≤ i ≤ n :



∃βi, ψi : (αi ↔ βi ∧ ψi)∧
¬(KIS |= βi) ∧ (KIS |= ψi)∧
(KIP |= (αi+1 → βi) ∧ αi+1)∧
¬

( ∃πi, γi : (βi ↔ πi ∧ γi)∧
(KIS |= γi) ∧ (γi ↔ f alse)

)




∧(KIS |= αn+1)



∪



askIS (ϕ)claimIP(α1)whyIS (β1)argueIP(α2)whyIS (β2)...
argueIP(αn+1)whyIS (βn+1)retractIP() | ¬(KIS |= ϕ)∧
¬(KIS |= ¬ϕ) ∧ (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1)∧
∀1 ≤ i ≤ n + 1 :



∃βi, ψi : (αi ↔ βi ∧ ψi) ∧ ¬(KIS |= βi)∧
(KIS |= ψi)∧
¬

( ∃πi, γi : (βi ↔ πi ∧ γi)∧
(KIS |= γi) ∧ ¬(γi ↔ true)

)

(
i < n + 1→ (KIP |= (αi+1 → βi) ∧ αi+1)

)




∧

(
i = n + 1→ ¬

( ∃αn+2 : ¬(αn+2 ↔ βn+1)∧
(KIP |= (αn+2 → βn+1) ∧ αn+2)

) )



.

Proof.
We prove first the right inclusion. Every dialogue instance β ∈ LDg(ISP) satisfies that

β = askIS (ϕ)α for some ϕ ∈ Σ+ where ¬(KIS |= ϕ) ∧ ¬(KIS |= ¬ϕ). The following is a tautol-
ogy in propositional logic:
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114 Chapter 5. Finite state transition systems for dialogue protocols

[¬(KIP |= ϕ) ∧ ¬(KIP |= ¬ϕ)] ∨ [(KIP |= ϕ) ∨ (KIP |= ¬ϕ)] .
Then the IP can only answer in one of these ways:

1. If ¬(KIP |= ϕ) ∧ ¬(KIP |= ¬ϕ) then the IP answers back unkownIP(). In this case we obtain a
string from the first subset of LDg(ISP).

2. If (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1) then the IP answers back claimIP(α1). The following is
a tautology: (KIS |= α1) ∨ ¬(KIS |= α1). Then the IS can only answer back in one of these
ways:

(a) If (KIS |= α1) then the IS answers back concedeIS (α1). In this case we obtain a string
from the second subset of LDg(ISP).

(b) If ¬(KIS |= α1) then this is also a tautology:

¬(KIS |= α1)→

∃β1, ψ1 : (α1 ↔ β1 ∧ ψ1) ∧ ¬(KIS |= β1) ∧ (KIS |= ψ1)∧
¬

(
∃π1, γ1 : (β1 ↔ π1 ∧ γ1) ∧ (KIS |= γ1) ∧ (γ1 ↔ f alse)

)
.

Then the IS answers back whyIS (β1).
The following is a tautology:

¬
(
∃α2 : ¬(α2 ↔ β1) ∧ (KIP |= (α2 → β1) ∧ α2)

)
∨(

∃α2 : ¬(α2 ↔ β1) ∧ (KIP |= (α2 → β1) ∧ α2)
)

Then the IP can only answer back in one of these ways:

i. If ¬
(
∃α2 : ¬(α2 ↔ β1) ∧ KIP |= (α2 → β1) ∧ α2

)
then the IP answers back

retractIP(). In this case we obtain a string from the third subset of LDg(ISP).

ii. If
(
∃α2 : ¬(α2 ↔ β1) ∧ (KIP |= (α2 → β1) ∧ α2)

)
then the IP answers back

argueIP(α2).
The following is a tautology: (KIS |= α2) ∨ ¬(KIS |= α2). Then the IS can only
answer back as described in 2.a or in 2.b, where propositions α1, β1, ψ1, π1, γ1 are
respectively replaced for propositions α2, β2, ψ2, π2, γ2.

We now prove the left inclusion.

1. If α ∈
{

askIS (ϕ)unknownIP(ϕ) | ¬(KIS |= ϕ) ∧ ¬(KIS |= ¬ϕ)
∧¬(KIP |= ϕ) ∧ ¬(KIP |= ¬ϕ)

}

then α ∈ LDg(ISP) because (q0, α, S K0)⇒2
ISP (q5, λ, S K f ).

2. If α ∈



askIS (ϕ)claimIP(α1)whyIS (β1)argueIP(α2)whyIS ,2(β2)...
whyIS (βn)argueIP(αn+1)concedeIS (αn+1) | ¬(KIS |= ϕ)∧
¬(KIS |= ¬ϕ) ∧ (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1)∧
∀1 ≤ i ≤ n :



∃βi, ψi : (αi ↔ βi ∧ ψi)∧
¬(KIS |= βi) ∧ (KIS |= ψi)∧
(KIP |= (αi+1 → βi) ∧ αi+1)∧
¬

( ∃πi, γi : (βi ↔ πi ∧ γi)∧
(KIS |= γi) ∧ (γi ↔ f alse)

)




∧(KIS |= αn+1)


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5.2. ConvFS T systems 115

then α ∈ LDg(ISP) because (q0, α, S K0)⇒+
ISP (q3, λ, S K f ).

3. If α ∈



askIS (ϕ)claimIP(α1)whyIS (β1)argueIP(α2)whyIS (β2)...
argueIP(αn+1)whyIS (βn+1)retractIP() | ¬(KIS |= ϕ)∧
¬(KIS |= ¬ϕ) ∧ (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1)∧
∀1 ≤ i ≤ n + 1 :



∃βi, ψi : (αi ↔ βi ∧ ψi) ∧ ¬(KIS |= βi)∧
(KIS |= ψi)∧
¬

( ∃πi, γi : (βi ↔ πi ∧ γi)∧
(KIS |= γi) ∧ ¬(γi ↔ true)

)

(
i < n + 1→ (KIP |= (αi+1 → βi) ∧ αi+1)

)




∧

(
i = n + 1→ ¬

( ∃αn+2 : ¬(αn+2 ↔ βn+1)∧
(KIP |= (αn+2 → βn+1) ∧ αn+2)

) )



then α ∈ LDg(ISP) because (q0, α, S K0)⇒+
ISP (q5, λ, S K f ).

Once we have the formal definition of the language of dialogues generated by the protocol ISP
we prove that if speakers IS and IP have no knowledge in common, then the IS will never get a
satisfactory answer to his question:

Corollary 5 The protocol ISP∈ ConvFS T2 satisfies:[ ¬(KIS |= ϕ) ∧ ¬(KIS |= ¬ϕ) ∧ (KIP |= ψ)
∧ (ψ = ϕ ∨ ψ = ¬ϕ) ∧ ¬(∃αk : (KIS |= αk) ∧ (KIP |= αk))

]
→

LDg(ISP) =

{
askIS (ϕ)unknownIP(ϕ) | ¬(KIS |= ϕ) ∧ ¬(KIS |= ¬ϕ)
∧¬(KIP |= ϕ) ∧ ¬(KIP |= ¬ϕ)

}
∪



askIS (ϕ)claimIP(α1)whyIS (β1)argueIP(α2)whyIS (β2)...
argueIP(αn+1)whyIS (βn+1)retractIP() | ¬(KIS |= ϕ)∧
¬(KIS |= ¬ϕ) ∧ (α1 = ϕ ∨ α1 = ¬ϕ) ∧ (KIP |= α1)∧
∀1 ≤ i ≤ n + 1 :



∃βi, ψi : (αi ↔ βi ∧ ψi) ∧ ¬(KIS |= βi)∧
(KIS |= ψi)∧
¬

( ∃πi, γi : (βi ↔ πi ∧ γi)∧
(KIS |= γi) ∧ (γi ↔ f alse)

)

(
i < n + 1→ (KIP |= (αi+1 → βi) ∧ αi+1)

)




∧

(
i = n + 1→ ¬

( ∃αn+2 : ¬(αn+2 ↔ βn+1)∧
(KIP |= (αn+2 → βn+1) ∧ αn+2)

) )



Proof. We prove this by reductio ad absurdum. Let us suppose that the dialogue instance below
satisfies ISP.

askIS (ϕ)claimIP(α1)whyIS ,1(β1)argueIP,1(α2)whyIS ,2(β2) . . .

whyIS ,n(βn)argueIP,n(αn+1)concedeIS (αn+1)

From theorem 14 this means that (KIP |= (αn+1 → βn) ∧ αn+1) ∧ (KIS |= αn+1). In particular
[(KIS |= αn+1) ∧ (KIP |= αn+1)] contradicts our hypothesis, and proves the result.
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116 Chapter 5. Finite state transition systems for dialogue protocols

The converse of this result does not hold. For example take the the set of axioms
KIP = {k, p, s→ p}, KIS = {k} and the dialogue instance

[d = askIS (p)claimIP(p)whyIS (p)argueIP(s→ p)whyIS (s)retractIP()]

5.2.3 A possible application in Argumentation-based Dialogue Theory

In the 80s different logics for defeasible argumentation were developed to formalize the way humans
reason deriving tentative conclusions on the basis of uncertain or incomplete information, conclu-
sions that can be withdrawn when some more information is available. Examples of defeasible or
non monotonic logics are [Pol74], [Dun95], [PV00]. Based on these logics, logical argumentation
systems were introduced to formalize this kind of reasoning in terms of the interactions between
arguments for alternative conclusions. Non-monotonicity arises since arguments can be defeated by
stronger counterarguments.

Artificial Intelligence has studied the exchange of arguments and counterarguments in the con-
text of multi-agent interaction. Few approaches have focused on the meta-theoretical study of dia-
logue protocols for multi-agent systems. A general and abstract formal framework for the definition
of argumentation dialogue protocols where no assumption is made about the locutions uttered, the
commitments taken by agents and the argumentation system involved is presented in [ABP06]. Al-
though there are some other proposals of argumentation-based formal frameworks for multi-agent
systems, they take place in particular settings where some parameters are fixed, like: the locutions
uttered, the commitments taken by the agents during the dialogues or the argumentation systems
that are involved. For instance Reed [Ree98], Gordon [Gor94, GK97], Kraus [KNS93],[ABP06]
and Parsons [PWA03b].

The work from [PWA03b] corresponds to a logic-based formalism for modeling dialogues be-
tween intelligent and autonomous software agents, built on a theory of abstract dialogue games.
The underlying argumentation system in this framework was introduced by Amgoud in [Amg98].
In [PWA03b] [PWA02] they present formal results studying the consequences that the adoption of
the argumentation system from [Amg98] can have over the definition of protocols in their frame-
work. For instance they studied time complexity and the influence that the combination of certain
types of agents can have over the execution and termination of a protocol.

The definition and formal study of argumentation-based frameworks for multi-agent systems is
based on the necessity of providing generic, abstract and well defined formalisms in which protocols
can be specified, compared and evaluated in a common notation in a precise way. These studies are
fundamental if we want to address open problems of the type introduced in [PWA03b]:

• How might one choose between two protocols?;

• When is one protocol preferable to another?;

• When do two protocols differ?;

• Can we tell if a protocol is new (in the sense of providing a different functionality from an
existing protocol rather than just having equivalent locution with different names)?;
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5.2. ConvFS T systems 117

• Is a protocol new (in the sense of providing a different functionality from an existing protocol
rather than just having equivalent locutions with different names)?.

Below we briefly introduce the formal system of argumentation due to Amgoud [Amg98] that
forms the backbone of the framework introduced in [PWA03b]. The work of Amgoud is inspired
by the work of Dung [Dun95] but goes further in dealing with preferences between arguments.

Amgoud’s argumentation formal system

A possibly inconsistent knowledge base Σ with no deductive closure is considered. It is assumed that
Σ contains formulas in PLU . PLU denotes the propositional language where apart from constants
true and false the constant U is considered to denote uncertainty. ` stands for classical inference,
→ for logical implication, and↔ for logical equivalence. An argument is defined as:

Definition 45 An argument is a pair A = (H, h) where h is a formula of PLU and H a subset of Σ

such that:

1. H is consistent;

2. H ` h; and

3. H is minimal, so no proper subset of H satisfying both 1 and 2 exists.

H is called the support of A, written H = Support(A) and h is the conclusion of A written
h = Conclusion(A).

We talk of h being supported by the argument (H, h)
In general, since Σ is inconsistent, arguments in A(Σ), the set of all arguments which can be

made from Σ, will conflict, therefore the notion of undercutting:

Definition 46 Let A1 and A2 be two arguments of A(Σ). A1 undercuts A2 iff ∃h ∈ S upport(A2)
such that h↔ ¬Conclusion(A1).

In other words, an argument is undercut if and only if there is another argument which has as its
conclusion the negation of an element of the support for the first argument.

To capture the fact that some facts are more strongly believed it is assumed that any set of
facts has a preference order over it. It is supposed that this ordering derives from the fact that
the knowledge base Σ is stratified into non-overlapping sets Σ1, . . . ,Σn such that facts in Σi are all
equally preferred and are more preferred than those in Σ j where j > i. The preference level of a
nonempty subset H of Σ, level(H), is the number of the highest numbered layer which has a member
in H.

Definition 47 Let A1 and A2 be two arguments in A(Σ). A1 is preferred to A2 according to Pre f ,
Pre f (A1, A2), iff level(S upport(A1)) ≤ level(S upport(A2)).

�Pref denotes the strict pre-order associated with Pref . If A1 is preferred to A2, it is said that A1 is
stronger than A2. An argumentation system is defined in the following way:
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118 Chapter 5. Finite state transition systems for dialogue protocols

Definition 48 An argumentation system is a triple (A(Σ),Undercut,Pref ) such that:

• A(Σ) is a set of the arguments built from Σ,

• Undercut is a binary relation representing the defeat relationship between arguments,
Undercut ⊆ A(Σ) ×A(Σ), and

• Pref is a (partial or complete) preordering onA(Σ) ×A(Σ).

The preference order makes it possible to distinguish different types of relation between arguments:

Definition 49 Let A1, A2 be two arguments ofA(Σ).

• If A2 undercuts A1 then A1 defends itself against A2 iff A1 �Pref A2. Otherwise, A1 does not
defend itself.

• A set of arguments S defends A iff: ∀ B undercuts A and A does not defend itself against B
then ∃ C ∈ S such that C undercuts B and B does not defend itself against C.

Henceforth, CUndercut,Pref will gather all non-undercut arguments and arguments defending them-
selves against all their undercutting arguments. In [Amg98], Amgoud showed that the set S of
acceptable arguments of the argumentation system 〈A(Σ),Undercut,Pref 〉 is the least fixpoint of a
function F :

S ⊆ A(Σ)

F (S) = {(H, h) ∈ A(Σ)|(H, h) is defended by S}

Definition 50 The set of acceptable arguments for an argumentation system 〈A(Σ),Undercut,Pref 〉
is:

S =
⋃
Fi≥0(∅)

S = CUndercut,Pref ∪
[⋃
Fi≥1(CUndercut,Pref )

]

An argument is acceptable if it is a member of the acceptable set.

An acceptable argument is one which is, in some sense, proven since all the arguments which
might undermine it are themselves undermined. However, this status can be revoked following the
discovery of a new argument (possibly as the result of the communication of some new information
from other agent).

The set of locutions considered in [PWA03b] is the following:

DgArgFOL =

{
assert(p), assert(S ), accept(p), challenge(p), question(p), re ject(p) |
p is a formula in PLU ∧ S is a set of formulas in PLU

}

The semantic of each locution from DgArgPL is given by the effect that it has on the commit-
ment store of the agent that makes the locution (the other agent’s commitment store is unchanged).
Each locution in DgArgPL is defined as follows:
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5.2. ConvFS T systems 119

assert(p)

CS i(P) = CS i−1(P) ∪ {p}
where p can be any propositional formula, as well as the special characterU which we have already
met.

assert(S)

CS i(P) = CS (P)i−1 ∪ S

where S is a set of formulas representing the support of an argument.

accept(p)

CS i(P) = CS i−1(P) ∪ {p}
where p is a propositional formula.

challenge(p)

CS i(P) = CS i−1(P)

where p is a propositional formula.

question(p)

CS i(P) = CS i−1(P)

where p is a propositional formula.

Finally, the locution re ject(p) does not change the commitment stores, but indicates that the
agent that utters it will not accept p.

Which locutions can be made at a particular time depends on the protocol and also assertion
and acceptance attitudes.

Definition 51 An agent may have one of three assertion attitudes.

• a confident agent can assert any proposition p for which it can construct an argument (S , p).

• a careful agent can assert any proposition p for which it can construct an argument, if it is
unable to construct a stronger argument for ¬p.

• a thoughtful agent can assert any proposition p for which it can construct an acceptable
argument (S , p).

Definition 52 An agent may have one of three acceptance attitudes.

• a credulous agent can accept any proposition p if it is backed by an argument.
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120 Chapter 5. Finite state transition systems for dialogue protocols

• a cautious agent can accept any proposition p that is backed by an argument if it is unable to
construct a stronger argument for ¬p.

• a skeptical agent can accept any proposition p if it is backed by an acceptable argument.

Since agents are typically involved in both asserting and accepting propositions, they denote the
combination of an agent’s two attitudes as

〈assertion attitude〉/〈acceptance attitude〉

An example of an argumentation-based dialogue protocol

Definition 53 We call ICS the following inquiry dialogue protocol defined in the Amgoud’s argu-
mentation formal system, that resembles the inquiry dialogue protocol from [PMW04]. According
to [WK95] in an inquiry dialogue protocol the participants collaborate to answer some question
whose answer they do not know. In ICS we assume that two agents A and B have already agreed to
engage in an inquiry about some proposition p, maybe by some other dialogue protocol, and from
this point they can adopt the following protocol:

1. A asserts q→ p for some q, or A assertsU and the dialogue terminates.

2. B accepts q→ p if its acceptance attitude allows, or challenges it.

3. A replies to a challenge with an assert(S ), where S is the support of an argument for the last
proposition challenged by B.

4. Following a challenge, goto 2 for each proposition s ∈ S in turn, replacing q→ p by s.

5. If there are no more s ∈ S to be challenged by B then continue to 6.

6. If A(CS (A) ∪ CS (B)) includes an argument for q → p which is acceptable to both agents,
then first A and then B accept p, and the dialogue terminates successfully. Else continue to 7.

7. Go to 1, reversing the roles of A and B and substituting q→ p for r → q for some r.

Here the initial conditions of the dialogue are that neither agent has an argument for p.

We prove that the inquiry dialogue ICS can be specified by a ConvFS T2 system, considering
the following definition of simulation:

Definition 54 An argumentation-based dialogue protocol definition P expressed in the framework
from [PWA03b] can be specified by a ConvFS T system iff

(∃M ∈ ConvFS T : (∀α ∈ (DgArgFOL)∗ : α satisfies protocol P↔ α ∈ LDg(M))).

The dialogue protocol ICS from definition 53 can be specified using the framework ConvFS T2.
We propose to simulate protocol ICS with the dialogue protocol IQ ∈ ConvFS T2, where:
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5.2. ConvFS T systems 121

IQ = (KA,KB,Υ,Q, LS FOL,Γ, δIQ, q0, S K0, F)

with:

• Υ = PropVbles ∪ {∨,∧,↔,→,U, Pre f , undercuts, (, )} where PropVbles is a finite set of
propositional variables.

• KA = {αΣA , βUndercutA , γPre fA} where:

– 〈ΣA,UndercutA, Pre fA〉 is an argumentation system as in definition 48,
– αΣA is the string representation of ΣA,
– βUndercutA is the string representation of UndercutA and
– γPre fA is the string representation of Pre fA.

KB is similarly defined.

• Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11}.

• LS FOL =


λi, asserti(p), asserti(S ), accepti(p), challengei(p) |
p is a formula in PLU∧
S is a set of formulas in PLU ∧ i ∈ {A, B}



where PLU denotes the propositional logic with constants true, false and U; the locutions
λ j, j ∈ {A, B}, are identity elements of LS FOL:
(∀λ j, ρi(φ(h)) ∈ LS FOL : λ jρi(φ(h)) = ρi(φ(h))λ j = ρi(φ(h))).

The preconditions associated with the locutions in LS FOL are the result of the formaliza-
tion of the preconditions of the locutions in ICS plus the definition of a precondition for
λi ∈ LS FOL. The precondition for λi ∈ LS FOL corresponds to the condition that is checked
in the step 6 of protocol ICS . While in ICS the preconditions of the locutions are expressed
in natural language, in LS FOL they are expressed in first order logic. String S K ∈ Γ∗ cor-
responds to the shared knowledge and S K = α{β}A{η}B. In S K the string α corresponds to
uttered locutions, such that the leftmost substring in α corresponds to the last uttered locution.
In S K the strings β and η correspond to the string representation of CS (A) and CS (B), the
commitments acquired by agents A and B respectively. The preconditions for the locutions in
LS FOL, considering i, j ∈ {A, B}, i , j , and predicates Assi and Acci introduced in definitions
51 and 52 over argumentation system 〈A(Σi ∪CS ( j)),Undercuti,Prefi〉 are:

prec(accerti(U)) = [S K = 〈initial, p〉α ∨ S K = 〈challenge, p〉iα]∧
¬[∃(T, q→ p) ∈ A(Σi) : Assi(T, q→ p)]]

prec(asserti(q→ p)) = (S K = 〈initial, p〉α ∨ S K = 〈contribution, p→ r〉 jα)∧
[∃(T, q→ p) ∈ A(Σi) : Assi(T, q→ p)]

prec(asserti(T )) = S K = 〈challenge, p〉 jα ∧ [∃(T, p) ∈ A(Σi) : Assi(T, p)]
prec(accepti(p)) = (S K = 〈assert, p〉 jα ∧ Acci(p)
prec(accepti(p)) = (S K = 〈contribution, p〉iα ∨ S K = 〈termination, p〉 jα)

∧Acci(p)
prec(challengei(p)) = S K = 〈assert, p〉 jα ∧ ¬(Acc j(p))
prec(λi) = S K = 〈termination, q→ p〉 jα ∧ ¬(Acci(q→ p))
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122 Chapter 5. Finite state transition systems for dialogue protocols

• Γ = {{A, {B, }A, }B} ∪
{ 〈initial, p〉, 〈ρ, p〉i, 〈termination, p→ q〉i, 〈contribution, p→ q〉i |

p, q are formulas in PLU ∧ ρi(p) ∈ LS FOL ∧ i ∈ {A, B}
}

When an agent with identifier i ∈ {A, B} asserts a proposition p → q that contributes to
the proof under construction, then the leftmost substring in S K representing a locution is
replaced by 〈assert, p → q〉i followed by 〈contribution, p → q〉i. The second string is added
to S K not to lose the last contribution p → q to the common proof once the first string
disappears from S K when the agent with identifier j ∈ {A, B} accepts p→ q or it accepts the
propositions that justify p→ q. While if the agent with identifier i asserts a proposition q that
does not contribute to the common proof but that is provided as justification of a challenged
proposition, then only the string 〈assert, q〉i substitutes the leftmost substring in S K that
represents the last uttered locution. When the string 〈contribution, p → q〉i is the leftmost
substring in S K, it means that the agent with identifier j has accepted the proposition p → q
asserted by the agent i or that it has accepted all the justifications that agent i provided for
p → q. When the string 〈termination, p → q〉i is the leftmost substring in S K, it means two
things. On one hand it means that the agent j has accepted the proposition p → q asserted
by agent i or that it has accepted all the justifications that agent i provided for p → q. On
the other hand it means that the agent i has also found in CS (i) ∪ CS ( j) the justification for
p→ q and it has accepted it.

• S K0 = 〈initial, p〉{}A{}B
• For each dialogue move inICS if an agent with identifier i ∈ {A, B} utters a locution ρ(φ1, ..., φn)

a transition labeled with locution ρi(φ1, ..., φn) is defined in δIQ. Besides each transition that
is triggered in IQ produces some effect over string S K. For all the locutions from LS FOL,
expect the ones used for assertion and acceptance of a proposition, there is no effect over
the substrings from S K that represent commitment stores CS (A) and CS (B). When an agent
i ∈ {A, B} asserts a proposition in any state of IQ or accepts a proposition in the transition
from state q2 to q2 or from state q7 to q7 (step 2 of ICS ), there is an effect over S K. The effect
is the addition of the string representation of the asserted proposition in the string representa-
tion of set CS (i), to denote that the proposition is inserted into the commitment store of agent
i. When an agent i ∈ {A, B} accepts a proposition in the transition from state q2 to q3, or from
q3 to q10, or from q7 to q8, or from q8 to q11 (step 5 of ICS ), there is no effect over the string
representation of CS (i).

With respect to the transitions labeled with the locution λi ∈ LS FOL , they correspond to the
continuation of dialogue in step 6 of ICS because the agents can not accept the last contri-
bution to the proof. After the λi transition is triggered the dialogue continues with the roles
exchanged. The iteration in the step 4 of protocol ICS is possible in IQ because after the
transitions from state q0 to q2 and from state q5 to q7 are triggered, the string S K contains the
string representation of the propositions asserted by the agent A or B respectively. Each of
these propositions is removed in turn from the share knowledge when the agent playing the
other role accepts them in state q2 or q7 respectively. Below we define δIQ:

δIQ(q0, assertA(q→ p), 〈initial, p〉α{β}A{η}B) =

{(q2, 〈assert, q→ p〉A〈contribution, q→ p〉Aα{(q→ p)β}A{η}B)}
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5.2. ConvFS T systems 123

δIQ(q0, assertA(U), 〈challenge, p〉α{β}A{η}B) = {(q1, α{Uβ}A{η}B)}
δIQ(q0, assertA(S ), 〈challenge, p〉α{β}A{η}B) ={

(q2, 〈assert, s1〉A, ..., 〈assert, sn〉Aα{s1,A, ..., sn,Aβ}A{η}B)
}

provided S = {s1, ..., sn}
δIQ(q0, assertA(U), 〈challenge, p〉α{β}A{η}B) = {(q1, α{Uβ}A{η}B})}
δIQ(q2, acceptB(p), 〈assert, p〉Aα{β}A{η}B) = {(q2, α{β}A{pη}B)}
δIQ(q2, challengeB(p), 〈assert, p〉Aα{β}A{η}B) = {(q0, 〈challenge, p〉Bα{β}A{η}B)}
δIQ(q2, acceptA(q→ p), 〈contribution, q→ p〉Aα{β}A{η}B) =

{(q3, 〈termination, q→ p〉Aα{(q→ p)β}A{η}B)}
δIQ(q2, λZ , 〈contribution, q→ p〉Aα{β}A{η}B) = {(q4, 〈contribution, q→ p〉Aα{β}A{η}B)},
δIQ(q3, acceptB(q→ p), 〈termination, q→ p〉Aα{β}A{η}B) = {(q10, α{β}A{(q→ p)η}B})}
δIQ(q3, λZ , 〈termination, q→ p〉Aα{β}A{η}B) = {(q4, 〈contribution, q→ p〉Aα{β}A{η}B)}

Symmetrically:
δIQ(q4, assertB(r → q), 〈contribution, q→ p〉Aα{β}A{η}B) =

{(q5, 〈assert, r → q〉B〈contribution, r → q〉Bα{β}A{r → qη}B)}
δIQ(q5, assertB(U), 〈contribution, p〉α{β}A{η}B) = {(q1, α{β}A{Uη}B)}
δIQ(q5, assertB(S ), 〈challenge, p〉α{β}A{η}B) ={

(q7, 〈assert, s1〉A, ..., 〈assert, sn〉Aα{s1, ..., snβ}A{η}B)
}

provided S = {s1, ..., sn}
δIQ(q5, assertB(U), 〈challenge, p〉α{β}A{η}B) = {(q6, α{β}A{Uη}B)}
δIQ(q7, acceptA(p), 〈assert, p〉Bα{β}A{η}B) = {(q7, α{pβ}A{η}B)}
δIQ(q7, challengeA(p), 〈assert, p〉Bα{β}A{η}B) = {(q5, 〈challenge, p〉Aα{β}A{η}B)}
δIQ(q7, acceptB(q→ p), 〈contribution, q→ p〉Bα{β}A{η}B) =

{(q8, 〈termination, q→ p〉Bα{β}A{(q→ p)η}B)}
δIQ(q7, λZ , 〈contribution, q→ p〉Bα{β}A{η}B) = {(q9, 〈contribution, q→ p〉Bα{β}A{η}B)}
δIQ(q8, acceptA(q→ p), 〈termination, q→ p〉Bα{β}A{η}B) = {(q11, α{(q→ p)β}A{η}B)}
δIQ(q8, λZ , 〈termination, q→ p〉Bα{β}A{η}B) = {(q0, 〈contribution, q→ p〉Bα{β}A{η}B)}
δIQ(q9, 〈assert, r → q〉A, 〈contribution, q→ p〉Bα{β}A{η}B) =

{(q0, 〈assert, r → q〉A〈contribution, r → q〉Aα{(r → q)β}A + {η}B)}

• F = {q1, q6, q10, q11}.

By the way we define function δIQ and locution set LS FOL, the language of dialogues generated
by IQ ∈ ConvFS T2 is equivalent to the set of dialogue moves described by the protocol ICS . A
dialogue instance τ ∈ (DgArgFOL)+ such that τ satisfies protocolICS describes any of the following
situations:

1. An inquiry dialogue that finishes without solving the question when an agent Ai replies
assert(U) to the initial inquiry topic or he replies to a locution challenge(p) uttered by agent
A j, i , j.

2. An inquiry dialogue that finishes solving the question when first an agent Ai accepts all the
formulas that justify q→ p, then agent A j accepts q→ p becauseA(CS ( j)∪CS (i)) includes
an argument for q → p which is acceptable for him, and finally the agent Ai also accepts
q → p because A(CS ( j) ∪ CS (i)) includes an argument for q → p which is acceptable for
him.
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124 Chapter 5. Finite state transition systems for dialogue protocols

Equivalently, in IQ ∈ ConvFS T2 the string of locutions τ satisfying protocol ICS is accepted
iff:

1. (a) If τ = α assertA(U) then
(q0, α assertA(U), 〈intial, p〉{}A{}B)
`∗ (q1, λ, δ{Uβ}A{η}B).

(b) If τ = α challengeA(p)assertB(U) then
(q0, α challengeA(p)assertB(U), S K0)
`∗ (q7, challengeA(p)assertB(U), 〈assert, p〉Bδ{β}A{η}B)
` (q5, assertB(U), 〈challenge, p〉Aδ{β}A{η}B)
` (q6, λ, δ{β}A{Uη}B).

2. (a) If τ = α acceptB(r)acceptA(p→ q)acceptB(p→ q) then
(q0, α acceptB(r)acceptA(p→ q)acceptB(p→ q), 〈initial, x〉δ{β}A{η}B)

`∗
(

q2, acceptB(r)acceptA(p→ q)acceptB(p→ q),
〈assert, r〉A〈contribution, p→ q〉Aδ{β}A{η}B

)

` (q2, acceptA(p→ q)acceptB(p→ q), 〈contribution, p→ q〉Aδ{β}A{(r)η}B)
` (q3, acceptB(p→ q), 〈termination, p→ q〉Aδ{(p→ q)β}A{(r)η}B)
` (q10, λ, δ{(p→ q)β}A{(p→ q)(r)η}B.

(b) If τ = α acceptA(r)acceptB(p→ q)acceptA(p→ q) then
(q0, α acceptA(r)acceptB(p→ q)acceptA(p→ q), 〈initial, x〉δ{β}A{η}B)

`∗
(

q7, acceptA(r)acceptB(p→ q)acceptA(p→ q),
〈assert, r〉B〈contribution, p→ q〉Bδ{β}A{η}B

)

` (q7, acceptB(p→ q)acceptA(p→ q), 〈contribution, p→ q〉Bδ{(r)β}A{η}B)
` (q8, acceptA(p→ q), 〈termination, p→ q〉Bδ{(r)β}A{(p→ q)η}B)
` (q11, λ, δ{(p→ q)(r)β}A{(p→ q)η}B).

The interchange of locutions in IQ can be represented by the graph in figure 5.2.

Backtracking is the capacity of speakers to reply to locutions uttered at any earlier step of the
dialogue and not only the previous one. The dialogue protocol I∈ ConvFS T2 is an example of the
the suitability of the framework ConvFS T to specify dialogues with backtracking.

5.2.4 Formal Properties

With theorem 15 we provide a restriction under which the family ConvFS Tn of classes of languages
collapses. Before proving theorem 15 we introduce the following functions, where LSL is a set of
locutions with preconditions over logic L :

Definition 55

RenameLc : (LS ×Constant)→ LS
RenameLc(ρidy(φ

(h)), idx) = ρidx(φ
(h))
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Figure 5.2: Transition graph for the interchange of locutions in I.

Definition 56

RenameDg : ((LSL)∗ ×Constant)→ (LSL)∗

RenameDg(λ, idx) = λ

RenameDg(ρidy(φ
(h))β, idx) = ρidx(φ

(h)) RenameDg(β, idx)

Definition 57

RenameL : (2(LSL)∗ ×Constant)→ 2(LSL)∗

RenameL(∅, idx) = ∅
RenameL({α} ∪ L, idx) = {RenameDg(α, idx)} ∪ RenameL(L, idx)

Theorem 15

∀W ∈ ConvFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL, Γ, δ, q0, S K0, F) ∧ Kidn+1 = Kid1 ∪ ... ∪ Kidn∧

∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h)))∧
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→(

∃ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))
)

→
( ∃W′ ∈ ConvFS T1 : RenameL(LDg(W), idn+1) = LDg(W′)∧

LS K(W) = LS K(W′)

)





,

for all n ≥ 1.

Proof.
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126 Chapter 5. Finite state transition systems for dialogue protocols

Considering an arbitrary P ∈ ConvFS Tn such that P = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, S K0, F).
From P we can define P′ ∈ ConvFS T1 such that P′ = (Kidn+1 ,Σ,Q, newLSL,Γ, δ′, q0, S K0, F)
where:

• Kidn+1 = Kid1 ∪ ... ∪ Kidn ,

• newLSL = {ρidn+1(φ(h)) | ρidi(φ
(h)) ∈ LSL ∧ 1 ≤ i ≤ n},

• (∀(q, ρidi(v
(h)), S K) : (p, newS K) ∈ δ(q, ρidi(φ

(h)), S K)→ (p, newS K) ∈ δ′(q, ρidn+1(φ(h)), S K)).

We prove that RenameL(LDg(P), idn+1) = LDg(P′) in the following way:

β ∈ RenameL(LDg(P), idn+1)
↔ {Definition RenameL}
(∃α : α ∈ LDg(P) ∧ RenameDg(α, idn+1) = β)
↔ {Definition P}
(q0, α, S K0)⇒∗P (q f , λ, S K f ) ∧ q f ∈ F ∧ RenameDg(α, idn+1) = β

↔



(∀(q, ρidi(φ
(h)), S K) : (p, newS K) ∈ δ(q, ρidi(φ

(h)), S K)→ (p, newS K) ∈ δ′(q, ρidn+1(φ(h)), S K))∧
(∀ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))→ prec(ρidn+1(v(h))))∧(

∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→
(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h))

) )
∧

Kidn+1 = Kid1 ∪ ... ∪ Kidn


(q0, β, S K0)⇒∗P′ (q f , λ, S K f ) ∧ q f ∈ F
↔ {Definition P′}
β ∈ LDg(P′)

We prove that LS K(P) = LS K(P′) in this way:
( ∀S K ∈ LS K(P) : (q0, α, S K0)⇒∗P (k, β, S K)↔

(q0,RenameDg(α, idn+1), S K0)⇒∗P′ (k,RenameDg(β, idn+1), S K)

)

↔



(∀(q, ρidi(φ
(h)), S K) : (p, newS K) ∈ δ(q, ρidi(φ

(h)), S K)→ (p, newS K) ∈ δ′(q, ρidn+1(φ(h)), S K))∧
(∀ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))→ prec(ρidn+1(v(h))))∧(

∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→
(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h))

) )
∧

Kidn+1 = Kid1 ∪ ... ∪ Kidn)


true

Below we prove a theorem that relates family ConvFS Tn with the Chomsky hierarchy:

Theorem 16 RE = EConvFS Tn, for all n ≥ 1.

Proof.
We prove first that EConvFS Tn ⊆ RE. Given a dialogue protocol W ∈ EConvFS Tn de-

fined over locution set LSL, for every locution ρid(φ(h)) ∈ LSL the satisfaction of the predicate
prec(ρid(v(h))) is computable, with v(h) the values of parameters φ(h). Therefore EConvFS Tn ⊆ RE.

Below we prove that RE ⊆ EConvFS T1. From an arbitrary one-tape Turing Machine
M = (Q, Γ, b,Σ, δ, q0, F) we define W ∈ EConvFS T1 such that W = (Kid1 ,∆,Q, LSPL, Γ′, δ′, q0, F)
where:

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



5.2. ConvFS T systems 127

• Kid1 = ∅,
• ∆ is an arbitrary finite set,

• LSPL = {silenceid1} with prec(silenceid1) = true and (silenceid1)∗ = silenceid1 ,

• Γ′ = Γ ∪ {↓}, and

• δ′ is defined in the following way:

– δ(q, l) = (k, s, Le f t)→ δ′(q, silenceid1 , α ↓ lβ) = {(k, αs ↓ β)}
– δ(q, l) = (k, s,Right)→ δ′(q, silenceid1 , αa ↓ lβ) = {(k, α ↓ asβ)}
– δ(q, l) = (k, s,Nill)→ δ′(q, silenceid1 , α ↓ lβ) = {(k, α ↓ sβ)}.
– δ′(q, silenceid1 , α ↓ β) = {(q, αβ)}, where q ∈ F.

Prove that L(M) = LS K(W) ∩ Γ∗ is equivalent to prove that:[
∀α : ((q0, α)⇒∗M (q f , β) ∧ q f ∈ F))↔ ((q0, silenceid1 , ↓ α)⇒∗W (q f , silenceid1 , β)))

]

By the way we defined function δ′ it is clear that the predicate above is true.

From theorem 16 and the proof that EConvEREG systems have the expressiveness of Turing
Machines, we get the following corollary:

Corollary 6 EConvFS Tn = EConvEREGm, for all n,m ≥ 1.

5.2.5 Applicability in Dialogue Theory

Family ConvFS Tn allows to specify dialogue protocols with the following features:

• The number of conversants is n.

• The agents can not learn or modify their own knowledge bases but they can change the shared
knowledge base through the dialogue.

• Backtracking, turn-taking and arbitrary replying policies can be specified.

• Arbitrary locution sets, agent knowledge bases, agent reasoning strategies and dialogue ini-
tiatives can be used.

A way to decrease the expressive power of ConvFS T systems is to define subclasses of ConvFS T
that can be applicable in Dialogue Theory and exhibit good properties. We introduce three sub-
classes of ConvFS T :

1. Conditional Finite State Transition (CondFS T ) systems. In this framework the agents are
provided with a finite set of conditional rules that they use to decide their participation in the
dialogue. The agents use these rules to decide how to modify the string corresponding to the
shared knowledge depending on the presence and\or absence of substrings(information) in
that string. When in CondFS T systems we consider the share knowledge generated and non
erasing rewritting rules we get a subclass of CS grammars.
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128 Chapter 5. Finite state transition systems for dialogue protocols

2. Limited memory Finite State Transition (lmFS T ) systems. In this framework the shared
knowledge is limited to at most the last uttered locution. This class has the same expressive
power as CS grammars when we consider the share knowledge generated, so the membership
problem is decidable.

3. Regularly Controlled Finite State Transition (rCFST) systems. In this framework the locu-
tions have no parameters and each locution is associated with a non-erasing CF rule. The
precondition of every locution evaluates true if the associated CF rule can be applied over
the string of shared knowledge. When a locution is uttered a new string of shared knowledge
is obtained from the application of the CF rewriting rule associated with that locution. This
framework has the same expressive power as regularly Controlled Grammar systems. There-
fore rCFS T systems correspond to a type of mildly CS grammar so the membership problem
is decidable.

5.3 CondFS T systems

We introduce Conditional Finite State Transition (CondFS T ) systems with degree n ≥ 1 and
condition c ∈ {b, s}, which differ from ConvFS T systems on the following restrictions:

• The agent private knowledge bases are given by a finite set of conditional rules of the type
(e, f , ρid(φ(m)) : P), where Γ is the finite set of symbols used in the string of shared knowledge,
e ∈ Γ∗ is a permitting context, f ∈ Γ∗ is a forbidding context, ρid(φ(m)) is a locution and (Γ, P)
is a 0L component scheme.

• Before a speaker Aid can utter a locution ρid(v(m)) in a conversation with shared knowledge
S K ∈ Γ∗, it has to inspect his knowledge base Kid looking for a rule (e, f , ρid(φ(m)) : P) that
satisfies the following:

– If c = b then S K has to contain the block of information e, i.e. S K = αeβ and S K can
not contain the block of data f , what means ¬(∃α, β : S K = α fβ). If these conditions
are satisfied then agent Aid can utter locution ρid(v(m)). The consequence of uttering
ρid(v(m)) is the application of rules P over S K.

– If c = s then S K has to contain the information e = e0...et scattered in S K (S K =

α1e1α2...etαt+1) and S K can not contain data f = f1... fq scattered in S K (S K ,
β1 f1β2... fqβq+1). Only if these conditions are satisfied then the agent Aid can utter lo-
cution ρid(v(m)). The consequence of uttering ρid(v(m)) is the application of rules P over
S K.

5.3.1 Formal Definition

Below we formally define Conditional Finite State Transition (CondFS T ) systems with degree
n ≥ 1 and condition c ∈ {b, s}, interpreting the conditional predicate πc as explained in definition
33.
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5.3. CondFS T systems 129

Definition 58

CondFS Tn =



W ∈ ConvFS Tn | W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL, Γ, δ, q0, S K0, F)∧
Σ = Γ ∪ LS FOL ∪ {(, ), :,→}∧
Kidi =

{
(e, f , ρidi(φ

(m)) : P) | e ∈ Γ∗ ∧ f ∈ Γ∗ ∧ ρidi(φ
(m)) ∈ LS FOL

∧(Γ, P) is a 0L component scheme}
}
∧


∀ρidi(φ

(m)) ∈ LS FOL, q, k ∈ Q, S K, newS K ∈ Γ∗ :

prec(ρidi(φ
(m))) =

( ∃(e, f , ρidi(φ
(m)) : P) ∈ Kidi : πc(e, S K) = 1∧

πc( f , S K) = 0

)
∧



∀q, k ∈ Q, S K, newS K ∈ Γ∗, ρidi(v
(m))α ∈ (LS FOL)+ :( ∃(e, f , ρidi(φ

(m)) : P) ∈ Kidi : prec(ρidi(v
(m))) ∧

S K ⇒P newS K

)
→

(q, ρidi(v
(m))α, S K)⇒W (k, α, newS K)





We denote by CondFS Tn(i, j, c), n ≥ 1, c ∈ {b, s}, i, j ≥ 0, the family of languages LS K(W)
where W ∈ CondFS Tn, all the permitting contexts have length at most i, all the forbidden context
have length at most j and predicate πc is used to verify the presence or absence of contexts. When
the number of agents, the length of the permitting context, or the length of the forbidding contexts
is not bounded, then we replace the corresponding parameter with∞.

When we are interested only in strings over some alphabet T , hence in the language LS K(W) ∩
T ∗, then we speak about an Extended Conditional Finite State Transition (ECondFST) system. We
denote by ECondFS Tn(i, j, c), the family of languages LS K(W)∩T ∗ where W ∈ CondFS Tn(i, j, c).

5.3.2 Formal Properties

The following basic relations directly follow from the definition of ECondFS Tn(i, j, c):

Lemma 2

1. ECondFS Tn(i, j, c) ⊆ ECondFS Tm(i′, j′, c), for all c ∈ {b, s}, 1 ≤ n ≤ m and i ≤ i′, j ≤ j′.
2. ECondFS Tn(i, j, b) ⊆ ECondFS Tn(i, j, s), for all n ≥ 1 and i, j ∈ {0, 1}.
3. ECondFS Tn(0, 0, c) = ETOL, n ≥ 1, c ∈ {b, s}.

With the theorem below we introduce some restrictions over the preconditions of the locutions
in order to make ECondFS Tn collapse into ECondFS T1:

Theorem 17
∀W ∈ ECondFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, S K0, F) ∧ Kidn+1 = Kid1 ∪ ... ∪ Kidn∧(
∃W′ ∈ ECondFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)

)
,

for all n ≥ 1.

Proof. We consider an arbitrary dialogue protocol W ∈ ECondFS Tn such that

W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL, Γ, δ′, q0, S K0, F)

From W we define a dialogue protocol W′ ∈ ECondFS T1,

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



130 Chapter 5. Finite state transition systems for dialogue protocols

W′ = (Kidn+1 ,Σ,Q, newLS FOL,Γ, δ, q0, S K0, F) such that:

• Kidn+1 = {(d, e, ρidn+1(φ(h)) : P) | (d, e, ρidi(φ
(h)) : P) ∈ Kidi ∧ 1 ≤ i ≤ n},

• newLS FOL = {ρidn+1(φ(h)) | ρidi(φ
(h)) ∈ LS FOL ∧ 1 ≤ i ≤ n},

• (∀(q, ρidi(φ
(h)), S K) : (p, newS K) ∈ δ(q, ρidi(φ

(h)), S K)→ (p, newS K) ∈ δ′(q, ρidn+1(φ(h)), S K)).

First we need a supplementary proof. We need to prove the following:

(∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h)))) ∧
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→(

∃ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))
)



We prove it for an arbitrary locution ρidi(v
(h)):

prec(ρidi(v
(h)))

↔ {Definition ECondFS T systems and definition function RenameLc}( ∃(e, f , ρidi(φ
(m)) : P) ∈ Kidi : πc(e, S K) = 1 ∧ πc( f , S K) = 0∧

RenameLc(ρidi(φ
(m)), idn+1) = ρidn+1(φ(m))

)

↔ {Definition W′}( ∃(e, f , ρidn+1(φ(m)) : P) ∈ Kidn+1 : πc(e, S K) = 1 ∧ πc( f , S K) = 0∧
RenameLc(ρidi(φ

(m)), idn+1) = ρidn+1(φ(m))

)

↔ {Definition ECondFS T systems and definition function RenameLc}
prec(ρidn+1(v(h))).

The proof continues as explained in theorem 15.

The result below connects ECondFS T systems with the Extended Conditional Tabled Eco-
Grammar (ECTEG) systems introduced in Chapter 2.

Theorem 18 ECT EGn(i, j, c) ⊆ ECondFS T1(∞,∞, c), for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.

Proof. In [Mih94] it was proved that ECT EGn(i, j, c) = ECT EG1(i, j, c) for arbitrary n ≥ 1, i, j ≥ 0
and c ∈ {b, s}. Then we can prove this theorem replacing n for 1.

First we prove it for the scattered condition: given an arbitrary W ∈ ECT EG1(i, j, s) such that
W = (E, A1) with:

• E = (VE ,RulesE),

• RulesE = (e1, f1 : P1), ..., (ek, fk : Pk),

• A1 = (V1,Rules1),

• Rules1 = (g1, h1 : R1), ..., (gs, hs : Rs),

• VE ∩ V1 = ∅.
From W we can define W′ ∈ ECondFS T1(2i, 2 j, s) such that
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5.3. CondFS T systems 131

W′ = (Kid,Σ,Q, LS FOL,Γ, δ, q0, S K0, F) with:

• Q = {q0},
• LS FOL = {silenceid} and silenceid = (silenceid)∗,

• F = ∅,
• Γ = VE ∪ V1,

• S K0 = (wE,0,w1,0), and

• Kid = {(eg, f h, silenceid : P ∪ R) | (e, f : P) ∈ RulesE ∧ (g, h : R) ∈ Rules1}.

It is enough to prove the following:( ∀k ≥ 0 : (wE,k,w1,k)⇒W (wE,k+1,w1,k+1)↔
(q0, silenceid, (wE,k,w1,k))⇒W′ (q0, silenceid, (wE,k+1,w1,k+1))

)
.

We prove it below for an arbitrary k ≥ 0:
(wE,k,w1,k)⇒W (wE,k+1,w1,k+1)
↔ { Definition W ∈ ECT EG1(i, j, s)}
(∃(e, f : P) ∈ RulesE : πs(e,w1,k) = 1 ∧ πs( f ,w1,k) = 0 ∧ wE,k ⇒P wE,k+1) ∧
(∃(g, h : R) ∈ Rules1 : πs(g,wE,k) = 1 ∧ πs(h,wE,k) = 0) ∧ w1,k ⇒R w1,k+1)
↔ {Definition Kid ∧ VE ∩ V1 = ∅}( ∃(eg, f h, silenceid : P ∪ R) ∈ Kid : πs(eg, (wE,k,w1,k)) = 1∧
πs( f h, (wE,k,w1,k)) = 0 ∧ wE,k ⇒P wE,k+1 ∧ w1,k ⇒R w1,k+1

)

↔ { Definition W′ ∈ ECondFS T1(2i, 2 j, s)}
(q0, silenceid, (wE,k,w1,k))⇒W′ (q0, silenceid, (wE,k+1,w1,k+1))).

When we consider a block condition the proof consists on considering an arbitrary W ∈ ECT EG1(i, j, b).
From W we can define W′ ∈ ECondFS T1(∞,∞, b) similar to the previous case, only differing in
the following:

Kid = {(eαg, fβh, silenceid : P ∪ R) | (e, f : P) ∈ RulesE ∧ (g, h : R) ∈ Rules1 ∧ α, β ∈ Γ∗}
Then we need to prove the following for an arbitrary k ≥ 0:

(wE,k,w1,k)⇒W (wE,k+1,w1,k+1)
↔ { Definition W ∈ ECT EG1(i, j, b)}
(∃(e, f : P) ∈ RulesE : πb(e,w1,k) = 1 ∧ πb( f ,w1,k) = 0 ∧ wE,k ⇒P wE,k+1) ∧
(∃(g, h : R) ∈ Rules1 : πb(g,wE,k) = 1 ∧ πb(h,wE,k) = 0) ∧ w1,k ⇒R w1,k+1)
↔ {Definition Kid ∧ VE ∩ V1 = ∅}( ∃(eαg, fβh, silenceid : P ∪ R) ∈ Kid : πb(eαg, (wE,k,w1,k)) = 1∧
πb( fβh, (wE,k,w1,k)) = 0 ∧ wE,k ⇒P wE,k+1 ∧ w1,k ⇒R w1,k+1

)

↔ { Definition W′ ∈ ECondFS T1(∞,∞, b)}
(q0, silenceid, (wE,k,w1,k))⇒W′ (q0, silenceid, (wE,k+1,w1,k+1))).

Theorem 19 connects ECondFS T systems with non erasing rewriting rules with CS grammars
in the Chomsky hierarchy:
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132 Chapter 5. Finite state transition systems for dialogue protocols

Theorem 19 ECondFS Te,n(i, j, c) ⊆ CS , for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.

Proof.
With Theorem 12 it was proved that ECondEGe,n(i, j, c) ⊆ CS , for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.

From an arbitrary dialogue protocol W ∈ ECondFS Te,n(i, j, c) defined as

W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL, Γ, δ, q0, S K0, F),

we can construct a ECondEGe,n(i, j, c) system W′ = ((Γ, ∅), A1, .., An) such that for all i ≥ 1:
Ai = (∅, ∅, Pidi) and Pidi = {(e, f : P) | (e, f , ρidi(φ

(m)) : P) ∈ Kidi}.
Clearly LS K(W) = LE(W′, σ0) for all σ0.

5.3.3 Applicability in Dialogue Theory

Family CondFS Tn allows to specify dialogue protocols with the following features:

• The number of conversants is n

• The agents can not learn or modify their own knowledge bases but they can modify the shared
knowledge base through the dialogue.

• Backtracking, turn-taking and arbitrary replying policies can be implemented.

• Arbitrary locution sets are allowed.

• Agents private knowledge bases are limited to finite sets of conditional rules of the type
(e, f , ρid(φ(m)) : P), where Γ is the finite set of symbols used in the string of shared knowledge,
e ∈ Γ∗ is a permitting context, f ∈ Γ∗ is a forbidding context, ρid(φ(m)) is a locution and (Γ, P)
is a 0L component scheme.

• The reasoning strategy of an agent is fixed and corresponds to find a conditional rule from its
private knowledge base that can be applied over the shared knowledge.

• Arbitrary dialogue initiatives can be chosen.

5.4 lmFS T systems

ConvEREG and ConvFS T systems provide a common string that every active agent can access to,
which constitutes what in pragmatics is called a dialogue context. A dialogue context is a common
repository of agents’ shared knowledge where agents can make visible those communication actions
that constitute their interface to the other agents (observable behavior). The notion of dialogue
context was introduced in Linguistics but it has already been considered in Dialogue Theory with
names like agent observable behaviors [VO02], histories of communication [EBHM03], traces of
communication [WGS87] or social semantics [PWA03b].
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In section 5.2.3 we explained the role of the concept of social semantics in the argumentation-
based dialogue protocols from [PWA03b]: an agent X can construct its arguments from its private
knowledge base KX but also form the set of commitments CS (Y) from agent Y . The principle be-
hind social semantics is that when agents utter locutions they state publicly their knowledge, which
is saved in a commitment store. The truth of an agent’s speech acts can never be fully verified
[Woo00], but at least an agent’s consistency can be assessed inspecting the content of the com-
mitment store. Then within an argumentation-based dialogue system the reasons supporting these
expressions can be analyzed leading to an acceptance, rejection, challenge or contra-argumentation
from other agents.

In this section we introduce a type of ConvFS T system that we call limited memory Finite State
Transition (lmFST) system where we replace the string of shared knowledge for a memory limited
to at most the last uttered locution.

In [PWA03b] it was proved that in the argumentation-based framework that we presented in sec-
tion 5.2.3 agent decision procedures are computable. Therefore we can use the argumentation-based
framework from [PWA03b] to provide an example showing a practical implication of replacing a
string for a memory limited to at most the last uttered locution in dialogue protocols where the
private knowledge bases of the agents are fixed and cannot be modified during run-time.

Example 3 Let us consider an information-seeking protocol between agents A and B provided re-
spectively with argumentation systems 〈ΣA,UndercutA, Pre fA〉 and 〈ΣB,UndercutB, Pre fB〉 as ex-
plained in section 5.2.3. Such that ΣA = {¬p} and ΣB = ({p,¬r, p → r,¬r → p} with p, r formulas
in propositional logic. Both agents use propositional logicPL to prove that a proposition is inferred
from their knowledge bases and they are provided with a shared memory S initialized with λ.

We choose this set of locutions:

LS FOL =

{
questioni(p), challengei(T ), asserti(T ) | p is a formula in PL∧
T is a set of formulas in PL ∧ i ∈ {A, B}

}
,

with the following preconditions and postconditions that we stay in natural language:

• Agent A asks questionA(p) at the beginning of the dialogue iff S = λ and it can not deduce p
from its argumentation system and it places the locution in S .

• Agent A utters challengeA(P) iff S = assertB(T ), T = P ∪ R, and for all the propositions p
in P it cannot deduce p from its argumentation system. Then it replaces the content of S for
challengeA(P).

• Agent B utters assertB({p}) iff S = questionA(p) and p is not an axiom in its argumentation
system and it can deduce p from its argumentation system. The agent replaces the content of
S for assertB({p}).

• Agent B utters assertB({U}) iff S = questionA(p) and p is an axiom in its argumentation
system or it cannot deduce p, or S = challengeA(T ) and any proposition t in T is an axiom
in its argumentation system or it cannot deduce t. The agent replaces the content of S for
assertB({U}).
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134 Chapter 5. Finite state transition systems for dialogue protocols

• Agent B utters assertB(P) iff S = challengeA(T ), none proposition in T is an axiom in its
argumentation system and it can deduce that the set of propositions P provide arguments for
T . The agent replaces the content of S for assertB(P).

Using the set of locutions LS FOL and the shared memory S of at most one locution we can
obtain the following dialogue instance corresponding to an information-seeking protocol:

1. S = λ and agent A utters questionA(r).
2. S = questionA(r) and agent B answers assertB({r}), because it can support r with arguments

{p, p→ r}.
3. S = assertB({r}) and agent A utters challengeA({r}) because it cannot prove r from {¬p}.
4. S = challengeA({r}) and agent B answers assertB({p→ r, p}). .
5. S = assertB({p → r, p}) and agent A replies with challengeA({p}) because it cannot deduce

¬(p→ r) from {¬p}.
6. S = challengeA({p}) and agent B says assertB({¬r,¬r → p}).
7. S = assertB({¬r,¬r → p}) and agent A utters challengeA({¬r → p}) because it cannot

deduce r from {¬p}.
8. S = challengeA({¬r → p}) and agent A utters challengeA(∅) because it cannot deduce

¬(¬r → p) from {¬p}.
The dialogue finishes successfully. There are no propositions to be challenged.

Let us consider now that agents A and B are respectively provided with argumentation systems
〈ΣA∪CS (B),UndercutA, Pre fA〉 and 〈ΣB∪CS (A),UndercutB, Pre fB〉, and with commitment stores
CS (A) and CS (B) as explained in section 5.2.3. The inference systems ΣA, ΣB are the same as in
previous case. Now instead of a shared memory S of at most one locution the agents can use a
string S K as shared memory. The agents use part of S K as a shared memory S ′ of at most one
locution and the rest as commitment stores CS (A) and CS (B). S K is initialized with empty memory
and empty commitment stores, i.e. S K = λ.

We use the same set of locutions LS FOL but we add to the postconditions the effect that the
action of uttering locutions has over the commitment stores CS (A) and CS (B):

• Agent A asks questionA(p) at the beginning of the dialogue iff the memory S ′ is empty and it
cannot deduce p from its argumentation system and it places the locution in S ′.

• Agent A utters challengeA(P) iff S ′ = [assertB(T )], T = P ∪ R, and for all p in P it cannot
deduce p from its argumentation system. Then it replaces the content of S ′ for challengeA(P).

• Agent B utters assertB({p}) iff S ′ = [questionA(p)] and p is not an axiom in its argumentation
system and it can deduce p from its argumentation system. The agent replaces the content of
S ′ for assertB({p}) and adds p to CS (B).

• Agent B utters assertB({U}) iff S ′ = [questionA(p)] and p is an axiom or it cannot deduce
p, or S ′ = [challengeA(P)] and for some proposition p in P the proposition p is an axiom
in its argumentation system or it cannot deduce p. The agent replaces the content of S ′ for
assertB({U}).
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• Agent B utters assertB(P) iff S ′ = [challengeA(T )] and no proposition in T is an axiom in its
argumentation system and it can deduce that the set of propositions P provide arguments for
T . The agent replaces the content of S ′ for assertB(P) and adds p to CS (B).

Using the set of locutions LSPL, a memory S ′ of at most one locution and commitment stores
CS (A) and CS (B) we can obtain the following dialogue instance corresponding to an information-
seeking protocol:

1. S ′ = [] and CS (A) = CS (B) = ∅. Agent A utters questionA(r).
2. S ′ = [questionA(r)] and CS (A) = CS (B) = ∅. Agent B answers assertB({r}), because it can

prove r from {p, p→ r}
3. S ′ = [assertB({r})], CS (A) = ∅ and CS (B) = {r}. Agent A utters challengeA({r}), because it

cannot prove r from {¬p} ∪ ∅.
4. S ′ = [challengeA({r})], CS (A) = ∅ and CS (B) = {r}. Agent B answers assertB({p→ r, p}).
5. S ′ = [assertB({p → r, p})], CS (A) = ∅ and CS (B) = {r, p → r, p}. Agent A replies with

challengeA({p}) because it cannot deduce ¬(p→ r) from {¬p} ∪ {r, p→ r, p}.
6. S ′ = [challengeA({p})], CS (A) = {p→ r} and CS (A) = {r, p→ r, p}. Agent B replies with

assertB({¬r,¬r → p}).
7. S ′ = [assertB({¬r,¬r → p})], CS (A) = {p → r} and CS (B) = {r, p → r, p,¬r,¬r → p}.

Agent A utters challengeA({¬r}) because it can deduce r from {¬p} ∪ {r, p→ r, p,¬r,¬r → p}.
8. S ′ = [challengeA({¬r})], CS (A) = {p → r} and CS (B) = {r, p → r, p,¬r,¬r → p}. Because

agent B has the axiom ¬r it replies assertB({U}).
The dialogue finishes unsuccessfully, agent B cannot prove to agent A that r is true, because

due to the consideration of a commitment store CS (B) agent A can detect an inconsistency in the
knowledge base of agent B: agent B first asserts r and then it asserts ¬r during the dialogue.

As the example above shows in the case of argumentation-based dialogues the restriction of
the string of shared knowledge to the last uttered locution can reduce the capacity of the agents to
detect inconsistencies between the arguments interchanged during the dialogue, leading to wrong
inferences.

In [GGF08] we worked on the comparison of concurrent processes defined in the framework
of Coloured Petri Nets, focusing only on the labeled transition systems generated and abstracting
from the agent reasonings strategies. We based our study on the notions of simulation equivalence
for the process algebra called pi-calculus [Mil99]. Examples of simulation equivalences that we
considered are branching time similarity, observable similarity, strong similarity, week similarity,
etc. Our intention was to recognize processes that were bisimilar to be able to interchange them.
But as this example shows, a deeper comparison of dialogues where the rationality of the agents is
considered should be studied.

5.4.1 Formal Definition

Definition 59 A dialogue protocol W ∈ lmFS Tn of degree n ≥ 1 is a tuple:

W = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, Z0, F)
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136 Chapter 5. Finite state transition systems for dialogue protocols

where:

• Σ, Kidi , for all 1 ≤ i ≤ n, Q, q0 and F are defined as in ConvFS T systems;

• LSL is a finite set of locutions. Considering S K ∈ LSL ∪ {λ} as the memory, we have:
LSL =

{
ρidi(φ

(m)) | m ≥ 0 ∧ 1 ≤ i ≤ n ∧ prec(ρidi(φ
(m))) is a wff in logic L}

}

The locution ρidi(φ
(m)) ∈ LSL with constants ρ, idi and terms φ(1), ..., φ(m) has associated

a well formulated formula prec(ρidi(φ
(m))) in logic L. We call to prec(ρidi(φ

(m))) the pre-
condition of locution ρidi(φ

(m)). For every locution ρidi(v
(m)) ∈ LSL with parameters val-

ues v(m) checking if prec(ρidi(v
(m))) evaluates true is decidable. There cannot be a locution

ρidi(φ
(m)) ∈ LSL with more than one precondition.

• Γ = LSL ∪ {λ} is the memory alphabet and LSL ∩ {λ} = ∅;
• Z0 = λ is the initial memory symbol, and

• δ is a finite transition relation (Q × LSL × Γ)→ 2Q×Γ.

Considering that a sequence of locutions ρi(v(m))β ∈ (LSL)+ with parameter values v(m) is being
processed, for any q ∈ Q, ρi(v(m)) ∈ LSL, β ∈ (LSL)∗, the memory content τ ∈ Γ , the interpretation
of

δ(q, ρi(v(m)), τ) = {(p1, γ1), ..., (pm, γm)}
is that if the dialogue protocol W is in state q with current locution ρi(v(m)), with memory content
τ, and prec(ρi(v(m))) evaluates true, then W can for any 1 ≤ x ≤ m replace τ with γx = ρi(v(m)) or
γx = λ, take the first locution in β and enter state px.

To formally describe the configuration of a dialogue protocol W at a given instant we define what
we call an instantaneous description. An instantaneous description records the state, the sequence
of unprocessed locutions and the content of the memory:

Definition 60 An instantaneous description for a dialogue protocol is a tuple (q, α, γ) where q ∈ Q
is the current state, α ∈ (LSL)∗ is the remaining sequence of locutions, γ ∈ Γ is the content of the
memory.

The definitions of the relation `, the language of dialogues generated and the language of share
knowledge generated is inherited from ConvFS T systems.

We denote by lmFS Tn, n ≥ 1, the family of languages LS K(W) where W ∈ lmFS Tn. When the
number of agents is not bounded, then we replace the corresponding parameter with∞.

When we are interested only in strings over some alphabet T , hence in the language LS K(W) ∩
T ∗, then we speak about Extended limited memory Finite State Transition (ElmFST) systems. We
denote by ElmFS Tn, the family of languages LS K(W) ∩ T ∗ where W ∈ lmFS Tn.

5.4.2 Formal Properties

With theorem 20 we provide a restriction under which the family lmFS Tn of classes of languages
collapses into the family lmFS T1.
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Theorem 20

∀W ∈ lmFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, Z0, F) ∧ Kidn+1 = Kid1 ∪ ... ∪ Kidn∧

(∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h))))∧(
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→

(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))

) )
→(

∃W′ ∈ lmFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)
)




,

for all n ≥ 1.

Proof. Similar proof to the one provided for theorem 15.

Below we prove a result that connects ElmFS T systems with the Chomsky hierarchy:

Theorem 21 ElmFS Tn = CS , for all n ≥ 1.

Proof. We prove first that ElmFS T ⊆ CS . Given an arbitrary dialogue protocol
W ∈ ElmFS Tn, W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL,Γ, δ, q0, Z0, F) then from any
ζ ∈ LS ∗F and GMemory ∈ LS F ∪ λ we construct a Linear-Bounded automata W′ with two tracks.

The firs track of W′ is the input tape. We initialize the second track of W′ with the string
†(q0, ζ,Z0Xt)†, where the symbol † is used to delimit the size of the tape and t is the size of the
longest locution in ζ. We define W′ to simulate W such that if (q, α, Memory)⇒W (k, β, newMemory)
then in b ≥ 0 derivation steps the content of first tape †(q, α,Memory Xr)† is replaced for
†(k, β, newMemory Xq)†with r, q ≤ t. W′ halts when the content of the tape is †( f , λ,GMemory Xe)†
with f ∈ F and e ≤ t.

To prove that CS ⊆ ElmFS Tn we consider an arbitrary one-sided normal form CS gram-
mar G = (N,T, P, S ) where every rule has one of the following shapes: A → BC, A → a,
AB → AC for some A, B,C ∈ N and a ∈ T . From G we can construct D ∈ ElmFS T1, D =

(KG,Σ,Q, LS FOL, δ, q0, Z0, F) such that:

• Σ = ∅,
• KG = ∅,
• Q = {q0, q1},
• F = {q1},
• Z0 = λ,

• LS FOL =

{
AskApplyG(w, r), ApplyG(w, r, neww), AcceptG(w) |
w ∈ (N ∪ T )∗ ∧ r ∈ P

}

If we consider X ∈ LS FOL ∪ {λ} as the memory, w ∈ (N ∪ T )∗, A, B,C ∈ N and a ∈ T , then
the preconditions of the locutions in LS FOL are defined bellow:

prec(AskApplyG(w, r)) = w ∈ (N ∪ T )∗ ∧ r ∈ P,
prec(ApplyG(w, r, neww)) = w⇒r neww,
prec(AcceeptG(w)) = w ∈ T ∗

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



138 Chapter 5. Finite state transition systems for dialogue protocols

• δ(q0, AskApplyG(S , r), λ) = {(q0, AskApplyG(S , r))},
δ(q0, AskApplyG(neww, s), ApplyG(w, r, neww)) = {(q0, AskApplyG(neww, s))},
δ(q0, ApplyG(w, r, neww), AskApplyG(w, r)) = {(q0, ApplyG(w, r, neww))},
δ(q0, AcceptG(neww), ApplyG(w, r, neww)) = {(q1, AcceptG(neww))}.

The following can be proved: ∀wt ∈ T ∗ :


∃{r1, ..., rt} ∈ 2P : S ⇒r1

G w1 ⇒r2
G w2...⇒rt−1

G wt−1 ⇒rt
G wt ↔( ∃β ∈ LS FOL : (q0, β, λ)⇒∗D (q0, AcceptG(wt), ApplyG(wt−1, rt))⇒D

⇒D (q1, λ, AcceptG(wt))

)




↔
{

Definition of D ∧ β = AskApplyG(S , r1)AppplyG(S , r1,w1)...
AskApplyG(wt−1, rt)ApplyG(wt−1, rt,wt)AcceptG(wt)

}

true

5.4.3 Applicability in Dialogue Theory

Family lmFS Tn provides a formal framework to specify dialogue protocols with the following fea-
tures:

• The number of conversants is n

• The agents cannot learn or modify their own knowledge bases but they can modify the shared
knowledge base through the dialogue.

• The memory is restricted to at most a locution.

• Backtracking is not possible.

• Turn-taking and arbitrary replying policies can be used.

• Any locution set is allowed.

• The complexity of agent reasoning strategies is limited to computable functions.

• Arbitrary dialogue initiatives are possible.

5.5 rCFS T systems

In this section we introduce a type of ConvFS T systems that we call regularly Controlled Finite
State Transition (rCFST) systems where we consider the following:

• We restrict the shared knowledge to a string of nonterminals and terminal symbols. The
nonterminals symbols are from a finite alphabet N, and the terminal symbols are from a finite
alphabet T , such that N ∩ T = ∅.

• We restrict the agent private knowledge to a finite set of pairs whose first component is a
locution without parameters, and the second component is a non-erasing CF rule.
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5.5. rCFS T systems 139

• We consider only locutions without parameters. For each locution there is a non-erasing CF
rule associated and it is decidable to check if the locution’s precondition evaluates true. For
the precondition of a locution to be satisfied it has to be possible to apply its associated CF rule
over the string of shared knowledge. In case a locution can be uttered the shared knowledge
is modified applying the CF rule associated with the locution.

5.5.1 Formal Definition

Below we formally define regularly Controlled Finite State Transition (rCFST) systems with degree
n ≥ 1:

Definition 61

rCFS Tn =



W ∈ ConvFS Tn | W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL,Γ, δ, q0, S K0, F)∧
LS FOL = {ρidi | 1 ≤ i ≤ n}∧(
∀ρidi ∈ LS FOL : prec(ρidi) = (∃(ρidi , A→ x) ∈ Kidi) ∧ (∃α, β : S K = αAβ)

)
∧

Γ = N ∪ T ∧ N ∩ T ∩ {(, ),→} = ∅ ∧ S K0 ∈ N ∧ Σ = Γ ∪ LS FOL ∪ {(, ),→}∧( ∀1 ≤ i ≤ n : Kidi is a finite set ∧
Kidi = {(ρidi , A→ x) | ρidi ∈ LS FOL ∧ A ∈ N ∧ x ∈ (N ∪ V)+}

)
∧


∀q, k ∈ Q, newS K, S K ∈ Γ∗, ρidiα ∈ (LS FOL)+ :( ∃(ρidi , A→ x) ∈ Kidi :

prec(ρidi) ∧ S K ⇒A→x newS K

)
→ (q, ρidiα, S K)⇒W (k, α, newS K)





We denote by rCFS Tn, n ≥ 1, the family of languages LS K(W) where W ∈ rCFS Tn. When the
number of agents is not bounded, then we replace the corresponding parameter with∞.

When we are interested only in strings over some alphabet T , hence in the language LS K(W) ∩
T ∗, then we speak about Extended regularly Controlled Finite State Transition (ErCFST) systems.
We denote by ErCFS Tn, the family of languages LS K(W) ∩ T ∗ where W ∈ rCFS Tn.

5.5.2 An example of dialogue protocol

rCFS T systems allow to specify mixed-initiative frame-based dialogue protocols. The shared string
S K ∈ (N ∪ T )∗ of nonterminals and terminals is used as a frame to guide the dialogue. Such that
each nonterminal from N represents a gap that is considered filled when it is rewritten by a terminal
symbol from T . The speaker associates questions to gaps in the frame. Then a speaker asks the other
speaker questions in order to fill in the gaps in the frame. A speaker can answer a question (rewrite
a nonterminal with a terminal) or reply to a question with other question (rewrite a nonterminal with
other nonterminal), what is considered a change in the dialogue initiative. When all the gaps in a
frame are filled, or equivalently S K is a string of terminals, the dialogue is finished.

In [AJR01] it was exemplified the use of CD Grammar systems with memories in the simulation
of a 2-party dialogue protocol in a film shop. In their example the customer C tries to buy a film and
the seller S tries to find out the film that the customer needs in order to sell it. Basically their dialogue
protocol can be seen as a frame-based mixed-initiative protocol, therefore it can be specified by a
rCFS T system. We show it below.

We define P ∈ rCFS T2 such that P = (Kc,Ks,Σ,Q, LS FOL,N ∪ T, δ, q0, S , F) where:
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140 Chapter 5. Finite state transition systems for dialogue protocols

• LS FOL = {needc, asks, answerc, answers, agreec, re f usec}.
• Q = {q0, q1, q2, q3, q4, q5}.
• F = {q4, q5}.
• N = {S , F,W, L, A, I,O, ?P, ?A, [, ]}.
• T = {Yes,No, a100, ..., a1000, l8, l12, ..., l48,Kodak,Minolta, Fu ji}.
• Below we provide some examples of pairs that can be considered as part of Kc:

– (needc, S → FW) to indicate that the customer goal is to buy a film F ∈ N. The symbol
W ∈ N is introduced to be replaced by a terminal symbol Yes in case the dialogue
finishes with the customer buying the film or by terminal symbol No otherwise.

– (answerc, L → l36), (answerc, L → l24) to answer that he needs a film of 36 pictures or
24 pictures, where L ∈ N represents a question of how many pictures the film needs to
have.

– (answerc, A →?A), (answerc, A → a100), ..., (Answerc, A → a1000). Nonterminal A ∈
N represents the question of the speed of the film, then the customer can ask for a
clarification of what is speed (?A ∈ N) or tell the speed (ai ∈ T ).

– (answerc, ?P → I), (answerc, ?P → O). The symbol ?P ∈ N represents the question of
where is the customer going to take the photo, whose answer can be indoors (I ∈ N) or
outdoors (O ∈ N).

– (agreec,W → Yes) to indicate that the customer agrees to buy the film, where W ∈ N
and Yes ∈ T .

– (re f usec,W → No) to indicate that the customer refuses to buy the film, where W ∈ N
and No ∈ T .

• Below we provide some examples of pairs that can be considered as part of Kc:

– (askc, F → [B][A]L) to ask the customer for the length of the film in number of pictures
(L ∈ N). Future questions will be the brand and speed in ASA ([B], [A] ∈ N).

– (askc, [A]→ A) to ask the customer for the speed in ASA (A ∈ N).

– (askc, ?A →?P) to reply to the question of ‘what is speed?’ (?A ∈ N) with the new
question of ‘where do you expect to take the photos?’ (?P ∈ N).

– (answerc, [B]→ Kodak) to suggest the brand Kodak with Kodak ∈ T .

– (answerc,O → a100) to suggest that a good speed for photos taken outside is 100 ASA
(a100 ∈ T ).

• Function δ is defined in the following way where S K ∈ (N ∪ T )∗ is the shared knowledge:

δ(q0, needc, S K) = {(q1, newS K)},
δ(q1, asks, S K) = {(q2, newS K)},
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5.5. rCFS T systems 141

δ(q2, answerc, S K) = {(q1, newS K)},
δ(q1, answers, S K) = {(q3, newS K)},
δ(q3, answers, S K) = {(q3, newS K)},
δ(q3, agreec, S K) = {(q4, newS K)},
δ(q3, re f usec, S K) = {(q5, newS K)}.

Speaker Utterance
C: I need a film.
S: Which kind of film?
C: One for 36 pictures.
S: Which speed?
C: Speed? What do you mean?
S: Where will you take your pictures?
C: Outside.
S: I suggest 100 ASA.
S: I suggest the Kodak brand.
C: OK.

Figure 5.3: A dialogue instance between a customer C and a seller S

In the dialogue protocol P ∈ rCFS T2 the dialogue instance from Figure 5.3 can be simulated
by the following derivation:

(q0, needc(asksanswerc)3answer2
c agreec, S )⇒P

(q1, (asksanswerc)3answer2
c agreec, FW)⇒P

(q2, answerc(asksanswerc)2answer2
c agreec, [B][A]LW)⇒P

(q1, (asksanswerc)2answer2
c agreec, [B][A]l36W)⇒P

(q2, answercasksanswercanswer2
c agreec, [B]Al36W)⇒P

(q1, asksanswercanswer2
c agreec, [B]?Al36QW)⇒P

(q2, answercanswer2
c agreec, [B]?Pl36W)⇒P

(q1, answer2
c agreec, [B]Ol36W)⇒P

(q3, answercagreec, [B]a100l36W)⇒P

(q3, agreec,Kodak a100l36W)⇒P

(q4, λ,Kodak a100l36Yes) with Kodak a100l36Yes ∈ T +.

In figure 5.4 we present the transition graph for the locution interchange in dialogue protocol
P ∈ rCFS T2.

5.5.3 Formal Properties

Below we prove that the family ErCFS Tn has the same expressive power as the family rC of classes
of languages generated by regularly Controlled Grammar systems with non erasing CF rewriting
rules introduced in [GS68] [DPS97]. From this result we deduce that ErCFS T is a type of mildly
CS grammar.
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- q0 q1needc
q2asks

answerc

q3

answers

answers

q4

agreec

q5

refusec

Figure 5.4: Transition graph for the interchange of locutions in protocol P ∈ rCFS T2 between a
seller and a customer in a shop

Theorem 22 ErCFS Tn = rC ⊂ CS , for all n ≥ 1.

Proof. In [DPS97] it was proved that rC ⊂ CS .
First we prove that ErCFS Tn ⊆ rC. Given an arbitrary dialogue protocol W ∈ ErCFS Tn

such that W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL,N ∪ T, δ, q0, S K0, F). From W we define GW ∈ rC,
GW = (N, T, P, S K0,R) such that:

• P = {pρidi
| 1 ≤ i ≤ n ∧ pρidi

= A→ x ∧ (ρidi , A→ x) ∈ Kidi}, and

• R is the regular set defined by the finite state automata AF = (q0, P,Q, δ′, F) where( ∀S K, newS K ∈ (N ∪ T )∗, k, q ∈ Q, ρidi ∈ LS FOL :
(k, newS K) ∈ δ(q, ρidi , S K))→ k ∈ δ′(q, pρidi

)

)
.

Given the way we defined GW it is clear that the following is satisfied:
∀m ≥ 0, S Km ∈ (N ∪ T )∗, k ∈ F, α ∈ LS FOL :
(α = ρa1 ...ρam ∧ (q0, α, S K0)⇒m

W (k, λ, S Km)↔
(S K0 ⇒

pρa1
GW

S K1...⇒pρam
GW

S Km ∧ pρa1
...pρam

∈ L(R))



Then LS K(W) ∩ T ∗ = L(GW).

Now we prove that rC ⊆ ErCFS T1.
Given an arbitrary regularly Controlled (context free) grammar G ∈ rC such that G = (N, T, P, S ,R).
From G we define the dialogue protocol WG ∈ ErCFS Tn such that

WG = (Kid1 ,Σ,Q, LS FOL,N ∪ T, δ′, q0, S , F) with:

• Kid1 = {(pid1 , p) | p ∈ P}.
• LS FOL = {pid1 | p ∈ P}.
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5.5. rCFS T systems 143

• If AF = (q0, P,Q, δ, F) is the finite automata generated by regular expression R, then from
AF we get the following definition of function δ′:( ∀k, q ∈ Q, newS K, S K ∈ (N ∪ T )∗, p ∈ P, pidid1

∈ LS FOL :
(k, newS K) ∈ δ(q, pid1 , S K)→ k ∈ δ′(q, p) ∧ S K ⇒p

G newS K

)

By the way we defined WG it is clear that the following is satisfied:( ∀m ≥ 0, S Km ∈ (N ∪ T )∗, α ∈ L(R), k ∈ F :
(α = p1...pm ∧ S K0 ⇒p1

G S K1...⇒pm
G S Km)↔ (q0, p1id1

...pmid1
, S K0)⇒m

WG
(k, λ, S Km)

)
.

Then L(G) = LS K(WG) ∩ T ∗.

In [DPS97] it was proved that in the class rC the membership problem is decidable, the empti-
ness problem is NP-hard and the finiteness problem is NP-hard. From that result from class rC and
from theorem 22 we get the corollary below:

Corollary 7 In family ErCFS Tn, n ≥ 1, the membership problem is decidable, the emptiness prob-
lem is NP-hard and the finiteness problem is NP-hard.

From theorems 13 and 22 we get the following corollary:

Corollary 8 For all n,m ≥ 1, regular set X over m populations in ErCREGm(X):

ErCFS Tn = ErCREGm(X)

With theorem 23 we provide a restriction under which the family rCFS Tn of classes of lan-
guages collapses into the family rCFS T1.

Theorem 23
∀W ∈ rCFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL,N ∪ T, δ, q0, S K0, F)∧
Kidn+1 = Kid1 ∪ ... ∪ Kidn∧(
∃W′ ∈ rCFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)

)

,

for all n ≥ 1.

Proof.
Considering an arbitrary W ∈ rCFS Tn such that W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL, Γ, δ, q0, S K0, F).

From W we can define W′ ∈ rCFS T1 such that W′ = (Kidn+1 ,Σ,Q, newLS FOL,Γ, δ′, q0, S K0, F)
where:

• Kidn+1 = {(ρidn+1 , A→ x) | (ρidi , A→ x) ∈ Kidi ∧ 1 ≤ i ≤ n},

• newLS FOL = {ρidn+1 | ρidi ∈ LS FOL ∧ 1 ≤ i ≤ n}, and

•
( ∀p, q ∈ Q, ρidi ∈ LS FOL, S K, newS K ∈ (LS FOL)∗) :

(p, newS K) ∈ δ(q, ρidi , S K)→ (p, newS K) ∈ δ′(q, ρidn+1 , S K)

)
.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



144 Chapter 5. Finite state transition systems for dialogue protocols

The proof is similar to the proof of theorem 15, except that here we do not require the following
hypothesis:

(∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h)))) ∧(
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→

(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))

) )

The reason why we do not need it is that if we take an arbitrary locution ρidu(v(k)) ∈ LS FOL,
1 ≤ u ≤ n, the following can be proved:

prec(ρidu(v(k)))
↔ {Definition of ErCFS T systems and definition of RenameLc}
(∃(ρidu , A→ x) ∈ Kidu : RenameLc(ρidu(v(k)), idn+1) = ρidn+1(v(k)))
↔ { Definition of W′ and definition of RenameLc}
(∃(ρidn+1 , A→ x) ∈ Kidn+1)
↔ {Definition of ErCFS T systems}
prec(ρidn+1(v(k))) .

5.5.4 Applicability in Dialogue Theory

Class rCFS Tn provides a formal framework to specify dialogue protocols with the following fea-
tures:

• The number of conversants is n

• The agents cannot learn or modify their own knowledge bases but they can modify the shared
knowledge base through the dialogue.

• Backtracking, turn-taking and arbitrary replying policies and systems initiatives can be used.

• The locution set is limited to locutions without parameters.

• An agent private knowledge base is restricted to a finite set of pairs whose first component is
a locution without parameters and the second component is a CF rule.

• The agent’s decision procedures are fixed and they consist on checking if there is a pair in the
agent private knowledge base whose first component is the locution that the agent wants to
utter and the second component is a CF that the agent can apply over the string corresponding
to the shared knowledge.
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Chapter 6

Conclusions and Future Work

Dialogue Theory is a very old subject with roots in Aristotle’s days. But it is in the 70’s that this
research area re-appeared in analytical Philosophy as a structure to evaluate argumentation and in-
formal fallacies [MH69] [Pol74]. Dialogue Theory has recently being regarded as an important
subject of research with multiple applications and potential uses that scientists from areas like For-
mal Language Theory, Artificial Intelligence, Logic, Linguistics and Argumentation Theory can
fruitfully explore.

The aim of our thesis was to contribute to Dialogue Theory providing a hierarchy of formal
frameworks for the study of dialogues. For developing this hierarchy we mainly applied notions
from Formal Language Theory, and Grammar System Theory in particular.

Below we summarize our contributions and proposals of future work according to the scientific
area to which our results specifically apply to:

6.1 Contributions and future work in Dialogue Theory

A popular way to express the social norms between groups of agents is by means of an explicit
protocol. Dialogue protocols specify complex concurrent and asynchronous patterns of communi-
cation between agents in a society and they are used to state their social norms. A society protocol
is examined in-advance by an agent in order to decide if it joins or not the corresponding society.
The protocol also acts as a guide for the agents once they are operating within the society. Dialogue
protocols correspond to dialogue state theory. In Dialogue Theory protocols have been defined by
means of finite automata [Vas04, ERS+01], high level Petri Nets [HK98][MW97][PC96], different
diagrams provided by the Unified Modeling Language [Woo99] [OPB00] [WCW01] [HWW01],
logic [Woo99] [GK94] and process descriptions [Rob04] [Wal04c].

Based on our knowledge of Formal Language Theory we contributed to Dialogue Theory in-
troducing a hierarchy of formal frameworks for the definition of dialogue protocols as transition
systems.

In chapters 4 and 5 we defined the frameworks that we proposed for specifying dialogue proto-
cols. In chapter 4 we presented the frameworks based on Grammar system variants and in chapter 5
the frameworks based on finite state transition systems. Each framework defines a generic, abstract
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146 Chapter 6. Conclusions and Future Work

and well defined formalism in which protocols can be specified, compared and evaluated in the same
notation in a precise way. For the frameworks we defined we explored some of their formal prop-
erties: expressive power, computational complexity, decidability of the problem of determining if a
dialogue instance satisfies a dialogue protocol (membership problem), etc. For the frameworks that
we introduced we analyzed their expressive power in terms of the Chomsky hierarchy and in terms
of features like: the number of speakers, or the way the speakers perceive the context (in block,
scattered) or the length of the context they can perceive, etc. Besides we mentioned the practical
applicability of the frameworks we proposed for the specification of dialogues and we compared
them using less formal properties taken from the Theory of Dialogues, like: backtracking, turn-
taking, dynamic change of agent’s knowledge bases and shared knowledge bases, restrictions on the
maximum number of speakers, flexibility in agent reasoning and learning strategies, flexibility in
dialogue initiative, etc.

In chapter 4 we defined Conversational Enlarged Reproductive Eco-Grammar (ConvEREG)
systems. This variant of Grammar systems proved to be adequate for modeling goal-oriented
dialogue protocols. A preliminary definition of ConvEREG has been published in [BEGJL06]
[EGJL06] [EGJL07]. ConvEREG systems are the result of the combination of different approaches
undertaken in Dialogue Theory: the MAPa language with application in multi-agent systems area
(Artificial Intelligence), Conversational Grammar systems (Formal Language Theory) and studies
of human dialogues (Linguistics). ConvEREG systems are based on a Grammar system variant
that we introduced with the name of Enlarged Reproductive Eco-Grammar (EREG) system, where
the grammatical components are interpreted as speakers whose participation in the conversation is
described by protocols and whose decisions are taken by invocating computable functions. The pro-
tocols we considered are strings in a process calculus that we defined as the Multi Agent Protocol
(MAPa) language [GW06b] [GW06c] [GW06a]. In previous grammatically based formal models
for the specification of dialogue protocols the participation of the speakers in the conversation was
given by rewriting rules. While strings can be changed during run-time according to the dialogic
state, rewriting rules are defined at design time and they remain fixed during all the conversation.
Since the ConvEREG systems do not have this restriction they can be used to specified conversa-
tions with dialogic spaces that can not be known beforehand, but that emerge through the dialogue.
Besides ConvEREG systems allow the specification of protocols where the focus is on the agents’
observable behavior abstracting from the agent implementation details. Therefore this framework
can be used to specify dialogues involving agents that are not fully knowable or whose complexity of
representation is high. Another features characteristic of the protocols specified within ConvEREG
systems are: they abstract from natural language processing issues, they correspond to information
state theory, they are linguistically well founded and they can exhibit a high level of generality and
modularity. In chapter 4 we explained those features in detail and we analyzed why ConvEREG sys-
tems can be considered an improvement with respect to previous approaches for the specification of
dialogue protocols based on Grammar systems [CVJLMV99] [JL00] [AJR01].

Also in chapter 4 we introduced a type of ConvEREG system that we called Conditional Eco-
Grammar (CondEG) systems. CondEG systems are a variant of Eco-Grammar systems where each
agent’s private knowledge base is restricted to two finite sets of conditional rules. In each derivation
step every agent inspects its two sets of conditional rules in order to decide its participation in the
conversation and how to change its mental state. The first set of rules is used by the agent to decide
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how to change the dialogue context (environment) according to the presence and\or absence of
information in its mental state (agent state). The second set of rules is used by the agent to change
its mental state according to the presence and\or absence of information in the dialogue context.
The decision processes undertaken by the agents are given by computable functions. ECondEG
systems restricted to non erasing rules are a subclass of CS grammars.

We completed chapter 4 presenting another type of ConvEREG system that we called regularly
Controlled Reproductive Eco-Grammar (rCEREG) system. rCEREG systems are variants of Re-
productive Eco-Grammar systems to which we attached a turn talking policy given by a regular
set which determines the order that speakers must respect to participate in the dialogue. Because in
ErCERED systems we restricted agents to invocate only computable functions it turned out that this
framework has the same expressive power as regularly Controlled (rC) grammars with non-erasing
CF rules [GS68][DPS97]. The family rC corresponds to a type of mildly CS grammar where the
membership problem is decidable, the emptiness problem is NP-hard and the finiteness problem is
NP-hard.

In chapter 4 we analyzed the influence that the number of speakers, the length of the permitting,
the length of forbidding contexts and the type of conditions (scattered or blocking) considered have
over the expressive power of the ECondEG and ErCREG systems:

1. ECondEGn(i, j, c) ⊆ ECondEGm(i′, j′, c), for all c ∈ {b, s}, 1 ≤ n ≤ m and i ≤ i′, j ≤ j′.

2. ECondEGn(i, j, b) ⊆ ECondEGn(i, j, s), for all n ≥ 1 and i, j ∈ {0, 1}.

3. ECondEGn(0, 0, c) = ET0L, for all n ≥ 1, c ∈ {b, s}.

4. ECT EGn(i, j, c) ⊆ ECondEG1(i, j, c), for all i, j ≥ 0, n ≥ 1, c ∈ {b, s}.

5. ECondEGe,n(i, j, c) ⊆ CS , for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.

6. ErCREGn(X) = rC ⊂ CS , for all n ≥ 1, regular set X over n populations.

We presented in chapter 5 the frameworks based on finite state transition systems that we defined
for specifying dialogues. First we explained a framework that we called Conversational Finite
State Transition (ConvFST) system. We presented a preliminary version of this approach in [GP07]
[Gra08]. ConvFS T systems allow to specify dialogue protocols where the number of agents is
fixed, agents are provided with fix sets of private beliefs, the interaction model is described by a
finite state transition system whose transitions are conditionals and labeled with locutions, and the
shared knowledge is saved in a string whose content can be modified. The states of the automata
correspond to possible stages of the conversation and the transitions represent dialogue moves. For
a labeled transition to be triggered the precondition associated with the locution that labels it has to
be satisfied. The locution’s precondition is a formula over some logic which is evaluated according
to the agent knowledge and shared knowledge. The evaluation is given by a computable function. If
a transition is triggered a new state is reached and some operation can be performed over the shared
knowledge. ConvFS T systems are a type of dialogue state approach. We showed the applicability
of this framework for the definition of the argumentation-based dialogue protocols introduced in
[Amg98]. Besides we provided an example of the possible benefits of specifying a dialogue in the
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framework ConvFS T , where properties can be proved. We proved that EConvFS T have the same
expressive power as Turing Machines.

We defined Conditional Finite State Transition (CondFST) systems as a type of ConvFST sys-
tems where the agents are provided with a finite set of conditional rules that they use to decide
their participation in the dialogue. The agents use these rules to decide how to modify the shared
knowledge depending on the presence and\or absence of substrings(information) in that string. The
decision processes undertaken by the agents are given by computable functions. When the language
of share knowledge generated is considered EConvFST systems with non erasing rewriting rules are
a subclass of CS grammars.

We introduced limited memory Finite State Transition (lmFST) systems as a type of ConvFST
systems. While in ConvFS T systems the shared knowledge is given by a string of symbols from
a finite alphabet, in lmFS T systems the shared knowledge is restricted to at most the last uttered
locution. Because there are no restrictions over the locutions used very complex dialogues can
be modeled, where locutions can contain information of previously uttered locutions and even the
whole dialogue history. When the language of share knowledge generated is considered ElmFST
systems have the same expressive power of CS grammars. We investigated for the case of the
argumentation-based dialogues from [Amg98] the practical implicants of restricting the memory to
a locution.

We finished chapter 5 specifying regularly Controlled Finite State Transition (rCFST) systems
as a type of ConvFS T systems. In rCFS T systems the locutions have no parameters and each
locution is associated with a CF rule such that the locution’s precondition consists on checking if the
associated CF rule can be applied over the string of shared knowledge. If the precondition associated
with a locution is satisfied, then the locution is uttered and a new string of shared knowledge is
obtained from the application of the CF rewriting rule associated with that locution. We investigated
the suitability of rCFS T systems for specifying frame-based mixed-initiative dialogues. When in
ErCFS T systems the language of share knowledge generated is considered, this framework has the
same expressive power as the regularly Controlled (rC) grammars with non-erasing CF rules.

The frameworks presented in chapter 5 can be seen as a continuation of similar formal mod-
els based on finite-state automata introduced in [Vas04, ERS+01] [HK98][MW97][PC96] for the
simulation of dialogues.

In chapter 5 we proved some results for ConvFS T , CondFS T , lmFS T and rCFS T systems.
Bellow we list these results were we analyzed the influence that the number of speakers, the length of
the permitting and forbidding contexts and the type of conditions (scattered or blocking) considered
can have over the expressive power of the families presented in chapter 5:

1. 

∀W ∈ ConvFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL,Γ, δ, q0, S K0, F)∧
Kidn+1 = Kid1 ∪ ... ∪ Kidn∧

∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h)))∧(
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→

(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))

) )
→( ∃W′ ∈ ConvFS T1 : RenameL(LDg(W), idn+1) = LDg(W′)∧

LS K(W) = LS K(W′)

)





,

for all n ≥ 1.
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2. ECondFS Tn(i, j, c) ⊆ ECondFS Tm(i′, j′, c), for all c ∈ {b, s}, 1 ≤ n ≤ m and i ≤ i′, j ≤ j′.

3. ECondFS Tn(i, j, b) ⊆ ECondFS Tn(i, j, s), for all n ≥ 1 and i, j ∈ {0, 1}.
4. ECondFS Tn(0, 0, c) = ETOL, n ≥ 1, c ∈ {b, s}.
5. 

∀W ∈ CondFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL, Γ, δ, q0, S K0, F)∧
Kidn+1 = Kid1 ∪ ... ∪ Kidn∧(
∃W′ ∈ CondFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)

)

,

for all n ≥ 1.

6. ECT EGn(i, j, c) ⊆ ECondFS T1(∞,∞, c), for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}
7. ECondFS Te,n(i, j, c) ⊆ CS , for all n ≥ 1, i, j ≥ 0, c ∈ {b, s}.
8. 

∀W ∈ lmFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LSL, Γ, δ, q0,Z0, F) ∧ Kidn+1 = Kid1 ∪ ... ∪ Kidn∧

(∀ρidi(v
(h)) ∈ LSL : prec(ρidi(v

(h)))→ prec(ρidn+1(v(h))))∧(
∀ρidn+1(v(h)) ∈ LSL : prec(ρidn+1(v(h)))→

(
∃ρidi(v

(h)) ∈ LSL : prec(ρidi(v
(h)))

) )
→(

∃W′ ∈ lmFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)
)




,

for all n ≥ 1.

9. ElmFS Tn = CS , for all n ≥ 1.

10. ErCFS Tn = rC ⊂ CS , for all n ≥ 1.

11. 
∀W ∈ rCFS Tn : W = (Kid1 , ...,Kidn ,Σ,Q, LS FOL,N ∪ T, δ, q0, S K0, F)∧
Kidn+1 = Kid1 ∪ ... ∪ Kidn∧(
∃W′ ∈ rCFS T1 : RenameL(LDg(W), idn+1) = LDg(W′) ∧ LS K(W) = LS K(W′)

)

,

for all n ≥ 1.

In figure 6.1 we present the hierarchy that connects the frameworks that we defined in chapters
4 and 5 with the Chomsky hierarchy: if two families are connected by a line (an arrow), then the
upper family includes properly (includes) the lower family; if two families are not connected then
they are not necessarily incomparable.

With the hierarchy that we introduced and the results we proved we contributed to Dialogue
Theory with a formal and comparative study of formal frameworks for the specification of dia-
logue protocols defined as transition systems. This type of comparative study is frequent in Formal
Language Theory, while in the area of multi-agent systems the formal frameworks introduced for
specifying communication are usually partially compared by studying the satisfaction of sets of de-
sirable dialogue features. The research we presented here can help designers of protocols in the area
of Artificial Intelligence, and multi-agent systems in particular, for the task of selecting the most
suitable formalism for the definition of dialogues that fulfil better their requirements of expressible
power and computational complexity.

We are interested on continuing the study of the hierarchy we proposed, trying to prove for the
existing frameworks more properties and analyzing the introduction of new frameworks inspired in
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practical requirements from the field of Artificial Intelligence. It is our intention to continue with
this research in an interdisciplinary way, trying to provide formal solutions from Formal Language
Theory to practical problems introduced in the area of Dialogue Theory.

An open problem in the area of Dialogue Theory is the absence of a formal strategy to compare
arbitrary dialogue protocols. In a future we are interested on studying this issue to address the type
of problems introduced in [PWA03b]:

• How might one choose between two protocols?, when is one protocol preferable to another?

• When do two protocols differ?, can we tell if a protocol is new (in the sense of providing a
different functionality from an existing protocol rather than just having equivalent locution
with different names)?;

• Is a protocol new (in the sense of providing a different functionality from an existing protocol
rather than just having equivalent locutions with different names)?.

In [GGF08] we worked on the comparison of concurrent processes defined in the framework
of Coloured Petri Nets, focusing only on the labeled transition systems generated and abstracting
from the agent’s reasonings strategies. We based our study on the notions of simulation equivalence
defined in the process algebra called pi-calculus [Mil99]. Examples of simulation equivalences that
we considered are branching time similarity, observable similarity, strong similarity, week similar-
ity, etc. Our intention was to recognize processes that were bisimilar to be able to interchange them.
But as the example 3 shows, a deeper comparison of dialogues where the rationality of the agents is
considered should be studied from formal frameworks as the ones we defined on this work.

6.2 Contributions and future work in Grammar systems

In Formal Language Theory rewriting rules are precise and unambiguous ways to describe local
changes. But getting an intuition of the global state of a grammar from its set of rewriting rules is
undecidable and harder when the complexity of the grammar definition increases. In the case of
Grammar system the emergent, parallel and distributed behavior increases even more the computa-
tional complexity of the model and the level of difficulty in the proofs. Until now mainly analysis
by cases has been the formal strategy used for proving properties in Grammar system.

Although the aim of our thesis was to explore possible ways to apply Grammar System Theory
to the formal study of dialogues, in chapter 3 we analyzed a way to contribute to Grammar System
Theory with knowledge from Multiprogramming area, addressing the problem of formally proving
that a Grammar system verifies certain properties or that it produces a desired outcome.

Because the programming field is more developed in the area of formal strategies of proof we
studied the possibility of incorporating strategies and results from that area. Our proposal, pre-
sented in [GM04a] [GM04b] and [GM07], consisted on interpreting Grammar systems as programs
in order to benefit from strategies for derivation, reasoning and proving from Multiprogramming
framework. The analogy between programs as transformers of predicates and Grammar systems
as derivation systems is clear: the same as each statement in a program modifies the state of the
system, every rewriting rule in the Grammar system modifies the string(s) under derivation.

Following this approach we obtained the following results:
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Figure 6.1: Hierarchy of frameworks defined

• We proved that an arbitrary CD Grammar systems, PC Grammar systems (centralized, non
centralized, returning and non returning), CCPC Grammar systems or Eco-Grammar systems
can be interpreted as an imperative concurrent programs where each grammar is a program
running concurrently

• We provided an alternative approach to solve the problem of given a Grammar system prove
that it generates a specific language. Instead of using the strategies available in Grammar
systems, mainly analysis by cases, we proposed to translate the Grammar system into a mul-
tiprogram and solve it using Owicki-Gries Theory and some strategies developed in the pro-
gramming framework for the development of programs, like for instance problem refinement
or functional decomposition.

• We introduced a new approach for solving the problem of given a language specification find
a Grammar system that generates the given language. So far this problem has been solved
using the following strategy: first propose a Grammar system and then prove by means of
language theory that the proposed Grammar system generates indeed the given language. We
exemplified how Owicki-Gries logic of programming can guide us in obtaining simultane-
ously a Grammar system that generates the given language and the proof that it generates it.
This new approach might be of a great benefit for the Grammar Systems Theory where there
is no formal strategy of this type. We showed how to apply this strategy for a well-known
non-context free language, namely Lcd = {anbmcndm | n,m ≥ 1}. In [Chi97] it was proved that
the cross agreement language Lcd can be generated by a returning non-centralized PC Gram-
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mar system with three context free components (Lcd ∈ PC3(CF)). We improved this result
showing that Lcd can be generated by a non-returning non-centralized PC Grammar system
with three right regular components (Lcd ∈ NPC3(Reg))[GM07]. We provided thus a solution
to an open problem mentioned in [Chi97]. This can be considered an improvement because
the complexity of the grammatical components is reduced from context free grammars to
regular grammars.

• We argued that Owicki-Gries methodology provides a strategy of proof close-to-human way
of reasoning:

– It allows to reason in a forward or data-driven way, similarly to analysis by cases tech-
nique, but also in a backward or goal-directed way. The notion of backward reasoning
comes from psychology, as it is pointed out in [KC58] where this description of problem
solving occurs:

“We may have a choice between starting with where we wish to end, or
starting with where we are at the moment. In the first instance we start by
analyzing the goal. We ask, “Suppose we did achieve the goal, how would
things be different- what subproblems would we have solved, etc.?”. This in
turn would determine the sequence of problems, and we would work back
to the beginning. In the second instance we start by analyzing the present
situation, see the implications of the given conditions and lay-out, and attack
the various subproblems in a forward direction.”

– It provides strategies to reason about the problems in terms of subproblems, what ac-
cording to [KC58] reflects the way humans think:

“ The person perceives in his surrounding goals capable of removing his
needs and fulfilling his desires [...] And there is the important phenomenon
of emergence of subgoals. The pathways to goals are often perceived as or-
ganized into a number of subparts, each of which constitutes and intermediate
subgoal to be attained on the way to the ultimate goal.”

• We showed that for some problems it is possible to use a strategy of proof from Owicki-Gries
Theory that is called system invariant. Applying this strategy requires to find a predicate
that remains invariant through all the computation and that synthesizes the behavior of the
multiprogram. The main advantages of the system invariant strategy over the analysis by
cases technique are:

– The number of proofs reduce to linear size.

– It captures the global behavior of the system by an invariant that shows all possible
values of the sentential form and hides information that the analysis by cases gives. So
we can say that invariant system captures global behavior in a more abstract way.

• We argued that interpreting Grammar systems as multiprograms we can improve their time
efficient applying available programming techniques, like functional decomposition, for in-
creasing the level of parallelism.
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We are interested on continuing our research on the field of formal strategies of proof for Gram-
mar systems, trying to find more connections between the areas of Grammar System Theory and
the Multiprogramming area.

In chapter 3 we explained that Reproductive Eco-Grammar systems can not be translated to the
DGC language because this language does not provide commands to dynamically create new agent
instances during run-time. We would like to study the translation of Reproductive Eco-Grammar
systems to the Object-Oriented (OO) paradigm in Computer Science, where objects (agent in-
stances) can be dynamically created. Once a Reproductive Eco-Grammar systems is translated
to an OO language two options are possible:

1. Try some Hoare-based formal verification strategies available, like for instance the ones ex-
plained in [Rey82], [AL97], [dB99], [PdB03], [PHM99], [RWH01] and [vO01].

2. Try some co-algebraic strategies of proof proposed for object-oriented languages. For ex-
ample in [Jac96] and [Rei95] they introduce verification systems where classes in an OO
language are described as co-algebras, which may occur as models (implementations) of co-
algebraic specifications. An object belonging to a class is an element of the state space of the
class, as co-algebra.

Reproductive Eco-Grammar systems have proved to be adequate (able to capture many real life-
like features) and theoretically relevant (they allow inference of nontrivial conclusions). If we can
also provide them with formal proof strategies we will increase their practical relevance as formal
frameworks for the study and analysis of problems in multiple areas like Ecology, Economy, Social
systems, Robotic systems, etc.

6.3 Future work in Concurrent Programming

We proved that Lcd < X2(Reg), for X ∈ {PC,CPC,NPC,NCPC}, or equivalently that our result
Lcd ∈ NPC3(Reg) is optimal. This kind of results provide evidence that in Grammar System Theory
analysis by cases can be used for proving negative results of the type: a given language cannot
be generated by any Grammar system of a specified type. So far the formal strategies available
in the programming field are: verification and formal derivation. Both strategies are useful to get
positive results, but so far no formal strategies has been introduced in the programming framework to
cope with the problem of finding whether a given output cannot be generated by any multiprogram
behaving in a certain way. We consider that this can be an interesting topic of research to be
addressed in the future.

In Grammar System Theory there are some theorems that allow to transform a Grammar system
of m grammars in a Grammar system of n grammars that generate the same language. For instance
considering CDn,∗ the family of CD grammar systems with at least n grammars, the following results
are proved in [CVJJP94]:

CF = CD1,∗(t) = CD2,∗(t) ⊂ CD3,∗(t) and (6.1)

CD3,∗(t) = CD∗,∗(t) = ET0L (6.2)
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The theorems mentioned above can be considered a contribution from Grammar System The-
ory to the programming framework, where there are no results concerning the number of programs
needed to solve a problem. It would be very interesting for the design of concurrent programs if
some of these transformations can also consider efficiency. If there would be some results con-
cerning with how to transform a program P that has m multiprograms running concurrently into a
program with n multiprograms that solve the same problem more efficiently, this could be a great
contribution to Multiprogramming Theory.

Therefore we consider that a possible future direction of research can be to find ways in which
Multiprogramming field can benefit from the formal research in Formal Language Theory.

Summarizing our thesis focused on the formal study of dialogue interaction. Our approach
can be seen as an interdisciplinary research in the area of Dialogue Theory where some theories
and results from Formal Language Theory and another areas of study like Artificial Intelligence,
Linguistics or Multiprogramming were analyzed and connected.
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munication. Computers and Artificial Intelligence, 15(5), 1996.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS OF FORMAL LANGUAGE THEORY TO THE STUDY OF DIALOGUES 
Maria Adela Grando 
ISBN:978-84-692-7928-1/DL:T-2065-2009 



BIBLIOGRAPHY 157

[CVPS95] E. Csuhaj-Varju, G. Paun, and A. Salomaa. Conditional tabled eco-grammar sys-
tems. Journal of Universal Computer Science, 1(5):252–268, 1995.

[Das95] J. Dassow. An example of an eco-grammar system: a can collecting robot. In Gh.
Paun, editor, Proceeding of the Workshop on Artificial Life, pages 240–244. The
Black Sea University Press, 1995.

[dB99] F. S. de Boer. A wp-calculus for OO. In Proceedings of the Second International
Conference on Foundations of Software Science and Computation Structures, vol-
ume 1578, pages 135–149. Lecture Notes in Computer Science, 1999.

[DE76] E. Dijkstra and W. Edsger. A Discipline of Programming. Prentice-Hall Series in
Automatic Computation, 1976.

[DG05a] A. H. Dediu and M. A. Grando. Eco-grammar systems as models for parallel evo-
lutionary algorithms. In A. V. Chaskin O. B. Lupanov, O. M. Kasim-Zade and
K. Steinhöfel, editors, Proceedings of Stochastic Algorithms: Foundations and Ap-
plications, Third International Symposium (SAGA 2005), volume 3777, pages 228–
238. Springer, 2005.

[DG05b] A. H. Dediu and M. A. Grando. Simulating evolutionary algorithms with eco-
grammar systems. In J. Mira and J. R. Álvarez, editors, Artificial Intelligence and
Knowledge Engineering Applications: A Bioinspired Approach, volume 3562(2),
pages 112–121. Springer, 2005.
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