101,945 research outputs found

    On Newton Screening

    Full text link
    Screening and working set techniques are important approaches to reducing the size of an optimization problem. They have been widely used in accelerating first-order methods for solving large-scale sparse learning problems. In this paper, we develop a new screening method called Newton screening (NS) which is a generalized Newton method with a built-in screening mechanism. We derive an equivalent KKT system for the Lasso and utilize a generalized Newton method to solve the KKT equations. Based on this KKT system, a built-in working set with a relatively small size is first determined using the sum of primal and dual variables generated from the previous iteration, then the primal variable is updated by solving a least-squares problem on the working set and the dual variable updated based on a closed-form expression. Moreover, we consider a sequential version of Newton screening (SNS) with a warm-start strategy. We show that NS possesses an optimal convergence property in the sense that it achieves one-step local convergence. Under certain regularity conditions on the feature matrix, we show that SNS hits a solution with the same signs as the underlying true target and achieves a sharp estimation error bound with high probability. Simulation studies and real data analysis support our theoretical results and demonstrate that SNS is faster and more accurate than several state-of-the-art methods in our comparative studies

    Electrostatics of Vortices in Type II Superconductors

    Full text link
    In a type II superconductor the gap variation in the core of a vortex line induces a local charge modulation. Accounting for metallic screening, we determine the line charge of individual vortices and calculate the electric field distribution in the half space above a field penetrated superconductor. The resulting field is that of an atomic size dipole deaBz^{\bf d} \sim e a_{{\rm B}} {\bf {\hat z}}, aB=2/me2a_{{\rm B}} = \hbar^2/m e^2 is the Bohr radius, acting on a force microscope in the pico to femto Newton range.Comment: 9 pages, late

    The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue

    Get PDF
    Thanks to the large collecting area (3 x ~1500 cm2^2 at 1.5 keV) and wide field of view (30' across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50\% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.Comment: 23 pages, version accepted for publication in A&

    Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G

    Full text link
    We show that the current bounds on the time variation of the Newton constant G can put severe constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short distance and in the static approximation, can in general not alter the cosmological time evolution of the scalar field. This results in a locally measured time variation of G which is too large when the matter-scalar coupling is of order one.Comment: RevTeX4 format; v.2: 5 pages, title changed, matches published versio

    Distributed Contingency Analysis over Wide Area Network among Dispatch Centers

    Full text link
    Traditionally, a regional dispatch center uses the equivalent method to deal with external grids, which fails to reflect the interactions among regions. This paper proposes a distributed N-1 contingency analysis (DCA) solution, where dispatch centers join a coordinated computation using their private data and computing resources. A distributed screening method is presented to determine the Critical Contingency Set (DCCS) in DCA. Then, the distributed power flow is formulated as a set of boundary equations, which is solved by a Jacobi-Free Newton-GMRES (JFNG) method. During solving the distributed power flow, only boundary conditions are exchanged. Acceleration techniques are also introduced, including reusing preconditioners and optimal resource scheduling during parallel processing of multiple contingencies. The proposed method is implemented on a real EMS platform, where tests using the Southwest Regional Grid of China are carried out to validate its feasibility.Comment: 5 pages, 6 figures, 2017 IEEE PES General Meetin

    Gravitational Stability and Screening Effect from D Extra Timelike Dimensions

    Get PDF
    We study (3+1)+D dimensional spacetime, where D extra dimensions are timelike. Compactification of the D timelike dimensions leads to tachyonic Kaluza-Klein gravitons. We calculate the gravitational self-energies of massive spherical bodies due to the tachyonic exchange, discuss their stability, and find that the gravitational force is screened in a certain number of the extra dimensions. We also derive the exact relationship between the Newton constants in the full 4+D dimensional spacetime with the D extra times and the ordinary Newton constant of our 4 dimensional world.Comment: harvmac, 20 pages, typos corrected, refs. added and correcte

    Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression

    Full text link
    We propose an algorithm, semismooth Newton coordinate descent (SNCD), for the elastic-net penalized Huber loss regression and quantile regression in high dimensional settings. Unlike existing coordinate descent type algorithms, the SNCD updates each regression coefficient and its corresponding subgradient simultaneously in each iteration. It combines the strengths of the coordinate descent and the semismooth Newton algorithm, and effectively solves the computational challenges posed by dimensionality and nonsmoothness. We establish the convergence properties of the algorithm. In addition, we present an adaptive version of the "strong rule" for screening predictors to gain extra efficiency. Through numerical experiments, we demonstrate that the proposed algorithm is very efficient and scalable to ultra-high dimensions. We illustrate the application via a real data example

    XMM-Newton observation of the deep minimum state of PG 2112+059: A spectrum dominated by reflection from the accretion disk?

    Full text link
    We analyse a 75ks XMM-Newton observation of PG 2112+059 performed in November 2005 and compare it with a 15ks XMM-Newton observation taken in May 2003. PG 2112+059 was found in a deep minimum state as its 0.2-12 keV flux decreased by a factor of 10 in comparison to the May 2003 observation. During the deep minimum state the spectra show strong emission in excess of the continuum in the 3-6 keV region. The excess emission corresponds to an EW = 26.1 keV whereas its shape resembles that of heavily absorbed objects. The spectra of both observations of PG 2112+059 can be explained statistically by a combination of two absorbers where one shows a high column density, NH4.5×1023cm2N_{H} \sim 4.5 \times 10^{23} cm^{-2}, and the other high ionisation parameters. As the ionisation parameter of the high flux state, ξ34ergcms1\xi \sim 34 erg cm s^{-1}, is lower than the value found for the deep minimum state, ξ110ergcms1\xi \sim 110 erg cm s^{-1}, either the absorbers are physically different or the absorbing material is moving with respect to the X-ray source. The spectra can also be explained by a continuum plus X-ray ionised reflection on the accretion disk, seen behind a warm absorber. The ionisation parameter of the high state (ξ5.6ergcms1\xi \sim 5.6 erg cm s^{-1}) is higher than the ionisation parameter of the deep minimum state (ξ0.2ergcms1\xi \sim 0.2 erg cm s^{-1}), as expected for a stationary absorber. The values found for the ionisation parameters are in the range typical for AGNs. The spectra observed during the deep minimum state are reflection dominated and show no continuum emission. These can be understood in the context of light bending near the supermassive black hole as predicted by Minutti and Fabian.Comment: 13 pages, 3 figures, A&A latex, accepted for publication in Astronomy & Astrophysic
    corecore