1,508 research outputs found

    The NASA Roadmap to Ocean Worlds

    Get PDF
    In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists

    NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential

    Get PDF
    The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal

    Valuing life detection missions

    Full text link
    Recent discoveries imply that Early Mars was habitable for life-as-we-know-it; that Enceladus might be habitable; and that many stars have Earth-sized exoplanets whose insolation favors surface liquid water. These exciting discoveries make it more likely that spacecraft now under construction - Mars 2020, ExoMars rover, JWST, Europa Clipper - will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources (\$10bn/decade for the US ), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework for comparing the value of different life detection missions: Scientific value = (Reach x grasp x certainty x payoff) / \$ After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable.Comment: Accepted by "Astrobiology.

    Experimental and simulation efforts in the astrobiological exploration of exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core

    Geophysical tests for habitability in ice-covered ocean worlds

    Get PDF
    Geophysical measurements can reveal the structure of icy ocean worlds and cycling of volatiles. The associated density, temperature, sound speed, and electrical conductivity of such worlds thus characterizes their habitability. To explore the variability and correlation of these parameters, and to provide tools for planning and data analyses, we develop 1-D calculations of internal structure, which use available constraints on the thermodynamics of aqueous MgSO4_4, NaCl (as seawater), and NH3_3, water ices, and silicate content. Limits in available thermodynamic data narrow the parameter space that can be explored: insufficient coverage in pressure, temperature, and composition for end-member salinities of MgSO4_4 and NaCl, and for relevant water ices; and a dearth of suitable data for aqueous mixtures of Na-Mg-Cl-SO4_4-NH3_3. For Europa, ocean compositions that are oxidized and dominated by MgSO4_4, vs reduced (NaCl), illustrate these gaps, but also show the potential for diagnostic and measurable combinations of geophysical parameters. The low-density rocky core of Enceladus may comprise hydrated minerals, or anydrous minerals with high porosity comparable to Earth's upper mantle. Titan's ocean must be dense, but not necessarily saline, as previously noted, and may have little or no high-pressure ice at its base. Ganymede's silicious interior is deepest among all known ocean worlds, and may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's likely near-eutectic ocean cannot be adequately modeled using available data. Callisto may also lack high-pressure ices, but this cannot be confirmed due to uncertainty in its moment of inertia
    • …
    corecore