43 research outputs found

    DETECTION AND SEGMENTATION OF OPTIC DISC IN FUNDUS IMAGES

    Get PDF
    Objective: Image processing technique is utilized in the medical field widely nowadays. Hence, therefore, this technique is used to extract the different features like blood vessels, optic disk, macula, fovea etc. automatically of the retinal image of eye.Methods: This paper presents a simple and fast algorithm using Mathematical Morphology to find the fovea of fundus retinal image. The image for analysis is obtained from the DRIVE database. Also, this paper is enhanced to detect the Diabetic Retinopathy disease occurring in the eye.Results: Detection of optic disc boundary becomes important for the diagnosis of glaucoma. The iterative curve evolution was stopped at the image boundaries where the energy was minimum.Conclusion: The changes in the shape and size of the optic disc can be used to detect glaucoma and also cup ratio can be used as a measure of glaucoma

    Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm

    Get PDF
    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc

    Automated retinal analysis

    Get PDF
    Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term complications of diabetes can affect many different systems of the body including the retina of the eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading causes of blindness in the working population of industrialised countries. The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National Screening Committee have recommended that diabetic patients should receive annual screening by digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly process requiring highly skilled staff. This thesis describes an automated diagnostic system based oil image processing and neural network techniques, which analyses digital fundus images so that early signs of sight threatening retinopathy can be identified. Within retinal analysis this research has concentrated on the development of four algorithms: optic nerve head segmentation, lesion segmentation, image quality assessment and vessel width measurements. This research amalgamated these four algorithms with two existing techniques to form an integrated diagnostic system. The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of images requiring human grading by 74.3%: this was achieved by identifying and excluding images without sight threatening maculopathy from manual screening

    A Multi-Anatomical Retinal Structure Segmentation System For Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    Get PDF
    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue to detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This thesis proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogenous anatomical structures

    Automatic CDR Estimation for Early Glaucoma Diagnosis

    Get PDF

    Extraction of Features from Fundus Images for Glaucoma Assessment

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Optic Disc and Fovea Localisation in Ultra-widefield Scanning Laser Ophthalmoscope Images Captured in Multiple Modalities

    Get PDF
    We propose a convolutional neural network for localising the centres of the optic disc (OD) and fovea in ultra-wide field of view scanning laser ophthalmoscope (UWFoV-SLO) images of the retina. Images captured in both reflectance and autofluorescence (AF) modes, and central pole and eyesteered gazes, were used. The method achieved an OD localisation accuracy of 99.4% within one OD radius, and fovea localisation accuracy of 99.1% within one OD radius on a test set comprising of 1790 images. The performance of fovea localisation in AF images was comparable to the variation between human annotators at this task. The laterality of the image (whether the image is of the left or right eye) was inferred from the OD and fovea coordinates with an accuracy of 99.9%

    Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content

    Get PDF
    The optic disc (OD) in retinal fundus images is widely used as a reference in computer-based systems for the measurement of the severity of retinal disease. A number of algorithms have been published in the past 5 years to locate and measure the OD in digital fundus images. Our proposed algorithm, automatically: (i) uses the three channels (RGB) of the digital colour image to locate the region of interest (ROI) where the OD lies, (ii) measures the Shannon information content per channel in the ROI, to decide which channel is most appropriate for searching for the OD centre using the circular Hough transform. A series of evaluations were undertaken to test our hypothesis that using the three channels gives a better performance than a single channel. Three different databases were used for evaluation purposes with a total of 2,371 colour images giving a misdetection error of 3% in the localisation of the centre of the OD. We find that the area determined by our algorithm which assumes that the OD is circular, is similar to that found by other algorithms that detected the shape of the OD. Five metrics were measured for comparison with other recent studies. Combining the two databases where expert delineation of the OD is available (1,240 images), the average results for our multispectral algorithm are: TPR = 0.879, FPR = 0.003, Accuracy = 0.994, Overlap = 80.6% and Dice index = 0.878
    corecore