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THRESHOLDING 

ABSTRACT  

Eye exam can be as efficacious as physical one in determining health concerns. 

Retina screening can be the very first clue to detecting a variety of hidden health issues 

including pre-diabetes and diabetes. Through the process of clinical diagnosis and 

prognosis; ophthalmologists rely heavily on the binary segmented version of retina 

fundus image; where the accuracy of segmented vessels, optic disc and abnormal lesions 

extremely affects the diagnosis accuracy which in turn affect the subsequent clinical 

treatment steps. This thesis proposes an automated retinal fundus image segmentation 

system composed of three segmentation subsystems follow same core segmentation 

algorithm. Despite of broad difference in features and characteristics; retinal vessels, 

optic disc and exudate lesions are extracted by each subsystem without the need for 

texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, 

our proposed system can detect these anatomical structures in one session with high 

accuracy even in pathological retina images.  

https://dictionary.cambridge.org/dictionary/english/heavily
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The proposed system uses a robust hybrid segmentation algorithm combines 

adaptive fuzzy thresholding and mathematical morphology. The proposed system is 

validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS 

(optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation 

performance is achieved, outperforming a variety of up-to-date systems and 

demonstrating the capacity to deal with other heterogenous anatomical structures.  
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CHAPTER 1: INTRODUCTION  

1.1 Introduction  

Although the retina resides in a peripheral location, it is a part of the central 

nervous system, representing the neural portion of the eye [1]. The morphological 

variation in retinal anatomical structures is of great diagnostic value since it contains 

crucial information for the detection and diagnosis of a variety of retinal pathology such 

as Diabetic Retinopathy (DR), glaucoma, hypertension, Age-related Macular 

Degeneration (AMD), and Retinopathy of Prematurity (RoP) and for diagnosis of heart- 

and brain-related diseases. One of the major diseases that can hit the health of eye in 

particular and the overall health in general, the diabetes.  

Diabetic retinopathy is one of the most common causes of vision loss among 

people of working age. Diabetes can cause various abnormalities including diabetic 

retinopathy if it affects retina, nephropathy if affect kidneys and diabetic neuropathy if it 

affects the nervous system. Moreover, diabetes is considered a critical risk factor in 

diseases related to heart and blood vessels [2]. 

Approximately half of blindness cases can be prevented through early diagnosis 

and periodic retinal screening. These diseases represent leading sources of retina-

associated vision impairment and blindness in the United States of America Retinal 

screening is a way of detecting diabetic retinopathy early before any changes to your 

vision are noticed [3]. In early stages of diabetic retinopathy, no radical symptoms can be 

noted, however, over the time, many symptoms begin to appear and its severity increased 

https://www.nhs.uk/Conditions/Diabetic-retinopathy/Pages/Introduction.aspx
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monastically with time [4].Typically, diabetic retinopathy begins as a small change in 

retinal blood vessels; thus, the first abnormality can be detected is the existence of 

Microaneuryms. Then, it affects the optic disc (optic nerve head) leading to changes in 

the optic disc shape. Further diabetes complication of diabetic retinopathy development 

is the increasing of vessels’ walls permeability of the retinal which allows leaking of lipid 

formations through weak wall of blood vessels leading to Hard Exudates. If retinopathy 

is detected early enough, treatment can cease it getting worse. Otherwise, symptoms 

become noticeable with time passing, besides, it can be much more difficult to treat [2].  

Retinal screening performed through imaging instruments such as fundus camera, 

scanning laser ophthalmoscope (SLO) [5], where the ophthalmologists use both the 2D 

retinal yielded image and the segmented version of it in the process of diagnosis of pre-

diabetes, diabetic retinopathy, and other health concerns that may be deduced. Retinal 

image segmentation is challenging; the normal and abnormal retinal anatomical structures 

has low contrast with their background, including vascular structures, the macula, and 

Microaneuryms. In contrast, other structures have high contrast with background tissues 

but are difficult to distinguish from challenges make classical segmentation techniques 

such as Sobel operators [6], Prewitt operators [7], gradient operators [8], and Robert and 

Krish differential operations [9] inefficient and inaccurate.  

1.2 Motivations  

Although segmentation via these methods has been shown to be superior to other 

available methods, it is incapable of detecting and extracting all anatomical structures in 

one system; rather, to be fully identified and segmented; each anatomical structure 
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requires a separate stand-alone system built on a stand-alone algorithm. Another 

disadvantage of previously reported schemes consists of their incapability to address 

retinal images containing pathologies; this inability is demonstrated by performance 

degradation in terms of false positive rates and reduced accuracy, chiefly due to the 

presence of abnormal structures such as hemorrhages, exudates, and other lesions. 

Identification and extraction of multiple anatomical structures in retinal fundus images is 

thus a complicated problem and a potential minefield. These limitations have motivated 

us to develop a system that can extract multiple retinal anatomical structures at one 

session with high accuracy without the need for texture analysis or synthesis. This 

research exploits and combines fuzzy sets, mathematical morphology theories, and their 

capability for fast, accurate segmentation system. 

1.3 Contributions  

From a research point of view, our work makes two major contributions. First, 

our proposed system eliminates the need for designing a separate system for detecting 

each retinal anatomical structure; one compact novel system was used to extract three 

different anatomical structures with various features and textures. Building upon this 

system, a hybrid framework for performing detection and extraction tasks for other 

anatomical structures either inside the retina or other organs can be developed. Second, 

the proposed system is highly robust and accurate as well, as it has been shown to perform 

better than the state-of-art on the public DRIVE, STARE, DRITSHTI-GS, and 

DiaRetDB1 retinal datasets.  
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In addition, it performs well at extracting vessels and optic disc from pathological 

retinal images. Therefore, it can be considered ideal for real-life diagnosis applications.  

1.4 Thesis Outline  

In this thesis, a novel technique is proposed to improve segmentation performance 

of retinal anatomical structures in noisy conditions, and will be discussed in the upcoming 

chapters as follows.  

Chapter 2 reviews the existing literature related to the research work presented in 

this thesis. In Chapter 3, we propose our hybrid retinal segmentation system and describes 

the different phases of the proposed hybrid system. Chapter 4 evaluates and discuss the 

system results and compares them with other techniques and methods. Finally, Section 

Chapter 5 summarizes the conclusions and recommendations and proposed future 

directions of this work. 
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CHAPTER 2: BACKGROUND THEORY  

The identification and localization of different retinal anatomical structures aim 

to separate the different retinal vasculature structure tissues either normal or abnormal 

from the fundus image background. Identification studies are attracting more and more 

attention in recent years due to non-invasive fundus imaging and the crucial information 

contained in the anatomical structures of retina; which is helpful for the detection and 

diagnosis of a variety of retinal pathologies included but not limited to: Diabetic 

Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration 

(AMD). With the development of almost two decades, the innovative approaches 

applying computer-aided techniques for segmenting retinal anatomical structures are 

becoming more and more crucial and coming closer to routine clinical applications. In 

this chapter, a brief introduction to retinal fundus photography and imaging modalities of 

retinal images is given. Then, the preprocessing operations and the state-of-the-art 

methods of anatomical retinal identification are introduced along with an objective 

assessment and future developments and trends. 

2.1 Retinal Structures Anatomy  

As shown in Figure 2.1 Retinal fundus image: 2D and 3D view. 
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Figure 2.1, the fundus of the human eye is the back portion of the interior of the 

eye ball. The optic nerve resides at the center of retina, which can be seen as a white area 

of circular to oval shape and measuring about 3 × 3 mm across diameter. The major 

blood vessels of the retina radiate from the center of the area of optic nerve and then 

radiate and branched to fill the entire area excepting the fovea zone, which is a blood-

vessel free reddish spot with an oval-shaped lies to the left of the optic disc directly and 

it resides the center of an area that is known by the ophthalmologists as the “macula” 

region [10]. 

The optic disc as defined by [11] is “The optic disc is shaped like a doughnut with 

a pink neuroretina rim and a central white depression called the physiologic cup where 

further details related to optic disc anatomy was discussed thoroughly in chapter 3. 

One of the major diseases that can hit the health of eye in particular and the overall 

health in general, the diabetes. Diabetes can cause various abnormalities including 

 
 

Figure 2.1 Retinal fundus image: 2D and 3D view. 

 

 

 

 

Figure 2.2 Retinal fundus image: 2D and 3D view. 
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diabetic retinopathy if it affects retina and it affect kidneys and, in this case, it called 

diabetic nephropathy, or even it affects the nervous system, where it called diabetic 

neuropathy. Moreover, diabetes is considered a critical risk factor in diseases related to 

heart and blood vessels [12].  

The diabetic retinopathy is considered one of the microvascular complications 

that associated with diabetes, leading to abnormalities manifest in retina in subsequent 

way with respect to time, where it may lead in worst case to complete blindness.  

Many changes occurred and developed in the retinal anatomical structures due to 

diabetes; majorly can be categorized into five major types: (1) Microaneuryms, (2) 

Hemorrhages (3) Hard Exudates (4) Soft Exudates (5) Neovascularization. 

In early stages of diabetic retinopathy, no radical symptoms can be noted, 

however, over the time, many symptoms begin to appear and its severity situation 

increased monastically with time. Typically, diabetic retinopathy begins as a small 

change in retinal blood vessels; thus, the first abnormality can be detected is the existence 

of Microaneuryms. 

Microaneuryms are defined as local distensions of retinal vessels which, in turn, 

leads to intraretinally Hemorrhage. When it exploded, then, the severity of diabetic 

retinopathy is classified as mild non-proliferative state. 

The next stage of diabetic retinopathy development is the permeability increasing 

of the retinal vessels’ walls which allows leaking of lipid formations through weak wall 

of blood vessels leading to Hard Exudates (or He and the severity of this state is described 

as moderate non-proliferative retinopathy, and if it appeared in the macula region it is 

called maculopathy.  
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As time proceeds, the retinopathy advances, some of blood vessels become almost 

blocked leading to microinfarcts in retina. This situation is categorized as Soft Exudates. 

When a considerable number of hemorrhages, hard excaudate and soft exudates are 

created, the severity of retinopathy is described as sever nonperformative diabetic 

retinopathy, then this state of severity can turn into proliferative diabetic retinopathy as 

an appreciable lack of oxygen lead to creation of new fragile vessels. This situation is 

known as neovascularization, which in turn can leads to permanent blindness [2, 13] All 

these severity situations development versus time is depicted and summarized in Figure 

2.2. 

In this thesis, we deal with retinal vessels, optic disc, and hard exudates as target 

anatomical structures for our proposed segmentation system. 

2.2 Retinal Fundus Imaging  

Retina photography is typically conducted via an optical apparatus called fundus 

camera as shown in Figure 2.3. Fundus camera can be viewed as a low power microscope 

that specialized in retina fundus imaging, where the retina is illuminated and imaged via 

the attached camera. In particular, fundus camera is designed to capture an image for the 

interior surface of human eye which composed of major parts including: macula, optic 

disk, retina and posterior pole [14]. 



23 

 

 

 

 

 

 

 

 

 

 Fundus photography can be viewed as a sort of documentation process for the 

retinal interior structure and retinal neurosensory tissues. The retinal neurosensory tissues 

convert the optical images reflection, that we see, into electrical signals in form of pulses 

sent to our brain where it decoded and understood. Retina photography can be conducted 

based on the idea that the eye pupil is utilized as both an entrance and exit for the 

illuminating and imaging light rays that used by the fundus camera. During the fundus 

photography, patients’ foreheads are placed against the bar and their chins placed in the 

chin rest as shown in Figure 2.3. After the oculist aligns the fundus camera, the camera 

shutter is released so a flash light is fired and a two-dimensional picture for retina fundus 

has been taken [15] as anatomically illustrated in Figure 2.4. 

 

 
Figure 2.3 Retinal fundus camera. 

 

 

 

 
Figure 2.4 Retinal fundus camera. 
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In General, the photographic process involves grasping the light that reflected off 

the subject under consideration. In our case, the subject is the fundus of retina. Since the 

internal room of the eye has no light source of its own, in the retina photography, we need 

to flash or shine a light into eye room in order to capture a good photograph. The ocular 

fundus imaging has three major photography modes as elaborated in Figure 2.5:  

◼ Full-color Imaging. 

◼ Monochromatic (Filtered) Imaging.  

◼ Fluorescence Angiogram. 

In case of full-color photography mode, no light-filtration is used and it is totally 

non-invasive in contrary to other modes of fundus imaging. The resultant retina fundus 

image looks as two-dimensional full color image as illustrated in Figure 2.5.a. On the 

other hand, if the fundus is imaged via a monochromatic filter or via particular colored 

illumination; then the fundus photography is called “monochromatic” as shown in Figure 

2.5.b.  

 
Figure 2.5 Retina fundus as seen through fundus camera. 

 

 

 

 
Figure 2.6 Retina fundus as seen through fundus camera. 
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This type of fundus photography is built based on the idea that the visibility of 

different structures in a retinal image is enhanced if the spectral range of illumination is 

changed correspondingly. In another word, instead of using white light of a broad scale 

of wavelengths, we use a light of a specified wavelength that corresponding to a specific 

color, for example, a red object in an image would appear lighter if the image is taken 

through a red filter and it would appear darker if it is taken through green filter.  

As the white light can be divided into red, green and blue lights, the ocular fundus 

can be photographed via one of these gradient lights where each light has the capability 

to enhance the visibility of specific retinal anatomical structures based on their colors. 

For example, blue filter (filter with blue light) enhances the visibility of the interior layers 

of retina, which in full-color photo (taken by white light) appears almost transparent. On 

the other hand, we can get the best overall view of retina fundus and the most enhanced 

contrast if we used the green filter. Moreover, green filters have the capability to enhance 

the visibility of common lesions such as exudates, hemorrhage and drusen.  

 
Figure 2.7 Imaging modes of ocular fundus photography. (a) Full color retinal fundus image (b) 

Monochromatic (filtered) retinal fundus image. (c) Fluorescence angiogram retinal fundus image. 

 

 

 

 
Figure 2.8 Imaging modes of ocular fundus photography. (a) Full color retinal fundus image (b) 

Monochromatic (filtered) retinal fundus image. (c) Fluorescence angiogram retinal fundus image. 
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Another alternative to monochromatic filters is to split the full-color fundus image 

into its basic components, namely, Red, Green and Blue. It equally operates as colored 

filters, except we lose the resolution, which represents a way adopted in a variety of 

retinal vessel identification approaches in the stage of image preprocessing framework 

[16].  

Fundus angiography is the most invasive fundus imaging where it involves 

injecting a tiny amount of fluorescein dye into a vein of patient’s arm, then the dye takes 

its way towards main blood stream leads it to retina vessels; then, the retina fundus is 

photographed. Originally, the word “angiography” is derived from the Greek words: 

Angeion which means “vessels” and “graphien” which means to record or to write. Once 

the sodium-fluorescein has been injected, and reached retina; retina fundus is illuminated 

with a blue light, then it is flashed in a yellow-green color. Later, specialized filters in the 

fundus camera allow the fluorescent light to be imaged leading to a high contrast (gray-

scaled) retinal vascular structure images as shown in Figure 2.5.c [17].  

Retina angiography is considered the photography mode that highly 

revolutionized the ophthalmologists’ capabilities in understanding both of retina 

physiology and pathology. Moreover, it used in the process of diagnosing, treatment of 

choroidal diseases [17]. However, this mode is considered the most invasive one among 

other, due to injecting dyes in the human veins directly. Thus, as recently reported in, it 

is important to consider the potential risk associated with using such mode of retina 

fundus photography especially for neonatal people [18]. 
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2.3 Retinal Image Processing   

The oculists scan the retina of patients using fundus camera with high resolution. 

Accordingly, the situation of retina blood vessels, optic disc and possible existing 

abnormal anatomies are probed in order to diagnose the retinal diseases.  

In many cases, it is found that the retinal vascular structure has low contrast with 

regard to their background in contrary to optic disc and exudates abnormalities. In other 

cases, optic disc and exudates may have same appearance on the surface of retina image. 

Moreover, Retina vessel identification and extraction faces many challenges that may be 

outlined as follows: (1) The retinal vessels’ widths take a wide range of color intensity 

range from less than one pixel up to more than five pixels in the retinal image, as shown 

in Figure 2.6, which requires an identification technique with high flexibility.  

For further elaboration to this challenge, a snippet of MATLAB® code has been 

developed for sake of grey levels substitution in retinal image; the different gray levels 

of a raw retinal image have been replaced by color ones, as shown in Figure 2.7. 

 
Figure 2.9 Pixel width variation of retinal vessels (in pixels). 

 
 

 

 

  

 

 
Figure 2.10 Pixel width variation of retinal vessels (in pixels). 
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 It can be noted that many of retinal vessels, either large or tiny ones, take the 

same background color intensities. This reveal the broad range of color that may be taken 

by the retinal vasculature structure making the identification process more complicated 

rather than that found in other identification problems.  

This challenge opens the room for a field of research specialized in detecting and 

segmenting thin (filamentary) retinal vascular structures as in [19-26]. (2) Vessels 

identification in pathological retinal images faces a tension between accurate vascular 

structure extraction and false responses near pathologies (such as hard and soft Exudates, 

Hemorrhages, Microaneuryms and cotton wool Spots) and other nonvascular structures 

(such as Optic disc and Fovea region). The retinal blood vasculature is a tree-like structure 

disperses across the fundus image surface including pathologies. Thin and filamentary 

retinal vessels melt in the retinal abnormal regions burden the task of accurate vessel 

segmentation as shown in Figure 2.8. 

 
Figure 2.11 First challenge of retinal image segmentation. (a) Description of what is contained in the first 

panel. (b) Different sizes of retinal vessels. 

 

 

 

 

 
Figure 2.12 First challenge of retinal image segmentation. (a) Description of what is contained in the first 

panel. (b) Different sizes of retinal vessels. 
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In summary, retinal vascular structure, either, inside normal or abnormal retina 

images has low contrast with respect to the retinal background. Whereas, other retinal 

anatomical structures have high contrast to other background tissues but with indistinct 

features in comparison with abnormal structures; optic disc and exudates lesions represent 

typical examples.  

All these challenges, in terms of medical image processing, make the classical 

segmentation techniques such as Sobel operators[6], Prewitt operators[7], gradient 

operators[8], Robert and Krish differential operations [9] inefficient and inaccurate. As a 

consequence, a variety of algorithms and methodologies have been developed and 

implemented for sake of automatic identification, localization and extraction of retinal 

anatomical structures and can be broadly divided into: Rule-based and Machine learning 

techniques as elaborated as shown in Figure 2.9 and elaborated in subsequent sections. 

 
Figure 2.13 Effect of retinal lesions on filamentary vessel structures appearance. 

 

 

  

 

 
Figure 2.14 Effect of retinal lesions on filamentary vessel structures appearance. 
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In general, the capability of retinal segmentation algorithm to extract different 

retinal anatomical structures is evaluated in terms of many metrics. The most common 

ones are: average True Positive Rate (TPR), average False Positive Rate (FPR), average 

Sensitivity (recall, TPR), average Specificity(1-FPR), average Accuracy, average 

Precision. Sensitivity and specificity represent the most widely used metrics in medical 

researches; the higher the specificity and sensitivity values, the better diagnosis. The 

sensitivity reflects the capability of the algorithm to detect the vessels’ pixels whereas the 

specificity determines the ability of the algorithm to detect non-vessel pixels.  

Sensitivity and Specificity represent the features of the algorithm and they 

associated with the accuracy metric in many medical image processing fields including 

retinal vessel segmentation [27] as given by the following equations [28] (2.1(2.4) :  

 
 

Figure 2.15 Retinal segmentation techniques. 
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 Sensitivity(Recall)  = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (2.1) 

 Specificity = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)  (2.2) 

 Accuracy =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) (2.3) 

 Precision =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2.4) 

Where TP (True Positives), FP (False Positives), FN (False Negatives), and TN 

(True Negatives). 

On the other hand, many papers use the area under the Receiver Operating 

Characteristic (ROC) curve [29, 30] in order to evaluate their works especially for 

methods that highly depend on specific parameters during the segmentation execution. 

ROC curve is a non-linear function between TPR and FPR values. Optimal area under 

ROC is 1 for an optimal performance. 

 Most of retinal vessels segmentation techniques and algorithms used the most 

popular datasets in this field: (1) Digital Retinal Image for Vessel Extraction (DRIVE) 

[31, 32] and (2)Structuring Analysis of the Retina (STARE) [33]. Both datasets are well-

considered and popular in the field of retinal vessels segmentation to the extent that 

almost every research performance involves vessels segmentation is evaluated via these 

datasets. The popularity of these datasets is due to the good resolution of the retinal fundus 

images and to the availability of manually labelled ground truth images prepared by two 

experts.  

The DRIVE dataset consists of 40 retinal images were evenly divided into a 

training set and a test set whereas the STARE dataset consists of 20 images, 10 of which 

are normal retinal images and the other 10 images are abnormal ones. Nevertheless, many 

researchers use other datasets less common in contract to DRIVE and STARE datasets, 
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for sake of validation and performance evaluation, such as: Automated Retinal Image 

Analyzer (ARIA) dataset [34], DIAbietes RETina Data Base (DIARETDB) dataset [27], 

Methods for Evaluating Segmentation and Indexing techniques Dedicated to Retinal 

(Messidor) dataset [35, 36], High Resolution Fundus (HRF) [37].  

2.4 Kernel-based Techniques  

This type of retinal vessels segmentation depends on the intensities distribution 

of vessel pixels in order to build a filter kernel, which in turn, can detect the retinal 

vasculature structure boundaries. The kernel can either follows a pre-specified form based 

on the cross-section profile of retinal vessel, or it can be deformable according to vessels 

boundaries especially when they lie in or in neighbor of hemorrhages, Microaneuryms 

lesions. Most often, kernel-based approaches are used as preprocessing image 

enhancement step for other retinal vessels segmentation methodologies, since it enhances 

the map for vessels boundaries.  

The profile-based kernels use one of varieties of models that have been proposed 

and implemented in retinal vessels profiling that built based on the idea that intensity 

distribution of retinal vessel is capable to describe retinal vessels characteristics which 

can be turn into maps for sake of vessels detection. The basic idea of kernel-based 

techniques (or as called matched filtering-based) techniques is to compare the pixels’ 

intensity variations along with the cross-section profile of the retinal vessel with a 

prefigured template works as a kernel. Therefore, most of typical matched filter-based 

techniques detect retinal vessels by applying a matched filter kernel on the original gray 

retinal image followed by a thresholding step.  
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Retinal vessel profiling has many applications in the fields of vascular width 

measurement [38] or in the field of vessels type classification [39]. In case of vessels 

detection and extraction, it used to create the map for process of detection which pave the 

way for vessels extraction through region growing or filtering based approaches. 

Generally speaking, retinal vascular matched kernels can fall in one of two major 

categories : Gaussian-shaped or non-Gaussian shaped [40]. 

Early work in this direction was performed by Chaudhuri et al.[41] who observed 

the high similarity of the intensity variations of the cross-section profile of the retinal 

image with a Gaussian function as illustrated in Figure 2.10 Cross-section intensity 

profile of the region marked by a straight line between point A and point B on retina 

image. 

Since first time when Chaudhuri et al. [41] published his well-known paper which 

stated that the cross section profile of retinal vascular structure has approximate Gaussian 

shape. Hence matched filters with Gaussian kernels are emerged and reported in literature 

later on for purpose of retinal vessel tree detection.  
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According to the fact that the cross section of retinal vessels can be modeled as a 

Gaussian function, a series of Gaussian shaped filters (different in Gaussian parameters 

values µ and σ) can be used in order to match different vessel sizes simply and efficiently. 

However, matched filters have strong response to both: vessels and non-vessels structures 

like red lesions and bright blobs which result in degradation in the performance in terms 

of false detection rate.  

Three important aspects should be taken into consideration through designing a 

matched filter kernel: (1) limited curvature of retina vascular structure; where the 

curvature of vessel segments can be approximated by bell-shape piecewise linear 

segments. (2) vessels’ width: the width of the retinal vessels decreases in gradual way 

when one makes a move from optical disk towards Fovea region as shown in Figure 2.4 

(3) Accurate cross-section profile of pixel intensities distribution of the retinal blood 

vessels [42]. 

 
Figure 2.17 Cross-section intensity profile of the region marked by a straight line between point A and point 

B on retina image. 

 

 

  

 

 
Figure 2.18 Cross-section intensity profile of the region marked by a straight line between point A and point 

B on retina image. 
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The same idea of Chaudhuri et al. [41] was followed and re-implemented by [43] 

via DRIVE dataset. The regenerated segmentation results have reported an average 

accuracy of 0.9387 and 0.9647 and 0.6721 for average specificity and average sensitivity 

respectively. Zhu and Schaefer [44] proposed a profile kernel-based algorithm for retinal 

vessel extraction based on profiling the cross-section of retinal vessels using piece-wise 

Gaussian scaled model. Once the profile has been modeled, a phase alignment function 

based on data obtained from oriented log-Gabor wavelet was applied. After boundary 

areas map of retinal vascular structure has been produced, cross-sections were extracted 

by following an approach was proposed by same author in [45]. 

A notable vessel extraction performance has been achieved by Villalobos-Castaldi 

et al. [46], where matched filter in a conjugation with entropy-based adaptive 

thresholding algorithm was employed. The methodology was applied on DRIVE dataset 

where it used matched filter in sake of piecewise linear segments enhancement of the 

retina vascular structure. Later, a co-occurrence matrix [47] that record the number of 

transitions between all pairs of gray-retinal levels was captured where the gray-level 

changes were depicted. Then, the entropy of the image gray levels distribution was 

exploited through second-entropy thresholding in order to segment the background pixels 

from the foreground (vessels) ones. The time consumed in the process of obtaining 

vascular structures approximated 3 seconds besides the high detection accuracy that has 

been achieved where it reached up to 0.9759, sensitivity and specificity of 0.9648 and 

0.9480 respectively.  
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In comparing to performance that achieved in [46], Chanwimaluang and Fan [48] 

followed same procedure that was proposed in [46] in order to extract both : retinal vessel 

as well as the optic disk using STARE dataset. However, the time that consumed 

approximates 2.5 minutes per each retina image; most of it was consumed in matched 

filtering and local entropy thresholding steps. Moreover, it required post-processing steps 

were not required by [46] including long filtering stages for sake of isolated pixels 

removal. Then, filtering steps were followed by morphological thinning used to identify 

the retinal vascular intersection/crossovers. In the other hand, the optic disk identification 

proceeded into two major stages: (1) optic disk center identification through maximum 

local variance detection. (2) optic disk boundary identification through snake active 

contour. Even though the same methodology steps have been followed by both [46, 48]; 

they are extremely different in terms of achieved performance. 

 

 Singh et al. [43] have noted the important effect of Gaussian kernel parameters 

on the subsequent image processing stages. Singh et al. [43] followed same procedure 

that was proposed in [46, 48] as well. However, the parameters of Gaussian function have 

been modified in a way that enhances the overall performance that reached up to 0.9459 

for accuracy and 0.9721, 0.6735 for specificity and sensitivity respectively using DRIVE 

dataset in comparison with average ROC area of 0.9352 was reported by Al-Rawi et al. 

[49] applied on DRIVE dataset, where they used different set of modifications for 

Gaussian-kernel parameters.  

On the same procedure that have been reported in [43, 46, 48], Kaur and Sinha 

[50] employed Gabor filter instead of Gaussian one in the early stages of vessel 
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extraction. The enhanced vessels were obtained via banks of 12 different oriented Gabor 

filters in range of 0 to 170 degree. Gabor-filter based approach outperforms the Gaussian 

one in terms of both area under ROC curve and in terms of specificity. The overall 

achieved sensitivity is less than that achieved by [43, 46] , on the other hand ; the 

performance of [43, 46] was evaluated via DRIVE dataset whereas the performance of 

[43] was evaluated on both DRIVE and the challengeable (pathologies bearing) STARE 

dataset where it shown a high specificity of 96% in the presence of lesions in abnormal 

retinal images. 

Based on the fact that retinal vessels have symmetric Gaussian cross-section 

profile while the cross-section profile for the non-vessels is asymmetric one; a couple of 

matched filters one constructed with symmetric Gaussian (zero-mean) kernel and the 

other with first-Order Derivative Of Gaussian (FDOG) kernel were applied to retina 

images by Zhang et al. [51]. The response of matched filter that has Gaussian kernel was 

used to detect vessels while the local mean of the response of first-order derivative of 

Gaussian kernel was used to establish and adjusting a “dynamic threshold “which, in turn, 

was used in the thresholding phase that followed the matched filter phase. The proposed 

technique exploits the difference between FDOG kernel responses for both vessels and 

non-vessels regions (such as bright blobs, lesions, and optic disk) to vary thresholding 

level according to local mean signal. The experimental results that obtained via both 

DRIVE and STARE datasets, demonstrated that applying hybrid matched filtering 

kernels can reduce the false detection dramatically to less than 0.05 rather than that 

inherently generated with Gaussian kernel even for thin vessels with average accuracy of 

0.9510 for normal cases retina images and 0.9439 for pathological ones. 
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According to techniques reported and discussed above, most of conventional 

matched filters-based approaches enhance the performance of matched filter-based 

methodology by enhancing the performance of the thresholding techniques rather than 

improving the matched filter kernel itself. Zolfagharnasab et al. [52], on the other hand, 

replaced the Gaussian kernel of matched filter by Caushy Probability Density Function 

(CPDF), where it has reported an overall accuracy of 0.9170 with 3.5% of false positive 

rate via DRIVE dataset.  

The inherent zero-crossing property of Laplacian of Gaussin (LoG) filter was 

exploited in an algorithm was proposed by Kumar et al. [53] where two-dimensional 

matched filters with LoG kernel functions are applied to fundus retinal images in order 

to detect retinal vasculature structure which are firstly enhanced by Contrast Limited 

Adaptive Histogram Equalization (CLAHE) method. The proposed algorithm has 

achieved average accuracy of 0.9626, and sensitivity and specificity of 0.7006, and 

0.9871 via DRIVE dataset and average accuracy of 0.9637 and 0.7675 and 0.9799 for 

sensitivity and specificity, respectively via STARE dataset in comparison with average 

accuracy of 0.9340 and 0.7060 and 0.9693 for sensitivity and specificity respectively on 

DRIVE dataset achieved by Odstrcilik et al. [37] using improved two dimensional 

matched filter with two-dimensional Gaussian kernel. The method was applied on 

STARE dataset as well, where it has achieved an overall accuracy of 0.9341 and 0.7847, 

0.9512 for sensitivity and specificity respectively. 
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As a novel matched filter kernel improvement, Singh and Strivastava [42] 

suggested the Gumbel PDF as a kernel function, where they noted the slight skewness of 

vessel-cross section profile which is most likely approximate Gumble PDF with respect 

to Gaussian and Caushy PDF functions that proposed in [41] and [49]. In the thresholding 

phase, entropy-based optimal thresholding was used in a companion of length filtering as 

post-processing step in order to remove isolated pixels. The proposed technique shown 

an improved performance in terms of average detection accuracy 0.9522 for DRIVE 

dataset and 0.9270 for STARE dataset and the value of area under ROC curve was 0.9287 

and 0.9140 for DRIVE and STARE datasets respectively. Since the performance metrics 

used in reported papers are not common, Figure 2.11and Figure 2.12 illustrate a graphical 

comparison between some of reviewed kernel-based methodologies for DRIVE and 

STARE datasets based on accuracy, sensitivity and specificity metrics for retina 

vasculature segmentation. 

Roychowdhury et al. [54] presented a novel classification-based optic disc 

segmentation algorithm that detects and extract the OD boundary as well as the location 

of vessel origin pixel. The proposed algorithm consists of three major stages. In the first 

stage, the green layer of each retina fundus image is extracted and resized. Then using a 

disc structuring element, the green layer is reconstructed morphologically where the 

bright islands of the optic disc that lie in the neighborhood of the major blood vessels are 

extracted. In the second stage, Gaussian mixture model classifier with six region-based 

features is used to classify the bright regions that obtained in first stage into bright 

probable OD regions and non-OD regions where the maximum vessel-sum and solidity 

factors are used to classify the probable OD-regions into best candidate OD regions and 
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remaining candidate OD regions. Convex hull transform was used to gather all candidates 

OD regions where a best-fit ellipse shape across the convex hull gives the final segmented 

OD region. The centroid of major blood vessels within the segmented OD boundary that 

obtained in previous stage is detected and assigned as the location of vessel origin.  

The proposed algorithm has been validated using six public datasets of DRIVE, 

DIARETDB1, DIARETDB0, CHASE_DB1, MESSIDOR, and STARE where it showed 

high robustness against image illumination, imaging angles, and retinal abnormalities 

within competitive low computational time complexity (less than 2.14 s per image). The 

algorithm reported high segmentation performance reached up to 98.8%–100% for optic 

disc and overlap score lied in the range of 72%–84%.  

 

 
Figure 2.19 Summarized graphical comparison between some of kernel-based methods performance 

(Accuracy, Sensitivity and Specificity) based on DRIVE dataset. 
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2.5 Vessel Tracking/Tracing Techniques  

The heart of vessel tracking algorithms is to trace the ridges of retina fundus image 

based on a set of starting points. Graphical representation of ridges of retina image can 

be noticed in Figure 2.13. Any tracking algorithm involves seeds selection as a 

preliminary step, where seeds can be defined either manually or automatically. 

 The ridges of vessels are detected by inspecting zero-crossing of the gradient and 

curvature. However, ‘clean-limbed’ ridges detection needs a pre-processing phase 

involves complicated steps of vessel enhancement for all vessels sizes and orientations. 

As a consequence, one of the major drawbacks of vessel tracking is the extreme 

dependency on the pre-processing steps that proceed the phase of tracing. 

 

 
Figure 2.21 Summarized graphical comparison between some of kernel-based methods performance 

(Accuracy, Sensitivity and Specificity) based on STARE dataset. 

 

 

 
Figure 2.22 Summarized graphical comparison between some of kernel-based methods performance 

(Accuracy, Sensitivity and Specificity) based on STARE dataset. 
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In tracing techniques, it is not an essence for seed points (starting points of 

tracking process) to be located at the center of retinal vessels, Chutatape et al. [55] ,for 

instance, have extracted seed points from the circumference of the optic disc, then the 

centers of vessels were traced using an extended Kalman filter. a semi-ellipse was defined 

around the optic disk as a searching region for starting points of vascular structure which 

was later used by [56]. As the candidate pixels locations for next vessel edge points were 

selected on the semi-ellipse, vessel tracking took place based on Bayesian theory.  

Wu et al. [57] proposed a vessel tracking methodology for retinal vasculature 

structure extraction combines Hessian and matched filters and an idea of exploiting the 

edge information at the vessels parallel boundaries that first proposed by Sofka and 

Stewar [58] for retinal vessels extraction. Once the contrast between vessels and other 

retina tissues are enhanced and the information of sizes and the orientations of enhanced 

 
Figure 2.23 Graphical representation of ridges along retinal vasculature tree. 

 

 

 

 
Figure 2.24 Graphical representation of ridges along retinal vasculature tree. 
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vessels are available, the ridges are used to trace vessel via their center lines along ridge 

seeds that have been already selected automatically. The tracking performance was tested 

via DRIVE dataset, where 84.4% of retinal vasculature skeleton was successfully 

detected with 19.3% false positive rate, where the majority of false tracked vessels were 

the small ones and the researchers considered it as a subject of further ongoing research. 

In contrast to [57], Yedidya and Hartley [59] proposed a tracking methodology 

trace the retinal vessels centers through Kalman filter, where it has the capability to detect 

both wide and thin vessels even in noisy retinal images by defining a linear model. The 

proposed model proceeds into four stages: (1) firstly, set of seed points all over the image 

were found by convolving the whole retina image with a set of matched filters at different 

scales and orientations in aim of finding at least one seed point at each vessel which, in 

turn, remove the need to follow all branches. (2) secondly, Kalman filter was used to trace 

blood vessels’ centers starting from seed points that found in first stage. (3) thirdly, 

tracing process was ceases once the probability of vessel tracing is small for a number of 

back-to-back moves or once tracing hit previously segmented vessel. (4) finally, the 

segmentation results were traced in case of tracking failure in less than minimum number 

of steps. The proposed tracking methodology managed to detect retinal vessels with true 

positive rate reached up to 85.9% and false negative of 8.1% via DRIVE dataset. 

Making use of mathematical graph theory, De et al. [24] designed a novel 

technique to extract the filamentary retinal structure. Their technique was built based on 

connecting the tracing problem and the digraph matrix-forest theorem in algebraic graph 

theory with a primary goal to address the vessel cross-over issue. The proposed technique 

composed of two main stages: (1) Segmentation step: the main skeleton of the retinal 
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vasculature structure was extracted. (2) Tracing step: the first step was used to construct 

the digraph representation which enabled tracing task to cast as digraph-based label 

propagation using Matrix-forest theorem. The proposed technique was used for both 

retinal and neural tracing where the empirical evaluation of the proposed technique 

showed high achievable performance in both cases.  

Yin et al. [60] presented a statistical based tracking method as an improved 

version of a work suggested by [61]. This method detects edge points iteratively based 

on a Bayesian approach using local grey levels statistics and continuity properties of 

blood vessels. Then, it combines the grey level profile and vessel geometric properties 

for sake of both: accuracy improvement and tracking robustness. Experiments on both 

synthetic and real retinal images (DRIVE dataset) shown promising results where the true 

positive rate that obtained was 0.73 whereas the obtained false positive rate was 0.039. 

However, due to relatively low attained detection rate (TPR), a deeper evaluation on 

retinal images is needed to make the proposed method widely usable for vessel detection 

technique.  

2.6 Mathematical Morphology-based Techniques 

Originally, mathematical morphology belongs to set theory of mathematics 

science, where it is considered an application of lattice theory to spatial structures. 

Mathematical morphology concerns about the shapes that exists inside the image frame 

instead of pixels’ intensities. That means it ignores the details that regard image content 

where the pixel intensities are viewed as topographical highs as shown in Figure 2.14.  
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Typically, mathematical morphology was used to binary images, then it has been 

extended to gray and colored ones, as a general processing framework, through 

morphological operators. In terms of mathematical morphology, the image  𝐼 is 

represented as a set of 𝐼 ⊆ ℜ2where foreground pixels are the members that belong to 

𝐼 whereas the background ones belong to the complement 𝐼𝑐 . The image 𝐼 undergoes a 

transformation by another set known as structuring element. Typically, the morphological 

operations can be applied to binary images and then can be extended to gray images. 

Majorly, morphological operations can be divided into: erosion, dilation, opening and 

closing operations. Erosion operation is used to lessen the objects in the image whereas 

the dilation one is used to boost it.  

 
Figure 2.25 Topographic highs of retinal vessels. 

 

 

 

 
Figure 2.26 Topographic highs of retinal vessels. 
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On the other hand, morphological openings are used to remove the unwanted 

structures in the image by applying an erosion followed by a dilation whereas in case of 

morphological closing, some of structures in image are filled or merged by applying 

dilation operation followed by erosion one. 

In aim of retinal vessel segmentation, a Morphological Angular Scale-Space 

(MASS) technique was proposed by [62]. The basic idea of the proposed technique was 

to rotate a varying length (multiscale) linear structuring element at different angles in 

order to determine the connected components and assuring the connectivity across vessels 

where the scale-space created through the variation in the length of linear structuring 

elements. Gradual evolution to higher scales lessens the non-vessel like elements out of 

the processed retinal image where the extracted information from lower scales was used 

to build the retinal image of higher scales. At a certain scale (determined by authors 

experimentally) and using a vessel-ness measure was proposed by [63], the proposed 

method reported a lowest mean square error value of 0.0363 which have been averaged 

over 50 retinal images taken from DRIVE dataset. 

In addition to morphological operations, morphological tools are used in retinal 

vessel segmentation tasks including: gradient, watershed transform, top-hat transform, 

distance function and geodesic distance. Watershed transform has been developed in the 

framework of mathematical morphology by Digabel and Lantu´ejoul [64]. The principal 

idea underlying this method was inspired from geography when a landscape is flooded 

by water, then watersheds appear as divide lines of the domains of rain falling over the 

entire region [65]. A watershed-based segmentation algorithm was used by Frucci et al. 

[66] to segment retinal vasculature structure.  
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The proposed algorithm combines watershed transform and both contrast and 

directional information extracted from retinal image. First, watershed transform was used 

to segment the image into multi-regions. Then, a unique gray-level value was assigned to 

each single region. A contrast value was computed for each region through calculating 

the difference in gray-level with respect to its adjacent regions. A   9 × 9window was 

applied to each pixel in order to attain the directional map that composed of 16 directions. 

The standard deviation of pixels’ gray levels is aligned along these directions. Then, 

based on the occurrences of directions within watershed region, pixels locating in same 

region are assigned same direction. Once the contrast and directional maps had been 

obtained for each watershed region, a precursory segmentation of retinal vascular 

structure was acquired where the regions with highest contrast (positive difference) were 

most likely considered as non-vessel regions. Otherwise, they were considered as vessel 

ones. The proposed algorithm has been developed using DRIVE dataset and has achieved 

a detection precision of 77% and accuracy of 95%. 

Jiang et al. [67] presented a novel work to extract the retinal vasculature structure, 

by using global thresholding based on morphological operations. The proposed system 

was tested via DRIVE and STARE datasets and has achieved an average accuracy of 

95.88% for single dataset test and 95.27% for the cross-dataset test. In terms of time and 

computational complexity, the system has been designed to minimize the computing 

complexity and processes multiple independent procedures in parallel, thus having an 

execution time of 1.677 seconds per each retinal image on CPU platform.  
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2.7 Multi-scale Techniques 

The core idea behind the multi-scale representation is to represent the image at 

multiple scales(levels) where the data contained in a given image is embedded into one-

parameter family of derived images at multiple scales [68] as shown in  Figure 2.15.  

This representation is constructed provided that the structures at coarse scales 

(levels) are the simplified versions of the corresponding structures at fine scales by 

convoluting with smoothing kernels. The only possible smoothing kernels that meet the 

linearity and spatial shift invariance are the Gaussian and its derivatives kernels that have 

increasing widths (scales 𝜎) [69]. 

Originally, the scale-space is the framework of the multi-scale image 

representation [70], two widely-used types of multi-scale representation are : pyramid 

[71], [72] and Quad-tree [73]. Most of retinal vessels segmentation methodologies are 

built based on the pyramid multi-scale type, where the grey-level data is represented in 

 
Figure 2.27 Level scaling idea of multi-scale method. 
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such a way that combines sampling operations with successive smoothing steps 

conducted by Gaussian kernels with different scales gives rise to a response that is 

represented by 2D Hessian matrix [74]. The eigen values of Hessian matrix determine the 

vessel-likeness which, in turn, result in retinal vasculature structure enhancement. 

Hessian matrix processing through eigen values analysis aims to obtain the principal 

directions of vessels where the decomposition of local second order structures in retinal 

image can be performed in order to attain the direction of the smallest curvature along the 

retinal vessels [75].  

The retinal image size decreases exponentially with scale level as illustrated in 

Figure 2.15, as a consequent result, the amount of required computation too. However, it 

shows weakness in extracting fixed-size structures such as optic disc and nonuniform 

structures such as retinal lesions. Thus, multiscale approaches can be best suited for 

structures have varying width and length (coarse and fine) in the same image. 

A typical multi-scale based technique for retinal vessel segmentation was 

proposed by Budai et al. [76]. The proposed technique composed of three major phases: 

(1) Gaussian pyramid generation, (2) Neighborhood analysis and (3) Images fusion. After 

the green channel of raw retinal image was extracted, Gaussian pyramid of resolution 

hierarchy was generated. The hierarchy composed of three levels (level 0, level 1, and 

level 2 as shown in Figure 2.15). The original retinal image (green channel) has the 

highest resolution (level 0), the width and height of image begin reducing as we move 

towards further levels (fine to coarse levels).  
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In the second phase, for each level, an 3 × 3 neighborhood window analysis for 

each pixel was analyzed by calculating Hessian matrix followed by calculation of a 

couple of eigenvalues 𝜆𝑙 𝑎𝑛𝑑  𝜆ℎof Hessian matrix which reflect the scale of lowest 

curvature 𝜆𝑙 and the highest one 𝜆ℎ in the neighborhood window of the target pixel. Then, 

the ratio of these values was used to calculate a vessel likeness measure 𝑃𝑣𝑒𝑠𝑠𝑒𝑙   = 1−

 
𝜆𝑙

𝜆ℎ
 ; the value of  𝑃𝑣𝑒𝑠𝑠𝑒𝑙  determines whether target pixel belongs to vessel tree or not. If 

𝑃𝑣𝑒𝑠𝑠𝑒𝑙  value is close to one, it means it most likely a vessel pixel since 𝜆𝑙 𝑎𝑛𝑑  𝜆ℎ are 

similar to each other. This analysis was applied to each pixel in every scale (level). At the 

final stage, segmentation results from different levels were undergone binarization using 

two hysteresis thresholds, then they merged together using pixel-wise OR operation, 

which yielded the final segmented image. The methodology has achieved an accuracy, 

specificity, and sensitivity of 93.8%, 97.5% and 65.1% on STARE dataset, and 94.9% 

,96.8% and 75.9% on the DRIVE dataset. 

Abdallah et al. [77] proposed a two-step multi-scale retinal vessel detection 

algorithm. As a first step, the noise-corrupted retinal image (gray layer) was denoised 

against the additive Gaussian noise by applying a flux based anisotropic diffusion 

technique; a multi-scale response of multi-level resolution of retinal image was 

computed. Then, as a second step, a vessel model was established in order to analyze the 

eigenvalues and the eigenvectors of Hessian matrix for each scale. Final result of multi-

level analysis represents the pixel-wise maximum of the results were obtained over all 

scales. The proposed algorithm reported area under ROC curve of 0.94514 on STARE 

dataset. 
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Rattathanapad et al. [78] presented an algorithm to segment the blood vessel in 

retinal images based on multilevel line detection and connection of line primitives. 

Multilevel line detection is used for extracting the retinal vessels at multiple values of 

Gaussian smoothing parameters. Then the line primitives that extracted at different scales 

were merged into one single vessel extraction result. The proposed algorithm was 

validated using DRIVE dataset where it proved the capability to detect most of the major 

part of vessel skeleton with false positives.  

 

A new approach based on a multi-scale method for segmentation of retinal vessel 

was proposed by Moghimirad et al. [79] where it used weighted Medialness function 

along with the eigenvalues of the Hessian matrix. The proposed approach consists of two 

phases. In the first phase, the medial axis of retinal vessels was extracted using a two-

dimensional Medialness function in multiple scales and sum of smoothed eigenvalues of 

the image. The second phase is for vessel reconstruction where centerline of vessels was 

extracted and radius of vessels was estimated simultaneously in order to obtain the final 

segmented results. The proposed approach was validated using DRIVE and STARE 

datasets where it showed high performance in terms of accuracy and area under the ROC 

curve where it has achieved accuracy of 0.9659 with area under ROC of 0.9580 via 

DRIVE dataset and accuracy of 0.9756 with area under ROC curve of 0.9678. 
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2.8 Model-based Techniques 

The concept of deformable model is used to describe a set of computer vision 

techniques and algorithms that abstractly model the variability of a certain class of objects 

in an image (vessels in retina image). The most basic versions of these algorithms concern 

with shape variations modeling where the shape is represented as flexible curve or 

surface, then it can be deformed to match specific instance of the object class [80]. The 

deformation is not an arbitrary process, rather it is performed based on two powerful 

theories: Energy Minimization and Curve Evolution which have roots in physics 

,geometry and approximation theories [81]. Deformable models can be divided into two 

main categories: parametric and geometric ones [82]. 

2.8.1 Parametric Deformable Models 

Parametric deformable modeling or as it called snakes or active contours, are 

parametrized curves that depend inherently on particular parameter in order to create it. 

The major goal of active contour modeling is to segment objects in retinal images by 

fitting the curve to objects’ boundaries in the image. It is called dynamic contour 

modeling since it initialized at a place in the neighborhood of target object, then the model 

can evolve dynamically to fit the shape of object by an iterative adaption. The major idea 

of snakes is to represent a curve via parametric curve, however, since it depends on a 

parameter that control the movement of curves (when slithering as snakes) during fitting 

process, it is rigid topologically, namely, it has not the flexibility to represent objects that 

composed of variable number of independent parts [80]. Moreover, another widely-

recognized issue associated with snake-based segmentation technique is the incapability 
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of snakes to converge to the correct vessel edges in the presence of high level noise or if 

the vessels were "empty" or have relatively low contrast levels [83]. 

A novel segmentation algorithm built on snake contours was developed by Jin et 

al. [83]. The proposed technique consists of three major steps: (1) First, parameter 

initialization technique that based on Hessian feature boundaries, where the Hessian 

feature was used to extract all darker linear structures in retinal image, then, the retinal 

image was divided into (N) segmentation regions (R), based on the seeds of extracted 

linear structure. (2) In the second step, each segmentation region R was represented as 

image through utilizing pixels’ average intensity influence, then, the snake energy 

function was constructed on this image representation in order to realize the snake’s 

locations from the neighborhood of vessel edges to real ones. (3) Finally, as all model-

based methodologies end, a region growing technique was used in order to get the final 

vessels' area, then the grown area was post-processed via context feature. The proposed 

methodology validated on DRIVE dataset and has reported a competitive performance 

reached up to 95.21% (accuracy), 75.08% (sensitivity), 96.56% (specificity). 

An efficient and effective infinite perimeter active contour model with hybrid 

region terms for vessel segmentation was proposed by Zhao et al. [84]. The proposed 

model used hybrid region information of the retinal image the proposed model used 

various types of region information, such as the combination of intensity information and 

local phase-based enhancement map. For its superiority; the local phase-based 

enhancement map was used to preserve vessel edges whereas the given information of 

image intensity guaranteed a correct feature's segmentation.  
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The proposed method was applied to DRIVE and STARE datasets where the 

methodology has achieved sensitivity, specificity and accuracy of 0.780, 0.978 and 0.956, 

respectively on STARE whereas for DRIVE, the measures are reported to be 0.7420, 

0.9820 and 0.9540, respectively.  

2.8.2   Geometric Deformable Models 

Fast Marching methods and level sets methods are considered numerical 

techniques devised to track the propagating interfaces, the starting point for geometric 

deformable methods comes from the evolution analysis of the curves and surfaces, as it 

considered interfaces, that firstly proposed by the mathematician Sethian, J. A. in both 

references [85, 86]. Afterwards, Caselles et al. [82] suggested to represent the curve 

depending on Euclidian distance rather than parameters-dependency by representing a 

curve as a level set; that means, the contour is represented as zero-level set of an auxiliary 

distance function ∅; level sets theory paved the way to represent contours in flexible 

manner, where it can join or break apart without the need of reparameterization. 

Gong et al. [87] used a novel level set technique does not need level set function 

initialization, by using local region area descriptor. The proposed technique involves two 

major steps: (1) First, a contour C was found, then it was used to divide the entire retinal 

image into several parts based on whether the pixel position is inside the contoured area 

or not. (2) Then, a clustering algorithm was applied on the sub-regions were resulted in 

first step, which in turn, yielded local cluster value, namely, a new region information 

that used to redefine an energy functional in the first step until the algorithm converged. 

Second step represents key contribution of this paper, since it eliminates the effect of 
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inhomogeneity of retinal image pixels’ intensities, moreover, it gives more information 

about the local intensity information at level of image pixel, this eliminates the need for 

level set function re-initialization that is considered a major drawback of level sets-based 

techniques. The proposed technique was tested on DRIVE dataset and an accuracy of 

0.9360, sensitivity of 0.7078 and specificity of 0.9699 are reported. 

A novel modification to level set based retinal vessels segmentation was presented 

by Dizdaro et al. [88] in terms of initialization and edge detection phases that needed as 

a pre-requirement for level set based techniques. In the initialization phase, the seed 

points were determined by sampling centerlines of vessels based on ridge identification, 

then accurate boundaries of the retinal vessel tree were determined through phase map 

built based on ridge detection technique. The proposed algorithm was tested on both 

DRIVE dataset and a dataset created by paper’s authors. The algorithm has achieved the 

values of 0.9412, 0.9743, and 0.7181 for accuracy, specificity and sensitivity, 

respectively for DRIVE and 0.9453,0.9640 and 0.6130 accuracy, specificity and 

sensitivity, respectively on the proposed dataset. As a conclusion, both deformable 

models either parametric or geometric share a common problem, both require, as essential 

step, a set of seed points that are determined either manually or automatically. 

2.9 Adaptive Local Thresholding Techniques 

Thresholding is considered one of the most well-known, plain and direct 

methodologies to image segmentation in general and to medical image segmentation in 

particular. Whereas the objects arrangement in the natural scene images looks relatively 
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undistinguishable, the arrangement of objects including the organs and tissues in the 

medical image is usually more discernible.  

Therefore, thresholding segmentation techniques are used extensively in the 

researches that involve the medical image segmentation where different tissues and 

organs represented in different gray levels. Typically, thresholding techniques, in its basic 

framework, search for a global value (level), that optimally maximizes the separation 

between different classes (different tissues in our case) in the image. The effectiveness of 

thresholding with a global level manifests if the objects in the image under consideration 

have well-defined areas and if the gray levels can be congregated around values with 

minimum interference.  

Uneven illumination, inferior quality of source material, camera 

artifacts/distortions, and anatomical objects with multi-classes and hybrid features make 

the global thresholding for the entire retinal image a major source for segmentation errors. 

Moreover, since retinal image shows soft transition between different gray levels, uneven 

illumination or noise distortions, the principal segmentation errors begin to appear due to 

pixel-wise approach that adopted by global thresholding, namely, the pixels that have 

same gray levels (pixel intensity) will be segmented into the same anatomical object; 

which is considered a long-standing issue of global thresholding with a single hard value. 

In order to resolve these issues, region-wise thresholding methodologies have been 

suggested for case of retinal vessels identification, developed and implemented via 

different techniques which can be classified into three major categories: statistical, 

knowledge-based and fuzzy-based adaptive thresholding as shown in  Figure 2.16. 
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A novel work by Christodoulidis et. al [89] focused on segmenting small thin 

vessels through Multi Scale Tensor Voting (MTVF) scheme, based on the fact that small 

vessels represent nearly 10% of the total surface of vascular network [90] which , in turn, 

represents the framework of statistical-based adaptive thresholding. The proposed 

technique consists of four major stages: pre-processing and multiscale line detecting 

vessel enhancement, adaptive thresholding and MTVF processing, and post-processing 

stage. In the pre-processing stage, the green channel of raw retina image was extracted. 

Then, image contrast was enhanced by applying a contrast correction approach proposed 

by [91]. Dual-tree complex wavelet transform [92] was used to remove noise. Following 

the pre-processing stage, retinal vessels were enhanced via multi-scale line detection 

approach proposed by [93]. The output of multi-scale line detector was fed into adaptive 

thresholding processer in order to isolate vessels.  

 

 
Figure 2.29 Adaptive local thresholding taxonomy. 
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In order to obtain various levels of adaptive thresholding, authors have fitted the 

histogram of MSLD response to a simple Gaussian function and modified the optimum 

global threshold [94] by varying the distance from the mean of Gaussian function through 

following equation :  

 𝑇 = |𝜇𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 | + 𝛼|𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛| (2.5) 

where  𝜇𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛  and  𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛  are the mean and standard deviation of the fitted 

Gaussian function. Then, various thresholds revealed through experimentally changing 

𝛼 parameter which is considered the heart of adaptive thresholding. Once the adaptive 

thresholding step has been performed, many smaller vessels stayed apart. Thus, a multi-

scale tensor voting framework inspired by [95, 96] have been used to reconnect them.  

In summary, adaptive thresholding was used to extract large and medium-sized 

retinal vessels, while MTVF was used to extract the smallest ones. Finally, as a post-

processing step, morphological cleaning was used to remove the non-vasculature 

components remaining after applying adaptive thresholding. The proposed methodology 

was tested on a recently available Erlangen dataset [37] where it has achieved average 

accuracy of 94.79% and 85.06% ,95.82% for sensitivity and specificity respectively. 

Akram et al. [97] used adaptive thresholding technique to locate and extract 

retinal vessels automatically. The statistical-based adaptive thresholding was used to 

create the binary vascular mask by selecting points that isolate vessels from the rest of 

image. The proposed method has two major phases; pre-processing and adaptive 

thresholding phases.  
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In the first phase, the monochromatic RGB retinal image was fed into Gabor 

wavelet filter in sake of vasculature pattern enhancement, more specifically, thin and less 

visible vessels, based on an image analysis technique proposed by [98].  

The yielded enhanced retinal image has maximum gray values occur for 

background whereas pixels belong to vessels have a slightly greater intensity values 

rather than that belong to background. The proposed technique has been tested using 

DRIVE dataset where it has achieved an average accuracy of 0.9469 with area under ROC 

curve approximate value of 0.963. 

A knowledge-guided local adaptive thresholding was proposed by Jiang and 

Mojon [99] where a verification-based multi-thresholding probing scheme was used. In 

its most basic form, given a binary image 𝐼𝑏𝑖𝑛𝑎𝑟𝑦  results from thresholding process at a 

threshold level 𝑇; then, a classification procedure is used to decide if any region in 𝐼𝑏𝑖𝑛𝑎𝑟𝑦  

can be defined as an object. The operation is carried out on a series of different thresholds. 

The final image segmentation is set by combining different results of different thresholds. 

In summary, the objects hypotheses in an image are generated by binarization via some 

hypothetic thresholds and then according to a particular classification procedure, the 

object is accepted or rejected. The classification procedure represents the core of this 

proposed algorithm, where any piece of information related to object under consideration 

is incorporated, such as shape, color intensity and contrast. This is why it is called 

knowledge-guided technique since during segmentation, thresholding levels varying 

according to the knowledge available about the target object. 

A novel two-approaches adaptive algorithm was proposed by Sharma et al. [100] 

for automatic optic disc localization and detection. The first approach used the directional 
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features of vessel structure and a set of optic nerve head features as the key detection 

factors to the segmented vascular structure such as image variance, density of vessel 

pixels, number of connected components, vessel intersection points, maximum intensity 

regions and angle of intersection between vessel segments. In the second approach, the 

parabola fitting to the segmented vessels was used to identify a mask that contains 40%- 

100% portion of the optic disc. Then, searching for a point inside the selected OD mask 

is performed through iterative steps where keeping the search area limited to the selected 

mask area instead of searching for OD point in the whole retinal image highly affected 

the algorithm robustness against pathological lesions that may exist in retina images. The 

algorithm performance has been evaluated using six public databases containing both 

normal and abnormal retina images. The Optic disk mask was successfully identified in 

1642 images out of 1650 images with accuracy of (99.77%).  

2.10 Machine Learning Techniques 

While pattern recognition has its roots in engineering, machine learning was 

developed in computer science [101]. Pattern recognition has become more well-known 

and active research field since 1960s’ [102], and has undergone a considerable 

development for many years which yields a variety of paradigms and methods have 

important applicability in many fields; retinal vascular structure is such a one. Machine 

learning algorithms are typically divided into three major categories: supervised, 

unsupervised and reinforcement learning. This categorization is mostly based on the 

availability of responses 𝑦 for input data 𝑥.  
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Supervised learning addresses the problems where for each input 𝑥, there is a 

corresponding observed output 𝑦 , whereas in case the latter two categories this 

correspondence cannot be found due to the lack of data.  

Unsupervised learning explores interesting patterns in the input data without a 

need for explicit supervision [103]. On the other hand, reinforcement learning assumes 

that the dynamics of the system under consideration follows a particular class of model 

[104]. 

A back propagation artificial neural network vessel classifier was designed by 

Nekovei and Ying [105] to identify the blood vasculature structure in angiogram images. 

The proposed technique uses the raw gray-intensity values of pixels instead of feature 

extraction. Each pixel in the image is processed by creating a window around it which 

covers number of pixels, then the raw gray intensities of these pixels are fed into the 

neural network as input. In order to cover the entire image, a process of sliding windows, 

pixel by pixel takes place. Training dataset consists of manually selected patch samples 

of angiogram where the distribution of vessel and background pixels kept roughly equal 

in order to prevent neural network biasing towards background pixels’ classification. The 

proposed method has avoided the complexity of feature extraction. besides, the method 

has achieved vessel detection performance of 92% performed on angiograms. 

 The transfer learning and domain adaptation [106] has been investigated in the 

field of retinal vessels segmentation by [107] where a denoised stacked auto-encoder 

neural network was trained with ample labeled mini-patches of retinal images taken from 

DRIVE dataset. DRIVE dataset represents the source domain where the auto-encoder was 

adapted to deploy on STARE dataset which represent target domain. The stacked auto 
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encoder consists of two encoding layers with 400 and 100 nodes per layer respectively, 

then it is followed by a SoftMax regression layer. Due to power of knowledge transfer, 

the proposed technique exhibited an accelerated learning performance with area under 

ROC curve of 0.92. 

For an exhaustive detection of fine retinal vessels, Maji et al. [108] designed a 

hybrid framework of deep and ensemble learning where a Deep Neural Network (DNN) 

was used for unsupervised learning of vesselness via denoising auto-encoder, utilizing 

sparse trained retinal vascular patches. the learned representation of retinal vasculature 

patches was used as weights in the deep neural network, then the response of deep neural 

network was used in supervised learning process with a random forest for sake of 

vasculature tissues identification. The high capability of denoising auto encoder to learn 

feature representation was furiously exploited. The method was trained and tested via 

DRIVE dataset. Although the achieved average accuracy was 0.9327, it is considered 

marginally weak in contrast with state of art approaches, the performance consistency of 

the method and the capability to identify both coarse and fine retinal vascular structures 

are considered its unique ambience. 

Invigorating by the success of [107, 108], Lahiri et al. [109] has presented an 

ensemble of two parallel levels of stacked denoised auto-encoder networks. Each kernel 

is accountable for distinguishing a particular orientation of vessel. First level of the 

ensemble is composed by training (n) parallel stacked denoised autoencoders have the 

same architecture, whereas second level is implemented by parallel training of two 

stacked denoised autoencoders, then the final architecture was fine-tuned until a satisfied 

accuracy has been achieved. The decisions of individual members of the ensemble are 
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combined by a simple SoftMax classifier. The method proves to be reliable and consistent 

in addition to high average detection accuracy that reached up to 0.953.  

Contemporaneous research proposed by Maji et al. [110] uses deep neural 

network technique ensemble of twelve convolutional neural networks to distinguish 

vessel pixels from non-vessel ones. Each convolutional neural network has three 

convolutional layers; each one was trained separately using a set of 60000 randomly 

selected 31 × 31 × 31-sized patches taken from 20 raw color retinal images of DRIVE 

dataset. At the time of deduction; the probabilities of vesselness were produced by each 

convolutional network in a separate manner. Then, the individual responses were 

averaged in order to form the final vesselness probability of each pixel. Although the 

method has not achieved the highest detection accuracy 0.9470 among other methods, it 

exhibited superior performance in terms of learning vessel presentation from data due to 

the fact that multiple experts represented by ensemble of conventional networks are more 

powerful and accurate than one neural network. 

Detecting and restoring small foreground retinal filamentary structure was 

handled by Gu and Cheng [23] using an iterative two-step approach built based on Latent 

Classification Tree (LCT) model. After the confidence map has been constructed, a 

sufficiently high thresholding was placed on it, yielded a partial segmented image 

contains the main (thick and long) vessels. Using latent classification tree, the remaining 

low confidence map (filamentary filaments) was obtained. The filamentary structure was 

re-connected to main filaments (large vessels) via novel matting and completion field 

technique. These steps performed iteratively until the whole retina surface was scanned. 

The proposed method has achieved high detection accuracy reached up to 97.32% for 
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DRIVE dataset and 97.72% for STARE dataset, which is considered an expected result 

due to the noticeable degradation in the false positives produced by false detection of fine 

retinal filaments. Although the proposed method has achieved encouraging performance, 

it has a broad range of applications in the fields other than retinal vessels extraction such 

as 3D magnetic resonance angiography and neural tracing.  

A fast and accurate automated segmentation method for retinal and optic disc 

structures was proposed by Maninis et al. [25]. Their method uses deep Conventional 

Neural Networks (CNNs) as supervised segmentation methods. As all neural networks, 

the layers of CNN were trained in a specialized manner in order to address both retrial 

and optic disc segmentation. The proposed method was validated using DRIVE and 

STARE dataset for retinal vessel segmentation task where the area under recall-precision 

curve has reached up to 0.822 for DRIVE dataset and 0.831 for STARE dataset. In context 

of CNN-based approaches, remarkable performances have been achieved by Liskowski 

et al. [111] with supremum area under curve(AUC) of 0.99 and accuracy of 95.33% and 

AUC of 0.974 have been achieved by Dasgupta and Singh [112] for automated retinal 

vessel segmentation. 

A novel enhancement applied on the classic K-nearest neighbor (KNN) clustering 

algorithm for retinal vessel segmentation has been demonstrated by Salem et al. [113]. 

Each pixel was represented by a feature vector composed of green channel intensity, local 

maxima of the gradient magnitude and the local maxima of the largest eigenvalue. Based 

on these features, image pixels were clustered using the modified version of KNN without 

using training set. The segmentation algorithm was evaluated on the STARE dataset 

resulting in an average sensitivity and specificity of 77% and 90% respectively for three 
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features vector and 76% and 93% respectively using only one-feature (maximum 

eigenvalue) vector. 

A fuzzy-based retinal vessel segmentation methodology proposed by Sharma and 

Wasson [114] used the difference between low-pass filtered and high-pass filtered version 

of retinal image as input for fuzzy-logic based processing. The fuzzy logic consists of 

different sets of fuzzy rules; each fuzzy rule was built based on different thresholding 

values. Thresholding values were used to select and discard pixels values according to 

fuzzy rules; which in turn, led to vessel extraction. The methodology has attained an 

average accuracy of 95% on DRIVE dataset. 

Two-stages combination between vessel tracking and fuzzy logic techniques was 

proposed by Akhavan and Faez [115]. In first stage, the centerlines of enhanced retinal 

image were detected whereas retinal vessels were filled using Fuzzy C-Means (FCM) 

clustering technique in second stage. The final segmented result was obtained by 

combining centerlines images with fuzzy segmented images. Centerlines are used as 

initial points for a FCM-based region growing algorithm. The evaluation of the technique 

resulted in an average accuracy of 72.52% on DRIVE dataset and 77.66% on STARE 

dataset. 

A novel scheme based on combination of genetic algorithm and fuzzy c-means 

clustering algorithm was proposed by Xie and Nie [116]. In pre-processing stage, the 

green channel of raw retinal image was extracted and enhanced by histogram 

equalization. Then, the retinal image was divided into two major layers: texture layer and 

smooth layer. Texture layer was directly fed as input to the processing stage due to the 

amount of information that contains. The features data that obtained in first stage were 
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clustered via fuzzy c-means algorithm in conjunction with genetic algorithm where 

firstly, the genetic algorithm is used to obtain the approximate solution of the global 

optimal solution. Secondly, the approximate solution was used as initial value of the fuzzy 

c-means algorithm. Genetic algorithm eases and enhances the duty of fuzzy c-means in 

finding the optimal solution without falling into issue of local detection of optimal 

solutions.  

In order to overcome the issues related to the objective function of the classic 

fuzzy c-means classifier, Emary et al. [117] utilized the possibilistic version of fuzzy c-

means algorithm optimized by Cuckoo search algorithm. They used the new clustering 

methods, possibilistic c-means proposed by [118] and possibilistic fuzzy c-means 

proposed by [119] to establish an optimal version of fuzzy c-means that were used 

accordingly for retinal vessels segmentation. The optimality of the proposed method was 

examined by the heuristic search algorithm; Cuckoo Search (CS). The evaluation on the 

STARE dataset indicated an average accuracy, specificity and sensitivity of 0.94478, 

0.987 and 0.586, respectively, whereas for DRIVE dataset, the measures reported to be 

0.938, 0.984 and 0.628, respectively. 

Bhargavi et al. [120] designed a four stage computer aided system for detecting 

exudates lesions in pathological retina images. The proposed screening system stages 

consists of: pre-processing, retinal anatomical structures (background and foreground 

structures) segmentation, features extraction and regions classification stages. In the pre-

processing stage, the green layer of raw retina image was extracted and histogram 

equalization and contrast enhancement has been applied; followed by bilateral filter 

which removes remaining unwanted noise and obstacles. In the second stage, the optic 
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disc and the major vessels (background objects) are masked out due to high similarity 

between these structures and the exudates ones. The optic disc is segmented through 

morphological operations whereas the vascular structure through multi-scale hessian 

matrix. Then twenty features of both normal and abnormal regions of foreground objects 

are extracted. These extracted features are used in the process of candidate regions 

classification into exudates and non-exudates using SVM classifier. The proposed system 

showed satisfactory segmentation results in terms of AUC (0.966) and average accuracy 

reached up to (96.66%) obtained using DIARETDB1 and MESSIDOR datasets. 

2.11 Summary  

The existing retinal segmentation methodologies are categorized, and described 

in the last section. We discussed various techniques used in these methodologies for the 

segmentation of different anatomical structures in retinal image and compare 

performance result of the methods.  

These methodologies were evaluated using publicly available datasets. Various 

retinal segmentation methodologies follow almost common procedures; each 

methodology initiates by pre-processing step where the green layer (or gray) is extracted 

of the raw color retinal image, then the contrast of the image is enhanced. Processing step 

represents the heart of algorithm where the different techniques that categorized in last 

section is used. Finally, in the post-processing step, the initial segmented image 

undergoes steps of smoothing and edges preserving and enhancement. Regarding retinal 

segmentation categories that shown in Figure 2.9, there is neither a best technique or 
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algorithm to face all performance metrics in high segmentation achievement nor a best 

mathematical scheme to do so.  

Deciding whether the methodology is best or not depends on a set of factors 

including: (i) Achieved accuracy, which in turn, depends on the achieved specificity and 

sensitivity, where segmentation is considered the best if it achieves the highest possible 

sensitivity value (or shows low false detection to other retinal structures) at the same time, 

maintain the specificity at optimal level. On the other hand, the optimality of the method 

increases as detection capability of the method records high performance in pathological 

retinal images. (ii) Time and computational complexity: The time and computational 

power that required by the methods tends to be low as the accuracy has increased 

tendency on the condition that high performance of high accuracy has achieved. (iii) 

Robustness: the method is considered to be best if it shows robustness against method 

parameters variation.  

The accurate detection and segmentation of the retinal structures forms the 

backbone of a variety of automated computer aided systems for screening and diagnosis 

of ophthalmologic and cardiovascular diseases. Despite of the massive number of 

promised methodologies have been developed and implemented, there is still room for 

research improvement in retinal structures methodologies especially for noisy and 

pathological retinal images outside the limited number of retinal images available in the 

public datasets. In real-life applications, retinal segmentation systems will not replace the 

experts’ role in diagnosis; rather they will enhance the diagnosis accuracy and reduce the 

workload of the ophthalmologists. Therefore, large volume of patients’ images can be 

processed with high diagnosis accuracy and comparable time. 
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CHAPTER 3: RETINAL SEGMENTATION SYSTEM  

Although segmentation methods that mentioned in chapter 2 have been shown to 

be superior to other available methods, they show incapability of detecting and extracting 

all anatomical structures in one system; rather, to be fully identified and segmented; each 

anatomical structure requires a separate stand-alone system built on a stand-alone 

algorithm.  

Another disadvantage of previously reported schemes consists of their 

incapability to address retinal images containing pathologies; this inability is 

demonstrated by performance degradation in terms of false positive rates and reduced 

accuracy, chiefly due to the presence of abnormal structures such as hemorrhages, 

exudates, and other lesions. Identification and extraction of multiple anatomical 

structures in retinal fundus images is thus a complicated problem and a potential 

minefield. 

 In this thesis, we developed a system that can extract multiple retinal anatomical 

structures at one session with high accuracy without the need for texture analysis or 

synthesis. Our work exploits and combines fuzzy sets, mathematical morphology 

theories, and their capability for fast, accurate segmentation system. 

 The general prism framework of the proposed multiobject soft thresholding 

segmentation system is shown in Figure 3.1. The proposed system consists of three 

subsystems work within general framework based on hybrid combination of 

mathematical morphology and fuzzy set theory. 
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Broadly speaking, thresholding is one of the most well-known, straightforward 

methodologies used for image segmentation tasks generally and for medical image 

segmentation tasks in particular [121]. Typically, thresholding techniques search for a 

global value (level) that maximizes the separation between different classes (different 

tissues, in our case) in the image.  Thresholding at a global level is effective if the objects 

in the image under consideration have well-defined areas and if the gray levels are 

clustered around values with minimum interference.  

While objects in natural scenes are relatively undistinguishable, objects in medical 

images, including organs and tissues, are typically more distinct. Therefore, thresholding 

segmentation techniques are used extensively in studies where different tissues and 

organs are represented by different gray levels. However, when images exhibit soft 

transition between different gray levels, uneven illumination or noise distortions, 

principal segmentation errors arise due to the pixel-wise approach adopted by global 

thresholding: namely, pixels that have the same gray levels (pixel intensity) will be 

 
Figure 3.1 Prism of our proposed system segmentation results. 

 

 

  

 

 
Figure 3.2 Prism of our proposed system segmentation results. 
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segmented into the same object which is considered a long-standing issue in global 

thresholding with a single hard value. Since retinal images are a typical example of such 

situations, a region-wise thresholding methodology is adopted in this work. We utilize a 

hybrid of rule-based and machine learning techniques, where the adaptive local fuzzy 

thresholding represents the hard segmentation phase of proposed methodology, while 

morphological operations represent the soft segmentation.  

To our best knowledge, only a very limited number of existing systems have 

focused on extracting multiple anatomical structures with high achievable performance. 

Furthermore, there is no record in the literature of the use of hybrid combinations of 

adaptive fuzzy and morphology to solve this kind of problem. In summary, in this thesis, 

we develop a stand-alone compact segmentation system that can identify, localize and 

extract multiple retinal anatomical structures that have highly distinct features in a single 

segmentation session, while maintaining comparably high segmentation accuracy. 

In this work, we propose a system that involves new hybrid thresholding 

algorithm combines two powerful techniques: adaptive local fuzzy thresholding (coarse 

segmentation) and mathematical morphology (soft segmentation). The general flowchart 

of the proposed system, without regarding the acquired anatomical retinal structure, is 

illustrated in Figure 3.2. 

Morphological operators are used in the pre-and post-processing phases of system 

algorithm, whereas adaptive local fuzzy thresholding is used in the processing phase, 

which means that it represents the core of the segmentation algorithm, even though 

morphological operators are considered more than complement steps.  
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Referring to Figure 3.2, irrespective of the target anatomical structure, our 

proposed system involves three major phases: Region of Interest (ROI) extraction, coarse 

segmentation and soft segmentation. In the first phase, the target region of interest is 

extracted out of the raw retina image 𝐼𝑟𝑒𝑡𝑖𝑛𝑎  in order to enhance the segmentation 

accuracy of the target retinal anatomical structure (vessels, optic disc or exudates lesions) 

and lower the computational cost, then 𝐼𝑅𝑂𝐼  image undergoes a set of pre-processing steps 

involving major morphological operations that lead to initial identification of the target 

area. Although this phase is a preliminary one, it has a dramatic effect on the final 

segmentation accuracy of the fuzzy processing phase. The 𝐼𝑅𝑂𝐼  forms the input for local 

adaptive fuzzy thresholding, which yields the 𝐼𝑅𝑂𝐼
′  hard-segmented image. 

 
Figure 3.3 General flowchart of the proposed hybrid system. 

 

 

 

 

 
Figure 3.4 General flowchart of the proposed hybrid system. 
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 Another set of morphological operations are applied on 𝐼𝑅𝑂𝐼
′   in the soft 

segmentation stage followed by binarization and convex-hull transform smoothing steps 

produced the final segmented image: 𝐼𝑣𝑒𝑠𝑠𝑒𝑙 , 𝐼𝑂𝑝𝑡𝑖𝑐 𝐷𝑖𝑠𝑐 , or 𝐼𝑒𝑥𝑢𝑑𝑎𝑡𝑒𝑠 , depending on the 

target retinal anatomical structure. The common phases involved in our proposed system 

are graphically illustrated in Figure 3.3 and detailed in the following subsections. 

 
 

Figure 3.5 Pipeline of proposed hybrid segmentation system. 
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3.1 Phase I: Image Pre-Processing  

The major goal of this phase as it called ROI extraction is to extract the retinal 

anatomical structure of interest in order to reduce the computational cost and to enhance 

the overall performance; where a window around the target anatomical structure region 

of the raw retinal image is extracted, then the pre-processing steps are applied on it. 

 Each anatomical structure has its own characteristics and features, thus, some of 

pre-processing steps may be different. However, the pre-processing general framework 

keep unchanged. Since the pre-processing steps are quite dependent on the challenges 

created by the nature of target anatomical structure, a brief description of each anatomical 

structure is presented, followed by the corresponding required pre-processing steps. 

3.1.1 Retinal Vessels ROI Extraction 

Vessel segmentation in retinal images involves a tension between accurate 

vascular structure extraction and false responses near sites of pathology or other 

nonvascular structures such as optic disc or macula. In one hand, this tension arises from 

the low contrast nature of retinal vessels in comparison to the fundus image background. 

On the other hand, retinal vasculature structure exhibits dynamic change in size and 

contrast and broad distributed branching on the whole surface of retinal fundus image. 

For example, the width of retinal vessels ranges widely, from less than one pixel up to 

more than five pixels in a typical retinal image, as illustrated in Figure 3.4. 

 Based on a work proposed by [122], Heneghan et al. [123] proposed two stages 

retina vessels segmentation approach, where they used a set of initial morphological 

filters to emphasizes the linear structures in first stage.  
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Additional morphological operations and hysteresis thresholding was used to 

generates the binary vessel image as a second stage. In our system, we utilize the first 

stage of this approach to generate our vessels region of interest 𝐼𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙  as follows. 

First, the raw retina image was converted into grayscale through green layer as it 

presents the higher contrast between vessels and fundus background among other layers 

as in (3.1): 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝐺 = ℑ𝐺  (𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑅𝐺𝐵 )  (3.1) 

 

where  ℑ𝐺(. ) denotes the green layer extracting operator and 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝐺   is the green 

layer of raw RGB fundus image. Then the 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝐺  image was complemented as a 

preliminary step for morphological filtering as in (3.2): 

 
Figure 3.7 Difference in widths between retinal vascular structures. 

 

 

 

 
Figure 3.8 Difference in widths between retinal vascular structures. 
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 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝 = ℑ𝑖𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑚𝑒𝑛𝑡  (𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝐺 )  (3.2) 

 

where  ℑ𝑖𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡  denotes the image complementing operator and 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝

  is 

the complement version of  𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝐺 .  

The supremum and infimum of morphological openings were performed in aim 

of generating two images:  

◼ Image with emphasized linear structures represent the vessels tissues. 

◼ Image with homogenous emphasized flat structures represent fundus background 

and other tissues. 

In these operations, the conventional morphological opening was replaced with 

radial opening as in (3.3): 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝛼 =  𝛼(𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑐𝑜𝑚𝑝 ) =  ⋁𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝

 ∘

𝜃

 ℒ𝜃 
(3.3) 

 

Where ∘  denotes morphological opening and ⋁ (. )𝜃  denotes supremum operator. 

ℒ𝜃 represents the set of structuring linear segments of ℒ pixels length and are rotated at 

multiple angles 𝜃 𝜖 [0, 2𝜋). All linear shapes with length greater than or equal to ℒ should 

be preserved by at least one rotation 𝜃. By such an operation, all other non-vessel tissues 

that have not the structuring element at any rotation will not preserved. In our 

experiments, the value of ℒ was set to 11 pixels rotated in 12 rotations.  

However, morphological opening 𝛼(𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝 )  caused many of filamentary and 

small vessels to be lost, therefore, a morphological reconstruction was applied afterwards 

as in (3.4) : 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 
𝛼 = ℑ𝑖𝑚𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡  (𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝛼 )  (3.4) 
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where ℑ𝑖𝑚𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡  denotes morphological image reconstructing operator. 

Image reconstruction can be thought conceptually as a sort of repeated morphological 

dilations applied on the marker image  𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝛼  until the contour of the marker image fits 

under the mask image  𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝

 where the peaks (highest intensity pixels) spreading out. 

Other radial morphological opening was applied on retina image in goal of 

generating homogenous background does not contain vessels structures as in (3.5): 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 
𝛽

=  𝛽(𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑐𝑜𝑚𝑝 ) =  ⋀𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑐𝑜𝑚𝑝
 ∘

𝜃

 ℒ𝜃 (3.5) 

 

where ⋀ (. )𝜃  denotes infimum operator. Unlike to values of ℒ𝜃 and 𝜃 parameters 

were set by [123]. In this system, infimum parameters were of same values as of 

supremum case because the major goal of this stage is to roughly vessels enhancement 

against background, deep infimum or supremum may affect the quality of vessels 

appearance in region of interest image which, in turns, reflects in a segmentation 

performance degradation of proposed processing system. 

The target vessel region of interest 𝐼𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙 was generated by a subtraction 

operation between 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 
𝛽

 and 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 
𝛼 as in (3.6) 

 𝐼𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙 =  𝐼𝑟𝑒𝑡𝑖𝑛𝑎 

𝛽
− 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 

𝛼  (3.6) 

 

Figure 3.5 shows a closer look for supremum, infimum and resultant subtraction 

operations applied on fundus image. As can be shown from Figure 3.5, despite of vessel 

emphasis in  𝐼𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙 , the issues of vessel segmentation still exist. Many small vessel 

branches melt in the fundus background. On the other hand, large vessels exhibit multiple 

gray scaling.   
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Figure 3.9 Output of supremum 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 

𝛼 , infimum 𝐼𝑟𝑒𝑡𝑖𝑛𝑎 
𝛽

and 𝐼𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙 images respectively.  All of these images 

are originally in gray-scale, MATLAB® has been used to substitute colors values instead of gray ones for 

sake of clarification. 
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3.1.2 ROI of optic disc  

The optic nerve head is defined as the region of the retina where all retinal nerve 

fibers converge to form the start of the optic nerve [124]. The optic nerve head, or optic 

disc, is usually round or approximately oval in shape and contains a central brighter 

region called the cup or pallor. The tissue between the cup and the disc margin is called 

the neural rim or neuroretina rim, as illustrated in Figure 2.6. 

All optic nerve diseases lead to structural changes in the parapapillary and 

intrapapillary regions of the optic nerve head. These changes can be described 

quantitatively by many variables such as shape and size of the optic disc, shape and size 

of pallor, the ratio of cup and disc diameters, and the ratio of cup and disc areas [125].  

 
Figure 3.11 Anatomical structure of optic disc. 
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To derive these variables, the first step is to extract the optic disc region from the 

raw retinal image. The optic disc region of interest is almost of rounded shape; therefore, 

we use the Hough transform to extract the center of the neuroretinal rim of the optic disc, 

and we subsequently extract the square window around the optic disc, which represents 

the optic disc region of interest that involves the following steps:  

3.1.2.1 Edge detection  

Edge detection is often applied as preprocessing step to Hough transform. 

Therefore, the input image fed into Hough transform is an edge map composed of a set 

of pixels partially describe the boundaries of optic disc. The efficiency and accuracy of 

Hough transform in finding the center of optic disc circle can be demonstrated by 

employing accurate edge detection technique. Fuzzy C-Means (FCM) clustering 

algorithm was applied for this purpose. Before applying FCM algorithm, retina image 

underwent a set of preprocessing steps in goal of achieving accurate edge map as 

following:  

First, the red layer of retina image was extracted as in (3.7): 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑅 = ℑ𝑅  (𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑅𝐺𝐵 ) (3.7) 

where  ℑ𝑅 (. )  denotes red layer extracting operator. In contrast to vessels 

extraction, red layer is the layer where optic disc tissues have the higher contrast with 

other objects on fundus image. Then, 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑅  was enhanced as in  (3.8) : 

 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = ℑ𝐶𝐿𝐴𝐻𝐸  (𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑅 )  (3.8) 

where  ℑ𝐶𝐿𝐴𝐻𝐸  (. )  denotes the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) operator, it locally operates on small data regions of image rather 
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than the entire area yields contrast-enhanced image. For further enhancement, we apply 

median filtering of 9×9-sized window and fed as input to FCM algorithm as shown in 

Figure 3.7. As a first step towards edge map generation is to apply a 25-clusters FCM 

algorithm on filtered 𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑  image with a goal of roughly aggregating OD pixels into 

 
Figure 3.13 (a) Raw retina image. (b) Corresponding red layer 𝐼𝑟𝑒𝑡𝑖𝑛𝑎

𝑅 . (c) CLAHE-enhanced image 

𝐼𝑟𝑒𝑡𝑖𝑛𝑎
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑. 
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one cluster and the other 24 clusters were dedicated for other surrounding tissues. This 

operation yields a 25-gray scaled image 𝐼𝐹𝐶𝑀   as shown in Figure 3.8. 

The binarized version of 𝐼𝐹𝐶𝑀  was then obtained via simple thresholding as in 

(3.9): 

 𝐼𝐹𝐶𝑀
𝑏𝑤 =  {

1,            𝐼𝐹𝐶𝑀 = 𝑐
0,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9) 

where  𝐼𝐹𝐶𝑀
𝑏𝑤   represents the binarized version of 𝐼𝐹𝐶𝑀  image setting 𝑐 =  25 

clusters.  Although the binary image 𝐼𝐹𝐶𝑀
𝑏𝑤  forms the seed for our target edge map, some 

noises (binarization residuals corresponding to non-optic disc tissues) are likely to be 

introduced into the result during this process. To solve this, we used a morphological 

opening of size 𝑃 pixels, which keeps only the connected components (objects) of 𝐼𝐹𝐶𝑀
𝑏𝑤  

image whose areas are ≥ 𝑃  and eliminates the rest as illustrated mathematically as 

follows:  

 
Figure 3.15 (a) Fuzzy c-means output image 𝐼𝐹𝐶𝑀 for c= 25. (b) corresponding clustered 3D of  𝐼𝐹𝐶𝑀image 

shows a gray level for each cluster (colorbar) where optic disc pixels have c= 25. 

 

 

 
Figure 3.16 (a) Fuzzy c-means output image 𝐼𝐹𝐶𝑀 for c= 25. (b) corresponding clustered 3D of  𝐼𝐹𝐶𝑀image 

shows a gray level for each cluster (colorbar) where optic disc pixels have c= 25. 
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Consider 𝐼𝐹𝐶𝑀
𝑏𝑤  as a union of disjoint connected components as in (3.10)-(3.11): 

 𝐼𝐹𝐶𝑀
𝑏𝑤 = ⋃𝑏𝑖

𝑖

 (3.10) 

Then,  

 𝐼𝐹𝐶𝑀
𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 =  𝛼(𝐼𝐹𝐶𝑀

𝑏𝑤 ) = 𝐼𝐹𝐶𝑀
𝑏𝑤  ∘  ℬ  (3.11) 

where ℬ  denotes disc morphological opening smoother.  

Then morphological dilation followed by morphological removal was applied on 

𝐼𝐹𝐶𝑀
𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑    leaving only boundary pixels that define our target edge map image 𝐼𝐸𝑑𝑔𝑒𝑀𝑎𝑝  

as elaborated in Figure 3.9. 

3.1.2.2  Hough transform  

The core idea behind Hough transform (point to curve transform) is that the 

perpendicular lines to edge point of a circle cross (coincide) in the center of the circle. 

Thus, if we draw perpendicular lines to every edge pixel of our edge map, then regions 

of circles centers will appear as bright ‘hot spot’ due to accumulative perpendicular lines 

there. Hough transform can be calculated using different approaches: directional 

information (gradients), error compensation (smoothing) and voting in parameter space. 

Since we have only one optic disc per each retina fundus image, our circle-searching 

problem reduces to one circle. Thus, we use the last approach.  

Parametric space voting approach proceeds as follows: Optic disc can be defined 

as a circle-shaped object in the 𝑥𝑦 plane of fundus image parametrically specified in 

(3.12): 

 (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 (3.12) 
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where 𝑎 and 𝑏 are the coordinates of a candidate circle center corresponds to optic 

disc circle, and 𝑟 is the radius. Hough transform is a point  → curve transform, it is applied 

on edge pixels (intensities at (𝑥, 𝑦) pixel) in order to establish a circle curve. 

 

 
Figure 3.17 (a) Binarized 𝐼𝐹𝐶𝑀

𝑏𝑤  image. (b) 𝐼𝐹𝐶𝑀
𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑  image. (c) Edge image   𝐼𝐸𝑑𝑔𝑒𝑀𝑎𝑝 after successive steps 

of dilation and morphological removal filtering. 
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Edge points yielded by edge detector are considered points lie on the curve of 

sought-after circle defined in (3.12). For each edge pixel (𝑥, 𝑦), a candidate circle of 𝑟̂  ∈

(𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥) can be defined in (3.13) and  (3.14). 

    𝑎 =  𝑟̂ ∙ 𝑠𝑖𝑛(𝜃)                           ∀𝜃 ∈ [0,2𝜋]          (3.13) 

 𝑎 =  𝑟̂ ∙ 𝑐𝑜𝑠(𝜃)                         ∀𝜃 ∈ [0,2𝜋]       (3.14) 

identifying circle curve that best fit edge points proceeds through defining an 

accumulator array 𝒜( 𝑟̂, 𝜃) as in (3.15). 

 𝒜( 𝑟̂, 𝜃) =  𝒜( 𝑟̂, 𝜃) + 1 (3.15) 

In our work, we specified 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 to 75 and 85 pixels long respectively; 

this range corresponds to radii range of candidate circles that are taken into consideration 

during searching for OD circle. This range may vary from one dataset to another 

depending on the fundus image resolution, however, it is constant for the one dataset due 

to uniform nature of optic disc location and size. 

A circle curve generated in polar ( 𝑟̂, 𝜃)  space for each edge pixel (𝑥, 𝑦)  in 

cartesian 𝑥𝑦 plane of retina fundus image. Candidate generated circles intersect in peaks 

( 𝑟̂, 𝜃) in Hough transform space. Thus, spots with higher brightness (accumulates ones) 

in places where centers of circles should be found.  

Since we have one circle, we have one hot spot ( max (𝒜( 𝑟̂, 𝜃))) corresponds to 

OD circle as can be illustrated in Figure 3.10. 
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3.1.2.3 OD ROI window 

Since Hough transform detects the coordinates ( 𝑥𝑐𝑒𝑛𝑡𝑒𝑟  , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟) of optic disc 

circle, a perfect circle can be synthesized given a radius 𝑟.Choosing radius value depends 

on the validation dataset used; because each dataset produced via fundus camera is of 

particular specifications in terms of image size and pixel resolution.  

Radius value 𝑟 was used in our system to establish the square widows’ borders of 

optic disc region as it equals = 2 ∙ 𝑟 pixels width. Then, using MATLB ® image cropping 

function, final 𝐼𝑅𝑂𝐼
𝑂𝐷  image has been extracted as shown in Figure 3.11.  

3.1.3 ROI of exudates lesions 

One of the major indicators of the presence of diabetic retinopathy is the existence 

of exudate regions. Figure 3.11.a show a typical example of a color retinal fundus image 

 
Figure 3.19 Accumulation function A (r ̂, θ) in 3D view and associated 2D projection where hot spot 

corresponds to where the centers of circles should be found in 2D view and the maximum accumulation in 

3D view. 

 

 

 

 
Figure 3.20 Accumulation function A (r ̂, θ) in 3D view and associated 2D projection where hot spot 

corresponds to where the centers of circles should be found in 2D view and the maximum accumulation in 

3D view. 
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for a patient that has different distributed exudate islands along with pixel level 

annotations made by expert ophthalmologists.  As shown in Figure 3.11.a, exudate lesions 

appear as either white or yellow soft abnormal regions of different sizes, nonuniform 

shapes and fuzzy divergence on the surface of retinal fundus images. Although retina 

exudates follow neither uniform sizing nor a uniform intensity distribution, the optic 

nerve head and bright reflections within empty retinal vessels exhibit a similar 

appearance. The exudate lesions represent both the most challenging type of retinal 

lesions to identify and extract and the most challenging of all retinal anatomical structures 

to segment. The extraction of exudate region of interest follows the same procedure used 

in optic disc extraction. However, the region of the optic disc is replaced with black 

region; thus, exudate islands cannot be misclassified as the optic disc region during 

segmentation phase, as shown in Figure 3.11.b. 

 
Figure 3.21(a) Raw retina image contains white spots represent hard exudates lesions. (b) Exudates ROI. 

 

 

  

 

 
Figure 3.22(a) Raw retina image contains white spots represent hard exudates lesions. (b) Exudates ROI. 
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3.2 Phase II: Image Processing  

This section elaborates the fuzzy theory-dependent coarse segmentation phase of 

our proposed hybrid system. This phase was inspired by a local fuzzy thresholding open 

methodology proposed as a general framework by Aja-Fernández et al. [126].  

This segmentation methodology combines two powerful thresholding techniques: 

adaptive local thresholding and spatial local information-based thresholding. This phase 

basically consists of three stages: fuzzy modeling, fuzzy model aggregation (fuzziness 

spatial filtering) and binarization as illustrated in the following subsections. 

3.2.1 Stage I: fuzzy modeling  

In this stage, the pixel values (intensities) of our retinal image are converted to 

fuzzy membership values based on properly defined membership functions. Our fuzzy 

model was built through four basic steps: image fuzzification, fuzzy sets composition, 

fuzzy relations (functions) composition and defuzzification. 

3.2.1.1 image fuzzification  

One can look at image fuzzification as sort of image coding; where the input for 

this step is 𝐼𝑅𝑂𝐼  , that can be viewed as composed of fuzzy sets assemblage  illustrated in 

in Figure 3.12, as an example, for optic disc case. Each fuzzy set 𝐴 corresponds to a 

particular zone of 𝐼𝑅𝑂𝐼 . For more precise and accurate extraction of target anatomical 

structure, most of zones were set to belong to the target object (vessels, optic disc and 

exudates lesions) whereas one zone was used to represent fundus background as shown 

in Figure 3.12.   
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Without loss of generality to other anatomical parts, as can be shown in Figure 

3.12, the optic disc has multiple intersected zones, most of them represent optic disc, 

other represent vessels exist in optic disc region and the rest represents background. 

3.2.1.2 fuzzy sets composition  

The entire region of interest 𝐼𝑅𝑂𝐼  produced in the preprocessing phase represents 

the universe of discourse 𝑈𝑅𝑂𝐼 through the process of fuzzy model formulation. 

 
Figure 3.23 Image fuzzification. (optic disc as example) (a) Optic disc ROI. (b) A cropped section of  𝐼𝑅𝑂𝐼

𝑂𝐷  

image. (c) The corresponding section of 𝐼𝑅𝑂𝐼
𝑂𝐷  obtained after applying color substitution via MATLAB ®. 

Note the multiple representative gray levels of optic disc tissues and the interference between them and 

background tissues. 
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 As shown in Figure 3.12, 𝑈𝑅𝑂𝐼  consists of multiple overlapped zones, each zone 

defines a fuzzy set Α𝑧𝑜𝑛𝑒
𝑡𝑟𝑎𝑔𝑒𝑡

, where 𝑡𝑎𝑟𝑔𝑒𝑡  denotes the target anatomical structure 

specified in 𝐼𝑅𝑂𝐼  image which includes: vessel, optic disc and exudates lesion whereas 

zone denotes the region of pixels belong either to anatomical structure or fundus 

background.  

Therefore, the fuzzy model of our work can be specified mathematically as in 

(3.16): 

Let  𝑈𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

= { Α𝑧𝑜𝑛𝑒1
𝑡𝑟𝑎𝑔𝑒𝑡

 , Α𝑧𝑜𝑛𝑒2
𝑡𝑟𝑎𝑔𝑒𝑡

 , ⋯ , Α𝑧𝑜𝑛𝑒 𝑛
𝑡𝑟𝑎𝑔𝑒𝑡

} (3.16) 

is the representative universe of discourse of 𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

. Then, a fuzzy set Α𝑧𝑜𝑛𝑒
𝑡𝑟𝑎𝑔𝑒𝑡

 in 

𝑈𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 ( Α𝑧𝑜𝑛𝑒
𝑡𝑟𝑎𝑔𝑒𝑡

 ⊂  𝑈𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 ) is defined as set of ordered pairs as in (3.17): 

                                  { ( 𝑝𝑖, 𝜇Α(𝑝𝑖))} (3.17) 

where 𝑖𝑡ℎ pixel 𝑝𝑖  ∈  𝑈𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

, 𝜇Α:  𝑈𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

⟶ [0,1]  is the membership function 

of  𝜇Α and 𝜇Α(𝑝) ∈ [0,1] is the degree of membership of 𝑝 in Α𝑧𝑜𝑛𝑒
𝑡𝑟𝑎𝑔𝑒𝑡

.  

Each fuzzy set is identified through a set of characteristic indices (parameters): 

the support and the core of fuzzy set are graphically illustrated in Figure 3.13 for case of 

vessel region of interest 𝑈𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙 . Without loss of generality, irrespective of the target 

anatomical structure, the support of fuzzy set represents the crisp subset of the set 𝑈𝑅𝑂𝐼 

whose pixels all have non-zero membership grades in the set 𝐴𝑧𝑜𝑛𝑒  as in (3.18): 

                         𝑆𝑢𝑝𝑝(𝐴𝑧𝑜𝑛𝑒) = {𝑝: 𝜇𝐴𝑧𝑜𝑛𝑒(𝑝) > 0, 𝑝 ∈  𝑈𝑅𝑂𝐼} (3.18) 

Where 𝑆𝑢𝑝𝑝 denotes the support of fuzzy set 𝐴𝑧𝑜𝑛𝑒. 
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Figure 3.25 (a) Vessel region of interest 𝑈𝑅𝑂𝐼

𝑣𝑒𝑠𝑠𝑒𝑙. (b) Corresponding color-substituted 𝑈𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙. (c) A zoomed 

section of 𝑈𝑅𝑂𝐼
𝑣𝑒𝑠𝑠𝑒𝑙. (d) Corresponding color-substituted of (c) shows two zones one corresponds to 

background and the other for vessel. (e) A zoomed section of vessel zone1. (f) membership function 

parameters corresponding to vessel zone1. 
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The core of fuzzy set is the crisp subset of pixels belong to  𝐴𝑧𝑜𝑛𝑒 region in the 

universe of discourse 𝑈𝑅𝑂𝐼 consisting of all pixels with a membership grade equal to one 

as in (3.19): 

 𝐶𝑜𝑟𝑒(𝐴𝑧𝑜𝑛𝑒) = {𝑝: 𝜇𝐼𝑧𝑜𝑛𝑒(𝑝) = 1, 𝑝 ∈  𝑈𝑅𝑂𝐼} (3.19) 

where 𝐶𝑜𝑟𝑒 denotes the core of fuzzy set 𝐴𝑧𝑜𝑛𝑒. 

3.2.1.3 fuzzy relations (functions) composition  

In order to compose the mathematical representation of membership functions, 

we used fuzzy c-means algorithm for sake of generating the cores of representative 

membership functions through clustering the 𝐼𝑅𝑂𝐼 into clusters and then centroids of these 

clusters were extracted and used as initial cores of membership functions, then, the 

support regions were determined empirically.  

The centroids extracted were ordered in ascending manner easing the process of 

parameters assignment of membership functions and can be expressed mathematically as 

follows:  

The centroids of zones that composed 𝑈𝑅𝑂𝐼 can be represented as a vector of zones 

centroids as in (3.20). 

 𝑪𝑧𝑜𝑛𝑒 = [𝑐𝑧𝑜𝑛𝑒
1 , 𝑐𝑧𝑜𝑛𝑒

2  , ⋯ , 𝑐𝑧𝑜𝑛𝑒
𝑛 ] (3.20) 

where 𝑐𝑧𝑜𝑛𝑒
𝑛  denotes the centroid of  𝑛𝑡ℎ zone of 𝑈𝑅𝑂𝐼. 

The objective function of standard FCM is given as in (3.21) : 

 
𝐽𝑚(𝑈, 𝑣) =  ∑ ∑ (𝑈𝑖𝑘)

𝑚
𝑐

𝑖=1

𝑁

𝑘=1
𝑑𝑖𝑘 (3.21) 

where, 

 𝑈𝑖𝑘 ∶ 𝐹𝑢𝑧𝑧𝑦 𝑖
𝑡ℎ𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑃,     𝑖 = 1,2,…𝑁. 
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𝑚 ∶ 𝑓𝑢𝑧𝑧𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 1 ≤ 𝑚 ≤ ∞ 

𝑑𝑖𝑘: 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑘
𝑡ℎ𝑝𝑖𝑥𝑒𝑙 𝑝 𝑎𝑛𝑑 𝑖𝑡ℎ , 𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑  

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖𝑘 = ‖𝑝𝑘 − 𝑣𝑖‖ 
2 

𝑣 =  [

𝑣1
𝑣2
⋮
𝑣𝑛

]:𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑙𝑢𝑡𝑒𝑟𝑠′𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠.  

𝑣𝑖: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑖
𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟. where 𝑣𝑖  for standard FCM is mathematically 

specified in (3.22): 

 

𝑣𝑖 =  ∑
(𝑈𝑖𝑘

𝑚)𝑝𝑘
∑ (𝑈𝑖𝑘

𝑚)𝑁
𝑘=1

𝑁

𝑘=1

    𝑖 = 1,2,⋯ , 𝑐 (3.22) 

where 𝑈𝑖𝑘  is given as in (3.23): 

 
𝑈𝑖𝑘 =  

1

∑ (
𝑑𝑖𝑘
𝑑𝑗𝑘
)
2
𝑚−1⁄𝑐

𝑗=1

 
(3.23) 

However, one disadvantage of the standard FCM is that it requires a large amount 

of computations if we use it for high number of clustering demand. Therefore, we inspired 

a histogram-based technique was suggested by [127] for MRI image processing. 

 This technique deals with all pixels of same intensity value as one pixel then it 

includes the occurrence frequency in (3.24) as follows:  

 

𝑣𝑖
𝐻 = ∑

(ℎ𝑘𝑈𝑖𝑘)
𝑚𝑝𝑘

∑ (ℎ𝑘𝑈𝑖𝑘)
𝑚𝑁

𝑘=1

𝑁

𝑘=1

 (3.24) 

where; ℎ𝑘 = 𝑘
𝑡ℎ  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑘𝑡ℎ 𝑝𝑖𝑥𝑒𝑙. 

             𝐻 = [ℎ1, ℎ2, ⋯ℎ𝑝]         ℎ𝑝 : ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑜𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑝
𝑡ℎ  𝑝𝑖𝑥𝑒𝑙 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒. 
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Since 𝑈𝑅𝑂𝐼  composed of two major regions: background and target anatomical 

object, and the anatomical structure composed of multiple zones we deal with each of it 

as a fuzzy set  𝐴𝑧𝑜𝑛𝑒 belongs to the universe of discourse 𝑈𝑅𝑂𝐼 . In this system, we used 

six clusters in the case of vessels and 30 and 40 in the cases of the optic disc and exudates, 

respectively. The optimum number of centroids is anatomical structure-dependent, and it 

is tuned to the number that yields optimal performance. Once the centroids are set and 

extracted, the membership functions are created. Two groups of defined membership 

functions are created:  

◼ a group of zones used to represent pixels of the target anatomical structure, 

where each membership function represents one area in the target 

anatomical structure, leading to a corresponding high-accuracy fuzzy 

model. 

◼ a group that represents the background, which includes all structures other 

than structure in the first group.   

Thus, for background zone 𝐴𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  , we established a separate Z-shaped 

membership function 𝜇𝐵𝐺  dealing with it as specified in (3.25) and depicted in Figure 

3.14.  

 

𝜇𝐵𝐺(𝑝) =

{
 
 

 
 

1,   𝑝 ≤ 𝑎

1 − 2 (
𝑝 − 𝑎

𝑏 − 𝑎
)
2

,  𝑎 ≤ 𝑝 ≤
𝑎 + 𝑏

2

2 (
𝑝 − 𝑎

𝑏 − 𝑎
)
2

,          
𝑎 + 𝑏

2
≤ 𝑝 ≤ 𝑏

0,          𝑝 ≥ 𝑏

 (3.25) 
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As depicted in Figure 3.14, the shape of z-shaped membership function is defined 

using two parameters 𝑎 and 𝑏; where 𝑎 parameter specifies the rightmost point at which 

𝜇𝐵𝐺(𝑝) = 1 whereas 𝑏 specifies the leftmost point at which 𝜇𝐵𝐺(𝑝) = 0. At the midpoint 

between 𝑎 and 𝑏, membership grade 𝜇𝐵𝐺 (
𝑎+𝑏

2
) equal to 0.5.  

 As shown in Figure 3.12 and Figure 3.13, the representative zones of anatomical 

tissues are of continuous overlapped nature, therefore, we chosen Gaussian functions as 

representative membership functions for these target zones.  

Gaussian function is expressed by the formula as in (3.26). 

 
𝜇𝐴(𝑝) = exp (−(

𝑝 − 𝑏

𝑎
)2) (3.26) 

The shape of Gaussian function as shown in Figure 3.15, sometimes called the 

Gauss bell, where it is determined by two parameters 𝑎 and 𝑏, where the parameter 𝑎 

determines its width whereas the parameter 𝑏 determines the modal value of the function. 

In this system, the centroids that obtained via histogram-based FCM were used as modal 

parameters whereas 𝑎 parameter was set using a mathematical relation of the centroids as 

in (3.27): 

 
Figure 3.27 Gaussian bell membership function. 

 

 

 

 

 
Figure 3.28 Gaussian bell membership function. 
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 𝑎 = (𝑐𝑧𝑜𝑛𝑒
𝑛 −  𝑐𝑧𝑜𝑛𝑒

𝑛−1 )/2 (3.27) 

where 𝑐𝑧𝑜𝑛𝑒
𝑗

 denotes the centroid of  𝑛𝑡ℎ  zone of 𝑈𝑅𝑂𝐼  in an ordered centroids 

vector 𝑪𝑧𝑜𝑛𝑒 = [𝑐𝑧𝑜𝑛𝑒
1 , 𝑐𝑧𝑜𝑛𝑒

2  ,⋯ , 𝑐𝑧𝑜𝑛𝑒
𝑛 ]. Figure 3.15 shows corresponding Gauss bell 

membership functions that were generated using these parameters. The pixel intensities 

range that shown in  Figure 3.14 and Figure 3.15 is the entire pixels that compose 𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 

image. One membership function was applied at a time yields a fuzzy plane of fuzzy 

membership values corresponding to pixel intensities as in (3.28): 

 𝐹𝑃𝐴 =  𝜇𝐴(𝑝)         𝑝 ∈  𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 (3.28) 

where 𝐹𝑃𝐴 denotes fuzzy plane that generated due to applying  𝜇𝐴(𝑝) function on 

each pixel belongs to 𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

, where the corresponding fuzzy membership grades of 

pixels lie outside support region of  𝐴𝑧𝑜𝑛𝑒 are set to zero. 

 
Figure 3.29 Set of Gaussian bell membership functions corresponding to different zones of  𝐼𝑅𝑂𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
 image. 

 

 

 

 
Figure 3.30 Set of Gaussian bell membership functions corresponding to different zones of  𝐼𝑅𝑂𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
 image. 
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 In summary, the major objective of fuzzy modeling is to convert pixel intensities 

into membership values, where each pixel has a vector of membership values of length 

L, as in (3.29): 

 𝐿𝑝⃗⃗⃗⃗ = [𝜇𝐴
𝐵𝐺𝑧𝑜𝑛𝑒(𝑝), 𝜇𝐴

𝑧𝑜𝑛𝑒1(𝑝), 𝜇𝐴
𝑧𝑜𝑛𝑒2(𝑝),⋯ , 𝜇𝐴

𝑧𝑜𝑛𝑒𝑛(𝑝)] (3.29) 

where 𝐿𝑝 denotes the vector of corresponding membership values of pixel 𝑝 in 

𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 image.  

3.2.2 Stage II: fuzzy model aggregation  

In this stage of processing, the vector of fuzzy membership values that was 

assigned in (3.29) was modified based on spatial filters applied on each fuzzy plane 𝐹𝑃𝐴 

defined in (3.28). The basic idea behind this stage is instead of applying spatial filters on 

pixel intensities (image space), rather they are used on the corresponding membership 

values (fuzzy membership space) as mathematically assigned in (3.30). 

 𝐹𝑃𝐴́ = ℑℎ  ( 𝜇𝐴(𝑝) ),    𝑝 ∈  𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 (3.30) 

where  𝐹𝑃𝐴́  represent the modified version of 𝐹𝑃𝐴  generated due to applying 

special filter of kernel ℎ operates on the neighborhood of membership degrees  𝜇𝐴(𝑝) at 

pixel location (𝑥, 𝑦) of 𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

. Different filtering kernels can be used based on the nature 

of target anatomical structure. In our system, we used median filter in case of vessels and 

exudates structures as in (3.31): 

 𝐹𝑃𝐴́ (𝑥𝑖 , 𝑦𝑖) =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑆,𝜇𝑖)∈𝑆𝑥𝑦
𝜇𝑖 {𝐹𝑃𝐴(𝑆, 𝜇𝑖) } (3.31) 
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where  𝑚𝑒𝑑𝑖𝑎𝑛(𝑆,𝜇𝑖)∈𝑆𝑥𝑦
𝜇𝑖  denotes to median filter operator on a set of coordinates 

in a rectangular subplan window 𝑆𝑥𝑦  forms the neighborhood of a reference membership 

value 𝜇𝑖 located at (𝑥𝑖, 𝑦𝑖) of fuzzy plane 𝐹𝑃𝐴.  

The output 𝐹𝑃𝐴́  is based on ordering (ranking) the membership values in a sub-

window of 𝐹𝑃𝐴 plane; where it replaces the value of membership 𝜇𝑖 by the median of 

membership values in the neighborhood 𝑆𝑥𝑦  of that value. In our system, the size of 𝑆𝑥𝑦  

window was set to 3×3. 

Since optic disc occupies a large region of ambiguous boundaries and divided by 

large vessels, we used linear filtering instead of median one, where we replaced each 

membership value 𝜇𝑖 belongs to 𝐹𝑃𝐴 plane by a linear combination of its neighbors using 

the cross-correlation specified in (3.32): 

 𝐹𝑃𝐴́ = 𝑯⊗𝐹𝑃𝐴 (3.32) 

where ⊗  denotes the cross-correlation operation with 3×3-size kernel 𝑯 

specified in (3.33): 

 
𝑯 =

1

𝜗
[
0 1 0
1 1 1
0 1 0

] (3.33) 

Therefore, the cross-correlation can be detailed as in  (3.34): 

 
𝐹𝑃𝜇𝑖(𝑥𝑖,𝑦𝑖)

𝑡 ́ = ∑ ∑ 𝑯(𝑢, 𝑣)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

𝐹𝑃(𝑥 + 𝑢, 𝑦 + 𝑣) (3.34) 

In this system, we set 𝜗 to 5 and 𝑘 was set to 1. By this filtering modification of 

fuzzy membership values, each pixel has a modified vector of membership values of 

length L, as in (3.35): 
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 𝐿𝑝́
⃗⃗⃗⃗ = [𝜇𝐴

𝐵𝐺𝑧𝑜𝑛𝑒́ (𝑝), 𝜇𝐴
𝑧𝑜𝑛𝑒1́ (𝑝), 𝜇𝐴

𝑧𝑜𝑛𝑒2́ (𝑝),⋯ , 𝜇𝐴
𝑧𝑜𝑛𝑒𝑛́ (𝑝)] (3.35) 

where 𝐿𝑝́
⃗⃗⃗⃗  denotes the vector of corresponding modified membership values of 

pixel 𝑝 in 𝐼𝑅𝑂𝐼
𝑡𝑎𝑟𝑔𝑒𝑡

 image. As a defuzzification step, in order to obtain the output classified 

version of our filtered fuzzy model, Last of Maxima method was used in this system. This 

method assumes the greatest value of 𝐿𝑝́
⃗⃗⃗⃗  vector corresponding to the maximal grade of 

membership values of pixel 𝑝  to be the crisp class representative of fuzzy model. 

Therefore, the output image is a gray image with gray scales equal to the number of 

involved membership functions as shown in Figure 3.16, for vessel segmentation results 

as an example. 

 

 
Figure 3.31 Comparison between fuzzy model and filtered fuzzy model outputs for case of vessels extraction 

(use seven membership functions). (a) Output of fuzzy model. (b) Output of aggregated (spatial filtered) fuzzy 

model.  
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3.3 Phase III: Image Post-Processing  

The final phase of our proposed hybrid system is post-processing or soft 

segmentation, which comprises binarization, morphological post-processing and 

smoothing steps. The coarsely segmented output of stage II undergoes binarization 

through binary thresholding with empirical thresholds according to target anatomical 

structure, which yields the semi-final accurately segmented structure. The binarization 

step produces many isolated, misclassified, and artificial pixels. Thus, it is followed by 

morphological opening operations for sake of cleansing. 

As with other morphological operators, the exact opening operators are 

determined by specifying a structuring element according to the target retinal anatomical 

structure. The morphological operator preserves the foreground pixels of the anatomical 

structure region that have a similar shape to the structure element while eliminating all 

other unwanted pixels (or artifacts). In the case of retinal vasculature extraction, the basic 

task of morphological opening is to remove a subset of the foreground (vessel) pixels 

from the edges of the foreground region, producing a smooth region (vessel) edge as 

shown in Figure 3.17. 

 
Figure 3.33 Post-processing steps involved in retinal vessels segmentation. (a) Output of processing stage. 

(b) Binarized output. (c) Morphological operations. 
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In the case of optic disc and exudate lesion extraction, further steps besides those 

used in the case of vasculature structure are needed: morphological dilation operations 

are followed by a convex hull transform to obtain the smooth round shape of the optic 

disc and the clean, smooth version of the exudate islands, as shown in Figure 3.18 and 

Figure 3.19, respectively. 

 

 

 

 
Figure 3.35 Post-processing steps involved in optic disc segmentation. (a) Output of processing stage. (b) 

Binarized output. (c) Morphological operations. (d) Convex-hull transform 

 

 

 

 
Figure 3.36 Post-processing steps involved in optic disc segmentation. (a) Output of processing stage. (b) 

Binarized output. (c) Morphological operations. (d) Convex-hull transform 

 

 

 
Figure 3.37 Post-processing steps involved in retinal exudates lesions detection. (a) Output of processing 

stage. (b) Binarized output. (c) Morphological operations. 
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CHAPTER 4: EXPERIMENTAL RESULTS  

In this chapter, qualitative and quantitative results of the proposed hybrid system 

are presented to demonstrate the robustness of our proposed system in handling 

heterogenous anatomical structures with different features. As mentioned previously, our 

proposed system is inspired by open soft fuzzy segmentation methodology [126]. 

However, Aja-Fernández et. al. proposed and implemented that methodology for 

extracting wide regions such as the liver and bones depending only on fuzzy set theory. 

Our proposed system significantly modified the methodology into detection system for 

clinical purposes by combining mathematical morphology with the modified clustering 

fuzzy c-means and fuzzy set theory in order to equally accommodate thin and wide retinal 

anatomical structures based on stand-alone core algorithm. 

 In this chapter, our system results for each anatomical structure are compared to 

separate benchmark methods and systems. We report the results of experiments 

conducted using our proposed subsystems (vessel extraction, optic disc extraction, and 

exudate extraction subsystems) and compare them with existing up-to-date techniques 

and methodologies. 

4.1 Retinal Vessels Segmentation Results 

The ability of our system to extract retinal vasculature structures is evaluated in 

terms of three major metrics: average sensitivity, average specificity and average 

accuracy [128, 129]. Sensitivity reflects the ability of the system to detect vessel pixels, 

while specificity assesses the ability of the system to detect non-vessel pixels.  
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Sensitivity and specificity represent features of the system and are associated with 

accuracy as indicated in (4.1(4.3):  

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑝/(𝑇𝑝 + 𝐹𝑁) (4.1) 

 Specificity = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑝) (4.2) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑝 + 𝑇𝑁)/(𝑇𝑝 + 𝐹𝑁 + 𝐹𝑁 + 𝑇𝑁) (4.3) 

 

Where 𝑇𝑝 (True Positives), 𝐹𝑝 (False Positives), 𝐹𝑁 (False Negatives), and 𝑇𝑁 (True Negatives).  

 

In the case of retinal vasculature structures, we have used the most popular 

datasets in this field: (1) Digital Retinal Images for Vessel Extraction (DRIVE) [31, 32] 

and (2) STructured Analysis of the Retina (STARE) [33]. Both datasets are well-regarded 

and popular in the field of retinal vessel segmentation, and almost every study involving 

vessel segmentation evaluates performance using these datasets.  

The popularity of these datasets is due to the good resolution of the retinal fundus 

images and to the availability of manually labelled ground truth images prepared by two 

experts. The DRIVE dataset consists of 40 retinal images were evenly divided into a 

training set and a test set whereas the STARE dataset consists of 20 images, 10 of which 

are normal retinal images and the other 10 images are abnormal ones. Figure 4.1 shows a 

typical example of segmentation results. 
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As shown in Figure 4.1, in addition to extracting wide veins and arteries (vessels 

with wide area or wide diameter), our proposed system successfully extracted the 

capillaries (tiny vessels) as well. Although our proposed system was not built on a 

supervised algorithm, in general, it is fuzzy logic-dependent and thus utilizes labeled 

images to create the membership function appropriate to the target anatomical structure. 

Therefore, the best method to examine the detection system’s dependence on the training 

dataset is to use the testing subset of the DRIVE dataset to measure system performance; 

The detection performance is evaluated and summarized in Table 4.1.  

 

 
Figure 4.1 Illustration of proposed algorithm on the dataset DRIVE. (a) and (b) Original retina image from 

DRIVE training dataset. (c) and (d) Original retina images from DRIVE testing set. (e) and (f) 
Corresponding ground truth. (g) Corresponding 1st observer ground truth. (h) Corresponding 2nd observer 

ground truth. (i), (j) and (k) Vessels segmentation results of our system. 
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Table 4.1 Performance of proposed vessel segmentation system on the DRIVE dataset. 

Dataset Sensitivity Specificity Accuracy 

 

DRIVE / Training 

 

0.7544 

 

0.9714 

 

0.9523 

 

DRIVE / Testing 

     1st Observer 

 

0.7822 

 

0.9725 

 

0.9556 

 

DRIVE / Testing 

2nd Observer 

 

0.8065 

 

          0.9729 

 

0.9588 

 

As can be concluded from Table 4.1, our proposed system has achieved enhanced 

segmentation results against the first and second observers of the DRIVE testing dataset; 

these results reflect the robustness and reliability of the system for real-life diagnostic 

implementations.  

For further quantitative validation of the proposed system in vessel extraction, the 

system is applied to the STARE dataset, which is considered a more challenging dataset 

than DRIVE due to pathological images that have. As in the case of the DRIVE dataset, 

the STARE dataset has two corresponding ground truths from expert ophthalmologists: 

one provided by Dr. Valentina Kouznetsova (1st observer). The other ground truth is 

provided by Dr. Adam Hoover (2nd observer).  Figure 4.2 shows example pathological 

retinal images taken from the STARE dataset and processed by our proposed system 
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along with the corresponding segmentation results. Table 4.2 summarizes the resulting 

average accuracy, sensitivity and specificity of the proposed system against the 1st 

observer and 2nd observer ground truths of the STARE dataset. 

Table 4.2 Performance of proposed vessel detection system on the STARE dataset. 

Dataset Sensitivity Specificity Accuracy 

 

STARE / 1st Observer 

 

0.6393 

 

0.9646 

 

0.9281 

 

STARE/ 2nd Observer 

 

0.7611 

 

0.9551 

 

0.9402 

 

 
Figure 4.3 Vessels Segmentation results using STARE dataset. Row 1: Original abnormal retina images. 
Row 2: Corresponding ground truth images prepared by Dr. Valentina Kouznetsova (1st observer).  Row 3: 

Corresponding ground truth images prepared by Dr. Adam Hoover (2nd Observer). Row 4: Corresponding 

vessel segmentation results of proposed system. 
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  The high performance achieved on this dataset, as shown in Table 4.2 and Figure 

4.2, reveals the proposed system’s ability to deal with both normal and abnormal cases 

encountered in real world clinical applications.  

To compare different retinal vessel segmentation techniques and other set of state-

of-art methods, Table 4.3 and Table 4.4 and   compares our proposed system with other 

methods [33, 42, 51, 67, 88, 115, 130-137] published based on both DRIVE and STARE 

datasets. 

 

Table 4.3 Performance comparison of proposed vessel segmentation methods based on DRIVE dataset. 

Method Sensitivity Specificity Accuracy 

Human Second Observer  0.7761 0.9725 0.9473 

Zhang et al. (2010) [51] 0.7120 0.0276 0.9382 

Dizdaro et al. (2012) [138] 0.7181 0.9743 0.9412 

Akhavan et al. (2014) [115] 0.7252 0.9733 0.9513 

Zhang et al. (2015) [130] 0.7508 0.9656 0.9521 

Borges et al. (2015) [132] - - 0.9489 

Zhang et al. (2015) [137] 0.7812 0.9668 0.9504 

Singh et al. (2016) [42] 0.7594 0.0292 0.9522 

          Geetha Ramani et al. (2016) [131] 0.7079 0.9778 0.9536 

Mapayi et al. (2016) [133] 0.7302 0.9651 0.9444 

Jiang et al. (2017) [67] 0.9159 0.9559 0.9538 

Proposed System 0.8065 0.9729 0.9588 
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Table 4.4 Performance comparison of proposed vessel segmentation methods based on STARE dataset. 

       Method     Sensitivity     Specificity         Accuracy 

Hoover et al. (2000) [33] 0.6747 0.9565 0.9275 

Kande et al. (2008) [134] - - 0.8976 

Zhang et al. (2009) [135] 0.7373 0.0264 0.9087 

Yin et al. (2015) [136] 0.8541 0.9419 0.9325 

Singh et al. (2016) [42] 0.7939 0.0624 0.9270 

Proposed System 0.7611 0.9551 0.9402 

 

Measures in Table 4.3 and Table 4.4 show that our system outperforms most of 

the up-to-date vessel segmentation methods reported in these tables. The most 

competitive alternative to our proposed work is the morphology-based global 

thresholding algorithm developed by Jiang et al. [67], whose sensitivity is better than 

ours. Nonetheless, our proposed technique excels this work in terms of both specificity 

and accuracy. Additionally, our system is designed to be multitargeted, which further 

distinguishes its performance. 

4.2 Optic Disc Segmentation Results 

 

Optic disc segmentation is less challenging than retinal vessel segmentation 

because the area occupied by the optic disc is larger than the narrow-branched area 

occupied by vessels or nonuniform distributed islands occupied by exudate lesions. 

However, large vessels pass through the optic disc area and separate it into neighbor 

islands. Additionally, the existence of the cup region inside the optic disc region, the 

gradual decrease in pixel intensity from the center of the optic disc to the outer rim and 

its return to high intensity make accurate optic disc region extraction a challenging 
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segmentation task. For same reasons mentioned for using DRIVE and STARE datasets; 

optic disc subsystem is validated using the public DRISHTI-GS dataset [139], which 

contains retinal fundus images for 50 patients using a 30 degree field of view (FOV) at a 

resolution of 2896 x 1944 pixels. Each retinal image has corresponding manual markings 

prepared by four ophthalmologists with different levels of clinical experience (3, 5, 9, and 

20 years) called a softmap.  

To conduct performance evaluation, the gray-scale softmap image must first be 

converted into a binary image. The conversion process follows classic binary 

thresholding steps using thresholding levels called confidence levels, where each 

confidence level corresponds to one of the ophthalmologists involved.  

In the following results, we show results based on a fusion of annotations using 

the normalized average approach, which is considered one of the most reliable 

approaches. The normalized average of the annotations provides a linear confidence scale 

in the range (0,1). The proposed system correctly identified the optic disc location with 

100% accuracy.  

Thus, it produces better accuracy in optic disc localization than other methods. 

For example, the method of [140] achieved an 89% success rate for localization of the 

optic disc, testing their methods on a different dataset.   

For quantitative evaluation of optic disc segmentation, we have employed the 

same measures used by the dataset builders [139]: precision, recall, and the harmonic 

mean of the precision and recall, i.e., the F-score. These error metrics are given 

mathematically specified in (4.4 (4.6): 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑝/(𝑇𝑝 + 𝐹𝑝) (4.4) 

 

 Recall = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑁) (4.5) 

 

 𝐹𝑠𝑐𝑜𝑟𝑒 = (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (4.6) 

 
Where F-score range is between 0 and 1; as  𝐹𝑠𝑐𝑜𝑟𝑒  value gets close to 1, the 

performance gets better.  

Comparative analysis of optic disc detection results of the proposed system and 

other up-to-date techniques[141-144] are provided in Table 4.5 and a typical illustration 

of optic disc segmentation results for the proposed system is shown in Figure 4.3. 

 
Figure 4.5 Optic disc segmentation results for the DRISHTI-DS dataset. Column 1: Original retinal images. 

Column 2: Region of interest. Column 3: Corresponding ground truths. Column 4: Optic disc segmentation 

results of our proposed system. Column 5: Superimposed 
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Table 4.5 Performance comparison of optic disc segmentation methods on DRISHTI-GS dataset. 

        Method†           F-Score 

Wong et al. (2008) [143] 91.1% 

Cheng et al. (2013) [141]  92.1% 

Sedai et al. (2016) [142] 95.00% 

Zilly et al. (2017) [144] 97.3% 

Proposed System  90.2% 

†
 The results of methods [143] and [141] are taken from the benchmark study [144]. 

 

further evaluation of the proposed system, we compare segmentation results for 

the proposed system with existing methods [134, 145-148] in terms of average specificity, 

sensitivity and Positive Predictive Value (PPV) as shown in Table 4.6, where sensitivity 

and specificity were defined in ( 4.1) and ( 4.2) and PPV value is represented 

mathematically as in (4.7): 

 PPV = 𝑇𝑝/(𝑇𝑝 + 𝐹𝑝) (4.7) 

   

Table 4.6 Optic disc segmentation methods comparison. 

Method†  Sensitivity Specificity PPV‡ 

              Stapor et al. (2004) [148]            84.98%           99.64%              80.34% 

Seo et al. (2004) [147]            61.03%           99.87%              88.78% 

             Lupascu et al. (2008) [146]            68.48%           99.69%              81.17% 

             Kande et al. (2008) [134]            88.08%           98.78%              54.48% 

             Bharkad et al. (2017) [145]            74.60%           99.61%              74.96% 

Proposed System            93.13%           97.09%              90.15% 

†
The results of other methods are taken from the benchmark study [145]. 

‡ PPV: Positive predictive value. 
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In terms of optic disc segmentation, sensitivity indicates the portion of the real 

optic disc area that was segmented by the system. Higher values of sensitivity indicate 

better performance, whereas specificity indicates the portion of the non-optic disc area 

segmented by system.  Higher values of specificity represent better performance. PPV 

indicates the portion of true optic disc area detected by the algorithm.  

It is important to note here that not all of the systems listed in Table 4.6 were 

assessed on the same dataset; the purpose of including these comparisons is to show that 

the proposed system outperformed these techniques in terms of sensitivity and PPV value 

while achieving nearly identical specificity. In addition to the performance evaluations 

listed in Table 4.5 and Table 4.6 our proposed method has achieved an optic disc 

segmentation accuracy reached up to 96.42%.  

4.3 Retinal exudates Segmentation Results 

In this section, the success of our proposed compact system in identifying and 

extracting retinal exudate lesions is evaluated and compared with a set of up-to-date 

methods. For this purpose, we have used the DiaRetDB1 dataset [27] at the image level. 

This dataset consists of 89 color fundus images taken in Kuopio University Hospital, of 

which 84 pathological images contained different types of diabetic retinopathy 

abnormalities; other images were normal, according to four experts involved in the 

diagnostic process. 

 Our exudate segmentation result is evaluated against the expert ground truth of 

DiaRetDB1 dataset images. However, the expert ground truth is given as a 4-level 

grayscale image, one gray-level for each expert’s markings. 
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 Therefore, as in the case of the optic disc, we combined four experts’ annotations 

in one binary image in a layered manner, as illustrated in Figure 4.4. 

 

pathological images contained different types of diabetic retinopathy 

abnormalities; other images were normal, according to four experts involved in the 

diagnostic process. Our exudate segmentation result is evaluated against the expert 

ground truth of DiaRetDB1 dataset images. However, the expert ground truth is given as 

a 4-level grayscale image, one gray-level for each expert’s markings.  

 
Figure 4.7 (a) Original abnormal retina image from DiaRetDB1 dataset. (b) Gray layer of retina image. (c) 

Corresponding ground truth; a gray level for each expert annotation. (d) Normalized average of annotations. 
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Therefore, as in the case of the optic disc, we combined four experts’ annotations 

in one binary image in a layered manner, as illustrated in  Figure 4.4. A Typical example 

of segmentation results of exudates detection subsystem based on DiaRetDB1 dataset is 

shown in Figure 4.5. 

The performance of exudates subsystem in extracting exudate lesions is evaluated 

using the same performance measures used in extraction of vasculature structures. Table 

4.7 shows a comparative analysis of our proposed system with other existing schemes 

[35, 149-152]. All of these methods used the DiaRetDB1 dataset in their evaluations. 

 
Figure 4.9 Typical sample of retinal exudates lesions segmentation results using DiaRetDB1 dataset. Column 

1: Original retinal images. Column 2: Corresponding ground truths. Column 3:  Exudates lesions 

segmentation results of our proposed system. Column 4: Superimposed. 
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 In case of exudates lesions segmentation, we use average sensitivity, average 

specificity and average accuracy as evaluation metrics, where we considered the 

extraction result as TP if the raw retina image contains exudate lesions according to both 

ground truth and our segmentation system.  

we defined results as TN if the raw image does not contain exudates according to 

both the ground truth and our segmentation system. In contrast, a result was considered 

an FP if the raw image does not contain exudates according to the ground truth but our 

system extracts exudates from the image. The reverse case yielded FN results.   

 

Table 4.7 Performance comparison of exudates lesions segmentation methods on pathological images of 

DIARETDB1 dataset 

Method Sensitivity Specificity Accuracy PPV‡ 

†
Sopharak et al (2009) [151] 97.2% 85.4% 85.6% 5.7% 

Welfer et al (2010) [152] 70.48% 98.64% - 21.32% 

Harangi and Hajdu (2014) [150] 73% - - 69% 

Liu et al. (2017) [35] 83% 75% 79% - 

Fraz et al. (2017) [149] 92.42% 81.25% 87.72% 87.14% 

Proposed System 75.80% 85.7% 83.4% 41.67% 

†
This method used only 10 retinal images for sake of evaluation. 

‡ PPV: Positive predictive value. 
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CHAPTER 5: CONCLUSIONS AND 

RECOMMENDATIONS  

5.1 Conclusions  

In this thesis, we have proposed a generic system for automatic detection, 

localization and extraction of three retinal anatomical structures using a hybrid of fuzzy 

set theory and morphological operations. From a clinical point of view, the extraction of 

retinal structures is the first step in the design and development of computer-assisted 

diagnostic systems for ophthalmic issues. The outputs of these proposed subsystems 

(vessels detection subsystem, optic disc subsystem, and exudates lesions subsystem) are 

integrated in a compact manner to capture the clinical information that they contain. 

From a research point of view, our work makes two major contributions. First, 

our proposed system eliminates the need for designing a separate system for detecting 

each retinal anatomical structure; one compact novel system was used to extract three 

different anatomical structures with various features and textures. Building upon this 

system, a hybrid framework for performing detection and extraction tasks for other 

anatomical structures either inside the retina or other organs can be developed. 

Second, the proposed system is highly robust and accurate as well, as it has been 

shown to perform better than the state-of-art on the public DRIVE, STARE, DRITSHTI-

GS, and DiaRetDB1 retinal datasets. In addition, it performs well at extracting vessels 

and optic disc from pathological retinal images. Therefore, it can be considered ideal for 

real-life diagnosis applications.  
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Experimental results showed that for the same dataset used, our proposed system 

has achieved superior results in terms of specificity, sensitivity and accuracy. This is a 

clear indicator of the powerful system that can be yielded when a highly discriminative 

operator such as morphological operations combined in a hybrid manner with highly 

nondiscriminative ones such as fuzzy sets. This hybrid combination can be viewed as 

some sort of trade-off between the crisp world and the fuzzy one. 

 

5.2 Future Work and Directions  

There are improvements that can be done with regards to our proposed 

segmentation system. One is to investigate more retinal anatomical structures such as 

Fovea as normal one and other retinal anatomical structures such as Microaneuryms, 

Hemorrhage and soft exudate lesions as abnormal ones. 

More investigation also can be added to the artificial intelligence part of our 

proposed system such as using Artificial Neural Networks (ANNs) to work in a scenario 

with tight time constraints. Although using parallel computing machines instead of using 

a single PC is one candidate solution for the issue of high needed computational time. 

There are also directions of potential research that this thesis does not address. 

But it can be considered as a complementary part of a complete retinal computer aided 

system. This part is a content-based retinal retrieval system, where the outputs of this 

system integrates with the outputs of our system in such a way as to capture the 

complementary clinical information which they contain. 
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