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Abstract 

Automated Retinal Analysis 

James A. Lowell 

Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term 

complications of diabetes can affect many different systems of the body including the retina of the 

eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading 

causes of blindness in the working population of industrialised countries. 

The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the 

onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National 

Screening Committee have recommended that diabetic patients should receive annual screening by 

digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly 

process requiring highly skilled staff. 

This thesis describes an automated diagnostic system based on image processing and neural 

network techniques, which analyses digital fundus images so that early signs of sight threatening 

retinopathy can be identified. Within retinal analysis this research has concentrated on the de

velopment of four algorithms: optic nerve head segmentation, lesion segmentation, image quality 

assessment and vessel width measurements. This research amalgamated these four algorithms with 

two existing techniques to form an integrated diagnostic system. 

The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of 

images requiring human grading by 74.3%: this was achieved by identifying and excluding images 

without sight threatening maculopathy from manual screening. 
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Chapter 1 

Introduction 

The research contribution of this thesis is the development of techniques for the automated analysis 

of the retina using digital fundus images. The technical problems associated with retinal analysis 

have been isolated and have led to the development of four novel algorithms; a deformable model 

for optic nerve head segmentation; a new region growing algorithm for lesion segmentation based on 

gradient contrast and compactness; identification of a image quality metric for fundus image quality 

assessment; and development of a 2D vascular segment model for vessel width measurements. 

1.1 Introduction 

Medical diagnostic imaging has existed since the first decade of the 1900's after the discovery of 

x-rays. Following World War II and the arrival of the digital computer, new image modalities 

including ultrasound and magnetic resonance imaging have combined to create an explosion of 

research into medical image analysis [3]. 

Diagnostic imaging has enabled non-invasive visualisation of a variety of biological systems, such 

as the brain, heart, lungs and eyes. Medical diagnosis based on images obtained by ultrasound, 

computer tomography (CT), magnetic resonance (MR), digital x-rays and digital fundus cameras 

(see figure 1.2) is now commonplace and has significantly improved the medical care available to 

patients. With increased medical imaging capabilities, screening programs for the early detection 

of cancerous tumors or lesions from other diseases such as diabetes have gone nationwide. The 
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repetitive task of manually assessing large numbers of diagnostic images and the susceptibility of 

intra-observer variation and error has encouraged the investigation of methods for semi-automated 

and fully-automated analysis of medical images. Such investigations are usually multidisciplinary 

due to the complexities of computer vision, and often require implementation of image processing, 

pattern recognition, and machine learning techniques. 

Diabetes mellitus is a chronic disease caused by insufficient insulin being produced by the 

pancreas or by the ineffectiveness of the insulin produced. In recent years, diabetes mellitus has 

reached worldwide epidemic proportions. The World Health Organization attributes the increased 

occurrence of the disease to lifestyle and economic change. In 1985, the worldwide estimate for 

diabetes was 30 million people; a decade later, 135 million. The WHO's millennium estimation 

was 177 million worldwide sufferers. This figure is expected to almost double by 2025 [4]. 

There are two principle forms of diabetes; insulin dependent (type 1) and non insulin dependent 

(type 2). Insulin dependent diabetes occurs most frequently in children and adolescents and is most 

commonly caused by the inherited failing of the pancreas to produce enough insulin for the body. 

Non insulin dependent diabetes accounts for 90% of all cases, and typically effects ageing adults 

with unhealthy diets, obesity and sedentary lifestyles, and results in the body's inability to process 

the insulin produced by the pancreas [4]. Increased concentrations of glucose in the blood caused 

by pancreas deficiencies damage many of the body's systems, but in particular the blood vessels 

and nerves. Complications of the disease vary with the duration of elevated blood glucose but can 

include kidney failure, heart disease, limb damage (leading to amputation) and eye disease. 

Diabetic retinopathy is a common complication of diabetes and a leading cause of blindness 

and visual impairment. After 15 years of diabetes, over 95% type 1 and 77% of type 2 patient 

sufferers develop retinopathy [5][6]. The severity of the retinopathy varies with the age of onset, 

disease duration and the blood glucose control. However, at 15 years duration, approximately 2% 

of people become blind and 10% will be severely visually handicapped [4]; see figure 1.1. 

Although, diabetic retinopathy cannot be cured, the progression of the disease can be slowed or 

even halted if it is detected early and treatment given. Diabetics are generally unaware of the onset 

of retinopathy as visual loss is most commonly associated with severe retinal disease. It is therefore 

recommended that diabetics receive annual eye examinations to detect initial signs of progression 

of retinopathy. Such screening, followed by appropriate treatment is believed to prevent blindness 
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Figure 1.1: Effect on VISIOn a). Normal VISIOn b). Vision with diabetic retinopathy, [taken from 
http: / /www.stlukeseye.com/Conditions/DiabeticRetinopathy.asp] 

within 90% of patients at risk if caught early enough in its progression [7]. 

Screening in the UK is either done by fundal examination (viewing the back of the eye, including 

the retina), performed by medical or optometric staff or by observation of retinal photographs [8]. 

Figure 1.2 a. shows a Canon CR6-45NM Non-Mydriatic fundus camera, the type used to capture 

retina images for this research. Figure 1.3 shows two examples of retinal fundal images. In 

photographic screening units highly trained staff visually assess large numbers of retinal images, 

searching for small abnormalities indicative of diabetic retinopathy. 

Figure 1.2: Canon CR6 45MN, [taken from http:/ /www.edigonline.com/ fundus.htm] 

As the growing diabetic population overstretches the screening infrastructure [8] the pressure 

on specialist staff increase. This can have a knock on effect for the detection of diabetic retinopathy 

as early indicators can be missed due to subjective error or human error in the performance of 

repetitive tasks. A screening method that does not require highly trained personnel would relieve 

pressure from screening services and decrease costs. 
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In summary, a fully automated diagnostic approach, involving computer analysis of digital 

fundus images, could provide patient referral assessments and reduce the workload of specialist 

staff. 

1.2 Objectives 

Automating retinal screening from digital fundus images can be thought of as a modular problem 

with varying degrees of success attainable. There are a number of visual clinical features indicative 

of diabetic retinopathy that appear at different phases of progression and at different levels of 

regularity. For an automated screening system to match a human grader, such a system would 

require an ensemble of algorithms capable of detecting and distinguishing all clinical features no 

matter how rare, or at least be capable of flagging unusual images. 

The system would also be required to follow national screening guidelines, categorising patients 

as referable or non-referable. A patient at risk of developing sight threatening retinopathy and 

requiring further ophthalmic investigation is classed as referable whereas a patient not at risk and 

requiring no further action until the next annual eye examination is classed as non-referable. This 

classification depends upon the frequency and position of early diabetic features such as vascular 

bulges (microaneurysrns), leakages of blood (haemorrhages), deposits of lipoproteins (exudates) 

and vascular anomalies such as venous beading (unusual variations in diameter). 

In addition to accurately identifying diabetic lesions, locating structural elements such as the 

fovea, is also necessary. The fovea at the central part of the retina subserves fine detail and colour 

vision, retinal lesions found in, or immediately around, the fovea (macula) are associated with a 

high risk of visual loss as diabetic lesions or floaters obscure fine and colour vision. Figure 1.3a 

shows the structural location of the fovea together with the optic nerve head and vascular network. 

Figure 1.3b shows a high risk retina with diabetic retinopathy. The image has gross exudatation 

in conjunction with large haemorrhage floaters. 

Identifying retinal lesions associated with diabetic retinopathy is a critical and demanding 

process in automated retinal image analysis. This is mainly due to the varying shapes, sizes, and 

colour of lesion types, image distracters such as lighting variation, natural pigmentation, light 

artefacts, broken capillaries and non-diabetic lesions. The variability of retinal appearance argues 
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for a structured approach [9], where significant landmarks in the retina are identified, and the 

relationships between them exploited to increase confidence in the classification of each object. 

The focus of this research is the development of novel algorithms for the structured analysis of 

the retina, the purpose of which is the automatic diagnosis of digital images, identifying early signs 

of sight threatening retinopathy. As algorithms exist that segment the fovea and the blood vessel 

map to an acceptable level, this research has concentrated on the following areas of the structured 

analysis: 

1. Optic Nerve Head: Optic nerve head segmentation is a necessary step in this structured 

analysis for a number of reasons. The optic nerve head can itself act as a distracter: it is a 

large bright region that can be mistaken (by algorithms) for gross circinate exudation (large 

circular group of exudates). Secondly, the optic nerve head can be used to locate the general 

location of the fovea using an approximated distance from the centre of the optic nerve. The 

fovea is a dark approximately circular area, but the contrast is often quite low, and it may 

be obscured by exudates or blurring. Consequently a global correlational search often fails. 

2. Diabetic Lesions: Microaneurysms and haemorrhages detection and classification: Retinal 

microaneurysrns are the earliest clinically apparent lesion indicative of diabetic retinopa

thy. This is shortly followed by the appearance of small haemorrhages that have leaked from 

ruptured microaneurysms. Identification of these lesions is therefore vital to obtain early indi

cation of disease. Exudate detection and classification: Exudates located within the macula 

area are an important gauge of sight threatening retinopathy or progressive maculopathy 

(within the macula area). 

3. Image Quality Assessment: Image quality is an important factor in diagnostic imaging, 

and can alter diagnosis if areas indicative of disease are blurred or not illuminated. Retinal 

image quality can be defined by the contrast between the fovea and background retina and 

the quantity and sharpness of retinal vessels leading up to the macula. Measuring image 

quality is a crucial step in order to flag images not suitable for automated screening. 

4. Retinal Vessels: Changes in retinal vessel diameter are an important predictive indicator of 

sight threatening retinopathy. Obtaining precise measurements of vascular widths is therefore 

a necessary step to calculate vascular change. 
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The proposed automated system should be able to detect features symptomatic of diabetic 

retinopathy and provide diagnosis based on national screening criteria. It is expected that the 

majority of sight threatening retinopathy cases be identified and ungradeable images flagged for 

further investigation. The outline of the proposed system structure is shown in figure 1.4. The 

modular structure of the system allows continuous improvement to existing retinal analysis compo

nents, together with enabling the inclusion of additional clinical feature location and classification; 

such as the feature inclusion of venous beading detection. 

1.3 Criteria for Success 

As this research aims to investigate and develop techniques for the structured analysis and classi

fication of digitized retinal images, its success can be judged on how well each algorithm fulfils its 

role and how it compares to other published techniques: 

1. Locate and segment the Optic Nerve Head from the fundus image. 

2. Segment the boundary of potential retinal lesions indicative of diabetic retinopathy. 

3. Classify potential lesions into retinopathy and non-retinopathy categories. 

4. Determine the image quality and assess gradability of image. 

5. Vascular width measurements 

6. Classify image into referable and non-referable maculopathy. 

These criteria are revisited in chapter 8 and are compared against actual results. 

1.4 Thesis Overview 

This thesis is structured into a number of chapters, each focusing on a different aspect of background 

and research. The chapters are summarised as follows: 

Chapter 2 - Medical Background: begins by describing the anatomy of the eye, followed by the 

fundamental causes of diabetes and the associated complications focusing on diabetic retinopathy. 

The pathological and clinical aspects of the eye disease are mentioned together with an overview 
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of the retinal treatment available. The chapter concludes with discussion on why early screening 

for diabetic retinopathy is important and why an automated screening system is preferable. 

The structure of the following chapters include the Problem Domain and Previous Work, 

Method, Evaluation and Conclusion for their respective topics: Optic Nerve Head Segmentation, 

Lesion Detection and Classification, Image Quality Assessment and Vascular Diameter Measure

ment. 

Chapter 3 - Optic Nerve Head: describes a novel algorithm for the localization and seg

mentation of the optic nerve head boundary in low-resolution images (about 2011 per pixel). 

Optic disk localization is achieved using specialized template matching, and segmentation by 

a deformable contour model. The latter uses a global elliptical model and a local deformable 

model with variable edge-strength dependent stiffness. 

Chapter 4- Fovea Detection & Vascular Segmentation: describes two algorithms presented 

by previous authors for fovea detection and vessel detection. The algorithms have been 

incorporated into the overall system and are described for completeness. 

Chapter 5- Lesion Detection: introduces techniques to automatically detect lesions suggestive 

of diabetic retinopathy. This is achieved using peak detection, novel region growing, feature 

selection and neural network classification. 

Chapter 6 - Image Quality Assessment: describes a novel algorithm to quantify the gradability 

of retinal images. This is achieved by combining the fovea contrast with a weighted contrast 

between vascular centre pixels and the background. 

Chapter 7 - Retinal Vessels: describes a new algorithm to measure the vessel diameter to 

sub-pixel accuracy. The diameter measurement is based on a two-dimensional difference of 

Gaussian model, which is optimized to fit a two-dimensional intensity vessel segment. 

Chapter 8 - System Evaluation: demonstrates the performance of the integrated system (incor

porating optic disc, fovea, vascular, and lesion segmentation together with image quality assess

ment) in detecting sight threatening diabetic retinopathy. The system evaluated on a per image 

basis against a variety of criteria and previously published work. 
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Chapter 9- Conclusion: concludes the thesis by reviewing the presented research and discusses 

its novel contributions. The aforementioned criteria for success are also examined and are com

pared against actual results. Finally, areas for future work are described and their impact in the 

structured retinal analysis is highlighted. 
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Figure 1.3: Fundus Photographs a) . Structural components of the retina b). Retina with diabetic 
retinopathy 
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Chapter 2 

Medical Background 

2.1 Introduction 

Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Diabetes can 

manifest in different systems in the body causing long-term complications to the heart, kidneys, 

nerves, blood vessels and the eye. In the eye, diabetes can affect various ocular structures such 

as the lens and the retina. In the retina, diabetes can lead to an eye disease called diabetic 

retinopathy, which has been identified as one of the leading causes of blindness in the working 

population of industrialised countries. Persons with diabetes are 29 times more likely to become 

blind than those without the disease [10]. 

As the initial phase of the disease is typically asymptomatic, individuals are not usually aware 

of the risk of developing sight-threatening retinopathy and consequently loss of vision until it is 

too late. It is therefore crucial that regular retinal examinations are carried out in order to detect 

the initial onset of the disease before noticeable visual loss occurs. 

To reduce the risk of visual loss from diabetic retinopathy, treatment is required at the onset 

of sight-threatening retinopathy. Early treatment by laser photocoagulation has been shown to 

significantly reduce the incidence of visual loss [11]. 

Diabetic retinopathy can be detected by either clinical examination using different methods 

such as direct ophthalmoscopy, indirect ophthalmoscopy and biomicroscopy; or retinal photography 

using instant fundus Polaroid photographs, colour fundus 35-mm slides or digital imaging. The 

11 
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UK National Screening Committee have suggested that annual screening by digital colour fundal 

photography is the preferred medium [2]. With 20,000 - 30,000 diabetic patients per million 

population, manually grading retinal images is a time-consuming and costly process requiring 

highly skilled staff and is susceptible to subjective variation and error. 

This chapter begins with a brief description of the anatomy of the eye, followed by a discussion 

of the causes and pathological changes of diabetic retinopathy. The clinical features suggestive of 

diabetic retinopathy are described followed by current methods of diagnosis and treatment of the 

disease. The chapter is concluded by emphasizing the benefits of automated retinal analysis for 

digitised retinal photography. 

2.2 Anatomy of the Eye 

The eye is a complex optical structure that is able to reflect and focus light that stimulates neural 

responses enabling us to see. The eye is essentially made up from a number of optical components, 

neural components and supportive layers, see figure 2.1. At the front of the eye is a thin transparent 

membrane known as the cornea. The cornea has a dual purpose of protecting the eye, and refracting 

light as it enters the eye. A portion of the light passing through the cornea passes through the 

pupil, a small opening in front of the lens. 

The amount of light that can pass through the pupil is dependant on the size. This is adjusted 

by contractions of the iris muscles. The iris is a diaphragm that is capable of enlarging and 

reducing the size of the pupil. In bright light, the iris constricts, reducing the size of the pupil 

and the amount of light entering the eye. In dim-light the iris dilates, enlarging the pupil size and 

increasing the amount of light entering the eye. The light then passes through a clear crystalline 

lens. The lens controls 1/3 of the refraction of light that enters the eye (the cornea, the other 2/3) 

completing refraction by fine-tuning the focused light onto the retina. 

The eye is full of a clear gelatinous substance known as vitreous gel that constitutes 2/3 of the 

eye volume and it is formed mainly of water and structural proteins. Light refracted from the lens 

must travel through the vitreous before reaching the retina. 

The retina is the innermost membrane that lines the back of the eye. It comprises of multi

layered sensory and pigmentary layers. The retina contains photoreceptions that transform cap-
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Ciliary body 

Figure 2.1: Anatomy of the eye, [taken from http:/ jwww.stlukeseye.com/ Anatomy. asp] 

tured light rays into electrical nerve impulses . These impulses travel from the light photoreceptors 

of t he retina along the optic nerve and into t he brain's visual cortex for processing. There are two 

types of photoreceptors in t he retina: rods and cones. The cones, which number approximately 6 

million , are primarily located in the central part of the retina called t he macula . Cones are highly 

sensitive to colour, functioning best in bright light and enable colour vision. 

The highest density of cones is situa ted at the centre of the macular called the fovea. The fovea 

is responsible for central, sharp vision and this is largely due to each cone being connected to its 

own nerve fibre. The fovea itself is a circular indentation in t he retina of approximately l. 5mm in 

diameter [12] and unlike the peripheral retina the fovea has no blood vessels. See figure 2.2 

Approximately 75 to 150 million rods are distributed throughout the peripheral retina. As 

several rods are connected to single nerve endings t he information discernable from these receptors 

is reduced giving peripheral vision. Rods are sensitive to low levels of illumination and receive no 

colour information ; as a result night vision is colourless . 

2.3 Causes of Diabetic Retinopathy 

Diabetes mellitus is a chronic disease triggered by a metabolism disorder resulting in an unhealthy 

level of glucose in t he blood. The digestion of starchy foods such as rice, potatoes, bread and sugar 
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Figure 2.2: Anatomy a). Retina. b). Macula, [taken from http:/ j www.stlukeseye.com/anatomy 
/retina.asp and /Macula.asp respectively] 

produces glucose that enters t he bloodstream where it is used by cells for growth and energy. For 

glucose to get into the cells t he hormone insulin must be present. When the pancreas does not 

secrete enough insulin , t he cells do not respond appropriately and glucose builds up in the blood . 

The body therefore loses its main source of fuel as it cannot use the glucose present in the blood. 

The long-term complications of diabetes affect almost every part of the body. The disease often 

leads to heart disease , kidney failure, nerve and blood vessel damage. Damage to the small blood 

vessels throughout the body can lead to reduced blood flow. When these changes affect the tiny 

blood vessels in the retina of the eye, diabetic retinopathy may develop. 

In the early stages of diabetic retinopathy, t he t iny retinal vessels weaken and develop out-

pouching (microaneurysms), which may burst and leak blood (haemorrhages) and fat (exudates) 

into t he retina. The leakage may also cause swelling (oedema) of the retina. The weak blood 

vessels may also become blocked, starving t he ret ina of nourishment, leading to the growth of new 

abnormal vessels in the retina. The new blood vessels are often fragile and can bleed into the eye 

or may form scar tissue that pulls on the retina, leading to retinal detachment. 

2.4 Pathological Changes of Diabetic Retinopathy 

Diabetic retinopathy can be pathologically classified into three principal categories: non-proliferative, 

proliferative retinopathy and maculopathy. Non-proliferative retinopathy can be further classified 
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into three different stages according to its severity. 

2.4.1 Non-proliferative Retinopathy 

1. Mild Non-proliferative Retinopathy. At the earliest stage, balloon-like swelling occurs 

in the retina's blood vessels. These swellings are called microaneurysms and may not have 

any noticeable effect on vision. 

2. Moderate Non-proliferative Retinopathy. Disease progression results in a number of 

blocked blood vessels reducing the nourishment to the retina. The weakened capillaries can 

lead to retinal haemorrhages, fluid and leakage lipid accumulation (exudates). 

3. Severe Non-proliferative Retinopathy. An increased number of blood vessels become 

blocked, depriving areas of the retina with their blood supply. The deprived retina secretes 

chemicals such as growth factors; these chemicals can trigger the growth of abnormal new 

vessels. 

2.4.2 Proliferative Retinopathy 

At this advanced form of the disease, new, abnormally weak, blood vessels grow on the retinal 

surface or overlying the optic disk; these vessels extend in the plane between the retinal surface 

and the posterior surface of the vitreous gel (the clear jelly-like substance that fills the centre of 

the eye) and acts as a scaffold for its further growth. The abnormal growth of new blood vessels 

does not support deprived areas of the retina with a new blood supply, instead these vessels may 

cause other complications: 

1. Vitreous haemorrhage. Subsequent contraction of the vitreous gel leads to traction on 

the fragile new blood vessels that can lead to their avulsion. This results in bleeding either 

in or behind the vitreous gel with resultant drop of vision. If the amount of bleeding is small 

only a few dark spots may obscure vision. In severe cause the entire vitreous cavity can fill 

with blood and subsequently block all vision. 

2. Traction retinal detachment. Scar tissue accompanies new blood vessel growth. This 

scar tissue can contract and pull the retina from the back wall of the eye. This can result in 

profound visual loss if the macula is involved. 
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2.4.3 Maculopathy 

Maculopathy can occur in both non-proliferative and proliferative retinopathy and is the common

est cause of visual loss within the diabetic population. Diabetic Maculopathy can be defined as 

diabetic retinopathy affecting the central macula [13]. The condition can be divided into several 

subgroups each with a different pattern of disease; focal, diffuse, ischaemic and mixed. 

1. Focal maculopathy consists of clusters of microaneurysms from deep or superficial capillary 

networks associated with focal retinal oedema, and often surrounded by hard exudates. This 

is due to lipoproteins (seen as hard exudates) being deposited at distal sites where leakage 

causes a flow of fluids towards normal capillaries for resorption. 

2. Diffuse macular oedema occurs from widespread blood-retinal barrier break down and diffuse 

dilatation of the capillary bed. Hard exudates may not be present and microaneurysms often 

inconspicuous. 

3. Macular ischaemia occurs from capillary closure, often causing deep retinal haemorrhages 

and cotton wool spots representing nerve fibre layer infarcts and occasionally visibly closed 

white vessels. 

4. Mixed maculopathy contains a combination of all three groups with the full extent visible 

only on fluorescein angiography [13]. Only focal, diffuse and mixed maculopathies can be 

treated with laser photocoagulation. 

2.5 Clinical Features 

As the retinopathy progresses a small number of clinical features appear in the retina. Their 

characteristics and position in relation to the macula and each other is of great importance when 

making a diagnosis. There are two types of clinical feature suggestive of diabetic retinopathy: 

lesions and vascular anomalies. Retinal lesions include haemorrhages and microaneurysms (dark 

spots), cotton wool spots and exudates (bright spots), and vascular features including venous 

beading. 

1. Microaneurysms. Retinal microaueurysms are the earliest clinically apparent lesion in

dicative of diabetic retinopathy. The number of microaneurysms increases with the severity 
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of the retinopathy [14]. A microaneurysm indicates an area of deficient capillary cell wall and 

localised break of the blood-retinal barrier and may be associated with abnormal vascular 

leakage [15]. 

2. Haemorrhages. It is thought that haemorrhages occur from ruptured microaneurysms or 

weak vascular segments. Haemorrhages vary in appearance more than microaneurysms and 

are not necessarily round. Haemorrhages can occur in the confinement of the retina or they 

can spread out on the retinal surface where they take on a flame appearance [15]. 

3. Exudates. Exudates are frequently associated with clinically significant macular oedema. 

Previously called hard exudates to distinguish them from soft exudates (now called cotton 

wool spots), exudates are collections of lipoproteins caused by abnormal vascular leakage. 

The number of exudates increases as extravascular fluid diminishes due to precipitation of 

lipids and proteins; this is analogous to a saline solution depositing salt upon drying [15]. 

4. Cotton Wool Spots. Cotton wool spots are areas of swollen nerve axons caused by a 

localised obstruction of blood supply in the nerve fibre layer. [15]. They appear as small 

whitish fluffy superficial lesions that obscure underlying blood vessels and are clinically ev

ident only in the post equatorial retina where the nerve fiber layer is of sufficient thickness 

to render them visible [16]. 

5. Venous Beading. Venous beading is an important sign of sluggish retinal circulation. It 

occurs in the retinal veins in a response to oxygen deficiency, it represents a localised increase 

in the venous calibre (segmental dilatation), in severe cases it appears as a string of beads 

'sausage-like appearance'. Venous beading is indicative of severe non-proliferative retinopathy 

and is the most significant predictor of proliferative diabetic retinopathy, ie: imminent new 

vessels development. [15] [?]. 

Non-diabetic lesions that are commonly rnistaken as Exudates due to their similar visual char

acteristics include Drusen. Drusen are nodules that exist in a layer called Bruch's membrane which 

lies beneath the retina and the adjacent retina pigment epithelium layer. Drusen are metabolic 

waste derived from retina pigment epithelium cells RPE. Its accumulation is thought to result 

from failure to clear the debris discharged into the region. Drusens appear as yellow excrescences 
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beneath the RPE distributed symmetrically at both posterior poles. They can vary in number and 

size. Drusens are rarely clinically visible before the age of 45 years [17] [16]. 

2.6 Clinical Diagnosis 

The diagnosis of diabetic retinopathy is based upon the presence of the various clinical features 

previously described. The clinical criteria as set by the Early Treatment Diabetic Retinopathy 

Study Group [11] are used to classify the extent of diabetic retinopathy: 

2.6.1 Non-proliferative Diabetic Retinopathy (NPDR) 

1. Mild NPDR: Microaneurysms with or without one or more of the following: Intra-retinal 

hemorrhages, hard exudates away from macula or cotton wool spots 

2. Moderate NPDR: Microaneurysms/hemorrhages in at least one quadrant (see figure 2.3) 

plus one or more of the following: cotton wool spots, intra-retinal microvascular abnormality 

or venous beading. 

3. Severe NPDR: Any one of the following ( 4-2-1 rule): Intra-retinal hemorrhages in 4 quad

rants, venous beading in 2 quadrants and moderately severe intra-retinal microvascular ab

normality in 1 quadrant. 

2.6.2 Proliferative Diabetic Retinopathy (PDR) 

1. Early PDR: One or more of the following: Neovascularisation of the optic nerve head (also 

known as optic disc) < ! disc diameter. Neovascularisation elsewhere (non-bleeding). Pre

retinal or vitreous hemorrhage and neovascularisation elsewhere < ! disc diameter without 

neovascularisation of the optic disc. 

2. High Risk Characteristics {HR PDR): One or more of the following: Neovascularisation 

of the optic disc > ! disc diameter. Neovascularisation of the optic disc with bleeding. 

Neovascularisation elsewhere > ! disc diameter with bleeding. 
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Figure 2.3: Retinal Quadrants 

2. 7 Treatment 

Current ly there a re two forms of treatrnent for diabetic retinopathy: photocoagulation and vitrec

tomy. Both treatments can be effective in slowing or stopping the progression of the disease for 

a time. As diabetes continually weakens the arterioles and capillar ies further retinal damage may 

occur and additional treatment is required. The decision of wh ich procedure to use depends on 

the type and severity of the retinopathy. 

2. 7.1 Photocoagulation 

In Photocoagulation , a high-energy laser beam creates small burns in the retina areas with abnor

mal blood vessels. The purpose of photocoagulation is to stop leakage of blood and fluid into the 

retina and hence slow the disease 's progression. This can be achieved using one of two photocoag

ulation techniques: focal or panretinal. 

1. Focal Photocoagulation. Diabetics with clinically significant macula edema, which is 

related to leaky capillaries and microaneurysms, are generally recommended to undergo focal 

photocoagulation laser treatment. In this procedure, the laser is applied to the macula of 

the eye avoidi ng t he fovea and focused on leaking blood vessels creating "spot welds" to stop 

the leakage [18]. If the leaks are small in number the treatment is applied directly to specific 

leaks otherwise laser burns are applied in a grid-pattern to cover a wider area. 
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For diabetics diagnosed with clinically significant macula edema the risk of visual loss is 

reduced by more than 50% when treated by focal photocoagulation; see figure 2.4 a. 

2. Panretinal Photocoagulation. For proliferative retinopathy laser panretinal photocoagu-

lation is started promptly after diagnosis of the condition. In this treatment the entire retina 

except the macula is exposed to randomly placed laser burns, causing the new abnormal 

blood vessels to regress. 

Although the risk of vitreous haemorrhage and traction retinal is reduced, some loss in 

peripheral vision may occur . Panretinal photocoagulation is a trade-off, sacrificing peripheral 

vision to preserve central vision; see figure 2.4 b. 

Diabelic: relinopaJhy 

Figure 2.4: Photocoagulation a) . Focal b). Panretinal, [taken from http:/ /www.eyemdlink.com/ EyePro
cedttre.asp?EyeProcedureiD=55J 

2.7.2 Vitrectomy 

If proliferative retinopathy is diagnosed late, one of the abnormal neovessels (neovascular vessel) 

may bleed into the vitreous, blocking vision and preventing laser treatment as the blood also blocks 

the laser. If the haemorrhage does not clear by itself within a few weeks or months , vitrectomy 

surgery may be performed. See figure 2.5. 

In this procedure a surgeon removes the blood-filled vitreous from the eye , the abnormal new 

vessels are then dissected. A vitrectomy may also be indicated for the treatment of tractional 

retinal detachment. In this case the scar tissue that is pulling the retina away from the eye wall is 

dissected allowing the detached retina to flatten out and reattach itself. 
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Figure 2.5: Vi t rectomy, [taken from http: / /theretina.source.com/condi t ions/diabetic_ ret inopathy. htm] 

2.8 Early Detection for Diabetic Retinopathy 

Treatment of diabet ic ret inopat hy can prevent blindness within 90% of pa tients a t risk, if t he 

disease is caught early enough in its progression [7]. Annual screening is t herefore necessary to 

detect t hose at risk before visua l loss occurs and when t reatment is at its most effective. 

At present annual screening for diabetic retinopathy is carried out by general pract itioners, 

optometrists , diabetologists, nurse practit ioners , junior physicians and opht halmologists. T he 

level of experience and competence between and within these groups has been shown to vary 

significantly. 

Automating the retinal ana lysis process to reduce t he subj ective variat ion and error would 

be benefi cia l to standardise screening. Such a system could have a number of roles in nationa l 

screening: 

1. Screening tool: highlighting potentia l lesions with or wit hou t classification or overa ll refer

able, non-referable class ification . 

2. Audit tool : Assessing the quality of national screening. 

3. Automated screening: producing referable, non-referable recommenda tions, removing t he 

need for national screeners. According to national guidelines any screening system should 

have sensitivity and specificity over 80% and 95% respectively, where sensit ivity represents 

t he percentage of t rue diabet ic retinopathy cases detected a nd specificity represents t he 
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percentage of non-diabetic retinopathy cases detected. 

2.9 Summary 

Long-term complications of diabetes can affect different systems of the body including the eye. In 

the eye, diabetes can affect the retina and lead to an eye disease called diabetic retinopathy which 

has been identified as one of the leading causes of blindness in the UK. As retinopathy progresses, 

tiny retinal vessels weaken and may rupture causing a leakage of blood or lipoprotein that may 

obscure central vision (macula) and may also cause swelling of the retina. The weakened blood 

vessels may also become malnourished leading to the growth of new fragile vessels that can bleed 

into the eye and again obscure vision. 

Early detection followed by treatment can significantly reduce the risk of blindness. At present 

diabetic retinopathy is detected manually by either clinical examination or retinal photography. 

The UK national screening committee have suggested that annual screening by digital photography 

is the preferred medium. Automating retinal analysis using digitised retinal photography would be 

beneficial in reducing subjective variation and error and could have a number of roles in national 

screening; as a screening tool, audit tool or for fully automated screening. 



Chapter 3 

Optic Nerve Head 

3.1 Introduction 

This chapter presents a novel algorithm for the automatic localisation and segmentation of the 

optic nerve head in retinal images. The algorithm automatically selects the general location of the 

center of the optic nerve head, then fits a contour to the optic nerve head rim. Localization is 

achieved using a simple but effective specialized filter; segmentation by fitting an active contour to 

the optic nerve head rim using a three phase global and local deformable model that exploits the 

specific characteristics of the optic nerve head's appearance. The performance of the algorithm is 

evaluated against alternative approaches using a set of 100 random images drawn from a diabetic 

screening programme. 

3.1.1 Motivation 

Optic nerve head segmentation is a necessary step in this structured analysis for a number of 

reasons. First, the optic nerve head can itself act as a distractor: it is a large bright region that 

can be mistaken (by algorithms) for gross circinate exudation; the high-contrast rim also causes 

false responses to linear blood vessel filters [9]. Second, the vessels radiate from the optic nerve 

head, so vessel tracking algorithms [19] may start from there. Vessels are of direct importance in 

assessing vascular condition [20] [21] [22], (explained in more detail in chapter 7). Third, the optic 

nerve head is important in localisation of the fovea, the central part of the retina that subserves 
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Figure 3.1: Retinal Structure 
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In fundus images where the fovea is obscured by lesions or has poor contrast , it is necessary to 

approximate its location in order to identify high-risk lesions near and around the fovea. The fovea 

is located approximately 2.5 optic disc diameters temporal to the temporal edge of the optic disc 

and lies between the major temporal retinal vascular arcades (see figure 3.1. Using the positional 

constraints, the approximate location of the fovea can be calculated and used as a substitute 

value if the foveal search methods fails, although variation in the optic disc size compromises the 

reliability of this method. Littmann [23] has developed a technique to explicitly determine the 

distance from the optic disc 's center to the fovea, by correcting for the magnification factors of the 

fundus camera and the patient's eye. However , the ocular magnification factor depends mainly 

on anterior corneal curvature, refraction and axial length , which require measuring variables on 

the patient 's eye - an important practical limitation in screening. The method can also give false 

values in the case of an abnormally high lens refractive power (e.g. by cataract formation) and 

so is not applicable in aphakic or pseudophacic eyes ( 10% of the diabetic screening population). 

The "2.5 elise diameters" heuristic method is therefore more practical as absolute accuracy is not 

required. 
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Figure 3.2: The Optic Nerve Head . a) Cross Section. b) A typical well-defined disc. 

3.1.2 Chapter Contents 

Section 3.2 describes the appearance and complexities of optic nerve head localisation and segmen-

tation . Two types of boundary segmentation are described- ellipse fitting using hough transforms 

and active contour modelling (also known as snakes), together with previously published optic 

nerve head location and segmentation algorithms. In section 3.3, the optic nerve head location 

and boundary segmentation algorithms are described . The segmentation algorithm is evaluated 

against alternatives from the literature in section 3.4 and concluded in section 3.5. 

3.2 Problem Domain & Literature Review 

3.2.1 Optic Nerve Head Appearance 

Successful segmentation of the optic nerve head requires a careful analysis of its appearance (see 

figure 3.2). It is the extremity of the optic nerve in the interior of the eye, and also the entrance 

and exit site of retinal arteries and veins [24]. The shape of the optic nerve head is approximately 

elliptical, with a vert ical principal axis (width 1.8 ± 0.2mm, height 1.9 ± 0.2mm) [25]. As the 

nerve fibres reach the optic nerve head they turn and exit through the optic nerve, leaving a small 

depression (the "cup") in the center of the nerve head. There is often a brighter central region , the 

"pallor", which if present usually includes the cup. The optic disc rim is judged to be the inner 

margin of the peripapillary scleral ring, seen as a thin white band encircling the optic disc. 

In fundal images , the appearance varies quite substantially; see figure 3.3. Although the topol

ogy of the optic disc is standard, there are large variations in the size and shape of the optic nerve 
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head, due to variable amounts of glial and connective tissue. The rim is usually visible as a bright 

boundary with the nasal side usually being less bright than the temporal side, however sometimes 

the rim is not visible at all. In some images the entire optic nerve head is brighter than the sur

rounding area, appearing as a disc; in others the appearance is of a hollow ring. In either case 

the pallor may appear as a smaller, brighter disc within the optic disc. There may also be bright 

areas just outside the rim caused by peripapillary atrophy, either distorting the shape or forming 

concentric elliptical arcs. To complicate the issue further, departing vessels partially obscure the 

rim. The majority exit on the nasal side and depart vertically; a smaller number depart nasally, 

and a few fine vessels depart temporally. Occasionally vessels turn at the nasal rim edge and run 

vertically, obscuring portions of the optic boundary. A consequence of the nasal distribution of 

vessels is that the pallor, if visible, is mainly located to the temporal side. 

The variability in appearance misleads obvious localisation and segmentation approaches. Large 

areas of bright diabetic lesions (gross exudation see section 5.2.1), which have high contrast, act 

as strong distractors for correlation-based localization algorithms - algorithms that work well on 

images of healthy retina may fail on a screening population. Similar problems arise from reflection 

artifacts (young patients) and visible choroidal vessels [26). 

Segmentation is complicated by the presence of strong distractors along the pallor and vessel 

edges, weakness of the rim and peripapillary atrophy [27). However, these problems can be over

come by exploiting specific aspects of the appearance: the relative sharpness, reliability and lack 

of vascular intersections on the temporal side of the rim, and the approximately elliptical shape. 

3.2.2 Optic Nerve Head Localisation 

Optic Disc Localisation Algorithms 

Reliable optic nerve head location is surprisingly difficult, due to its variable appearance; naive 

approaches that work well for images of healthy retinae often fail on screening images. 

Sinthanayothin et al. [25) exploited the rapid intensity variation between the dark vessels and 

the bright nerve fibres to locate the optic disc. This was achieved by using a 80 x 80 sub-image 

to calculate the intensity variance of adjacent pixels. An average variance within these sub-images 

was obtained and the point of largest average variance deemed the optic centre. The sensitivity and 

specificity of this technique is reported as 99.1% when no significant distractors are present. When 
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Figure 3.3: Examples of varing optic nerve head appearance 

presented with large cotton wool spots, gross exudation, light artifacts or strongly visible choroidal 

vessels the algorithm commonly misclassifies the optic disc's location for that of a distractor. 

Akita et al. [24], traced the parent-child relationship between blood vessels segments, tracking 

back to the center of the optic disc ; this presupposes robust detection of the blood vessels, which 

is difficult in images of diseased retinae where even quite sophisticated algorithms detect false 

positives along the edges of white lesions and along the edge of the optic nerve head itself [9]. 

Lalonde et al.[28], used pyramidal decomposition and Hausdorff-based template matching to 

locate the optic disc. The template-based matching technique is based on a edge map using a 

Hausdorff distance measure and guided by scale tracking of large objects using multiresolution 

image decomposition. This method is effective, but computationally demanding. 

3.2.3 Optic Nerve Head Boundary Segmentation 

Overview of Circular Hough Transform 

The Hough transform is a global, robust technique for the detection of predefined shapes in images 

[29]. Since patented in 1962, the technique has been successfully employed in a range of domains 

including the detection of human hemoglobin fingerprints (30], the detection of tumors in chest 
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films [31] and more recently optic nerve head segmentation. 

Figure 3.4: Circular Hough Transform 

The Hough transform works by converting edge points to parameter space and exploiting the 

symmetry of parametric shapes such as lines, circles and ellipses. The transform assumes that 

some form of pre-processing has taken place to create edge features. A range of algorithms such as 

Canny edge detection or zero crossing of the laplacian can extract this edge description . Obtaining 

good edge descriptions is vital for the success of the Hough transform; domain issues usually dictate 

the appropriate edge detection algorithm. 

Although originally designed for the detection of straight lines, any parametric shape can be 

used. In theory, this method can be used to find features of any shape in an image. However in 

practice it is only commonly used for simplistic shapes such as straight lines, circles, and ellipses, 

as more complex shape dramatically increase the computational complexity. 

In circular Hough transforms, each pixel from the edge feature map centres a circle with a 

radius of r. Figure 3.5b. shows an example of an optic edge feature map. The point at which most 

circles intersect is deemed the center of the feature edge circle. The circular Hough transform works 

by considering all circles centred at each edge feature pixel at once and identifying co-ordinates 

in Hough space where circles intersect. The frequency of these intersects at each co-ordinate are 
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Figure 3.5: Circular Hough Transform a)Colour fundus. b)Canny edge map. c)Circular Hough 
Transform. d)Superimposed Hough Result on Optic Nerve Head. 

totalled in an accumulator space (see Figure 3.4). The d imension of the accumulator is determined 

by size of the parametric representation of the shape. 

The co-ordinate in the accumulator with the highest frequency of intersecting circles is defined 

as the centre of the edge feature circle (see figure 3.5c). If the size of the circle is unknown an 

additional parameter is required - radius, thus the circle can be parameterised by (x,y,r) and the 

accumulator space is increased to three dimensions . An example of a superimposed Hough result 

is shown in figure 3.5d. 

Optic Nerve Head Boundary Segmentation using Hough Transform 

Lee [32] experimented with elliptical Hough transforms to extract the optic boundary from optic 

centred images. These images were converted to grayscale prior to Canny edge detection. The 
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resultant edge maps although roughly circular were broken due to crossing blood vessels and varied 

contrast. To increase the efficiency of the Hough transform, Lee reduced the size of the parameter 

space using prior knowledge of the size and position of the optic nerve head. Lee reported mixed 

results from the elliptical Hough transform. 

Ege et a!. [33] used Sobel edge detection to define optic edge features and calculated the image 

gradient to utilise directional information. The circu lar Hough transform was applied to gradient 

images to locate the optic boundary. 

The main advantage of the Hough technique is that it is relatively unaffected by noise or gaps 

in the edge feature. There is however a point at which poor edge detection will yield poor results 

or even fail. With this in mind it should be noted that low contrast, and blurred boundaries 

commonly cause optic disc edge detection to provide unacceptable solutions; hitting either curved 

blood vessel segments or the pallor boundary. In add ition , it is not uncommon for the optic disc to 

have irregular boundaries that cannot be accurately modelled by the Hough transform. This would 

result in an un-segmented rim around the optic nerve and could cause false exudate detection (see 

Figure 3.6). 

Figure 3.6: Hough Transform Result 

Overview of Deformable Contour 

Active contours, or snakes [34], are deformable models that are fit to object edges under t he control 

of two forces: extemal jo1·ces that pull t he model towards image features such as edges; and internal 

forces that act as smoothing constraints or object model constraints. There are two main categories: 

freeform and parametric snakes. Freeform snakes provide many local degrees of freedom , whereas 
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parametric deformable models encode a specific shape and can help to overcome image problems 

such as boundary gaps [35] [36]. The optic nerve head is well-suited to the parametric approach, 

as it has a simple global model and significant distractors. 

Active contours seek points with a high gradient. There are two main problems: noise, which 

may trap the model in local minima; and the domain of edge attraction - if too small, the snake 

may not find the desired solution [37]. These issues are addressed by pre-filtering with a low

pass Gaussian filter [38]. Often the gradient magnitude image, II 'V Ill, is used; in gradient vector 

methods the direction of the vector is retained to help locate edges with an expected orientation. 

Optic Nerve Head Contour Algorithms 

There are several key problems in using active contours for optic nerve head segmentation. Firstly, 

blood vessels contribute powerful distractors along their edges, and obscure parts of the optic 

boundary. The pallor edge (optic cup) may present a strong contrast boundary; it may also combine 

with the temporal edge of vessels on the nasal side to form a strong elliptical distractor. There 

may also be bright concentric arcs of peripapillary atrophy outside the rim. The rim particularly 

on the nasal side may be blurred or hidden by blood vessels. Two previous authors have reported 

the use of active contours to find the optic disc boundary. 

Mendel [39] used a freeform snake, initialized as a circle centered on and inside the optic disc. 

Initially, the model tended to fit a convoluted boundary, following vessel edge distractors. Mendel 

addressed this problem using grey-scale morphological closure to remove blood vessels from within 

the optic disc. Figure 3.7 shows an optic disc before and after morphological closure. Mendel 

evaluated nine high quality images. Due to the lack of a global model it is expected that the 

algorithm would perform poorly on blurred images or images with a low intensity rim or significant 

distractors at the pallor edge. Mendel used a gradient vector method, and noted that this helps 

to avoid distractors. 

Lee [32] also applied an active contour model to high resolution images centered on the optic 

nerve head. Like Mendel, he removed vessels morphologically. The control points and attractors 

were placed along radial spokes emanating from the center, thus partially imposing a global model. 

Attractor points were attached to edges detected using a Canny filter, which makes the system 
T T ·~ " -

prone to complete failure where the rim is missing. Lee reported problems caused by the boundary 
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of the pallor and by very faint or missing edges, and presented results on only four images. 

Figure 3. 7: The Optic Nerve Head. a) Normal. b) Morphologically Closed. 

T hese papers indicate t he significant d iffi cul ties in segment ing t he opt ic nerve head rim . How

ever, neither aut hor fully exploited t he strongly consistent overall shape of t he optic nerve head to 

constrain t he contour, bypass dist ractors , and maintain shape where t he rim is not visible. Bot h 

aut hors assumed t hat t he model posit ion was initialized qui te accurately, as in their images t he 

optic nerve head is a lways centered . In t his research t he problem domain is less constrained and 

initialisation is less reliable, wit h fundus images roughly cent red on t he fovea instead of t he opt ic 

disc. 

Hu et al. [40] described a method for boundary extraction of cross-sectional blood vessels in 3D 

imaging. A circular global model is first fit to the boundary mntour , then a local deformable model 

with variable st iffn ess is closely fi t ted to strong edge features, while ma intaining a smooth contour 

close to the global model when edge features are weak or missing. This next section extends on 

t he work of Hu et al. for opt ic nerve head segmentat ion , making alterations as necessary, including 

generic improvements (ellipt ical model, use of t he gradient vector , and fast optimizat ion), and 

doma in specific improvements (exploitation of the optic nerve head topology). 

Hu's Circular Deformable Model 

T his section describes Hu 's deformable model [40) , with some change of variables from t he original 

paper to simplify the presentation . Hu 's deformable model has two stages; global and local. During 

t he global stage, the circular model a llows positional and radius chauges. Under t he control of a 

stiffness factor , the local level stage deformation from the global model, enabling a more accura te 
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Figure 3.8: a) Irregular image sampling. b) Bilinear interpolation of gradient. 

fit to the boundary. 
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The deformable model is defined by the center c , S evenly-spaced radial spokes, each with 

angle();, and direction vectors; = [cos(();),sin(();)]. The distances m; from c along each spoke 

with corresponding (x, y) location vector is defined by m ; = c+ m;s;. In its global form, the model 

is a circle with radius 1· = m;, the local model 's mean radial displacement. Radial spokes sample 

normalized gradient magnitude images, r = II 'VIII/ max( II 'VIII) to produce radial gradient profiles. 

For each spoke [i .. S], the radial gradient profile is searched within a limited range about m;, for 

high contrast changes; the "peak gradient" denoted by g;, provides an external attractor point. 

The derivatives along the radial direction from inside to outside are computed. The sign of the 

derivatives are used to weight the normalised gradient; a positive sign represents dark to bright 

edge in the radial direction and a minus sign means a bright to dark edge. Since radial lines cross 

image pixels in an irregular manner , non-uniform sampling can occur; see figure 3.8a. 

The gradient magnitude at distance p along spoke i is determined as follows. Let p = (Px, Py) = 

c + ps;. The radial gradient li(P) is calculated by bilinear interpolation of the image gradient 

magnitude at the point 's four neighboring pixels [41]; see equation 3.1, figure 3.8b. The "peak," 

g; , is chosen so that !;(g;) is the minimum on the spoke. 
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Wx,y = 

!;(p) = - L Wx,yf(x, y) 
x,y 

Xd = IPx - xi Yd = IPy - Yi 

{ 

(1 - Xd)(l - Yd) 

0 otherwise 
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(3.1) 

(3.2) 

(3.3) 

The model's contour is altered under the influence of a force, !;, with external and internal 

components; see equation 3.4. All the forces work along the radial spokes. The external force draws 

the model towards the attractor points of strong edge features, encouraging model deformation; 

see equation 3.5. The internal force comprises of two components that oppose the external force by 

limiting model deformation: the global force, which pulls the model towards the global shape; and 

the local smoothing force, which smoothes the model by penalizing sporadic deformation between 

neighboring spokes. The internal force which regulates model deformation is itself regulated by a 

stiffness factor, /3;, described further below. 

(3.4) 

(3.5) 

(3.6) 

where dint = m; - r is deformation of the model from the global model on spoke i, and (dint) is 

the mean deformation of neighboring spokes. The coefficient a balances the local versus global 

internal forces. 

The stiffness parameter, /3;, controls the relative strength of the internal and external forces. 

On a strong edge (high contrast), a small stiffness value is used, the external force dominates, 

and localization is not unduly compromised. Where the edge is weak (blurred or missing) a larger 

stiffness value is assigned, emphasizing the internal force, attracting a smoothed contour to the 

global model. Hu used a function shaped like that in figure 3.9a to determine the stiffness factor, 

but did not give the formula; the interpreted stiffness function /3; is defined by: 
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(3.7) 

where ri represents the gradient magnitude at point g;, (see equation 3.1), the mean gradient 

magnitude of the neighboring spokes is denoted by (1';). The squashing factor which shifts the 

function to the left or right of the middle position is defined by ( = x + (r;) where x = 1.5, and 

'lj;; = 1- ri· 

Hu uses the radial forces defined above (equation 3.4, 3.5, 3.6 and 3. 7) to provide a center

shifting force, a global radius force, and local deformation forces (see figure 3.9b). The center-

shifting force is found by summing and converting the radial forces exerted on each spoke into 

vector forces in the (x, y) plane (equation 3.8). The global radius force is found by subtracting the 

radial shifting force from the radial forces; see equation 3.10. 

s 
f= 2:::/;s; (3.8) 

i=l 

(3.9) 

(3.10) 

(3.11) 

These forces are used to iteratively adjust the model; during the model 's initial global stage, the 
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Figure 3.10: Localisation filter 

global shifting force f is added to the model's centre c, and the global radial force ft is added to 

the radius. Once the model has reached equilibrium with the external force , the model decouples 

from its global form , allowing local deformation. During the model 's local stage, the radial forces 

Jt are are added to deformation point mi for radial spokes [i .. S]. 

3.3 Method 

3.3.1 Optic Nerve Head Localisation 

The localization algorit hm uses a specialized correlation filter, which matches key elements of 

the optic disc structure. The correlation peak gives the approximate center of the optic disc. 

The optic disc consists of a high intensity near-circular rim, with a s ignificant vertically-oriented, 

roughly centrally located band of low intensity blood vessels; other parts of t he disc (including the 

interior) are not reliable and are discounted. The template consists of a Laplacian of Gaussian 

with a vertical channel in the middle to correspond to t he major vessel band; see figure 3.10. 

The size of the optic nerve head varies significantly; data set widths varied from 65-101 pixels 

(mean 78.5, standard deviation 7.6). This might suggest a need for filters at different scales. In 

fact the single filter used suffices; where the size mismatches the maximal correlation lies on an 

annulus around the optic nerve head center; the peak is therefore still located within t he optic 

nerve head , which is sufficient for our requirements. 

The template is correlated with the intensity component of the fundus image. Full Pearson-R 

correlation is used to account for variations in mean intensity and contrast, defined by: 
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Figure 3.11: Model fitting. a) The deformable model (based on Hu et al. 's model) b) Locking to 
the temporal edge 

C _____ E_x=,y~(f_(_x_,y~)~-_7_(_x,_y_))_(w_(_x_-_t_·,y __ - _i_)-__ w_) __ 
'·

1 
- Ex,y(f(x, y)- J(x, y))2 E x,y(w(x- i, y- i)- w)2 

(3.12) 

where w is the mean value of the template, calculated once, and 7 is the mean value of the 

area covered by w. The filter is prone to locate a point slightly to the temporal side, due to the 

characteristic asymmetry of the optic nerve head (see figure 3.2), which is convenient for the next 

stage of the algorithm. 

3.3.2 Optic Nerve Head Boundary Segmentation- Novel Alterations to 

the Hu's model 

Three modifications to Hu et al. 's algorithm are presented: an elliptical global model ; the use of 

the vector gradient; and the use of energy functions to support fast non-linear optimization. The 

global model is defined as an ellipse with a vertical principal axis, and a fixed aspect ratio, a; see 

figure 3.1la. The ellipse width is denoted by the "radius" parameter, r; and the height is ar. By 

scaling the elliptical model with the spoke ratios, ai (equation 3.13) , radial distances and forces are 

"normalized", equivalent to a circular model. The radius of the global model is defined by summing 

the model distance m; from the model center c , divided by aspect ratio ai; see equation 3.14. The 

variables for the model and attractor points normalized to the circular frame are expressed by: 

mf = m;/ai, gi' = g;ja; . 
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a;= IJ[cos(O;),asin(O;)]II 

r=.!_Lm; 
S i a; 
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(3.13) 

(3.14) 

Two main factors affect the performance of active contours; the presence of noise, which can trap 

a model in a local minima; and the domain attraction of relevant edges. A smoothed normalized 

gradient vector image, T =VI/ max(JJVIJI) (Hu et al. does not use smoothing), is used to smooth 

out noise and increase the attraction range of high gradient magnitudes. 

During profiling, the gradient between the optic nerve head and the background retina is high 

to low. To exploit this direction-sensitive gradient and to ignore distractors at most vessel edges, 

the dot product of the gradient vector and a spoke direction vector is taken - see equation 3.15; 

the weights are determined by equation 3.2. 

!;(p) = (z:::: Wx.y T(x, y)) .S; 

x,y 

(3.15) 

During local deformation, equilibrium is reached using a fast non-linear optimization procedure, 

Quasi-Newton [42]. In addition to a gradient function, this procedures requires an explicit energy 

function; defined as the sum-squared deformation of the model from the attractors. The energy 

functions of the center-shifting force, total force, external force, global internal force, local internal 

force are represented by Exy, E, Eext, Eglo, Eloc respectively: 

1 
Eext = 2 L(gj' - rn;')2 

Eglo = ~ L {J;(m;'- r)2 

Elm: = ~ L (J;a(ini' :_ (m;') )2 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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Differentiating Exy with respect to c, and E with respect to mf, and observing that r and 

(mf) in equations 3.19 and 3.20 are both dependent on mf, the following gradients are obtained: 

dE dEext dEglo dEloc 
-=--+--+--
dmf dmf dmf dmf 

dEext n n 
-d n =g; -m; 

m; 

dEglo -
-d-- = f];((mf- mf)- (rnf- rnf)) 

mf 
dEioc 
-d- = f];a ((mf- (mf))- ((rnf- (mf)])] 

mf 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Let w denote a vector of model parameters, E(w) the error function for these parameters, 

and w' the gradient of the error function with respect to the parameters; w may be any desired 

combination of model parameters (e.g. m;, c, r); if we wish to optimize several parameters si-

multaneously, the appropriate parameter and gradient vectors may be concatenated and the error 

functions summed. The global and local model use different optimisation techniques: gradient 

descent with momentum (for the simpler global model phase), and Quasi-Newton BFGS (for the 

local model phase); both proved more efficient than the direct iterative technique suggested by 

Hu et al .. In gradient descent with momentum, a learning rate, TJ, and a momentum rate, J-t, are 

selected; the model parameters w are iteratively updated at T + 1 using (the number of iterations 

required do not justify a more sophisticated minimisation procedure): 

(3.26) 

Quasi-Newton optimization involves generating a sequence of matrices, Gr representing in

creasing accurate approximations to the inverse Hessian, H-1 , using information from the first 

derivatives of the error function (43]. Using the Broyden-Fletcher-Goldfarb-Sh~nno (BJGS) P!"Q-
• • ' ,,, • •-.=- -' , ____ , ,_ . -· . - "• 

cedure, the approximation Gr of the inverse Hessian matrix, is updated using equation 3.31. 
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Figure 3.12: Line Search 

Go=-lw'o 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

The update procedure ensures that the approximation to the inverse Hessian is positive definite. 

The direction vector -Grw' is guaranteed to descend, and rapidly converges on the Newton 

direction. Optimization is by equation 3.32, where ~r is found by a bracketing line search. 

Line searching represents a one-dimensional minimisation problem, consisting of two stages. 

In the first phase, the directional line is searched for three points a, b and c that brackets the 

minimum, such that a>b>c. The second phase is to find the minimum. This is achieved by 

fitting a quadratic polynomial to the error function evaluating at points a, b, and c, moving to the 

minimum of the parabola at point d (see figure 3.12). This process is repeated, calculating the 

error function at the new point and fitting a new parabola to the three points in th.is case b, d, c 
··''·- .,._~~- .. _ • -"'·7 -c '!:0';==.;-,T··-- ·"'.' .. ;..:;;-- -- """· · -- ~ · ..-

where b>d<c. The line search is terminated when a satisfactory solution is found [42]. 
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3.3.3 Optic Nerve Head Boundary Segmentation- Phases 

The presented localisation and segmentation algorithms are very reliable, although the latter is 

somewhat sensitive to poor initialization. Optimization of the global model is the most critical 

phase of this algorithm; however, direct fitting of this proves unreliable. A four phase algorithm is 

introduced, with the global fitting carried across two phases. Phase one (localisation) was described 

in section 3.3.1. In phase two, the global model roughly locates the rim, by locking the model's 

temporal edge onto the relatively reliable and distractor-free temporal rim. Phase three fits the 

model to the entire rim. Phase four decouples from the global model, allowing deformation of the 

local model to the optic boundary; phases two to four are described below. 

Phase two - temporal lock 

In many fundal images the temporal side of the optic nerve head has a stronger edge than its nasal 

counterpart; which often has a weak or non existent edge. A weak nasal edge can be problematic 

to the nasal side of the model, often resulting in convergence on the blood vessels or the pallor. 

This problem is tackled by initially restricting the model's active spokes to the temporal side. 

The temporal lock is defined as a global model using S = 9 spokes at angles -60° to +60° in 

steps of 15°, on the temporal edge only. The attraction range of the temporal edge is increased by 

smoothing the gradient image with a gaussian filter (a = 5.0), and the radial search range for "(; 

is set to m; ± 6 pixels. The aspect ratio is fixed at a = 1.03 and the radius is set to the average 

optic disc radius r = 40; only the model center is adjusted. Optimization is by gradient descent 

(see equation 3.26), with 17 = 1, J-t = 0.1, w = c, w' = dExy /de (see equation 3.21). 

The temporal bias of the localization algorithm ensures that the initial contour is usually just 

outside the temporal edge. Due to the lack of temporal vessels, their typically radial alignment, 

and the relative strength of the temporal edge, this phase locks on with high reliability; see figure 

3.11 b. The fixed radius ensures that the nasal edge of the model bypasses the dis tractors at the 

pallor and central blood vessels. A fixed radius is necessary since fitting au elliptical model to 120° - -- . - .- - ~ .... _, . . " - . 

of arc on one side is prone to gross mis-estimation. 
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Phase three - global fit 

Once the temporally active model reaches equilibrium with the temporal optic edge, the remaining 

spokes are activated, using S = 24 evenly-spaced spokes at 15° spacing; the radial search range is 

reduced to ±4 pixels. Other parameters are identical to phase two. 

In addition to the optic center, the radius of the model is now allowed to alter; the energy 

function becomes Exy + Eext, with the latter treated as a function of r; w = [c; r] . The gradient 

of Eext with respect to 1· is given by equation 3.33, derived from equation 3.23, the global model 

is enforced by setting m; = a;r. 

dEext dEext dm n -=2:--' =L(g;-r) 
dr ; dmf dr ; 

{3.33) 

The model is "tweaked" onto the nasal edge using short burst of gradient descent. Using the 

gradient vector (equation 3.15), the model avoids being pulled onto the nasal edges of the nasal 

vessel, or the edges of near-orthogonal vertically-departing vessels, due to their opposite contrast 

direction to the rim. The pallor edge and peripapillary artifacts are the only strong boundary 

distractors. The small search range usually avoids the former. 

The fixed aspect ratio, a = 1.03 may lead to sub-optimal models (actual aspect ratios were 

m the range 0.94-1.15, mean 1.03, s.d. 0.038). To compensate for this, the aspect ratio from 

the attractor points are iteratively recalculated at the end of the phase, and the optimization is 

repeated {which is extremely fast); three iterations suffice. The aspect ratio is calculated using 

equation 3.34, where u and v are the unit vectors along the x and y axes. 

a= 

Phase four - local deformation 

L; m;(v.s,)2 

L; m;(u.s;)2 
{3.34) 

When the global model reaches equilibrium the local model is activated, allowing the contour to 

deform from its elliptical shape under the influence of the local edge features but still under the 

restraint of the global model. To improve contour localization the gradient image is recalculated 

with smoothing factor a = 1. This reduces the attraction of the optic edge but allows the model 
- • -., •• - . ·~ ._,_ ·:c- - . • .. - "'·"·""'-"•-'- '-' '- _,...,. -····-.;- --~ 

contour to get closer to the actual optic boundary. The model points, m;, are allowed to vary 
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m addition to the center, c; therefore, w = [c; m 1, ... , ms]. The model is allowed to globally 

reposition, in order to fine tune it's central location. The full energy function from equation 3.17 

is used, with w' composed from the corresponding gradients. As the local optimization stage is 

more challenging than the global stage, a faster optimization algorithm is used; Quasi-Newton. 

The control parameter settings for the energy function were, a = 0.5. 

3.4 Evaluation 

Performance of the optic nerve head location and segmentation algorithms are evaluated against 

a random sample of 100 fundal images taken from 50 patients attending the diabetic retinal-

screening programme at City Hospital, Birmingham. The images were acquired using a Canon 

CR6 45MNf fundus camera, with a field angle lens of 45 degrees, resolution 640 x 480. There 

is considerable variation in the images, with many characteristics that can affect the algorithms. 

Image distractors that present potential problems are summarized in Table 3.1. Some images 

have multiple characteristics. Distractors are divided into three categories; potentially ungradable, 

affecting localization; and affecting segmentation. 

Table 3 1· Screening Data Image Quality .. 
Characteristic No. images 

No detectable optic nerve head 4 
Severe Cataract 8 

Moderate Cataract 2 
Total potentially unusable 10 

Exudates or laser scars 7 
Light artifacts 7 

Easily visible choroidal vessels 20 
Total localization endangered 34 

Some of rim blurred or missing 27 
Severe peripapillary atrophy 6 

Moderate peripapillary atrophy 19 
Concentric peripapillary atrophy/ artifacts 23 

Strong pallor distractor 13 
Total segmentation endangered 58 

_, 
"" 
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3.4.1 Optic Nerve Head Localization Results 

Performance is assessed against t he 96 out of our 100 fundus images t hat have a discernable optic 

disc. An ophthalmologist labelled the center of each optic disc to create a gold standard. Images 

are graded by distance from the true optic center (see table 3.2); t he algorithm usually finds the 

center within 15 pixels, which is acceptable as a starting point for rim segmentation. The center 

point is within the optic disc area on all usable images bar one. Figure 3.13 shows some examples 

of its performance. This simple approach y ields excellent results and is robust; its success lies in 

careful design of the filter. 

Figure 3.13: Localization Algorithm . a) Gross exudation. b) Strong pallor . 

Table 3 2· Localization Performance . . 
Pixel Distance 0-5 6 - 15 16 - 25 26+ 
Fundus images 42 45 8 1 

Percentage 43.8 46.9 8.3 1 

3.4.2 Optic Nerve Head Boundary Segmentation Results 

The segmentation algorit hm is tested against a number of alternative approaches, described below. 

Perform ance was evaluated against a subset of 90 images, excluding those wit h no discernable 

opt ic elise, or with severe enough cataract to prevent meaningful segmentation . A "gold standard" 

segmentation of t he opt ic boundary was produced by four cliuicians manually delimiting t he optic 

rim. Their mean contours, and t he radial standard deviations of t hese contours were calculated. 

Let fl.{ and af denote the clinician 's rim location on spoke i of image j. The discrepancy oi, on 
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image j, is defined by equation 3.35. Division by the standard deviation a compensates for the 

clinicians uncertainty of rim position; where the clinicians are in exact agreement, a small factor 

E: = 0.5 prevents division by zero. 

(3.35) 

For illustrative purposes the ogive (cumulative frequency polygon) of disparity, t5 using a log

arithmic scale (i.e. the number of images with disparity less than t5, I {j : ,Si < t5} I, versus t5) is 

plotted. Within these plots, the superior model lies left of and above au inferior one; the number 

of images fit to any given level of accuracy can be read off the y-axis. 

Parameter Settings 

The parameter values reported in this chapter were heuristically selected for best performance -

a wide range of parameter settings were appraised for: initial model diameter and aspect ratio, 

gaussian smoothing factors, radial profile search sizes, and a in the deformable model. Generally, 

the algorithm's overall performance is relatively insensitive to changes in these parameter values. 

The exception, however, is the initial diameter parameter which has significant performance 

implications for a small number of of outlying sized optic nerves heads, as pallor and peripapillary 

distractors may induce errors. This might suggest running the algorithm with several initial diame-

ters and selecting the lowest energy resulting contour. Unfortunately, two problems exist with this 

approach. First, the strong distractors of the pallor and peripapillary often having a lower energy 

than the true contour; second, with pallor distractors being inside the true rim, and peripapillary 

distractors being outside, a simple geometric rule could not choose between alternative solutions 

(which makes the utility of even sophisticated minima-avoidance algorithms [44] questionable). 

The initial diameter is therefore fixed which functions well in the vast majority of cases. 

Performance of the algorithm 

Figure 3.15a shows the performance graph of the final algorithm (using both temporal lock and 

vector gradient) against a simple benchmark approach ("direct"). Qualitatively, four categories 

are defined (Excellent, Good, Fair and Poor) containing images with benchmark disparity up to 
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one, two, five , or more , respectively. These four disparity ranges correspond well to the subjective 

assessment of performance quality. The performance on this subjective scale is summarised in 

Table 3.3 and examples within each category shown in Figure 3.14. 

Excellent (o=0.85) Good (o= 1.5) 

Fair (o=3.1) Poor (o=38.9) 

Figure 3.14: Sample Segmentations. a) Excellent. b) Good. c) Fair. d) Poor. Solid line: algorithm; 
dotted line: mean clinician boundary. 

Table 3.3: Subjective Classification of Performance 
(%) Excellent Good Fair Poor 

T emporalLock 42 31 10 17 
Direct 9 8 30 53 

DV- H ottgh 39 22 20 19 

Comparison with Temporal Lock Alternatives 

The temporal lock phase is a critical aspect of t he algorithm that compensates for poor localisation 

while avoiding distractors . To affirm the superiority of the temporal lock, performance is measured 

against a lternative methods that attempt to remove or mitigate distractors and improve localization 
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of the rim. The removal of optic blood vessels by morphology is a method suggested by both Lee 

[32] and Mendels [39]. This is referred to as "de-vascularization", and is implemented by grey-scale 

morphological closure with a disc-shaped structuring element of radius 7. The effectiveness of the 

vector gradient over the magnitude is shown in figure 3.15b, together with the interaction between 

de-vascularization. Mendels noted that the use of the vector gradient rather than magnitude 

improved his algorithm, however there is no advantage in using both techniques as they compensate 

for the same distractors. 

Fitting an elliptical Hough transform to the optic rim is an non-iterative alternative to the 

temporal lock phase. In this comparison the image is processed using a Canny edge-detector 

{upper and lower thresholds 0.2 and 0.08 respectively). Due to the vessel edges distractors, it was 

found that the Hough transform only worked well in conjunction with de-vascularization. Ellipses 

were of width 56-112, aspect ratio 1.03; the Hough-space was smoothed with a Gaussian kernel 

(cr = 1.5) before peak detection to account for deformations. It was found the Hough technique 

was too unreliable when implemented across the entire image, so the Hough filter was used to tune 

the location within a search radius of 150 pixels initialised by the phase one localization algorithm; 

the Hough center was only accepted if the peak in Hough space exceeded a threshold. 

In combination with de-vascularization and the vector gradient, an algorithm ( "DV-Hough") 

emerged with performance close to that of the temporal lock algorithm, as illustrated on figure 

3.15c. Using the one-sided sign test for paired medians, the difference in performance (temporal 

lock is better in 59/90 cases) is significant at the 0.5% level. The superiority of "DV-Hough" and 

"temporal lock" algorithm over the simpler alternatives is clear-cut. Integration of the temporal 

lock algorithm with de-vascularization and the Hough search were tried, but these additions did 

not improve that algorithm. 

Although the temporal lock algorithm performs well m comparison to alternatives, there is 

room for improvement; the algorithm fails to detect the rim in a number of cases where it is 

unambiguously apparent to the human observer. The attributed cause of failure on 15 "poor" 

performance images are shown in Table 3.4; two of the "temporal lock" failures are difficult to 

attribute cleanly, as localization was rather poor and probably contributed to the failure. Two of 

the "peripapillary atrophy" failures subjectively look "fair." 
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Normalized Algorithm I Clinician Disparity 
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Figure 3.15: a). Temporal Lock (TL) versus direct algorithm. b). Interaction between De
vascularization (DV) and vector (Vec)/magnitude (Mag) gradient versions of direct algorithm. c). 
Temporal Lock (TL), De-vascularized Hough (DV Hough), and De-vascularized direct (DV). 

3.5 Conclusion 

Algorithms for the localisation and segmentation of the optic nerve head have been presented; an 

important stage in structured analysis of the retina. Although a number of methods have been 

published for optic nerve head localisation, many are unreliable when confronted with images of 

diseased retinae including strong distractors (such as circinate exudates) , and the reliable methods 

tend to be quite computationally complex. A simple but effective algorithm for localisation has 

been presented. 

Table 3.4: Error types 
Source of error Number 

Localization failure 3 
Temporal lock failure 5 

Pallor distractor 3 
Severe peripapillary atrophy 4 
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Optic nerve head segmentation by active contours has not been extensively examined in the 

past. There are significant problems in dealing with distractors along blood vessels edges and 

the pallor, and with the very variable appearance of the optic nerve head. Previously published 

techniques require careful initialisation of the model position, pre-processing of the image using 

morphological operations, and perform badly where the rim is faint or undetectable. In contrast, 

the algorithm presented in this chapter exploits specific features of the optic nerve head anatomy 

to achieve good localization while avoiding distractors. The temporal lock algorithm exploits 

the natural shape of the neuroretinal rim to bypass blood vessels and avoid the pallor, and the 

global and local deformable model deals effectively with weak areas of rim and vessel crossings. 

Additionally, applying a Gaussian smoothing operator to the pre-processed image strengthens 

the optic disc's contour. In the global optimisation stage, the inclusion of a momentum term and 

learning rate stabilizes the movement and growth of the active contour, and decreases optimisation 

time. Defining energy functions and using a Quasi-Newton optimization strategy makes the local 

phase of the algorithm reasonably fast. 

Experimental comparisons have been conducted with a range of alternative approaches, using 

a randomly-selected experimental set, and have demonstrated the superiority of the proposed 

approach. The imperfect boundary locations are largely due to the variable nature of the images 

and the presence of distractor boundaries concentric with the desired rim, which may be located 

either inside or outside the rim. To improve this algorithm, future work would require dealing with 

these distractors and would require a higher level of reasoning. 

Although the current approach focuses on detecting the optic nerve head boundary as a stage 

in the structured analysis of images for diabetic retinopathy fundus images, the approach is also 

of relevance in diagnosis of other diseases, and particularly in screening for glaucoma. 



Chapter 4 

Fovea Detection & Vascular 

Segmentation 

4.1 Introduction 

This chapter presents two existing algorithms for the detection and segmentation of the fovea and 

the vascular network. For completeness, Sinthanayothin's et al. [25] fovea detection algorithm and 

Hunter's et al. [45] vascular segmentation algorithm are described in detail. 

Due to the eloquent simplicity and segmentation performance of their respective approaches, 

no further investigation into other approaches were sought and their work is incorporated into the 

overall retinal analysis system. 

4.1.1 Chapter Contents 

In section 4.2 the importance and difficulty of foveal detection is described together with a detailed 

description of Sinthanayothin's algorithm. The performance of the algorithm is evaluated against 

1000 screening images. In section 4.3, the motivation, appearance and distractors of vascular seg

mentation are explained. This is followed by a description of Hunter~s algori_thm. The performance 

of Hunter's technique concludes this chapter. 

50 
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4.2 Fovea Detection 

4.2.1 Motivation 

The fovea is a vital part of the retina responsible for central, sharp colour vision. As diabetic 

retinopathy progresses, retinal lesions caused by vascular leakage can obscure areas of the retina. 

If these lesions occur near the fovea, t here is an increased risk of foveal obscurement and loss of 

cent ral vision. The macula is defined as one optic disc diameter around the fovea. Any retinopathy 

within this area is known as diabetic maculopathy. Identifying the centre of the fovea is therefore 

vital to enable accurate diagnoses of diabetic maculopathy. 

Optic Nerve Head Fovea 

Figure 4.1: Fovea 

4.2.2 Appearance and Distractors 

The fovea is situated in the centre of t he fundus and approximately 2.5 disk diameters temporal 

to the temporal edge of the optic nerve head; see figure 4.1. The fovea is typically the darkest 

region of the fundus with a similar intensity to blood vessels. A circular indentation in the retina 

aud 1.5mm in diameter [12], the fovea is approximately half the diameter of t he optic disc (fovea 

diameter 40 pixels in a 760 x 570 image). Unlike the peripheral retina, the fovea has no blood 
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vessels and commonly has low contrast. An example of a fovea with very low contrast is shown in 

figure 4.2a. The level of foveal contrast is a serious issue faced by location algorithms, especially 

when combined with higher contrast features within the proximity of the real fovea. 

Fowa LasarBum Fovea 

Figure 4.2: Fovea. a) Low Contrast. b) Distracter. 

Large circular haemorrhages and (dark) laser burn clusters are the main form of distractor 

for foveal location algorithms; these features often having a higher contrast with the background 

retina than the fovea. This is depicted in figure 4.2b. where a laser burn has greater contrast than 

the fovea. 

4.2 .3 Fovea Location Algorit hm 

Sinthauayothin et al. [25] present a fovea location algorithm that is based on a simple template 

matching technique - a template approximating a typical fovea is convolved over an intensity 

fundus image, producing a correlation image showing the degree of intensity s imilarity between 

the template and fundus at each pixel location. The maximum correlation between the template 

and the intensity image, is deemed the centre of the fovea. 

The foveal template as depicted in figure 4.3 is based on a Gaussian distribution of size 40 x 40 

pixels and standard distribution of a= 22. The template is defined by equation 4.1. 

[ 
1 (-("2 + ·2))] g(i ,j ) = 128 1- 2 exp t

2
a 2 

1 (4.1) 

where ( i, j) represents the centre of the template. The foveal template is correlated with the 

intensity component of the fundus image. A subimage W(i, j) of dimensions AI x ]\[ is centred 

on pixel (i,j) with template intensities g(k,l), (k,l) E W(i,j). The correlation coefficient of W at 

(i,j) with image intensities of f(i , j) is defined by equation 4.2 
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Figure 4.3: Fovea Template 

Lu[f(k, 1)- < f >w][g(i - k,j- 1) - < g >w] 
( (i , j) = 1 

{ Lk,l(J(k , 1) - < J >w) 2 Lk,l(g(i - k , j- 1) - < g >w) 2 } 
2 

(4.2) 

In 71 foveal centred images , the algorithm is reported to correctly locate 60 fovea regions 

(84.5%), the other 11 (15.5%) were unidentified. An extensive evaluation of this algorithm is 

described below. 

4.2.4 Evaluation 

The accuracy and precision of Sinthanayothin 's algorithm were tested using 914 gold standard 

foveal marked images obtained from 1000 fundal images: captured on a Canon CR6 45MNf fundus 

camera with a 45 degree field of view and resolution of 760 x 570. The foveal centre of all clinically 

gradable images were manually marked by an ophthalmologist. It is against this benchmark that 

the algorithm is evaluated. Out of the 1000 fundal images, the ophthalmologist excluded 86 images 

from study due to inferior image quality. The distance between the estimated and the benclnnarked 

foveal centre is shown in table 4.1. As Sinthanayothin did not present the algorithm 's accuracy, 

110 comparison can be made with Sinthanayothin's own results. 

Table 4.1 shows that 53.3% and 89.7% of the estimated fovea centres were within I 0 and 20 

pixels respectively of the benchmarked fovea centre. Generally, if the estimated fovea centre was 
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Table 4 1· Distance from Real Fovea Centre .. < 

Distance Number of Images 
0-5 202 
6-10 291 
ll-20 336 
21-25 56 
26-30 24 
31-40 11 
41-50 1 
50+ 3 

Image Total 924 

Table 4.2· Accumulated Distance from Benchmarked Fovea 
Template Size Accumulated Distance 

34 15492 
36 13995 
38 13440 
40 12221 
42 13202 
44 12999 
46 13391 

greater than 25 pixels away from the benchmarked centre, the fovea was either extremely faint or 

obscured (by lesions or laser scars); making location by template matching difficult. 

The average size of a fovea is 40 x 40 pixels, this is the same dimension as Sinthanayothin's 

foveal template. The size of template used by template matching techniques can significantly ef-

feet performance; a variety of fovea template sizes were evaluated by accumulating the distances 

between the estimated and benchmarked fovea; see table 4.2. Table 4.2 shows that the small-

est accumulated distance and therefore the optimum template size is in fact 40 x 40 pixels as 

implemented by Sinthanayothin. 

4.3 Vascular Segmentation 

4.3.1 Motivation 

Diabetic retinopathy is primarily a disease of blood vessels [45]. The change in width of retinal 

vessels with!n_tlle fun~us is believed to be indicative of the risk level of diabetic retinopathy [46]; 

venous beading (unusual variations in diameter along a vein) is thought to be one of the most 
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powerful predictors of proliferative diabetic retinopathy [4 7]. Another important severity indicator 

of diabetic retinopathy is neovascularization - new vessels that are tortuous in shape. Detecting 

both of these retinal complications requires the accurate identification of the vascular network. 

Vascular segmentation is also important in preventing false positive haemorrhage classifications 

where veins change angle within the retina or arteries cross causing small relative dark segments 

of vessel. 

4.3.2 Appearance and Distractors 

Within a fundus image, the diameter, tortuosity and contrast of blood vessels can vary significantly. 

Although blood vessels are usually darker than their surroundings, variable retinal pigmentation, 

uneven illumination and noise can cause varied contrast between the vascular network and back

ground image. This can cause problems with linear segmentation filters that threshold images 

using a single value. The contrast between vessel and background may vary over an image, but the 

structure of blood vessel appearance remains constant - cross-vessel profiles tend to keep the same 

shape independent of contrast change (dark in the centre of the blood vessel and lighter either side 

of the blood vessel, see figure 4.5b ). 

In addition to uneven illumination and noise, vessel segmentation is complicated by a further 

two image distractors - locally dark channels and one side contrast boundaries. As shown in figure 

4.4, locally dark channels can form in the spaces between exudate pairs, light artefacts (camera 

flash) and between visible choroidal vessels ("tiger stripes") and retinal background. One side 

contrast boundaries such as exudate edges can act as segmentation distracters even though a filter 

may respond to only one half of a light distractors edge - the response of the filter to that edge 

may be stronger than that of a blood vessel with lower overall contrast. 

4.3.3 Vascular Segmentation Algorithm 

Hunter eJ, al. [45] exploits the structure of the blood vessels using a characteristic cross-vessel 

profile (see figure 4.5b ). Consider three parallel lines 10 pixels in length, one within the vessel 

and two lying either side. If the three lines are sampled at the same orientation as a vessel, the 

centreline should be uniformly dark and the two outer lines uniformly light. 

The contrast is measured between the central line and satellite "tram-lines" using a minimax 
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Figure 4.4: Distracters a) Exudates b) Light Artefact c) Tiger Strips 

Figure 4.5 : Normal a) Blood Vessel b) Blood Vessel Cross Section Profile 

algorithm: the maximum (lightest intensity value) intensity of t he inner line is subtracted from the 

minimum (darkest intensity value) intensity of t he outer tram-lines. If the difference is positive 

t hen the interior tramline is darker than t he outer tramlines and characteristic of a blood vessel. 

To desensitise the filter from the effects of noise, an order statistic filter is used to calculate the 

contrast: the inner and outer filters are sorted by intensity value, select ing the third darkest 

and third lightest intensity value respectively, then taking the difference. The tramline filter is 

applied using a number of rotational orientations , selecting the optimum response at each pixel. 

T he orientation-sensitivity and order-statistic ensures the filter is reasonably robust against noise 

and insensitive to distractors, such as one-sided contrast boundaries found at the edge of bright 

exudates, light art ifacts and the optic nerve head. 

4.3.4 Evaluation 

The tram-line filter 's perfonuance is measured against STARE's [48] well established vascular 

segmentation a lgorithm. Using STARE's publicly available test images and ground truth , the 
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tram-line algorithm proved superior to STARE when measured by vessel length, with 57.2% of the 

vascular network (by length) correctly identified with 2.9% false positives (excess length). This is 

compared with 57% and 8.5% for STARE. A blood vessel ground truth consists of manual tracings 

of the blood vessel network from a fundus image. The difficulty of providing a clinical blood vessel 

ground truth, has prevented the algorithm being evaluated on the 1000 Birmingham screening 

images (due to the limited clinician resources available to the project). 

Figure 4.6: 

The majority of unsegmented blood vessel are small capillaries that constantly come in and out 

of view. Figure 4.6 shows an example segmented vascular centreline and centreline fundus overlay. 

The additional research necessary to segment the remaining 42.8% of the vascular network is out 

of the scope of this research as lesion detection and classification has a higher priority. 



Chapter 5 

Diabetic Lesions 

5.1 Introduction 

This chapter presents an algorithm for the automated segmentation and classification of diabetic 

lesions in retinal images. Within this chapter, three types of lesions indicative of diabetic retinopa

thy (haemorrhages, microaneurysms and exudates) are located, segmented and classified. Potential 

lesions are identified using peak detection (creating seed points), with lesion boundaries defined 

using a novel region growing algorithm. In this algorithm regions are grown from seed points by 

sequentially adding adjoining pixels whose intensities are closest to the seed intensity. The con

trast between the internal region and a dilated boundary is recorded at each iteration. Pixels are 

added in this way until the compactness of the region falls below a set threshold. The boundary 

with the highest contrast is selected to represent the potential lesion. Features relating to shape, 

size, and colour are extracted from the bounded regions and feel into an ensemble neural network. 

The region growth algorithm is evaluated against alternative approaches using a set of 100 lesion 

subimages taken from 20 down-sampled high definition fundus images. The results show that the 

algorithm is superior to previously published methods. 

5.1.1 Motivation 

The diagnosis of diabetic retinopathy is based upon visually recognizing_ various _clinical featur:es. 

Retinal lesions are among the first visual indicators suggestive of diabetic retinopathy. The threat 

58 
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to visual loss increases with the frequency of retinal lesions combined with their encroachment into 

the macula (one optic disc diameter around the fovea). To enable early diagnosis, it is therefore 

necessary to identify both frequency and position of retinal lesions in relation to the fovea. Retinal 

lesions include haemorrhages, microaneurysms (dark spots); and exudates (bright spots). The 

appearance of microaneurysms is said to be the earliest indicator of diabetic retinopathy. This 

is commonly followed by the occurrence of haemorrhages and exudates which are characteristic 

of clinically significant retinopathy. Image distractors such as lighting variation, natural pigmen-

tation, light artefacts, broken capillaries and non diabetic lesions make lesion identification and 

segmentation a challenging problem domain. In order to distinguish lesions from image distrac-

tors, sophisticated region descriptors and classification techniques are required. Image distractors 

affect bright and dark regions differently, consequently, lesion appearance, image distractors and 

segmentation literature are addressed for bright and dark lesions separately. 

5.1.2 Chapter Contents 

Section 5.2 is subdivided into three parts: bright lesions, dark lesions and classification. In the 

first two subsections the appearance of bright and dark diabetic lesions are described together with 

previously published lesion segmentation algorithms. In the third subsection image classification 

techniques and algorithms are discussed. In section 5.3, a new region growth algorithm is described 

together with region descriptors used in lesion classification. The new growth algorithm is evaluated 

against alternatives from the literature in section 5.4 and section 5.5 concludes the chapter. 

5.2 Problem Domain & Literature Review 

5.2.1 Bright Lesions 

Appearance and Distractors 

Exudates vary in appearance, conforming to one of three structures: dot exudates, fluffy exudates 

and circumscribed plaques of exudate. Dot exudates consist of round yellow spots lying superficially 

or deep in the sensory retina [49]. Fluffy exudates are a paler yellow than dot exudates and tend to 
~ . - - -· 

lie more superficially in the sensory retina. Plaque exudates vary in size more than the other two 
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groups and represent a more diffuse accumulation of lipoprotein. Figure 5.1 shows the position of 

the sensory retina. 

Cross section 
of the eye 

Sensory ---It 
retina 

Figure 5.1: Sensory Layer, [taken from http: / /my.webmd.com/hw/healthguideatoz/hw121946.asp] 

In addition to their various appearances, exudates can be arranged in different configurations. 

Exudates can surround leaking capillaries and microaneurysms in a circular (circinate) pattern or 

lie scattered, taking on no particular configuration. Exudates are usually reflective and may appear 

to have a rigid, multifaceted contour, ranging in colour from white to yellow [15]. This wide range 

in exudate appearance is demonstrated in figure 5.2 where three patches of exudation are shown. 

With varying shapes, sizes, patterns and contrast, exudate classification is a demanding problem 

domain, complicated by lighting variation over the image, natural pigmentation, the intrinsic colour 

of the lesion , and decreasing colour saturation at lesion boundaries [50]. Reliable identification and 

classification of exudates is made surprisingly difficult with image distractors such as laser scars 

and light artefacts. Hard drusen caused by macular degeneration can also add to the complexity, 

often being mistaken for exudates by naive approaches due to their similar characteristics. 

The similarity between distractors and exudates can been seen in figures 5.2 and 5.3, where 

drusen, light artefacts and laser burn can be visually compared to the exudate examples. 
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F igure 5.2: Exudates a) Circinate b) Single dot c) Mult iple 

Figure 5.3 : Distractors a) Drusen. b ) Light Artefact c) Laser Burn 

Segmentation A lgorithms 

Severa l aut hors have presented algorithms for t he identification of exudates in fun dus images, 

attaining varied resul ts. Ward et al. [51] introduced a semi-automated exudate detection and 

measurement method, in which an operator selected a t hreshold value to segment exudates from a 

shade-corrected retinal background. Ward 's method worked adequately well when exudates were 

t he only pathologic feature in t he image. However , when faced wit h other light ly coloured lesions 

such as cotton wool spots or drusen, t he algori t hm fai led to distinguish between t hem due to t heir 

similar intensity values. 

Sint hanayothin et al. [8] presented a recursive region-growing algorit hm applied to a cont rast 

enhanced image. To reduce t he effects of uneven illumination over t he fun d us, images were pre

processed to enhance local contrast. A prerequisite of local contrast enha ncement is a suitable 

colour model. Wit h the intensity component of the IHS (Intensity Hue Saturation) model being 
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decoupled from colour, the fundus images were converted from RGB (Red Green Blue) to IHS. 

Prior to IHS conversion, RGB components were normalized. IHS colour model conversion was 

achieved using equations 5.1 to 5.3 respectively. 

1 
I= J (R + G +B)) 

3 . 
S=1- R+G+B[mm(R,G,B)] 

H = COS-I {~--"-'~[c.:..( R_-_G_;_)_+_(;_R_-_B.:..:) 1_,} 
[(R- G) 2 + (R- B)(G- B)]! 

(5.1) 

(5.2) 

(5.3) 

Local contrast enhancement was calculated using sub-windows of 49 x 49 centred on each pixel 

(i,j) of the ISH's intensity component. The contrast enhancement transformation is defined by 

equation 5.4 and used a sigmoidal function defined by equation 5.5. The maximum and minimum 

intensity values of the the intensity image are denoted by !max and !min respectively, with the 

mean and standard deviation of the intensity within the sub-window W being denoted by (f)w 

and aw(f) (equations 5.6 and 5.7) respectively. 

!( . . ) (' ')_ 225 ['llw(f)-'llw(/min)] 
~.J ->g~,J- . 

[lllwUmax)- Ww(/min)] 
(5.4) 

(5.5) 

1 
< J >w(i,j) (f)= M 2 L J(k, l) (5.6) 

(k,l)EW(i,j) 

2 1 ~ 
aw(f) = M2 L.., (f(k, l)- (J}w) 2 (5.7) 

(k,l)EW(i,j) 

By using a sigmoidal function, areas with poor initial contrast (small a value) were greatly en-
. - - - - - - - =- - -.- -

hanced, leaving areas with good initial contrast (large a value) largely unaltered. To reduce the 
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noise produced by contrast enhancement, a 2D Gaussian smoothing filter was first applied to the 

image. 

Recursive region growing was applied to the contrast enhanced intensity image with an aim of 

determining exudate boundaries. Recursive region growing works by dividing the image into regions 

of similar gray levels. Starting with a pixel at coordinates (x, y) the intensity values of its four 

neighbouring pixels (x, y + 1), (x, y- 1), (x ~ 1, y) and (x + 1, y) are compared. If the intensity 

difference between the current pixel and a neighbouring pixel is less or equal to a threshold (in this 

case 10 intensity levels) it is added to the current region. A region is defined when no more pixels 

qualify to join the current region. At this point, Sinthanayothin replaces the original intensity 

values within the region with the median intensity of the area. To split the image into exudate and 

non-exudate regions, a threshold is set to median intensity of the image background (based on the 

region with the most pixels). Regions with a median intensity above and below this threshold were 

classified as exudates and non-exudates respectively. Sinthanayothin stated that the algorithm 

would not detect faint exudated regions, nor distinguish between other similar coloured lesions. 

Goldbaum et al. [50] used a quadratic discriminant function to discriminate between similarly 

coloured lesions (exudates, cotton-wool spots, and drusen). Images were represented by a three 

dimensional vector (L, 8, ~), derived by spherical-coordinate transformation (described fully in 

Wang et al. below). Goldbaum observed that exposure noise obscured the radial coordinate (lu-

minance denoted by L) of the colour signal and consequently discarded the luminance component. 

Classification was accomplished by comparing the two-dimensional chromaticity vector from an 

unknown object to the two-dimensional chromaticity vector of known objects (training set). The 

success of this approach was moderate, with Goldbaum concluding that using colour alone was not 

sufficient to reliably distinguish between similarly coloured lesions. 

In a similar approach, Wang et al. [52], incorporated image exposure as well as colour infor-

mation to represent lesions. A discriminant function was used to differentiate between exudates, 

other lesions and distractors. Lesions were defined by a set of colour features /;, h, ... , fk forming 

a k-dimensional space, F. If the ideal features were selected it would possible to find a space F 

where objects map to different, non-intersecting clusters. 

Wang et al. [52] defines a feature space F to include colour and exposure ~n_fonnation Qnly. 
• -. - ,. - -·-·--·· .... --- - - ·- - • -- . -· - ·- ~ .!' 

Although colour fundus images usually consist of three colour planes - red, green and blue, with 256 
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levels of intensity denoted as (R,G,B) [52], colour can also be represented by spherical coordinates 

as expressed by: 

L=(R2 +G2 +B2)! 

8 =Arccos(~) 

~=Arccos ( ~) 

(5.8) 

(5.9) 

(5.10) 

The brightness of the image is denoted by L and the changes of colour denoted by ~ and 8. 

The feature space F is therefore represented by F(h, fe, J,.p)· Wang et al, defined two classes 

- bright yellowish and dark reddish. A training set for each class is obtained by selecting small 

sub-windows inside exudate and background regions. The means of each exudate and background 

sub-window are calculated and stored as feature centers for the two class Ctesion(JL, fe, f"') and 

cbkgrnd (h' fe' f"') respectively. 

For each pixel in the fundus image the illumination and colour information are extracted X( XL, Xe, X 'I') 

and the minimum distance discriminant D;(X) (equation 5.11) is calculated for each class Dtesion(X) 

and Dbkgrnd(X). 

D;(X) =(X- C;f (X-C;) (5.11) 

If Dtesion(X) is less than Dbkgmd(X), the pixel X is classified as lesion; otherwise it is classified as 

background. Wang's problem domain is less demanding than Goldbaum's, with Wang's emphasis 

on differentiating yellowish lesions with darker objects as opposed to distinguishing between similar 

coloured lesions. However, Wang presents promising results within the limited image dataset. This 

technique is therefore compared against other techniques latter in this chapter. 

Osareh ct al. [53] introduced a fuzzy C-Means clustering algorithm based on the work of Young 

Won Lim et al. [54) to segment a colour retinal image into homogenous regions; classifying regions 

into exudates or non exudates using a neural network. To con~pensate f~r the ~ide variati~~l of 

colour in the fundus, the images were pre-processed. Images were converted from RGB to IHS, 
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normalised and finally locally contrast enhanced (described above in Sinthanayothin et al.) 

Fuzzy C-Means clustering allows pixels to be classified into multiply classes with varying degrees of 

membership . Young Won Lim's algorithm consisted of two stages- coarse and fine segmentation. 

The coarse segmentation divides the image into a number of regions determined by thresholds 

automatically generated by scale-space filtering Hue Saturation and Intensity (HSI) histograms. 

The number of significant peaks in the histogram determine the number of regions. Pixels not 

segmented by the coarse segmentation phase are processed in the fine segmentation phase by 

determining fuzzy partitioning. This is done by minimizing the squared error loss function 5.12. 

m n 

L = L L[J.tJ(x;)]b llx;- cJII2 (5.12) 
j= l i= l 

where xis a data vector (i = 1, ... ,n) ,n is the number of pixels, CJ denotes the centre of fuzzy 

clusters (j = 1, ... , m) where m is the number of clusters determined in the coarse segmentation 

stage. The fuzzy membership of x; to cluster j is denoted by uj(x;), and the overlap between the 

fuzzy cluster regions is controlled by a weighting exponent b. The similarity between each region 's 

cluster centre and pixel attribute vectors are measured by equation 5.12. Osarch et al. performs 

differentiation and applies the constraint 2:::;: 1 J-L;(x;) = 1 resulting in functions 5.14 to 5.15. 

J.lj(Xi) = [E (:~:) 6 rl 
dji = llx;- cJII 

l:;[J.t;(x;)]bx; 
CJ = l:: ;[J.t;(x; )]b 

(5.13) 

(5.14) 

(5.15) 

The Euclidean distance between the cluster centre and the data vector is denoted by dji· Osarch 

initialised the weighting exponent b to 2 and minimised the FCM function 5.14 until the change 

in the norm was less than 0.5 and three different clusters were distinguished - dark vessels and 

haemorrhages, background pigmentation and exudates. Osarch et al. states that the segmenta

tion by FCM is a conservative process finding all but the faintest (ambiguous) exudate regions. 

False positive non-exudate segmented regions were also found by the algorithm caused by cluster 
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overlapping, noise, and uneven colour distribution . After segmentation, exudate and non-exudate 

regions were classified as being exudate and non-exudate by extracting a number of region features 

(size, colour, average intensity, edge sharpness and standard deviation of intensity), and feeding the 

information into a multilayer neural network with conjugate grad ient decent as a learning method. 

Osarch used 42 images containing 4037 objects for both training and testing. The training set 

consisted of 3000 objects, 1205 of them labelled as exudates. Of the remaining 1037 objects 417 

were labelled as exudates. From this limited dataset Osareh reported a sensitivity of 92% and 

specificity of 82%. 

5.2.2 Dark Lesions 

Appearance and Distractors 

Microaneurysms and haemorrhages often coexist with in fundal images - microaneurysms represent 

saccular bulges in the walls of the retinal capillaries [55] and haemorrhages are thought to occur 

from ruptured bulges. Found in any part of the retina, microaneurysms have a rigid structure 

appearing as small , round, red dots with a limited radius range. Haemorrhages, however, vary 

more in appearance. At their smallest, haemorrhages can be difficult to distinguish from microa

neurysms. Haemorrhages can have irregular boundaries being either "fl ame shaped" or "dot and 

blot" in appearance. The size of haemorrhages can also differ, ranging from areas the size of 

microaneurysms to areas larger than the optic nerve head. Figure 5.4 shows fundus areas with 

microaneurysms, and t he varying appearances of haemorrhages. 

Figure 5.4: Red Lesions a) Haemorrhage b) Microaneurysm c) Mixed 
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Figure 5.5: Distractors a) Light Artefact b) Choroidal vessels c) Vessel Breaks 

With microaneurysms and haemorrhages being the same colour as blood vessels, vascular dis

tractors make the segmentation of red lesions a challenging problem domain. When veins change 

angle within the retina or arteries cross, fine veins can appear broken with dark followed by lighter 

segments. Combined with vascular light reflex (bright line running through blood vessels), seg

ments of the vascular network are a major distractor appearing as a number of microaneurysms or 

small haemorrhages (see figure 5.5 c). 

Light artefacts and varying natural pigmentation cau also play their part in complicating seg

mentation. Figure 5.5 a. shows a large light artefact around the fovea, resulting in pockets of 

normal pigmentation surrounded by lighter areas. This can cause problems in selecting candidate 

dark lesions as the normal pigmentation appears dark in relation to its local surrounding area. The 

same effect can be seen in Figure 5.5 b., where the retinal pigment has visible choroidal vessels 

( "tiger stripes"). 

Segmentation Algorithms 

A number of authors have developed techniques to segment and classify microaneurysms and 

haemorrhages from fundus images. The majority of algorithms use similar pre-processing and 

region growing methods. 

Spencer et al. [56] , pre-processed high quality digitised fluorescein angiogram negatives (cap

turing frames at 1024 x 1024 resolution) by shade correction and used a mixture of morphological 

opening, matched filtering and thresholding to identify candidate microaneurysrns. Microaneurysm 

seeds were region grown and finally classified using a rule set based on features extracted from the 
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grown region. 

Spencer el al. [56] used shade correction to help separate the microaneurysms from the retinal 

background. This was achieved by approximating the retinal background and removing it from 

the original. The approximated background image was obtained by applying a median filter whose 

size was said to be larger than a microaneurysm. Microaneurysms were then segmented from 

the vasculature by morphologically opening the image with a linear structuring element set to 

different orientations. To ensure a high degree of discrimination between microaneurysms ( circu

lar) and vessels (linear), the length of linear structuring element was set greater than the largest 

microaneurysm (11-pixels). To obtain good alignment with vessel segments but also maintain com

putation to a minimum, the structuring element was set at eight different rotational orientations 

- 0, 30, 45, 60, 90, 120, 135 and 160 degrees. The maximum pixel value at each spatial location 

from the eight opened images were combined to produce a vascular image with no circular fea

tures. This resultant image was then subtracted from the shade corrected image to produce an 

image with in theory only circular features. Remaining unwanted features were removed from the 

vascular segmented image by applying 11 x 11 Gaussian filter (a = 1). Images were thresholded by 

a fixed number of pixels above the modal grey-level to establish potential lesions seed points. At 

each seed location, recursive region growing was used to determine the boundary of the potential 

lesions. Features relating to boundary shape and size were extracted from region grown areas; 

microaneurysm classification was achieved by assessing candidate features with series of rules con

tained within a rule set. Spencer el al. [56] achieved a sensitivity of 82% at the cost of detecting 

over 100 false positives over four images. 

Although fluorescein angiography is an extremely effective method of microaneurysm detection, 

and studies have shown automated techniques in this area [Spencer], angiography is an invasive 

procedure and not part of routine diabetic retinopathy screening. However, techniques used in this 

area are transferable and have been adopted by other authors using standard fundus photographs. 

Oien et al. [1], introduces an algorithm to segment microaneurysms from 22 high resolution 

digitally scanned fundal photographs (1536 x 1024). During the photographic or scanning process, 

unwanted particles such as dust or dirt may adhere to the image, although typically smaller and of 

lower intensity than microaneurysms, false positive classifications are possible. To remove any small 

dark spots that might be extraneous particles while leaving the majority of the image unaltered, 
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a median filter with quadratic mask (width twice t he size of expected part icles) was applied. 

Candidate extraneous areas were determined by differences between t he original and fil tered image. 

These areas were t hen confirmed by thresholding with a low intensity (30 pixels). Pixels within 

confirmed extraneous areas were replaced by estimated pixel values from a median fil ter (11 x 11 

pixels) . 

In a s imilar approach to Spencer et al. [56], t he background 's nonuniform intensity (caused 

by uneven intensity of illumination) , was reduced using shade correction ; applying a large median 

filter (31 x 31 pixels) followed by the subtraction of t he filtered image £rom the original. In order 

t o isolate candidate rn icroaneurysms, percentwise thresholding was applied to the pre-processed 

difference image . In this technique, a percentage of pixels wi t h the lowest intensity values are 

converted to black with the remaining pixels converted to white. Oien selected percentage values 

to create two binary images - 10% for microaneurysms detection and 15% for vessel detection . 

Figure 5. 6: Hit-and-miss structuring elements a) Object . b) Background . 

Circular or near circular spots in the 10% binary image were classified as microaneurysms using 

a Hit-and-miss algorithm. In t his method two structuring elements representing the object and 

t he background a re eroded from the image (see fi gure 5.6). The intersection of these two erosions 

provides the location of objects with a geometry and size as defined by the two structuring elements. 

T hree pairs of structuring elements were used to detect small (3-7), medium (5-11 ) and large (9-

17) microaneurysm. In the fin al stage of t he algori t hm , blood vessels were morphologically eroded 

from t he 15% binary image and subt racted from t he microaneurysm image, ensuring no false hits 
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occurred on the vascular network. This morphological erosion involved a linear structuring element 

rotated to 16 spatial angles. The detected areas not included in the segmented vascular network 

were deemed to be microaneurysms. Individual microaneurysm detection was reported at 72% 

with a false positive rate of 60%. Imperfection in the vessel segmentation was said to account for 

the majority of the false positives. Therefore a more sophisticated vascular segmentation algorithm 

could dramatically improve performance of this approach. 

Developing upon the microaneurysm segmentation work of Spencer et al. [56], Hipwell's et 

al. shade-corrected images prior to the removal of blood vessels and haemorrhages - achieved by 

excluding all structures greater than a particular linear extent. Measurements including intensity, 

shape, perimeter length, aspect ratio, and circularity were extracted from candidate areas re

sembling microaneurysms. Candidates were classified as microaneurysms if measurement features 

passed a series of tests. Hipwell et al reports a sensitivity 81% and specificity of 93%. An accurate 

comparison cannot be made with Hipwell's results due to the way the sensitivity and specificity 

was calculated. Hipwell evaluated on a per patient basis as opposed to per image. Patients were 

graded after examining four images, two images per eye. 

Sinthanayothin et al. pre-processed images with a high pass filter to enhance the contrast 

between lesions and background. A recursive region-growing algorithm identified candidate mi

croaneurysms and haemorrhages. Due to intensity similarities, blood vessel segments were often 

classified as lesions. To overcome this problem a neural network was used to segment the vascular 

network from the image. Sinthanayothin states the algorithm failed to find haemorrhages adjacent 

to blood vessels and falsely identified small retinal vessels as red lesions. 

5.2.3 Classification 

Classification can be defined by two distinct approaches - given a set of observations, classes are 

established to cluster the data; or given the number of classes, a rule is established to classify a 

new observation into one of the existing classes. The former approach is known as unsupervised 

learning and the latter as supervised learning [57]. Lesion classification techniques have largely 

focused on supervised learning as the number of lesion types or classes are known. Supervised 

learning can be achieved using a number of approaches including: statistical, machine learning 

and neural network. 
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1. Statistical approaches Statistical approaches can be generalised as having an underlying 

probabilistic model, in which the probability of a new observation belonging to each class is 

used as the classifier [58]. 

2. Machine learning The machine learning umbrella incorporates a wide variety of techniques 

all focused on mimicking human reasoning. From this umbrella, two distinct machine learning 

factions have emerged: rule-based, in which classification results from a sequence of logical 

steps and data analysis, where rule-structured classifiers are derived from pre-classified exam

ples [58]. A useful prerequisite of machine learning techniques is that the learning concepts 

should be in a symbolic form that is meaningful to humans. 

3. Neural Networks Neural networks combine features from both statistical and machine 

learning models to produce a probabilistic model that aims to mimic human reasoning. The 

idea behind neural networks is to capture the important features of a biological neural system 

in a model in order for it to exhibit similar behaviours. Neural networks are comprised 

of many interconnected units (perceptrons) each of which performs a weighted sum of its 

inputs. Layers of interconnected perceptrons can represent a complex set of interdependencies 

allowing nonlinear problems to be modelled. In order for a perception neural network to be 

useful, the network needs to be able to learn. This is achieved by strengthening or weakening 

connection weights depending upon the validity of its output prediction. A drawback of 

neural networks is that the internal neural model is not transparent, therefore the learnt 

concepts of the model are unknown. This can cause a problem if the training data is not 

truly representative of the actual data- as abstract data features may yield more classification 

influence than it otherwise would. 

Previous authors have experimented with all three types of supervised learning in comparative 

studies. Frame et al. [55] compares three microaneurysm classifying techniques using Spencer's 

el al. [56] pre-processing and region growing algorithim. A rule based system, linear discriminant 

analysis and a learning vector quantisation artificial neural network were all compared. The three 

classifiers were trained using a set of 1659 candidate lesions, gathered from 68 retinal fluorescein 

angiographic images, with 400 labelled as micr~aneurysms. An independent test set consisting 

of 1067 candidate lesions, (containing 297 classified microaneurysms) from 20 images, validated 
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results from the three classifiers. 

1. Rule Based Analysis: The rule based classifier distinguished between lesion and non-lesion 

by satisfying a number of logical rules derived directly from the training data. Pairs of features 

were compared from feature vector scatter graphs to find two feature functions that gave good 

discrimination between lesion and non-lesion classes. To avoid conflict-resolution strategies, 

all rules were mutually exclusive. Generating a rule set can be extremely time consuming, 

Frame et al. [55] dedicated one man month to discriminating between microaneurysm and 

spurious objects. 

2. Linear Discriminant Analysis: Linear discriminant analysis is a statistical classifier that 

maximises separation between classes. This algorithm seeks directions for efficient discrim

ination between classes, placing a hyperplane at an optimum location in feature space to 

achieve maximum separation. [59]. 

3. Learning Vector Quantisation Artificial Neural Network: Learning vector quantisa

tion is a competitive learning two layer neural network encompassing an input and output 

layer. The network includes a set of parameter vectors (codebook vectors) whose coordinates 

represent the weights of the connections between an input and the output layers. Each code

book vector is associated with an output class. Each class may have a number of codebook 

vectors and contain the same number of elements as feature input to the network (input vec

tor). The algorithm works by comparing the input vector with each of the codebook vectors. 

The vector with the closest Euclidean distance is the winner and the associated class taken 

as the algorithm's output. The training set is used to assign codebook vectors to the correct 

class by moving winning vectors closer to the input vectors. 

Frame concluded that the rule based system required further development but gave higher 

performance than the other two methods. 

Ege ct al. [60] presented work on three different statistical lesion classifiers, comparing a K Nearest 

Neighbour (KNN), Mahalanobis, and Bayes classifier. For each classifier type, two classifiers were 

constructed - one for bright lesions and one for dark lesions. The data was also split equally into 

two sets; a learning set and a test set. 
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1. K Nearest Neighbour: In order to differentiate between objects, the K Nearest Neighbour 

classifier is presented examples of objects representative of each class. Features F representing 

these objects are extracted and form a training set. Each feature within the training set is 

assigned a class label, C=cl, ... ,cn. The Euclidean distance is assigned between all feature 

points in the training set, forming a distance matrix between all possible pairings. 

To determine the class of an unseen object, the distance matrix is analyzed to find the k-

closest neighbors to the object's feature points. The k-closest feature points are then analyzed 

to determine the class label majority. The most common class is assigned to the object being 

analyzed [61]. The size of K is equal to .jTi where n is the total number of samples in the 

training set [60]. 

2. Bayes Classifier: Based on the Bayes decision rule, the Bayes classifier can be used to 

minimise the expected total number of errors [60]. The Bayes theorem is expressed by 

P( ·I ) = p(xlw;)P(w;) 
w, x p(x) (5.16) 

where 

n 

p(x) = L p(xlw;)P(w;) (5.17) 
i=l 

For each candidate lesion, a feature set consisting of nine variables was extracted and denoted 

by x. P(wdx) is the posterior probability that the feature set x belongs to class i. p(xlw;) 

is the state-conditional probability density function for x. The prior probability of a lesion 

class i occurring in an entire retinal imageset is denoted by P(w;) and calculated by equation 

5.18. 

(5.18) 

where J; and n represent the observations of lesion class i and the total number of observations 

respectively. In Ege's work, if the candidate lesion was bright, it was tested again!'.t the 

exudates or cotton wool spots class, where the value of class i was 1 or 2 respectively, and 
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the total number of classes n was 2. 

To classify a candidate lesion, the posterior probability of both classes requires calculation. 

A decision is made in favour of w 1 (exudate) if the expression in equation 5.19 is fulfilled. 

(5.19) 

Due to the multivariate normally distributed data (9 variable feature set), p(xlw;) is calcu-

lated using the state-conditional probability density function as expressed in equation 5.20 

(5.20) 

where d is the number of features, J.Li represents the mean of class i and L:; denotes the 

covariance matrix of class i. 

3. Mahalanobis Classifier The Mahalanobis classifier is a similar idea to the nearest neigh-

bour classifier with properties of the Bayes classifier. The distance metric of this approach 

is the Mahalanobis distance and the parameters mean and covariance are the same as the 

Bayes classifier. The Mahalanobis classifier does not use a priori probability of classes but 

does assume multivariate normally distributed data. The Mahalanobis distance is expressed 

in equation 5.21 

-I 

r; = (x- J.L;fL:)x- J.L;) (5.21) 

where x is the feature set from the candidate lesion being tested, J.Li the mean of class i 

and L:; is the covariance matrix of class i. The tested candidate lesion is assigned to the 

class returning the lowest distance. Ege states that the Mahalanobis classifier gave the most 

balanced results in their 134 image test set, but concludes that the difference between the 

Bayes and Mahalanobis classifier may be due to the sparse training data. 

Gardner et al. [62] used a multilayer percept ron neural network to classify 20 x 20 sub-windows from 

red-free fundus images as exudates, haemorrhages vessels, or normal. After median smoothing, 
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red free values were fed directly into a large neural network comprising of 400 inputs and 80 

hidden units. With each pixel corresponding to a neural input, the approach is computationally 

demanding. Gardner reports sensitivity and specificity of 99% and 69% respectively for patient 

referral with either exudates or haemorrhages. Gardner did not elaborate on how exudates and 

haemorrhages were encoded and integrated to come to this outcome. 

Hunter et al. [63] [64], presented an algorithm to distinguish exudates and drusen from tiled fundal 

images using a multilayer perceptron neural network, and introduced a novel approach to feature 

selection using sensitivity analysis. Red-free fundal images were divided into 16 x 16 pixel tiles. Fast 

Fourier transforms and Prewitt edge-detection filters were applied to the fundus images, resulting 

in three images transforms (red-free, fourier and prewitt). For each image transform, the following 

features were extracted: summary statistics (Mean, Standard Deviation, Skew and Kurtosis), 

principal components analysis, 16-bin histogram, and principal components of histogram. With 

over 156 features extracted from each tile, selecting the right combination of features is critical in 

reducing the complexity of the neural network, increasing performance and increasing execution 

speed. 

Hunter's algorithm is an hierarchical approach, involving feature selection stages that identify sig

nificant features. In each stage, a neural network is trained, and analysed showing the contribution 

of each feature. Using this technique composite feature subsets can be selected among hundreds 

of features to create a robust network with optimum performance. Hunter created 4 networks 

(summary statistic , principal components analysis, 16-bin histogram, and principal component of 

histogram) for each of the three image transforms. Sensitivity analysis was applied to each network 

respectively, creating a composite network for each image transform. Each composite was further 

analysed and combined to create an overall composite, and re-analysed to create a final network of 

11 inputs. To train the networks a data set containing 95 drusen tiles and 116 exudate tiles were 

split into a training set (44 drusen, 56 exudate) and a test set (51 drusen, 60 exudate). Hunter 

reported performance of 91% correct classification from the final network using the test set. This 

compared to 60% for a network trained directly from pixel values. 
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5.2.4 Summary 

The prevention of sight threatening retinopathy (maculopathy) requires the early detection of 

various clinical features within the retina. These features include exudates (bright lesions), mi

croaneurysrns and haemorrhages (dark lesions). The detection of both bright and dark lesions is 

complicated by image distractors that have similar appearances and intensity values to the lesions. 

Bright and dark lesions have a combination of core and unique image distractors that require 

separate segmentation algorithms. With bright lesions, fuzzy C-Means clustering, a colour discrim

inant function, and a recursive region growing algorithm have all been used to segment exudates 

from the retinal background. These approaches achieve good sensitivity by correctly identifying ex

udates but have a poor specificity by misclassifying similar coloured distractors as exudates. With 

dark lesion segmentation, images were largely shade corrected prior to the removal of blood vessels. 

Microaneurysm and haemorrhage detection was achieved by recursive region growing and thresh

olding techniques. Both approaches suffered from false positive results on unsegmented segments 

of the vascular network. 

Statistical, machine learning and neural network techniques have been employed for lesion 

classification. Neural networks combine features from both machine learning and statistical models. 

Selecting suitable lesion descriptors can be a difficult and time consuming process. Sensitivity 

analysis allows a liberal feature selection, by identifying the descriptors that contribute to the 

neural network. 

5.3 Method 

The accurate location and classification of diabetic lesions is the primary goal of this research, as 

early detection of exudates, microaneurysms and haemorrhages within the macula, can prevent 

sight threatening retinopathy if treated soon after diagnosis. The location and segmentation of 

structural elements of the retina including the optic nerve head, fovea, and blood vessel network are 

all prerequisites for this phase of retinal analysis. Optic disc and fovea segmentation are required 

to locate the centre and size of the macula region (where lesion presence is the most significant) 

and blood vessel network segmentation reduces red lesion image distractors. 

In this research, lesion identification has been divided into three stages: location, segmentation 



CHAPTER 5. DIABETIC LESIONS 77 

and classification. The main contribution to novelty exists in the segmentation phase, with some 

contribution in the classification phase. 

This section begins with a brief description of the lesion location algorithm used (but not 

developed) in this research and is presented for completeness. This is followed by a detailed 

description of the new region growing algorithm that is used to segment lesions from the retinal 

background. An explanation of the neural classification phase of the algorithm concludes this 

section. 

5.3.1 Location 

Segmenting a lesion from the retinal background is a computationally demanding process. To re

duce computational expense, only the most likely candidates should be segmented. This is achieved 

by first locating all possible lesion candidates. Point (a.k.a. peak) detection is used to identify 

isolated points where the intensity value of the isolated point is quite different from its neigh

bouring pixels. A small 5 x 5 sub-window is morphologically run over the fundus image, applying 

a maximum (minimum for dark lesions) filter within each sub-window, producing peak/trough 

points. 

As large numbers of peak/trough points exist per image and the majority are within image 

distractors such as lighting variation, natural pigmentation, light artefacts, and broken capillaries, 

a simple test is used to sort these points into an order of lesionness. 

By exploiting lesion characteristics (as detailed description in section 5.2.1 and 5.2.2), shape, 

size and contrast details can be used to grade these peak points. If it is assumed that a lesion is 

a roundish object with high contrast and a diameter between 2 and 30 pixels, a series of seven 

concentric circles, can measure the contrast at different radii between peak and retinal background. 

The highest contrast between concentric circles and peak is taken as a seed's lesionness value. As 

an image contains many distractors some of which will be circular with high contrast, many points 

require further investigation to ensure actual lesions are among those analysed. To this end, the 

top 100 sorted peak points are selected for region growing, feature extraction and classification. 
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5.3.2 Segmentation - Region Growing 

Region growing is a technique that groups pixels together to form larger regions. Pixel aggregation 

is one the simplest of these approaches in which regions are grown from a set of "seed" points 

by appending neighbouring pixels that share similar properties to the seed. These properties may 

include intensity, texture or colour [12]. Pixels are repeatedly appended, forming increasing regions 

until a stopping criteria is satisfied. 

The proposed method uses traditional intensity pixel aggregation for region growth while iter-

ately calculating the contrast between the average boundary and average grown region gradient. 

The algorithm continues to grow exceeding the objects natural boundary, halting only when the 

grown region loses its compactness. The objects boundary is then locating by determining the 

point of growth at which the objects contrast gradient is most significant. 

Growing 

The region contrast gradient growth model in its most basic form consists of two iterately growing 

regions - core and boundary. The core is initially grown from a "seed" point and continually grows 

by appending the brightest neighbouring (boundary) pixels on each iteration. Unlike other region 

growing algorithms, the inclusion of pixels does not depend on satisfying a threshold. As the 

intensity difference between the background retina and lesion seed is so variable, a fixed threshold 

is unreliable. Instead, the highest intensity pixel is iteratively grown regardless of the seed intensity. 

To illustrate this procedure, consider figure 5. 7a. where the numbers inside the cells represent 

intensity values from the intensity component of an HSI image R. Let point St with coordinates 

( 4, 4) represent a seed point and E denote a 3 x 3 structuring element. Let intensity image R 

be partitioned into n subregions where n denotes the number of seed points R 1 , R 2 , ... Rn· In this 

example n = 1 and region Rt is initialised to seed point St. Region Rt 's neighbouring pixels B 1 

(as highlighted in red in 5.7a.) are determined by dilating Rt with E as expressed in equation 

5.22, followed by subtracting R 1 from R 1 EB E as depicted in equation 5.23. 

1 1 
E = 1 1 1 

1 1 1 



CHAPTER 5. DIABETIC LESIONS 79 

(5.22) 

(5.23) 

where x is t he set all pixels of R; and Ex is a translation of E to origin x. Within the boundary 

B 1, the pixel with highest intensity value (5, 3) is assigned to R 1 . The boundary of the appended 

region Rt is determined by dilation as described above, with resultant region and boundary shown 

in figure 5.7b; with the growth of the third pixel and resultant dilated boundary shown in figure 

5.7c. The inclusion of the brightest pixel from boundary Bt into the region R 1 is repeated until a 

stopping criteria (as described below) is met. 
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Figure 5.7: Example of region growing a) iteration 1 b) iteration 2 c) iteration 3 

Gradient Measure 

The boundary of a lesion can be characterised by the point of strongest intensity contrast between 

itself and the background retina. By determining the gradient of image R, this maximum rate of 

change can be exploited. Prior to gradient conversion, the intensity image is gaussian-smoothed to 

reduce overall image noise and to bridge any small gaps within the lesion boundaries. The image 

is also normalised to increase the images dynamic range. Segmentation is therefore achieved using 

a normalized negative gaussian-smoothed gradient magnitude image, r = -II 'VIII/ max(ii'VIII). 
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The magnitude of the gradient image can detect the edge amplitude at which pixels change their 

gray-level suddenly. 

The gradient of pixels situated on a lesion edge is high. The gradient contrast between boundary 

and core is therefore strongest when core pixels are positioned on this edge. To determine an 

optimum boundary, gradient measures are taken at the inclusion of each new pixel, followed by a 

measure of gradient contrast between boundary and core. At region iteration j, of region i, the 

mean gradient pixel values of image r masked with region Ri and boundary Bi are determined 

by equation 5.24 and 5.25 respectively. The gradient contrast between the boundary and core is 

expressed by equation 5.26. 

L Ri·f 
1/Ji.j = -- ·W; . T 

(5.24) 

""B;. r 
f3i,j = L.,. -K- · Wj (5.25) 

(i,j = /3i.j - 1/Ji,j (5.26) 

where K, T denote the pixel count of B; and R; at iteration j respectively. The contour gradient 

around seed points with especially high intensity values can occasionally have gradients greater 

than that of the true lesion edge. To reduce the risk of inaccurate boundaries around seed points, 

a diminishing weight Wj is multiplied to the average gradient, reducing the gradient impact during 

the first ten iterations (see equation 5.27). 

(5.27) 

Once the stopping criteria is fulfilled and the region growth is terminated, the optimum boundary 

is sought. The optimum boundary is identified by the growth iteration with the maximum contrast 

between boundary and core, as expressed by equation 5.28. 

1/J; = argj max( (;,j) (5.28) 
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The region growth procedure is then repeated, stopping after 1/J; iterations. At this point, region 

features are extracted. 

Stopping Criteria 

A significant problem of region growing algorithms is the formulation of a suitable stopping criteria. 

A region should stop growing when no more pixels satisfy the condition for the inclusion to that 

region. If the intensity difference between a lesion and background is marginal, a stopping criteria 

based on an intensity percentage or threshold from a seed's intensity can yield problems. More 

advanced stopping conditions may include additional rules specifying the maximum size and or 

deformation from a template shape. 

A number of problems exist with using such stopping rules when applied to lesion segmentation; 

firstly, a segmented boundary that has been terminated due to excessive size or shape deformation 

is unlikely to be an optimum lesion boundary. Secondly, lesions vary significantly in both shape 

and size, so defining a termination rule based on either of these features would likely produce varied 

and unsatisfactory results. 

Compactness, a dimensionless quantity that is insensitive to scale and orientation changes 

is presented as the algorithm's stopping criteria. The compactness of a region is defined as 

perimeter2
/ area, where the area of a region is defined by the number of pixels contained within 

its boundary and the perimeter of a region is defined by the length of its boundary [12]. 

The compactness of the internal region is determined at each iteration. Retinal background 

intensity varies greatly, consequently after the the internal region grows to the full extent of the le-

sion contour, the ad hoc inclusion of additional retinal pixels causes the compactness to deteriorate. 

If the compactness metric exceeds a threshold of 30, region growing is terminated. 

5.3.3 Feature Extraction 

Having determined the boundary of the lesion candidate, it is important to extract as much infor-

rnation as possible from the region of interest; it is this information that is be utilised to classify 

the potential lesion. 

A region can be represented by a number of characteristics such as shape features (area, peri me-
~ " - - ·- • • - - -- < - • 

ter, orientation and concavities) and internal reflectivity (colour and texture). With a large number 
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of descriptors available, determining the importance of particular features can be a difficult and 

time consuming process. 

Sensitivity analysis, as described in section 5.2.1, can simplify this process by expressing a 

significance rating for each descriptor. A liberal set of features, including closely related or even 

overlapping descriptors can be extracted (as feature selection reduces the feature set before use 

by the classifier). The extracted features include a number of contrast, colour, shape and texture 

descriptors. Although certain features represent dark lesions more than bright lesions and vice 

versa, the same features were extracted for both, allowing sensitively analysis to identity the 

significant contributors. 

Colour 

Colour is a powerful descriptor, often simplifying object identification. Colour is especially im

portant in distinguishing between exudates and similar shaped distractors such as drusen. As the 

colour differences between exudates and drusen are often so marginal, three different colour models 

are used to extract colour features. 

1. RGB Model Images captured from the Canon CR6 45MNf fundus camera are represented 

in the primary spectral components of red, green and blue. Although the green component 

contains the majority of visible contrast between lesions and background retina, features 

from all colour planes are extracted. 

2. CIE Model 

All colours in this model are defined by hue and chroma, not by brightness. When the 

luminance is removed from colour, the isoilluminant surface describes the chromaticity part 

of colour. Both Goldbaum [50] and Wang [52] have exclusively used this model to identify 

exudates; however, in this research it is used as one of three colour models. 

To convert from RGB to the CIE model the following equations 5.29 to 5.31 are used. 



CHAPTER 5. DIABETIC LESIONS 

e = (G2 + R2 + B2 )! 

9 =arctan(~) 

~=arccos ( %) 

3. HSI Model 

83 

(5.29) 

(5.30) 

(5.31) 

The HSI model uses three quantities hue, saturation and intensity to specify colour. Hue is a 

colour attribute that describes a pure colour (pure yellow, orange, or red) and as saturation is 

a measure of the degree to which a pure colour is diluted by light. As with the CIE model, the 

intensity component or luminance is decoupled from the colour. Although there is a feature 

overlap between CIE and HSI colour models, the quantities are calculated in different ways. 

To convert from RGB to HSI the three RGB components should be in the range of [0, 1]. 

The intensity, saturation and hue are defined by equations 5.32 to 5.34 respectively. 

1 
I= 3(R + G +B) 

3 
S = 1- R + G + B [min(R, G, B)] 

H = cos- I ( .,...,.----"-'~ [':'.,( R-=---_G,-'-)_+_(:...._R.,---,....,.---B.:....:) 1----,-,-..,..) 
[(R- G)2 + (R- B)(G- B)]~ 

Characteristics of a Frequency Distribution 

(5.32) 

(5.33) 

(5.34) 

To identify colour pixel dispersal within a segmented region, the frequency distribution is analysed 

in each plane of the three colour models. The tendency of the colour regions is examined to 

determine if pixels are centrally or more uniformly distributed. To measure the tendencies of 

the frequency distribution statistical moments are calculated. The kth moment of a frequency 

distribution about any point x 0 is defined by equation 5.35. 

(5.35) 
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Measurements of central tendency, general variability, symmetry of variation and shape are 

calculated by the mean, standard deviation, skew and kurtosis respectively. The arithmetic mean 

is a commonly used measure of central tendency and is the first moment of the distribution about 

zero (equation 5.36). 

fJ = L:~l (xi) 
n 

(5.36) 

To measure the general variability of a frequency distribution, the standard deviation is calcu-

lated. The variance of a distribution is the second moment of a distribution about the arithmetic 

mean (equation 5.37). 

a= y'va1'(x) 

vm·(x) = L:~=l(x- JL)2 
n 

(5.37) 

(5.38) 

The third moment around the mean is taken as a measure of absolute skewness of the distri-

bution, and represents the symmetry around the point of central tendency. 

(5.39) 

The shape of the distribution is measured by calculating its kurtosis. If the distribution has a 

sharp peak, thin shoulders, and fat tails it is said to have a high kurtosis. If the distribution has 

a flat peak, fat shoulders and thin tails then it has a low kurtosis (equation 5.40). 

(5.40) 

In addition to colour frequency analysis, the statistical features were extracted from Fourier 
-- ~ 

transformed and Prewitt edge detected regions. 
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Principal Component Analysis 

Principal component analysis (PCA) is a useful statistical technique to identify patterns within 

data (image regions). PCA represents the data by aligning a series of axe' in the direction of 

data variance i.e. the first component is aligned to the largest percentage of the total variance 

and each subsequent axis contains the maximum variance for any axes orthogonal to the previous 

component. As the importance of information from each subsequent axis diminishes, only the first 

10 principal components are used as image features; these are extracted from the green component 

of the RGB colour model, Fourier and Prewitt transforms. 

To calculate the PCA of an image, the mean of each data dimension is first subtracted from 

the values in that dimension, producing a data set whose mean is zero. The disparity of each 

dimension from the mean with respect to each other is determined by calculating the covariance 

of each dimension pair, thus producing a covariance matrix. The eigenvectors of the covariance 

matrix extracts lines that characterise the data. Ordering the eigenvectors by eigenvalue, highest to 

lowest gives the components in order of significance as the eigenvector with the highest eigenvalue 

is the principal component. 

Regional Shape Descriptors 

Regional features provide discriminating information between similar shaped regions and back

ground. Regional features extracted include: area, perimeter, major and minor axis lengths, 

compactness, convex area, eccentricity, solidity, and equivalent diameter. 

1. Area number of pixels contained within boundary 

2. Perimeter pixel length of the boundary 

3. Compactness pe1'irneter2 /area dimensionless value that is insensitive to scale and orienta

tion changes. 

4. Major Axis length of straight line joining two furthest points. 

5. Minor Axis length of straight line joining two furthest points perpendicular to major axis 

6. Eccentricity ratio between major and minor axis 
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7. Convex area area of the smallest convex hull encapsulating the boundary. 

8. Solidity Area/ConvexArea proportion of pixels in both convex hull and region. 

9. Equivalent diameter y'(4 * Area/n) diameter of a circle with the same area as the region. 

Contrast 

Contrast can be defined as the relative intensity difference between adjacent regions of an image. 

In this research measures of contrast are extracted from the green component of the RGB colour 

model. The contrast feature measures the intensity difference between the mean boundary pixels 

and the mean region pixels of the segmented area; as expressed in equation 5.41. 

c = lr- Iii ( 5.41) 

r=-. L: I(k, l) 
n 

(5.42) 
(k,l}w(x,y) 

- 1 L: I(k, l) b=-. 
m 

(k,l)o<(x,y) 

(5.43) 

where a, and K represent the pixels and n and m represent the pixel count of the region 

boundary and boundary respectively. 

Texture 

Texture content quantification is an important region descriptor. Texture definition measures 

such properties as coarseness, smoothness and regularity. From the three principal approaches of 

textural analysis, statistical, structural and spectral, statistical analysis yields characterisations of 

texture that are vitally important in discriminating between different types of lesions, such as grain 

content, smoothness and coarseness. The relative position of the pixels with respect to each other 
-- - - . 

can be used to extract such information. To obtain the complete picture regarding pixel positions 
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four co-occurrence matrixes are needed, one for each directional join to the next pixel i.e. right, 

down, down right and down left. 

The intensity values are normalised so that the spread of pixels in each co-occurrence bin is 

optimised. This ensures a good textural representation when lesion intensity values are similar. 

Prior to the co-occurrence calculations, the normalised data is split into 4 bins (0-25, 26-50, 51-75, 

76-100). In previous work the number of bins was varied between 4-32. It was found that the more 

sparsely populated bins did not improve the neural network results. 

The divided data is converted into an occurrence matrix by comparing the pixel values next to 

each other. This process occurs for each direction of neighbouring pixels. The co-occurrence matrix 

is formed by dividing each member of the occurrence matrix by the total number of point pairs 

in the occurrence matrix. This new matrix known as a grey level co-occurrence matrix gives an 

estimate of the joint probability that a pair of points occurs. Several measures can be obtained from 

a grey level co-occurrence matrix, such as Energy, Correlation, Contrast, Homogeneity, Entropy. 

Energy= E~9 E~gp(i,j)2 

ENgENg(. ') (' .) 
Cor-relation= i j lJ p l,J - J.lxJ.ly 

IJxiJy 

Contrast= E~9E~9 (i- j)2p(i,j) 

H 
. ~Ng..,Ng p(i,j) 

omogene1ty = z..; z..j 1 + (i _ j)2 

Entropy= -E~9E~9p(i,j) log(p(i,j)) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

where N g denotes the number of grey levels, Px ( i) is the i 1h row component of marginal probability, 

Px (j) is the lh column component of marginal probability, J.Lx is the average of Px, /ly is the average 

of Py, IJ x is the standard deviation of Px, and IJ y is the standard deviation of Py. 

5.3.4 Classification 

The objective of lesion classification is to discriminate diabetic lesions from non diabetic lesions and 

image distractors such as light artifacts and retinal light reflexes. With bright and dark diabetic 

lesions having opposing characteristics and distractors, two pairs of classes are defined: exudates 
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versus bright distractors; and microaneurysms and haemorrhages versus dark distractors. 

Given the number of classes, a rule is required to classify a candidate lesion into one of the pre

defined classes. This can be achieved through supervised learning in which features from observed 

candidates are used to direct classification procedures. To create a data set of observed candidate 

lesions, 10,000 bright and 10,000 dark regions from 1, 000 random screening images were classified 

into the above classes by an ophthalmologist (see screening data section 8.4). 

Supervised learning is achieved using a multi-layer perceptron (MLP) neural network, with 

back propagation and conjugate gradient descent training. A neural network was built for each 

of the two class pairs. Sensitivity analysis was performed on region descriptors to identify feature 

contribution - Five MLP neural networks were trained from five composite feature subsets for both 

bright and dark lesions: 

1. shape and contrast 

2. colour summary statistics and texture 

3. green principal components and green summary statistics 

4. Fourier principal components and Fourier summary statistics 

5. finally Prewitt principal components and Prewitt summary statistics 

MLP analysis for bright and dark subsets identified significant features forming two overall com

posite networks. The final networks consisted of 58 I 28 and 18 I 10 , for bright and dark lesions 

(features inputs I hidden units) respectively. 

5.4 Evaluation 

This evaluation is divided into two subsections: segmentation and classification. The performance 

of the region contrast gradient growth model is evaluated against four alternate techniques. Results 

from 100 sample lesions show that the proposed algorithm is over 200% more precise than the 

compared techniques in lesion segmentation. The performance of the lesion classification algorithms 

are generally presented in a per image or per eye basis and in conjunction with other retinal analysis 

components such as removal of ungradable images. This form of system evaluation is discussed 
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in detail in chapter 8. In this section, neural network evaluation via cross validation is discussed 

together with neural network performance, presented per lesion. 

5.4.1 Lesion Segmentation 

Benchmarking Method 

The relatively small size of diabetic lesions in standard 760 x 570 fundus images can affect the 

accuracy of boundary demarcation. Absolute delimiting is therefore difficult to obtain. For this 

reason, the accuracy and precision of the presented segmentation algorithm is tested using 100 

gold standard lesion boundaries obtained from 27 high-resolution fundus images with a 45 degree 

field of view, and photographed using a Canon fundus camera. 

Lesions of varying sizes and contrast were selected to form a representative lesion collection, 

extracted from fundus images with different degrees of retinopathy. The dimensions of the high

resolution images were 3300 x 2600 pixels, approximately four times larger than the standard 

760 x 570 lower resolution fundus used in lesion segmentation. 

High resolution images were presented to an ophthalmologist in lesion centred 100 x 100 sub

windows. For evaluation convenience, each sub-window was centred on a discrete lesion. The 

ophthalmologist manually delimited the lesion boundaries by depicting each lesion edge pixel; 

followed by flood filling the periphery, creating a binary image. The high-resolution binary image 

down-sampled by a factor of 4 to test the algorithms at low resolution; a gold standard region of 

interest with sub-pixel accuracy is subsequently obtained. It is against this benchmark that the 

accuracy and precision of the algorithm is measured. 

Models Tested 

A comparison is made between the presented algorithm and four segmentation approaches - fuzzy 

C-Means clustering, recursive region growing, adaptive recursive region growing, and a colour 

discriminant function. All algorithms were implemented and evaluated against the gold standard 

region of interest. 

The benchmark comparison with the aforementioned techniques was achieved by measuring 

the number of common pixels shared with the gold standard region of interest and the algorithm's 
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segmented area. For each gold standard region r, true positive tp,., false negative fn,., false positive 

fp,. and true negative tn,. metrics were calculated for each segmentation approach. 

1. True Positive Number of correctly identified benchmark pixels. 

2. False Negative Number of background pixels incorrectly identified as benchmark pixels. 

3. False Positive Number of missed benchmark pixels. 

4. True Negative Number of correctly identified background pixels. 

The probability of the algorithm correctly segmenting a benchmark pixel and correctly identi-

fying a background pixel are expressed in terms of sensitivity and specificity respectively. 

S "t" "t tp ensz zvz y = --
1
-

tp+ n 

tn 
Specificity = --

1
-

tn+ p 

(5.49) 

(5.50) 

Although sensitivity and specificity can demonstrate algorithm performance, technique com par-

isons based on single metrics are less ambiguous and therefore preferable. Accuracy is a commonly 

used metric that measures the probability of true positive and true negative classifications. 

tp + tn 
Accuracy = ---::'-----::c--

tp + fn + fp + tn 
(5.51) 

Unfortunately, the large ratio between the sub-window and a typical lesion size (26 : 1) pre-

vents representative performance comparisons with this statistic. To illustrate this, consider, a 

benchmarked region R1 and a test region R2, housed within 51 x 51 sub-windows tV1 and tl12 

respectively. Let the area contained within region R1 equal 100 pixels. If test region R 2 segments 

only 10 of these pixels then the accuracy for R2 is 0.965; see equation 5.52. This level of accuracy 

is due to the large number of true negative background pixels. When considered along side its 

sensitivity and specificity (0.1 and 1 respectively) the accuracy seems less informative, biased by 

the number of sub-window pixels. 

10+2511 
Ace1tracyR2 = -:-::---::-::--"""'=""--=-=-:-:-

10 + 90 + 0 + 2511 
(5.52) 
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In an alternate approach, model precision is measured by summing the pixel deviation from the 

benchmark region. As segmentation precision is crucial for obtaining accurate region descriptors, 

false positive and false negative pixels can be deemed as equally damaging as they distort the 

regions shape. This deviation error metric is expressed in equation 5.53. 

En·or = FN + FP (5.53) 

Results 

Analysing statistics for segmentation algorithms is a subjective process, balancing the importance 

of conservative and profuse growth. Pixel classifications (tp, fn, fp, fn) from each algorithm were 

returned for each of the 100 lesion sub-windows. The average sensitivity, specificity, accuracy and 

error for each algorithm is presented in table 5.1. 

Table 5.1: Algorithm Performance Metrics 
Model Sensitivity Specificity Accuracy Error 

Contrast Gradient 97.18 98.05 98.58 36.69 
Recursive 12.57 100 95.63 113.48 

Fuzzy 88.36 93.87 93.99 156.16 
Adaptive Recursive 91.19 92.13 92.45 196.15 
Distriminant Colour 60.22 75.61 75.21 644.63 

The statistical significance of observed relationship between algorithms as tabulated above 

(table 5.1) was verified to be significant. An ANOVA test was performed to test the null hypothesis 

that there are no mean differences between groups. The null hypothesis was rejected, implying 

that there is a significant difference between groups. As the ANOVA test specifies if there is a 

significant difference between groups and not which groups are significantly different to other, a 

t-test was performed to test the null hypothesis that the error mean of the Contrast Gradient 

model is equal to the next best model, the "Recursive" model. 

The t-test value is -12.97. With 99 degrees of freedom in each sample, the critical value is 

-62.8004 at 99% confidence. The null hypothesis is therefore rejected, signifying that the Contrast 

Gradient model is better than the Recursive algorithm, even at the 99% confidence level. Similar 

pairwise comparisons indicate the Contrast Gradient model's superiority over the other alternative 

segmentation algorithms. In examining the pixel classifications for each algorithm (see table 5.2) 
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it is apparent that the other alternate algorithms either grossly under or over segment. With the 

Recursive region growing algorithm, the limited intensity threshold between seed and candidate 

region pixels is so small (10 pixels) that only partial segmentation is possible before the intensity 

difference reaches its threshold. 

Table 5 2· Algorithm Pixel Classifications .. 
Model tp fn fp tn 

Contrast Gradient 126 3 35 2436 
Recursive 15 113 0 2471 

F\1zzy 114 15 141 2331 
Adaptive Recursive 117 11 184 2286 
Distriminant Colour 83 45 599 1872 

The colour and intensity difference between lesion and background retina is commonly marginal 

with little contrast between the two. Consequently the fuzzy, adaptive and discriminant algorithms 

that do not utilise the limited edge strength, tend to overestimate the lesion boundary. This is 

particular the case when contrast is low and lesions are in close proximity. This is demonstrated 

in figure 5.8 where the Adaptive and Fuzzy means clustering algorithm segment two neighbouring 

lesions. 

It is worth noting that the contrast gradient model makes on average 77 fewer fp and fn pixel 

misclassifications than next best performing algorithm (Recursive); that is an improvement of over 

200%. Examples of contrast gradient segmentation can be seen in figure 5.10. 

Effectiveness of Intensity 

To evaluate the effect that different colour model components have on the algorithms region growing 

phase, the intensity component was compared to luminance and the green component. 

Table 5.3: Effect of Colour Components in Region Growing 
Colour Component Error 

intensity 36.61 
luminance 36.82 

green 36.69 

The error metric difference between the aforementioned colour models C()mponents was found to 

be negligible and not statistically significant. Therefore, any of the three colour model components 
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Figure 5.8: Segmentation Examples TL) Original , TR) Adaptive, BL) Fuzzy, BR) Gradient. Green 
TP, Red FN, Blue FP, Black TN 

could be used in region growing and yield similar results; as depicted in table 5.3. 

Effectiveness of the Gradient Image 

The effectiveness of using a gradient image to locate a more precise boundary is evaluated against 

a standard intensity image, in which only the average intensity contrast between the grown region 

and boundary is measured. Table 5.4 shows the results of this test. 

Table 54· Gradient Image versus Intensity Image .. 
Model Sensitivity Specificity Accuracy Error 

Gradient 97.18 98.05 98.58 36.69 
Intensity 49.06 99.98 97.56 63.22 

The results from table 5.5 demonstrate that the intensity model is more specific than the 



CHAPTER 5. DIABETIC LESIONS 94 

Table 5.5: Gradient Image versus Intensity Image Pixel Classifications 
Model tp fn fp tn 

Gradient 126 3 35 2436 
Intensity 68 61 3 2469 

gradient model with less false positive classifications but is less sensitive, with a greater number 

of false negatives. This is shown in figure 5.9 where only the central lesion is segmented by the 

contrast intensity model. The precision advantage of using a gradient image over the intensity 

image is considerable with 43% fewer segmentation errors. Findings were statistically significant 

at 99% confidence. 

Figure 5.9: Gradient Image versus Intensity Image Segmentation Example L) Gradient, R) Inten
sity. Green TP, Red FN, Blue FP, Black TN 

Effectiveness of the Stopping Criteria 

The compactness of the stopping criteria is an integral part the proposed model. If the algorithm 

is stopped too early the grown region may not encompass the optimum boundary resulting in 

inferior segmentation. If the algorithm is stopped too late, the grown region may attach itself to 

a second lesion, thus creating uncharacteristic region descriptors and probably an incorrect lesion 

classification. The latter is common with the other approaches as seen in figure 5.8. 

None of the 100 test images were prematurely stopped prior to reaching the ophthalmologists 

gold standard boundary. This compactness stopping criteria is preferable over an intensity thresh-



Chapter 6 

Image Quality Assessment 

6.1 Introduction 

This chapter presents an algorithm for the automatic assessment of retinal image quality for lesion 

detection. The chapter focuses on the technical aspects of quantifying image quality into levels 

of gradability. Image quality is attained by summing a weighted contrast between vascular centre 

pixels and the background, multiplying the resultant by the contrast between the fovea and retina. 

It is assumed that blood vessel centrelines and the fovea have been previously located using the 

algorithms described in chapter 4. Images are subdivided into 5 categories of gradability. The 

algorithm is evaluated against three alternative approaches using a set of 200 fundus images from 

a normal screening population. The results demonstrate a significant performance improvement 

over other previously published approaches. 

6.1.1 Motivation 

The suitability of fundus images for diagnosis is an important issue in automated detection of 

diabetic retinopathy. Inadequate image quality can affect image classification as subtle visual dif

ferences between diabetic and non-diabetic lesions may become hazy leading to misclassification. 

In more extreme cases, loss of definition or obscurity may cause diabetic lesions to blend com

pletely into the retinal background and be left unidentified and unclassified. To prevent unsound 

classifications, ungradable images require automatic exclusion from automated analysis and should 

99 
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the contrast between the grown region and the region's boundary, identifying the optimum bound

ary where contrast is most significant. The compactness stopping criterion exploits the natural 

shape of lesions to halt the algorithm when sporadic growth occurs. 

Experimental comparisons have been conducted on four segmentation approaches - fuzzy C

Means clustering, recursive region growing, adaptive recursive region growing, and a colour dis

criminant function. All algorithms were evaluated against a randomly-selected image set with 

ophthalmic lesion boundary demarcation, demonstrating the superiority of the proposed method. 

Liberal feature extraction enabled comprehensive lesion representation using a number of shape 

and reflectivity descriptors. Neural networks have been employed for lesion classification, using 

sensitivity analysis to select suitable lesion descriptors that contribute to the network. K-fold cross 

validation was performed on the neural dataset, forming an ensemble of 10 networks. The large 

number of bright and dark image distractors caused imperfect neural classifications. Future work 

is therefore required to improve lesion representation and / or remove these distractors before 

classification. 
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are eventually used for training, selection and testing. The network performance error is estimated 

by average the performances of the individual networks. The individual network performance for 

both bright and dark cross-validation networks are depicted in figure 5.4.2; where K = 10. 

Using the averaged performance measure as an estimate of the network performance on new 

data, the sensitivity, specificity and lesion classification for both bright and dark ensemble networks 

is shown in table 5.6. The performance figures indicate that the bright lesion classification is equally 

balanced between sensitivity and specificity whereas the dark lesion network is sensitivity biased; 

with under 2% false negative and 28% false positive lesion classifications. This relates to a large 

number of image distractors affecting the dark neural network. 

Table 5.6: Exudate and Microaneurysms and Haemorrhages Ensemble Classification 
Network Sensitivity Specificity tp fn fp tn 
Bright 91.26 91.28 419 36 560 6676 
Dark 98.06 72.8 152 3 4590 12273 

During a further investigation into clark lesion image distractors, it was found that the majority 

of clistractors occur from broken capillaries where the vessel segmentation algorithm failed to 

segment the full vascular structure. 

5.5 Conclusion 

Algorithms for the automated segmentation and classification of candidate lesions have been pre-

sented; an important stage in the prevention of sight threatening retinopathy. Although a number 

of algorithms have been published for lesion segmentation, many are unreliable due to marginal 

colour and intensity difference between diabetic lesions and background retina. This limited con-

trast has an adverse effect on alternate algorithms causing poor lesion boundary estimations. 

In addition the intensity difference between the background retina and lesion seed can vary 

significantly across an image. Other region growing algorithms that use a fixed threshold rule for 

the inclusion of pixels are unreliable clue to this variability. 

In contrast, the presented segmentation algorithm iteratively selects the highest intensity pixel 

for growing regardless of the seed intensity. The algorithm also utilises the limited edge strength of 

candidate lesions by converting the fundal image from RGB to Gradient and iteratively compares 
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Figure 5.11 : ROC Curves a ) Exudate Ensemble Neural Network b) Microaneurysms aud Haemor
rhages Ensemble Neural Network 

selection , testing) derived from a main dataset. Neural optimization is achieved using a t raining 

subset , while the selection subset is used to allevia t e over learning by halt ing training. Au unbiased 

est imation of t he networks performance is then attained from t he test subset . Unfort unately, t hese 

estimates may exhibi t high variance. 

A more relia ble indicator of genera lisation performance would be from averaging the perfor-

mance predication from a number of test subsets that have been retrained . Unfort una tely, t he 

dataset of 1000 fundus images , contains limited examples of d iabetic lesions wi t hin the macula ; 

exudates were present in only 50 images whereas microaneurysms and haemorrhages were present 

in 73 images. This relates to a total of 459 bright and 155 dark macula lesions. T herefore not 

enough data exists to perform multip le runs wit h separate t raining, selection and test subsets. 

Collecting a dataset large enough to satisfy t hese requirements was deemed logistically m•-

feasible d ue to the additiona l resources required for manual ophthalmic labeling, and t he fini te 

ophthalmic t ime available during t his project. 

This problem is overcome using K-fold cross validation, where t he dataset is divided into [( 

equal parts or folds. For each K experiment , K - 1 fo lds are used for t raining a nd selection wit h t he 

remain ing fold for tes ting. The advantage of this approach is t hat a ll of t he examples in t he dataset 
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old approach which as seen by the recursive pixel classifications in table 5.2 frequently under 

segments. 

Figure 5.10: Contrast Gradient Model Segmentation Examples. 

5.4.2 Neural Network 

A problem with neural networks is the issue of generalization where t he neural network begins to 

overfit the training data , meaning that it becomes fine-tuned to idiosyncrasies in the training data 

that will not necessarily appear in new datasets; subsequently determining the likely performance 

of new data is difficult. 

Consequently, neural models are often built and assessed using three data subsets (training , 
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be flagged for either a repeat screening or ophthalmic review. 

Defining image quality is a highly subjective abstract process based on the varying experiences, 

visual perception and the judgement of observers. In automated retinal analysis, a standardized 

so-called "typical experienced observer" is required to filter images into achievable, minimum and 

ungradable categories to avoid erroneous classifications from substandard images. 

6.1.2 Chapter Contents 

In section 6.2 the current definition of image clarity is discussed together with an overview of 

previously published image quality assessment algorithms. In section 6.3, the new quality assess

ment algorithm is described. The algorithm is evaluated against alternatives from the literature 

in section 6.4 and concluded in section 6.5. 

6.2 Problem Domain & Literature Review 

6.2.1 Image Quality Characteristics 

Digital fundal photography allows instant image review and has quality assurance, yet poor quality 

images can still occur. Image quality can be effected by a number of factors including head or eye 

movement, poorly dilated pupils and/or a small pupil, blinking, and the presence of media opacity 

- most commonly caused by cataract. 

Head or eye movement during photographic examination can degrade image acquisition re

sulting in out of focus, incorrectly illuminated or misaligned images. Retinal screening protocols 

require carefully aligned images to include defined areas of the retina. In a macula centred image, 

protocol requires the optic nerve head to be positioned in the midline, one disc diameter from the 

edge of the image field. Any movement just prior to acquisition can cause misalignment and to 

vital regions being excluded from the photograph. In addition to head or eye movement, poorly 

dilated pupils also affect image illumination creating dark low contrast images and can prevent 

lesion identification (see figure 6.3a). 

Any media opacity (opacity of normally transparent eye tissue), that obstructs the field of view 

through the visual axis from cornea to retina can degrade the retinal image. The most common 

media opacity encountered in retinal screening is cataract. If fundal cameras capture retinal images 
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through cataract, images appear blurred and are often ungradable (see figure 6.3b). Images can 

also be obscured by eyelashes or the eyelid if blinking occurs during acquisition. 

Currently, assessment of image quality is based on subjective interpretation of three definitions 

of image clarity (developed by Gloucestershire Diabetic Retinopathy Screening Programme [65] 

and adopted by The National Screening Committee (NSC) [66]). The general guidelines of image 

quality suggest using two 45° field images per eye. A macula centred field is essential and is referred 

to as t he defined position. Optic disc and nasal fields are a bonus. Image quality is based on the 

macula centred images. T he three defined levels are: 

1. Achievable standard: Optic disc less than or equal to one disc diameter from the defined 

position. Small vessels clearly visible within one disc diameter of the fovea and optic disc 

and visible across more than 90% of remaining image(s); see figure 6.1. 

Figure 6.1: Achievable standard 

2. Minimum standard: Optic disc less than or equal to two disc diameters from the defined 

position. Small vessels clearly visible within one disc diameter of fovea and optic disc and 

visible across more than 66% of remaining image(s) ; see figure 6.2. 

3. Inadequate ( ungradable): Optic disc less than or equal to two disc diameters from the 

defined position. Small vessels not clearly visible within one disc diameter of fovea and optic 

disc and visible across more than 33% of remaining image(s) ; see figure 6.3. 
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Figure 6.2: Minimum standard 

6.2.2 Quality Assessment Algorithms 

In order to comply with national screening guidelines, the image assessment algorithm should 

be capable of correctly partitioning images into the aforementioned three categories. To achieve 

this, a measure of quality is required ; although image quality measures are well known in the 

domain of image restoration, diagnostic suitability is a relativity new research area with only 

limited publications. Usher et al [67] presented an algorithm to determine image qual ity using a 

quality metric based on the area of automatically detected blood vessel. Vascular segmentation was 

performed using a combination of orientated matched filter ing and region growing, Usher report's 

a sensitivity of 81% and a specificity of 91%. The algorithm is described in detail by I-Iimaga 

et al [68]. As blood vessels should be present in all ret inal images regardless of ethnic origin or 

retinopathy, Usher measured vessel frequency from gradable and ungradable images to determine 

an image quality metric. Within each image an image quality metric score V was set from the 

total count of pixels classified as vessels. Images with blood vessel metrics above a threshold tv 

were classified as gradable while images with metrics below tv were classified as ungradable. The 

performance of this algorithm was evaluated using 800 images from 400 patients and comparing 

results to the opinion of three clinicians. An average inter-grader agreement was calculated using 

the average agreement between the system and the individual clinicians. The algorithm reportedly 

achieved 100% sensitivity and 94% specificity in detecting patients with at least one ungradable 
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Figure 6.3: Inadequate ( ungradable) a) poor illumination b) cataracts 

image. 

Lee et al (69] studied 360 retinal images from the Oklahoma native Americans and concluded 

that image quality could be defined by three parameters: brightness , contrast and signal-to-noise 

ratio (SNR). From the sample set, twenty images with excellent quality were selected. Quality 

parameters were obtained from these images together with an average intensity histogram - referred 

to as the desired values and the template intensity histogram respectively. Lee observed that the 

brightness, contrast and signal-to-noise values of an image were close to t heir respective desired 

values when the image's intensity histogram was close to the template intensity histogram and 

that these values could be derived from the histogram. An image quality measure was therefore 

proposed using the convolution of the template histogram with the image histogram and computing 

a quality index. 

In an evaluation of Lee 's work, Lalonde et al [70] examined the interdependency between 

image quality and histogram similarity in 40 retinal images of varying quality. During this study, 

histograms from several poor quality images were found to closely resemble the template histogram . 

In addition , histograms from several good quality images were notably different from the template 

histogram, signifying a weak connection between image quality and histogram similarity. Lalonde 

et al [70] experimented with distribution of edge magnitudes and the local distribution (as opposed 

to the global histogram of Lee) of pixel intensity as quality indicators. In a similar approach to 
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Lee, a typical edge magnitude histogram was formed using the edge maps from a set of good 

quality images. The difference between the typical and current image edge magnitude histogram 

formed a quality indicator. A second qualify indicator was derived by comparing local intensity 

distributions. This approach differs from Lee et al, by defining a set of local histogram templates 

instead of one global histogram template. Lalonde concluded that both quality indicators could 

help discriminate between good and bad images, although a larger image set was required to 

evaluate the performance of the approach. 

6.2.3 Summary 

As the guidelines defining fundus image quality are domain specific, it follows that automated 

techniques should aim to match the outlined criteria. Usher et al, came closest to achieving this 

but overlooked a number of important issues. First, blood vessels can be visible without being 

in focus, therefore as Usher's approach works ou a thresholded blood vessel pixel count, blurred 

vessels can still add to this metric. Second, no emphasis is given to macula vessels. As macula 

vessel only count for a small percentage of the total vascular network, images with limited or 

no macula vessels could still be classified as gradable. Finally, the deviation from the defined 

position is not addressed. The image assessment algorithm proposed below takes inspiration from 

the National Screening Committee guidelines and addresses all of the these issues. The approach 

takes two independent measurements per image, calculating the contrast and quantity of visible 

blood vessels within one disc diameter of the fovea, and measuring the foveal contrast between 

fovea core and retina. 

6.3 Method 

The measurement of retinal image quality is concentrated in the macula region - two disc diameters 

around the centre of the fovea. This method assumes previous fovea localisation. It is also assumed 

that the vascular network has been previously segmented leaving a vascular map of segment cen

trelines (see chapter 4). The image quality assessment is performed on the green intensity channel 

of the colour RGB fundus images and is then normalised to increase its dynamic range. 
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6.3.1 Vascular measurement definition 

The appearance of small blood vessels within one disc disc diameter of the fovea (macula) is the 

primary indicator of fundal image quality. There are three aspects of macula vessels that indicate 

quality - distance from fovea, contrast and quantity. The more blood vessels that are visible within 

the macula, the closer they are to the fovea centre and the higher the contrast between the vessels 

and the background retina, the better the image quality. 

For each vascular segment, i = {1..5}, the average pixel distance away from the fovea and the 

contrast with the background retina is measured. The distance of a vascular segment i from the 

fovea is determined by averaging the distance between each pixel p0 •• p 71 , from centreline a; and 

the fovea centre c; as expressed by equation 6.1. Let TJi represent the number of pixels contained 

within centreline a;. 

(6.1) 

The contrast of vascular segment i is measured by taking the average intensity of centreline 

pixels a; and subtracting it from the average intensity of boundary pixels (3;. To ensure that pixels 

measured by a segment's boundary are of the surrounding background retina and not the edge of 

its own blood vessel, boundary diameters are set to twice the average macula vessel diameter of 7 

pixels. A segment boundary (3; is formed by dilating a segment centreline a; by two structuring 

elements A and B; structuring element B is subsequently subtracted from A, where element A = 

ones(6, 4) and B = ones(4, 2). The mean pixel intensities of centreline a; and boundary (3; are 

expressed by equation 6.2 and 6.3 respectively. Let b0 •. br, represent the pixels within boundary (3; 

and I denote the normalised green channel of the fundus image. 

1 
1/i 

a; = - · """'lp P TJ" ~ X}• y} 

I j=l 

(6.2) 

--, 1 T; 

{3; =- · L hx·,by· 
T; j=l J J 

(6.3) 
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where T; represents the pixel count of boundary /3;. The intensity contrast for vessel segment i is 

calculated by simply subtracting a; from f];, as expressed by equation 6.4. 

w; = f];- a; (6.4) 

In general, the greater the length of a visible macula blood vessel, the greater the quality. This 

quality improves further if the vessel has good contrast with the retina. The vascular metric for 

a vessel is therefore the product of the segment pixel length by its contrast measure. The final 

aspect of vascular quality is the distance away from the fovea; the closer a vessel is to the fovea 

centre the higher the quality and the smaller the segment's average distance. The vascular metric 

penalises distant blood vessels by dividing through by the average distance. The vascular metric 

rp; for vessel segment i is expressed by equation 6.5. The overall vascular metric v is simply the 

sum of individual vessel metrics; as expressed by equation 6.6. 

1];. W; 
'Pi= ---=-

/i 
s 

v = L'Pi 
i=l 

6.3.2 Fovea Contrast Definition 

(6.5) 

(6.6) 

The foveal contrast within the macula is the secondary indicator of fundal image quality, because 

its also indicative of lesion contrast. Macula regions with limited contrast between the fovea 

and background retina can cause lesion concealment, with lesions appearing either washed out or 

shaded depending upon the macula exposure. The foveal contrast is defined by comparing the 

core intensity of the fovea to the background retina of the macula. To compensate for any minor 

disparities between the real fovea centre and its estimated location, the foveal core is defined as a 

circular region with radius r = 10 (half that of an average fovea radius), originating at centre of 

the fovea. This reduced size ensures that intensity measurements are kept within the fovea. The 

fovea intensity e is determined by taking the average intensity of each pixel fo .. J, from the foveal 

core, where <; is the core's pixel count; as expressed by 6. 7. 
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Fovea 

Backgound Retina 

Figure 6.4: Fovea Quality Measure 
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(6.7) 

To maintain maximum intensity differences between the fovea and background ret ina, a buffering 

zone is used to separate intensity regions ; see Figure 6.4. The background intensity of the macula 

is measured in a region between two concentric circles originating at centre of the fovea with radius 

7' = 30 and r = 60 respectively. The average intensity K. of each pixel m 0 .. m, within this region is 

defined as the macula intensity, as expressed by equation 6.8, where E represents the macula pixel 

count. 

(6.8) 

The overall fovea contrast measure J-L is simply the difference between the average intensity of the 

fovea core g and the macula retina K.; as depicted by equation 6.9. 

(6.9) 
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6.3.3 Overall Image Quality Metric 

An overall image quality metric x, is defined by the product of the primary and secondary quality 

indicators. The vascular quality metric v, incorporating the foveal distance, contrast and pixel 

quantity of each macula vessel segment is multiplied by the macula contrast 11 between fovea and 

background retina; as expressed by equation 6.10:-

x=v·p (6.10) 

6.3.4 Quality Metric Boundaries 

The national screening guidelines for image quality divides images into three categories: achievable, 

minimum and ungmdable. Deciding which category an image should join is a subjective process, 

and is especially so if an image is of a mixed quality lying between two categories. A wider 

categorisation of image quality was therefore deemed necessary to accommodate borderline images. 

A further two categories were added for images between achievable and minimum, and minimum 

and ungmdable quality. 

For the overall macula quality metric x to be able to differentiate between image quality 

categories, metric boundaries are required for each quality division. This was achieved using a 

training set of 100 images that were assessed by an ophthalmologist, who categorised the images 

into 5 groups of ascending quality. Category metric boundaries were subsequently extracted; as 

shown in table 6.1. 

Category From To 
1 331 
2 101 330 
3 36 100 
4 6 35 
5 0 5 

Table 6.1: Quality Metric Boundary 
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6.4 Evaluation 

The performance of the macula image quality assessment algorithm is evaluated against two al

ternate techniques. Results from 200 screening images showed that the macula model is 6% more 

accurate than the compared approaches and is capable of categorising image quality into 5 groups, 

matching the clinician's classification with an accuracy of 91% and detecting all clinically ungrad-

able images. 

6.4.1 Benchmarking Method 

Fundus image quality guidelines specify that macula clarity must be such that blood vessel are 

clearly visible. With this in mind, 200 standard 760 x 570 fundus images were presented to an 

ophthalmologist, with the macula region of interest emphasized by an overlayed circle. 

Images were graded by the ophthalmologist on a scale of 1 - 5. Images with small blood vessels 

visible around the fovea and with good foveal contrast with the background macula area were 

graded as 1, images with similar vascular detail but with reduced foveal contrast were labelled as 

2. Images that retained foveal contrast but only included macula periphery blood vessels where 

graded as 3, and were labelled as 4 with reduced foveal contrast. Where no vessels were visible, 

the image was labelled as 5. It is against this benchmark that the accuracy and precision of the 

algorithm is measured. 

6.4.2 Models Tested 

A comparison is made between the presented algorithm and two alternate fundal image assessment 

approaches - Lalonde et al's [70] template intensity histogram and Usher et al's [67] vascular 

metric. In Usher's algorithm, the vascular metric consisted of the sum of all pixels contained 

within the blood vessel network. In this study it was found more reliable to morphologically thin 

the segmented blood vessels to a centreline and sum the vascular centreline pixels. This reduces 

metric variability due to blood vessel width and treats all blood vessels with equal importance, 

whereas Usher's algorithm is biased by the pixels contained within the major temporal retinal 

vascular arcades (see figure 3.1 and macula vessels having little influence on th_e overall vascular 

metric. It is against this modified algorithm that the macula model is evaluated. 
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Lalonde stated that images could be crudely categorised into three groups: "good", "fair" and 

"bad". However, in testing Lalondes algorithm on 200 screening images, it was deemed impractical 

to perform a 3-way split due to the overlapping metrics within each category. Therefore, as the 

alternate algorithms can only distinguish between gradable and ungradable images, comparisons 

were made with benchmark classification 1 - 4 deemed as gradable, and 5 ungradable. 

6.4.3 Results 

In this application it is important that the algorithm identifies 100% of ungradable images thus 

avoiding any potential misclassifications due to poor image quality. For this reason, performance is 

sensitivity biased, with metric thresholds dividing gradable and ungradable images selected from 

Receiver Operating Characteristic (ROC) curves where the sensitivity achieves 100%; see figure 

6.5. The thresholds used to distinguish gradable and ungradable images for the macula model, 

Usher and Lalonde algorithms are 5, 4586.31 and 11419 respectively. Table 6.2 shows the results 

of the presented and alternate algorithms. 

Usher [67] reported a sensitivity of 100% and specificity of 94 %; however, iu this evaluation, the 

specificity was 87%. Lalonde's algorithm achieves a poor specificity of 20% with 100% sensitivity, 

but results dramatically improve by allowing one false negative classification, giving 95% sensitivity 

and 81% specificity respectively. It is worth noting that the macula model algorithm has an 

accuracy of 94%, which is 6% more than Usher's algorithm and has almost half the false positive 

classifications. 

Table 6.2: Image Quality Assessment Algorithm Performance 
Model Sensitivity Specificity Accuracy TP FN TN FP 

Macula model 100 93 94 21 0 167 12 
Usher 100 87 88 21 0 156 23 

Lalonde 100 19.5 28 21 0 35 144 

The observed relationship between compared algorithms was tested using an ANOVA statistical 

significance test, testing the null hypothesis that there are no mean differences between groups. 

The null hypothesis was rejected, implying that there is a significant difference between groups. 

To test the null hypothesis that the error mean of the "macula model" is equal to the next best 

model, the "Usher's" model, a t-test was performed. The t-test value is 5.3355 x 10-025 . With 
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ROC curve 
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Figure 6.5: Image Quality Assessment Performance Receiver Operating Characteristic Curve: Mac
ula model algorithm - Blue; Usher's algorithm - Red; Lalonde's algorithm - Green. 

99 degrees of freedom in each sample, the critical value is 4.2207 x 103 at 99% confidence. The 

null hypothesis is therefore rejected, signifying that the Macula model is better than the Usher's 

image quality algorithm. Similar pairwise comparisons indicate the Combined vascular model's 

superiority over Lalonde's Template intensity histogram metric. 

Alternate Amalgamated Approach 

In an alternate approach, the Macula model is amalgamated with the amended version of Ushers 

vascular algorithm. In this new approach, the macula vascular contrast and foveal contrast measure 

is added to a macula excluded blood vessel centreline pixel count. In theory this should produce 

a more comprehensive image quality metric as the entire image is assessed. 

Table 6 3· Amalgamated Image Quality Assessment Algorithm Performance .. 
Model Sensitivity Specificity Accuracy TP FN TN FP 

Amalgamated 100 87 88 21 0 156 23 

Table 6.3 shows that the amalgamated algorithm achieves the same performance as Usher's 
- - --- ~ _-

technique. Further investigation is therefore required to examine why there no performance ad-
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vantages over the Macula model. One possible solution may be the inclusion of a contrast measure 

to the global vascular pixel count. 

Image Quality Categorisation 

The purpose of this algorithm is to detect ungradable images. The evaluation above considers 

clinically ungradable images. There is, however, a distinction between clinical and computerised 

gradability. To achieve an optimum classification it may be necessary to use a more stringent 

gradability criteria, thus ensuring only the sharpest images proceed to neural assessment. Although 

this ensures an idyllic classification environment, there is an increase in ungradable images which 

require manual review. 

Table 6.4: Macula Model Image Quality Categorisation Performance 
Grade Correct Incorrect % 

1 25 1 96 
2 33 0 100 
3 20 3 85 
4 15 4 73 
5 7 0 100 

Total 92 8 92 

The categorisation performance of the algorithms is evaluated against 100 of the 200 clinically 

assessed screening images. Table 6.4 shows that 91% of the automated image quality assessments 

matched the clinician. The remaining 9% are all within one grade of the clinician's classification. 

It is worth noting the system detected 100% of clinically ungradable images (grade 5). The high 

categorisation accuracy of this approach means that automated image quality assessment can not 

only exclude clinically ungradable images, but also exclude borderline cases leaving only the highest 

quality images for automated classification. 

Effectiveness of foveal contrast measurement 

In the presented algorithm, the foveal quality metric is determined by taking the average intensity 

difference between the fovea core and the background (macula) retina. To evaluate the effectiveness 

of using averaged measurements, an alternate approach is considered where an idealized foveal 

model is correlated (template matching) with the macula; see section 4.2. 
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Table 6 5· Foveal Measure Performance .. 
Model Correct Incorrect % 

Foveal contrast 92 8 92 
Foveal correlation 87 13 87 

Table 6.5, shows that foveal contrast measurement produces 5 fewer classification errors fewer 

than template matching the macula with a foveal model. Findings were statistically significant at 

99% confidence. With the characteristics of the foveal template incorporating a strong contrast 

difference between the fovea and the background retina together with an idealized , it was predicted 

that model correlation would yield superior results over averaged intensity differences. Further work 

is therefore required to examine the effects of alternate template models. 

6.5 Conclusion 

Automated assessment of fundal image quality is an important stage of automated retinal analysis, 

with inadequate image quality leading to unsound diabetic lesion and image classifications. 

General guidelines for fundal image quality provide three definitions of image clarity; all refer-

ring to the visibility of small vessels within one disc diameter of the fovea. Previous image quality 

methods have concentrated on template histogram comparisons and global vascular pixel counting 

to identify ungradable images. The presented technique has focused on measuring the clarity of 

small macula blood vessels. Comparing the quality rating returned by the presented algorithm, 

Lalonde, and Usher, it was shown that the presented model is more accurate by 6%. 

Using only macula vascular measurements, images could be correctly identified as gradable or 

non-gradable. By adding a foveal contrast measure, images can be further subclassified into 5 

degrees of gradability. In addition to the further investigations into foveal template models and 

amalgamated vascular pixel metrics, further work is required to include optic disc clarity and 

image alignment as described in the National Screening Committee's (NSC) [66]) image quality 

guidelines. 



Chapter 7 

Retinal Vessels 

7.1 Introduction 

This chapter presents an algorithm for the automatic measurement of blood vessel diameters in 

retinal images. The chapter focuses on the specific technical issue of accurate diameter measure

ment, and does not address the other stages involved in the diagnosis of disease based on vascular 

pathology. It is assumed that approximate vessel center lines have been previously found. For 

further details see chapter 4. Diameter measurements are made by fitting a 20 model, which re

sembles an idealized cross sectional profile running along the length of a vessel segment in a small 

region of interest. The algorithm is evaluated against alternative approaches using a set of 100 

cross section profiles from five down-sampled high definition fundus images. The results show that 

the algorithm is significantly superior to previously published methods. 

7.1.1 Motivation 

The retinal vessels are the only part of the central circulation that can be viewed directly and 

studied in detail [71]. As diabetes has a direct effect on blood vessels and changes in the morphology 

of the retinal vessels can be predictive of risk, segmentation and measurement of the retinal vessels 

is of central interest in automated retinal analysis. 

A variety of morphological changes occur to retinal vessels in different disease conditions; how

ever, this chapter is exclusively concerned with changes in the calibre (diameter, width) of vessels. 

114 
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The change in width of retinal vessels within the fundus is believed to be indicative of the risk 

level of diabetic retinopathy [46]; venous beading (unusual variations in diameter along a vein) is 

one of the most powerful predictors of proliferate diabetic retinopathy [4 7]. 

Generalized and focal retinal arteriolar narrowing and arteriovenous nicking have been shown 

to be strongly associated with current and past hypertension reflecting the transient and persistent 

structural effects of elevated blood pressure on the retinal vascular network [72] [73]. In addition 

retinal arteriolar bifurcation diameter exponents have been shown to be changed significantly in 

patients with peripheral vascular disease and arteriosclerosis [74] and a variety of retinal microvas

cular abnormalities have been shown to be related to the risk of stroke [75]. Future precise retinal 

vascular analysis may allow risk stratification of a variety of arteriosclerotic diseases and clarify 

the microvascular contributions to clinical cardiovascular disease. It is worth noting that, in all 

these cases, it is not the absolute diameter of the vessel that is of interest, but variation in the 

diameter along a vessel. 

Segmentation of vessels and measurement of the vascular diameter are two critical and chal

lenging technical tasks in any system attempting automated diagnosis of vascular conditions. A 

number of methods for segmenting the vascular network have been reported in the literature [48] 

[76], with some success at least for larger vessels, although many papers gloss over the difficulty 

of reliably segmenting vessels in images of diseased retina, where there are significant distractors 

present; robust segmentation therefore remains an important research issue. 

This chapter concentrates on the diameter measurement issue, whereas chapter 4 concentrates 

on the vascular segmentation issue. On a standard 30° fundal image with resolution 760 x 570, 

moderately sized vessels are as little as 6-8 pixels in width. Consequently, errors in diameter 

measurement of the order of a single pixel are large enough to significantly compromise attempts 

to characterize anomalies in vessel width, except for gross anomalies on the largest vessels. Even 

with improving fundal camera resolutions, it remains the case that there is a strong requirement 

for vascular diameter measurement algorithms with significantly sub-pixel sized accuracy. 

7.1.2 Chapter Contents 

In section 7.2 the retinal vessel structure and the true versus apparent wid~h of the blood column 

are discussed together with an overview previously published diameter-measuring algorithms. In 
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Reference Point 

ReUnal Vessel Blood Column 

Figure 7.1: The apparent and true width of the blood column Based on Brinchmann-Hansen, 0; Heier, 
H. Acta Ophthalmolog. Suppl. 1986,179,29-32. 

section 7.3, the new diameter-measurement algorithm is described. The algorithm is evaluated 

against alternatives from the literature in section 7.4 and concluded in section 7.5 

7.2 Problem Domain & Literature Review 

7.2.1 Retinal Vessel Structure 

Light emitted from a fundus camera or ophthalmoscope is reflected back by the retina and choroids. 

Blood vessels absorb some of the reflected light, absorbing into the blood. When an image of a 

blood vessel is viewed from point C (see figure 7.1), the apparent width of the vessel is believed to 

be the width of the streaming column of erythrocytes viewed perpendicular to the flow direction 

(point P.) [77]. The surrounding plasma zone and the vessel wall are transparent. Variations in the 

thickness of the vessel wall and the index of refraction have negligible influence on the apparent 

width of the blood column. 

Due to the measured indices of refraction in the plasma and vitreous, it is accepted that within 

wide physiological limits the apparent width of the blood column is proportional to the true width 

[77]. Looking at the retinal blood vessel as a vascular cross-section, the overall transmittance 

through a vessel including the blood column and wall resembles a Gaussian curve. Finding the 

point that the blood column meets the wall on that curve is extremely difficult and has inspired 

many algorithms (see section 7.2.2). To complicate the problem further, some blood vessels include 

a light streak known as a light reflex that runs down the central length of the blood vessel. Naive 
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Figure 7.2: Sample vessel profile. 

approaches can be fooled into thinking that the light reflex is the edge of the vessel. 
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The light reflex is understood to run across the surface of the plasma zone and the blood 

column and is believed to be generated from a rough reflecting surface and the intravascular 

column of erythrocytes [77]. Light reflexes are more common in younger retinas due to their 

increased reflective surfaces. However, arteriosclerosis can also affect the appearance of the light 

reflex by changing the reflective index of the vessel wall, thus increasing the observed intensity. 

7.2.2 Diameter measurement algorithms 

Vascular response to different physiological pathologies has been widely studied using a variety 

of methods. Measurements have been made both directly using ophthalmoscopy and indirectly 

using fundus photographs. Direct methods that require ophthalmoscopic observations are often 

inaccurate due to non-standardized illumination, low magnification, and a subjective bias [78]. 

More objective measurements are possible from fundus images in which the film transmission has 

been converted to intensity [79] [80] [81]. Converting the film transmission to intensity has been 

described as the only objective measure of the properties of the photographed eye; however, the 

observer has a restricted ability in discriminating between grey intensity levels [82], so that the 

measuring "by eye" directly from green channel intensity images is difficult and error prone. 

As a result, a vascular cross-section is often presented in graphical form; see figure 7.2. The 

intensity level of the background retina is often different on either side of the vessel and the vessel 

often contains a bright reflex. 
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Figure 7.3: a) Full width half maximum. b) Rectangular profile. 

Due to pulse variations in vessel calibre, retinal photographs taken at the same fundus position 

will not yield the same vascular width, if exposed at different times. However, the use of relative 

widths (i.e. the ratios of individual widths to the average vessel width) can ensure reproducibility, as 

pulse characteristics, as with variable illumination conditions from incident light, are discounted in 

ratios. It is also important to note that, for diagnostic purposes, obtaining consistent measurements 

is more important than obtaining the actual vessel widths. 

Several previous authors have presented algorithms for measuring vascular diameters. Brinchmann-

Hansen et al [82] [83] measured widths of retinal vessels using micro densitometry and observed 

the importance of the central light reflex which prevents naive approaches from working well. They 

presented an algorithm called F\1ll Width Half Maximum (FWHM) to measure vascular diameters. 

This approach calculates a "half height point" on the left and right sides of the initial estimated 

mid-point of the profile. On each side, the minimum and maximum intensity levels are calculated, 

and the "half height point" is located where the profile crosses the mid point in intensity between 

the minimum and maximum. The FWHM estimate of the profile width is then the distance be-

tween these half height points; see figure 7.3a. This approach is also called Half Height Full Width 

(HHFW). 

Gregson et al [84] introduced an alternative approach, comprising of a rectangular profile of 

a fixed height that is fitted to the profile data. The height is fixed to the difference between the 

minimum and maximum intensity values in the profile. The width of the rectangular profile is 

adjusted until the area under the rectangular profile is equal to the area under the profile data; 
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see figure 7.3b. 

Chapman et al [85], compares three methods of automated vascular measurements with manual 

recorded vessel diameters. A Gaussian function using non-linear regression, a Sobel edge detection 

algorithm and a sliding linear regression filter (SLRF) are all compared. Chapman states that 

using the Sobel edge detection algorithm to locate the blood vessel edges is unreliable due to a 

tendency to wrongly locate the central light reflex as the vessel edge. Chapman found the SLRF 

method to be most accurate and robust of these three methods; however, it is not practical for 

low-resolution images, as a minimum number of 10 pixels are required to estimate the slope by 

linear regression. 

Chapman et al [85] and Zhou et al [86] have both experimented with Gaussian fitting functions 

to estimate vessel width. Chapman reported the Gaussian function fairing badly in comparison 

with the SLRF method. Zhou, on the other hand, reported promising results using a Gaussian 

model. Pedersen et a! [46] presented an algorithm that used a cubic spline with 6 degrees of 

freedom to model the vascular profile and reduce noise. This method did not measure vessel 

diameters directly, but helped to reduce noise and relied upon Gregson's rectangular profile for 

width measurements. Gao et al [87] used a Difference-of-Gaussians to improve performance on 

vessels with a light reflex. 

A number of authors have used matched filters to detect and segment blood vessels, including 

filters with Gaussian profiles. Gang et al [88] showed that the width control parameter of a gaussian 

profile matched-filter is linearly related to the actual blood vessel width. The majority of the 

aforementioned approaches use a one-dimensional cross-sectional profile to measure the vascular 

diameter. Matched filters, in contrast, form a two-dimensional profile that is more resilient to 

poorly positioned profiles, and poorly defined vascular edges, but are applied at set sizes (typically 

in steps of one pixel) [89]. 

This chapter introduces a two-dimensional model with a Gaussian or Difference-of-Gaussian 

profile, which is iteratively optimized to best fit the observed vessel. This allows a vessel width 

calculation to sub-pixel accuracy, and the smoothing introduced by the two-dimensional nature 

of the profile improves this accuracy. In this chapter the presented algorithm is compared to a 

Gaussian fitting function, HHFW and Gregson's rectangular profile and superior performance is 

demonstrated. 
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7.3 Method 

7.3.1 Model definition 

The 2D model in its most basic form consists of an idealized straight vessel segment, with a 

Gaussian profile, G 1 , orthogonal to the vessel direction, which can be optimized to closely map a 

vessel segment; see figure 7.4. The size and shape of the model is controlled by a small number 

of parameters, which can be adjusted to fit the model to the actual vessel profile; variable-metric 

optimization is used to find a good set of parameters. As it is important that the model mimics 

the vessel segment being measured as accurately as possible, a variation can be used to model the 

light reflex that is apparent in some vessel segments. This is achieved by subtracting a second 

small Gaussian curve, G2 , from the main one. The second Gaussian is oriented at the same angle 

as the first, and is independently adjustable allowing the overall model to fit well to both blood 

vessel column wall and light reflex. As not all vessel segments have a light reflex, both models with 

and without light reflex are fitted and the model with the best fit is selected. 

The 2D model without light reflex (see figure 7.4) has a profile shape governed by equations 

7.1 and 7.2. 

a = xsin () - ycos (} - 11 (7.1) 

(7.2) 

where x and y map the profile data range in this example from -10 to +10 in increments of 1. 

The model parameters are: t, the profile maximum; h 1 , the height of the Gaussian; s 1 , the width 

of the Gaussian, equal to ~; (}, the orientation of the model; and Jl, the offset of the Gaussian 
"' 

center from the initial center estimate, orthogonal to the orientation. Figure 7.4 illustrates the 

model and parameters (barring Jl,). 

The two-dimensional model with light reflex shares the same base parameters as its non light 

reflex counterpart. The light reflex variation to the core archetype consists of a Gaussian curve G2 

subtracted from G 1 . Additional parameters are included to control the shape and size of the light 

reflex. These parameters, h2 and s2, set the height and width of the Gaussian G2 respectively. 
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Figure 7.4: Model without Light Reflex. a) Cross-section of Profile. b) Two-dimensional Representation. 
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Figure 7.5: Model with Light Reflex. a) One-dimensional Representation. b) Two-dimensional Represen
tation. 

The model with light reflex is expressed by equation 7.3 , and illustrated in figure 7.5. 

(7.3) 

7.3.2 Optimization 

Two stage optimization process 

A two-stage optimization process is used to orientate and shape the models to fit a 2D vessel 

segment, within an oriented rectangular region of interest centered at an ini tial point, (px,Py), 

taken from the vascular profile, and oriented along the vessel line as estimated from previous and 
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next points in the vascular profile; see figure 7.6. In the first stage, a relatively long vascular region 

of interest is formed, the model width is fixed to a fairly broad value, and the algorithm determines 

the exact orientation, offset and height. In the second stage, a shorter region of interest is formed, 

the orientation is fixed, and the width, offset and height are determined to greater accuracy. Models 

both with and without a light reflex are optimized at each stage, the model which best fits the 

vessel segment is selected, and the width is calculated from the final parameters. 

The two stage process is necessary for two reasons. First, the short model is poor at determining 

the angle as it lacks sufficient support along the vessel line. Second, it is prone to "default errors," 

where the model completely fails to capture the vessel shape (e.g. by forming a very wide, flat 

Gaussian fitted on one side to the background region) if the initial settings are too far from the 

correct values. The first stage, however, is very robust. It handles well the entire range of typical 

vessel widths, and inaccuracies in the initial vessel center line up to 66% (at a 95% confidence level 

there is no statistically significant change in vessel width measurements up to this disarticulation). 

In this research it is almost unknown for the algorithms that determine the initial line to exceed 

a 66% error in center line determination. Once the first stage has determined the angle, and 

reasonable starting values for the other parameters, the second stage determines a more accurate 

local width measurement, and is very reliable. 

Vascular region of interest and mask 

The 2D model is fitted to a local section of vessel, within a rectangular region of interest (ROI) 

that is oriented at the initial estimated angle, 0, of the blood vessel. The use of an oriented ROI is 

important as the background intensity varies fairly quickly, and there may be other vessel segments 

nearby; in early work using a square region of interest oriented with the image axes, it was found 

that such features in the corners of the ROI could have detrimental effects. For computational 

convenience a bounding rectangle of the ROI is calculated, and form a mask to identify the ROI; 

see figure 7.6. Calculations over the bounding rectangle are performed, and multiplied through by 

the mask, Zx,y. to ensure that only the pixels within the ROI take effect. Given a ROI of length L 

(along the vessel orientation) and width W (orthogonal to it), the mask is applied to a region area 

from Px- X to Px +X and Py- Y to Py + Y, where X= (L cosB+ W sin B), Y = (£sin B+ W cos B). 

The size of the ROI depends upon the stage of model optimization. In the first stage a 15 x 15 
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Figure 7.6: Vascular model. a) Vessel segments points. b) Mask and Region of Interest 
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ROI is used to enable the 2D model to fix the local angle against a sufficiently long vessel segment 

and to find the vessel "line" despite noise. In the second phase a 5 x 20 ROI allows the 2D model 

to obtain a good localized diameter measurement. With the average width of larger vessels in a 

760 x 570 fundus images being 6 - 9 pixels, both ROI are large enough to allow flexibility for off 

centered and beaded vessels, and to accommodate sufficient areas of the background. 

Init ial settings of model 

The initial settings of the model parameters are extremely important. Bad initial settings may 

result in poor parameter optimization and an undesirable fit between model and vessel, leading to 

an inaccurate width measurement. 

The initial settings for all of the parameters have been determined by trial and error. The 

initial parameter settings are h 1 = 1.5d, h2 = 0.5d where dis the difference between the minimum 

and maximum intensity values within the region of interest. The offset J.1. is set to zero. The width 

of the Gaussian G 1 , s 1 , is set to 0.1, giving a medium width with respect to the expected range , 

allowing the model to fit to both larger and smaller profiles. The width of the Gaussian G2 , s2 , 

is set to 0.8. The value of () is determined by the vector connecting neighboring vessel segment 

points Pn-l to Pn+l (this gives a good enough starting value for the model to be optimized to the 

true angle). 
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Parameter Optimization 

The optimization of model parameters is paramount to the algorithm's success or failure. Failure 

to minimize the error produces inaccurate profile widths. The noisy nature of the data can cause 

the optimization procedure to fail. In particular, the solution can diverge- for example, "running 

off" the side of the vessel and fitting a flattened Gaussian to the background. Carefully identifying 

initial parameter values, and performing a multiple stage optimization prevents these problems. 

In the first stage sensitive parameters such as the model angle, height and offset are fitted and a 

constrained "rough fit" is achieved; in the second stage all parameters except angle are optimized. 

To effectively optimize the model, Quasi-Newton (variable metric) minimization [43] is used, 

a fast iterative algorithm that adjusts the model from the initial settings, by minimizing an error 

function that summarizes the goodness of fit of the current model. The procedure also requires a 

function giving the gradient of the error function with respect to each of the model parameters. The 

error function used is the sum-squared disparity between the model estimate and actual intensity 

values at the centers of the pixels in the region of interest, as expressed by equation 7.4. 

1 
E=-

2 

X y 

EE 
x=-X y=-Y 

(7.4) 

where I is the image, f the model and z is the region of interest mask. The model is substituted 

by equations 7.2 and 7.3 for two-dimensional models without and with light reflex respectively. The 

differential of the error function 7.4 with respect to the model f is given by: 

oE 
of 

X y 

L L Zx,y(/x,y- fp,+x.pu+Y) 

x=-X y=-Y 

(7.5) 

Individual terms of the error gradient are derived by using the chain rule, multiplying equation 

7.5 by the differentials of the model with respect to individual parameters. The partial differentials 

for the parameters h1 , h2 , s 1 , s 2 , 1-l and 8 (see equations 7.1 and 7.3) are expressed below: 

(7.6) 

(7.7) 
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(7.8) 

(7.9) 

(7.10) 

(7.11) 

After optimization the errors of the models with and without light reflex are compared. The 

model with the lowest error rate is selected. 

7.3.3 Determining the model width 

Once the model has been fitted, its parameters are used to estimate the vessel width. As previously 

noted, for further analysis it is important that the width measurement be consistent, rather than 

that it coincide with the user-perceived edge of the blood column. 

For the single Gaussian model, the sigma parameter is the most appropriate estimator; this 

coincides with the inflection point on the slope of the vessel side. For the Difference-of-Gaussian 

model, the inflection point on the side slope is used; however, there is no simple analytical expres-

sion that yields its position. Instead, a simple line search procedure is used to locate a zero of the 

second derivative of the model, and the offset of this inflexion point defines the vessel width. 

7.4 Evaluation 

The performance of the method is evaluated against Brinchmann-Hansen's half height, Gregson's 

rectangular profile and Zhou's gaussian model. Results from 100 sample profiles show that the 

presented algorithm is over 30% more precise than the compared techniques and is accurate to a 

third of a pixel (a statistically significant at 95% confidence). 
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7.4.1 Benchmarking Method 

The refractive index and the distance between the retina and the camera lens affect vascular 

diameters observed from a retinal camera [85]. Absolute measures of diameter are therefore difficult 

to obtain. The only appropriate method of testing and comparing a new measurement technique 

is to compare measurements from the same vessel. To this end the accuracy and precision of the 

presented algorithm is tested using 100 gold standard widths obtained from five high-resolution 

fundus images with a 45 degree field of view, and photographed using a Canon fundus camera. 

All 100-vessel widths were selected from non-tortuous vessel segments between bifurcations. The 

dimensions of the high-resolution images were 3300 x 2600 pixels, approximately four times larger 

than the standard 760 x 570 lower resolution fundus counterparts used in our screening programs. 

By manually measuring widths on the high-resolution images, and down-sampling the images to 

test the algorithms at low resolution, gold standard widths with sub-pixel accuracy are obtained. 

It is against this benchmark that the accuracy and precision of the algorithm was measured. 

The width measurements from the aforementioned high-resolution images were taken at segment 

points and fixed angles derived by the algorithm during the blood vessel segmentation and profile 

data extraction phases. At segment point P the angle () was used to plot an orthogonal profile 

line to the vessel centreline. The profile length from the full size fundus images was set to 80 

pixels, 4 times larger than that used in the scaled image; the profile was constructed using bilinear 

interpolation. 

A sophisticated technique called "kick points", due to Rassam et al [71], was used to manually 

calculate the vascular widths from the full size images. The "kick points" are visible points on 

the slopes of intensity profiles, defined as the first skew points. Kick points occur where the wall 

meets the most lateral extent of the blood column; the horizontal distance between the kick points 

indicates the blood column width (see figure 7. 7) . 

Rassam et al [71], states that the kick points approach is more accurate than finding the width 

at half the height; however, kick points are not always visible. If the blood column and the vessel 

wall have the same optical densities then kick points will not appear. To observe the kick points, the 

photograph must be high resolution and well focused, as the shape of the intensity curve changes 

with focusing. This makes the detection of the kick points difficult but has no effect on the degree 

of separation between points. In the test images, kick points were visible on the high-resolution 
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images, but not on the down-sampled versions. 

7 .4.2 Models Tested 
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A comparison was made between the presented algorithm and three other well-established ap

proaches. The algorithms of Brinchmann-Hansen and Heier's full width half maximum [83], Greg

son et al's rectangular profile [84] and Zhou et al's Gaussian model [86] were implemented using 

exactly the same intensity profiles calculated at the same segment points and angles as the 20 

model. As previously discussed, the 2-0 algorithm is given a rectangular region of interest at the 

initial profile center point. In contrast, the three benchmark algorithms use a one-dimensional 

profile which are determined by bi-linear interpolation along the profile direction. 

One justification for using a 2-0 model is that this smooths the local diameter estimates. As an 

additional comparison, the average width measurement from an ensemble of 10 profiles spanning 

the same range as the 2-0 model was collected, to see if similar results can be obtained just by 

averaging 1-0 profiles. The reasoning behind this study was to confirm that the 2-0 model was not 

just behaving like a series of Gaussian models. In this test, if any of the ensemble profile parameters 

were outside a specified range (indicating a failure in model fitting) that profile was excluded from 

the averaging process (one-dimensional profiles are more susceptible to such instabilities than the 

2-0 model). 
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Table 7.1: Standard deviation of width difference at a scaling of 4 
aq, 

20 Model 0.34 
Avg 10 Gaussian 0.5 

10 Gaussian 0.58 
HHFM 0.62 
Gregson 0.84 

7.4.3 Results 

In this application it is more important that the algorithm produces results that are precise (low 

error variance) than accurate (low mean error), as consistency is more significant than absolute 

diameter. Any consistent bias is easily subtracted to determine the true width. However if the 

results fluctuate, no compensation is possible. For this reason, the error standard deviation was 

used rather than the mean to assess the performance of the algorithms. The 100 width estimates 

w; returned from each algorithm were subtracted from 100 appropriately scaled benchmark widths 

1/J; giving a width difference cp;. The standard deviation of the width difference was then taken aq,. 

1 
100 

L -2 I (j"' = ( - ( c/>; - c/>) ) 2 

100 i=l 

(7.12) 

(7.13) 

The difference in standard deviations between the 20 model and the alternative approaches 

was verified and found to be statistically significant. An F-test was performed to test the null 

hypothesis that the variance of the 2-0 model is equal to that of the next best model, the "average 

1-0" model. The F-test uses the variance ratio (0.52 /0.342 =2.212) to test for significant differences 

in variances. With 99 degrees of freedom in each sample, the F-test critical values are 1.39 at 95% 

confidence, 1.6 at 99% confidence. Consequently the null hypothesis is rejected, implying that the 

2-0 method is better than the average 10 model, even at the 99% confidence level. Similar pairwise 

comparisons indicate the superiority of the 2-0 model over the other alternative algorithms. 

Zhou et al [86] claimed that their approach, the 1-0 Gaussian model, was more precise than 

other algorithms, including FWHM. This study supports their claim. However, the presented 2-0 

algorithm is 32% more precise again. The 1-0 Gaussian model is also prone to failure to converge 
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sufficiently enough to obtain a sensible width reading (4% of diameters in our tests). Using an 

ensemble of 10 models eradicates this problem, and so the ensemble estimate out-performed the 

single Gaussian model. 

It is worth noting that the 2-0 model algorithm is accurate, on average, to 0.34 of a pixel; 

given that the manual process underlying the ground-truth measurements for the tests is accurate 

to only 0.25 pixels this is excellent performance. If a more accurate ground-truth were available it 

is possible that even better performance could be demonstrated (see figure 7.8a). 

7.4.4 Effectiveness of the light reflex model 

To assess the effectiveness of the model's light reflex in producing a more precise measurement, 20 

benchmark widths that include a visible light reflex were used to compare against widths taken 

from the model with and without light reflex. It was found that the 20 model with light reflex 

gave results that were 13% more precise than given by its basic model counterpart in cases where 

the vessel segment included a light reflex. Although the improvement in the performance by using 

a light reflex model is marginal, it is statistically significant. 

7.4.5 Effect of high curvature on precision 

To evaluate the effect of high curvature vessel segments on the model's precision, 28 widths from 

high curvature points were calculated. It was found that at the 95% confidence level, there was no 

statistically significant change in width precision between normal and high curvature widths (see 

figure 7.9). 

7.4.6 Effect of beaded vessels on precision 

To assess the consequence of dramatic width changes within a vascular segment, 40 widths from 

beaded vessels were taken. The algorithm deteriorated, with the standard deviation increasing by 

0.124 pixels to a <P = 0.464 pixels (a statistically significant difference at 95% confidence). The 

other algorithms suffered a similar deterioration in precision, with Gregson's method performing 

second best at O'<fJ = 0.771 pixels. Comparing these two models show that the 20 model is better 

than Gregson's method and the findings were statistically significant at 99% confidence. (see figure 

7.8b). 
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Figure 7.8: Detected widths on a) Straight b) beaded vessel segment. 

Figure 7.9: Detected widths on curved vessel segments. 



CHAPTER 7. RETINAL VESSELS 131 

7. 5 Conclusion 

An algorithm to automatically extract width measurements from retinal vessels has been presented. 

This plays a critical part in the structured analysis of the retina, and is potentially useful in the 

automated diagnosis of diabetic retinopathy. 

Comparing the vascular widths returned by the presented algorithm, HHFW, Gregson and a 

1-D Gaussian, it was shown that the presented model is more precise by over 30% (a statistically 

significant difference at 95% confidence). This is a considerable amount when small changes in 

the vascular diameter can alter the outcome of searches for pathology. During model fitting, a 

sophisticated optimization (Quasi-Newton) strategy was used, and appropriate energy function 

derivatives introduced. 

The use of a 2-D model circumvents problems caused by noisy data such as small vessel branches 

and introduces a degree of smoothing that helps to improve the model fit. It was shown that the 

inclusion of a difference of gaussians model improves performance over a single gaussian where 

there is a visible light reflex. Finally, it is noted that the algorithm is robust enough to make 

sub-pixel accurate measurements on relatively low-resolution images, where vessels are only a few 

pixels wide. 



Chapter 8 

System Evaluation 

8.1 Introduction 

The focus of this research has been the development of a system to automatically detect early signs 

of diabetic maculopathy, with a long term aim to reduce the subjective classification variation and 

error of manual screening. 

The progression of diabetic retinopathy and the related risk of vision loss can be clinically diag

nosed by the appearance of a small number of diabetic lesions. Early signs of diabetic retinopathy 

may include out-pouching of weakened vessels walls (microaneurysms) and the leakage of blood 

(haemorrhages) and lipoproteins (exudates) from ruptured microaneurysms. The commonest cause 

of visual loss within the diabetic population is from diabetic maculopathy where diabetic lesions 

occur within one optic disc diameter of the central fovea (macula region). If the disease is caught 

and treated early in its progression, blindness can be prevented within 90% of patients at risk. Con

sequently diabetic patients should be annually screened for diabetic retinopathy. Screening may be 

carried out by a range of professionals with varying levels of subjective accuracy, including: general 

practitioners, nurse practitioners or ophthalmologists. However, even within this study disparities 

of 6.4% and 8.9% emerged between two clinicians classifying exudate and microaneurysms plus 

haemorrhages (HMA) respectively; see section 8.3. 

There are two main applications for this system: a complete retinal photographic 'screening 

programme' in which the human grader is obsolete, automatically referring patients with ungrad-

132 
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able images or diabetic maculopathy to an ophthalmologist; and a 'pre-filtering' system in which 

patients with healthy retinae are removed from the screening images reviewed by human graders, 

thus reducing their work load. 

Results from 1000 fundal screening images show that a sensitivity of 80% and specificity of 

93% per patient for the detection of diabetic maculopathy as part of a 'screening programme'. 

For 'pre-filtering', a sensitivity of 100% and specificity of 92% for the detection of images with no 

diabetic maculopathy, reducing manual grading workload by 74%. 

8.1.1 Chapter Contents 

The evaluation sections of previous chapters have concentrated on comparing the presented al

gorithms to alternate techniques and previously published work. This chapter demonstrates the 

effectiveness of the overall system in identifying images with referable maculopathy and is assessed 

in a 'screening programme' and 'pre-filtering' role using two clinical HMA detection rules, and is 

evaluated against published results. 

In section 8.2 the evaluation benchmark method is described, with the classification disparity 

between the two clinicians discussed in section 8.3. The screening data used is in section 8.4, and 

results shown in section 8.5. An evaluation summary concludes this chapter in section 8.6. 

8.2 Benchmarking Method 

According to the "Early Treatment Diabetic Retinopathy Study Group" [11] guidelines, sight 

threatening maculopathy is defined as patients with exudates or microaneurysms including haem

orrhages within one elise diameter of the fovea; such patients are recommended for early referral. 

Using this criteria images were manually classified (graded) as positive or negative for referable 

maculopathy, creating an image gold standard. For each image this manual classification con

sisted of four stages: macula demarcation, image quality assessment, exudate classification, and 

microaneurysm and haemorrhage classification. 

In the first phase, the macula region was accurately identified by manually labelling the fovea 

centre and the boundary of the optic nerve head to determine the elise diameter (used to estimate 

the radius of the macula). 
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In phase two, using the national screening guidelines relating to image quality, images failing 

to meet the minimum criteria were labelled ungradable and excluded from further analysis. 

For each image the system locates and classifies 100 potential exudate regions together with 100 

potential microaneurysm and haemorrhage regions (see peak detection algorithm section 5.3.1). 

Phase three and four of the manual image classification therefore involved labelling 100 bright 

and 100 dark regions as exudates, microaneurysms, haemorrhages or other as appropriate. Image 

retinopathy grading was performed by two clinical research fellows with experience in diabetic 

retinopathy grading. A consultant ophthalmologist was used to adjudicate classification disparities 

between the two clinicians; see section 8.3. Any additional diabetic lesions not marked as a 

candidate lesion but identified by the clinicians were subsequently appended and labelled. 

Although, at present, no formal detection criteria exists for referable maculopathy, it is generally 

agreed that any exudates within the macula are deemed as sight threatening. The significance of 

HMA 's within the macula is a little more vague. For this reason, system performance is evaluated 

against two different detection criteria within one optic disk diameter of the fovea: 

1. Any exudates and/or 3+ HMA's 

2. Any exudates and/or 2+ HMA's 

For the system to compare against the gold standard image classification, the system executes 

five retinal analysis components: optic nerve head segmentation, fovea localisation, image quality 

assessment, lesion detection and lesion classification. The high level of system connectivity means 

that poor accuracy and precision occurring within one component can have a knock on effect 

to subsequent components. For example, if the estimated fovea centre and disc diameter differ 

from the clinician's, then diabetic lesions present within the clinician's defined macula may not be 

present with the estimated macula region, causing a false negative classification; see figure 8.1. 

To compensate for any localisation disparity between the system and the clinicians and to avoid 

false negative classification, the system can use conservative detection rules for HMA classifications. 

This conservative rule reduces HMA detection stringency by removing one HMA from the actual 

detection rule. Therefore if the real macula contains three HMA's and the system detects two 

it classifies the image as having maculopathy. This process is a double edged sword - although 

sensitivity increases, the number of false positives decreases specificity. 
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Figure 8.1: Potential Exudates missed due to estimated disc diameter and fovea centre. 
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A patient gold standard is defined from a patient 's left and right image gold standards. A patient 

is classed as referable if either left or right fundal image is diagnosed with referable maculopathy. It 

is also worth noting that if an image from one patient 's eye is healthy and the other eye is ungradable 

the patient is classed as ungradable; however, if the healthy eye is diagnosed as referable the patient 

is referable. 

8.3 Clinician Disparity 

A classification disagreement is defined as an image classified as contain ing retinal lesions by one 

clinician but not by the other . Even if both clinicians agreed that all but one candidates region 

were non-lesion, adjudication would be required on that image. However, if both clinicians classify 

multiple regions as lesions but disagree on a couple of suspect areas, the overall classification 

for that image would not be affected and therefore not require adjudication. The classification 

disparity between the two clinicians over 1000 images , labelling dark and bright candidate lesions 

separately is presented in table 8.1. 

The 130 disputed images were reexamined by an adjudicating third clinician (consultant oph-

thalmologist) who stated that the images were difficult to classify clue to borderline image quality. 

Results from reclassification (see table 8.2) show that no particular alignment existed between the 

adjudicator and the two clinicians; classification errors were therefore fairly evenly spread. This 
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Table 8.1: Clinician Disparity 
Images Bright Dark 

Gradable 914 914 
Ungradable 86 86 

Match 863 843 
Disparity 55 75 

Disparity% 6.37 8.89 

suggests that it is genuinely hard to classify images with borderline image quality, resulting in sub-

jective classifications. All of disputed images were included in the system evaluation after images 

were relabelled by the adjudicating clinician. 

Table 8 2· Clinician Adjudication 
Adjudicating Alignment Bright Dark % 

Clinician A 34 26 53.8 
Clinician B 21 49 46.2 

8.4 Screening Data 

System performance was evaluated 011 1000 retinal images obtained from a random screening 

population of 507 patients attending Birmingham City Hospital diabetic retinal screening program, 

the majority of patients ( 493) have paired left and right fundus images. Due to a plague of artificial 

eyes and image capture problems, 14 patients have only one fundal image. Images were acquired 

using a Canon CR6 45MNf fundus camera with a 45 degree field of view and resolution of 760 x 570. 

No data on age, type of diabetes, sex, ethnicity or duration were available for this study. However, 

Birmingham has a high population proportion of Asian origin, where Type 2 diabetes is prevalent. 

In table 8.3, a breakdown of the screening images is shown. Of the 1000 screening images, 

86 were classified ungradable due to obscurement or poor clarity of the macular region caused 

by cataract, poor illumination or badly focused photography. Out of the remaining 914 gradable 

images, the majority of retinae (76.8%) contained no abnormalities. The unbalanced ratio be-

tween normal and diseased retina means high levels of sensitivity are required to avoid a large false 

positive classifications from healthy retina, while being sensitive enough to identify sight threat-

ening retinopathy. This problem is compounded by the number of image distractors such as the 
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Table 8 3: Screening Data 
Per Image n % 

Ungradable 86 8.6 
Gradable 914 91.4 

No Retinal Lesions 702 76.80 
Background Retinopathy 

Exudate only 26 2.84 
Microaneurysms/Haemorrhages only 173 18.92 

Combined 13 1.42 
Maculopathy 

Exudate only 35 3.8 
Microaneurysms/Haemorrhages only 58 6.3 

Combined 15 1.64 
Drusen 152 16.63 

152 images containing drusen, which are easily misclassified as exudate. It is also worth noting 

that a unbalanced ratio also exists between lesion types with a prevalence of microaneurysms and 

haemorrhages, outnumbering exudates by 65% within the macula. The importance of this imbal

ance however is debatable with ophthalmologists often comparing macula exudate significance to 

multiple microaneurysms and haemorrhages. 

8.5 Results 

System performance is evaluated in both 'screening programme' and 'pre-filtering' roles, with re-

suits presented per patient and per image against two HMA detection criteria. For each image, 100 

bright and 100 dark candidate lesions were classified by a multilayer perceptron neural network en-

semble with 10-fold cross validation (as described in section 5.4.2). The confidence levels produced 

by the network ensemble were averaged to give an overall classification prediction confidence. The 

activation level of the network that separates classes (lesion, non-lesion) was based on prediction 

confidence and was determined using a Receiver Operating Characteristic (ROC) curve. 

8.5.1 Screening Programme 

For the system to be assessed as a viable alternative to manual photographic grading, exceptional 

system performance is essential. With no human intervention between image classification and 

patient referral, any false negatives could result in patients at risk of visual loss, missing early 
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treatment, and too many false positive (and ungradable) ophthalmologist referrals cost valuable 

ophthalmic time and money. A balance between sensitivity and specificity is therefore required. 

Although no formal standard exists, Diabetes UK have proposed that diabetic retinopathy 

screening programmes should achieve a sensitivity of 80% or higher, and specificity of 95% or 

higher. These guidelines for screening programme performance are against actual disease states 

which may or may not be identifiable in a digital image and are assessed on a per patient basis. 

Without a full ophthalmic clinical examination on each patient, the true state of patient 

retinopathy is unknown. System performance is therefore evaluated against retinal photographic 

grading and not an actual patient retinopathy state. 

All clinically ungradable patients and images were automatically removed prior to retinal anal-

ysis, and the "conservative" HMA detection rule was applied to both detection criteria, increasing 

the sensitivity while using a more stringent network threshold to increase specificity by reducing 

false positive classifications. During the removal of clinically ungradable images no false classifica-

tions were made. 

Table 8.4: Screening Programme System Performance: Evaluated per Patient 
Model Sensitivity Specificity tp fn tn fp Clinically Referral 

Ungradable 
Exu ± HMA 3+ 80 93 39 10 379 28 47 114 
Exu ± HMA 2+ 81 92 46 11 369 32 46 124 

Table 8 5· Screening Programme System Performance· Evaluated per Image .. 
Sensitivity Specificity tp fn tn fp Clinically 

Ungradable 
Exu 1+ 74 96 37 13 838 26 86 

HMA 3+ 57 98 11 8 883 12 86 
Combined 73 95 45 16 818 35 86 

Exu 1+ 68 97 34 16 843 21 86 
HMA2+ 58 97 18 13 858 25 86 
Combined 71 95 50 20 822 42 86 

Working towards the sensitivity and specificity proposed by Diabetes UK's for screening pro-

grammes, and noting that the evaluation is against the patient's perceived retinal state, the system 

achieves a patient sensitivity of 80% and specificity of 93% for HMA 3+ and sensitivity 80%, speci-

ficity 92% for HMA 2+; see table 8.4. The difference in performance between the two HMA criteria 

is negligible, both per patient and per image; the breakdown of which shown in table 8.5. 
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With a specificity target of 95%, the number of patients without maculopathy (sight threatening 

retinopathy) being referred to an ophthalmologist was small (approximately 30). More concerning 

is the recommended sensitivity of 80% where 10 - 11 patients with maculopathy are not being 

referred due to misclassification. 

8.5.2 Pre-filtered Screening 

Only a small proportion of retinal photographs reviewed by human graders containing diabetic 

abnormalities (23% within this screening set); consequently, the exclusion of healthy images could 

dramatically reduce grading workload and costs. 

In pre-filtering screening, the automated exclusion of healthily diagnosed images requires 100% 

sensitivity, thus avoiding the misclassification of diseased retinal images. This is achieved through 

zero false negative classification's, however this is at the expense of higher false positive classifica-

tions. 

Without pre-filtering, retinal graders are required to classify all screening images (1000 images 

in this research). Therefore even safely identifying and discarding 25% of the 702 unsystematic 

images, the human grader's would be presented with 175 less images. 

Excluding Clinically Ungradable Images 

To evaluate the system's performance as a pre-filtering screening tool, clinically ungradable images 

are first automatically removed from the screening set, and the neural network threshold levels 

are set to emphasise sensitivity. Using two HMA detection rules, system performance for both per 

patient and per image are shown in table 8.6 and table 8.7 respectively. 

Table 8.6: Pre-filtered Screening System Performance: Evaluated per Patient 
Model Sensitivity Specificity tp fn tn fp Clinically Screening 

Ungradable 
Exu ± HMA 3+ 97 80 48 1 320 78 47 173 
Exu ± HMA 2+ 96 67 55 2 264 128 46 229 

The difference in false positive HMA classifications between the different detection rules as 

shown in table 8.6 and table 8.7, cause a significant specificity disparity of 13-14% for both patient 

and image evaluations. This disparity affects the number of images requiring human grading, with 
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Table 8.7: Pre-filtered Screening System Performance· Evaluated per Image 
Sensitivity Specificity tp fn tn fp Clinically Screening 

Ungradable 
Exu 1+ 90 92 45 5 795 69 86 

HMA3+ 94 92 18 1 827 68 86 
Combined 95 86 58 3 737 116 86 260 

Exu 1+ 90 92 45 5 795 69 86 
HMA2+ 90 78 28 3 689 194 86 
Combined 95 77 67 3 653 194 86 347 

260 images requiring manual screening using the 3+ HMA rule and 347 with the 2+ HMA rule. 

These screening figures are determined by summing the number of ungradable, false positive and 

true positive images; see table 8. 7. 

Using the more stringent of the two grading criteria (Exu ± HMA 3+) the system achieves 

sensitivity of 97% and specificity of 80% (per patient), making one false negative classification; 

caused by a single faint exudate in a medium quality image (quality grade 3). 

Comparisons with other automated referable maculopathy algorithms is restricted due to lim-

ited publications. Usher et al. [90] is the only truly comparable approach. Using an adaptive 

recursive region growing algorithm, Usher et al. [90] extracted an unspecified number of features 

into a multilayer perceptron neural network. Measured on a per patient and image basis, and 

using both HMA classification criteria, Usher's results, are inferior to the pre-filter system, with 

a performance advantage over Usher's algorithm of 1 - 15% sensitivity and 10- 15% specificity; 

depending upon the decision rule and whether detection is performed per patient or image. 

Table 8.8: Pre-filtered Screening vs Usher: Evaluated per Patient 
Model Criteria Sensitivity Specificity 

Usher (Exu ± HMA 3+) 88 62 
Pre-filter (Exu ± HMA 3+) 97 80 

Usher (Exu ± HMA 2+) 95 52 
Pre-filter (Exu ± HMA 2+) 96 67 

Excluding System Ungradable Images 

To achieve 100% sensitivity and prevent false negative classifications, only high quality retinal 

images may be assessed by the system. Restricting automated analysis to high quality images 



CHAPTER 8. SYSTE!v! EVALUATION 141 

Table 8.9: Pre-filtered Screening vs Usher: Evaluated per image 
Model Criteria Sensitivity Specificity 

Usher (Exu ± HMA 3+) 80 75 
Pre-filter (Exu ± HMA 3+) 95 86 

Usher (Exu ± HMA 2+) 87 67 
Pre-filter (Exu ± HMA 2+) 95 77 

(quality grade 1-2), allows images with no visible diabetic abnormalities to be reliably excluded 

from human grading with 100% confidence. The negative side of this restricted analysis is the 

increase in ungradable images requiring human grading. Table 8.10 shows that the system classi-

fied an additional 106 and 102 patients (HMA 3+ and HMA 2+ respectively) above the clinical 

classification as being ungradable. 

Table 8.10: Pre-filtered Screening System Performance: Evaluated per Patient 
Model Sensitivity Specificity tp fn tn fp System Screening 

Ungradable 
Exu ± HMA 3+ 100 95 27 0 298 15 153 195 
Exu ± HMA 2+ 100 91 33 0 284 28 148 209 

Table 8.11: Pre-filtered Screening System Performance: Evaluated per Image 
Sensitivity Specificity tp fn tn fp System Screening 

Ungradable 
Exu 1+ 100 94 25 0 763 42 170 

HMA 3+ 100 95 10 0 795 25 170 
Combined 100 92 31 0 743 56 170 257 

Exu 1+ 100 94 25 0 763 43 170 
HMA 2+ 100 87 17 0 594 82 170 
Combined 100 87 37 0 695 98 170 305 

Table 8.11 shows the system performance and the number of images requiring manual screening 

for each of the two HMA detection rules. The table also shows that the system flagged an addi-

tiona! 84 images above the clinical classification as being ungradable. The best results occurred 

from the 3+ HMA rule, in which 257 from the 1000 screening images required manual review, and 

743 images with no sight threatening retinopathy (according to the detection rule) were automat

ically excluded. In terms of manual grading, this is workload reduction of 74.3%. Relating the 

pre-filtering to patents, table 8.11 shows the system's performance is identifying patients whose 

retinal photographs require manual grading. Both detection criteria reduce the number of patients 
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requiring further review by over 58%. 

8.6 Summary 

The role of the system as a 'screening programme' and for 'pre-filtering' purposes have been 

assessed, with system performance evaluated for each application against a gold standard data 

set consisting of 1000 randomly screened fundal images from 507 patients. For each image, two 

ophthalmic clinicians manually labelled diabetic lesions, the optic disc, the fovea centre and image 

quality, with a third clinician acting as adjudicator. 

The system performance as a 'screening programme' achieved a sensitivity and specificity of 

80%, 93% respectively; 2% under Diabetes UK proposed specificity guidelines. It is worth noting 

that the presented figures are against retinal photographic grading and not an actual patient 

retinopathy state. Therefore actual system performance maybe lower. Used as a automated 

screening tool, 10 - 11 patients with sight-threatening maculopathy were misclassified. 

For 'pre-filtering', a sensitivity of 100% was used to automatically exclude healthy images (im

ages without referable maculopathy) and avoid misclassifying diseased retinal images. To achieve 

100% sensitivity, retinal analysis was restricted to high quality images (quality grade 1-2). The 

maximum specificity at this level was 92%; reducing the workload for human grading by 74.3%. 



Chapter 9 

Conclusion 

9.1 Introduction 

The aims of the research presented in this thesis have been to investigate and develop techniques 

for a structured analysis of the retina, that singly analyse retinal features and collectively detect 

sight-threatening retinopathy (maculopathy). This is achieved amongst the high variability of the 

retinal structures, light artifacts, noise, diabetic and none diabetic lesions. 

Several new and adapted algorithms have been specifically designed to accurately locate, seg

ment and classify retinal structures together with diabetic lesions from the aforementioned image 

distractors. It is this development that has formed the basis of the work presented in this thesis. 

9.1.1 Chapter Contents 

The performance success together with the novelty of the developed algorithms are discussed 

separately. In section 9.2 the success of the developed algorithms are described in relation to their 

performance when evaluated against clinician labelled gold standards. In section 9.3 the research 

contribution or novelty of the developed algorithms are described together with a comparison 

overview against alternate algorithms. This is followed by future work in section 9.4, and section 

9.5 concludes this chapter and thesis. 

143 
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9.2 Criteria for Success 

The criteria for success as set out in chapter 1, identified five areas of research where high algo

rithm performance was essential for automated retinal analysis and the early diagnosis of sight

threatening retinopathy. The performance of each criteria is examined in turn, with its effect on 

the overall system cliscussecl. 

1. Locate and segment the Optic Nerve Head from the fundus image. 

An optic elise inspired model located 90.7% of optic centers within 15 pixels; 8.3% within 25 

pixels; and 1% over 25 pixels. The accuracy of the optic model was sufficient for initialisation 

of the optic elise deformable model. 

The demarcation results achieved from the deformable model when compared to an the 

ophthalmic gold standard, attained 73% good image segmentations, 10% fair and 17% poor. 

Although the algorithm can improve, the majority of optic nerve head boundaries were 

fully segmented, preventing false positive exudate classifications on the optic boundary and 

enabling approximate fovea localisation. 

2. Segment the boundary of potential retinal lesions indicative of diabetic retinopa

thy. 

Lesion segmentation was achieved using a contrast and gradient based region growing model. 

Results from 100 sample lesions showed that the contrast and gradient model achieved an 

accuracy of 98.58% when compared to 100 clinician delimited lesion boundaries. The at

tained level of segmentation accuracy enabled accurate classification of potential lesion, as 

reliable neural classifications depend directly upon regional descriptors obtained from precise 

boundary segmentation. 

3. Classify potential lesions into retinopathy and non-retinopathy categories. 

An ensemble neural network successfully distinguished between bright/dark lesions and their 

respective image distractors with high percentages of accuracy. Measured on a per lesion 

basis, the sensitivity for bright/clark lesions classification was 91.25% and 98.06% respectively 

with specificity reaching 91.28% and 72.8%. Although the presented network performance 

is acceptable, ideally the network sensitivity and specificity for both bright and clark lesions 
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should be over 90% and preferably even higher - as one false candidate lesion classification 

can alter an overall image classification. 

4. Determine the image quality and assess gradability of image. 

The suitableness of fundus images for automated retinal analysis was identified using an 

image quality assessment algorithm. Comparing against 200 clinician graded images, the 

approach correctly identified 100% of non-gradable fundus images, together with subclassi

fying images into degrees of gradability; achieving an accuracy of 91% when compared to the 

clinicians quality assessment. The accuracy of the image quality algorithm allowed images 

with inadequate quality to be automatically identified, preventing unsound diabetic lesion 

and image classifications. 

5. Vascular width measurements 

Changes within the vascular width are believed to be indicative of diabetic retinopathy risk 

[46]. Unusual width variations called venous beading are believed to be a powerful predictor 

of proliferate diabetic retinopathy [4 7]. Diameter measurements made by fitting a 20 model 

to 100 vessel segments, showed that the algorithm is accurate, on average, to 0.34 of a pixel. 

When small changes in the vascular diameter can alter the outcome of searches for pathology, 

such accuracy is significant. 

6. Classify image into referable and non-referable maculopathy. 

The success of the image classification depends greatly upon the detection criteria and the role 

of the system. However, the maximum sensitivity and specificity for automatically detecting 

referable rnaculopathy was 100% and 92% respectively. This was achieved by restricting 

automated analysis to the high quality images (quality grade 1-2). 

9.3 Summary of Research Contributions 

This thesis has presented several pertinent research contributions in pursuit of automated retinal 

analysis. The primary contributions are summarised as: 

1. Chapter 3: Development of localisation model and deformable model for optic 

nerve head segmentation. 
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Initialised by a localisation algorithm, optic nerve head segmentation utilised active contour 

techniques that had not been extensively examined in this domain. Novel additions to a de

formable model exploited the disc's natural shape and used the disc's gradient characteristics 

and temporal locking to avoid images distractors such as blood vessels and the pallor. 

The performance of the temporal lock deformable model was compared against a Hough 

transform and alternate de-vascularization variations. In combination with de-vascularization 

and the vector gradient, an algorithm ( "DV -Hough") emerged with performance close to that 

of the temporal lock algorithm. However, with the temporal lock achieving better results in 

59/90 cases, the superiority of the temporal lock algorithm was demonstrated [26]. 

2. Chapter 5: Development of contrast gradient region growing algorithm with 

compactness stopping criteria. 

A region growing algorithm using traditional intensity pixel aggregation region growth was 

amended to include a novel technique to identify the optimum region boundary; iterately 

calculating the average gradient contrast between boundary and current region. The growth 

algorithm was terminated when region compactness exceeded a threshold; selecting the op

timum boundary at the growth point of maximum gradient contrast. 

A comparison was made between the presented contrast gradient region growing algorithm 

and four established segmentation approaches - fuzzy C-Means clustering, recursive region 

growing, adaptive recursive region growing, and a colour discriminant function. The contrast 

gradient model makes 68% fewer false positive and false negative pixel misclassifications than 

next best performing algorithm. 

3. Chapter 6: Development of fundus image quality metric. 

A novel image quality metric was derived by multiplying cumulative weighted macula vessels 

contrasts with an overall macula contrast. Evaluated against the alternate algorithms of 

Lalonde et al's [70] and Usher et al's [67), the presented macula model nearly halved the 

false positive image classifications of the next best performing technique, with a specificity 

advantage of 6%. 

4. Chapter 7: Development of vascular segment model for vessel width measure-
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ments. 

A flexible (novel) 2D model was designed to closely map a vessel segment. With model size 

and shape controlled by a small number of parameters, variable-metric optimization adjusted 

the model to fit the actual vessel profile. Once fitted, the model's parameters were used to 

estimate the vessel width. 

A comparison was made between the presented 2D model and three other well-established 

vessel measuring approaches: Brinchmann-Hansen and Heier's full width half maximum 

(HHFW) [83], Gregson et at's rectangular profile [84] and Zhou et at's Gaussian model 

[86]. Comparing the vascular widths returned by the presented 2D model and the algorithms 

of Brinchmann-Hansen and Heier, Gregson and Zhou to clinician labelled vascular profiles 

showed that the presented model is more precise by over 30% [89]. 

9.4 Future Work 

Due to complexities and variability of diabetic retinopathy, there are many directions in which 

this research could progress. The modular approach used within this research (see figure 1.4), 

means that automated detection of diabetic maculopathy can continually improve as additional 

layers of retinal understanding are added to the current system. Using this research as a basis, 

future work could enable the identification of other indicative clinical features that appear during 

different phases of progression and with varying levels of regularity. Also, investigating lesion 

identification at different image resolutions could allow earlier detection of currently identified 

lesions. Some of the earliest indictors of diabetic retinopathy can be identified from vascular 

changes, however, complete (or near complete) vascular segmentation is still elusive. To improve 

the system performance, these areas require further investigation. 

1. Vascular Segmentation 

F\1rther investigation is required to exploit the presented vascular width measuring algorithm 

to identify beaded blood vessels and incorporate this retinopathy indicator into the image 

classification rule. 

At present only 57.2% of the vascular network (by length) is correctly identified. The majority 
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of the remaining 42.8% are small capillaries. As these capillaries change angle within the 

retina their retinal appearance becomes non-continuous, and as a result is the primary cause 

of false positive microaneurysm / haemorrhage classifications. FUrther investigation into 

segmentation algorithms is therefore required to segment small non-continuous capillaries. 

The presence of new retinal vessels (N eovascularization) that are commonly narrow, tortuous, 

weak and prone to vascular leakage is an indicator of the retinopathy severity. Identifying new 

vessels is a challenging task due to their restricted diameter and interweaving appearance. 

The current vascular segmentation algorithm is incapable of reliably detecting such vessels 

and would consequently require additional work. 

2. High Resolution Images 

The low resolution of screening images (760 x 570) used within this study may prevent the 

detection of the earliest clinical diabetic retinopathy indicators. Small vascular variations 

such as venous beading and microaneurysms may be too subtle to be identified at this scale. If 

the image resolution is too high however, subtle retinal pigmentation variations may produce 

unwanted false positive classifications. The effect of the pigment variations can be reduced 

by filtering or even down-sampling the image to increase contrast, however the effects this 

may have on early diagnoses is unknown. FUrther study is therefore required to investigate 

a range of fundus resolutions, reapplying the presented algorithms at each resolution and 

comparing the performance to an ophthalmic gold standard evaluation. 

3. Lesion Detection 

This research has concentrated on the detection and classification of the most common clinical 

lesions indicative of early retinopathy progression (such as microaneurysms, haemorrhages 

and exudates). A more comprehensive system should also be able to identify lesions or 

abnormalities associated with different stages of progression, such as cotton wool spots or 

vitreous haemorrhage (bleeding into vitreous gel cai.1sed by new vessel leakage). 
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9.5 Conclusion 

This research has concentrated on the development of techniques to automate retinal analysis 

and in particular the automated detection of images with referable maculopathy. Several novel 

algorithms have been presented to address specific research problems within this larger domain, 

including optic nerve head segmentation, image gradability, lesion segmentation and vascular width 

measurements. These algorithms when combined with existing methods for foveal location and 

vascular segmentation have resulted in a reliable integrated system capable of the automated image 

classification of sight threatening retinopathy ( maculopathy). 

The role of the system in detecting maculopathy has been evaluated against two applications -

'pre-filtering' and as a 'screening programme'. As a 'screening programme', the system's specificity 

was 2% under the minimum guidelines proposed by Diabetes UK, and required a full ophthalmic 

assessed gold standard screening set to confirm results. Therefore, at present, the system is not 

able to replace human graders and cannot reliably automate patient referrals to ophthalmologists 

based on retinal images. 

As a 'pre-filtering' screening tool capable of excluding images without sight threatening macu

lopathy from manual grading, the system is fully capable. With a sensitivity of 100%, and speci

ficity of 92%, the system can reduce the number of images requiring human grading by 74.3%. 
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