427 research outputs found

    Applications of fuzzy counterpropagation neural networks to non-linear function approximation and background noise elimination

    Get PDF
    An adaptive filter which can operate in an unknown environment by performing a learning mechanism that is suitable for the speech enhancement process. This research develops a novel ANN model which incorporates the fuzzy set approach and which can perform a non-linear function approximation. The model is used as the basic structure of an adaptive filter. The learning capability of ANN is expected to be able to reduce the development time and cost of the designing adaptive filters based on fuzzy set approach. A combination of both techniques may result in a learnable system that can tackle the vagueness problem of a changing environment where the adaptive filter operates. This proposed model is called Fuzzy Counterpropagation Network (Fuzzy CPN). It has fast learning capability and self-growing structure. This model is applied to non-linear function approximation, chaotic time series prediction and background noise elimination

    Cooperative Avoidance Control-based Interval Fuzzy Kohonen Networks Algorithm in Simple Swarm Robots

    Get PDF
    A novel technique to control swarm robot’s movement is presented and analyzed in this paper. It allows a group of robots to move as a unique entity performing the following function such as obstacle avoidance at group level. The control strategy enhances the mobile robot’s performance whereby their forthcoming decisions are impacted by its previous experiences during the navigation apart from the current range inputs. Interval Fuzzy-Kohonen Network (IFKN) algorithm is utilized in this strategy. By employing a small number of rules, the IFKN algorithms can be adapted to swarms reactive control. The control strategy provides much faster response compare to Fuzzy Kohonen Network (FKN) algorithm to expected events. The effectiveness of the proposed technique is also demonstrated in a series of practical test on our experimental by using five low cost robots with limited sensor abilities and low computational effort on each single robot in the swarm. The results show that swarm robots based on proposed technique have the ability to perform cooperative behavior, produces minimum collision and capable to navigate around square shapes obstacles

    Image inpainting based on self-organizing maps by using multi-agent implementation

    Get PDF
    AbstractThe image inpainting is a well-known task of visual editing. However, the efficiency strongly depends on sizes and textural neighborhood of “missing” area. Various methods of image inpainting exist, among which the Kohonen Self-Organizing Map (SOM) network as a mean of unsupervised learning is widely used. The weaknesses of the Kohonen SOM network such as the necessity for tuning of algorithm parameters and the low computational speed caused the application of multi- agent system with a multi-mapping possibility and a parallel processing by the identical agents. During experiments, it was shown that the preliminary image segmentation and the creation of the SOMs for each type of homogeneous textures provide better results in comparison with the classical SOM application. Also the optimal number of inpainting agents was determined. The quality of inpainting was estimated by several metrics, and good results were obtained in complex images

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    Modelling activated sludge wastewater treatment plants using artificial intelligence techniques (fuzzy logic and neural networks)

    Get PDF
    Activated sludge process (ASP) is the most commonly used biological wastewater treatment system. Mathematical modelling of this process is important for improving its treatment efficiency and thus the quality of the effluent released into the receiving water body. This is because the models can help the operator to predict the performance of the plant in order to take cost-effective and timely remedial actions that would ensure consistent treatment efficiency and meeting discharge consents. However, due to the highly complex and non-linear characteristics of this biological system, traditional mathematical modelling of this treatment process has remained a challenge. This thesis presents the applications of Artificial Intelligence (AI) techniques for modelling the ASP. These include the Kohonen Self Organising Map (KSOM), backpropagation artificial neural networks (BPANN), and adaptive network based fuzzy inference system (ANFIS). A comparison between these techniques has been made and the possibility of the hybrids between them was also investigated and tested. The study demonstrated that AI techniques offer viable, flexible and effective modelling methodology alternative for the activated sludge system. The KSOM was found to be an attractive tool for data preparation because it can easily accommodate missing data and outliers and because of its power in extracting salient features from raw data. As a consequence of the latter, the KSOM offers an excellent tool for the visualisation of high dimensional data. In addition, the KSOM was used to develop a software sensor to predict biological oxygen demand. This soft-sensor represents a significant advance in real-time BOD operational control by offering a very fast estimation of this important wastewater parameter when compared to the traditional 5-days bio-essay BOD test procedure. Furthermore, hybrids of KSOM-ANN and KSOM-ANFIS were shown to result much more improved model performance than using the respective modelling paradigms on their own.Damascus Universit

    DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its Application for Time Series Prediction

    Get PDF
    This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy inference system), for adaptive on-line and off-line learning, and their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy rules are created and updated during the operation of the system. At each time moment the output of DENFIS is calculated through a fuzzy inference system based on m-most activated fuzzy rules which are dynamically chosen from a fuzzy rule set. Two approaches are proposed: (1) dynamic creation of a first-order TakagiSugeno type fuzzy rule set for a DENFIS on-line model; (2) creation of a first-order TakagiSugeno type fuzzy rule set, or an expanded high-order one, for a DENFIS off-line model. A set of fuzzy rules can be inserted into DENFIS before, or during its learning process. Fuzzy rules can also be extracted during the learning process or after it. An evolving clustering method (ECM), which is employed in both on-line and off-line DENFIS models, is also introduced. It is demonstrated that DENFIS can effectively learn complex temporal sequences in an adaptive way and outperform some well known, existing models
    corecore