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1. Introduction  

A fully automatic and high-precision cartographic mapping of terrain features such as 
forests, rivers or roads from multispectral satellite or aerial images is a challenging problem 
in remote sensing, largely due to the fact that it requires an adequate representation of 
irregular and discontinuous objects. Being able to provide sub-meter resolution 
multispectral images, high-resolution satellites such as QuickBird or Ikonos broaden the 
application possibilities of satellite imagery and offer the possibility of making them sensors 
of choice for a variety of environmental applications. Their high spatial and radiometric 
resolution facilitates visual interpretation. Temporal resolution of image databases can be 
largely increased, due to the known revisit time and pointing capabilities of the satellite 
platform, which facilitates large-scale change-detection and monitoring of selected areas in 
order to keep natural environment databases up-to-date. Certain analyses involving spectral 
change detection and dynamically obtained maps can be performed more easily and in a 
more automated fashion. Finally, high-resolution satellite images offer the potential for 
being ever more competitive in terms of price with the aerial images. 
This chapter presents methods based on Self-Organizing Maps (Kohonen et al., 1996) 
developed in efforts to fully automate the generation of hydrographic maps from remotely 
sensed imagery. The complexities of generating  cartographic representations of 
hydrological objects, such as rivers and lakes, from satellite and aerial images consists 
generally of two categories of tasks: the first involves the extraction process of the required 
linear or a real feature while the second involves generation of a suitable representation in a 
form appropriate for cartographic map presentation. The presented approach applies the 
technology of Self-Organizing Maps (SOM) at both stages of the hydrological mapping 
process, i.e., the detection of water bodies from multispectral images and the subsequent 
tracing of hydrological systems or networks. 
The first task can be approached by applying a classification technique or through a scene 
analysis method. A number of different methods have been reported in the literature. 
Conventional image processing techniques typically apply edge detection algorithms (Ma & 
Manjunath, 2000) in efforts to define water regions. A similar problem of road detection 
from satellite images was discussed in (Auclair Fortier et al., 2001). A rule-based approach to 
segmentation of satellite images was presented in (Ton et al., 1991). Selection of 
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multispectral bands for segmentation of low-resolution ocean images was discussed in 
(Ainsworth & Jones, 1999). Availability of three-dimensional information can enhance the 
mapping process. In addition to providing the raw elevation data, the Digital Elevation 
Models (DEMs) have been processed (Jenson & Domingue, 1988) to extract hydrographic 
features, such as basins or flowlines. The conventional methods generally used are sensitive 
to noise and usually provide only a rough shape description or present extractions that are 
discontinuous suggesting erroneous heterogeneity of objects. The extraction process 
described in this chapter makes use of the topological relationships between or among the 
objects - automatically extracted by SOM. 
The second task requires derivation of objects suitable for representation in map form. The 
conventional approaches resort to classical image processing techniques, such as skeletal 
thinning algorithms or splines. Extraction of rivers from digital SPOT images using the 
approximation of the river shape by the snake method was reported in (Dillabaugh et al., 
2002). A two stage, multi-resolution procedure was applied to produce a detailed outline of 
the channel banks and, subsequently, fit high resolution imagery to the channel banks using 
the dynamic contour technique. The calculation of the snake shapes is based on dynamic 
programming and is computationally expensive. Another disadvantage of the snake-based 
method is that the resulting shape can often be located outside of the area of the river. A 
powerful technique for obtaining skeletons of planar objects turned out to be neural 
network architectures. A self-organizing map was initially investigated for skeletal shape 
extraction in (Datta et al., 1996). An initial linear topology was able to evolve to circular and 
- depending on the angle between the neuron and its neighbors - forked forms. However, 
the skeletonization results were not invariant to the rotations of the image because of the 
flow-through version of SOM adopted in that work. By using the batch formulation (Ritter 
et al., 1996) of the SOM algorithm, this problem was solved in (Sing et al, 2000). 
Many of the conventional approaches, such as skeletal thinning algorithms or splines, will 
fail.  This is as a result of the quality of the derived objects from the input images which 
generally contain noise or objects that are rendered discontinuous as a result of object 
scarcity. One of the objectives of this study was to develop techniques able to deal with 
images in the form of sparse data sets. Sparse data sets refer to spatial discontinuity of a 
homogeneous and topologically related object within an object class. There are known 
several methods to cope with the sparse shape and occlusions, the most popular of them (by 
the compromise of efficiency and simplicity) are based on a median filtering and 
morphological set operations such as opening and closing (Haralick & Shapiro, 1992). 
Afterwards, a standard thinning algorithm is applied to extract the shape skeleton. Such 
methods usually introduce a large amount of distortions when the shape sparseness and 
occlusion is significant. 
In order to effectively deal with sparse and discontinuous remote sensing data at the stage 
of tracing hydrographic systems, the principal curve approach was adopted. In this 
approach, the skeletal description of point sets is extracted directly, without a sequential 
thinning procedure. Principal curves are one of the nonlinear generalizations of principal 
components. They were first defined in (Hastie & Stuetzle, 1989) as self-consistent smooth 
curves defined by the property that each point of the curve is the average of all data points 
that project to it, i.e., for which that point is the closest point on the curve. Consequently, the 
curve passes through the "middle" of a multi-dimensional probability distribution or data 
cloud. It is shown in (Duchamp & Stuetzle, 1996) that Hastie & Stuetzle principal curves are 
saddle points of the distance function (MSE) which explains why cross-validation is not a 
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viable method for choosing the complexity of principal curve estimates. The definition of 
principal curves in (Kégl et al, 2000) assures that, assuming the distribution has finite second 
moments, principal curves always exist. This makes it possible to carry out a theoretical 
analysis of learning principal curves from training data. Based on their definition, the 
authors developed the Polygonal Line Algorithm. The algorithm starts with a straight line 
segment and, in each iteration, increases the number of segments by one by adding a new 
vertex to the previously produced polygonal curve. After adding a new vertex, the positions 
of all vertices are updated in an inner loop so that the resulting curve minimizes a penalized 
distance function. The algorithm is extended in (Kégl & Krzyzak, 2002) to find principal 
graphs of data sets, and is applied to handwritten character skeletonization.  
In many aspects principal curves are related to several other unsupervised learning methods, 
including Vector Quantization and Generative Topographic Mapping (Chang & Ghosh, 2001). 
It was demonstrated in (Mulier & Cherkassky, 1995) that discretized principal curves are 
essentially equivalent to SOMs. In (Sun & Yang, 2007), a new definition of principal curves - 
Principal Curve with Feature Continuity (PCFC) - was proposed. PCFC focuses on both 
reconstruction error minimization and feature continuity. It builds a continuous mapping from 
samples to the extracted features so the features preserve the inner structures of the sample set. 
The properties of PCFC make it a powerful tool for the tasks of feature extraction for signal 
representation. Principal curves and surfaces were investigated in (Einbeck et al., 2010) in the 
context of multivariate regression modeling. The situation was analyzed where the intrinsic 
dimensionality of the data tends to be very small due to the high redundancy induced by 
complex dependency patterns between the involved variables. It is then useful to approximate 
the high-dimensional predictor space through a low-dimensional manifold (i.e., a curve or a 
surface), and use the projections onto the manifold as compressed predictors in the regression 
problem. The authors used the local principal curve algorithm for the compression step, and 
provided an algorithm extendible to manifolds of arbitrary dimension.  
One of the first applications of principal curves was identification of ice flows and their 
outlines in satellite images (Banfield & Raftery, 1992). Initial estimates of floe outlines come 
from the erosion-propagation (EP) algorithm, which combines erosion from mathematical 
morphology with local propagation of information about floe edges. The edge pixels from 
the EP algorithm are grouped into floe outlines by grouping them about principal curves 
rather than points on lines. Local Principal Curve algorithm was used on the Beaver County, 
PA, digitalized floodplain data to reconstruct rivers in the valleys (Einbeck et al., 2005). The 
curve moves along the data cloud with along first local principal components. First local 
principal component is considered to be a (biased) approximation of the tangent to the crest 
line of the estimated density, gives locally the best fit. The principal graph algorithm 
proposed in (Kégl & Krzyzak, 2002) was used to obtain principal curves that could be 
served as skeletons of a fingerprint (Miao et al., 2007). Based on the obtained principal 
curves, a minutiae extraction algorithm is proposed to extract minutiae of the fingerprint. 
An application aiming at the understanding the potential impact of the microbicide on HIV 
viral transmission by assessing the kinetics of a microbicide lubricant was presented in  
(Caffo et al., 2007). The experiment was conducted by imaging a radiolabeled lubricant 
distributed in the subject’s colon. The tracer imaging was conducted via single photon 
emission computed tomography (SPECT), a non-invasive, in-vivo functional imaging 
technique. A novel principal curve algorithm was developed to construct a three 
dimensional curve through the colon images. The algorithm was tested on several two 
dimensional images of familiar curves. An approach based upon the theory of principal 
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curves to find vessel lumen centerlines for the application to 3D CT angiography (CTA) was 
reported in (Wang et al., 2009).  
In the approach presented in this chapter, the location of each vertex of piecewise linear 
generating curves that represent skeletons of the objects corresponds to the position of a 
particular SOM unit, treated here as a centre of the neural gas architecture (Martinetz et al., 
1993). The proposed method makes it possible to extract the object skeletons and to 
reconstruct the planar shapes of sparse objects based on the topological constraints of 
generating lines and the estimation of local scale (Zaremba & Palenichka, 2002). In the final 
stage of the mapping process, the skeletal description of point sets (extracted directly, 
without a sequential thinning procedure) is used for tracing the final hydrographic shape by 
applying the principal curve algorithm between consecutive vertices of the skeleton. The 
experimental test results using satellite images demonstrate the accuracy of the proposed 
approach and its utility for fully automated mapping of hydrological objects. 

2. Satellite data 

2.1 Source image data  
In the case of multi-dimensional image data, such as multi-spectral satellite imagery, several 
images of the same scene can be provided simultaneously. In remote sensing, they 
represent, for example, a view of the earth surface obtained by using electromagnetic 
radiation of different wavelengths. A pixel with image coordinates (i,j) of a multi-spectral 
image is a vector bi,j = [b1, b2, …, bT] of T intensity values corresponding to T wavelength 
bands. The extraction and tracing of hydrological objects was performed on a data set 
consisting of medium-resolution Landsat imagery. Images obtained from the Landsat-7 
satellite using the Enhanced Thematic Mapper Plus (ETM+) scanning radiometer instrument 
are produced with seven bands of reflected energy and one band of emitted energy. Since 
one of the eight ETM+ channels is a panchromatic channel, in Landsat-7 imagery T = 7. In 
many application areas, multi-dimensional image data are also obtained from a single image 
by extracting local intensity properties with respect to each image point (i,j). This approach 
is frequently applied to images with textured objects and backgrounds. In the case of 
Landsat-7, such extraction could be performed on the panchromatic channel data. The 
characteristics of the Landsat-7 ETM+ satellite sensor are given in Table 1. 
 

 

Fig. 1. Landsat-7 image of the Eastern Ontario area 
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Spectral 
Band 

Half-Amplitude Bandwidth 
(µm) 

Ground 
Resolution (m)

1 
0.450±0.005 - 0.515±0.005 
(Blue) 

30 

2 
0.525±0.005 - 0.605±0.005 
(Green) 

30 

3 
0.630±0.005 - 0.690±0.005 
(Red) 

30 

4 
0.775±0.005 - 0.900±0.005 
(Near IR) 

30 

5 
1.550±0.010 - 1.750±0.010 
(Mid IR) 

30 

6 
10.40±0.100 - 12.50±0.100 
(Thermal) 

60 

7 
2.090±0.020 - 2.350±0.020 
(IR) 

30 

8 
0.520±0.010 - 0.900±0.010 
(Panchromatic) 

15 

Table 1. Spectral and spatial characteristics of Landsat-7 

Landsat-7 images were pre-processed at level 1G: The 1G level image is a radiometrically 
and geometrically corrected raw level 0R image. The main scene of the study covers the area 
of the Ottawa region (Fig. 1), with a diversified river system: the Ottawa River with wide 
sections and islands of different size, the Gatineau River in the northern part of the image, 
and the Rideau river with some sections narrower than the image resolution. 

3. Extraction of water regions 

3.1 Topology of the network 
The extraction is performed using pixel-by-pixel multispectral classification using 
unsupervised image segmentation and a set of labelled examples. The mapping from the 
space of spectral features to the space of terrain classes is performed by a self-organizing 
feature map (SOM) architecture. 
The classical (SOM) is a two-layer network, where each input layer neuron xj has a feed-
forward connection wij to each output layer neuron yi [Kohonen et al., 1996]. A feature map 
is created by adjusting the connection weights from m-dimensional-vector input nodes to n-
dimensional interconnected output nodes (n < m). The topology of a three-dimensional self-
organizing feature map is shown in Fig. 2. The resulting network has the ability to adapt its 
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behavior in such a way that the location (k, l, m) of the activated output neuron in the 
network becomes specific to certain characteristic features (ak, bl, cm) of the input signal X. 

 

Fig. 2. Topology of a three-feature self-organizing map 

In this application, the definition of the input vector consists in finding a discriminative set 
of spectral bands from Table 1. The selection is performed based on the distribution of pixels 
for the water and the non-water regions. An example of the distribution for the Near-IR 
band (Band 5) is shown in Fig. 3. 
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Fig. 3. Distribution of pixel blue-channel intensity for water and non-water regions 
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Fig. 4. Distribution of pixel Near IR-channel intensity for water and non-water regions 
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The distributions in Figures 3 and 4 show that the Near IR channel is more discriminative 

than the Blue channel. Combinations of channels offer better classification results than using 

a single channel. For the final architecture of the classification network, three features were 

selected, corresponding to the Green, Blue and Near IR bands.  

3.2 Learning method 
The lesrning method consists of two phases: the SOM network learning phase, enhanced by 

the use of fuzzy logic paradigm, and the merging and evaluation phase. 
Network learning phase 
The learning of the network consists in updating the connection weight vector w. Let, for a 

3-D network, 1 2 3( , , )= Tx x xx  represent the input vector and wij represent the weight matrix 

for the weights between unit j of the input layer (j = 1,2,3) and unit i of the output layer (let 

us assume, for simplicity, a linear order of the output neurons). The basic learning algorithm 

takes place in three steps. 

1. Computing of matching values for each unit in the output layer. If we define the winner 
with index c, the neuron with the smallest network input 

 || x - wc || = min{|| x - wij ||}  (1) 

is declared the winner neuron. 
2. Updating the weights. The weights corresponding to the winner unit and its 

neighboring units are updated according to the formula:  

 

( )
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i ij
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i n
m

ij
i

x

w

α

α
 (3) 

The topological neighborhood, may be defined in several ways. In a typical choice for 

the neighborhood function it falls off with distance between the output hypercube 

units. Thus nearby neurons receive stronger updates and end up responding more 

strongly to nearby input patterns. This arrangement enables the topological information 

to be fed into the network (Villmann et al., 1997). The presence of uncertainty and non-

Gaussian, nonstationary statistics the methodology of fuzzy sets offers significant 

advantages. In the fuzzy set paradigm, a pixel can belong to several clusters with 

different certainty α mapped to a range [0,1]. Fuzzy C-means was the first algorithm to 

incorporate fuzzy login in the learning process. It is an iterative algorithm used to find 

the grades of membership αij and cluster centers wj to minimize the criterion 
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1 1

( ) | |
= =

= −∑∑
n c

m i
ij j

i j

J x wα    (4) 

where c is the number of clusters, and n represents the number of input samples. A 
major drawback of the algorithm is that it becomes time-consuming when the number 
of clusters is large. The combination of SOM and fuzzy C-means can overcome the 
drawbacks of both methods and improve the performance of classification. In the fuzzy 
SOM (FSOM), the learning rate of SOM can be replaced by the membership values 
calculated as  
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1

1

| |

| |

−

−

=

⎡ ⎤
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∑
i mc

j

ij i
k k

x w

x w
α  (5) 

The rate is related to the distance between the centers of the clusters and the samples. 
The clusters closest to the sample (the winner) take the largest membership value. 
Unlike fuzzy C-means, which calculates all membership values, for fuzzy SOM the k in 
(5) relates to the size of neighbourhood, so only membership values of the winner and 
its neighbourhood are calculated. In order to reduce the computational time, the 
parameter m in equation (5), which is equivalent to the neighbourhood size, changes 
with time according to: 

 ( )
0 min( ) (1 )−= − +E km k m e m  (6) 

where m0 and mmin  are positive constants greater than one and E(k) is the Euclidean 
distance between successive weight values. 

3. Calculate Euclidean distance 

 E(k) = max{ ||wj(k+1) - wj(k)||2 } (7) 

If E(k)<ε, stop. Else, go to Step 2. 
Merging and evaluation phase 
An essential question that has to be addressed in the design of a SOM network is the size of 
the network, i.e., the number of neurons. The network can not be too small so that patterns 
which are important but can be distinguished only among a large number of patterns are 
not missed. On the other hand, an excessive number of neurons may hinder the detection of 
a pattern by splitting it into several sub-patterns. The optimal size of the network can be 
determined by initially selecting a large network, and subsequently limiting its size through 
merging closely located neurons. 
Assume two neurons are defined by the weights wi = (wi1, wi2 … win) and wj = (wj1, wj2 … 
wjn). If || wi – wj || < T, where T is a pre-specified threshold, then the two corresponding 
clusters can be merged. The new neurons will be defined by 

 
+

=
+

i j

new

n m

n m

w w
w ,  (8) 

where n and m are the hit rates (input vectors corresponding to the neuron). The more the 
input data activate the neuron, the greater the value of the weight assigned.  
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A cluster validity method is required in order to measure the quality of the merging results. 
We defined the following quality function: 

 
1

,

1
|| ||

min|| ||

= ∈

−
=

−

∑ ∑
i

c

k i
i x X

i j
i j

x w
n

V
w w

   (9) 

where c > 2 is the total number of neurons, and n is the total number of samples. The 
optimal number of neurons is that for which V becomes minimum. The parameter V is the 
ratio of the average distance between the inputs and their corresponding neuron to the 
minimum distance between neurons. The inputs should be made as close to their 
corresponding neurons as possible, and the neurons distributed as far apart as possible. The 
procedure of merging neurons continues as long as the distance between the neurons 
remains smaller than a given threshold value. Different thresholds can be selected, with a 
subsequent use of V to evaluate the quality of merging results.  

 

  
a) 

 

 
b) 

Fig. 5. Clustering results   a) 100 nodes,  b) 7 nodes 
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In summary, the procedure for merging neurons consists of the following steps: 
1. Select T; load the learned neurons and the hit rates of the neurons. 
2. Calculate the smallest Euclidean distance between pairs of neurons. If the distance is 

smaller than T, merge the two neurons according to equation (8).  
3. Repeat Step 2 based on the values of neurons after merging. If the smallest distance is 

larger than T, stop the iteration. 
The number of clusters that has the smallest V, for different T, is the final optimal number of 
clusters. 
Typical results of the merging procedure are depicted in Fig. 5. Figure 5a shows the 
segmentation of the satellite image into 100 classes. The results of merging the neurons into 
a network with 7 units are shown in Fig. 5b. 
The optimum results were obtained for 25 nodes. The resulting water areas are shown in 
Fig. 6. 

 

Fig. 6. Binary map of the water bodies  

4. Mapping and tracing of hydrographic networks 

The basic idea of the hydrographic network tracing algorithm consists in generating 
principal curves between the vertices of the network skeleton graph. In the first stage of the 
process, the set of vertices of the principal curve skeleton graph is constructed by applying a 
SOM-based algorithm. The algorithm consists in iterative updating of vertex coordinates in 
the data space while progressively decreasing the span of a SOM kernel function. The 
resulting piece-wise linear skeleton is constructed as follows:  
Step 1: Initialization. The input data vectors v1, …, vN represent the image plane coordinates 

of input binary image φ(m,n) obtained by the segmentation process, such as shown in Figure 
6. The SOM units u1, …, uK are initialized in the two-dimensional data space, with weight 
vectors w1, …, wK representing the grid topology. The initial number of units K should be 
comparable with the maximal number of vertices in the object skeletons. The scale attributes 
of all units are set to the maximal value, which is comparable with the image size.  This 
means that each unit is initially connected to its q nearest neighboring SOM units, where q is 
the maximal number of vertices.  
Step 2: Determination of vertex neighborhood connectivity. The SOM units with the same scale 
value are connected into a local structure by checking the connectivity between the 
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neighborhood units. During the first iteration, the full connectivity is established, the unit 
scales being all equal and maximal in size.  
Step 3: Matching point coordinates with vertices. With the Euclidean distance used as a 
similarity measure, this step corresponds to the Voronoi tessellation of input data set. The 
number a SOM unit in the topological space closest to the ith data point is determined by: 

 arg min|| ||= −i i rz
r

v w ,       i = 1, …, N (10) 

As a result, the object support regions of the input binary image φ(m,n) will be partitioned 
into N Voronoi regions {Vi}. The new weights of the rth unit will be determined based on 
pixels belonging to the rth Voronoi region and the regions neighboring to Vr. 

Step 4. Evaluation of vertex scale. The scale attribute of the rth SOM unit, ρr, is estimated by 
considering the Voronoi regions for the SOM units, and is proportional to the number of 
points in the region Vr. The more precise scale estimate is made by finding the size of the 
maximal disk inscribed into the rth Voronoi region: 

 
( , )

( , ) ( , ) ( , ) ( , )

1 1
arg max max ( , ) ( , )

| | | |∈ ∈ ∈

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= −⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑
k

k k

r
u v Vk m n S u v m n R u vk k

m n m n
S R

ρ ϕ ϕ  (11) 

where Rk(u,v) is kth disc and Sk(u,v) is a ring around it. The ring width is equal to the 
minimal distance between two objects considered as isolated. Such a scale estimate is used 
because of the assumption of shape sparseness (the direct method of maximal inscribed disk 

produces poor results). The point tr = (ur,vr) ∈ Vr , which corresponds to the maximal value 
of scale (Eq. 10), is called the attraction point of region Vr. The use of such a scale estimate 
and attraction point is useful when calculating conditional expectation of unit coordinates in 
the next step of this algorithm. Figure 7 depicts the detected vertices represented as circles 
proportional to the vertex scales. 
 

 

Fig. 7. Vertices represented as circles of different scale 

Step 5: Updating of coordinates using conditional expectation. The weights of SOM units, i.e., the 
vertex coordinates, are updated at this stage. The approach of conditional expectation [Singh 
et al., 2000] is used here, modified in order to take into account the current unit scale: 
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  1
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i
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where ( , , )Φ r i rw w t  is a monotonically decreasing kernel function defined indirectly in terms 

of two intermediate variables: distance 1( , )Δ r iw w  between the positions of the rth and the 

ith SOM units, and distance 2( , )Δ r rw t  between the position of unit r and the attraction point 

tr ∈ Vr. A Gaussian kernel function has been used as the smoothing kernel function Φ(.) of 

the total distance Δ1+Δ2: 

    
2

1 2
1 2 2

( )
( ) exp

2

⎛ ⎞Δ + Δ
Φ Δ + Δ = −⎜ ⎟

⎝ ⎠σ
  (13) 

where σ is the span of the kernel function. The distance function 1( , )Δ r iw w  is defined 

between SOM neighborhood units connected to ui. The simultaneous use of two variables in 

the kernel function allows the algorithm to adapt to the segments of objects of different 

scales of interest. The smoothing function (Eq. 13) represents the conditional probability that 

the point vi belongs to unit ur at the current iteration step.  

Step 5. Determination of SOM vertices connectivity graph. During this step, the connectivity is 

determined between all non-connected vertices and the local structures. Vertices and 

elementary straight-line segments are also determined.  If a vertex is connected to a line 

segment, then this vertex is added to the skeleton and a new SOM unit with its local 

connectivity attributes is inserted into the list of units. Such a vertex insertion provides more 

exact approximation of skeletons with crossing lines and other higher-order connections.  
In order to avoid ragged skeleton lines for elongated thick objects and false connections 
between skeleton vertices of disconnected object parts, which often result from applying the 
Minimum Spanning Tree algorithm (Singh et al., 2000), The decision about the vertex 
connectivity is made by using a context-dependent connectivity test. The test is based on the 
Markov random chain model of vertices belonging to the same elementary curve and the 
Bayesian principle of a decision-making process. The Markov chain model is used here to 
provide the probability of the position of the next vertex with respect to the positions of the 
two immediately preceding and connected vertices.  This model of the curve skeleton 
macro-growth process can be defined by the conditional probabilities of the new vertex 
position with respect to the positions of the previous two adjacent vertices on the same 
curve. Let us, ul and uk be three consecutive vertices which generate segments [us, ul]  and [ul, 
uk]. The Markov chain model of a skeleton piece-wise linear graph G can be defined in terms 

of a conditional probability of the slope θl,k. of line segment [ul, uk] with respect to the slope 

θs,l of its preceding straight-line segment [us, ul]: 

 , , ,{ ( ,[ , ] ) ( / , {[ , ],[ , ]} }⊂ = ∀ ⊂l k l k l k s l s l l kP u u G P u u u u Gθ θ θ ,  (14) 

where ,( /[ , ] )∈l k k lP u u Gθ  is the unconditional probability of the slope of the straight-line 

segment between vertices k and l of the same line G, and , ,( / , {[ , ],[ , ]} }∀ ⊂k l s l s l l kP u u u u Gθ θ  is 

the conditional probability of the slope of the straight-line segment between vertices k and l 
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of the same generating line G  provided that the slope of straight-line segment [us, ul] ⊂ G 

equals θs,l. After adopting a limit probability, δ, in the connectivity test by a probability 

thresholding, i.e., P(uk∧ul/x) ≥ δ, the connectivity test can be written in an explicit form: 

 
( / ) ( || )

( / || ) (1 ) ( )

∧
≥ ⋅

− ∧
k l k l

k l k l

P x u u P u u

P x u u P u u

δ
δ

,   (15) 

where P(uk||ul) = 1 - P(uk∧ul) is the prior probability of no connection between vertices uk 
and ul, and P(x/uk||ul ) is the conditional probability of the connectivity feature x provided 
vertices uk and ul are not connected. The connectivity test by Eq. (15) guarantees that the 
error due to a wrong connection of vertices will be less than (1 - δ). 
Figure 8 gives an example of the results of skeletonization of a network of hydrographic 
objects. The piece-wise linear approximation of the principal curve is shown. The skeleton 
demonstrates the utility of the presented approach in a situation of multiple rivers. In 
addition to showing the skeleton graph, the white form in Fig. 8b depicts also the results of a 
reconstruction of the hydrographic shape in Fig. 8a from the skeleton. The reconstruction 
consists in interpolating the scales of adjacent vertices along the skeleton segments. Only 
large values of the vertex scales (see Step 4) were used. 
 

       
 a) b) 

Fig. 8. Skeleton graph (b) for the water basin in (a) 

In the second stage of the hydrographic network tracing process, the vertex points are used 
for tracing the river by connecting them by a principal curve. A curve C is said to pass 
through the middle of a dataset if every point x on the curve is the average of the 
observations projecting onto it. The Hastie and Stuetzle definition of principal curves is 
based on probability densities. Let X denote a two-dimensional random vector distributed 

according to a probability density p, and let C ⊂ R2 be a smoothly embedded closed interval. 

For each point x ∈ R2, let d(x, C) denote the distance from x to C. Because C is compact, for 

each x ∈ R2 the distance d(x, C) is realized by at least one point of C. The projection map 

 πC : R2 → C   (16) 

is the map which assigns to each x ∈ R2  a point πC(x) ∈ C realizing the distance from x to C, 
that is, 

 d(x, C) = || x -  πC(x) ||.  (17) 
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We can now formalize a definition of a principal curve. A curve C is called self-consistent or a 

principal curve of a density p if E(X⏐πC(X) = x) = x  for almost every x∈C. 
The notion of projection also leads to a natural definition of the distance between a random 
vector X, or its associated density, and a curve C: 

 d2(x, C) = E( ||X - πC(X)||2 ).  (18) 

As proved in (Hastie & Stuetzle, 1989), principal curves are critical points of the distance in 
the variational sense. Since all principal curves are saddle points of the distance, there are no 
local minima. In order to better illustrate this point, let us set this property against the 

regression problem, where the conditional expectation E(Y⏐x) minimizes the expected 
squared distance E(Y - f (X))2 among all functions f. Although principal curves are not local 
minima, in general, they are local minima of the distance for “low frequency variations” 
(Duchamp & Stuetzle, 1996). The definition of “low-frequency” depends on the principal 
curve itself, and not only on the underlying density. In practical situations, and for the type 
of shapes required to trace hydrographic objects, this limitation of principal curves is not 
critical.  
An example of a river traced using a polygonal principal curve is shown in Figure 9. The 
examples shown in Figures 8 and 9 illustrate the versatility and good performance of the 
SOM-based approach to solve the problem of tracing hydrographical systems. The 
presented method works on long stretches of rivers. It can also effectively deal with a 
system of connected, tributary rivers.   
 

 

Fig. 9. A river mapping example 

5. Conclusion 

A semi-automated approach to the extraction and tracing of river networks was presented, 
where SOM networks are used in both stages of the hydrological mapping process, i.e., the 
detection of water bodies from multispectral images and the subsequent tracing of 
hydrological systems or networks. By adopting the principal curve approach, the algorithms 
precented in this chapter permit to effectively deal with sparse image data. The tracing 
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method makes it possible to extract the river skeletons based on the topological constraints 
of river segments and the estimation of local scale. A distinctive feature of the proposed 
SOM-based approach is the introduction of such attributes as local scale, used in the scale-
based updating phase of SOM units, and connectivity of SOM units. A probabilistic model-
based connectivity test is performed while connecting adjacent SOM units, i.e., skeleton 
vertices. The presented method for the extraction of the skeletal shape and the tracing of 
hydrographic objects by using structured self-organizing maps was tested on Landsat-7 
ETM+, SPOT and QuickBird satellite images, demonstrating the utility of the presented 
approach.  
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