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Applica"tions of
Fuzzy Counterpropagation Neural Networks
to Non-linear Function Approximation

and Background Noise Elimination

Abstract

An adaptive filter which can operate in an unknown
environment by performing a learning mechanism that is suitable for
the speech enhancement process, This research develops a novel
ANN model which incorporates the fuzzy set approach and which
can perform a non-linear function approximation, The modet is
used as the basic structure of an adaptive filter. The learning
capability of ANN is expected to be able to reduce the develuprﬁent
tifne and cost of the designing adaptive filters based on fuzzy set
‘approach. A combination 6t’"both techniques may result in a
learnable system that can tackle the vagueness problem 6f a
changing environment where the adaptive filter operates. This
~ proposed model is called Fuzzy Counterpropagation Network
{(Fuzzy CPN), It has fast learning capability and self-growing
structure.  This model is applied to non-linear function
approximation, chaotic time series prediction and background noise

elimination.
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Principal Notations

In this thesis following notations are used :
+ A scalar is denoted using normal font, italic, and lowercase

_ eR 1%} Z el
*+ A vector is denoted using bold typeface, non-italic and in lowercase.

eg. LY, Zelc
' Component of a vestor is denoted as scalar with single index

eBoiw:w,w, .,

*+ A matrix is notated using bold typeface, non-italic and in upperbase._

e‘E‘._._ XY, Zetc, . _
Compon_enié‘{ of 2 matrix are denoted as scalar with index more than one.

eg:X=| M 1200
_ X2) X2

+ A set is denoted as
X= (%) X o )

*  Anordered set is denoted as

X=X %, 0 %]

+ A function is notated using italic

ez flx|w)
where f is the function
x is the set of function variable

w is the set of function parameters

+. A mapping function is notated as
S SRYSRE -
¥ i5 a mapping function from the domain with N-dimensional

space to the range with M-dimensional space.



Chapter 1
Introduction

1.1 Motivations

Speech transmission and processing are often degraded by acouétic or electrical
noises. In order to reduce and e]iminétg this degradation effect in speech
transmission, a speech c;nhancement process is employed. This process improves the
qualit).!. and intelligibility of the received signal by pre;process'ing o pOst-processing.
Various methodé have been proposed to perform speech enhancement, including
ﬂxeci filtering ﬁnd adaptive filtering. An adaptive [ilter is used when there is not
endugh information about ._the desired signal and the environment,

An adaptive system consists of a time-.varying digital signal processing system
that learns to perform a particular transformation with respect to the input signal to
be able to adapt to the environment by using an iterative process. The task of
adéptive filters ‘can be classiﬁe.tli E.!S system identification, signal estimation and signal
correction,

An adaptive filter uses some qua]ity criteria to perform the adaptation either
in the time domain or in the ﬁ'equéncy doméin. Most of the conventional adaptive
alg.orithms. use the mean square error as th_e:. quality criterion, such as Least Mean
Square {LMS} algorithm and Recursive Le.aSt Square (ﬁLS) algorithﬁﬁ. LMS is the

most popular but has some limitations: the initial convergence is siow, the

convergence of the system depends on the input'signal characteristics and a residual '

'error snll exists after convergence, Although RLS has better perfotmance than LMS |

a!gonthm lhlS algorithm requires an initialisation matnx, and for some problems the



execution of the algorithm becomes numerically unstable and impractical due to
computationél resource [imitations.

The conventional adaptive filter approaches typically emplby_some form of
linear adapiive ﬁlte.rs. They have proved valuable in signal pfoégssing problems
where training data are availaﬁ]e. However, for non-linear problems, a solution is
difficult to obtain by using the conventional linear adaptive filter. Non-linear
techniques have been developed as well, but these typica]l:'y. depend on a local
linearisation of the prob!é;rn'. The failure of conventional adaptive filters to solve the
non-linear problems Iead; to the development of an adaptive filter using a non-linear
processihg model such as an Artificial Neu?él Network {ANN) o_f a Fuzzy System
(FS). . |

By employing the ANN techniqﬁes, less cssumptions are required to build a
non-linear adapti\;re ﬁlter model, b.ecause.the ANN has capability to learn the
input-:butput relation of the non tinear relationship. The ANN model is an alternative
form of infurmﬁlion processing that is a ﬁmdaﬁj.gnt_all y new and different information
processing paradigm. ANN models have beén.:.considered particularly suitable for
unstructured computations‘._ They have been proved to be m.ore robust when the
signal _dist'rib'utions are -generated by a non-]inear-pmcesses ‘and are strongly
:nqn-Gaussian‘ Baéically, an ANN system consists of a number of interconnected
ﬁeurons .and most of them are arranged in the form of multi layer structure. There is
the natural concept of a sequential flow of mformatlon which is a feature mappmb
from each Iayer to the subsequem upper ]ayer

.. " There are two: phases of operanon for an ANN, the leammg phase and the

recall phase. Durmg.lthe leammg phase, by employmg a learning scheme, an ANN



constructs the hypersurface function from sparse training data point by optimising the
cost function in order to reach a global minimum. The result of the ira.irﬁﬁg yields a
network which sjr_nulates the implemented function as closely as possible. This-
implemented function is used by the ANN to produce the output during the recall
phase,

" Uncertainty of tﬁe inﬁut stgnal and the environment have been problems in the
designing of an adaptive system. To deal wilh._uncertafnty, several pﬁradigms such as
probability or possibility may be used. Fuzzy systems which depend on possibilily
theory ié one of the approaches in dealing with ambiguity or vagueness.

| Both ANN and FS techniques are model-free estimators that can estimate a
function without ﬁ!ﬁlﬁwing the mathematical model of the input-output relation. As
stated by the existence theorem from Kolmogorov, an ANN model can implement a.
continuous function (Hecht-Nielsen, 1987). In the case of FS technique, a fuzzy
systemn (F8) can be used as a wvniversal approximator which is ensured by
Stone-Welerstrass theorem (Wang, 1992),

This research intends to develop a novel ANN model which incorporates the
fuzzy approach that can be used as the basic block for adai}live filter. The learning
capability of ANN is expected to be able 1o reduce the development time and cost of
designing the fuzzy system A 'combinatioﬁ'of‘ both techniques may produce a
learnable System that can tackle the vagueness problem,

To build a bﬁsic structure of an adapiive filter thﬁt incorporate the ANN
midet with fuzzy approach, some apﬁ]ication .cunstrain!_s shol_Jld be consideréc_l:

& there is no clean sigﬁél as tﬁe target signal for training purpo.é_'esi' _

» learning must be performed with & small number of itera'tions;



* the neural network should be able to adapt its structure to minimise memory
usage;
* fast processing time in the recal! phase ig required for real-time opemtion.

The proposed model is called Fuzzy-CPN, using the Counterpropagation
(CPN) paradigm by incorporating the fuzzy set approach at the middle Iéyer and by
imp[ementing the ﬁJzzy .Ieader c[ustering: technique. This model can be trained faster
. _.and has a self growmg ::tructure -

' Baswally, the Fuzzy-CPN mm:lel performs the function approxlmatlon of any
arbitrary function that can be. epresented by a tralmng set. Soié paramete_rs pf the
" model aﬁ‘ect the performance of the ﬁodel in approximating a fu.ﬁctiqn. .Study of the
influence of the learning parg.lﬁeler on the overall performance is cﬁJcial befare
applying the model tu thé_adabﬁbc filter task.
| Signal estimation is one class of the adaptive filter tasks that can be solved by
using this proposed model. The Mackey-Glass chaotic time series prediction is
performed by making use of the function approximation capab.ility of this model. By
employing the. learning mechanism of the Fuzzy-CPN using the input—oulput pair of
the past data and the present data, a prechct:on of the future data is obtained.

The proposed model will alsu be apptied to tackle the signal correction ina
béckground noise climination system whlch makes use of time- ﬁ'equency-
representation of the input signal and a speclral sublractlon ﬂ]tenng process The
ehmmatlon of background noise in applications whgre an'uncorrupted mput mgnal i8

. required is not a trivial .task especially when the ‘noise is non-ﬂetenniﬁistic .a.nd
_ non—stauonary In addltlon the durauon of the noise may be short compared w:th the

observat:on intervals for the input ssgnal Background noise is an example of a




non-deteministic p'_i'o::ess that has no particular deterministic stmcture.. In the
appli.ca(ion of bgcl{érognd noise elimination in sbeech acquisition in real envifﬁnme_nt, .
the speech signal _&epen_ds on the speaker, on the environmental cond’lt‘mns and on the .
transmission cl_iéracteristics. Therefore, speech is a non-station'a.ry and
non-deterministic signal as well, In speech processing, the noise elimination process
is to detect and eliminate the three noise components namely, the deterministic and
stationary .intema! noise, the non-deterministic and stationary noise, and mere
imporiantly the non-delter_'n"liniszi._c. and non-stationary noise, from tﬁe non-stationary

speech source,

1.2 Methods of Investigation

This thesis intends to adﬂre_ss the problems associated with adaptive signal filtering in
signal processing, especially the signal enhancement problem, Insteéd of using the
conventional predictive method, the model lhaf will be developed mﬁkes use of the
techniqués in ANN that incorporate the fuzzy set approach with a modified learning
methiod. The system will be able to deal with complex, non-stationary, unr_:orre;iated
and non-ﬂeterministic signals by appiying the lﬁ_roposed model.

* The significance of the implementation in using the ANN mode! broposed in
this thesis will improve the pot'a.:mial éf ANN ih:"d.ilgital signal processing. systems,
.especial]f. speech processing épplications. It is perceived that tl.1e' us.é_ of suéh a modél '
.could. contribute to an increase in the performance of aclaptiﬁe digita! ﬁlter_ systems i_n.
speech pr’océé'sing systems, . | | | .

© ‘The first stage of this research is the investighﬁoﬁ' of a global déﬁ_nition of

speech enhancement problems associated with the use of ANN. This research stage



also provides information on the issies in speech enhancement in sj)eech processing.
Furthermo;"e, the available conventional 'techni.ques' are reviewed in thig_stage.

The second staée is fhec_irelical research which will be used. in the
development of a model for a signal enhancement syétem using -an. ANN as the -
adaptive filter. In this stage, a novel mod;! : is developed by taking some
considerations, The first consideration is .the speed of processing, Although'ANNs
are inherently parallél,.but it fequires a special hardware to implement them in paﬁ]lel
flue to the requirement of complex intercommunication between simple processing
units. The second consideration is the mechanism of performing the trairﬁng of

| ANN. It may be on-line or off-fine learning, On-line l'earning is desirab[e. because the
network would potentially be able to adjust to changes in the system. However, due
to speed considerations, it may be necessary to train the network off-line and use it as
a non-adaptive system.

The development of the proposed model defines the specifications of the
model. Firsﬁy, tﬁe conﬁg_urz’atioﬁ"df th';f network is specified. The specification
includes architecture,-ibpolqu, number of layers, number of nodes, type of
non-linearity, and asmciale;i parameters. They “determine the cqmputational
charac_t_eristics and the powef of the neural network, Secondly, the teacher or the
target pattern for training phase is to be decided, When superﬁised learni'hg is
applied, thg type of teacher which is available to give the correct output has _to. be - '
chosen. Thirdly, fh_e_lraining set must be Speciﬁed_to_ give an adequéte representétio_n

'. of the type of inputs. Fiﬁally an appropriate leamiﬁg algorithm has to be chosen. A
more efficient learning algorithm muét- hé used to speed training and to guafaﬁtée the’

convergence without degrading the pefformance of the model,



The third stage of this research is applying the model to a probl'ém that
requires an adaptive filter. The system is targeted to use a speech signal as input and

to produce a processed speech signal as output.

1.3 Outline of the Thesis

This thosis is organised as follow :

: Cﬁapter 1 is the Introduction. Followed by the general literature review on
the theoretical: framework in Chapter 2, the conventional linear adaptive filter is
described. In this cﬁapter, the discussion covers the basic structure of adaptive filters
and their.classiﬁcations. The conventional adﬁptivé algorithms, Least Mean Square
(LMS) and Recursive Least Square (RLS), b'rieﬂy are described. The role of
adaptive filter in thé speech pracessing problerﬁ is also stated in this chapter.

Chapter 3 is gives a detail desetiption of the Artificial Neural Nétwprk and
Fuzzy Sj'stem which will be used as the basic model of the proposed modéi in this
w;n.-k. Definitions of the terms, the formal neuron, and the architecture of aﬁ
Aniﬁcial Neural Ngl'work (ANN) are covered:'.in this chapter.

Chapter 4 covers the developﬁtent of the Fuzzy-CPN including the definitions
of the basic pr;)cessing urits and the connections be_tween. them, as well as the
learﬁing and recall mechanism.of this structure.  Since this architecﬁ:re has a
. seif—growing structure, the adaptation mechanism of the s_truct_i.lqe is 'd.es_cri'bed as
well. -

'_.Cl.:apter 5 and 6 detail the app!ication of the propesed model_.in solving -
non-linearity p.rob.l_e:m,- In Chapter 5, the capal.li!is.y.o_f flie Fuz'zjr_-CPI;I_ in non-l_fn'e'ar

function approximation is shown. The influence of the fearning parmnetefs' an "c_he__ .



ﬁetwork-pérfonnance is ‘described. An application of this proposed model to the

prediction of the Chaotic Time Series problem is described.

In Chapter 6, the capability of the Fuzzy-CPN to perform #ssaciative memory

is described. This capability is applied to build a bﬁckground .noisé: e!iminatiﬁn'éystem
by combining the Fuzzy—CPN with _se.vers'.il dig'ital signal processing techl;liques
includin.g noise power estimation, time-frequency Irepresemation of .(he'sig:nals,- and
the spectral subtraction methad for the filtering process.

Finally, in Chapter 7, conclusions of this work and the further improvements

of the proposed model are described.




Chapter 2
Adaptive Filter

An adaptive system consists of a time-varying digital signal processing system that '

learns to perform a particular transformation with respect to the input signal. It is

able to adapt to the environment, by using an iterative process. The basic structure

of an adaptive filter is shown in Figure 2.1. An . adaptive filter cqnsist.s' of an

adjustable digital_ filter, with variable and adaptive coefficients, and a coefficient
updating algorithm to adjust the variable filter coefficients on the basis of a

measurement of the actual performance, e.g. mean square error, at regular intervals,

Calkl — W oa -
inpu® Prog ta Digital Filter i dix)
raferonce
signal :|— |:
» Adaptive Algorithm olk) .o
for Cosfficlent Updating srror signal

Figure 2,1 Basic principle of adaptive filter

As shown in Figure 2.1, after the input signal of the adaptive filter x(¥) is fed into the

system, the programmable digital filter produces the a pricri output (k) by

performing the filter function with the current coefficient values. There is an etror

'sig'nai (k) produced afler comparing (&) to the desired signal d(k). The coefficients

of the programmable digital filter are adjusted in order to minimise a pre-deﬁiiﬁ;d

cost function with respect fo the filter coefficients. The mean square error between '

- filter duiput () and an appropriate reference signal d(k) is a typical cost function

(Mattﬁews, 1990). Using the error signal 2(k) and the input x(k), the adaptive
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algorithm minimises e(&) until an optfﬁal value is reached. The adaptive system will
. continuvally adjust its coefficients to reduce the error signal between the des_ired signal
and -its output. In this way, the system performs s_ldaptation to its prescribed singal
environment. Therefore, for performing coefficient adjustment, the adaptive digiltal

ﬁlfer needs a desired response and a performance criterion (Stearn, 1988),

2.1 Structure of Adaptive Filter

An adaptive system has some fundamental characteristics. .Firstly, the task of an
adaptive system will be influenced hy-én unknown system. Secondly, an adaptive
system will only be able to start the filtering process after the unknown _systeiﬁ
- becomes operative. The filtering process is established when a set of input signa.l has
been fed into the s}.ﬁt_em after aﬁ tnterval time. Finally, an adapfive system.has to
learn the function which has to be performed. The decision will b;: made according to
measurement of the input.s’:gnal. Therefore, 'it takes some time before a sufficiently
reliable resuly is produced. As a resull, in building an adaptive system, the b#sic
| system which is an 'adjt_sstable digital filter must be zble to _cllange its parameters.
Since the adaptivé system works according to a quality criterion assessment, g quality
criterion must be available. This criterion depends on the purpose of the systém. In
order to vary the coefﬁr';_ients of the adjustable digital filter, an algorithm must be _
found that is ab.le to estimate the values of the coefficients.
An_'a.da',laltive system can be classified according to the following features: the -
Hua!ityj;:’irileri_dn:'used to optimise the system, the algorithm used to determine the
_ coéﬂipiéms, and the signai processing device uséd to build the systeﬁl. Changing

 one of these features will yield a different class of adaptive systems.
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2.1.1 Classification of adaptive systems

Adaptive systems can be divided to thiee major classes :

Sysiem Identification

This class of adaptive systems is shown in the Figure 2.2.

A

- xik)  tnput Unknown system Output ik

ntk} Noise ) noisa
o Stata  sik}
17 astimate

L
] ~ Filter }——»
P 7k}
Algo:'rthm -_I‘*

Parameter (kI
1~ Estimate

a priofi knowledge
of structure of unknown
system

Figure 2.2 Adaptive system for signal. identification.

In Flgure 22 the adaptwe Syslem takes rneasurements x(k) and estlmales the
numencal values of the parameters p(k) or the state of the unknown system under
study s(k),{ at a- certain jnstant. These real or vector values produced by the
est'i'r:nation. ﬁf the atiaptive system déscrihes the unknown systém. For this pﬁrpose a
priori knowledge about the system is needed to access to both the input and outpul
s1gna]s of thai system Th1s problem is slml]ar o the cumbmatmn of parameter
estimation’and hypothesis testing in the stallsucal signal processing (Scharf, 1991).
The adap:'_ﬁfe fiiter system in this él_ass adjusts its coefﬁciéms to produce a response

that is as close as possible to the unknown system's response. If the internal noise of
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the unknown system is small, the adaptive systéfﬁ will adapt to becdﬁle & good model
of the u.nknown system.

In the situation whem the output of the unknown system y{(£), is used asthe
desired signal, the system is known as the forward modelling system; and it has a
wide range of app'l'ications 'inﬂ biological, sobia], and ecogomic science (Widrow and
Stearn, 1985), digital filter design (Mutluay and Fahumy, 1984), geophysics (Magotra
et al,, 1991). When the input signal, which is passed through = delaﬁ processiﬁg, is
used as the desired signal, the model is classified as the inverse modelling, .'This kind
adapt{ve systems .adjust the coefficients in 'ﬁrder to becorﬁe the inver;e of the
unknown system. The inverée modelling has been applied in many gpplir_:a.tion such

as channe! equalisation (Qureshi, 1985).

Signal Estimation

The goal of this class is to estimate the output sig'na_ll of an unknown system.
It is used when the input signal is distm.'_ted.. Typicat examples of thig class are echo '
canceller and noise suppresser (Gerald et al., 1990). This class is shown in Figure

23.

ik}

x{k) Input

: Unknown system | Cutput
nik] Noise
s nolse
N i {k}
Pik dlk) esti?mation
__,| Flter [}
signal

a priorl knowledge

T i t _[&terfon ]

of structure of unknown
_system

Figure 2.3 Adaptive systetn for signéd estimﬁtién
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As shown in Figure 2.3 the adaptive system of this class takes measurement of the
“input signal x(k) and then estimates the signal (k). Thé output signal of the un_kno“m
system is used as the desired signal d(k) for the adapiive system, The adaptive
system which will minimise an error betweeﬁ the actual output signal y(k) and
estimated output signal #(5). The system makes the output as close as possible to the
future value of 'thé'input. The applications of this model are found in épee;_h
encodiﬁg (Horvarth, 1983), spectral estimation (Vary, 1983), event detectioh___

{Magotra et al., 199_1),' line enhancement (Soleit, 19'88), and ather areas.

Sigrnal Comcrioﬁ"

This system is applied when some unknown source has altered the
c.ﬁaracterist.i.c of the signal. To be able to perfofm correction, a well deﬁned critgrion
of signal quality must be available. This class of adaptive syslerh is shown in Figure - -

24,

) | .
) [ k) s
Yl |7 2 Filter PVl
I i : Corrscted
Signal to be Parameter ¢ Signal

corrected.

|| a priari knowledge
- of the signal

Figure 2.4 Adaptive system for signal correction

" InFigure 2.4, an original input signal y(k) passes through the unknown syste'm‘_Tl_a'e L
signal is distorted by the system. The unknown system produces x(k) which is the -

distorted version of y{k). The filter estimates the signal x{#) and produces the $(k) as
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the estimated cutput in order to produce the original signal j(k). Since the desired
signal is not used in the adaptive processing, several techniques including prediction,
filtering, and smoothing are used to extract information about the future, present and
past from an inpul signal that is known to have some regularity or smoothness.

The applications of this model can be fourid. .in adaptive 'in.tér'ference
ctncelling (’i‘reichler et al.,, 1986), where the corre]aie'd nuise is used as the cﬁtm_‘ion,
and the input signal is the signal corrupted by the noise, Tﬁe system will try to
minimise the errar by making the output adaptive subsystem approximate the noise. -

_ Therefore, it can be used to eliminate the noise in the si gnal,

The para;melers of the system are updated according to a quality criterion.
Decision of the criterion used is an important issue in this class of adaptive filters.
There ér'e. two m'ajor _methods;: Exaét Least Square and Gradient Method. The Exact
Least Squar_e. petforms the calculation of the mean square eriur after the system has
collected a block bf data. Consequently, it is slow lb track the change of
environment. Tﬁe Gradient method estimates the error when each sample arrives and
it offers a fastér solution for tracking the change of environment (Classen et al,

1983).

2.1.2 Time domain adaptive filter
The simplgs.t__way in imp!en:nénti_ng adaptive filter algorithm is time delay tap stmciure,_
This filter structu’re.is depicted in Figure 2.5, where z'isa time delay. unit and x(k) is .

the input signal at time. index .
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INPUT - 3 e e
x{k) I z l z l T j
i FILTER
: Transfer Function with adaptable parameter °UTFU'_|'_
.y =Fix(kl,xk-1,...| Wb W are adaptabla el
: 7k
ADAFTATION RULES |g UALTY
ERROR slk) ABSESSMENT
DESIRED SIGNALAK}

Figure 2.5 Time domain adaptive filter

The input signal x(k) and previous ioput signal [i(b-13, %(-2) ..., 2(4-N+1)] are used
.togelher witha ﬁ.mbtioﬁ having adaptable parameters F(..|w} isused to produce the :
output signal (k). After the funbtipn produées the putput signal y(%), a.n adaptation
-rule is applied to change the pa'ra_meters w in the function /(...|w). This ad.'aptation is
performed in ordt;.r to reduce the error e(4+1) when a new input signal x(k+1) al‘lliin;}S. -

The most widely used function #( ....|w) is a line combiner, The output of
this function. is'a lh_l_eér combination of some Weights w(k) and the inputs x(k). In

general, can be written as ;

M
Y= 2

w1 — k) . " (2..1.)
k=M ’ ) )

I M is o the filter is known as Infinite Impulse Response Filter (IIR), otherwise it is

know .as Finitc Impulse Response Filter (FIR). The structure of which is shown in

- Figure 2.6.
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FILTER INPUT  x{k) xlk-1) xe2) ... kb1
' ’ * h g *

Waight w
Adjustrnant!

A / / Y,
V COEFFICIENTS W .

$ OUTPUT SIGNAL vik}

Figure 2.6 Linear combiner structure

The output signat () of the linear combiner is the linear combination of the input_
signa! and ther&djtiétablg weights. The adaptive algorithm will adjuéf the weight
values _{wo, Wi, ..., W} according to a performance measurement.  The advantage
ﬁf this method is thiat it is easy to implement. However, this is a linear system and
therefore it cannot be used for any non-linear tasks, _s'uch.as non-linear adaptive
equalisatioﬁ

The complemty of the algorithm is dlctated by the number of taps, L, which -
determines the delay of the filter, i.e. the delay w:ll be longer with increasing the
'number of taps. Ina typical system, the impulse respn nse is very long. .The‘refore, in
order to satlsfy the lmpulse response of this system an FIR WIth many filter
coefﬁments should be used On the other hand an IIR Structure can be built using a
recursive structure so that a long impulse response filter can be implemented only
using a few ﬁ.lter coefficients. The coinplexity o.f TIR model is lower than that of FIR.
One of the disadvantages of the IIR structure is that the poiés of the ﬁitef'cﬁn’tﬁove
._uuts:de the unif c1rcle in the. z-plane dunng adaptauon and hence it may lead to.

mstahl]:ty, s!ow convergence and local minima (Shynk, 1992)
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The proposed model can be used in a time-domain adaptive filter structure
and it replaces the linear combiner structure with a non-linear prﬁcé_ssing model,
which will be described iﬁ the Chapter 5, by applying the proposed model to tackls
time series prediction. This task is an example of adaptive filters used in signal

estimation.

2.1.3 Frequency domain adaptive filter

In this structure, a frequency transformation is performed ie., Fourier
Transformation, before the adaptive algorithm is applied. The adaptation and the
ﬁlléririg are performed in the frequency domain, rather than in the time domain. The
basic nﬁeration of & frequency-domain adaptive filter begins first by transforming the
input signal int'c_) a frequency representation. It is achieved by an orthogonal
transforms, such as Discrete Fourier Transformation (DFT) of Discrete Cosine
"fransfonnation (Malvar, 1992), of the input signal into frequency-domain. The
desired signal, and the eITor signal, which is the difference between the output signal
" and the desi;’gd signal, are t;;‘ansfurrne&! into frequency domain as well. By performing
an adaptive Ig{gorithm, the weigl;ts'nof the ﬁl.ler in the frequency domain will be
adjusted to 'p'r.o?d_uce an output signal which aﬁproximates the desired signal. The.
adaptive algoritﬁ;_n, in frequeﬁcy domain is a versiﬁn of the complex adaptive
algorithm (Shynk, 1992). An adaptive filter can be implemented on a block by block

basis using the Fast Fourier Transform (FFT) and is shown in followsing diagram :
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Figure 2.7 Basic configuration of frequency domain filtering (Malvar, 1992)

“Suppose F is the frequency transformation function,

W & He)  en
T(e™™y = (. X(e'®), ¥( ) o

Where x(#) is the input signal and 'y(k) is the output signal in the time domain -
represent'ation. whereas X(.), is the input signal and F() is the outpﬁt signal :n the
frequency domain repres.entation‘ Y()is a spectrai manii)uiation function, i.e..
sp.eclral subfraction or spectral multiplication. 7' ) is the ﬁfequency _domain
rep.resenmtibn of the .desired signal. The following equation shoy}.-'s the. co_nnectjon

between the frequency domain and time domain operation.
B ®YR) S X Ve (2.4)

In Eq 2.4 @ s the circ_ular convolution. According the Eq. 2.4, the multiblication in -
the frgquency dumain is equivalent 1o -the‘;' circﬁlar convolution i.n' time dd'l;}ain
(Op_penheimer,_ __193_9); '.[.'héref?;}re, to achieve a _Iinear_convplution' for ﬁlteriﬁg -
purpésc by imlplémenting a .DFT algorithm,. th’ere. are two 'abproaches.,. .the
. Pﬁéf]ap-save and éverlap-add n-.lethod:s‘ B.'y averlapping element of the input data ai_'nd"_

retaining'o'nly a part of the final DFT producfs, a linear convolution is'bbtainéd.
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The frequency domain adaptive filtering method has primarily three

advamages. First.ly, adaptive filtering us'mg a block by block processiné approach
“ which is based 011 a fast transform. could significantly reduce the computafional
coinplexity. An orthogonal transformation, ie. FFT, can perform a linear
convolution more .efﬁciently than the conventional linear combiner structure.
Secondly, the DFT _structure can genel;ate signals that "are approximately
uncorrelated, Thirdly, the frequeﬁcy-domain adaptive filter converges faster (Shynk,
1992), than the time domain adabtive filter. |

Since the adaptation and the filtering are perf‘onned in a block by block
.ma.nner, tﬁis structure yields problems in the block boundaries. It leﬁt_is to small
dis.continuities in the output signal WE). . In applicaticns where the input signal is
already noisy, this lack of shift invariance is a minor concern, Thc_boﬁndary effect
can be reduced by applying Orthogonal Lapped Transformation, but the compl:ekity
of the calculati.on will increase (Maivar, 1992}, This approach may intrt_)_duce longer
end-to-end delay, be_c#use adaptation that the output filter produces after one block

. has been accumulat.ed. For non-stationary signals, tlu*; trackihg performance of a
.black algorithm also generally bécomes worse especially for.lal.'ge and hig}ﬂy
_ non-stationary input. data (Shynk, 1992).

Another approach of the frequency domain adaptive filters is described in .
Narayaﬁ_(Narayan, .198'3)‘ In thig structure, there i§ no. inverse transformation
requiréd._ _This.ﬁlter structure is ;—;;odiﬁcation of the tréhsvefsal ﬁlter..i:i whia;ii .the.

“output of the .tapp.ed delay line is first trénsfanned I:-efq_re being cdmbin_e.d_ lfgf the
. adépti\.re._ weights.. The oﬂhogohal trans_form-é'cts as a filter banks, 'sq that 1ts oiltﬁut

i uncorrelated. The convergence of this filter is faster than a LMS transversal ﬁlter.
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In this approach, the complexity is reduced be_ca_uée_: the algorithm does not perform
the Inverse Transformation, and the speed of tracking is better because. the
transfonﬁation is performed by sliding the window (Narayan, 1983),

In this wérk the function W() is performed by the associative meﬁory
mechanism of the propdsed model. It is expectéd to be able to enrich the system to
deal with the non linear problem, It will be addressed in Chapter 6 for the noise

elimination problem which is one of the applications of signal correction.

2.2 Adaptive Filter Algorithms

There are many adaptive algorithms which have been available, Most of them use the -
mean Square error as the quality criterion (Classen, 1983), These a[gorit_hms are
Exact Least Square, Least Mean Square, Recursive Least Sqﬁare, Fast Least Square,
and the variations of these a[gorilhm§ which optimise the computation process to
re&uce the compl'exity of_ a]gorithms.

It is assumed that all of the signals are stationary and have finite correlation
func.:.tion. In order to describe the algorithms, some notations are defined as follows:

The input vector is ;
it = [Xky Xp-y sxk-brl]T S _ (2.5}
L is the number of tap delay. |
The coefficient vector is :
S W= fWo'. Wi, Wil ' ) (2_-5)
' Let d(k) is. the desired signal and (k) :s the output éi@a] at l'lmt.?f k T_hén'.tﬁe_ error

signal can be represented as :
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o) = (k) - y® @n
. The crosscorelation .betweeﬂ input signai x(];) and output a(k) i§
rax (1) = E{d:Xien) | | (2.8)
The autocorrelaiion between .i'nput signal x(k) and ﬂHf}) is: |
ro() = Elxexien]l ' 2.9

The crosscorrelation matrix R is given by :

RsE[xkxf] (2.10)
This R matrix is L. x L size, symmeiric, and a Toephtz matrix, Therefore it is easy to

invert if not smgular

ra(0)  ra(l) ..lral-1) ]
. ra(l) ref0) ... ru(l-2)
Re , . S (2.11)

i relL-1) rall-2) ... ral®)

The crosscorelation vector is:
P = Eldixs] = Elxdy] (2.12)

Since the coefficients are fixed for the moment, the output signal (k) is stationary,

and the MSE is given by: S
- MSE =H e} ] = B (dh -0’ ]
= E{d} |+ H{ y} ] - 2Eldoya)
= Fua(0) + 1y, (0) - 2:rd'y(0) . _ _ (2.13) .
As shown by Steams (Stearns, 1988) the MSE of an Adaptive Line Combmer such.._

* asa Finite Impulse Response Filter (F[R) whlch follows Eq 2.1 can be wntten as:
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L=l -1 ]
MSE =rgg(0) + 2 2 wiwmree(i ~m)—2 E: Wit'a() 2149
== o :

where w is the adjustabl'.e weight vector but for the moment is fixed. —The MSE
surface is ﬁn L-1 dimensional ;Isurface in the L dimensional space, where L is number
of adjustable weights. The adaptation process is to seek the minimum point on this
error surface.

The MSE can in Eq. 2.14 be rewritten as
MSE = rgs(0) +wTRw - 2pTw - (2.15)

For the searching of the optimum w°, instead of calculating the exact least square, a
gradient descent method is used. The gradient vector which is a column vector is .

obtained by;

Ve B(MSE}_[B(MSE) AMSE) B(MSE)]’
T ow

aWu aW| T aH’L_]
=2Rw-2p (2.16)

Since the global minimum MSE is obtained where V =0, the Eq. 2.16 can be .

rewritten as:

we=Rp - em
“To update the weight for each ite:_'ation of adaptation, the Eq. 2.16. is muitif;iied by
R and y'lelds_following equation:

IR'V=w-Rp

w=w-iRly (2.18)

According to the Eq. 2.18, we should calculate R! and V. .'_The'. problem for this .
task is that the matrix R is unknown, and V must be estimated using local statistical
information. Tt means that the actual value cannot be obtained, and only the

estimation vafue can be found at each iteration of adaptation.
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Since V and R 'are:estimated. the modified version is introduced. For -
obtaining more stable behaviour, a factor p is used to smooth the prediction value of
R*and gradiégu V:

Wit = Wy — UR™'Vy : (2.19) .

2.2.1 Least Mean Square {LMS)

The crosscorelation matrix R may not be invertible, and if even is theoretically
invertible, the numerical precision required to invert R is beyond the ca;ﬁbility of the
computational system (Messerschmitt et al., 1986). The LMS algarithm is derived to
tackle this probletn .and produces the simpler adaptive algorithm without caleulating
the inverse of R, It is obtained by siﬁpli@ing the estimation .of l.he R':

Ri'=61y O (220)
where 3 is a positive éonStant called the adaptation step s.ize, and the I is the
tdentity matrix of order N. Eq. 2.19 can be writen in a simpler form as.:

Wiy zwk—uVa’;( (2.21)

When the MSE is minimum, the weight is optimum and it is denoted by w®, Let Jbe
defined as the cost function of the system or the quality criterion of the system. In

this case MSE is used as the quality criterion.
A =J=Juin | )
Therefore for all position in the MSE surface:

AJ>0 for v#20, wherev=w® — w



24

The goal is to find the w°, the weight vector for which the performance criterion J is
nﬁn‘lmised. Suppose w starts with an initial value, and the algorithm will choose the
next value which is closer to the w®. When updating is performed and AJ is still
greater than 6, the next improvement should be continued. Theé iteration will stop
until AJ reach g, where £ is the convergence errar, |
One method to searcﬁ for w° is by employing the gradient descent technique.
By evaluating the derivative of the performance function J, the weight adaptatidn cﬁm
move from the current value to the next value in order to improve the performance
function / at time index k. Since MSE is uged as lh;é. perfurman_ce.ﬁmction J, the

derivative of ./ can be wﬁtten-_é.s :

Vi= i—‘? (2.23)

. To simplify, the prediction error can be used to estimate the gradient of J:

= 23;(%

0= 120 s 20

oy

ey =dy— wka
¥ = 250 () - wTa(D) = 2Ry 2 (Wx(R)

= 2e(A(®) | (224)

The weight adaptation for LMS can be written as: - |
wik+1) = w() + pe(Dx (k) (2.25)
. This algorithm has been popular fDI‘.;;i long time since it \ﬁas introduced by
Widrow (Widrow et al,, 1960), Théﬂ step by step of LMS algorithm can be

* formalised as: |
- Step .1_._..The predicticn value of uutﬁut is.calcuiated.

&) = wr () x(B) (2.26)
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Step 2. Tﬁé error with re.;pect;{o the desired'signal d(k) is caléu!ated.
eh) = d(R) - y(¥) 27
Step 3. The coefficients of the filter is updated according to:
wik+ D=w{#+p e(k) x(%) C(2.28)
This a.algo.ri.lhm has been widely used, and there are many applications using
this approac'h'l'suc'h EIIS echo removal (Kue and Zhao, 1990), adaptive interference
canc_t’;‘leing (Treichler et al,, 1986). However, this algorithm has some limitations.

Firstly, the initial convergence is slow. Secondly, the convergence of the system

depends on the input sigﬁal characteristics, due to the dependence of e(k) on the

input signal, Finally, a residual error still exists after convergence because the

weight adjustment will ascillate around the optimal value.
There are some modifications from the standard LMS algorithm, Those
modifications are the Griffith Algerithm (Griffith, 1967) and the Siga Error LMS

Algorithm (Gersho, 1984).

2.2.2 Recursive Least Square (RLS)

The RLS algorithm iries to approach the last adapted weights as the overall optimal
weights. [t is different from the LMS algorithm,, which will oscillate about the

converge point, rather than actually converging to the optimal pdint. In the LMS

algorithm, R" in Eq, 2.19 is assumed to be 1, but the RLS algorithm make uses of the _ '

estimate of Rin Eq. 2.19:

W = Wi WRY'Y o (229)
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By estimating R, the algonthm starts with initial R and |mt1al w. The original
RLS algonfhm is:
Step 1. The autocorrelation matrix R 'is updated via
Ry = Ry +x(8) xT(}) | . (230
Step 2. The crosscorelation vestor p is updated via
Past = P +d(k) 2(K) © o (2.31)
Step 3. Ris inverted to produce the matrix R-'
R >R o (2.32)
Step 4, The weight w can bé updated by using P and R*
wl, =R pisr | @3y
'i‘he algoritﬂm requirés the inversion matrix of the matrix R, that leads:a high
computatiﬁnal complexity, i.e. it needs N>+2N*+N multiplications. To simplify the

updating process, some refining methods have been developed. For example using

(ABCD) Lemma (Kail.ath, 1980} the inverse of R can be calculated successively:

R;' x(Ox(R)R;'
1 +x?‘(k)k;‘ x(k)

Ry =R;' -

(2.34)
From this equation, R‘ IS not calculated directly by inverting the R

The lmplementation of the RLS algorithm is obtained by makmg use of the
adaptat'lon gain vector z{k), which is defined by expressing the gain as a function of _
the input signal only, and wluch can be updated using a set of adapllve predlctmn

_ ﬁlters The welght adaptauon forRLS algonthm can be expressed in as:

o, e® z

“'m "“’k *Trg (2.35)

where e(k) is the a priori error ;
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e(k) = d(k) - yo(#)
Y(k) is the a priori output ;
yoh) £ xT(ws
z ié'the filtered information vector or the adaptation gain vector
z 2 R;'x(#) @36
q is the normalised input power : |
g=xT(km @37

Eq. 2.35 is used by the RLS algorithm for updating the weights at each iteration. 1t
start with wiand then updates the weights according to the input signal x(k) and the

desired signa'l' d(k). The algorithm updlates the w vaiue in order to find the.opﬁmal
value of w. The adaptation of w is controlled by three terms, ¢(k), z,, and q.

The first term of adaptation, is the a priori error e(k), which is calculated by
subtracting the d.esired signal d(k) with the a prioﬁ output ¥(k). The a priori output is
the cutput of the adaptive filter which is calculated using the previous optimal
weights or the weights that have not been updated at this iteration. This a prieri
error is known as the prediction error. If the prccliétion error is equal to zero,
updating will not be per_furmcd; | |

The second factor is z,, the adaptive gain vector, By multiplying R to vector
i(k), lHe direction and length of vector x(k) is influenced by the m.atri.x R, Therefore.
sz is the modi"ﬁéatiur.: version of fht;. input vector x(k) by R,

The last term is_q which represents the input signal power. The input signal
_power x"”(k).i(k} is normalised by R;'. This normalisation yields the input signal

power average, rather than being proportional to the actual signal power.,
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However these three terms produces exactly the optimal wetght update_. And
siﬁce R, i5 not negative, 11q always equal or more than 1. A more efficient RLS
algorithm can be formalised as follow:

Step 1. A new input sample x(X) is accepted anq shifted into the x(4), . -
B o B e
Step2. The a priori output is computed. |
Yol(#) = wi's(k)
Step 3. The priori error is compﬁt&d
eo(k) = d(k) - yolk)
Step 4. Filter in.formation vector is computed
2= R;'x(%)
Step 5. The normalised efror power is computed .
| g=x'(k)zx

"Step 6. The gai_ri constant is calculated

r= ] . | (238)

Step 7 The normalised filtered information vector is computed
I- zkzv-z.k ! (2.39)
Stép.B. The optimal weight vector is update |
Wi =g +'ea(k)z;' o | | (2.40)
Step 9. The iﬁve'rse correlation matrix is _Upd;n.e'd by using_t.he Eq.241. -

Rl =Ry' ~Zez] - @4a
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For each pair of the input-desired signal {x(%), d(k)}, the computational

" complexity of the RLS algorithm to calculate the output and the uﬁd ate of weight is
2N? +4¥ multiplications, 2N% + 4N additions, and 1 division. Since this amount

is used for one pair of input.and desired signal, the total of multiplication over N-1 to
L-lis | “

Cus=(L-N+1)- 2N +(L—N+1) 4N (2.42)
The cbﬁﬁ]eﬁity is lower than the direct method, and does not require a matrix
inversion calculation. The RLS algorithm has beeﬁ succe.ssf.h:liy implemented for
many applications such as dynamic modelfling. The problem .with this algorithm is tﬁe
ir_litialisation magri:(, and for some problems; the caledlation of R becomes numerical

unstable.

2.3 Application of Adaptive Filters to Signal Enhancement

Problems

Speech transmission and processing are often degraded by. acoustic or electrical
noises. The objective of speech enhancement is to improve the sﬁeech quality by
pre-pfoceséing or post-processing. Noise reduction is a time series problem w_hich
requires a dynamic setting. In the DARPA Neural Network Study, Section 19.6.1
Recovery of Noise-Corrupted or Distorted‘Wﬁvefom:s, the following statements are
. .made (Hoyt etal., 1990): |
"A classical signal process_ing problem is that of recovering an_aﬁ_alog |

signal afler transmission ove;‘g noisy 6r dispersive channel. In many

cases. there may [be] very little kr.low[edge.#bout the standard |

characteristics of the signal, noise or dispersion.  Standard




30

appréaches to this problem include filtering for noise reduction and

channel equalization to reduce di.spersion,:" and the application of

estimation theory to f‘o.'rm an optimal esti.mate to the equalisation to

reduce the dispersion, and thé gpplicalion of estitnation theory to

form an optimal esﬁméte of the desired waveform. The lack of

knowledge or relevant statistical characteristics hinders the use of

estimation theory."
The speecfu enthancement brocess is required to improve the quality and intelligibi.!ity
of the received signal. Some problems which réquire a speech enhancement are echo.
(Gee and Rupp, 1991), backgfound noise (Hansen and Clements, 1991),
transmission noise (So]éit et al., 1988), inter-symbol interference (Bigfiert et al,,
1984), f;':tding (Cq]oma et al, 1991), .howling (Kuo and Chen, 1992). Thé
una;vailabilily' of a'cléan signal as an ideal signal model or the channel model makes
this problem hard to solve by using a conventional filter which is designed by using a
' precieﬁned filter response (Classen et. al., 1983).

In speech enhancement, conventional ‘signal processing has focused on
compensating for distortions introduced by channel variafions.  Various methods
have been proposed to tackle this proh[efn including fixed filtering (Boll, 1979} and .
adaptive filtering techﬁiques using convéntional linear adaptive filters. Non-linear
techniques have been developed as well, but these tyiﬁca]iy depend on a local
linearisation of the problem. The use of adaptive _fnethﬁds has improved the
perfnrmaﬁce of background nois.e t_’..]i'fnination to a-large extent (Var};, 1983). In these -
methods,‘fhe haratﬁéters of the filter are cﬁanged to adapt to t_he _nun-dete;‘ministic _

characteristics of the background noise, However, provision has to be made for the
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filler to be able to change in the environment. Sometimes, it may lead to
unéatisfactory performance of the overall system (Connel et al., 1990).

Most of the conventional linear adaptive filters employ the LMS or RLS
algorithms. However, the LMS and RLS algorithms have several limitations, Firstly
they are designed to deal with the linear problem, since the output function is a linear
combiner. Therefore, even though the filter performs adaptation, the output always

follows Eq. 2.1. It means that the LMS or RLS performs piecewise linearisation to

deal with non-linear problem. Secondly, for producing the best result, the filter needs o

thou_sand of tap-deldys. It increases the amount of calculation and the amoun:t'_-'of
delay. The adaptiv_e filter only produce an outptit & .‘ter thousand of input samples,
Thirdly, since the LMS and RLS algorithms are derived by using assumpticas that the
signal is stationary, the filter cannot attack the non-stationary problem effectively
(Shynk, 1992).

The failure of Adaptive Noise canceliing to adequately track the microphone
spaﬁng transfer function leads the use of a Neural Network as an arbitrary reference
primary mapping eleﬁ.tent‘ (Connel, 1990), There have been a number of Multilayer
Perceptron Architecture to deal with this proﬁlem. Waibel et al, (Waibel et al., 1989)
used a time delay neural network architecture. In this architecture there is no
feedback from a later layér to a previous layer. Ancther approach involves feedback

from a hidden layer to the output layer {this is known as a recurrent network)., A

third approach is to use an intermediate structure between a global feedforward anda .,

global  recurrent architecture to yield an overall giebal feedforward with a local
recurrent nature. This time delay network model uses Finite Impulse Response (FIR)

and Infinite Impulse Response (IIR) synapses derived from a linear adaptive filter.
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Back.and Tsoi (B_ack and Tsoi, 1991) state that the FIR models will give better
results than the [IR models. By combining a resonator-banks filter and an associative
memory neural network, an adaptive filter has been developed by Szﬁpan_ovitz
(Sztipanovitz, 1990),

Artificial Neu.ra!.Networks (ANNs) offer an ailemaﬁve technique for adaptive
filtering. Gorman and Sejnowski (Gorman and Sejnowski, 1988) show that an ANN
requires far less restrictive assumptions about the structure of the input signal than
any traditional tec.ﬁniques. A general ANN model for adaptive filtering has been
proposed by Nerrand et af. (1993). It has also been shown that an .ANN can be
applied to separate a signal into diﬁ'erém_signals (Cohen et al., 1991) and to perfonﬁ
signal cla#siﬁcation (Malkoff, 1992). In the area of background noise elimination,
Xue et ai. (Xue et al,, 1992) has applied an ANN-based adaptive matched filter for
biomedical processing applications.

There are similarities between the ANN model and the conventional adaptive
filter model as mentioned by Marcos et al. (Marcos et al., 1992). An adaptive filter
uses the pradient descent techniéue for adaptation of the filter coefficients, and this is
also the common way of adjusting the weights of the connections in a supervised
neural network, The significant difference between the neural network approach and
the conventional adaptive filter is that the neural network normally synthesise.s a

non-linear function-of its inputs, as opposed te the lincar function of the adaptive

filters. ANNs are inherently non-Jisear models, and ANN-based filtering methods are

potentially usefil for signals with inherent non-linearity.

Parameter estimation'is an important part of an adaplive filter system. A

-traditional self-tuning adaptive control system with Recursive Least Square is _
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sensitive to noise and can only deal with a li.ﬁear system (Chow et al., 1990). By
usmg a neural network, the parame}er.estimation process can be_ performed to réject
the neise in the non-linear system. It shc;i!ws that a néural network has & great
potential in stlem identification as mentioneé by Chow et al. (Chow et al., 1990). A
neural network which is formed as a thret;layer backpropagation model can be
trained to be able to identify the pole and zero."‘::(l)f the system. According to Kanekar
et al, (Kanekar et al., 1990), by épplying a Ms;qa!ine net, and by using independent
random noise as input, the netwo.rk can perfonﬁ parameter estimation beiter than
using a2 Kalman filter method. It .is shown th’at_ b}-.gpp_lying the .associative
characteristics of neural networks, they can handle signal estirr.l'atid_n faster and more
accurately than the conventional system,

The signal detection problem can be modelled as a pattern classifier problem,
and some neural network models can be used as pattern classifiers, A Kohonen
feature map is one such model. Moreover, Adapti\'}rc' Resonance Theory via an
unsupervised neural network can deal with plasticity-stability d'ﬂerﬁma, but will
perform poorly wl}cn the ipput pattern is coloured by noise (Lippmann, 1987).

Convent'i.ét.mal s;'_aaptive filtering techniques have proved valuabie in signal
processing p_robl;;:!ms wﬁere training data are available. However, For non-linear
prob!ems., the solution is-difﬂcull._ Therefore, it leads to the development of adaptive
filter us'mg. Artificial 1_\;Ie'u.r'a] Networ];. By employing the ANN te:_:h'niqﬁes, less
assumptioﬁs. are required to build the model, because the ANN has cgpabilify to léam
the input-output r.elation in the non-linear refationship. It is indical.gd that iﬁ tﬁe
pr'gblems. where sufficient data are available for ;raining, it may be u'sefu[. to devélop a

trainable system. The use of ANN introduces non-linear processing that adds more



34

flexibility to the system capability, which may lead to better performance thaﬁ
‘conventional linear adaptive systems in certain apﬁlicaﬁons. |

In Chapter 3, the basic model of an Artificial Neurﬂ Neiwark combi.ned with
a Fu’ézy Syslem (FS) are déscﬁbed. The formal model of the ANN, which is a
non—l.inear procéssing model, is explaine?i followed by the discussion of FS as the
model-free estimator which can deal witﬁ vagueness. Both techniques are used s the

basic framework for designing a novel adaptive filter.
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Chapter 3

Artificial Neural Network and Fuzzy System

An Artificial Neural Network (ANN) model is an alternative form of information
processiﬁg that is fundamentally new and different information-processing paradigm.
It is fast becoming an established discipline. However, it does not replace algorithmic
programming, because on a philosophical level, they are not compatible, They
complemeﬁt each other nicely, This chapter describes the theoretical framework of
the Artificial Neural Network model, followed by the cl.escription of the Fuzzy
System (FS). Both. sys(e:ﬁs are used as the basic structure to build the proposed

model.

3.1 Artificial Neural Network

ANNs are good at some tasks, eg. solving corﬁp]ex patiern recognition,
_understanding continuous speech, Edenliﬁ,rinié, hand-written character, for what
conventional algorithms are poor. ANN models have Ibeen considered particularly
suitable for unstructured computations, such as pattern recognition, attificial
intelligence problem solvi_ng, and approximation to large optimisation prbb]ems
- {Abu-Mostafa, 1989), The difference between ANNSs and the other appro.at.:he:s in
éognitiﬁe science and-:artiﬁcial inteliigence is the inference process and the knowledge
base in the ANN 'mbdg] is non-separable. In ANNs, the-aléorithms b]ur.the :

distinction between data and program, and the algorithm is represented in their |
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architecture while their data are represented implicitly by the dynamics of ANN
model (Mehra and Wah, 1992), | | |

In formal terminology, ANN are concerned with non-programmed adaptive
information processing systems, that develop associations (transformation or
mapping) between objects in response to the environment. Instead of being given a
step-by-step procedure for carrying o.ut the desired transformation, an ANN
generates its own internal rules governing the association, and refines those rules by
co_mpar'mg its results to some examples (Hecht-Nielsen, 1988a).

An ANN processes immense quaﬁtities of information. in parallel and are
inspired by models of brain beh::wiour. Hecht-Nielsen stated the following aeﬁnition
of artificiat neural system (Hecht-Nielsen, 1988b):

"A neural .network (NN) is a parallel, distributed information

processing structure consisting of processing elements (which can

possess a local niemory and carry out localised information

processing operaticns) interconnected together with unidirectional

signal channels called connections. Each processing element has a

single output connection which branches (“fan out") into as many

collateral connections as desired (each carrying the same signal-the

processing element output signal). The processing element m_liput

signal can be of any mathematical type desired. All of the processing

that goes on within each processing element rﬁuét be completely

local; i.e., it must depend' only upon ihe cusrent vaiﬁes of the ir;pu't

signal arriving at the processing element via impinging connéctioné

and upon values stored in the Jocal memory”,
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Figure 3.1 A neuron structure (Hecht-Nielsen, 1988b)

Structurally a neural network can be defined as a non-linear directed graph with
weighted edges that are able to store pattemns by éhanging the edge weights and are
able to recall patterns from incomplete and unknown inputs {Simpson, 1987). The
transfer function of a neuron structure as shown in Figure 3.1 is a non-linear
transformation,  Non-linearity of the neural network increases the richness and
facilitates noise suppression (Kosko, 1990). However, it also produces computational
risk and analytical intractability. Furthermore in some conditions, the system can
enter into dynamic instability, |

An ANN is a dynamic system that consists of a large number of simple
processing elements connected in paraliel {Vassiliadis, 1990}, They may be proved to
be more robust when distributions are generated by a non-linear process and are
stro.ng nen-Gaussian (Lippman, 1987). An ANN modei is specified by the functional
description of the connections of network, ne.twork topology, neuron characteristics,

and learning mechanism. These will be discussed in the following section.

3.1.1 Formal description of a neuron

Basically a arificial neural network system consists of a number of interconnected

neurons, To formalise the description of an arificial neural network following
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_ _di:finition are used, This definition follows the general model definition as stated by

Lee (Lee, 1991);

DEFINITION 31

A discrete time neuron can be specified by 5 tuple :

N={F.qwT.C} . G0

The components of a neuron and the interactions between each components are -

shown in Figure 3.2,
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—
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Figure 3.2 A formal neurcn

Each neuron {as a gencric processing unit) functions on a discrete time scale, and it
opérates on n-tuples of input x =[x, ... ,x ] € R and produces a real scalar y as the
output of a neuron. This value is propagated through the network via urﬁdirectional
connection to other neurons in the network. The set of input argumeﬁts x={x, X, ..

x,} is called the Receptive Field (RF) of this neuron.
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Signal flow path in a neuron

The signal flow path from the input pori through te the output port is called the Feed
Forward Path (FFP} and the signal flow path from the output port through § to the
input port is called the Feed Back Path (FB}_’).

At any time index 7, for the neuron N, the value presented in the RF of |
neuron N is designated by IN(NY. The output of the neuron N designated by
QUT(N)', is equal to the state value g{N)‘ of neuron N. Therefore, for the neuron N,
IN(N)' =x'and _'SIUT(I\.I)t =q(N)\

e, is called the Received Feedback Signal (RFBS) and is the feedback signal
received from the output port of Neuron N. The signal e,, is called the
Transmitting Feedback Vector (TFBV) and is the list of .f'ee_dback signals, which
are called the Transmitting Feedback Signals (TFBS). These feedback signals are
transmitted ul;.lslream to the RF of neuron N. Th;re is oﬁe to one correspondence
between the variables in RF and the companents of e, and the dimension of IN is

equal to the dimension of ¢,,.

Feed Forward Path Component
For the feed forward path, the components that are used are : State .Tra_nsitioh
Function,f and Composite State, g. Those components are described in following

discussion.

State Transition Function (STF)

F, is called the State Transition Function (STF) and is a parameterised function with

w as the parameter vector of the function. / is used to ' generate the Composite
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State, g of this neuron with ¢ = F(x |w), where the vector x = (x, X, ..X,)
designates the list of input arguments for F. The ﬁmclioﬁ Fitselfis a triple:.
F={B,.,0) 62
This first mapping is matheﬁiatically described i_}y a basis function .
Further transformation is perfonﬁed by a noﬁ-]iriear activation function @, together
witﬁ the external threshold é, to yield a new activation value y. The final output y.

can usually be expressed as :

y=0(B(xIw),0) . (33)

Basis Function )

B : R"— R is a basis function, which is a delayless function and is normally in a very
simple form. It may be a linear basis function or a radial basis finction. A linear
basis function (LBF) which is a hyperplane.-type function that is a first order linear

basis function, The output value of this function is a linear combiner of the inputs,
L] : )
Bexlw) = X wyy - (3.4)
Pl

A radial basis function (RBFJ is a hypersphere-type function and is a second
order (non linear) basis function. The output valué of the basis function represents

the distance of the input vector to'the reference vector.

B(xlw) = 3 C-wy) (3.5
\'1—1 .

Weight (w) -
w=[w,, ..., w,] e R"is a weight vector of a neuron, This n-tuples of 'weight values

are associated with each connéction, w is called the Medulating Parameter
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Structure (MPS) for F, because each parameter w in w is used to modulate the
function 7. The collection of all possible values of w for a neuron N forms a vector
space, called the Neuron Parameter Space for the ANN. The property of this space

is important for analysing the parameter adaptation (or learning process) of & neuron,

Neuron decision rale (4)

& : R — R is the neuron decision rule. The function < itself s a non linear function
and it may be a step, ramp, sigmoid or Gaussian function, The mos.t widely used is
sigmoid for LBF network and gaussian function for RBF netwﬁrk. For LBF model],
the type of neural decision function used only influences the speed of learning not the
accuracy of the network (Kalman et al, 1992),

Sigmoid function is defined in following equation and shown in F'igure. 33

D) = —1 (3.6)

i
14e @

ol 4
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™
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Figure 3.3 Sigmoid function

Gaussian function is stated in Eq 3.7 and depicted in Figure 3.4.;

B = ce G° _ o
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v

Figure 3.4 Gaussian function -

Real Threshold (8)
8 = R is a real threshold which may be supplied from external or ﬁy fixing it with a
constant value,

Therefore, the final output or the activation value of the neuron y is

S . 4 .
LEBF neuron : y= dJ(E Wty — G] (3.8)
NI :

RBE neuror: y=¢3[ IS oy =) ~a) (3.9)
: =

Composite State (4}
q is the Composite State that represents the states of a neuron. The static state of a

neuron is given by its last output value y. The dynamic state of the neuron is

described by the first-order difference eqﬁatiun that governs the time evolution of .

the y value or the neuron output, The time is not included as an independent variable
and it is assumed to be fast at the neuron level, i.e. during time index  to time index
1 there is not any change of the neuron's state. The dynamic state is" only

determined by g and ¢
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Feed Back Path Component

For the feedback path, the compohent which are '_used are: Param"gt'er Adaptation
Automata (PAA) and Parameter Ccmu'ol State (PCS.).. The feedback .p_ath is accurred
after there is a feed forward path that produce the Composite State {q) this value is

used by the feed back path components.

Parameter Adaptation Automata (')
T is called the Parameter Adaptation Automata (PAA) of 2 neuroﬁ: and itis
specified by a pair

T={8,0} _ (3.10):
Where 8 is the Parameter Adjusting Function and © i; the Parameter:' State Transiti(.)ﬁ_.:.

Function.

P.a_l".ameler Adjus;fhg Function (5)

5 is called the Para"r.ﬁeter Adjustiﬁ'g Function . Itls known as lea;l;ning function of
r.u.:p}on N and is éiﬁapping that takes x', W' 4, C‘, e, 'as input;s_.':t'o generate w'*!,
ie.,. | |

wi = B g, w, el C') L @Iy

Parameter State Transition Function (c)
ais called the Parameter State Transition Function (PSTF) of neuron N and is

characterised by the following equation:

M=o gWenC) G



Parameter Control State (C)

C is called Parameter Control State (PCS) of neuron, is a structure of variables
used to control the parameters adjusting process (learning process) of this neuron.

A neuron which does not contain e, and e, in C, is called a Uni-Directional
Neuron (UDN). Formal neurons with both e,, and e, specified are called
Bi-Directional Neurons (BDN). Normally, BDN is used in supervised learning.
The neurons in the backpropagation network are examples of this category.

The neuron output ¥, in neural model]ihg is known as the Shori-Term
Memory (STM) of the network. Normally, a neuron will forget the previous value
as soon as there is a new inpug signal. This storage mechanism is (rery_short time,
The weights of the network w, store the knowledge of _t_he system. They encode the
Long Term Memory (LTM) of the pattern inﬁ)rmation._ (Kosko, 1990),

A neuron oper;cltes in twﬁ phéses of operation: the learning phasé and the
recall piﬁse. During the learning phase, a aeuron adquts the w values according t.o
the training set and the learning ru[és in order to optimise a particular. _quaiity
criterion. The adjﬁslment of w values is pert‘oml'l-i-éd by the function & (Parameter
Adjusting Function), and controlled by € (Parameter Controlled State). C itself
"changes during the learning phase, that is done by o (Parameter S_tate Transition
Function). Not all types of neuron lea.ning ]Srocess require C to be specified. A
fearning mechanism with FCS specified is called a learning mechanism with ini_emal
state, while a learning mechanism without PCS speciﬁgd is called a ._memo@less’
. "lear.nin;g rﬁcchanism.: | | |
When a neuron is perfornﬁng the Ire_c.al] .:phase, F and C are n.ot. useﬂ any

more, or they are set to fixed values, In addition, for most of ANN architectures,':_l"
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and C are the same for the entire neurons in the network, respectively, Therefore, T
and C can be pulled out from the single neuron model and be abstracted outside a
neuron model. Thus, it controls the entire neurons in the ANN model. - it produces
the simpler neuron model but less general than the neuron model stated above.
According to the Eq. 3.2, the key element of a neuron in recalling operation is an
accumulation of information by a non-linear decision rule which operates on
compari'son between the accumulated information and a threshold, Therefore, in
simplifying the model in the recalling process the C, ¢, and I can be omitted from
the single neuron model to produce the model depicted in Figure 3.5.

"The inhibitory input is the input that tries to inhibit the neuron, i.e. has the
negative connection, and the excitatory input is the input that activates the neuron,

i.e, it contributes to the value that exceed the threshold value.

Excitatory
input

Qutput

Inhibitory
Input

Figure 3.5 Process in neuron.

This definition of a formal neuron is general and it covers most of the current neural
network models, In performing more complex tasks, a single neuron is not

sufficient and a number of neurons- have to be arranged in a such way to build more

complex system. This arrangement can be done in the same level orfand in different -
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level. Each neuron in an ANN model is connected to another neuron with th synaptic

 weight w.

DEFINITION 3.2

A neural network consists of a collection of neurons interconnected in such a

way that the output of each neuron functions as input to any sub-collection of

neurons. Each neuron in the network receives one input from the output of the other

neurons in the network, respsctively, These connections may be excitatory or

inhibitory connection. A set of neural input and output are identified as the networks

input and networks outputs, respectively. The network state is the collection of

individual neuron states

Laye: 1

Layer 2 Layer L

input layer hiddan tayor autput layer

Figure 3,6 Neuron connection

According to Definition 3.2, the architecture of an artificial neural network can be

formalised and specified by the set:

G= {AhAls --'sAH}

(3.13)
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Where 4, , 4,, ... A, are Network Elements (NE) and each network element is

defined by a triple;
Af=[NhRﬁ TI] - (314)

where X, is the Processing Kernel {PK), R is called Input Connection Map (ICM)'"
and 7, is called the Qutput Connection Map. This fon‘na]isatioﬁ of the r
network architec_ture that is uses Eq. 3.13 and Eq. 3.14 are used to defm.
proposed modgl in the Chapter 4.

N, of 4, and can be either a neuron or a neural network. R, for 4, contains the
fan-in interconnection-information. The set of variables connected to &, through RJ is’
called the Receptive Field (RF) of 4. 7, for 4, contains the fan-out interconnection
information from 4, Furthermore, the set which contains all the variables connerted
through fto the output of a NE 4, is called the Projective Field (PF) of 4,

T.Ihe arfangement of the neurons can be performed in different levels known as
multi-layer neuron structure. This structure provides more complex fuaction (Cotter,
1990} or more complex decision region (Sethi, 1990) of the ANN model in the
overall system. Lippman {Lippman, 1987) has shown that a three-layer network is
adequate to form a complex decision regions which is required o solve the
non-separable proﬁlem in the real application, i.e. for the non-separable classification

task (Murphy, 1990)

DEFINITION 3.3
An L-layer feedforward neural network is built by L ordered sub-colieations of.
netrons called layers with interconnections specified as follows: for 1=2,..,L the '

inputs of the neuron at the I-th layer are obtained from the outputs of the neurons at
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the (I-1)-th layer. The inputs to the first layer (called the input layer), are the
network inputs. The set of néumns with some input arguments received from the
inputs of the network is called the l:iput Set (I-Set) of the network or is known as
the Input Layer of the neural network model. Each neuron in the I-Set is called a
" Neural Input Element (NIE) of the network,  The outputs of the L-th layer are the
network outputs. The set of -_nguroris with output sent to the output port of t_he
" network is called the Output Set (O-Set) of the network and this set is know a#
Qutput Layer of the neural network model. Each neurcn in the O-Set is called a
ﬁetwork Output Element (NOE) of the network. Layer 2 to L-1 are called hidden
layers, |
A connection befween each neuron at adjacent layers may be feedforward
connection, fegd_bii’ﬁk cﬁnneﬁtion, lateral cmnectibns, or time delayed connection. In
feedforward connection, data from a lower layer aré propagated forward to neurons
of an upper layer via feedforward connections. The feedback connections bring the
output of a neuron of aﬁ upper layer back to neuroﬁé in the lower layer. A latetal
cunne;tion is the connection of neuron at the same layer (Leemon, 1991).
Time-Delayed connection uses a delay element int the connection to yield temporal
dynamic of that connection (Werbos, 1989).
The signai in the ANN model can flow in both directions, i.e. from input layer
to output layer or from the; nutﬁut layer to the input layer. F.or the feedforward: path,
" the inp’uts to the network are the signals extracted from the external variables which
are connected fo the input ports of the network input elements or the input tayer of
't.he nét.work. The outputé of the network ate the.signals generated by the netwofk.

output elements or the output layer and are connected to the variables extenal té the
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network. During the feed-forward operation, R defined in Eq, 3.14 assigns to each
input argument ﬁf_' N, one of the output from other A% in G, or one of the input - '
signals to the network. During the feedback operatiuh, T defined in Eq. 3.14 assigns
to each Received Féed back Signal (RFBS) of N, one of the Transmitting Feedback

Signal from éomeA's in G or one of the RFBS of the network.

3.1.2 Feature mapping in neural network

Most of the current ANN models are multilayer neural network architectures. In
feedforward multilayer networks, there is the natural concept of a sequential flow of

information from each layer to the subsequent upper layer, From each layer to the

subsequent layer, a feature mapping process is performed. It means that each layer - -

expresses a _different internal representation of a specific feature of the input data -
{Abu-Mostafa, 1§89). At the input layer, a neuron value represents the data that
are still raw dat_a, and in moving to higher layer, the neuren valuc expresses the
higher representation of the input data. This gradual transformation from raw data to
higher representation is very inter'est'mg, especially if the representation evolves
spont.anleneaus]y via tﬁe learning mechanism. However, for some ANN
architectures, the exact représentat'mn at each [ayer is still being investigated.
Basically, this feature mapping between each layer is the transformation function of
each neﬁron. The mapping networks can be classified into two classes
(Hccht~NieIsen,I 1987). They. are feature based networks and prototype based

network,
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Feature based networks

Thes.e networks implement a ‘functional input/output relationship that is
expressed in terms if .genera], modifiable functional form H, = { &, (. ), &(.), ...,
A (. )} which is a set of the fixed family functions. For a given neural netwerk
architectﬁre (with » inputs), each specification of weight and threshold for the neuron
by applying one or more learning rules within the processing element of network,
gives rise to one function in 4, The modification of weight is done to find the
speciﬁc mafaping that is_ to be approximated, by determining #: X, » Y, andh e H,.
Examples of this kind of networks are : Backpropagation (Rumethart et al., 1986),
Functional Link Neural Net (Pao, 1989), GRNN (Poggio and Girosi, 1990), Cascﬁde

Correlation (Fahlman and Lebiere, 1990),

Praratyp.e ba;ed networks

These networks create a set of prototypes {{v,, w,), (v, W), ., (v, w)) of ’
input-output examples ((xl; ) (Xt ¥, s (%, 1)) that statistically represent the
function being approximated, This process is performed by employing one or more
learning rules. The network produces the mapping on a new unknown vector by
comparing the input vector with the set of prototype vectors stored in the networks,
By using the result of a similarity comparison, for example minimum distance or
maximum activation value, the ANN produces cutput vector as an estimate of Jx).
Examples of this kind of networks are counterpropagation network (Hecht-Niélsen, :
1987) and MAXNET network (Lippman, 1987), Most of these ANNs in this class
use the binary hidden units, as\}t.he winner nodes or the chosen prototypes.

For a three-layer ANN model which uses binary hidden uni_ls; the eﬁstence of

J-L hidden units is the necessary sic-sufficient condition for given J input pattefns. It
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has been proved by Arai (Arai, 1989) that a three-layer network with infinite hidden
units and the activation function is absolutely integrable has the outputs are arbitrarj
for the continuous value. It has also been shown that the existence if the infinite
hidden units is not only the sufficient condition, but also the necessary condition if the

activation function for the hidden units are discrete at most of countable points.

3.1.3 Computation and learning in neural network

According to Venkatesh (Venkatesh, 1992), an} problem of finite dimensions is
computaﬁle by a neural network. In the implementation of an ANN model for
solving a problem, the ANN system. performs two main computational mechanisms
which are the [earning mechanism: and the recall mechanism or operation mechanism.

The neurons and the neuron connections in an ANN model are considered as
the hardware of the system, and the weights and threshold can b(; considered as the
software.. In order to program the ANN system, a set of weights which simulate the
computaﬁon that will be performed have 1o be chosen. If‘ this process o.f' choosing
the weight and threshold values can be automated, it will constitute a learning
mechanism.

Let G be an architecture of an ANN model which is defined in Eq. 3.13. Then

- learning is any change in any component of G :
Ge0 - (3.05)
Those changes may bc'pcrformed 10 each component of G, the N, parameters of each

neuron, the connection strengths and the connection directions R, and 7;, and the size

of matrix for self growing neural network, i . Tt means that the changing can affect
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the architecture of the ANN and the value of each weight and parameter of a neuron,
Thgrefore, learning cannot be performed without changing (Kosko, 1991},

The concept of learning by examples is depicted in Figure 3.7, Tht_z learning
mechanism builds an ANN that implements an arbitrary function , when given a
sufficient a number of input-output examples from that function.” This mechanism is
performed automaticatly as dictated by the learning algorithm. The learning process
coml;nences with é set of training examp[és in pairs of input and expected output i,
{x, Ax), (5 Ax), .0, (X, J_‘(xk)}. During the learning phase, the changing of neural
networks configuration is mﬁde by adjustmeﬁt of the weights and thresholds, so as to
make the network simulate a function £ It is performed with the goal to make the
response of the network to the input x as close as possible to the desired output £x).
The implementation may be only a good approximation of the function /.  This
mechanism will eliminate tﬁe need to redesign a new network architecture each tifne

there is a new function te be implemented by the ANN.

{hy!}
Examples ) Leatning

of ™ Ageithm ™
y =fix}
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Figure 3.7 Learning mechanism concepts

Different learning algorithms require different types of information from the fearning

environment and employ - different heuristics rules for the weight and threshold”

modifications. Each learning mechanism operates in an information environment.

The processing elements are fed by incoming signals,  An ANN is a distributed
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information processing structure and each processing element is totally independent.
All the processing eleni_;hts can respond according to its transfer function applied to
the. incoming signals a'.hd performs self-adjustment in response to their local
information environment. |

The interaction of an ANN with its environment is used to classify the
learning paradigms, The environment presents the input pattems to the ANN and
may generate a feedback in reaction to the network's output. If feedb_ack is
prescriptive, that is if a desired output is specified for every training input',' then the
learning mechanism is cla.;siﬁed as supervised ]eaf‘ning. Supervised learning
incorporates an external teachef and/or global information. If the feedback is
evaluative, that is if only an evaluation of the output is provided, then the learniag is-
classified as reinforcement learning, Unsupervised learning does not require aﬁy
feedback. The learning can still adapt in order to satisfy some internal objectives.‘
Unsupervised leamning involves no external .teacher and relie;s vpon only a local
information and ‘internal control. Tt self-orpanises according to the presented data -
and discovers the emergent properties of data. It heans_ that an unsupervised
[earning scheme will try to perform a property recognition of the input data without a
definition (Simpson, 1992).

The learning process in an ANN model based on a set of e#amples can be
rcgarded.a_s synthesising a multidimensionai function which belongs to a problem of
hypersurface consisting sparse data points. It simply means that the learﬁing is the
: cul]ecting_pr_oceﬁé of the.input coordinates x, and the corresponding output values
i3] af those input coa.rdine_ttes.' It builds an adaptive look-up table of' -input-output

relation. This problem is equivalent to the associative memory that retrieves the




54

appropriate cutput when presented with the input and uses generalisation to produce .
an output when presented a new input. It is also similar to the problem of estimating

a system that transforms iﬁputs into outputs given a set of examples of input-output’ .
pairs, A generalisation can be performed by interpolation, which estimates a location
Jid} in space (x, f{x)) after 4'is fed into the system where there are no examples i.e.
no data about the location 4 and f{d}. Interpolation is the limit of approximation,
The capability of an ANN to perform interpolation shows the capability of the ANN
in the plasticity problem. The plasticity probfem arises whenever an ANN is supplied
with unknown input, or the data which have not been used for the training data
{Carpenter and Grossbcrg, 1988},

A nultivariate function fx) is approximated or interpolated by an
approximating function H(xw) having a number of parameters w and x as the input

vector, where x and w are real vector. For a specific H(x|w), the learning process
tries to find the set of parameters w that provide thé best possible approximation of f .
on a set of examples {{x,, fxN.(x,, ), - (%, Ax)}). Therefore, it is very
important to choose the type of an approximatioh function H that can represent f as
close as possible. There would be little point in trying to leamn if the chosen
approximating function H(xjw) could orﬁy give a \re.r_y poor repreéenfation'éf £x)
even with optimal parameter values. |

In measuring the quelity of approximation, a distance function p is usually
used. It detenniﬁes the digtance between the approximation H(xlw) to j(x).. Let f{x)
be a conlin.l.mus. function defined cn a set x, an.d H(xiw)_an approximatiné funf:tio:;
defined continuously on'w. The appr_o.f{._ima{ion probler is to determine the optimai

parameters w° such that:
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pH(EIWO), ) < p(H(x W), ) (3.16)
for all w. The solution of this problem is said to be the best approxiﬁ*lation. The
number of examples needed to approximate a finction reasonably well grows
exponentially with the ratio between the dimensionality and its degree of smoothness
p.

In performing the construction of the hypersurface which approximates f by
using H(x|w), the current w' value will be updated to the next value w™", Generally
the updating rules for the parameters w is :
for unsupervised learning :

wit = wl—g!'L(x", w") (3. 17):
for supervised learning .:

wil = wl—g'L(x', ¥, w') (3. 18)
where L is the function of the learning rule and it is equivalent to T iﬁ Eq 3.8 and w'
denotes the weights of ANN in time ¢ and consists of a set of w for each neuron,
Therefore, w rebresents the components 7; and &, in Eq. 3.14 for each neuron in the
ANN. The vector x is the input vector, and y is the desired vector, and the & is the
modification step. The function L is the gradient of tﬁe cost function or a heuristic
rule, _ In the learning process, a If;arning Scheme moves from one state to the next
s.taié as to optimise the wg_ights a.c.cording to a particular cost function C, wheré L=
VC. This movement h_as the goal to reach the global minima of that cost ﬁmclio.n

(Battoud and Gallinari, 1992},

Let x be an instance of a concépl to learn. This concept is de_ﬁﬁed by a

pmﬁabilily density function p(x) and w represent the parameters of the learning

system. For a given state of the system, J(x,w) is a local cost function, which
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measures how well the system behaves onx. The goal of learning is to optimise the
global cost function €. The expectation of local cost function over the space X of

the concept of learning usually is written as

OO =[x, Whplee = = (U, ) (3.19)

Most often the explicit form of p[x) and C(w) are unknown. The information which
is available comes from a Series of examples of the variable x. Therefore, the
realisation of J(x,w) is possible by a measurement based on the observation of {x:};-

A hecessary condition of optimality for the parameters of the systems is :
VOW) = Ee{Vid(x, W)} =0 (3.20)

where V¥ is the gradient operator. Since C(w) is unknown and only the realisation of
Hxw)is available, the classical optimisation methods cannot be used. One solution is -

to apply adaptive algorithm:
witl = w — ¢V J(x!, w) {3.21)

where vy is the gradient step. This modification strategy is similar to the techni(jue
- that has been described in the Chapter 2. |
| In learning by example there are two main problems : an information problem
and a complexity problem,

The information problem is in the terms of generalisation. Under | what
 conbinations will the perﬁ)rmance of the network on the set of examples persist on
.previ0usly unseen input? The learning algorithm will construct f from only partial

information on the input and output relation of £, i.e‘.a number of examples y = f(x).
It._is clear fhat there are cases when the exampl_és are not enough to cover all | the

information about . In this situation, the algorithm cannot be expected to produce
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an implementation of something it does not know. On the other hand, even if the
examples contain enough information about £, the complexity this information. ﬁlay be
prohibitive. For example, suppose there are onl.y & few examples but a largy network
is used, In this case, it cannot be expected to reach any good generalisation, In
general, for a fixed set of examples, a smaller hetwork will perform better
generalisation although it does not mean that a small network is more likely to
implement the function better. It is only more likely to behave similarly on an.
unknown input which never be represented in the set of example. The other
conflicting requirement is that the network should h_e large enough to handle fﬁe
function being imp[eménted, regardless the generalisation question.

The compiexity problems can be posed in the terms of polynomial time
comple:;ity. Under what conditions does there exist an algoritﬁm that runs
reasonably fast in time that is polynomial in the size of problem to produce a network
implementation of f frorﬁ the set of examples. Most of learning tasks run sufficiently
fast for small prd.glems‘ However, when the problem size iﬁcrcases the cul._'r.lputation
ﬁme scales poorly. It is consistent with the theoretical prediction. The ;omblexity of
[earniﬁg has been .studied and most: of‘ the results indicate th;f .I.f.he learning
complexity may. be prohibitii:e (Abu—Mos'tafa, 1089). The __reprcsentation of data is
crucial to the complexity of problem. In fcedfbrwar_d network, there are several
internal representati.uns of the data at each layer. This transformation from the raw _
data‘ to higher level repreééntation is very interesting in the research on ANNg,
especially if the representations are derived spontantenously via t_he leaming

mechanism.
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Thus the learning scheme in a mapping neural netwoerk is a process of
constnicting the hypersurface function from gparse dafa point by optimising the cost
function in order to reach the global minima. The _result of the training yields a
netwark whicﬁ simulates the implemented function as clese as possible according fa

the quality criterion which is used for the cost function.

3.2 Fuzzy System

Uncertainty of the information such as the dynamic or the static state of a complex
system has been a problem in the &esigning an adapti\r.e. system. To deal with
uncertainty many paradigms such as probability or possibilitf can be used (Dubois,
1993)._ In order to measure the uncertainty of information or vagueness, the entropy _
concept is used (Klirr and Folger, 1988). Fuzzy approach which builds uj:u from the
possibility théc.;rry arises from the ambiguity or the vagueness (Black,l 1973) and has
been applied in fnany areas such as control system {Lee, 1990a), pattern recognition
(Lim et al,, 1952), speech processing (Jiangxiﬁ. 1992), social science (Taber, 1994),
medicine (Klire and Folger, 1988), m..'magement and decision making (Kaufmann_aﬁd

Gupta, 1988), and virtual reality (Kosko and Dickerson, 1994).

32,1 Fuzz}? sef .

The coneept of ﬁxzzy set was introduced by Zadeh (Zatleh 1965) in his semmal
paper It lllustrated the simplicity and the sngmﬂcance of ﬁ.lzzy sets in dealmg wnh
the vagueness Zadeh's defi mtlon of‘ a f'uzzy set is stated in the fo!lowmg

. Let X'be a space of points (ob_]ects), with a_generic element of X

denoted by x. {X is often referred to as the universe of discourse]. A
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fuzzy set (class) A in X is characterised by a membership
{characteristic) function m, (x) which associates with each peint in X a
real number in the interval [0,1], with the value of m,(x) representing
the "grade of fnernbership" of x in A, Thus the nearer the value of

m,(x) to unity, the higher the grade of membership of x in A.

DEFINITION 3.4
If X is collection of objects, then a fuzzy set A is a subset of the universe of

discourse X and the membership is defined as the ordered pair :
A= [x, matx)), (3.22)

where x € X and 0 € (¥} < 1. The membership function m,{x) represents the
degrée to which the object x helongs to the set A where m1,{x) = 0 indicates that x
does not helong.t.o the set A, and m,(¥} = | represents full membership. It is the
degree to which the deterministic measurement x is compatihlc with the vague
concept .ofA.

ma(x) = Degree(x € ) o (3.23)
In Figure_3.8, suppose the cbjects are x, and x,, and.the membership function to set A~

is defined by m(x)., The degrée of object x, belongs to set A is m and the degree of

object x, belongs to set A is m,

Figure 3.8 Memberslﬁﬁ function
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Kosko has extended the_conccpt of the elementhoed into a subsethood (Kosko,
1989). The subsethood explains the degree of a set belonging to an(;ther set. It
provides more capability for the fuzzy set approach to deal with vagueness.

Fuzzy set operations are similar to the Cantor set operations ;uch as AND,
OR, a_nd NOT (Zadeh, 1965). It has been improved by Kosko by adding another

. operations such as subsethood, supersethood and fuzzy entropy (Kosko, 1990).

3.2.2 Fuzzy éyste'm components

A Fuzzy System (FS) allows imprecise representation of the system rather than
forcing the use of precise statement to describe the system transformation, There are
four principal elements in a fhzzy system: fuzzification interface, fuzzy rule base,
fuzzy inference machine, and defuzzification interface (Wang, 1992).  The

interconnection of them are shown in Figure 3.9.

mix)
lnput Fuzzification Fuzzy Inferance| Dafuzzification
% Interfece Machine intorface

3 3

Fuzzy Rule
! Base

Figure 3.9 Building block of fuzzy system

Cutpu

h 4

The fuzification interface
This element describes the vagueness of the input signal by mapping from the
observed input universe of discourse X 1o the fuzzy set defined in X, Let A bea
fuzzy set defined in X and x an inp_u_t__.t(.}. the fuzzification interface. Then the outputs

of the fuzzification interface is m,(x).
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There are two factors that should be considered in the fuzzification interface,

They are the number of fuzzy sets and the s.peciﬂc membership functions used.

* The number of fuzzy sets defined in the input universe of discourse.
Let g, =1, 2, ..., n, be the number of fuzzy sets defined in the i' th subspace of

X, where the i'th subspace of X'i5 the projection of X onto the i'th coordinate of R”, i.

e, it is the set {x;x={(c,,¥s,.., %) X} CR The number of fuzzy sets

determines the complexity of the fuzzy system. This complexity includes time
complexity, i. e. the computational req_uire.ment, and the space complexity, i.e. the
_.storage requirement. Both complexities generally increase with the number of fuzzy
.s.cts, because the system produces more number of membership values of each fuzéy
set when an input is fed into the fuzzification interface, On the other hand, more

membership values increase the accuracy of inference. Therefore, there is always a

trade-off between accuracy and the complexity of the system.

* The specific membership functions for these fuzzy sets,

Let up:,fx L,2,...n =12 m are the membership functions of the j'th
fuzzy set defined in the t'th subspace of U. Those membership functions can be
expréssed in one of the following formats:

* Gaussian membership function;

' (3.24)

. (___—J'\z\
“Aﬁ(x‘) = a:l_exp [_%LJ»,UJM J
_ ¢
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Figure 3.10 Two Gaussian membership ﬁl:i’(:’ﬁbn

Triangle metmbership function:

u,,{(xr)=a’,i[1~|_x‘j‘|] '  . (329)

v

Figure 3.11 Two triangle membership function

The triangle membership function is the most widely used (Asakawa and Takagi,
1994). Since the value aJ, can be set to be equal to | for every membership function,

it has only two main parameters i‘{and cri
) =f(x[<ho! ) (3.26)

This membership function influences the smoothness of the input-output relation, In
general, the sharper membership function is, the less smooth is the input-output
surface. The choice of the membership function shape is still being investigated, and

currently it is still determined by the application {Cox, 1992),
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The fuzzy rule base

A rule'is made up of two parts: the _antecédent or the premise, and the consequent.
The antecedent can conatain many clanses linked by the logical operator AND, OR,
and NOT. Clauses can be further decomposed into variables and adjectives. These

elements build a set of linguistic statements in the form of’
“IF a set of conditions are satisfied THEN a set of consequences are inferred”

In fuzzy set approach, each adjective of a clause is assigned a member;hip function.
Given a value for input variable, the membership function is used to calculate the
truth vajue of that variable and each clause in antecedent can be assigned a fuzzy
truth vatue. The next step is to assign a truth value to the entire antecedent. Fuzzy
truth value is the degree by which a rule is relevant to a measured situation, It
describes the depree by which the rule's antecedent is true in a ﬁlzzy.sense. The
fuzzy truth value of a rule depends upon the fuzzy truth value of each of its clauses
and upon the logicﬁ] operators linking them. The consequent m#ps the truth value of
the antecedent to the output space,

The rules in the fu_zzy rule base provide a natural form in which humans
represent their knowledge, _Therr; are many forms of fuzzy rule_s {Lee, 1990b), in this

work, cnly the following form in Eq. 3.27 is shown befow:
Ryt IF xiis A, and xqis A} and ...and  xy is Ay THEN zisB (327)

wherex=(i= 1,2, ..., n) are the inpuls to the fuzzy systems, and z is thie output of the
fuzzy systems, 4} and B/ are the linguistic terms, and J is the number of fuzzy rilesin

the fuzzy rule base, The premise space is a n-dimensional and the input x,, x,, ... , ¥,

.
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is partitioned into the fuzzy subspacas" T.his_panitioning is called premise structure in
a fuzzy model. As a result thé..li:dentiﬁcalion proﬁess in designing a fuzzy system
implies determtining how the input space shﬁuld be parfi_ﬁoned;

The fuzzy rules may be gathered from two sources: human experts, or a set of
trajniﬁg data, A general mélhdd to generate ﬁ.lZ.Z}' rufes from numerical data has been
prqposed by (Wang and Mendel, 19926). In designing the nu.mber of fuzzy rules in a
. ﬁl;zzf rule base the specific statemeﬁt of each ﬁ.tzzy tule has to be considered as a

design parameter.

The fuzzy inféfence machine

This element performs the decision making logic which émploys fuzzy rules from the
fuzzy base to produce the fuzzy output as a function of the fuzzified inputs to the
fuzzy system. It is similar to a human decision making procedure based on fuzzy
concept; and Iinguistic.statements. There are many different kinds of ﬁ.li:y logic
operations which may be used in a fuzzy inference machine. Tﬁerefcre, the decision
on which specific fuzzy logic is used is an important factor in designing a FS. In this
work, the inference process is not performed separately but performed together with

the fiszzification input by the fuzzy neuron.

The defuzzification interface.

The final step is to combine the output values of each of the rules in a manner that
ré.ﬂecls the truth value of each rule, This element transforms the fuzzy output of a
fuzzy system to produce a non-fuzzy output. There are 30 deﬁjzéiﬁcation techniquéé_
(FAQ, 1994). This process actually quantises the fuzzy output into a n'on—ﬁ.nzz.y

" output. In addition to the defuzzication technique which is app]ieﬂ, in designing aFS
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system, the number of fuzzy sets defined in the outpu.t universe discourse X and
speciﬁc niembership functions of these fuzzy sets have to be considered, The most
important requirement is that the defuzzication has to reflect the truth vlue of each
rule,

Among the defuzzification teclmiqﬁes, the centroid which is based on the
centre of mass method seems to provide the best performance for maost applications
(Cox, 1992). The centroid defuzzitication technique can be written as:

[° yuo)dy

7= T wo)dy ¢28)

Where y is the output value for each rule, jt is the fit value of each rule to the input
and the ¥ is the final output of defuzzification interface.

In the discrete case, it can be rewritten as :

) = (3.29)

Where Z is the output of j* rule, | is the fit value of the i* rule, x is the input and

Jix) is the final output of the fuzzy system. It is shown that a fuzzy system is a
complicated non linear systemn which maps a non-fuzzy value in /< R” into the

non-fuzzy value in R, A fuzzy system works with parallel associative inference.
When an input is given, a fuzzy system fires each rule in parallel, but to a different
degree to infer a conclusion or cutput. Thus, a fuzzy system reasons with se.ts, fuzzy

" or multivalued sets, instead of bivalent propositions.
In summary, a fuzzy system has the some design parameters : number of
fuzzy sets defined in 1he input _and output universe of discourse, membership

functions of these fuz;§ sets, number of fuzzy rules in the fuzzy rule base, linguistic
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statements of the fuzzy rules, decision making' logic used in the fuzzy inference
machine, and defuzzification method. Therefore, in building a FS system by using a
set of training data, the building process has to be done in two phases. The._first
.phase is the structure identification phase, which must solve two problems: finding
input va_l_'iables and finding the input-output re[ationship._l The second phase is the
paramet;r identification, that is the determination of the membership functions of the

fuzzy set (Sugeno, 1992),

3.3 Model-Free Function Approximator.

An ANN or an FS basically performs a mapping from input space to the output
space, and it means that the system performs a mathematical function, As stated by
the existence theorem from Kolmogorov (Cotter, 1990), an ANN model can
implement a continuous function (Hecht-Nielsen, 1989} by using a three-layer ANN
model. As proved by Wang and Mendel (Wang and Mendei, 1992a), a fuzzy system
(FS) can be used as a universal appmximatof as well, and separately Kosko (Kosko,
1992a) has described the capability of additive fuzzy systems to perform
approximation of any continuous function on a compact domain to any degree of
accuracy.

ANNSs and FS8s are model-free estimators (Cox, 1992). Un]ikgitﬁé Qfaiistica}
estimato__r:, they estimate a-function without knowing the.matllf:matic_:al model of the
input-oufput relation. They learn from experience which is r;prcsga.i;ed as ngnuéricéi '
or sometimes linguistic data samples. Both ANN and FS show the E_'q:lﬂleiligent
capability by adaptively estimating continuous function f'rﬂt_t_l data withou‘.':'s;)ecil‘ying

mathematically how outputs depends on the inputs (Kosko, 1993), Mathematically,
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both ANN and F§ transform input signal to output signal, and this transformation

defines the system itself and determines the characteristics of the system.

3.3.1 Function approximation by neural network

A function f, denoted /2 X' -» ¥, maps an input domain X to an output range ¥. For
every element x, in the input domain X, the function f uniquely assigns the element y
in the output range Y. This assignment is denoted as y = f{x), which is a function that
defines the causal hypothesis. A mapping network simulates a function F : X = R
defined on X < R by e;cpressing the function being simulated by using a finite
combination of additions and superposition with real functions of one variable, Any
family F,, : X — R™ of mapping network parameterised by w € W will be called a
mapping network architecture, A given architecture takes input from an input space
X, (n represents the dimension of the input space) and .produces the corresponding
outputs in an cutput space Y, (m represents the dimension of the output space).
In an ANN, the mapping function is built up by training by examples, which is
a collection of data {{x, y), 1 £ i <k} ie (x, p), (¥2 ¥p) ..., (%, ), where y,=
Jx). Therefore, it is assumed that there is a set of examples which are available for
training, and the aim is to produce = function g that approximates function f; as close
as possible, 5o that g(x) =~ y,. For any given & > 0, the function f fs said to be
approximated within € by function g a.nd _denotecl it by f=g itand onlyif |f-q <E.
Specifically, the mapping neural netwark approximates a bounded mabping
or function/: A CR"— R", from a compact subset A of an n-dimens.ional Euclidean .
space to.a bounded subset of TA] in aﬁ m-dimensibnal Euclidean space by_means of |

training by exampit_:s o), (o, yz.).‘.():k Jo) where p=flx). '
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This is quite similar to classical interpolation and estimation problem-s, where
a function has to be found from a class of ﬁ.lr'lc(ioﬁs that interpolate the data as close
as possible. One of the promising features of neﬁral networks is that the
mathematical model of the mapping i§ learned and the empirical data obtained.from
the application serves to define the problem without a formal mathematical méde!
being specified. The concepts of approximating arbitrary function using functional
forms that do not depend upen either orthogonatility or linear superposition turn out
to be an important theme in neurocomputing (Hecht-Nielsen, 1988a), because any
reasonable function can be computed by some neural networks (Venkatesh,1992).

The ability to perform a function approximation is ensured by the
Kolmogorov theorem, as stated by Kolmogorov's Mapping Neural Network
Existence Theorem (Hecht-Nielsen, 1987). This theorem states that for any integers
n and m, given any e > 0 and any function f: [0,1] € R"— R™, wheré Jy=y, fcan
be implemented exactly by a three-layer feedforward network having »# fan-out
processing elements in the first layer, (2n + 1) processing elements in the middle
layer, and m processing ele.mgnts in the output layer. Thus, f is approximated within g
mean gquare error accuracy in the family of three-layer feedforward neural ﬁetworks '
comprised of sigmoid neurons in the first two layers and linear neurons in the output
layer. Even though the theorem is preved for a continuous vector mapping on the
.unit cube {0,1]% it can be extended to apply to any compact when required, i.e.
closed and bounded. Cybenko (Cybenko, 1990) has shown that by ;tsing' '..-:Jntinuous -
(but not necessaﬁ!y monotq_n_i_c) sigmoida_l function the function approximation can
be achiéved. :_.___Speciﬁcally,_;igiven an arbitrary collection of inpu}foutp.ut'. data, the

1

above theorem .i'rh'pl'ies___lha:_@ by using a network with sufficiently ma_ﬁié‘- ﬁidden nodes, ¢
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all at one layer, the neiwork parameters can be chosen to achieve aﬁy desired
madelling error critedion. Therefore, a th;;e-[ayer perceptron with infinite number
(continuum) éf computing elements is able to represent any abgdlutely integrai:ile
functiﬁn on R" (Kowalczyk, 1991). This theorem shows that it is possible to perform
a continuous function approximation by a neural network. However, this theorem is
strictly an existence theorem, it does not provide a constructive explanation of the
method for developing the network itself. Although this result shows t_he universality
of ANN with only a single hidden layer, the determination of the number of nodes is
still 2 major question.

Most of the models for finction approximation are feedforward models. The
backpropagation neural network model haﬁ been able to perform function
approximation better than traditional method in the accuracy of time series prediction
problerﬁ {Jones et al, 1989). In this problem, a certain number of points of a time
series are given to the system and the values of the time seres at some future time
will be predicted, The backpropagation network has been used ir. the prediction task
of the sunspot series, department store sales data and stock index time serie.s.
(Srirengan and Looi, 1991).

However, there are some problems in employing a backpropagation neural
network for the function approximation problem. _Firstly, it requires a preat df:al of
training data that covers most of the domain, Secondly, ihe interpolation is poor .
without a great deal of training i.e. the number of iterations has.lo be enaugh to make
the system converge in the adaptation. Thirdly, it is much slower for 'c'ornpaa._'_abie
.act:urac.y that the best noﬁ-neural network n;iéthods-(Fanﬁer and Sidof(J.mé';i.:.:h_,_: 1987).

In some cases, large amount of data are not available therefore a function .
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approximator should be able to interpolate and extrapolate from a small data set,
~ Furthermore, in many applications the learning process must occur in real time and
the slow learning in the backpropagation networks restricts th;e application area.s of
neural nets,

To increase the speed of learning, several neural network models have been
developed.. By using a Radial Basis Function Network (RBF-Net) to replace the
sigmoidal non-linear elements (Moddy aﬁd Darken, 1989), a significant improvement
in speed has been achieved, However,. it only addresses the problem of excessive
trair;ing data or poot._interpo]atian. To z-ichieve comparable accuracy'more neurons
and | more number of traming data points are required. Some modification of the
RBF-Net has been de.veloped to improve the interpo]ation and to reduce the amount
of training necessary. This modification is obtained by 2pplying a normalisation and
known as Connectionist Normalised Linear Spline Net (CNLS} (Lee, 1989, Jones
1989,; Howel et al., 1989),

| The advantage over traditional methods of function approximation is that the
network can be”.used .1s the developmeﬁt tool and the complex .mathemati_cal
interactions between network nodes can provide a better model of process than more
traditional approaches. This approach has been implemented in an embedded system
fqr wind direction and wind speed d.etenninaiion system (Farley, and Varhol 1992),
In this a]ﬁpliﬁation, the conventional method such as Kalman Filter cannot be used
because the Kalman Filter method assumes white noise and an auto regressive
moving aver'age (ARMA) time series model which cannot be taken for a .this

application.
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3.3.2 Function approximation by fuzzy system

The finction approximation prablem has been-attempted by using fuzzy system by
Wang and Mendel (Wang and Mendel, 1992h). However, the rule assignment is
performed manually.

The combination of fuzzy basis function method with the conventional
method such as Gram-Schmidt Orthogonal Least squares to determine the significant
basis functions and the remaining patterns has been developed (Wang and Mendel,
1992.{:)‘ It provides a one-pass regression procedure. Therefore, it is much faster
than the backpropagation algorithm, Also, it yields a more robust system which is
insensitive .to noise in its input. The combination of linguistic and numerical input
provides important advantages over palynomials and radial basis function, Due to
the fact that a linguistic input from the human expert can be encoded into the system.
It has been proved that a fuzzy basis function is capable of approximating any real
function (Wang and Mendel, 1992a), This model has been :applied to solve non-linear

problems.

x

Figure 3.12 Function approximation by fuzzy patch (Kosko, 1992)

In Fig, 3.12. it is shown that 5 function y = f{x) creates a line. Each value on x-axis is

mapped to one or more values on y-axis by the fuzzy patch which is represented by
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the shaded area. A fuzzy system creates overlapping fuzzy patches along this line.
The fuzzy patches in tﬁe input-output product space X x Y cover the function f: X
- Y. The smaller and thel crisper the fuzzy patches, the more they resemble the lir.ei':'
and produce better approximation of the function /. When they become infinitely

smal.l and numerous they converge to the line,

A fuzzy rule defines a fuzzy patch in the input-output space.. In the
conventional fizzy systems the fuzzy rules are derived from experts. More recently,
by using a statistical approach or a geural network, the fuzzy rules can be derived
frorh the sample data (.Munakata aﬁd Jani, 1994), Different experts or algorithms
generate different sets of fuzzy rules. Some techniques to derive the fuzzy rules
systematically has been investigated, most of them using optimisation technique such
as RLS (Wang and Mendel, 1992¢), membership adaptation (Das_arathy., 1692),
Genetic A]gorit.hm (Machado et al., 1992), or Neural Network (Mitra et al., 1994).

. Iflhe'ﬁmclion is simple i.e. y = x, there is usually no reason to apply the fuzzy
patch approach, it may do perfectly well using conventional approach and fuzzy logic
cou.]d worsen the result (Mc Neill and Freiberger, 1993). However, when the
ﬁ.mciion cannot be modelled mathematically, especially when ihe function is
non-linear, discontinuous, or non-differentiable, the function can be divi{ied and
solved with ﬁJziy patches. Fuzzy patches can also be easier 1o derive and faster to
use. Moreov:,.', when a control situation cannot be formalised, an engineer simply
does not know the exact function, Yet mach.ine operators may know its approxima;te
course by the vague rules of thumb they use to guide ﬁm system. Therefore, fuzzy

IF-THEN pétches can deal with this situation (Kosko, 1993).
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X

Figure 3.13 Fuzzy patch as fuzzy rule (Kosko, 1893).

In approaching a function, an ANN model use numerical point sampies (¥, y} to build
the function that ap]iroximates the actual function. In contrast, a FS estimates the
function ny using the fuzzy set sémp]es, Both kind of samples reside in the same
input-output product space X x Y (KOSkO,.l.993). In Figure, 3.13, the numerical
point sample (x, 3) is reprc.sentcd as dot. The fuzzy set sample as the membership
function at each axis, and the fuzzy set association is a rule and it is represenied as a
box N, The fuzzy set sample (X,Y) encodes the structure of the fuzzy mle. Tt
represenf a mapping of minimal fltzzy association from a part of the input space to a
part of the output space. The x-axis represents the antecedent part as the input
associant and the y-axis represents the consequence part of the fuzzy rule as the
output associant Y. In Figure 3.13, the box is the fuzzy patch which behaves as a
fuzzy rule. The association also represents the result of an adaptive clustering
algorithm.

In general, a fuzzy system S maps families of fuzzy sets to families of fuzzy

sets, thus:

S:IMx L xfradhx,, x e (3.30) -
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Where I" is the fuzzy set in each input variable and I® is the fuzzy set of the output
variable. This work focuses on fuzzy system that maps hyper-sphere of fuzzy sets in

I" to hyper-sphere of fuzzy set in I*:

S:r>r (3.31)

Thus, this FS behaves as an associative memory. The FS maps the closest input to
the closest outputs One successful implementation of this FS system is Additive
Fuzzy Associative Memory (Kosko, 1989).

As proved by Wang (Wang, 1992), Jang (Jang, 1992) and Kosko (Kosko,
1992) by using the Stone-Weierstrass theorem, there exists a FS that can be used for
approximating an arbitrary non-linear continuous mapping to any accuracy. This
existence theorem is similar to Kolmogorov theorem in the ANN model.

Since a neural network with learning capability can reduce the development
time and cost of the designing a fuzzy system (Asakawa and Takagi, 1994), a
combination of both techniques may result a learnable system that can deal the
vagueness. Adaptive Network based Fuzzy Inference System (ANFIS) applies
neurons which employs AND and OR operations. This fuzzy neural model is a highly
non-linear mapping model. Therefore, it is superior to linear methods in reproducing
non-linear time series (Jang et al., 1993). However, this architecture is still employing
backpropagation type gradient descent learning (Jang, 1992). Furthermore, the
ANFIS model requires initial parameter settings which have to be able to capture the
underlying dynamics of the function. The RBF-Net, that is based on the hypersurface
fitting technique, has gained increasing popularity in many practical areas such as
pattern recognition, signal processing, system modelling, and control system. It is

due to its simple structure, well-established theoretical basis, and fast learning. Nie
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and Linkens (Nie and Linkens, 1993) have shown that there are some similarities
between RBF-Net and Fuzzy control algorithm in approximating a function. The
fuzzy approach which is applied by using RBF-Net has been applied for controlling
the blood pressure in hospital intensive care unit (Nie and Linkens, 1993).

In the Chapter 4, a combination model of Fuzzy System and Artificial Neural
Network is described. This model is designed to be applied to adaptive filter tasks by
exploiting the function approximation capability of the Fuzzy System and the learning

capability of the Artificial Neural Network.
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Chapter 4

Fuzzy-CPN Model

This chapter addresses the development of a fuzzy counterpropagation network

(Fuzzy-CPN) which has fast learning capability in order to perform a continuous

function approximation in an adaptive filter. As mentioned by Rumelhart et al.

(Rumelhart et al., 1986) in their seminal paper on the neural network model, there are

eight major aspects :

*

.

A set of processing units , i.e. the set of 4. in the set G in Eq. 3.13.

A state of activation, the interpretation of y in Eq. 3.3

An output function for each unit / in Eq 3.1 including the function ® and 3 in
the Eq. 3.2

A pattern of connectivity among units, i.e. the set of components R and 7 . of
each4,in Eq. 3.14.

A propagation rule for propagating patterns of activities through the network
of connectivities, i.e. the direction of flows x, y, ¢, and e_, in a neuron, and the
flows of the information in 7, and R, in the Eq. 3.14 in the overall of G.

An activation rule for combining the inputs impinging on units with the current
state of that unit to produce a new level of activation of the unit.

A learning rule whereby patterns of connectivity including the & and o in the
Eq. 3.10, are modified by experience.

An environment within which the system must operate.
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In order to introduce this proposed model, all of those aspects of an artificial neural
network are described in this chapter. In addition, as the system is used as an
adaptive filter, the ANN architecture that is designed must satisfy some application
considerations of the system :
¢ Learning must be performed in a minimal number of iterations of training.
¢ Since the computation resource is limited, the network must be able to adapt
the structure of neural network to optimise the memory.
¢ The processing time should be considered to achieve a fast processing in the
neural network and filtering, i.e. the structure of architecture can be

implemented in a parallel way.

4.1 Proposed Model

Artificial Neural Networks (ANN) and Fuzzy System (FS) are similar in many ways
and share a more formal property and the same state space (Wassermann, 1993).
They are continuous vector mappers from the input space to the output space and
can generalise in producing a correct response despite minor variations in the input
vectors. ANN and FS are model-free estimators which learn from experience and
encode their information in a numerical parallel-distributed framework.

The ANN and FS process inexact information and process it inexactly. A
number of uncertainty problems arise in the neural network's input data, propagation
of result through the network, and interpretation of final result (Cohen and Hudson,
1992). The ANN model recognises ill-defined patterns without explicit specifications
set of rules. The ANN acquires knowledge through training but it cannot take the

advantage of an expert's presence, and statistical neural estimators require a
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statistically representative sample set. In contrast, an FS estimates functions and
controls the system with partial description of system behaviour, and can use the
knowledge from an expert to solve the problem and derive the linguistic rule of the
fuzzy system.

However, there are fundamental differences between these techniques. An
ANN model and a FS differ in how they estimate the sample function. These
differences appear during the system construction. The neural approach requires the
specification of a non-linear dynamic system, the acquisition of a sufficient
representative set of numerical training samples, and the encoding of those training
samples in the dynamic system by repeating the training cycles. A FS requires only
partial information of the system in a linguistic rule matrix (Kosko, 1993). This task
is simpler and faster to be solved than designing and training a neural network. After
the system is constructed, the same numerical input to both system can be applied.
The output resides in the same numerical space of alternatives and both systems
define a surface or manifold in the input-output product space XxY.

The combination of both approaches has been developed by many researchers
such as the fuzzy neural network with fuzzy signals and weights (Hayashi et. al.,
1993) which is used for fuzzy expert system, fuzzy hierarchical analysis, fuzzy
modelling to derive the rules. Fuzzy Basis Functions (FBF) can be used for universal
approximation by implementing an orthogonal Least-Square Learning in order to
design a basis function (Wang and Mendel, 1992c). By using SOM, Nie et al. (Nie et
al., 1993) have shown that the factorised basis functions in RBF are equivalent to the

membership functions in the fuzzy system. The combination of both techniques,
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ANN and FS is expected to improve the overall performance of an adaptive filter

system which is based on the Fuzzy Neural system.

4.1.1 Formal description of Fuzzy-CPN

The fuzzy neurons emit bounded signals from some minimum value to maximum
value i.e. [0,1]. At each instant, the n-vector of a neuron output defines a fuzzy unit
or fit vector. Each fit value indicates the degree to which the neuron or element
belongs to the n-dimensional fuzzy set. The state space of the fuzzy neuron that is the
set of all possible fuzzy neuron outputs is equal to the set of all n-dimensional fit
vectors. That state space are equal the to unit hypercube I"=[0,1]"=[0,1] x ... x [0,1],
which is the set of all vectors of length n with co-ordinates in the unit interval [0,1].
In this proposed model, the set of processing units, state of activation and the
output of each processing unit are described in this section. The processing units of
this proposed model are fuzzy neurons, defuzzifier neurons and defuzzifier control
neuron. These neuron models which represent the processing unit and which build
the Fuzzy-CPN model are defined in this section. In this model, a fuzzy neuron has
some characteristics :
® The process in a fuzzy neuron is the fuzzy process (Lee and Lee, 1975) F' in Eq
3.1 including fuzzification or fuzzy inference.
® The output signal is bounded i.e. [0 1] and the value of the y in Eq 3.3 is [0,1].
® The output of a fuzzy neuron is interpreted as the membership value or fit value
not as the activation value. Therefore, g in Eq. 3.1 is not interpreted as the final
output of a neuron.

® There is no inhibitory input to the neuron.



DEFINITION 4.1
A formal fuzzy neuron is a triple FN = {w, p, Q }, where :
* w=[w,..,w,] e R"is a weight vector of a neuron.
* p={p,,..,p,} € Risa set of parameters of the membership function.
¢ Q: R — Ris the fuzzy membership function.

A fuzzy neuron is depicted in Fig. 4.1.

Figure 4.1 Fuzzy-neuron (FN).

As shown in Figure 4.1, a fuzzy neuron operates on N-tuples of input x = [x,, ... , x,]

€ R and produces a real scalar i = [0,1] as an output. The weight vector w,
encodes the centre of receptive field C(w,, w,, ... ,w,) of this fuzzy neuron. The
spread of the receptive field is determined by a parameter ». These values, w and r
are adjusted during the training phase.

The output value p of the fuzzy neuron is defined as follow:
u=Q(dlp) 4.1
where the function 2 is the membership function with p as the set of the parameters
of the function Q and p = {r}. d s a similarity distance measure :

d=Y(xlw) 4.2)
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The value p, of the function 2 is not interpreted as the activation value, but a§-3-'the
meml_:lership value or the fit va]ue_of the input vector. The function ¥ is the similaﬁ;y_
function between x and w, This ﬁ.mction is a distance measure function such as]'.z'g_\
Euclidean Distance or Absolute Value Distance (Zhou, 1988). In this work, the
Euclidean distance is used as the similarity function. TFherefore, Eq. 4.1 and Eq. 42

can be written in the following equations:

-t
wed) = (1 + {G-Tdd)_)} (43)

where the function ‘() is :

P(x) = /Z (- @A)
=1

where r is the parameter of the membership function. In this model, a triangular
membership function is used, and r represents the farthest d_eviation of the
membership function. This membership funclidn_has been shown in Figure 3.11, The
Eq. 4.4 shows the basis function of this fuzzy neuron which is a radial basis function
form, therefore this fuzzy neural model behaves likes RBF-Net which is stated in Eq.
3.9. However, t_he difference is that the membership function used in this proposed
model is a triangular sh"ape and most of the RBF-Nets use Gaussian function to bu'ﬂ_d .
the neurons as shown in Eq. 3.9 and the learning paradigms.

This fuzzy neuron model is different from the fuzzy-neuron whicl) has been
deve!oped by Lee and Lee (Lee and Lee, .1975). The fuzzy-neuron in this mﬁdel
works as a rule gnd partitions the input space. This neuron :ivi]] be sensitive to a

: ]ﬁarticular rece;itive field of the input space. The centre of the _reccptivé field is
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determined by the weight \;ector w, and the fnemb;rship function parameters
determine the response of the neuron to the receptive field around the vector w..

A model for designing a membership function for a fuzzy neuron using
example based learning has been developed by Yamakawa and Fumkawa
(Yamakawa and Furukawa, 1992). The partition of the input and output space can
be achieved by employing an.adaptivc clustering techniqué performed by the ANN
model. The result of this clustering task is used as the parameters which build the

membership finction of the fitzzy system.

| : Connection to Fuzzy Neuron
N,

Figure 4.2 The relation of the input space and output of the fuzzy neuron

Figure 4.2 is used to give the explanation of th; mechanism of the fuzz} neuren. In
Figure 4.2 the input space is a 2-dimensional space (x,, x,). The area Af'is the
receplive .ﬁcld of the neuron N, and the area A, is that of nel;r':'_m N,. These reéeptive
fields are determined by r, and ¢, for N, and r, and ¢, for N,

~Let I(I, I,) be the input vector. Tt falls into the overlap region of Both
réceptive fields of N, and N,.  The fuzzy neuron N, produces i, as the output and

fuzzy neuron N, produces p,. Both p, and (, are greater than zero, because the input
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vector falls into the:r receptive ﬁelds L(L,, L)is another input vector and it falls the
N, Therefore the value of ,is greater than 0 and ].l1 is equat to zero It means lhat
only ﬁ.lzzy neuron N is active. The output values of‘ the ﬁxzzy neurons, 1.1, and |,
depend on the posmon of the mput vector in the receplwe fields of the fuzzy neurons.

Durmg the trmmng phase, only the paramelers of fuzzy neuron which
produces the highest output will be adjusted However, in the reca[l phase all fuzzy
neuron outputs are used to deten_'mme the final. output by applying a proper
deﬁizﬁcation technigue iﬁ arder to eombine the contribution of eech fuzzy neurbe in
deteneining the ﬂne:l':.'oulput. The 'deﬁ.uziﬁcatioe ta_.Sk is perf‘onne:d by a deﬁ.nziiﬁer

neuron. The defuzzifier neuron is defined as follow

DEFINITION 4.2~ |
| A deﬁJzziﬂer_.heuron is formalised by DN = {w, M, G)} where:
o w=[w, W, .., W,]is the weight .yecmr.
* M is the defuzzification method being used.
¢ (is the gain control of the neuron.
The ciefuzziﬁer neuron operates on n-tuples of input u = [:r,,. wan)] e R end

produces a real scalar y as an output:

y= G- M(uh\;)' (4'.;5)

Figure 4.3. Defuzzifier neuron (DN)
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In this p'rop'osed model the centroid defuzzification is used an'c_l'_ each component of

the Eq. 4.5 can be written as :
=ty 0y - (4.6)
=i '

The gaiﬁ. control (7 is controlled By the defuzzifier control node. This neuron has

non-adjustable weights.

DEFINITION 4.3
The defuzzifier control neuron is denoted by DCN :
* W = .[w,, Wy .., W] is the weight vcct_qr of DCN._'; These waigi:l.t's are
nun_—étijustab!e. - | |

The output of this neuron is:

a
il

=

4.7

iy
1

-

By corﬁbining the ANN lechnique.and FS approach, the proﬁoéed model ﬁ.érforms
tasks including: partitioning the input space and the output- space, defining the
mappir_ig association b_eji'.ween a fuzzy patch in the input space to the associatgd fuzzy
patch in the output space, buildir_név, the fuzzy membership fuﬁ_ction of _ _eac?t fuzzy
neuro.n,::'__and obtainih_'g the centroid value of each fuzzy neurén. In the'[éz_l\ming
procesé; the model génerates the.ﬁ;lzzy ncurons't:hhe number of.__which is equ.z.\.l..to the
numbe;}:of memhers}%ip functions, Therefore, it.is not necessél‘j' to pr'e-c’..'éﬁnc the
number. of rules am.:'l'_the membefship functions, The numi:_e_r of rules and the
membefﬁhip func(ioﬂ”parameters _Will be detcrrr.l.i.ned automei._tii'cally in the-?!—.e.arning

phase.”"




85

4.1.2 Counterpropagation para'd.igm

In this section, the propagation rules for propagation patterns of activitie_s through
the network of connectivities are described. The flows of TransmittinglFeedback
Vector, Transmitting Feedback Signal, Receiving Feedback Signal and Receiving
Feedback Vector in the Feedback Path and Feed Ifqmard Path are described as well.

In the proposed model, the Counterpropagélior_l Netwbrk (CPN) architecture
is chosen as the basic paradigm because it is simple, fast, and easy to train. CPN has
& good representation of the statistical model of the input space and in the network
mapping problem CEN has a closed form of the means square error. The capability
of CPN to perform fast learning is useful for some applications that need an on-line
learning mechanism, e.g. adaptive control, trajectory problem of teach and play
robot, adaptive filter.

Counterpropagation networks can be used for jmttern classification where
template matching and template interpolation are desired (Hechi-Nielsen, 1987).
CPN has been applied in many preblems such as Dolphin echolocation (Roitblat et
al., 1989), digital feedback equaliser (Manabe and Kaneda, 1991). n addition, it has
been implemented in a VLSI system (Kwan and Tsang, 1990). It can be used for
multidirectional associative memory (Naik et al., 1992) and data compression (Liu et
al., 1992},

The CPN architecture is built by combining the Kohonen self-organizing map
and the Grossberg Outstar architecture. The Kohonen self-organizing map performs
the clustering task and the Gmséberg Outstar performs the encoding Fnction. In
general, it can be stated that the CPN uses an adaptive lookup table mechanism to

perform the mapping while the table is obtained by training,
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To describe the operation of a typical CPN, let (v, ») be one of the
input-output pairs of a set of examples of a function ¢:
$:R" —>R'f', where y, =¢(x,) . (4.8)
Assuming that this set of examples cover all the characteristics of the input-output
relationship of the ﬁnctiom after training the CPN with this set of examp]es,. the
weights of the network are adjusted according to the training set in such a way that
the inputs are c!assiﬁéd into clusters, The final clusters can be modelled in the form of

a lookup table with N eniries, where the number ¥ is equal to the number of clusters

(Hecht-Nielsen, 1988).

) ¥ @ 3,
. gud out in
Input Signal —— * ; ;
v | Desired Signal
X \ Y

"~

Matching Process

Figure 4.4 Counterpropagation mechanism

Neurons in the CPN model are the Bi-Directional Model (BDM). This model of
neurans usually are used for the supervised learning. Learning in CPN is performéd
in two directions: feed forward path and feedback path. The input patters flows from
the input layer to .the midd]c_layer and the desired output pattern flows from the
output layer to the middle layer. They match in the middle layer as shown in Figure
" 44, The em', a feedback signal, flows from the output layer and is used to update the
w parameter of the output layer but they do not continue to flow to the lower layer as
in the hackpropégation model. The e,, of the output layer which is the error signal

that flows to the lower layer is used in the matching process at the middle fayer when
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the signal y_, of the middle layer arrives. This matching mechanisin is suitable to
provide a basic framework for a fuzzy neural system, which will be explained later.
The recall mechanism to produce the output of a single neuron in the middle layer of

CPN can be interpreted as :
IF the input is in cluster x, THEN the ontput is y,

In order for a CPN to perform mapping of a continucus function with gé:od
approximation, & large lookup table is requirea which means that a network with a
Iarge' middle layer 15 requ'lred (Hecht-Nieisen, 1987). By splitting a large middle layer
to the smaller SOMs (Lin et al., 1989), the number of reurons in the middle [ayer can
be reduced by a medium amount,

As shown by Wang and Mendel {Wang and Mende!, 1992a), a set of fuzzy
rules can be used for a universal funclion approﬂma{ion, in the proposed
architecture, the fuzzy set approach is incorporated into the middle layer of a CPN to
provide a smoother mapping. Thus, the output of the middle layer pives a
membership value of the input belonging to each cluster. The original Grossberg
cutstar layer is replaced by a layer of neurans which are controlled by a defuzzifier
control neuron. Therefore, the proposed model is iﬂemiﬁed as a Fuzzy-CPN modelf

Duting training, the modified CPN generates the fuzzy neurons from the set
of examples of input-output pairs. Each fuzzy neuron represents a fuzzy rule. Each
example of input-output pairs is uﬁ]y required to be presented te the input of the
network once and no iterative training is required.

In recall phase, the proposed network architeclun_a does not produce a cluster

as a winner in the middle layer, but produces the membership values of the input with
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respect to each class. By using proper defuzzification method, a continuaus function
can be obtained at the output layer. Moreaver, this mechanism is svitable for on-line
l::aming, because the system does not require iterative learning. Especially in a time
series prediction problem, after performing a prediction, the actual value of the next
titne series can be used to refine the network for predicting the future time series,

This method is different from the interpolative mode of conventional CPN
(Hecht-Nielsen, 1988¢). In the interpolative mode, more than one node in the middle
layer can win and the winning nodes are weighted with a fraction number and the
sum of all weighted number is equal to one, Therefore, there are the first, the Second_..
and the third winners. To perform the interpolative mode, a priori knowledge about
the problem is required to define these fraction numbers.

In the proposed network, by the use of fuzzy logic, the number of neurons in
the middle layer is greatly reduced which leads to shorter training time, and the
network has the capabilily to perform function approximation wilhoﬁt the
requirement of a priori knowledge. Similar work in combining fuzzy logic and the
neural system have been reported using differet approaches such as Fuzzy
ARTMAP (Carpenter et al,, 1992) and Fuzzy Min-Max (Simpson, 1993). Some
applications of these hybrid models can be found in the speech recognition (Jianxin

et. al., 1992),

4.1.3 Architecture of Fuzzy-CPN

This section deseribes the pattern of connectivity among processing units in the
Fuzzy-CPN, Since the number of fuzzy neurons as the processing unif.ﬁ___an__d-the

membership ‘fanictions are not pre-defined, there shouid be a learning mechanism
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which can add and delete fuzzy neurons automatically. It leads to the concepts of
self’ growing and self-organising in the neural network architecture, which has
capability to grow and prune the fuzzy neurons and build the network structure while
training is performéd (Fritzke, 1993a). This class of networks hgg more capability for
quantising the input space compared tu.I(ohonen approach (Fritzke, 1_993b). Some
self-growing netwark architectures have been developed, for example, CombNET-II
(Iwata et al.,, 1992}, Dystal {(Dynamically Stable Associative Learning) (Barbour, et
al., 1992), DIGNET (Thomopoulos, 1991) and by combining with Genetic
techniques which has been developed by Nolfi et al. (Nolfi et al., 1992),

The proposed network uses fuzzy leader clustering technique instead of
Kohanen ]aye'r for the middle Iayer,‘;nd Grossberg Outstar is replaced by the
defijzzifier neurons to store the centroid value of each class. By adding a defuzzifier

neurons, the defuzzification is based on the centroids obtained in the output layer,

The architecture of the network is shown in Figure, 4.5.

M
Middle Layer
Qutput Laye

I
Input Layer

..................

o Defuzzifier contrel

Figure 4.5 Fuzzy Counterpropagation Network architecture
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By using Eq. 3.13, the Fuzzy-CPN can be formalised as follow :

Grzpcen={h, Lo M, ML Oy, O, C) 4.9
where [ is the input layer for the n-dimension input space, A is the middle layer with
the maxtmum number of neurons equal to /, O is the output layer for the k-dimension

output space and  is the special control neuron. Then each component of G in Eq

3.14 are defined as:

I=[IP,Rip-r, Ti-r] _ __ | (4.10)
M = [N, Rp-ps, { Ths-0, Tu.c}l | (4.11)
0 = [DFN({Ros), Ro-ar, To-or] (4.12)
C=[DON, Ry-c, Teorl (4.13)

where the subscripts for the 7' and R represent the direction of the connection
between the component indicated by the subscripts. The model Gy, cpy Consists of
three layers of neurons, £, M and O in the Eq. 4.9 and-€ is the special neuron model
as defined in Eq. 4.13. The first layer 7 consists of linear processing units /P which
receive the input vector R, and the number of neurons in the input Jayer depends on
the dimension of the input space #. The second layer or the middle layer is a set of
fuzzy neurons FN, which are defined in Definition 4.1, The middle laye:r_..is a
self-growing structure. Buring the training phase, it starts with no fuzzy neur(:;n, and
will grow depending on the training patterns and the final number of neuron in the
middle layer is denoted by {. The input layer and the middle layer.are futly connected
by W1 ={T, R, .} Thereforc,"“.?"t_M is equal to &, for cacﬁ component in / and M.

The third layer is the output layer which consists of the déﬁ:zziﬁer neuron

DFN{) defined in Definition 4,2, The number of the neurons in the output layer is
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determined by the dimension of‘ tﬁé.output space, denoted by & The gain of the
defuzzifier neuron is controlled by tﬁé-_.defuzziﬁer control neuran, DCN which is
defined in Definition 4.3. The middle layer and output layer are both fully connected
by W2 = {T,,. Ropn) and non adjustable weights are used to connect the middle
layer to the defuzzifier control neuron which is {T,, .., Rgy,}. These non-adjustable
weights are set to be equalto 1.

W1 is the synaptic weight matrix which stores the information of the centre of
the receptive fields ¢ of each neuron in middle layer. Furthermore, each fuzzy
neuron at middle layer stores the value of farthest deviatioﬁ of its receptive fiekls r
and its learning parameter a. Each fuzzy neuron at the middle layer does not have
the same learning parameter. W2 is the synaptic weight matrix which encodes the
information about the output prototype of each fuzzy neuron, It will be used in the
defuzzification step for calculating the final output,

The first layer and the middle layer act as the clustering and membership
assipnment of the input vector. The output layer works as the defuzzification
mechanism to defuzzify the fuzzy output value of each fuzzy neuron in order to

produce the final output,

Cf;:s;erirlg and Membership Layer

A clustering network performs the clustering process by comparing th.e input pattern
with the templates which are stored as the weights of the network. Some neural
_metwork models can be used as a pattern classifier or for data clustering.
Self-Organizing Map (SOM) (Kohonen, ]990) is one sur;h model and Adaptive
Resonance Theory (ART) (Carpenier et al,, 1988) is another model. SOM using

Fuzziness Measures {Ghosh et al., 1993) has been applied for extracting an object

;
i
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from noisy image. The Kohonen clustering technique has several problems which
have been addressed by Bezdek et al. (Bezdek et al., 1992). The final output usually
depends on the order of ihe input pattern sequence and termination is not based on
optimising a particular cost function. Therefore, different initigl conditions produce
different results. These problems is solved by applying Fuzzy Kohonen Clustering
Network., The ART is another unsupervised neural network which can deal with
plasticity-stability dilemma, but will give bad performance when the input patterns are
cotoured by the noise (Lippman, 1987).

In the ART or SOM clustering strategy, the distance hetweeq the fnput_
vector and each template is used as the value that judges the winning cluster to
perform the clustering process. In the proposed model the membership value assigned
by the fuzzy neuron is used to perform the clustering in determination of the winning
template. However, it is different from the Adaptive Fuzzy Leader Clustering
proposed by Newton et al,, (Newton et al., 1992) that used ART to perform the

recognition of the input pattern for the clustering of arbitrary data patterns.

{xM

0
m {x

.m"'IXI

Figure 4.6 Membership function .

The classification and membership layer, which is the combination of the input and

middle layers, partitions the input spac» into clusters. Given an input vector x as
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shown in Figure. 4.6, the Euclidean distances between the input vector and afl
prototype vectors are calculated e.g. d,, and d,. By the Euclidean distances, the
membership value for each class can be obtained e.g. m°(x) and m'(x). In normal
operation, the membership value is then used to derive the t:;utput vector,

In the training process, the weight vector between a node in the input layer
and that in the middle layer, WI (as shown in Figure. 4.5) is adjusted to capture the
prototype of each class which can be used for the membership value decision. Only
weights which connect the closest cluster (highest membership value) with the input
vector will be adjusted. This middle layer works as a matching process, ie, each

cluster of input space has an associative output value, or it can be stated as ;
IF the input vector is in Receptive Field of fuzzy neuron n THEN Quiput is y,

1t is simitar to the rule in -ﬁluy logic term. All of those rules or matching process of a
fuzzy neuron are built up in the training phase automatically and they are not
pre-defined. This mechanism provides the network a capability to leam the
input-output pairs and to build the fuzzy rules according to the input-output
relaticnship.

Similar techniques to the proposed model have been developed such as Fuzzy
Elastic Clustering (Srikanth, 1993), Fuzzy C Spherical Cells (Krishnapuram et al.,
1992), Nearest Neighbour Pattern Classification method (Bang and Park ,1991). The
problem of those techniques are that the ANN needs a sufficiently large amount of
training. In the proposed model the clustering process is performed by using minimal

iterations,
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Since the optimal capacity of the network is affected by the number of

clusters (Turunini, 1990},' some mechanism must be provided to achieve the optimal

capability of the network to store the templates. With pruning and adding neurons '

and clustering in product space (Berenji, et al., 1993), the optimal capacity of ANN

can be improved. This strategy will be implemented in the learning algorithm,

Defuzzifier neuron and output layer

The neuron at the output layer of this proposed medel does not just perform the
summation over the input signal. Since the matching process at the middle layer does
not produce only one winner as the most matched fuzzy neuron, the output layer has
to provide a mechanism to combine the outputs of the ﬁxzéy neurons from the middle
layer. This combining process has to represent the degree of matching of each rule,
It is similar to the defuzzification process.

The defuzzification process is done by the defuzzifier neuron defined in
Definition 4.2 and defuzzifier control neuron defined in Definiion 4.3. The
defuzzification method used is the centroid method or the centre of gravity, All
weights which connect the defuzzifier contral neurons (DCN) to the fuzzy neuren in
the middle layer have values equal to 1. Therefore, the output of the defuzzifier

..control neuron is the total of the membership values to each prototype. The neuron

in the output layer which is defuzzifier neuron is rather different from conventional

neurons, due to the adaptive gain characteristic of this neuron. The gain of this

defuzzifier neuron is controlled by the defuzzifier control neuron.




95

4.2 Fuzzy-CPN Mechanism

The Fuzzy-CPN has different behaviour and learning algorithm compared to the
conventional CPNs, The similarities are only the basic paradigm, and the way of the
networks feed the training signals and the propagation of the signals in the networks,
This proposed network model is one of the k-winner take-all network. The
equilibrium state of this class of ANNs has been addressed by Majani et al. (Majani et
al, 1992). The middle layer has self-growing and self-organizing behaviours and it is
addressed in the following section followed by the leaming rule and recall algorithm
of the Fuzzy-CPN, Patterns of connectivity and the environment within which the

system must operate are explained in this section.

4.2,1 Adaptation mechanism

The complexity of learning is dictated by the number of middle neurons. Thus, the
number of middle neurons should be kept as small as possible to ensure low
complexity of fearning. A network information criterion (Murata et al,, 1992) can be
used to de:erming. the number of middle neurons in a multi-layer perceptron neural
network. The minimisation of an information criterion has been applied as well for g
competitive and self-organising networI; {Benaim, 1991).

From the implementation point of view, the fesource of computation is limited,
i.e. the number of fuzzy neurons in the middle layer is limite_d.. In order to achieve an
overall good performance bf the network madel any unnecessary component must
be removed trom the system without decreasing the performance. Therefore, .a
mechanism 1o optimise the use of the fuzzy neurons at the middie layer is introduced,

In this proposed model, this mechanism is achieved by constructing the middle layer
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as a self growing structure of firzzy neurons. Each fuzzy neuron is generated when it
is required and will be annihilated automatically when it is not used efficiently with
respect to the training palt.ems‘ During training phase, the Fuzzy-CPN performs the -
adaptation process in order to arrange the structure to tackle the problem. In most
ANN models, the component of Eq 3.13 and 3.14 are fixed. In this model, at the
iﬁitial time of the training, the number of fuzzy neuron. ar middle layer is not
determined. It grows during the training. This means that the compenent in Eq, 4.9
will be changed during the training process, Therefore, this architecture can be
classified as Structure Level Adaptation Neural Neiwork (Lee, 1922). During the
training process, fuzzy neurons will be generated, until all available source for
creating fuzzy neurons has been used. A fuzzy neuron which has not been used for a
fixed time will be annihilated, and then its resource can be used again. Since the
structure of the network always adapts during the training process, there are three
main activities of the neurons at the competitive layer. They are neuron gene ation,

neuron adaptation and neuron annihilation.

Neuron generation
A fuzzy neuron in the middle Jayer is generated when the network cannot classify the
current input vector according to the pre-defined criteria and there is still available
resource to generate a fuzzy neuron. Since the memory is limited, there' is a
circum.stances when it is not possible to penerate a fuzzy neuron, i.e. all memory that
is reserved for the fuzzy neurons have been used.

If the mode! has enough fuzzy neurcns to process the clustering of input.
spacé, then cluring.. the training phase the parameter structure of each fuzzy neuron

wili converge to a small neighbouthood region around a certain value in the neuron
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parameter space. If the neural network does not contain enough fuzzy neurons to

learn the clustering of problems the parameters will oscillate and a new fizzy neuron

should be generated. When 2 fuzzy neuron is generated, then it must be placed to the
position where it is most needed. To achieve this requirement in this model, the
current input pattern is used as the centre of the receptive field of t..he fuzzy neuron,
Therefore, it is assumed that the first pattern which causes the generation of a fuzzy
neuron acts as the leader of clustering. The neuron generation adds the component
M in the set Gg,..cpy. in Eq. 4.9. By generating a fuzzy neuron means that adding a

fuzzy rule in the fuzzy rule base,

Neuron adaptation

For a fuzzy neuron, the adaptation is the adjustment of W1 and the r value of the
neuron. It is performed only to the winning fuzzy neuron in the competition during
training phase. This mechanism adjusts the receptive field of the winning fuzzy
neuron in order to capture betier representation of the input vector. Basically, this
adjustment is performed to fune the parameter of the membership function in the
fuzzy term,

The adjustment of W1 and # are similar 1o the changes of the IF-part of a
fuzzy rule of a fuzey system. The adaptation of the defuzzifier neuron is performed
to W2 of the architecture. Since the value of W2 represents the consequence part of
.t'he tule, this adjustment tunes the THEN-part of the fuzzy rule of the system, It is
clear that the neuron adaptation provides. a mechanism to tune the membershiﬁ

function and the fuzzy rule itself. This adaptation has to be maintained so as not to

cscil]al_e, and this is achieved by using a debay function that control the adaptati.on”

gain,
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Neuron anuihilation

A fuzzy neuron will keep finding the position in the fuzzy neuron parameter space in
this clustering layer which is a competitive layer. If a fuzzy neuron d.oes not form the
correct interconnection among other neurons, then it will die in the early
development. The neurons compete with each other for resources and each neuron
tries to inhibit other neurons from taking exactly the same functional role that it plays
in the network. This behaviour is used to optimise the network. The anrihilation of
neuron deletes the component A in the Gy, ey in Eq. 4.9. However, the forgetting
mechanism that provides the ability to delete specified equilibrium points from a
given set stored equilibrium has to be performed without affecting the equilibria in
the given network (Yf.n, 1991), Therefore, to annihilate a ﬁlizy neuron, Some
criteria have to be satisfied. Firstly, the fuzzy neuron should not be a functioning
element in the network. It means that by deleting that fuzzy neuron, the performance
of the network will not be degraded Secondly, the fuzzy neuron is a redundant in the
network. It means there are two or more fuzzy neurons that produce a similar output
for the same input.

The first criteria can be checked by waiching the activity 6f a neuron. If the
cutput activity is fixed over a very long time, i.c.. the cluster never wins, 50 not
contribute to the function of the network, because it does not generate any information
in us output. To measure the output activity, the Activity Variance (AV)can be
used (Lee, 1992). The Activity Variance is related to the information content
of the output signal of & neuron The entropy of the neuron can be used to describe
the activity variance. If this value is zero it means that no'information is generated by

this neuron and it does not perform any signal processing function, Therefore, it can
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be removed from the network. A neuron which is never used or inefficiently used
can be evaluated using the entropy of the output of that neuron. [Fthe entropy is less
than & minimum level, then the neuron will be annihilated.

For the second criterion, it can be checked by watching the dependency
between output of the fuzzy neurons. If iwo neurons are totally dependent, then one
of the neurons can be annihilated without affecting the performance of the network.
If the weight vectors of two neurons are very close to each other then one of them
can be eliminated.

Hence, to optimise the middle neuron without violating those two cr_iteria, the
penalty technique is applied. In applying the penalty technique, some cost finction
can be used. According to Matsuyama (Matsuyama, 1992) there are many cost
functions such as competitive learning with conscience and entropy minimisation,
which have been applied as the penalty measurement for the competitive mechanism.
The amount of information gained during the training phase is one of the important
characterisations of learning process. Measuring this information gain can be
obtained by the statistical distance between pre and post training (Lebin et al., 1990},
Since a middle neuron acts as a rule, the minimum entropy can be used to find the
infermation gain from the trainiﬁg examples. This method has been used for rule
Ieal;ning from examples in the area of knowledge base systems (Pitas et. al,, 1992),

In this mcde],. for simplicity of implementation, frequency occurrence which
determines the gnlroby is used. Therefore, the learning parameter will be adjusted
differently with respect to the cost function for each neuron which involves in tﬁe

competitive learning mechanism.
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4.2.2 Learning mechanism

In this section, each component of the Parameter Adaptation Automata as stated in
Eq. 3.10 for the neurons in the Fuzzy-CPN is to be specified. The proposed model
appiies the learning mechanism which is a model of the constructive learning by
specialisation (Refenes, 1991). A fuzzy neuron specialises to a particular receptive
field in the input space to prod;ce the assqciate output value.  The learning

mechanism of this ANN model is pictured in Figﬁre. 4.7,

fuzzy neuron Qutput
as fuzzy rule

@P Matching Pracess Y

Centroid

Figure, 4.7 Learning mechanism in Fuzzy-CPN model

In Figure 4.7, the learning mechanism controls the generation of each fuzzy neuron
from the numerical input-output data (X,Y). Each fuzzy neuron acts as a fuzzy rule.
On every representation of training pattern (X,Y), which is represented by a dashed
line in Figure 4.7, the learning mechanism automatically paﬁifions the inpu:t. space and
generates the membership function for each data without any a priori knowledge. It
means that ﬁt this step, the IF-part of the:_fuzzy rule is being built, By performing a

matching process with the output vector, the learning mechanism builds THEN-part
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of the fuzzy rule. The matching process of the firzzy neuron is performed according
to the it of each fuzzy neuron.

.Therefore. a fuzzy neuron at the middle layer stores the information about the
[F-part. which és the mean of the c.luster and the farthest deviation of the cluster, The
boundary of the cluster has the membership value equal to zero and the centre of the
cluster has the membership value equal to one. The THEN-part is encoded in the
W2 as the centroid values of each fuzzy rule’s output, i.e. the output value of each
fuzzy neuron.

This model has some important parameters which are used to represent the
conditions and relations of a pattern in the storing mechanism,

Deﬁn_es

#, the maximum deviation of i* cluster from the centre of " cluster,

cj..i the prototype vector of i* cluster of j dimensions.

X; the input vector of j dimensions.

¥, the target vector of k dimensions.

The learning mechanism can be formulated as follows ;

Step |, Start with O number of fuzzy neurons.

Step 2. New input vector X, is applied to the input layer,

Step3. The output of each fizzy neuron at middle layer is calculated.

- Step 3a. The Euclidean distance ds from the input vector to all prototype vectors,

each of which is stored in a fuzzy neuron in the middle layer that exist are

d= [3 (cr- ' (4.19)
Fi

calculated.
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Step 3b. Each fuzzy neuron in the middle layer calculates the membership value of

Step 4.

Step 5.

the input associated with the cluster, which are represented by fiuzzy
neurons that has been created. For ease of implementation, the triangular
shape for the membership function, y, is used. This function is rather similar

to the membership function proposed by fuzzy MLP (Pal, et. al. 1992)

-
Wi = (1 + (—(h 4 d;))) (4.15)

The fuzzy meuron which produces the highest membership value is
determined. It is indexed as win. At this step the competition mechanism is
executed.

The Parameter Adjusting Function & in Eq. 3.11 for this model is applied in
this step. For this model, the counterpropagation parad'igm is applied,
therefore, the weight vectors from both side W1 and W2 that connect to
the fuzzy neuron which produces the highest output is updated, according

to:

wizer = w1 - px-ms)

row = wag + By - w2sit) | @.16)

where B is the learning parameter in the general. This value is updated

automatically for each iteration.

p=—2 4.17)

where ¢, is the Parameter Control State of each fuzzy neuron, which has the

initial value equal to 1.0, In this model, to update the value of a for each
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training, the Parameter State Transition Function o in Eq. 3.12 is defined in

order to calculate o jteratively by :

=1
a”f’,‘,"=(—1-+l) " (4.18)
o ol ‘

In this 6ase, the farthest deviation for the winning fuzzy neuron is updated

according ta ;

n 2
pow = ol le (wigen, -mngt) (4.19)
2 |

This step is the neuron adaptation mechanism. The fuzzy neuron adjusts its
receptive field which is determined by the values of the farthest deviation 7,
and the centre of réceptive field which is encoded in the W1, The response
of the fuzzy neuron to future learning, g, is updated as weli, Therefore, if'a
.neuron has learnt more, the neuron will be less responsive to the learning,
and will adapt with a very small change. The P value always decays. Thus it
guarantees that the updating of the weight vector will not oscillate and will
converge to a final value. This adaptation process is shown in Figure 4.8 by

using 2 dimensional input space in x, and x,.

X, 4 "

v
x

Figure 4,8 The receptive field adaptation of a fuzzy neuron
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Let 1 be the input vector, in Figure 4.8, as shown by a dot near the
boundary of the circle. C°is the centre of the cluster before the adaptation
ant_:l C" is the centre of cluster after the adaptation. +* is the farthest
deviation of the cluster before adaptation and the /" is the farthest deviation
of cluster afier the adaptation. Assuming fhat the. fuzzy neuron has just
been generated, thus o is equal to 1. This fuzzy neurons wins the
competition, Therefore, this fuzzy neuron has to be updated. Since o is
equal to I, C" is just the midpoint between C* and I, ngever, the farthest
deviation of cluster, #* has to be updated, In updating the farthest deviation
of cluster, the consistency bet@een the area which is covered by the
previous parameters of fuzzy neuron and the new parameter should be
maintained. Therefore, the pre\.fious area of cluster has to lie in the area of

the new cluster. It is shown hy the circle with the dash-line. Using this

. approach, if a fuzzy neuron is activated by an input vector, after updating

the parameter of that fuzzy neuron, the same input vector will still be able ta
activate the same fuzzy neuron. The difference is only the membership
value which is produced by that fuzzy neuron with respect to the same input
vector,

When executing Step 3, if all fuzzy neurbns prcd.uce zere as the output, a
new fuzzy neuron will be generated and the input pattern is used as the
centre of the receptive field of the fuzzy neuron. In this case, the farthest

deviation is set to a default value, p.

Wl rew =X; u}zncw = Y; e — P o' = ] (420)_
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Step 8.
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This step is the neuron generation process. The leaming parameter p
determines when a fiuzzy neuron should be generated in the learning
process. It is similar to the vigilance parameter in the ART model
{Carpenter et al,, 1986). Using a smaller value of this learning parameter,
the network tends .to produce more fuzzy neurons, t.e. it tends to generate a
new fuzzy neuron, when an input vector is applied.
When Step 6 cannot be accomplished because of all resources that are
required to create a fuzzy neuron have been used, i.c. there is not enough
memory to create a new fuzzy neuron. The fuzzy neuron which has the
highest o value and exceeds a pre-defined threshold, oy, is chosen.  And
the parameter of this fuzzy neuron is set tobe :

Wiem=x . Wzem=Y ., r™m=p ;a=l 4.21)
This step is neuron annihilation process. A fuzzy neuron which is not used
so much should be annihilated in order to decrease the learning complexity.
It is performed by finding the fuzzy neuron which has the highest value of ct,
The higher value of ot means that that fuzzy neuron has not won very often.
Therefore, it can be deleted because it does not contribute 50 much in the
competition process in the training mechanism. However, a threshold for o
has to be pre-defined in order for the annihilation process to Be executed to
the fuzzy neurons which have the o value more than the thresﬁoid.
In the situation when Step 7 cannot be performed, i.e., there is no fuzzy
neurca which has the o value more than the threshold, A fuzzy neuron is
chosen by finding the minimum value of §; of each fuzzy neuron to the input

VECtor.




S;:[ f}(m,',w)q)’J -r (4.22)
s

These distance are shown in Figure 4.9. The distance S is the distance to
the Shell of the fuzzy neuron. This similar distance caleulation is applied by

the Fuzzy c-Shells Clustering techniques (Déve and Bhaswara, 1992),

)

¥

Figure 4.9. The shell distance §

Step 9. Step 2 through Step 8 are executed for al! other training pattefns.

After finishing training the fuzzy neurons at the middle layer, the input space
is cov_ered by clusters as shown in Figure 4.10. Therc_ are two main learning
..parar.ﬁeters which determine the final result they afe p and threshold of o or G It
has to be defined in the beginning of training. However, by setting p equal to 0 and
the fimicof o equal to 1, i, there is no neuron annihilation perforr-ned. learning can

stiil  be executed and the sesult is  the conventionnl CPN.
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X,

B
o

_ Figure 4.10. Training result of a 2-dimensional input space

Figure 4.10 shows a typical final result after a Fuzzy-CPN has been trained through
all training patterns which are assumed to cover the input space. In Figure 4.10 esch
circle represents the receptive field of each fuzzy neuron at the input space. There
are many overlap areas of the receptive fields of the fuzzy neurons. However, during
the recall mechanism only one neuron is activated which is a neuron with the highest
activation value as in the conventional competitive model, All fuzzy neurons which
.haVc the receptive field covering the input vector are activated in different degrees.
The defuzzifier neurons determine the final result. Bt makes this Fuzzy-CPN model

different from the other competitive models.

4.2.3 Recall mechanism

This section describes the recall mechanism of this Puzzy-CPN. The recail
mechanism can be implemented in parallel processing, because in the middle layer
there is na.requirement to find the winning neuron like.'.in the other competitive
model. Each fuzzy-neuron processes the input vector and produces the output as the_
membership value to the defuzzifier neuron without beiﬁg aware of the activation
values of the other fuzzy neuron. It is different from the conventional CPN or any

other ANN models with competitive paradigm, which produce the output by finding
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the maximum output. Therefore, it reduces the complexity of computation in the
middle [ayer when the recall phass is executed.

The recall mechanism is shown in Figure 4.11.

Input spaca fuzzy neuran Cutput
X

as fuzzy rule

r

Space

Defuzzifier

QoY

Figure 4.11 Recal! mechanism

As shown in Figure 4.11, while the Fuzzy-CPN is performing recall operation, an
input vector is given. Then, the middle layer calculates its membership values to each
class using Eq. 4.9 and Eq. 4.10. These values {u,, M, ... , 1) ﬂéiv into the
defuzzifier control neuron and the output layer in parailel. At the same time the
centroids values are supplied to the defuzzifier neuron. By using the centroids which
are encoded into the W2, the output layer caleulates the final output valve by
activating the defuzzifier control neuron, Al output values of the fuzzy neuron flow
into the defuzzifier control neuren as well, |

In producing the output of the fuzzy neuron, the output is not superimposed
like in the conventional ANN model. The output has to be averaged with respect to
all the rules. The natural alternative is the fuzzy centroid defuzzification, It directly

computes the real value output as normalised convex combination of fit values. At
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the final stage, the defuzzifier neuron is used to quantise the output. The output of
the system has to be able to represent the presence of all rules in the rule base.
After obtaining the cutput of the middle layer, the final output of defiyzzifier

control neuron is :
Ollfp(_w = i [1¥] (‘123)
=l

where p is the number of fuzzy neurons, p is the input vector to the defuzzifter

coatrol neuron. Thus the output from the output layer is equat to:
Owty = G(i} {1 Wz,k)] (4.249)

where G is the gain factor which corresponds to the output of the defirzzifier control
neuron;

1

= 25
Owlpcy (4.23)
Hence the cutput of the k™ output nodeis:
i MW 2e)
Outy = B ——u (4.26)
' i Y
i=l

This recall mechanism is rather similar to the output calculation which is performed
by the fuzzy system, The difference is that the inference process and the flrzzification
are performed automatically together in the fuzzy neurons and the process of
genéraling and tuning the membership functions are performed automatically by

feeding the network with the input-output patterns,
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4.3 Function Approximation in Adaptive Filter

Although an ANN has capability for functioq approximation, there are still many
problems in implementing the ANN model for this task. The main problem of the
mapping function is the condition when the network underfits or overfits the training
data. There is always a trade-off between the generalisation and the complexity of
the network (Peggio et al, 1990). Generalisation is not possible if the mapping is
completely random (Mostafa, 1989),

Basically, an adaptive system performs adaptation in two steps (Currie,
1992). The first step is the prédiction of the output value (a priori output) with
respect to the input value and the current state of the system, including static and
dynamic states. After that a particular error correction algorithm is applied with
respect to the desired signal according to a quality criterion in order to minimise the
error between the a priori output and the desired signal. A prediction of the & p_riori
output is performed by applying a functicn approximation of the input-output
relationship.  Therefore, a function approximation capability of the adaptive
precessing should be considered as the main aspect in designing an adaptive system,
Since a better prediction mechanism will yield an a priori output closer to the desired
signal, a smaller error is produced, Hence, it makes the adaptive system converge
faster and has a lower convergence error,

Let £ te the transfer function of the system that will be modelled by using an
adaptive system, Function f can be the transfer function that performs mapping from
the corrupted signal space to the noise-free signal space in the signal correction
preblem, or fiom the input space to the output sbace of an unknown system for

system identification. The simplest structure is a time-domain adaptive filter with
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FIR structure. The outﬁul value p(f) is a linear combination of the input énd the
delay input signals [x(n), x{t-1), ... , ((¢-£)]:
£ Ge(), x(t = 1), ., x(t— £, 5) = y(9) 4.27)

The adaptive system produces j}(r) as the a prioni output according to the value of

[¥(D), x(¢-1), .., x(?-%)] and the state § of the adaptive system. Basically, the adaptive

system builds the function approximation of by irﬁplementing a function g:
g1 (Xt~ 1), Xt~ B, ) = $0) (4.28)

If the adaptive system can build the function g which approaches the f, .the
output of adaptive Filter i.e, output of function g will be close to the output of J.
Since the function g approaches the firnction /7, the error &(f) will be minimised and
hence produces a small convergence etror. At each state of adaptation, the system
will produce only a small error and it appreaches the convergence point faster. Tt
is clea.r that the finction approximation of g which maps the input space to the output
space is the important part of the adaptive sysiem, If the function approximation is
very pood, the error produced by the system will approach to zero. Therefore, the
error correction algorithm becomes less an important consideration in designing an

adaptive system.

This actual mapping function f can be a non-linear function. Therefore, anon

linear processor such as artificiat neural netwark (ANN) or a fuzzy system (FS) or
combination of both of them, which approximates the function f by using non-linear
function g, will produce a better result in the non-finear relation of input and output

of the system than a conventionai structure which empioys a linear combiner,
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Figure 4,12 Mechanism of adaptive system

yit)
x{t-k)

The black-box appfuach which is a model-free system is more appropriate in the
condition when the relevant mathematical model cannot be built, especially for
system identification task. Furthermore, in the condition when the details of the
dynamic states of the system cannot be obtained, and only the inputs and outputs of
system are available, using a black-box approach, such as a fuzzy system, is more
appropriate for function approximation, It is encouraging to implement thé
Fuzzy-CPN model in order te perform the function appreximation by learning the
input-output data of the system. However, it has to be ensured that the Fuzzy-—CPN

will be able to perform the continuous function approximation,

4.3.1 Fuzzy neuron as fuzzy rule

Basically, a FS performs the mapping from the input space to the output space. Ina
conventional FS the mapping is controlled by the fuzzy rules and the fuzzy inference
process. The input space and the output space are divided .into 1, fuzzy regions (j = I,
2, ..., n) which forms the fuzzy hyperbox, if every fuzzy box of the fuzzy rule base
has a rule then there are N =1, x r, x ... x r, rules in the fuzzy rule base. The number
of fuzzy rules can be a huge nsmber if the s and n are Iarge.. However, nat all rules

are used to determine the final output. There are only a small fraction of these rules
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that are reafly used in the decision of final output. The fuzzy rules which are used in
the determination of the final cutput are called the active rules and they are applied to

the particular input vector, Hence an active rule is defined as follows (Wang, 1952a);

DEFINITION 4.4

The 1 fuzzy rule in the fuzzy rule base is active forx € O :
- i mj(x) ¢ 0 forall j=1,2,..,n
The mechanism to activate a rule from the all the rules is implemented using a fuzzy
neuron in the Fuzzy-CPN (FCPN) model to control the mapping procesé: from the

input space to the output space. The fuzzy neuron implementation has to be able to

provide a basic framev-ork to satisfy the function approximation task.

Figure 4.13 Fuzzy neuron as fuzzy rule

In Figure 4.13 , each:mapping is defined as the mapping from a fuzzy patch in the
input space to ano:ther fuzzy patch in the output space. A ﬁlzig.f.:l.'leuron is
represented as a circle which connects the input .spa.ce to the output space by an arc.
A fuzzy neuron controls a mapping from a fuzzy patch in the input space to the

corresponding fuzzy patch in the output space. Each neuron will be sensitive to a
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particular receptive field and produces a response if the input signal is in the area of
the receptive field of that fuzzy neuron, Thé sensifive area of a fuzzy neuron is
obtained during the training process as explained in the previous section. The fuzzy
neuron will become active or excited i.e. the output is not equal to zero, when the
input vector falls into the area which the neuron is sensitive to. Therefore the neuron
performs the partition of the input space, because each neuron is only sensitive to a
particular rec.eptive field. funhermare, the fuzzy neuron performs a mapping process
which can hé assigned arbitrarily. This assigning precess is achieved in the learning
process accordi.ng to the input and output pairs as the training data by matching the
flows of input vector and desired vector of the training pattern at the middle layer.

The Fuzzy-CPN performs a non-linear transformation, and it maps fuzzy sets
to fuzzy sets. It behaves as the associative memory of the input space and the output
space. Given an input vector in the input space the fuzzy system will produce a
corresponding vector in the output space. Generally, the Fuzzy—IICPN system consists
of a cul]lr..-;:tion of different fuzzy neuren associations. All fuzzy neurons collectively
att_e_mpf .tu covér all area of the input space in erder to satisfy the mapping from input
space to the output space.

Since a fuzzy neuron performs the functions of a fuzzy rule that can be stated

as:
[F an input is in area A THEN output will be in area B.

As shown in Figure 4.13, when an input vector falls into region A,.neuron n, will *
become an active fuzzy neuron because it is sensitive to the area A in the input space.

Henee, it yielﬂs the output value that is more than 0 and triggers the mapping process
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to the area B as the mapping destination.  This mechanism is similar to the active
rule in a conventional FS. The output of the neuron represents the degree of fit value
of input vector with respect to the mule in the fuzzy term.

Since there are some areas which overlap, there may be more than one fuzzy
neuron which fire, It is different to a competitive learning neural network, which
only uses one neuron as the active neuron, or & backpropagation reural network
which fires all neurons with aiﬂ'erent activation levels, Since there are more than one
neuron which are active but not all of the neuron actives when a particular input is
being applied, the system becomes more robust and has lower complexity in
corﬁparison to the co.mpetitive neural networks and backpropagation neural
networks.

Actually, the fuzzy inference process can be enriched by connecting more
than one fuzzy-neuron in a special relationship. Several new operations of fuzzy
neuron can be applied, such as AND, OR which have been used in the Adaptive
Neural Fuzzy Inference System (ANFIS) (Fang, 1992). However, this inference
strategy increases the complexity of the learning mechanism and in this ANFIS

moedel, the number of rules has to be pre-defined.

4.3.2 Function approximation by Fuzzy-CPN model

As stated by Wang (Wang, 1992), in order te satisfy the Stone-Weierstrass theorem
which proves that a Fuzzy System is a universal function approximator, some
assumptions have to be satisfied. This Fuzzy-CPN model can satisfy those

assumptions and it will be explained as follows.
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ASSUMPTIQN 1
* The fuzzy regions for the input and output spaces can be arbitrarily
defined,
This assumption can be achieved because the receptive field of the fuzzy neurons and
the centroids of the defuzzifier neuron can be assigned freely to cover the input space

and output space with arbitrar}; size and shape.

ASSUMPTION 2

The membership finctions |.Lj- can be any continuous functions from
[a; ] to [0,1] for j=1,2, ..., n (i.e., for inputs) and from (o0, ) to
[0,1] forj=0, (i.e. for output), however ].1} must satisfy the following

canstraint
W) =0 forx; e RG, i=1,2,..,K,7=0,1,...nwithxg =y

This constrains means that the membership value of antecedent for a rule cannot be
zero if the actual input value of this antecedent falls into the required region of the
rule. Tt can be easily achieved because whenever the input vector falls into the

receptive field of the fuzzy neuron the outputlis always greater than 0.

ASSUMPTION 3

Any rule can be assigned to any box of the fuzzy rule base.
Since the centroid vatue of each defuzzifier neuron can be freely assigned and each
fuzzy neurcn at the middle layer can.be freely connected to the defuzzifier neuron this
assumption is satisfied easily,

Therefore, after satisfying those assumptions, the same steps to prove the
function approximation theorem can be established in a similar way as proposed by

Wang (Wang, 1992a). This existence theorem shows that there exists a way of
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defining fizzy regions, a way of choosing membership functions, and a way of
assigning fuzzy rules to the boxes of the fuzzy rule base, such that the resulting
mapping approximates an arbitrary non-tinear continuous mapping with any accuracy,
This existence theorem is similar to Kolmogorov theorem in ANN model
(Hecht-Niglsen, 1987).

In this'; chapter, a new ANN model has been developed. This model s called
Fuzzy-CPN using the Counterpropagation paradigm by incorporating fuzzy set
approach at the middle layer and by implementing the fuzzy leader clustering
technique. This medel can be trained fast and has self-growing structure, During the
learning phase, this model generates the | fuzzy neurons and arranges them by
adaptation i order ta perform the mapping from the input space to the output space.
The ﬁ.lzzy neurons work as fuzzification and inference process in conventional FS. In
the recall phase, by employing the defuzzifier neuron at the output layer, the final
output is obtained in the parallel precessing manner. This ANN architecture is used
as an basic building block of the adaptive filters to perform function approximation,
In the Chapter 5, this ANN mode! is used as an adaptive filter in the signal estimation
class and be applied to solve the time series prediction. In the Chapter 6, this ANN
model is used for another class of adaptive filter that is the signal correction and is

applied to a noise elimination system.
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Chapter 5

Non_Linear Function Approximation

Function approximation is one of the ANN capabilities. Function approximation and
time series prediction are important in an adaptive system as stated in Chapter 4, It
has many applications such as chemical plants, cardiac pacemakers, vehicle conirol,
sonar, manufacturing, music recording, stock market and power grids controls (Jones
et al,, 1989). An application of the function approximation using ANN is the control
of a backing truck (Nguyen and Widrow, 1989, Kosko 1991). In this application the
ANN can learn how to back a truck to a loading dock. In this chaprer the
Fuzzy-CPN model is used to solve the non-linear approximation problem. By
employing the learning mechanism of the Fuzzy-CPN, the input-output pairs of the
approximated function can be captured. In addition, by implementing the Fuzzy-CPN
model as an adaptive system for the signal estimation class problem, the

Mackey-Glass chaotic time series prediction is performed.

5.1 Function Approximation Problem

In Figure 3.1 in the function approximation task, given a set of exami::!es {(x, 1) (x,
WPheos (2, 1)) where y= fix,), the system has to approximate the function £ It can be
obtained by statistical technique of the model-free approach. The generalisation is
performed when the input value is not in the set of examples, .. at the point between

the examples,
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Figure 5.1 Function approximation

The simplest metiod is by employing the regression technique to all patterns but for
some applications this technique cannot be used because it requires the basic
assumption of the approximated function, Moreover, a statistical method requires an
a priori knowledge about the function. However, in some applications, the
input-output pairs cannot be obtained for all patterns, i.e. there are only x(%) and p(k)
that are available at time index &, Therefore, the local information at time index & has
to be used. It leads to the use of the model-free function approximation which can be
performed by an artificial neural network, fuzzy system, or the combination of both
of them, The neural network and the fuzzy neural metwork require the learning
mechanism to collect the knowledge about the function /. i.e. the input-output pairs

are presented into the system.

5.2 Comparison to another ANN Model

In order to compare to the conventional CPN model, the following function is used ;

x1=x*+0.03 ;forx < 0.5
Soy=1 . Gy
r©-x forx=0.5
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The function that is represented in Eq. 5.1 is chosen due to its non-linearity and
discontinuity characteristic. To test the performance of the network, 1001 points of
the function are uged, they partilibﬁ the input spacé into the same size. The input
pattern is {x,, x, + ¥ 000)} bounded at [0,1] and the output pattem is Uo, Vs e s
Yoo} The actual function is shown iﬁ Figure. 5.2. This function is non-linear and has

a discontinuity at ¥y,

9lx} o,

i i

a2 0.4 0.6 0.8 ¢

Figure 5.2 The function of Eq. £.1.

In order to perform the comparison the mean square error (MSE) is used. It is

calcuiated by:

=

MSE = 22 Gu 1)’ (5.2)

where N is the q}jlrnber of testing data, y is the desired output value and  is the

estimated output produced by the ANN model.
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The training is performed to the proposed madel, using 50 fuzzy neurons at
the middte layer. The p value is equal to 0.01 and o, value is equal to 0.01. The
Fuzzy-CPN (FCPN) structure is shown in Figure 5.3. It shows that the maximum
number of fuzzy-neurons at the middle layer are fully exploited. =~ However, during
training, the number of fuzzy-neurons and their connections at the middle layer are
varying from time to time and only during the recall phase are the number and the
connections are fixed. The defuzzifier control nenron is used and denoted as the big

circle in Figure 5.3.

Qutput

Figure 5,3 The Fuzzy CPN used

The training patterns {{xy), - . (00000’ 1€ presented in the random order to
the Fuzzy-CPN, After 7500 pairs of pattern have been exposed to the network, the

training is stopped. After that, the input pattern is supplied to the network and the
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netwark produces the output which approximates the given function. The result is
dep.icted in Figure 54. In Figure 5.4, it is shown that the Fuzzy-CPN can
approximate the function with acceptable error, and the MSE is equal to 4.906 x 107,
It shows that the Fuzzy-CPN can track the ﬁ.lm;tion Ax) in most areas. The
discontinuity of the function can be approximated as well by the Fuzzy-CPN without
smoothing the function,

By assuming that the training patterns are represented in random order
uniformly, the training patterns are assumed to be fed into the Fuzzy-CPN not more
than eight times for each input-output pattern. Therefore the training time is very
short. The .experiment is performed using 486X 25 MHz machine and the training

time is just less than one minute.

o.0s%

| H .
»

02 0.4 e 0.8 1.0

Figure 5.4 Approximation of Eq. 5.1 using Fuzzy-CPN
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In order to perform the comparison in approximating a function, the two modes of
Counterpropagation network are used. By using the same training pattern set the
training is performed to both networks. The training patterns are presented to the
network uniformly in random order. It is assumed that the representation has normal
distribution. Therefore, it is able to cover the entire input .space. However, for
comparison it is assumed that the Counterpropagation Network (CPN) and CPM in
interpolation mode (ICPN) are trained in the best way and yield the best result. For

the Fuzzy-CPN (FCPN) the result is the average result after several testing cycles,

5.2.1 Comparison to Counterpropagation network (CPN)
The CPN used in this comparison has 1 neuron at the input fayer, 50 peurons at the
middle layer and 1 at the output layer. It is shown in Figure 5.5. The middle layer

performs the competitive network using SOM paradigm.

Figure 5.5 The CPN used
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Training the CPN is still stow compared to the proposed mode! (Fuzzy-CPN). In the
conventional CPN, the training has to be performed in order to build the Self
Organising Map in a stable way. It requires many iterations before the SOM at the
middle layer becomes stable, In the experiment, the number of iterations must be
more than 1000, It takes about 10 minuteg by representing all training patterns. In
the Fuzzy-CPN model the number of iterations can be only 8, as long as the input
space has been covered by the input pattern, and the network can approximate the
function and produce acceptable result. The result of the approximation by CPN is

shown in Figure 5.6.

o.ost
gtx) °
0.0
0.1
- 1 1 } » X
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Figure 5.6 Approximation CPN to the Eq. 5.1

Assuming that this set of examples cover ali the characteristics of the input-output
re]ati.onship of the function, after training the CPN with this set of examples, the CPN
build a look up table which has the number entries equal to the middle layer. It is

equal to 50. Therefore, the output are 50 different discrete values. CPN builds the
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SOM according to the input distribution. Since the input distribution is assumed to be
uniform, the input space is partitioned in the same size. To the best approximation,
the CPN model covers the i'ﬁput space with the same distribution of the input pattern.
In Figure 5.6, it is shown by the same size of the partition at the x-axis, Each -
partition of the input space has an associated value at the output space. Therefore,
the CPN produces a non-smooth function approximatién. The approximation of

CPN produces a jagged line, In this experiment the CPN yields MSE that is equal to

1.082x10°,
y Y,
Y2 il v |
y - )
1 y
N1 1 :
T x > x
A, eﬁ?ﬁ A,
| e-—_——a A
oM
CPN Fuzzy-CPN

Figure 5.7 The difference approach between CPN and Fuzzy-CPN

Figure 5.7 shows the difference between the conventional CPN approach and
Fuzzy-CPN (FCPN). The areas N, and N, represent the output field and receptive
field of each middle neuron in the input-output space. In this example, it is assumed
that there are only two neurons in the middle layer that are used‘. Using conventional
CPN, the fimction prodﬁced-by the conventional CPN is a discrete function because
the CPN builds the look-up table only with 2 entries, where {(A, - y,), (A, = )}
A, and A, represénts the areas in the input space. In activating the middle layer N,

and N,), the competitive paradigm is implemented and the neuron whic.}.i will be
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triggered. is only one n'éurc.l.r.l, .i'.é., N, or N,. Both of them cannot be activated at the
same time, Therefore, if lhere_ are only two neurons at the middle layer, the CPN
preduces only two ﬂiﬁ‘erent values of the output, t.e. y, ory,

The proposed mode! builds the set of fuzzy rules {{(A, — ), (A; =)}, In
the recafling phase, the competitive paradigm is not imnplemented any more. It is only
implemented in the learning phase to build and tune the membership functions and
fuzzy rules. During recalling process, each rule which is implemented by the fuzzy
neurcn at the middle layer is activated in different degree and the neuron at the
output layer blends them to produce a smooth line from y, to y,. This approach yields
an interpolation mechanism between the training patterns. It is shown that by
implementing the Fuzzy-CPN, a smoother function approximation ¢an be achieved by
using less middle neurons. Hence the generalisation can be achieved without

sacrificing the computational rescurce.

5.2.2 Comparison to the Interpolative CPN (ICPN)

A Tuzzy-CPN is similar to the CPN in the interpelative mode (ICPN) in the sense
that more than one neuron in the middle layer which js active and coniributes to the
final ouput. In the infi_érpolative mode, the output value of CPN is ;

_my ik sy (5-3)
my -z -ms ’

where y is the final output value, and Yu ¥y and y, are the output of the active
neurons, Three neurons which produce three-highest activation values, m,, m, and
m, are the fractional values which are bounded [0,1]. These values usually are

calculated by using some heuristic approach (Hecht-Nietsen, 1987),
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However, the Fuzzy-CPN is different from the interpolative mode of
cﬁnventional CPN in performing interpolation between points in the output space, In
the interpolative mode, in performing the interpolation between entries in the look-up
table the CPN, uses linear interpolation between them. When the CPN receives arl
input vector and activates the middle layer, there are more than one neuron in the
middie layer which win the compe.tition between them and the winning neurons are
weighted with a fraction number. The sum of all weighted numbers is equal to one.
Therefore, there are the first, the second, and the third winners. According to
Hecht-Nielsen (1988c), in order to perform the interpolative mode, a prori
knowledge about the problem is required to define the fraction numbers i.e. m,, m,
and m,. Furthermore, in the interpolative mode only three or a pre-defined number of
middle neurons will be active, In the Fuzzy-CPN, the number of active neurons at the
middle layer is not pre-defined and depends on the training patterns.

The partition of the input space in defining the mapping function output is
petformed without overlap regions for the CPN, In Fuzzy-CPN the partition of input
space is performed by the overlapped areas. In Figure 5.9, A, and A, in CPN do not
overlap but A, and A, in the Fuzzy-CPN do, The smoothness of the function is

determined by the number of overlapped areas between the rules.

To compare the result of the interpolative mode of CPN in the function

approximation, the same iraining pattern is input to the same CPN and the final result
in recall phase is calculated by using Equation 5.3, The values of m{, n, and m, are

calculated using this Equation 5.4 :

o= (,iz > "*C?)z )-l' | (5.4)
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where ¢", is the n-th winner neuron. Therefore, it has to .be determined from three
templates which have the nearest distance to the input vector x, After that, the m for
each template is .calculated using Eq. 5.4, The final result of the ICPN follows Eq.
5.3. The result of the ICPN to approximate the finction in Eq. 5.1 is shown in -

Figure 5.8:
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Figure 5.8 Approximation by the ICPN to the Eq. 5.1

Figuré 5.8 shows that ICPN approximates between the two panitibns of iﬁput space
with the same approximating function. The difference between each section is the
starting point and the end point. Therefore, at the area where the function has a
discontinuity, the ICPN tends to approximate the function with a smooth line. Itis ™
due to the mechanism of the ICPN that always want to generalise the third closest

template patierns. The Fuzzy-CPN model can arrange the fuzzy-neuron in such way
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to produce the discontinuity at that area, especially when the presentation order of
examples is correct. The MSE of ICPN is equal to 6,.061x10°.

In addition to defining the way to calcuiate the fraction factor m, it requires
extra time and a priori knowledge about the input-output relation. In Fuzzy-CPN,
the learning parameter can be adjusted easily, The number of the neuron in the middle
layer is set to the maximum, and the p is set to the small value. In the training
process the Fuzzy-CPN determines by itself the numbers of neuron in the middle
layer, When the result is bad and the number of neurons used in the middle layer is
less than maximum, the p value should be increased. When the number of neurons in
the middle layer is equal to the maximum, and the result is still not acceptable, the p
value shoufd be increased, Since the training can be cxecuted very quickly, this
adjustment process time is still acceptable.

The following figure will show the difference of the function approximation
between an ICPN £nd the Fuzzy-CPN (FCPN). In Figure 5.9, the dots represent the

training patterns. The function / which will be approximated is a discrete function.

% ’
e | x
AT L el < e
1A, 3 1 2
Interpolativa CPN Fuzzy-CPN

Figure 5.9, The difference approach between ICPN and Fuzzy-CPN approach.
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The ICPN t;nds to generalise the function and produce a smooth function especially
in the three nearest points. The Fuzzy-CPN produces the discrete function. In this
exarﬁple, the Fuzzy-CPN use only two middle neurons, where N, and N, have
receptive fields which do not. overlap. The cutput is discrete because there are only
two output values, y, and y,. |

In Figure 5.9, it is clear that the interpolative CPN ﬂmys tends to generalise
all training pattern in order to produce low MSE between the three training patterns
that are close to each ather. [t produces a function f which is a smooth line in order to
approximate the training patterns  {(x;, ¥y, .. . (xs. ys)}. The ICPN always
approximates using the same line model shown to A 0 Ay for all input values. In
Fuzzy-CPN, the system pariitions the input space and preduces the associative output
value of each fuzzy neuron. In Figure 5.9, only two fuzzy neurons are used, Ny and
Na. Thé fuzzy neuron N; produces the output as y, and the fuzzy neuron N produces
the output y2. This mechanism provides the capability for Fuzzy-CPN to praduce a
non-smooth function. In addition, the Fuzzy-CPN shows z betler localisation
compared 1o the [CPN.

Using different number of neurons at the middle layer, a comparison between
the CPN, ICPN and Fuzzy-CPN is performed. After the simulation is performed the
ideal results of all methods are compared and shown in Figure. 5.10,.Tt shows that the
Fuzzy-CPN has the lowest MSE. To produce the same MSE, the Fuzzy-CPN

requires less neurons at the middte layer.
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Figure 5,10 Comparison of CPN, ICPN and Fuzzy-CPN (FCPN)

It is shown that the Fuzzy-CPN can produce a discontinuous and non-linear function
as stated in Eq. 5.9 by performing training with a very smail number of iterations, It is
suitable to the applications whenever the learning has to be done in real time.
Moreover, this mechanism is suitable for on-line adaptation learning because the
system does not require many iterations of learning. Especially, in time series
prediction problem, after performing a prediction the rea! value of the next time series

can be used to refine the network for predicting the next value in the time series,

5.3 The Effect of Learning Paramet_er to the Performance

In order to study the sensitivity of learning parameter-in Fuzzy-CPN model for

function approximation task, the following simple function is used :

y=4x(1-x) (5.5) |
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This function was used in Jones et al. (Jones et al., 1989) to test the capability of
ANN model in approximating a non-linear continuous function.

The learning parameters should be casily set to suit the applicatiop. The
difficulty of learning pﬁrameter setting is one of the considerations in applying a
learning paradigm. However, if an ANN model requires less pa:amete.rs, it is easier
to tune. An ANN model does not have formalisation of tuning the leaming
parameters. Therefore to train 2 ANN model is time consuming, especially for a
learning paradipm which requites many iterations for training, such as
backpropagation network.

In th.e Fuzzy-CPN, the first learning parameter that can influence the
performance is p, or the default value of the' farthest deviation when the neuron
generation occurs. The second parameter is the o, which is tke parameter that
determines the neuron annihilation of a fuzzy neuron in the learning process.
However, since the resource is limited, the number of fitzzy neurons at the middle
layer determines the performance of the overall network itself.

First of all, the relationship parameter p and the number of fuzzy neurons
geaerated during the training process N, are studied, The training patterns are the set
of pair {(x,, ¥}, - + (%100 Pioe)}, Where x = [0,1] with the increment value equal to
0.01. They are given to the network which has a non-limited number of neurons at
the middle layer. The training set is presented in random order and iterated for 7500
times. For'the first experiment, ot is equal to 0.0 Theréf‘ore, there will be no
neﬁron annihilation during the learning phase,

p is changed frorﬁ 0.001 up to 0.1 with increm.ent value equal to 0._091. After

the training is performed, the test patterns are given to the network. The test
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patterns are a 5et {¥, X,, ... . Xjo0) Where x = [0,1] with the increment value equal to
0.001. Since some test patterns have not been supplied in the training phase, this
testing will show the generalisation of the Fuzzy-CPN as well. Afler obtaining the
result ;;mduced by the Fuzzy-CPN using several p values the result of this

experiment is shown in Figure 5.11. and Figure 5.12,
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Figure 5,11 Number of neurons generated versus p

As shown in Figure 5.11, if the p value is large, there are more fuzzy neurons
generated by the Fuzzy-CPN at the middle layer. It yields small partitionslof the
input space. However, it does not always produce beltelz' result for function
approximation, Iﬁ the case where the receptive field of each t‘uzzy neurdn does not
ovetlap the Fuzzy-CPN produces the same result as CPN. Thr;.;i:'fare, if the p valueis
too sn;aall it yields a Fuzzy-CPN that produces the same result as CPN. [t shows that |
the p value about 0.01-0,02 produce the optimum result because the nur;';ber of ﬁ.lzzgu(

neuro_.r_l is reducegi without increasing the MSE. The relationship between the MSE

of Fuzzy-CPN versus p is shown in Figure 5.12.
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Figure 5.12. MSE versus p

1t shows that if the p value is in the range 0.01-0.05 the MSE does not vary so much,
After that the resulting MSE increases. Therefore for a rule of thumb the p value can
be determined about 0.01-0.05 for |-dimension input space.

Although using an unlimited number of fuzzy neurons at the middle layer and
the small value of p value, an acceptable result which is equal to the CPN mode! still
can be obtained, it produces a discontinuous function for the final resuit, because
there are no overlapped areas in the receptive fields of the fuzzy neurons, The
overlapped areas of the fuzzy neurons determine the smoothness of the function
preduced by the Fuzzy-CPN. Thus, to produce a continuous function it is
reasonable to keep the number of fuzzy neurons al the middle layer Iimileﬁ S0 as to
epable the Fuzzy-CPN to create fuzzy neurons that have overlapped receptive fields.

In order to study how to limit the fuzzy neurons at the middle layer, the
following experiment is performed, using ten different p values, The p values are
0.005, 0.01, 0.015, ..., 0.05 The available memory for creating fuzzy neurons at

the middle layer is limited by 10%, 20% ..., 90% of the fuzzy neurcns that are
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generated for the asseciated p value. This number is obtained by the first experiment,

The result of this experiment is shown in Figure 5.13.

] 10% 0% ki 40%% 50% G0% Uk 0% 0%
number of parcentage

Figure 5,13 MSE versus number of neuron percentage

As shown in Figure 5.13, the MSE increases when the percentage is less than 45%
and more than 75%. However, the MSE increment when the number of percentage
is below 10%, is higher than the MSE increment when the number of percentage is
above 75%, because if the number of neurons is- limited to less than 45% the
Fuzzy-CPN tend to preduce a very smooth line between each samples and tends to
praduce a straight ling or it tends to generalise or under-fit. If the number of neurons
is greater than 75% the Fuzzy-CPN only tends to produce a discontinuous function

to approximate the function similar to CPN. In other words, it performs too much
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localisation or over-fits the function being approximated with the error bounded to
the error of CPN.

The othz;.r learning parameters is ;. This value is bounded in [0,1]. This
parameter determines the time when the Fuzzy-CPN annihilates a fuzzy neuron
during the training phase, If this parameter is small, there will be less annihilated
fuzzy neurons but if this parameter is high, the Fuzzy-CPN tries to annthilate more
frequen.tly the fizzy neurons that are seldom used. In another word, the Fuzzy-CPN
begins to forget the patierns learnt before. This value determines the behaviour in
this seif-growing structure network. To study the influence of this value to the overall
performance of the network, the following experiment is performed. For this
experiment, ten different values of p are used, with the same values as in the
previous expetiment. According to the previous result, the fuzzy neuren are limited
to the 60% of the maximum number for each p value. Since this value tends to
produce the lowest MSE. By varying the o, for 0.05, 0.01, ..., 1.0, the training is
performed. The result of this experiment js shown in Figure 5.14,

Figure 5.14. shows that the variation of «,,, which does not effect so much
the performance of the network. After all, if the o, value is in the range 0.57-0.65
it decreases the MSE of the Fuzzy-CPN, The ¢, value does not produce
significant improvement but it is useful in applications where temporal training data
are required, for example time series pfediction. The order of training sequence itself
determines the influences of the o, to the network performance. By keeping this

o, Minimal, the Fuzzy-CPN works without performing any annihilation process.
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Figure 5.14 MSE versus o,

It has been shown that the learning parameter of this network is easy to adjust and it
does not affect the overall performance much. ‘Thus this Fuzzy-CPN is easy to build
and train. To adjust the learning parameter, the following steps are used:
¢ The number of middle neurons is set to be unlimited... .
¢ Set the p in the range 0.01-0.02 and choose p value tha.t produces the lowest
MSE with the smallest number of fuzzy neurons.
+ Reduce the number of available resource for middle layer to the 50%-60% of
the maximum fuzzy neuron number generated for the chosen p.

* To obtain further improvement, the o, can be set to be equal to 0.6,
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5.4. Time Series Prediction

To apply the capability of the Fuzzy-CPN to perform a non-linear function
approximation, a simulation of the Fuzzy-CPN model is used to solve the time series
prediction problem. Using some past data, the prediction of the future data is
performed. The prediction is achieved by performing the function approximation
from the past data to produce the future data. Suppose f is the function to estimate
a future value, in time index &:
£ xR, 3= 1), ...xCk—p)] — x(k+9) (5.6)

where p determines the number of the past data that are used to estimate the future
data and ¢ determines the fizture value that will be predicted. Therefore, the function
fis a {pt1)-dimension surface, in the (p+2)-dimension space. To estimate the future
value x{k+q), the values {x(k), ..., x(k-p)} can be applied to the function £ Now the
task becomes estimating the function f by using a set of examples.

In this section, the Mackey-Glass chaotic time series will be used to test the
performance of the network. This problem is chosen because it is a benchmark
problem that has been cited quite often in literature, (Roger et al, 1993, Wang and

Mendel, 1992, Jang, 1992, Jones et al., 1989),

Chaotic time series is a deterministic and non-linear series. Mackey-Glass

chactic time series is generated from the following delay equation :

de()  0.2x(t~1)

= T iy 0150 6.7

where the t value determines the chaotic behavieur of the function. In this
simulation, t equal to 30 is used. This value is similar to the model that has been

used By Wang and Mendel (Wang and Mendel, 1992). This time series is shown in
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Figure 5.11, This time series is not a random time series but it is a deterministic

model that has chaotic behaviour. Therefore, it seems like a random series.
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Figure 5.15 Mackey-Glass chaotic time series

In this application, to predici the future value of the time series, in Eq 5.6. p is equal
to 8 and g is equal to I This means that the future value is predicted by using 9 past
values. The network is gi.ven the input (x(k), x(k-1), ... , x(#-8)], and it has to predict
the next value x(%+1). It means that the network perform a function approximation

of function £, where :
FiR? R (5.8)

Fo[x(B), xthe~1),. .. x{k—=8)] = x(k+1) (5;9)
Thus the Fuzzy-CPN used in this simulation has 9 neurons at the input layer and 1
neuron at the output layer. The maximum number of fuzzy neurons at middle layer is
‘equal to 30 neurons, In the simulation, the training is performed withéut repeating
the training pattems. The p value is equal to 0.0125 and o, value is equal t0 0.7.
The simulation is performed in two different learning strategies. The first

strategy is to train the network by using all training patterns. Then, the Fuzzy-CPN'is
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used to estimate the rest of the future data. For the second strategy, after the
Fuzzy-CPN estimates a future data, the actual future data is used to retrain the
Fuzzy-CPN for further estimation, However, the retraining process is performed

without repeating all previous training patterns, and only the last actual data are used.

x{th

~—— real value e @StiMAted value

Figure 5.16 Simulation using x,,, 10 x,,, 2s training data

The first simulation is performed using the first strategy or without on-line

adaptation. The first 200 data from x to X, are used as the training patterns, The

prediction is performed for the rest of data x,, up to X0 The result and the
comparison with theoretical calculation are shown in Fig 5.16.

The prediction is not teo close enough and the MSE is equal to 0.010715.
This result is obtained because the network has not been trained wi;h enough samples
and only 60 fuzzy neurcns are created in the middlé layer, It shows that the
Fuzz&-CPN has not been ab!é to cover the input Space, shown by some pérts of the
output that form a flat line even though the input changes, The overlépped areas of
the receptive helds.of fuzzy neurons determine the smoothness of the final output.
For instance, they are shown in the point x,,, - %35, Xy - X340, and the other parts. In

some points, the estimation has not be able to follow the dynamic of the system. The
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changes of the estimation are left behind the actual output. For example, This is

shown in the area x5, - X0 Xogsm Xoase

oo 760 BOQ : 11} 200 BEO 1000

-—— rgal value ~e @5timated value

Figure 5.17 Simulation using x, - x,,, as training data

The second simulation is performed by using the first 700 data as the training
patterns, The result is shown in Fig. 517, By comparing it with the theoretical
result, it can be shown that the system performs prediction bétter than the previous
experiment. The MSE is equal to 0,0035749. After being trained with 700 data, the
Fuzzy-CPN has been able to perform the estimation and to capture the dynamic of
the system. This result is quite similar to the result that were obtained by Wang and
Mendel using backpropagation and Fuzzy System (Wang and Mendel , 1992), or
Jang using ANFIS (Jang, 1992). However, in both works they used iterative training
and in this work only one pass training is used. It proves the capability of the

Fuzey-CPN to perform very fast training,
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Figure 5.18 Simulation using en-line adaptation x,,, - x,,, as training pattern

In Figure 5.18 and Figure 5.19 the second strategy, the adaptive on-line training is

used. When the on-line training is used for the case that the network has already

been trained using the past 700 data, there is no great difference, because the

network has converged, and the mean square error is 0,00357490, It shows that the

adaptive training does not significantly affect the performance of the network. When

this mechanism is applied to the network which has only been trained from 200 data,

there is a large improvement. ‘The mean square error is reduced from 0,010715 to

0.009049. This mechanism is svitable for learning in the real-time application

because the Fuzzy-CPN requires only a small number of iterations to produce an

acceptable result.

————  realvalua ... estimated value

Figure 5.19 Simulation using on-line adaptation x, - x,,, as training pattern
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The experiments show that the capability of the proposed model to perform
function approximation. This fonction approximation capability is suitable for the
adaptive filter task by performing the signal estimation class, The result is promising
and shows that the Fuzzy-CPN has good generalisation and localisation when applied
for the prediction task. The learning parameters do not affect the performance so
much. Therefore, the setting of learning parameters is easy and not sensitive to the
network performance, The prediction of Mackey-Glass chaotic time series has been
demonstrated by applying the proposed network. In addition, it has been shown that
the on-line update capability of this network provides the error reduction in the

normal aperation. This on-line adaptation is hard to implement by using a learning

mechanism which requires an iterative learning scheme. Therefore, this Fuzzy-CPN-

madel is suitable for real time applications, e.g. in the prablem where the network has
to be trained before it will be used, in order to capture the change of the environment
when the system is used. This proposed method will be further expanded to tackle

noise elimination problem which will be described in Chapter 6.
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Chapter 6

Background Noise Elimination

The elimination of background noise in applications where an uncorrupted input
signal is required is not a trivial task, especially when the noise is non-deterministic
and non-stationary. This chapter addresses the application of the Fuzzy-CPN model
as an adaptive filter that performs 2 signal enhancement in 2 noise elimination system
which makes use of the time-frequency representation of the input signal and a
spectral subtraction for filtering pracess. Software simulation results with some

typical sigrals cormupted by Gaussian noise are also presented,

6.1 Noise Elimination

In many areas of science and engineering in which input signals are obtained using
signal acquisition equipment, such as electromagnetic and acoustic surveillance
{Anderson et al., 1990, Casellman et al., 1991), seismic sipnal processing (Magotra et
al.,, 1991), speech processing (Kobatake et al,, 1990}, biomedical signal processing
(Uncini et al., 1990), there ic always a problem in detecting the presence of
non-stationary random signals df noise in the background. In addition, the duration
of this noise may be short compared to the observation intervals for the input signals
Enhancement of a noisy signal means raising the SNR of the signal. It is a
mapping process from the noisy input signal space to the noise-reduced autput signal
space. This mapping can be linear or non-linear, and time-variant or time-invariant

depending on signal characteristics (Trompf, 1992). Various methods have been
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proposed to tackle this problem including fixed filtering (Boll, 1979) and adaptive
filtering techniques using conventional filters. In the case of fixed filtering techniques,
the unavailability of an ideal signal model and the use of predefined parameters of the
filter makes this problem difficult to solve (Classen et al., 1983). The use of adaptive
methods have improved the performance of background noise elimination to a large
extent {(Vary, 1983), With these methods, the parameters of *° e "'ge to
adapt to the non-deterministic characteristics of the background n. .t_:?,VBl',
provision has to be made for the filters to readapt to the change in the énvin,. _ ent,
Sometimes it may lead to the unsatisfaclor).( performance of the overall system
(Connel et al., 1990),

The conventional adaptive algorithm such as LMS algorithm with 32-tap FIR
structure has been used for an Adaptive Periodic Noise Cancetlation tAPNC) for the
control of acoustic howling for the hand-free telephene situation. However, for other
applications which require the elimination of non-inearity and non-Gaussian noise

do not produce satisfactory results (Wright and Foley, 1979).

6.1.1 Noise elimination model

The objective of speech enhancement is reduction of noise level, increase in
intelligibility or reduction of the auditory fatigue (Cheng, 1991). Several techniques
such as adaptive noise cancelling, spectral subtraction, adaptive comb filtering may be
used. Figure &.1 shows a general model for noise elimination where the input
seq'uence s(k) represents the desired input signal and u(k) any external noise signai.
Inside the model, (k) represents iaternal broadband measurement aocise. The

problem becomes one of accurately modelling the corrupted channel () and the
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internal noise by means of the filter (). In general, () represents a non-linear
medium. Therefore, to achieve the best modelling of of.), B(.) must be a non-linear

function.

sik}

ulk)

Figure 6.1 General model of noise elimination

In the example of speech processing, the noise elimination process is to detect and
clilﬁinale the noise from the non-stationary speech source. In Figure 6.1, the signal
received by the system is d(k) which is the noisy version of the signal s(). The noise
term is produced by w(k) which is any external noise signal and w(%) represents the

deterministic and stationary internal broadband measurement noise, Therefore, the
signal d(k) is:
A(K) = s(k) + au (D) + k) 6.1)
The seq.uence (k) itself has two components ;
(k) = e(k) + m(k) (6.2)
where u(k} is the background noise that can be considered as consisting; of a

non-deterministic and stationary noise e(k) and non-deterministic and non-stationary

naise isolated noise m(k).

B =PER+o®) . (6.3)
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In order to eliminate noise, the model tries to model the channel « by using the
function B. The final output of the noise elimination model is the difference between

the received signal and the noise estimated by the function p.

e(k) = d(k) - (&) e 6.49)

For the best estimation, the original signat can be recovered :

e(k) = s(k) 6.5)
Such assumption should be taken to differentiate between the effect of the
degradation process and the good input signal, These differences can be used to
regenerate the good signal from the corrupted one. However, the problem will arise
when the assumption fails. This assumption limits the algorithm that can be applied.
The perfect restoration of the mixing of two signals which are random is impossible,
since the mixing represents a loss of information (Betts and Reid, 1993). The
algorithm will generate only the most likely good signal.
The scope of the implementation of this model has been restricted to the
following assumptions
* Spurce selection : recording of the noise and signal is assumed to be performed
with a single microphone without microphone modification. Therefore, two
microphones approach (Kiperztok, 1993} should be ignored. Moreover, it is
assumed that the listener cannot control the microphone. Therefore, the
transducer does not lsave any modification to reduce the noise..
+ Naise characterisation : only additive noise uncorrelated with the clean signal
will be considered. This approach will not try to modet the background noise

statistic.
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+ Non speech distortion and cochannel distortiort will not be considered as well
(Boll, 1983).
These assumptions are similar to those which have been stated by Boll (1983) for the

Noise Suppression Problem.

6.1.2 Background noise detection
The speech signal is a very highly non-linear signal (Hambaba et ai, 1990).
Therefore, it is hard to extract it from the noise using analytical methods. The noise
and the signal are assumed to be generated by two different sources: the signal source
and the noise source. For an analytical method, in order to extract the signa_l from the
noise, a knowledge about the relation ~» signals is required, Therefore, to
determine the relationship between the ﬁo.ae and the signal, the relationship between
the sources plays the important role. Two considerations should be taken into
account in determining the relationship between two signals in terms of their primary
sources. Firstly, it has to be known whether the signal is related by single sources,
dependent sources or independent sources. Secondly, if the two signals are related
by a common source, it should be known if there is a time sequential relationship
between them. The signal produced by a primary source can be highly independent of
one another, However, it depends on the nature of the sources themselves (Brandt,
1991),

Ta determine the linear relationship between two signals, a frequency domain
method such as coherence analysis can be employed. It is cbtained by dividing the
estimation of the cross-power spectra of the twe signals by the product of their

auto-spectra as a function of frequency, More complex analytical methods involve the
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use of periodicity, pitch frequency, Linear Predictive Coding (LPC) has been
proposed by Kohatake et al. (Kobatake et al., 1990), for the restoration speech
contaminated by non-stationary noise. However, in many signal analysis problems,
curvilinear regression cannot be applied effectively due to the fact that the order of
the polynomial fit may be too high and the statistical characteristics of the signal
changes in time, which means that the order of the polynomials should be calculated
whenever the signal changes.

In an effort to detect signal without many prior assumption about the signal
and the meditm, a blind identification method is developed (Tong et al., 1991), Blind
identification has been motivated by practical problems that involve multiple source
signals and multiple vensors which share a common objective, i. e. separating and
estimating the source signals without knowing the characteristics of the transmission
channel. The characteristics of the medium is unknown because the relative position
of the multiple sources are not known a prior. There are many conventional
algorithms for blind identification task such as Extended Fourlh Order Blind
Identification (EFQBI) that assumes the source signals are independent, However
this algorithm cannot handle Gaussian sources. The Algorithm for Multiple Unknown
Signal Extraction {AMUSE) is developed in order to tackle the Gaussian noise and
for non-white signals only. However, some basic assumptions should be taken into
account to apply these algotithms to the real-world problems. Different algorithms
require different environments and assumptions to be able to be applied successfully.
For example, the MUSIC algorithmy (Multiple Signal Classification Method) has
better result than Maximum Likelihood Method (MLM) or Maximum Entropy

Method (MEM]} in detecting a signal. However, it requires the background noise to
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be uncorrelated (Jeffries and Farrier, 1987), The MEM is suitable for modelling a
smooth spéctra but will not perform well on line spectra. Other methods, such as
MUSIC, models the signal as a number of line spectra and will not be able to model
the ocean noise.

1t leads to the idea for making use of the adaptive filter for performing blind
deconvolution (Blesser and Kates, 1978). It is expected that the system will be able
to adjust itself with respect to the change of environment, Some models such as
Adaptive Noise Cancelling (ANC) usiﬁg adaptive algorithm by Widrow (Furukawa
and Kubota, 1990) only removes the low frequency sinusoidal noise during
transmission. Therefore, for those methods it is always assumed that a good signal
meodel is always available. In the contrary, this proposed model does not assume the

good signal model to be available but assumes that the noise samples are available,

6.1.3 Time-frequency representation as pre-processing

Detection and classification of signal components in time or frequency domain can be
performed by firstly sliding the signal through an observation window. Normally, to
extract the signal feature from either the time or frequency domain, representation of
the signat is not sufficient for a complete analysis of the signal. Therefore, a combined
time and frequency representation is used in this proposed model. 1In this proposed
model, the modified speech spectrogram is used, A speech spectrogram contains rich
.acoustic knowledge about speech. Therefore, it is a good teol in analysing speech
(Flanagan, 1972).

Some work has been done in combining ANN with the time-frequency

representation in signal pre-processing. The backpropagation (BP) and Discrete
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Fourier Transformation {(DFT) that performs channel filter bank is used to
discriminate voice/non-voice for integrated packet switching (Shimokoshi and
Hashitsume, 1989) and speech segmentation for a continuous speech recognizer
(Finster, 1992),

Instead of implementing a single huge ANN model to perform the complete
task, the proposed model uses time-frequency representation of the signal to
pre-process the input signal before it is processed by the ANN, The implementation
of a single ANN is impractical because training the huge network is time consuming
and difficult (Botros et al., 1992). The time-representation of the signal reduces the
work of ANN to perform the complete task. This mechanism is quite similar to the
mechanism of the human ear to extract the interesting sound from the environment
noise (Eisenberg et al., 1989). In order to precess the acoustical images with neucal
network of the brain, both kinds of information the time and frequency information
are required,

The power spectra of the speech provides a good initial representation of
speech, It could be discovered with minimal a priori assumptions about what are
meaningful transformation or representation data. The result is better than when the
network is presented with unanalysed digitised waveform {(Hambaba et al,, 1990).
The speech spectrogram as the :ime—frequeﬁcy representation method which combine
the time representation and the frequency representation of the signal can provide
data pre-processing for a neural network model. Although, the representation of the
spectrogram appears more complicated in 2-dimension, it makes the network easier
to process in order to det_ect and classify the signal. It is shown by Palakal and Zoran

{(Palakal and Zoran, 1989) that the multi layer network models will be able to learn
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the invariant features from the speech spectrogram. The RBF-Net can be trained to
extract known discriminatory features in speech patterns from speech spectrogram
(Niranjan and Fallside, 1990). Based on these evidences, the spectrogram approach is
used as the time-frequency representation in the proposed model for noise elimination
vsing Fuzzy-CPN,

There are several methods to generate the time-frequency distribution of a
signal (Cohen, 1992). The method adopted in the proposed model is the spectrogram
approach. Given a signal s(f), corrupted by noise, its time-frequency distribution is

expressed as:
p{t.) = _[”eﬂ"“""')g(v, D8° (=315 + 1) dvduds 6.6)

where g is the kernel function and s” is the complex conjugate of s.

For the spectrogram representation, the kernel function is:
g 1= fh'(u - %‘r)e‘ﬂ"“‘h(r: + %‘C)dﬂ (6.7)
where 4 is a window function and 4" is the complex conjugate of 1,

By substituting Eq. 6.6. to Eq. 6.7,, the conventional spectrogram approach for

time-frequency representation of a signal is written:
1
p(t.N) = | [ e stoh(z - et (6.8)

In this wertk, the proposed spectrogram method is performed by performing
further transformation form the result of Eq. 6.8. This modificaticn s GoRe to ensure
the time-shift invariance and the time-origin invariance;';g properties of the
time-frequency representation of the signal. The propo;é'd":-sp::ctrogram method is

defined in Eq 6.9:

(0.0 = ot Al em e (6.9
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To give the example of this transformation, suppose s(f) is the signal which will be

used to illustrate the time-frequency transformation:

Aisin(o ) fort<p
(N =1 Asin( 1) +A:sin{02) forpst<! (6.10)
Azsin{waf) fori=t

The signal 5,(f) and 5£#) contain a stationary sinusoidal signal with frequency equal to
o, and a sinusoidal chirp with frequency equal to w,. These signals are shown in
Figure 6.2. and Figure 6.3, respectively. The difference in the sigrals in the two

figures is the starting point of the chirp with the frequency o,.

x{t}

Figure 6.2 Signal 5,{) in Eq.6.10 with pp = 56, { =300

x|t}

Figure 6,3 Signal 5,(1} in Eq.6.10 with = 256, ! = 300

As shown in Figure 6.2, the signal s,(#) has a chirp that starts at the point t, and in

Figure 6.3, it shows that 5, (£) has a chirp starting at the point t

.- Both signals are

transformed using convintional spectrogram using Eq 6.8 and displayed in Figure

6.4. and Figure 6.5, for a 3-dimension representation, the x-axis represents the
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frequency compenent of signal, /, the y-axis represents the time, ¢ and the z-axis the
magnitude of the signal component in a particular ﬁéquency, G. which is the result of
Eq. 6.8. To make the representation clearer the corresponding contour diagram are

shown in Figure 6.6, and Figure 6.7, respectively.

Figure 6.4 Conventional Figure 6.5 Conventional

Spectrogram of 5,{f) Spectrogram of s,{)

L1

Figure 6.6 Contour diagram of Figure 6.4
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Figure 6.7 Contour diagram of Figure 6.5

The conventional spectrogram representations of the two sipnals are different, even
though the original signals are not different. The cause that preduces the difference is
only the starting point of each frame of transformation. If the both signals are
transformed using proposed method in Eq. 6.9 the result are Figure 6.8 for 5,(f) and
Figure 6.9 for s,(¢) The x-axis represents the frequency component of signal, £, y-axis
represents the changing of a particular f.i'equency component, 8 and z-axis represents

the result of transformation , G, defined by Eq. 6.9.

Figure 6.8 Proposed spectrogram Figure 6.9 Proposed spectrogram

of 5,() of 5,(0)
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Figure 6.10 Contour diagram of Figure 6.8
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Figure 6.11 Contour diagram of Figure 6,9

By using the proposed model, the spectrogram representation does not produce
significantly different representations of them. It reduces the cdmp[ék. in detecting
the signal, especially for non-stationary signals.

This formulation has been used to decompose a signal into different
companents (Cohen and Lee, 1992) using one Short Time Fourier Transform
(STFT) for each nen-overlapped block of signal. The optimal choice of window for

the spectregram must depend on the signal involved and its characteristics at the time
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of observation (Cohen and Lee, 1990). More complex feature extraction techniques
such as Karhunen-Loeve which has been extended by Fukunaga and Koopts will
provide better result for a feedforward network to classify the input signals (Shaudy
and Leen, 1992), especially for the spectrum of signal as the raw data. Wavelet
transform as another option for time-frequency representations and has been applied
for pitch detectioﬁ of speech signal (Kadambe and Bartels, 1992). The proposed
spectrogram approach is chosen due to its .simp]icity and low computational
complexity, because it is based on the Fourier Transform. Therefore, it can be easily
implemented using FFT algorithm. In the Appendix C the time-frequency
representation of real noises that are recorded from the sample CD are shown using

the proposed method,

6.1.4 Spectral processing for the noise elimination

The final filtering process of the corrupted signal itself is performed in the frequency
domain. It means that the system performs the filtering process by manipulating the
spectrum of the original signal. The spectral subtraction is used to remove the noise
power spectral component. For the spectral subtraction, a direct estimation of the
short term spectral-magnitude is required.

Speech is assumed to be a random process and the added noise is

uncorrelated. A speech signal contains a noise can be written as;
x{k) = sk} + nlk) (6.11)

The noise is assumed 1o be stationary in short-term. Since it is assumed that x and s

are stationary process for limited time and # is uncorrelated.

Pr{w) = Py(w) + Pu(u) (6.12)
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where they are the power density spectum (PDS) of x(k), s(k), and n({%),

respectively.  Since they are only stationary within a time limited frame, the

short-time power spectra are related by:

PL() = Pi(0) +Pi(®) 6.13)
where the superscript / is a frame index. This short time model of the speech can
approxit;_‘__ate the non-statiopary signal (Cheng, 1991). However, in the conventional
techniqﬁes, the noise is estimated with the second order during the silent-times
(Del]ér, 1992) or from reference channel {two microphone system).

If P, and an estimate of P (.} are available, it is possible to estimate the power
density of the uncorrupted signal. The estimated noise power spectrum signal is

subtracted from the transformed noisy input signat.;
Pu©) = Pu(o) - Pole) (6.14)
Using DTFT, in the window size of m,

f",(m; m) =T {a;m) - I",,(m;m) (6.15)

- 2 P " 2
S,(m;m)' = |8l m)]” - S,.(m;m)| (6.16)

The filtering process of the noisy speech in general by using this approach can be
shown in the follewing Figure 6.11. Details of this techniques can be found in Boll
(1979), Deller et al, (1992), This method starts by performing a DFT to transform
the signal corrupted by noise into the frequency domain representation. After
performing the noise spectra estimation, the spectra of signal corrupted by noise is
modified by sﬁbtracting the estimated noise power spectra. Finally, the IDFT is

perfarmed to yield the time domain representation of the noise-free signal.
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Speech Spactrum
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Enhanced
Spaech
Noisy FFT L Process = IFFT | .
Rec-Polar fiMag) Polar-Rec
Speech |

Figure 6.12 Speech enhancement process using STFT (Boll, 1987)

This method was first developed by Weiss et al, (Weiss et al., 1974) and used for
suppressing tones, clicks and broadband additive noise. This spectral subtraction
method has improved the intelligibility score as shown by Boll {(1979). It has been
used to restore old music records (Blesser, 1978).

In this noise elimination medel, the Fuzzy-CPN performs the estimation of the
noise spectra in the signal. This estimation is performed by exploiting the associative
memory capability of the Fuzzy-CPN. However, an additional process is still
required in order to produce the final output of the filter. It can be done using
spectral subtraction method (Boll, 1979), or adaptive comb filter or by using a
structure such a'.s graphic equaliser.

Since the noise is not stationary for a long time period. A method for
estimating the noise spectrum is required, The choice for this model i *he average
periodogram. Periodogram is one of the cost-effective techniques for estimating the
;peech signal {Godwin ci al., 1988).

Define a truncated signal ;

.

forn=0,1,2,. . N-i
.‘CN= Xn 1 by ey A7
g i() otherwise ©17)

The estimation of the power spectrum of this fruncated signal is:

Sylw) = ﬁXN(m)X;r(m) i #IXNP {6.18)
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where the transforms of both the original and truncated signal are :
] ) A1 )
Xp(w) =2 x ed0Ts = 3y, esmaTs (6.19)
- ]

to yield a consistent estimator of 8 {x(r), # =0, 1, ... N-1}. A, is divided into K

segments, each of length M = N/K,
XO{n) = x(iM + ) n=0,1,..,M-1 (6.20)
i A

Periodogram of each segment of length M is given by:

" 1 A=) T 2
OE M Eﬂ £ g (6.21)
The average of the periodogram is:
K 1 Al i)
@) = 5| & 1w) (6.22)

The average of the periodogram is a consistent estimator and unbiased estimator of
the power spectra, x(#) is assumed to be stationary and I,, is an usymptotically
unbiased estimator. Therefore, § is asymptotically unbiased as well, The correlation
between x(n) and x(nr) will be weaker as the difference between m and »# become
larger.

In estimating power spectra using peribdograms, a finite number of the input
signal sample is used by applying rectanguiar window to the input signal. 'fhe
number of the input signal sample in that window determines the bias (}'”._ the
pericdogram to estimate the power spectrum. The bias is inversely proportional to
the number of the input signal sample. Furthermore, by using a finite number of the

input signal sample, the pericdogram produces poor frequency resolution
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To choose the number of the input signal sample in a window that is used to
estimate the PSD of the signal, there is a trade-off between the choice of K and M in

Eq. 6.20. For fixed N, once K is chosen so is M = N/K, IfK is larger, the reduction

in the variance of .§'f,(m) will be larger, but it has a larger bias and poorer frequency
resolution, For a smaller K, the reduction in variance will be smaller, but S'ﬁ(m) has a
smaller bias and better frequency resolution.

In order to reduce the trade off between the varance and tl.2 frequency
resolution, the bleck are partially overlapped the sequence. It reduces the bias of the

pericdogram in estimating the power spectrum because the correlation between

}ﬁ? and }f@ is stronger when they are adjacent blocks that overlap. Consequently the

reduction of the variance of Sh{w) will not be large as large as in the case of

non-ovelapping blocks. It produce smaller bias and better frequency resolution.

The process of caloulating the periodogram is performed by exploiting the
Fourier Transformation which is implemented using the Fast Fourier Transformation
(FFT). The FFT algorithm has been developed for a long time and explored widely
since Coley-Tukey released their paper (Coley and Tukey, 1965). Those algorithm
are Coley-Tukey Algorithm, Rader-Brenner Algorithm, Good-Thomas Algorithm,
Goerizel Algorithm, Winograd Algorithm,, and the other maodifications. The FFT
algorithm can meet the lower bound on the multiplicative complexity of DFT
(Duhamel, £990). The algorithm has been improved by digit-reversal permutation
(Evans, 1987), split radix (Duhamel, 1986). For computing the inverse DFT, FFT can
use the forward DFT (Duhamel et al,, 1988).

Cycliﬁ convolution of real data can be performed efficiently using Fourier

Transform algorithm (Dubamel and Veterli, 1987). Therefore the final filtering
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process is performed by imf)‘lementing the spectral subtraction and the final result is

obtained after executing the Inverse FFT,

6.2 Fuzzy-CPN for Background Noise Elimination

Artificial Neura]l Networks (ANNs) offer an alternative technique for adaptive
filtering, In the area of background noise elimination, Xue (Xue et al., 1992) has
applied an ANN-based adaptive matched filter in biomedical brocessing. Lippman et
al. (Lippman et al., 1989) have shown the capability of ANN to perform adaptive
pre-processing for signal detection in non-gaussian noise. The noise reduction
problem has been considered in the development of robust speech recognition
{Trompf, 1992),

Unsupervised learning can learn the hidden structure of speech (Hambaba,et
al,, 1990). The network can develop a rich internal representation and the leamning
provides a systematic way to find the features in data. It has been applied in many
areas such as the pitch detection of an acoustic source (Cohen et. al,, I.992) {Cole et
al., 1991), initial data reduction to acoustic data in the engine fault detection (Hewitt
et al, 1989), the electroencephalogram classification (Tsoi et al.,, 1993). the fault
testing on the helicopter gear box using the vibration wave of machine (Rock et al.,
1993), and a spectral processing of harmonic complex tone and pitch (Tomlinson and
" Treurniet, 1990). The application of ANN model for signal detection and
classification is due to the fact that it will be able to reduce the computational
complexity.

Backpropagation networks (BP} have been used for the adaptive noise

filtering by using the spectral data as the input data to remove white noise from the
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input signal. Although, BPs are successfully in rgducing the overall error in 'c_:_;';it_aining
a pure signal from noisy spectrum, they fail to pay attention to the dela:éls of the
spectrum (Weber et al., 1991}, Moreover, BPs have three major problem:s. Firstly,
the energy surface of cost function has many local minima. Secondly, it is difficult to
analyse the behaviour of the hidden units. Thirdly, the BP learning algorithm is
extremely slow. Conventional backpropagation networks cannot handle input data of
a large dimension and not capable of extracting spatial features. Moreover, they
cannot be applied effectively to extract the signal feature from the 2-dimensionat FFT
spectrum (Palakal and Zoran, 1992},

Fuzzy logic has been used for Active Noise and Vibration Control (ANVC).
(Kipersztok, 1993). This approach uses two microphones, ane for the noise only and
another for the combination of source signal and noise signal. It has been applied to
some areas such as noise control in rooms. However, it still uses an adjustable-FIR
structure which is controlled by a fuzzy controller,

Another method for applying the ANN model is the Orthonormal Neural
Network (ONN) using the Fourier method to remove noise from the corrupted signal
(Ulug, 1992), The spee;:h enhancement auditory evidence method can be applied for
stationary and non-stationary noise. The advantages of this method is that it does not
need any a pror knowledge about the noise, and 6nly a modest computation is

required (Cheng et al., 1991).

6.2.1 Structure of the model

The proposed fuzzy neural model should be able to satisfy some application

constraints:
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+ There is no clean speech signal for target patterns, which should be derived
from the inpuf patterns, The network cannot be trained using a clean speech
signal;

+ Learning must be performed as fast as possible with a small number of
iterations;

+ The neural network should be able to adapt its structure to minimise memory
usage;

+ Fast processiﬁg time is required for real-time operations, i.e, th;. network has to

be implemented in parallel processing.

In -the proposed approach as shown in Figure 6.12, the Short-Time Fourjer

Transform (STFT) _is first used to get the frequency representations for overlapped
blacks of signal samples. Then another STFT is performed at the same frequency to.
all the resultant fréquency representations to obtain the change of the frequency of
the signal. The result of this manipulation is to extract finer representation of the
frequency feature of the signal, Thé final outcome of the transformation of the signa:
is a two-dimensidnal.array as shown in Figure 6.9 or Figure 6.10, of a single time

block of the input signal. This arfay is then fed into the neural network.

Basically the acise elimination performs three main steps in eliminating the noise in

the corrupted signal .
-+ Detection of the noise;
+ Estimating the noise power spectra;

* Performing spectral manipulations to produce the uncorrupted signal.
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Figure 6.13 Input signal acquisition process,

These steps are rather similar to the auditory evidence method that was proposed by
Cheng (Cheng 1991), which incorporates the simulation of the ear's enhancement
model, This method makes use of spectra average and performs the distance measure
between spectra, The calculation involves direct and inverse fourer transforms,
spectra convolution and time domain convolution (Cheng, 1991), The other model
which is similar to the proposed model is the sighal enhancement model that has been
applied for audio restoration in music recording, i.e. to remove click and scratch, It
wotks by detecting the click and scratch, thus removes them by performing an
interpolaticn of the signal in time series. It has been used in the Gerrard MRM-101
Music Recovery Modul.c using signal interpolation techniques (Reid, 1989).
However, the difference between this model is that the detection and the estimation
of the noise spgctré are performed using a trainable system Fuzzy-CPN without

taking any assumption of the noise and the signal model.
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The operation of the proposed system consists of two phases, the first is
training phase and the second is the recall phase. In the training phase, the system
picks up the background noise and irains the system to build_ thé .temp]ate of the noise
which will be used to estimate lhé noise power spectra in the recalling phase. Each
template is encoded as a fuzzy ﬁeuron in the middle layer and each of them is
associated with a model of average periodogram as the power noise estimation of the
noise. The average periodogram is encoded as the weights of the defuzzifier neuron.
This training phase has to be done in real time with very small number of iterations
because, every time the system is used, it has to be trained to model the background
noise of the environment whese the system is used.

In. the recall phase, after being input with the corrupted signal, the
Fuzzy-CPN estimates the noise power spectrum of the signal by using associative
characteristic of the Fuzzy-CPN. After that, this information is used to process the
corrupted signal, and is fed inte the adjustable filter. The adjustable fitter can be
formed by using Finite Impulse Response (FIR) filter, Infinite Impulse Response
(IIR) filter or by using resonator bank filter (Sztipanovitz, 1989). In this work the
spectral subtraction method is used in the frequency domain, Since the frequency
domain representation of the input signal is already available from the time-frequency
representation, frequency domain. filtering is performerd. However, this structure has
a problem in the block boundaries, and may lead to small discontinuities at the filter
output (Shynk, 1992). To an application such as speech, this risadvantage does not
significantly effect the human testing. In our model, the effect of smal]l discontinuities

in the output signal is reduced by overlapping the blocks of input sarﬁples.
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Suppose [x(&), ... , x(ktM)] is a block of the input signal samples, where x(k)
is the input signal at tinte index &, and M~+1 is the number of input samples for one
block of signal. The first transformation is executed to the frames [x(k), ... .x(HN)]; |
(ALY, ... . x(ktEAWDL, ..., [x(AYPL), ..., x(kHPLANY], where N is the number _of
sample in a frame for the first Short Time Fourier Transformation (STFT), L is the
number of overlapped samples, P is the number of frames in a block which are
processed by the STFT,

Each successive block frame produces the magnitude of the STFT (7, . . .,

F) and for all frames in one block they are denoted as :

[(Fl_h Fg‘, ey Fq,])a (F],:u Fz;s ey FQ_z)s ey (FJ.R! Fz_}b ey FQR)]

where for F,, , the index i in the subscript represents fisquency number as the resuft
of the STFT, The index f denotes the frame number. Th.t_: conventional specirogram
approach stops at this point and produces this matrix F as t.he final resuit,

For further step of the propesed transformation, the second STFT is
performed to the F which has the same i-index. Thercfore, the data are rearranged

into this structure :
[P Fog e o B0 B Foage s Py o (P P oo Fopdl

Each block (#... F) is processed using the STFT again and it yields the other

matrix :

UG Gaia s G G G oy Gy s (G Gy 5 Gl

'.-‘Theref‘ore,_ the matrix G re.presen'ls the changing of signal at ].Jii.x'i..ici_ilﬂl' frequency or

the changing of the .equency component of the signal. The matrix G:is.fe_d into the
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Fuzzy-CPN system as the input signal. The value of first STFT (F...F) is used to
calculate the average periodogram in order to estimate the noise power spectra of the
training patterns. Let h be the average pericdogram of the signal from the {x(£) ...
(kMY and his calcula.ted using Eq.6.22. The frames of signal sequence are shown

in Figure 6.14.

xlk}
xk+1 ks L)

| | . | | E{k+M}

t
|

1

|

- |

Klk+L) DoxtkeLety }
i |

I

L !
I —
%tk + PLJ xik+PLEN]

Figure 6.14 Frames of the signal

For this Fuzzy-CPN, the set of training patterns is {(G,, h,), (G,, h,),_ -2 (G, h}}
This set of training patterns is supplied to the Fuzzy-CPN. The training is performed
using G as the input signal and h as the desired signal.

During the recall phase, after an input signal is given [x{X),..., x(k+M)], the
same steps are performed to produce the time-frequency representation of the input

signal G,, The Fuzzy-CPN produces the average periodogram h,, as the noise

aul
power estimation of the signal corrupted by noise. After that, this h information is
used to perform the spectral subtraction. The result of the spectral subtraction is the

spectrum of the noise-reduced signal.
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6.2,2 Fuzzy-CPN as associative memory

As stated in the previous section, to eliminate the noise from the corrupted signal, the
system performs the mapping from the signal corrupted by noise onto the
noise-reduced signal space. In performing this mapping process, the system acts as an
heteroassociative memory (Rumelhart, 1989), Given a time-freqﬁency representation
of the signal G, the system produces the average periodogram h of the noise
assogiated with the received signal including noise. This average periodogram is used

to perform spectral manipulation of the signal.

Tims-Frequency

Representation Noise Powe
| Estimation
'k
G : FCPN Model ——
i

Template

Figure 6.15 Fuzzy-CPN (FCPN} as associative memory

In Figure 6.15, basically, the Fuzzy-CPN determines the time-frequency
representation G of the signal and can classify it into one class of templates, In the
Fuzzy-CPN, those templates are-encoded in the weight W1. Since the Fuzzy-CPN
employs the fuzzy approach, in this classification process, it does not preduce a
template as a winner. It produces a membership value of the input signal to be
classified into each template. The periodogram of each template itself is encoded in

the W2 as the centroid of each class.
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In the Fuzzy-CPN, there is one to one correspondence of G to b, i.e. {(G, >
hy), (G, = h), ..., (Gy —> hy)}. It is clear that they actually represent a set of the

fuzzy rule as
IF input is Gi THEN output is b,

However, since the system uses fuzzy set approach in determining the output which
relates to its template, the output is a combination of the templates or the new mode!
of the template. The final cutput itself can never exist in the set of {hy, b, ... h)ora
new form of h,

The Fuzzy-CPN has the ability to do novelty detection (Kehonen, 1920). It is
different from the conventional CPN which uses a. winner take-all structure at the
middle layer, For the associative memory, the output valu# of conventional CPN is
limited to the number of neurons at middle tayer. It means that the capacity of the
conventional CPN is equal to ¥, where ¥ is the number 'pf neurons in middle layer
{Singh et al, 1992). The capacity, that is the number of pa.tterns that can be stored
without the model performs an interpolation in the recall phase, in this proposed
model is not limited by the number of neurons in the middle layer, Thus, the capacity
is greater than &. The capacity is influenced by the overlapped areas of the receptive
fields of the ﬁ;zzy neurons in the middle layer, It is due to the fact that the function
pr_oduced by the Fuzzy-CPN becomes smocther whe..never the fuzzy neurons have the
overlapped area amongst each other,

It can be viewed that the fuzzy neurons, besides performing IF-THEN rules,
work as the attractors in the input space. Afler training is perf‘ormed, the fuzzy"

neurons relax as a number of attractors, There is evidence that the representative
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inner states do not necessarily correspond to any real input states, In other words, it
does not necessary mean that an attractor represents a class of real noise, This
associative capability of Fuzzy-CPN is exploited to perform the estimation of the

noise power spectra of the signal corrupted by noise.

6.3. Simulations

The sofiware simulation for the system has been performed and the results are given
below. For simulation purposes, Gaussian noise are used for training the network.
The size of the network used consists of 16x16 nodes for the input layer, only 20
neurens in the middlé layer, and 16 neurons ia the oulput fayer. The p is equal to 0.1
and the at,, is equal to 0.25,

The measurement of the filter performance is represented by using Signal to

Noise Ratio (SNR}. For this experiment, the SNR is ealculated using

( { Jmema.l’ \

Al
rotse

SNR = 10log (6.23)

where P is the power of signal and P, is the power of noise. The simulation
resulfts are performed by using off-line simulation. The noise is obtained by
penerating the Gaussian noise using DSPWorks® software (Momentum Data
System, 1992). The noise elimination process is performed by the software
simulation written in PASCAL. Afler training the Fuzzy-CPN with this noise, a

signal corrupted by noise is given 1o the system. The result of noise elimination is

shown in Figure 6,17,
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Flgure 6. ]6 Smuso:dal input sugnal corruptecl by Gaussmn noise with SNR equal to

17.49 dB

W

Figure 6.17.Qutput signal:after fiftering, with SNR equal 1027.07dB. -~

t

Figure 6.16 s.htjws tHe inp'm sinusbida! signal'cdrmptcd with Gaussian noise with
SNR equai to i7. 49 dB and Flgure 6. 17 the resultant oulput signal from lhe system

Wllh an lmproved SNR equal to 2? 07 dB. It is shown that the com.tplecl 51gnal can

be recovered and only a sma]l pomon of nmse still exists in lhe 51gna1 However the coe

'remamlng noise c_an be ehm_mated by using a low pass ﬁlier'..- o
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'X(t)'..-_'._

¥

Figure 6 18 Slnusmdal mput SIgna[ wnh amplltude modu]aled wnh SNR equal to :

20 31 dB

.
L

.

 Figure 6.19 Output sifghél after ﬁ]tering;_with SNR equal to 25.52dB..

- -To tesf tlié'magnitude réspbnse of the systéfn- a sinusoidal sigﬁal \}vhich has been

amphtude modulated as shown in Flgure 6. 18 is f‘ed into the system The ongmal e

SIgnal is almost recovered w1th SNR 25 52 dB which i is shown by Fl gure 6 19, w1th :

'lts amphlude unchanged Howcver, there is a smal' boundary problem in thls

SImulatlr_m_. -
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Figure 6,20 Sinusoidal iﬁput signal with ﬁﬂequeﬁcy modulated, with SNR -equal to

1237dB

.Xfﬂ A

M
”

Figure 6.2} Outprit signal after filtering with SNR equal to 20.03 dB,

The fféqﬁency seleqtiv_iiy c.nf.the_syslem. is tesfed by a f‘réquency modﬁla:ed 'sig.nal as -

sho_\?ﬁ _i.n'l.:igt.lre__G.Zﬁ. The results in .Figurc 6.2.] shows _tha;t Iilf;t criginal signal i.s_

' récqﬁered but with a sfnall iJhas;.-_ shift. The reason for the _ﬁhase' shify is lﬁe _usé.of_ _. '
..fréfqu.enc:;y_'_ domain .ﬂ_!tt.arin_g.fm_‘ tile_ ﬁlter..._ThP; p;oblem can i_n_a_ solved-.by ._l;lSil'lg
'fés'cn'.h'zx..t:c)r bank filters i.ﬁét_:_:éc'l of fr_eqﬁenc;é d§méin-.ﬁlt.er', or ﬁ;'alv.:ing' use of tﬁe. phas:e

.:_ I.iﬁf:éé}rﬁa.tiéh_of_‘the néi_sé @hén the sja:cctra]. sﬁb't.racti_o:} ié pi;_i;fofnr;ed; - |
'.To test the system wnh the real noise, some real ..noises_. an.-g-.'_u;ed,-u. -:_ For -
¥ .__Ii_.nve'.stigat'_ion"ﬁqm&ses;' a lKHz siml.soic_l'a.l_lsi.gﬁal is used as thé'de.sired iﬁ.put.signal.'" '

'-fhe.n'oises are _sarhbled from CD by using TMS320C25 DSP Card (Dalénco Spry, -
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1993) whtch ls controlled by. DSPWorks@ soﬁware (Momenlum Data System

1992) Aﬁer the system has been tramed ustng the nolse the smusotdal slgnal mlxed

_ w:th the noise is mput to: the system The system tnes to ehmmate thts norse and o
produce the destred srgnal The detatlcd resu[t of thls experlment are. showu in
| Appendlx C. Thc results show a 51gnlﬁcant trnprovement |
These s:mu[attons show that the proposed noise. e[tmmatlon modcl can work :
'eﬁ‘ectwely in thc s:luauon where the SNR of the corrupted srgna] is ]ow Thts '
condttlon makes the system more easr]y detect and estlmate the no:se power spectra"
'1r| order to perform spcctral subtracllon When lhe SNR of corrupted 51gnal is hlgh

the mgnal becomes dommant compared to’ the noise. It creates dlfﬁculty f‘or the'

Fuzzy—CPN to esttmate the noise that corrupts the srgnal_. Furthermore, for

correlated noise, this method cannot produce a good result, because the spectral

subtraction work under assumption that the noise is uncorrelated with the signal.

* “This proposed model for noise elimination pr_oduces a 'pr_orn_ising result to be

applied in the real '_tir_rie appl':_c'a_t'lon_._u_sing. a dedicated signal -processor systerh.' The

system makes use of both time and frequency represent ation of a signal as input to a

' neural network based adaptive filter, The formulation of the - time frequency _' '

representation has been given and modifications of the transformation process using

to “overcome ihe boundary problem. . In addition, the use of a-second short-time
Fourier Transform on _the_ spectrogram to extract finer details ‘on-the .frerltl_en'cy'
ch'ah'g'es_:of the signal-resﬁl_ts in better _r_cpresentatiori of the ﬁequcnc& feature of the

- signal,
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: chaptér 7

Conclusions

7;1 Summhry of Results

The spesch chhancement. process is required because specch transmission and -
processing are often degraded by acoustic or electrical noises. This process is- '
expected to improve the quality and iﬁtoll_i.gibi]ity of the rooeived signal. In the

non-linear problem, most of 'conventioha[ linear adaptive f Iters techriique ”sttch'as '

Least Mean Square (LMS) or Recurswe Least Square (RLS), oannol tack]e the
speech enhancemem task with sahsfactory resul:

" Basically, an adaptive filter perf‘orms the adaptation prbcess by performing

ﬁ.u clion approxrmahon to: produce an a priori ouput followed by a partlcu]ar error _

correction a]gomhm to reduce the error between the a pnon oulput and the deSIred'

_ srgnal Theref'ore by 1mplementmg 2 non—lmear Functron approx:mator an adaptwe' o

filter which oan_ solve_a non-lmear problem can be built, Furthermore, a function
approximat.ion' capabili:y of the adaptive processing should be considered as the main

' aspect because it drctates the efror produced by adaptwe system.

ANN has the capablht}' to leam the mpur output re]atlon .m the. norr lmear-_. -
reiotlonshlp and requlres less as.sumptrons to burld the madel, The f‘uzzy approach is.
bullt up from the posmbll:ty theory and may be used to deal wnh the amblgmty of the' |
vagueness Both ANN and Fuzzy Syslem (FS) are model free estrmators that can'
'estlmate 8 funct:on wlthout knowmg tho mathemanoal mode] of the. mput oulput:-_ -

. “relation‘in ]Jerformmg a mappmg from mput space to the output space It is cnsured

by the existence theorem from Ko]mogorov for. ANN and the Stone-Wererstrass
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theorem for the FS The'- learning' cepability of ANN model-oen -re'dooe-'the
-developrnent tlme and the cost of demgnmg the ﬁxzzy system A eombmatron of both. _ :
:teehmques yrelds a learnable system that can deal wrth the vagueness prohlem
A novef ANN model, namely Fuzzy Counterpropagatlon Network_
(Fuzzy CPN) has heen developed ‘which is a prototype based mapping netWork wrth
- a self. growmg structu_re. It has a fast _learmng capabllrty in order to perform a-’
. eontinooue ﬁmction'approxini'h.t-ion ih.:'en":‘adeptive -ﬁlter‘ The Counterpropagation N

Network paradtgm is chosen as. ‘(he basre paradipm due to its features that are srmple,

. fast and easy to train. The arehlteeture of thls proposed model is self -growing, - The o

ar_ch:_tee_ture of the network a[ways_ad_apts dunng.the training proces_e and has three- '
mein-aetivities of the &JZZY'neurons at the middle layer : neuron gene'roti_on, neuroo
adaptalion and neuron annihilation,

The constructive learning by speeialisatron' with internal states is applied in '
this'proposed model. It'.only' require's minlmal ‘number of .iterations. Du'ring the'
leammg phase, the Fuzzy-CPN generates the fuzzy neurons from the set of examp]es :
-of i mput-output parrs Each ﬁ.lzzy neuron performs the fuzzifi cation proeess and acts
as the fuzzy ru]e _ | .

' Aithough the .'Fuzzy'-CPN isa prototppe-b_ased mapping network, durirrg the -
reeall_phe.'se lt does not produee' a prototype as a winner but produces the fit value of ° '
-the input .'ve_ctorto each .prototype. Since there_"rs no mechanism for ﬁnding_rhe.
Winninrg,' prototype the reeal[ mechanism can be irnplomented in parallel processing '

: drrectly Furthermore, thrs proposed model does not suffer from the’ grandmother

. . 'ee]l problern whleh is usually encountered by the eompetrtwe mode] and beeornes L

more robust tha_n the eompetmve modelr
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The Fuziy—CPN ha's shown the capability to perferm non-]ineat: function

approxnmatmn by employmg the ]eamlng mechamsm usmg the mpul—output patr of ¥

..the approxunated ﬁmetton The FCPN can. produce a dlscontmuous and non—lmear' R

' : function. The result is prormsmg am:l shows that the FCPN has good generahsatmn
and Ioca]lsauon_propert_tes in approxlma_tlng_a ﬁmctle_r_t This ﬁ:nctlph_approx:matmn
capability iS.SI'.titat.J]B for the adaptitre fi Itet task euch as system ideatihcatioh'; siénal

' esttmatwn and mgnal correctlon in tlme domam or |n frequeney domam

The Fuzzy-CPN has leammg parameters that are easy to spemﬁed arid not
sensitive. to the network performance Thus, thls Fuzzy—-CPN is easy to bu:]d and .I
_traln. Te adjust the learning parameter the following steps are applled. Firstly, the '
nurhher ef' mid.dle neurona is set to be. unlimiled Secend[g, p 'is-set in ‘m'e range -
0.01-0.02 and the p value that procluce the lowest MSE with the smatlest number of
fuzzy neuron is ‘chosen. Thlrd]y, the number of available resource for the mn:ldle :
!ayer is reduced to the 50%- 0% of the max:rnum Yuzzyt neuron number generated for ._
the chosen p. Furthermore, to obtain further 1mprovement the o, can be set to be _
.equal to 0.6, Since the learning is performecl quickly the adjustment ot‘ the learmng .
parameter is not ume consuming. ..

The Fuzzy-CPN model has been apphed to solve to predtct the Mackey-Glass
| chaotle ttme her:es It is performed by applymg the non-linear - ﬁ.lnctlon' :
'approxlmation capablllty of‘the Fuzzy—CPN In addmon it has been shown that the
'on-l_me update capabthty ef this network prowdes an error reductmn-m the recaﬂ
' phase. In ‘contrast Wlth another ANN model whtch requtres an sterattve !eamthb' :
scheme the I'uzzy CPN can unplement an on-lme adaptatlon process, The on-ltne

: adaptanon capablllty 1s-su1table for the real time appneatmns, espectal]y, in tite. series
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prediction problem, after performing a prediction, the real value of the next time
seties can be used to refine the network for predicting the future value,

The associative memory capability of the Fuzzy-CPN is applied in a
background noise elimination system for the input signal that is corrupted by
non-deterministic noise and non-stationary neise. The Fuzzy-CPN model is combined
with the spectrogram as time-frequency represeﬁtation, the periodogram and
assaciative memory for the noise power estimation that are used in the spectra
subtraction technique,

By extending the conventional spectrogram method to the proposed
spectrogram method, the time-shift variance and time-origin variance of the signal
can be tackled by the model. Thus, the proposed spectrogram can extract finer
details on the frequency changes of the signal results in better representation on the
frequency feature of the signal. The formulation of the proposed spectrogram has
been given. By using overlapped blocks of signal has produced the frequency
representation of the signal to overcome the boundary problem and provides better
noise power spectra estimation.

Although the Fuzzy-CPN is a prototype based mapping network, the final
output of the Fuzzy-CPN is not always one member of the prototype sets. This is
due to the recall mechanism of the Fuzzy-CPN which employs the fuzzy set
approach, The final output may be the combination of the prototypes or a new model
of the prototype. The final output itself may be a new form of any member in the
prototype set and never exists in the set of prototype. Therefore, the ability of the
Fuzzy-CPN in doing novelty detector or to deal with plasticity-stability problem is

shown.
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Software simulation results with some typical signals corrupted by Gaussian
noise are also presented, Followed by the simulation using the real noise whicﬁ are
the street noise, the crowded in a pub and the footstep. After the system has been
tre‘ned using a particular noise, the sinusoidal signal as the desired signal is mixed
with that noise and the system eliminates the noise and reproduces the desired output
signal. These simulations show that the proposed noise elimination model can work

effactively in the situation where the SNR of the corrupted signal is low. In a low

SNR condition, the proposed noise elimination model performs noise power spectra

estimation that is used in the spectral subtraction process better than in a high SNR
condition. In a high SNR condition, the desired signal becomes dominant compare to
the noise, therefore, the noise power spectra estimation becomes more difficult, but in
this condition a noise elimination process becomes less important. The simulation
shows a significant in.provement and a promising result to be applied in the real time

application using a dedicated signal processor system.

7.2 Future Improvements

In the implementation of this proposed model there are some constraints . Firstly,
since th. radial function is used as tiw basis function, the dimension of the input space
determines the generalisation and fﬁe localisation of the model. S____econdly, since this
oreposed model performs learning by using the internal state, the.i‘amount of memory
that is used by the mode! limits the implementation of the model, because each
neurcn must store their own internal state,

Further improvements to the model can be performed. They are suggpested as

follow :
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+ When the fuzzy neuron performing the expansion of the receptive field i thg
Step 5. Eq 4.19. A coefficient of expansion can be inserted into this function
to control that the receplive field will not grow unbounded. This mechanism
give more effects to control the expansion of the receptive field of a fuzzy
neuron when a fuzzy neuron is just generated.

+ MNeuron fusion mechanism can be incorpo.rated to this model. Instead of only
annihilating a fuzzy neuron, the fuzzy neuron that will be annihilated is merged
to the closest fuzzy neuron. This mechanism improves the capability of the
model to cover the whole input space without forgetting the old patterns,

+ Ip this proposed model, during the learning the receptive of fuzzy neuron is
always expanded. It can be improved by contracted the region of receptive
Jield which has been used in some fuzzy neural medel such as Fuzzy Min-Max
(Simpson et al,, 199)

+ During the training a particular cost finction can be applied in order to control
the neuron generation process or neuron annihilation process, This cost
function can be MSE of the prediction output and the desired signal or the

separation of the fuzzy partition,

7.3 Conclusions

The formal medel of the neuron, fuzzy neurc_in and the architecture of an ANN model
has been described in this thesis, This foriaulation is used to specify a novel fuzzy
neural network architecture which is identified as the Fuzzy-CfN. Although this
model is a prototype-based mapping network that employs Counterpropagation

paradigm as the basic paradigm, it does not suffer from the grand mother cell
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problem and it can perform the novelty detector. This proposed model combines the
fuzzy set approach with the artificial neural network techniques, a combination of
both techniques may result in a [earnable system that can tackie the vagueness
problem of a changing environment. The capability to perform a non-linear function
approximation is used as the basic structure of the adaptive filter, which can operate
in an unknown environment, The Fuzzy-CPN has fast learning capability and
self-growing structure, and it applies the constructive learning by specialisation with
the intefnal states. This learning scheme is expected to be able to reduce the
development time and cost of the designing adaptive filters based on fuzzy set
approach, because it is easy 1o specify the learning parameter of the Fuzzy-CPN.

The Fuzzy-CPN has been applied to tackle the adaptive filter tasks. It has been
applied for the signal estimation problems. This model is used to predict the
Mackey-Glass chaotic time series, The result of simulations shows that the
Fuzzy-CPN can predict with only a small numbers of learning iteration and produces
an acceptable result. For the signal correctton tasks, this model has been applied for
the background noise elimination problem by combining the Fuzzy-CPN with
time-frcquen.cy representation and spectral subtraction method. The result is
promising to be applied ir-a dedicated Digital Signal Processing system for real-time
applications .t;ecause this Fuzzy-CPN model can be casily implemented in a parallel

processing system.



183

References

-Abu-Mostafa, Yaser S. (1989, November). Information theory, complexity, and
neural networks. JEEE Communication Magazines, 27, pp. 25-28.

Anderson, James A., Michel T, Gately, P. Andrew Dens, R. Collins (1990). Radar
signal categorization using a nenral network, Proceedings of the IEEE, 78(1),
1646-1657.

Arai, Masahiko (1989), Mapping abilities of three-layer neural networks. Paper
presented at 1989 IEEE Internatonal Joint Conference on Neural Network, T,
419-423,

Asakawa, Kazuo, Hideyuki Takapi (1994). Neural networks in Japan,
Communication of the ACM, 37 (3), 106-112.

Back, A. D., A. C. Tsoi (1991). FIR and [IR Synapses, a new neural network

architecture for time series ﬁ!odeling. Neural Conynetation, 37, 375-185,

Barbour, G., K. Blackwell, T. Busse, D, Alkon, T. Vogl (1992). Dystal: a
self-organizing ANN with pattern independent Iraining time.  Paper
presented at 1992 TEEE International Joint Conference on Neural Networks,
1V, 814-819.

Barnard, Etienne, Ronald A. Cole, Mathew P. Vea, Fileno A. Alleva {1991). Pitch
detection with a neural-net classifier. [EEE Transactions on  Signal
Processing, 39 (2), 298-407,

Benaim Michael, Linda Tomasini (i991). Competitive and self-organizing of an
information criterion. In Eckmiller, R., G. Hartmann, G. Hauske (Eds.).
Pararel  Processing in  Neuwral System Computers (pp. 391-397),
North-Holland: Elsevier Science Publishers B, V. '

Berenji, Hamid R., Pratap S. Khedkar (1993). Clustering in product space for fuzzy
inference. Paper presented at 1993 IEEE Conference on Fuzzy System, 2,
1402-1407,



184

Betts, Dave, Gordon Reid (1993, March). DSP and audio restoration. Studio and
Sound and Broadcast Engineering, pp.71-76,

Bezdek, James C., Eric Chen Kuo Tsao, Nikhil R. Pal (1992). Fuzzy kohonen
clustering networks. Paper presented at 1992 IEEE Conference on Fuzzy
System, 1035-1043,

Biglieri, Ezio, Allen Gersho, Richard D. Gitlin, Tong Leong Lim (1984). Adaptive
cancelation of nonlinear intersymbol interference for voiceband data
transmission. JEEE Journal on Selected Area in Communications, 2(5),

765-777.

Blesser, B., J. M. Kates {1 ), Digital pracessing in audio signals. In Oppenheimer
Alan V. (Ed.). Application of digital signal processing (pp.29-116). New
Jersey : Prentice-Hall, Inc., Englewood Cliffs.

Ball, 8. F. (1979), Suppression of acoustic noise in speech using spectral subtraction.

IEEE Transactions on Acoustic, Speech, an Signal, 27, 113-120,

Boll, Steven F. (1979). Suppression of acoustic noise in speech using spectral
subtraction.  JEEE Transactions on Acoustics, Speech, and Signal
Pracessing, ASSP-27, 113-120.

Boll, Steven F. {(1983), Speech enhancement in the 1980s: noise suppresion with

pattern matching.{pp.309-323).

Botros, Nazeih M., S. Premnath {1992). Speech recognition using dwiamic neural
tietworks. Paper presented at 1992 IEEE International Joint Conference on
Neural Networks, IV, 737-742.

Bottou, Leon, and Patrick Gallinari {1992). A umnificd formalism for neural net
iraining algorithms. Paper presented at 1992 [EEE International Joint

Conference on Neural Networks, 1V, 7-12,

Brandt, Michael E. (1991, May). Compa\':ing signals in the time domain. The C Users
Journal, pp. 58-53.

Carpenter, Gail A., Stephen Grossberg {1988, March). The ART of adaptive pattern

recognition by a self-organizing neural network. Computer, pp. 77-88.



185

Carpenter, Gail A., Stephen Grossberg, Natalya Maskozon, John H, Reynolds, David
B. Rosen (1992). Fuzzy ARTMAP: a neural network architecture for
incremental supervised learning of analog multidimensional maps. JEEE

Transactions on Newral Networks, 3(5), 698-713,

Casselman, F. K., D. F. Freeman, D. A. Kerigan, S. E. Lane, Millstrom, W. G.
Nichols Jr. (1991). 4 newral network-based passive sonar detection and
classification design with a low false alorm rate. Paper presented at [EEE

Conference on Neural Networks for Ocean Engineering, 49-55,

Caudill, M, (1988). Network paradigm selection guidelines for application
developments. Paper presented at Proceeding of the Fourth Annual Artificial
Intelligence and Advanced Computer Technology Conference, 298-302,

Caudill, Maureen, (1992, June). The view from now. Af Expert, pp. 24-31.

Cheng, Yan Ming, Douglas O'Shaughness (1991). Speech enhancement based
conceptually on auditory evidence. /EEE Transactions on Signal Processing,
39(9), 1943-1954.

Chow, T. W. S, and Yam, Y. F. (1990). Discreie Time Domain Poles Zeros
Ideniification wsing Back Prapagation Newural Networks, Paper presented at
International Symposium on Signal Processing and [ts Applications : ISSPA
'90 : Gold Goast Austratia, August 27-3§, 1990,

Classen, T. A. C. M. and W. F. G. Mecklenbrauker (1983). Overview of adaptive
techniques in signal processing, In Schussler H. W. (Ed). Signal processing
f: Theories and Application (pp. 747-754). Norih-Holland: Elsevier Science
Publisher B. V.

Cohen, L (1992). Introduction: A Primer on Time-Frequency Analysis. In Boashash,
B (Ed.). Time Frequency Analysis, Methods and Applications (pp.17-73).

New York: Lengmann,

Cohen, Leon , Chongmoon Lee (1990). Optimal windows jfor ihe short-time fourier
irangform. Paper presented at 1SSPA90 Signal Processing, Theories,
Implementation and Applications, Gold Goast, Australia 27-31 August 1950,
912-917,



T e I

%A‘f&' .

186

Cohen, I.. Chongmoon Lee (1992). Instantaneous Bandwidth, In Boashash. B (Ed.).
Time Frequency Analysis, Methods and Applications (pp. 98-117). New

York: Longmann.

Cohen, Michael A.; Stephen Grossberg, Lonce Wyse (1992), A neural network Jor
synthesizing the pitch of an acoustic source, Paper presented at 1992 [EEE
International Joint Conference on Neural Network, IV, 649-654.

Cohen, M. E,, D. L. Hudson (1952). Approaches to handling of fuzzy input data in
netral networks. Paper presented at 1992 IEEE Conference on Fuzzy
System, 93-100.

Coley, J. W., J. W. Tukey (1965). An algorithm for the machine computation of
complex Fourier series. Math. Comp., 19, 297-301.

Coloma, J., LR. Carden, R.A. Carraso (1991). Adaptive artificial neural network
atgorithms for MCD applications, JEE Collogiunt on Adaptive Filtering Non

Linear Dynamics and Neural Networks, 9, 1-8.

Cohen, M. H,, P'. 0. Pouliquen, A. G. Andreou (1991). An Awio-adaptive synthetic
neural neiwork for real-time separdﬁon of independent signal sources. Paper
presented at IJCNN-91-Seattle; International foint Conference on WNeural
Network, July 8-12, 1991, .Washington State Conention & Trade Centre,
Seattle WA, 1, 211-214,

Connel, J. M,, and C. S, Xydeas (1990}, A comparison of acoustic noise
canceliation techniques for telephone speech. Paper presented at Paper
presented at International Symposium on Signal Processing and Its
Applications : ISSPA'90 : Gold Goast Australia, August 27-31, 1990, -

Cotter, Neil E. (1990). The Stone-Weierstrass theorem and its application to aeural
networks. IEEE Transactions on Neural Networks, 1 (4), 290-295.

Cox, Earl (1992, January). The great myths of fuzzy logic. A Expert , pp. 41-45.

Cox, Earl (1992, June). Integrating fuzzzy logic into neural nets. A7 Expert, pp.
: 43'4?l . - o



187

Currie, M. G. (1992). 4n optimized architecture incorporating a neural nef. Paper
presented at 1992 IEEE International Joint Conference on Neural Networks,
1V, 543-548. '

Cybenko, G. (1990). Complexity theory of neural networks and classification
problems. In Almeida L.B., and C. J. Wellekens (Eds.). Newral Networks,
EURASIP Workshop 1990 (pp. 27-44). London:Springer-Verlag,

Dasarathy, Belur V. (1992). FLUTE : Fuzzy learning in unfamiliar teacher
environments. Paper presented at 1992 IEEE Conference on Fuzzy System,
-1070-1077.

Dave, Rajesh N., Kurra Bhaswan (1992). Adaptive fuzzy c-shells clustering and
detection of ellipses. [EEE Transactions on Neural Networks, 3(5), 643-662,

Deller, John R., John G. Proakis, John H. L. Hansen (1992). Discrefe-time
processing of speech signal, USA ; Macmillan Publishing Company.

Momentum Data System, (1992), DPSWarks for Windows Version 2.0, Digital
Signal Processing Application.CA

Dubois, Didier, Henri Prade (1993). Fuzzy seis and probability: misunderstanding,
bridges, and gaps. Paper presented at 1993 IEEE Conference on Fuzzy
Systems, 2, 1059-1068.

Duhamel, Pierre (1986). Implementation of “Split-Radix" FFT algortihms for
complex, real, and real-symmetric data. /EEE Transactions on Acoustic,

Speech, and Signal Processing, ASSP-34 (2), 285-295,

Duhamel, Pierr (1990). Algorithms meeting the lower bounds on the multiplicative of
length-2" DFT's and their connection with practicat algortihms, JEEE
Transactions on Acoustics, Speech, and Signal Processing, 28 (9),
1504-1511, ' :

Dubamel, P., B. Piron, J. M. Etcheto. (1988). On computing the inverse DFT. JEEE
Transactions on Acoustics, Speech, and Signal Praéessmg, 36 (2), 285-286.



188

Duhamel, Pierre, Martin Vetterli (1987). Improved Fourier and Hartley transform
algorthms: application to cyclic convolution of real data. JEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-35 (6), 818-824.

Eisenberg, Joe, Feld, David, Edwin Lewis (1988). A passive shared element analog
electrical cochlea. In David, 8. (Ed). Advanced in Neural Information
Systems (pp. 663-669). San Mateo; Morgan Kuffiman Publisher.

Evans, David M, W. (1987). An improved digit-reversal permutation algorithm for
the Fast Fourier and Harlley transforms. JEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-35 (8), 1120-1125.

Fahlman Scott E., Christian Lebiere (1990). The cascade-correlation learning
architecture. In Touretzky (Ed.). Advances in Neural Information Processing

Systems 2 (pp. 524-532). San Mateo; Morgan Kauftman Publishers Inc,
FAQ, (1994). Frequently Asked Question of Fuzzy Logic, U'SENET,

Farley, James F., Peter D. Warhol {1993, February). Neura! nets for predicting
behaviour, Dr Dobd Journal, pp. 82 - 85.

Farmer and Sidorowich (1987). Prediciting chaotic time series. Physical- Review

Letters, 59, 845,

Finster, Herald (1992). dutomatic speech segmentation using neural netvork and
Phonetic transcription. Paper presented at 1992 IEEE International Joint

Cunf.rence on Neural Networks, 1V, 734-736.

Flanagan, James (1972). Speech Analysis Synthesis cnd Perception (2nd ed.). New
York: Springer-Verlag.

Frizke, Bernd (1993). Kohonen feature maps and- growing cell structures a
pcrformance comparison. In Gilles, C. L., 8. J. Hanson, J. D. Cowan (Eds.).
Advances in Newral Information Processing System. San Mateo: Morgan

Kaufmann Publisher.

Frizke, Bernd, (1993). Vector quantization with a growing and splitting elastic net,
' Paper presented at ICANN '93: Proceedings of the International Canference
on Aiificial Neural Networks, 13-16. ‘



189

Furukawa, Tokoshiro and Hajime Kubota (.l 990}, A new communication processing
system with lower error-raie and high reliability. Paper presented at
International Symposium on Signal Processing and Its Applications ; ISSPA
'90 ; Gold Goast Australia, August 27-31, 728-731.

Gee, S, M. Rupp (1991). 4 comparison of adaptive IR echo canceler. Paper
presented at ICASSP-91 International Conference on Acoustics Speech and
Signal Processing, 3, 1541-1544.

Gerald, J. A. B., N. L. Esteves, M. M. Silva (1990). An adaptive IIR echo canceller
combining oulpnt error and equation error. Paper presented at 1990 IEEE

International Symposium on Circuits and Systems, 1, 779-783.

Gersho, A. (1984). Adaptive filtering with binary reinforcement, IEEE Transactions
of Information Theory, IT-30, 191-199,

Ghosh, Ashish, Nikhil R, Pal, Sankar K. Pal (1993). Self-organization for object
etraction using a multitayer network and fuzziness measures. JEEE

Transactions on Fuzzy System, 1(1), 54-68.

Gibson, Gavin I., Colin F. N. Cowan (1990). On the decision regions of multilayer
perceptrons. Proceedings of the IEEE, 78 (10}, 1590-1594,

Gedwin, W, H., M. I. Heering, D. P. Goodall, W, Bates (1988). Identication of
speech in noise using low-cost algorithms. Tn Moscardidi, A. O, E. H.
Robson (Eds.). Mathematical modelling for information ftechnology :
Telecommunication transmission, rccep!ioﬁ and securify {pp.42-49). Great

Britain; Ellis Horwood Limited.

Gorman, R. P,, Sejnowski, T, J. (1988). Analysis of hidden units in a hidden layered
network trained to classify sonar targets, Nenral Networks, 1(1), 75-89.

Grifftihs, L. 1, (1967). 'A simple adaptive algortihm for real time processing in -
antenna arrays. Proceedings of the IEEE, 57, 1696-1704, '

Hambaba, Mobamed L., Ali Charchali (1990). Unsupervised learning the hidden

structure of speech. Paper presented at The 22 South Eastern Sym:pasium



190

on System Theory, March 11-13, 1990, Tennesse TEchnological University,
Cooke‘vul]e, Tennesse, 662-666.

Hansen, John H. L, Mark A. Clements (1991). Constrained iterative speech
enhancement with application to speech recognition. IEEE Transactions on
Signal Processing, 39 (4), 795-805.

Hayashi Yoichi, james J. Buckley, Ernest Czogala (1993). Fuzzy neural network
with fuzzy :signals and weights. International Journal of Intelligent System, 8,
527-537,

Hecht-Nielsen, Robert (1987&). Counter Propagation Network. Applied Optics,
26(23), 4979-4984.

Hecht-Nielsen, Robeter (1987b). Kolmogorov's mapping newral network existence
nefwork. Paper presented ai the JEEE First International Conference on

Nueral Network - San Diego, III, 11-14.

Hecht-Nielsen, Robert (1988a). Neurocomputing: picking the human brain. JEEE
Spectrum, 25(3), 36-41,

Hecht-Nielsen, Robert (1988b). Applications of counterpropagation networks.
Neural Networks, 1, 131-139

Hecht-Nielsen, Robert (1990). Neurocomputing. USA. : Addison-Wesley Publishing

Company, Inc,

Hewitt, P. D., P. J. C. Skitt, R, C, Witcomb (1989). A self-arganizing feedforward
network applied to acoustic data. In Taylor Joha, C. L. T. Mannion (Eds.).
New developments in neural computing {pp. 1-78). England : 0P
Publishing Ltd.

Horvath, S. (1983). Digital Signal Processing in communication and transmission; In".-

Schiissler (Ed.) SIGNAL PROCESSING II: Theories and A;;pﬁcbrioé':sl- (.pp‘
515-522). North-Holland: Elsevier Science Publisher B. V.

Howell, J. A, C. W. Barnes, 8. K. Brown, G. W, Flake, R. D. Tones, Y.C. Lee, S.

Qian, and R. M. Wright (1989). Confrof of a nega!:".re-fon".@_':cce!reaior sonrce



191

using neurial networks. Paper presented at the Intemational Conference on

_ Accelerald;"'and Large Experimental Physics Control Systems,

Hoyt, J. D., H. Wechster (1990). An examination of the application of multilayer
neura!-ne;imrks to audio. signal processing. Paper presented at IJCNN:
International Joint Conference on Neural networks, January 15-19, 1990,
Omni Shereham Hotel, Washington DC, 303-310.

Iwata, Akira, Yoshihisa Suwa, Yutaka Ino., Nobuo Suzumura (1992). Hand ‘ritten
alpha-numeric recognition b v a self-growing nenral network "CombNet-1I",
Paper presented at 1992 IEEE International Joint conference on Neura]
Netwaorks, IV, 228-234,

Jang, J-S Roger (1992). Fuzzy controller design without domain experts, Paper
presented at 1992 IEEE Conference on Fuzzy System, 289-206,

Jang J-S Roger, Chuen-Tsai Sum (1993). Predicting Chaotic Time Series with Fuzzy
If-Then Rule. Paper presented at 1993 IEEE Conference on Fuzzy System,
1079-1084, -

Jeffries D, I, D. R, Farrier (.19_90)‘ Multiple signal detection with unknown
background noise. 657, In Durrani, T. 8., J. B. Abbis, J. E. Hudson, R. N,
Madan, J. G. McWhirter, T. A. Moore (Eds.). Mathematcis i» signal
processing (pp. 657-667). Oxford : Clarendon Press,

Jianxin Jiang, Hu Zheng, Liu Feng (1992). 4 hybrid neiiral fuzzy neural framework
Jor speech recognition, Paper presented at 1992 IEEE International Joint -
Conference on Neural Networks, IV, 643-648.

Jones, R. D., W, C, Mead, Y. C. Lee, C. W. Bames, G. W. Flake, L. A, Lee, M. K,
O'Rourke (1991), Using CNLS-Net to predict the Mackey-Glass chaotic time
series. Paper presented at IICNN-91-Seattle, International Joint Conference
on Neural ﬁelwork, July 8-12, 1991, Washingto State Convention & Trade
Center, Seattle, WA, II, 485-490.

Jones, R. R., Y. C. Lee, C. W. Barnes, G.: W. Flake, K. Lee, P. 8. Lewis, 5. Qian

(1989), Function approximation and time series prediction with neural



192

networks, Paper presented at International Joint Conference on Neural
Network, Sheratorn Washington Hotel, 1989,1, 649-665,

Kadambe, Shubhs, G. Faye Boudreaux-Bartels {1992). Application of the wavelet
transform for pitch detection of speech signals. JEEE Transactions on
Information Theory, 38 (2), 917-924,

Kailath, L. (1980). Linear sysiems. NJ . Prentice-Hall, Englewoed CLiff5,

Kalman, Barry L., and Stan C. Kwasny (1992). Why Tanh: choosing a sigmoidal

Junction. Paper presented at 1992 IEEE International Joint Conference on’

Neural Networks, 1V, 578-381.

Kanekar, Ashish, I, and Ali Feliachi (1990). Stare Estimation Using Artificial Neural
Networks. Paper presented at 22™ South Eastern Symposium on System
Theory, March 11-13, 1990, Tennesse Technological University, Cockeville,
Tennesse, 552- 554,

Kaufmann, A., M. M. Gupta (1988}, Fuzzy Mathemuatical Models in Engineering

and Management Science. North Holland ; Elsevier Science Publsiher B, V.

Kipersztok, Oscar (1993). Active control of broadband noise using fuzzy logic.

Paper presented at 1993 IEEE Conference on Fuzzy Systems, T, 906-911,

Klirr, Goerge 1., Tina A. Folger (1988). Fuzzy sets, uncertainty and information NI:
Prentice Hall, Englewood Cliffs,

Kobatake, Hidefumi and Kacru Gyoutoku (1990). Restoration of speech
Contamined by Nonst&t:‘onmy Noises. Paper presented at International
Symposium on Signal Processing and Its Applications : ISSPA '90 : Gold
Goast Ausiralia, August 27-31, 495-408,

Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE, 78(9),
1461-1480,

Kosko, Bart (1986). Fuzzy entropy and conditioning. Information Sciences, 40,
165-174, | "

Kosko, Bart (1987). Fuzzy Associative Memory, In A, Kendel (Ed.). Fuzzy Expert
=~ Systems, MA: Addison-Wesley. '




193

Kosko, Bart {1990). Unsupervised learning in noise. JEEE Transactions on Neural
Netwarks, 1(1), 44-57.

Kosko, Bart (1992a). Fuzzy system os universal approximators. Paper presented at
1992 IEEE Conference on Fuzzy System, 1153-1162.

Kosko, Bart (1992b). Neural Networks and Fuzzy Systems, A dynumical systems

approach fo machine imelligence. NI : Prentice-Hall, Engelwood Cliffs.

Kosko, Bart (1993). Fuzzy Thinking, The New Science of Fuzzy Logic. USA: Harper
Collings Publisher.

Kaosko, Bart, Julie Dickerson {1994, July). Fuzzy virtual worlds, Af Expert, pp.25-31.

Kowalczyk, Adam (1991). Can multilayer mapping networks with finite number of
real parameters harness the compuational power of Komogorov's theorem ?.
Paper presented at 1991 .IEEE International Joint Conference on Neural
Netwaorks, The Westing Stamford and Westin Plaza, 1821 November 1991,
Singapore, 3, 2722-2728.

Krishnapuram Raghu, Olfa Nasraoui, Hichem Frigui (1992). The fuzzy C spherical
shells algorithm: a new approach. IEEE Transactions on Newral Networks,
3(5), 663-671.

Kuo S,, H. Shao (1990). A real time acoustics echo cancellation systems. Paper

presented at IEEE International Conference on System Engineering, 168-171.

Kue, 8. M,, J. Chen (1992). New adaptive [IR notch filter and its application to
howling control in speaker phone system. Klectronics Letters, 28(8),
764-766.

Kwan, Hon-Keung, Pang-Chung Tsang (1990). Syswolic implementation of
counterpropagation  networks. Paper presented at ICASSP '00 1990
International Conference on Acoustics, Speech and Signal Prdcessing, 2,
953-956. '

Lee, Chuan Chien (1990). Fuzzy-Logic in control systems: Fuzzy logic controller
part-l. IEEE Transactions on System, Man, and Cybernetics, 20 (2),
404-418. '



194

Lee, Chuan Chien (1990), Fuzzy-Logic in control systems: Fuzzy logic controller
part-Il. JEEFE Transactions on System, Man, and Cybernetics, 20 (2),
419-435,

Lee, Tsu-Chang (1991). Structure Level Adaptation for Artificial Newral Network,

London: Kluwer Academy Publisher,

Lee, Samuel C., Edward T. Lee (1975), Fuzzy neural networks, Mathematical
Biosciences, 23, 151-177, '

Leemon, Michael (1991). Competitively Inhibited Neural Networks jor Adaptive

Parameter Estimation, London : Kluwer Academic Publishers.

Levin, Esther, Nafiali Tishby, Sara A. Sella (1990), A statistical approach to [earning
and generalization in layered neural networks. Proceedings of the IEEE, 78
(10), 1568-1574,

Lim Kyoung-Man, Young-Chui Sim, Kyung-Whan Oh (1992). 4 jace recginition
system using fuzzy logic and ariificial newral network. Paper presented at
1992 IEEE Conference on Fuzzy System, 1063- 1069.

Lin, Z. K, Khorasani, R. V. Patel (1990). 4 counterpropagation newral networks for
Sfimction agpproximation. Paper presented at 1990 IEEE International

- Conference on Systems, Man and Cybernetics, 382-384.

Lippman, Richard P. (1987, April). An intreduction to computing with neural nets,
TREE ASSP Magazine, pp. 4-22.

Lippmann, Richard, Paul Beckman (1989). Adaptive neural net preprocessing for
signal detection in non-gaussian.noise. In Touretzky (Ed.). Advances in
neural information processing systems, 1, (pp. 124-132), San Mateo :

Morgan Kaufmann Publishers Inc.

Liu, Jun, Danwei Wang (1992). Data compression for image recogmition using
neural nefwork, Paper presented at 1992 TEEE International Joint Conference

on Neural Networks, 1V, 333-338.

Long, G. F. Ling (1990). A three complex systent ideniification method und its

application 1o echo canceller on fast initialization, Paper presented at



185

ICASSP'90 - 1990 Intemnational Conference on Acoustics, Speech, Signal
Processing, 3, 1671-1674, )

Machado Ricardo Jose, Armando Freitas da Rocha (1992). Evolutive fuzzy neural
networks. Paper presented at 1992 IEEE Conference on Fuzzy System,
493-500.

Magotra, N., D. Hush, J. Bibbo, E. Choel (1991). Seismic Signal Discrimination
using Adaptive System Parameters, Paper presented at Proceeding of the 33"
Midwest Symposium on Circuits and Systems, 84-87.

Malkoff, Denald B. (1992). Detection and classification by neural networks and
time-frequency distributions. In Boashash. B. (Ed.). Time Frequency
Analysis, Methods and Applications (pp, 423-348). New York: Longmann.

Malvar, Henrique S. (1992). Signal Processing with Lapped Transforms. Norwood:
Artech House Inc,

Manabe, Takeshi, Ryuji Kaneda, (1991). Adaptive decision-feedback of digital
transmission channels using forward only connterpropagation networks.
Paper presented at 1991 IEEE International Joint Conference on Neural
Networks, 1, 220-225.

Marcos, §., O. Macchi, C, Vignal, G. Dreyfus, L. Perzonnaz, P. Roussel-Ragot
{1992). A unified framework for gradient algorithms used for filter adaptation
and neural network training, faternational Jowrnal of Circuit, Theory, and
Application, 20(2}), 159-200,

Matsuyama Yasuo {1992). Learning in competitive networks with penalties. Pal:;er
presented at 1992 IEEE International Joint Conference on Neural Networks,
IV, 773-778.

Matthews, M. B. (1990). Nonlinear adaptive filtering using neural fetworks.

Mitteilungen AGEN, 51(special), 13.23,

Matthews, Michael B., G.S. Moschytz (1990). Neural network nonfinear adaptive
Jiltering using extended Kalman filter algorithm. Paper presented at
International Neura) Network Conference 1990, 115-118.



196

Mc Neil], Daniel, Paul Freiberger (1993). Fuzzly logic, the discovery of a
revolulionary computer technology and how it Is changing our world
Melbourne : Bookman Press.

Mehra, Pankaj, Benjamin W, Wah (1992), Artificial Neural Networks : Coneepts and
Theory. CA: IEEE Computer Society Press.

Messerschmitt David, David Hedberg, Christopher Cole, Amine Haoui, Peter
Winship (1986). Digital voice echo canceller with a TM832020, Digital
Signal Processing Applications with TMS320 Family (pp.415-454). Texas

Instruments,

Mitra Sushmita, Sankar, K. Pal {1994). Logical operation based fuzzy MLP for
clasification and rule generation, Neural Networks, 7(2), 353-373,

Meddy 1., C. J. Darken (1989). Fast learning in netwarks of locally tuned processing
unit. Neural Computation, 1, 281-294,

Munakata, Toshinori, Yashvant Jani (1994). Fuzzy systems: an overview,
Communication of the ACM, 37 (3), 69-76.

Murata Noboru, Shuji Yoshizawa, Shun-ichi Amari {1992). Network information
critetion determining the number of hidden units for an artificial neural

' network model, Research Report, University of Tokyo, June 22 1992,

Murphy, Owen J. (1990}, Nearest reighbor pattern classfication. Proceedings of the
IEEE, 78 (10), 1595-1598,

Mutluay, H. E., M. M. Fahmy (1984). Adjustable digital filter. In V. Cappelini, A. G.
Constantinides (Eds.). Digital ~Signal Procesing-84  (pp.165-160).
North-Holland: Elsevier Science Publishers B. V.

Naik, K., G. Singh, K. Khorasani, R. V. Patel (1952). An improved n:rdrf;dfrecﬁom? )
associative memory. Paper preseﬁteﬂ_ at 1992 IEEE International Joint

Conference on Neural Networks, 1506-1511.

Nerrand, O., P. Roussel-Ragot, L. Personnaz, G. Dreyfus {1993), Neural networks
and non linear adaptive filtering: unifying concepts and new algorithms.

Newral Computation, 5, 165-199,



197

Newton, Scott C., Surya Pemmaraju, Sunanda Mitra (1992). Adaptive fuzzy leader
clustering of complex data sets in pattern recognition, JEEE Transactions on
Neural Networks, 3(5), 794-300.

Nguyen D., B, Widrow (1985). The truck backer-upper: An example of self-learning
in nenrgl networks. Paper presented ai 1989 IJICNN International Joint
Conference on Neural Networks, Sheratorn Washington Hotel, II, 357-367,

Nie, Junhong, D. A. Linkens (1993). Learning control using fuzzified .self-organizing
radial basis fimction network. [EEE Transactions on Fuzzy Sj}slems, 1(4),
280-287.

Niranjan, Mahesan, Frank Fallside (1990). Speech feature extraction using neural
networks. In Ameida, L. B., C. J. Wellekens (Eds.). EURASIP Workshop
1990, Sesimbra, Poringal, February [5-17 (pp.197-204). Berlin
Springer-Vetlag.

Nolft, Stefano, Domenico Parisi (1992). Growing neural networks, Departement of

Cognetive Processes and Artificial Intelligence, Italy, Fechnical Report,

Oppenheimer, Alan V., Ronald W, Schafer (1989). Discrete-Time Signal Processing.
NI : Prentice Hall Inc.

Palakal, Mathew J., Michael J. Zoran (1992). A neural network approach o large
dimensional spectral paitern processing. Paper presented at 1992 [EEE

International Joint Conference on Neural Networks, [V, 691-695,

Palakan, M. I, M. J. Zoran (1989). Feature extraction from speech spectrogram

using multi-tayered network model. EEE International Workshop on Tools -

Jor Artificial  Inteffigence.  Architectures, Languages and Algortibms,
224-230.

Pao,Yoh-Han (1989). Adaptive pattern recognition and newral networks. USA:
Addison-Wesley Publishing Company.

Park, Y. H., S. Y. Bang {1991}, A4 new neural network model based on neighbor

classifier. Paper presented at 1991 IEEE International Joint Conference on



198

Neural Networks, The Westing Stamford and Westin Plaza, 18-2]1 November
1991, 3, 2386-2389.

Pitss Ioannis, Evangelos Milios, Anastasios N, Venetsanopoulos (1992). A minimum
entropy approach to rule leaming from examples. /992 IEEE Transactions
on System , Man and Cybernetics, 22 (4), 621-635.

Poggio, Tomaso, Federico Girosi (1990). Networks for approximation and learning.
Proceedings of the IEEE, 78(9), 1461-1497,

Qureshi, Shahid H (1985). Adaptive Equalization. Proceedings of the IEEE, 73(9),
1349-1387.

Radivojevic, 1., Jayantha Herath, W, Steven Grary. (1991, June). High performance
DSP architecture for inteliigence and control applications. IEEE Comrol
System Magazing, 11(4), 49-55,

Refenes, A. N,, 8. Vithalani (1991). Constructive learning by specialisation. In R, G.
Hartmann, G. Hauske (Eds.). Pararell Processing in Newral System
Computers (pp. 923-928). North-Holland: Eisevier Science Publishers B, V.

Rock, Denny, Don Malkoff, Ron Stewart (1993, February). Al and aircraft healt
monitoring, Af Expert, pp.28-35.

Roger Jang, Jyh-Shing (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference
System. JEEE Transactions on Systems, Man, and Cybernetics, 23 (3),
665-685.

Roitblat, H. L., P, W. B, Moore, P. E. Nachtigall, R. H. Penner, W. W, L. Au
(1989). Dolphin echolocation: identification of refurning echoes using a
coninterpropagation network, Paper presented at 1989 JJCNN International

Joint Conference on Neural Networks, Sheraton Washington DC, 1, 295-300. '

Rumelhart, D, £., D. Zipser (1985), Feature discovery by competitive learning. In
Rumelhart, David E,, James. L, McClelland (Eds.}. Paraliel Distributed
Processing, Exploration in the Microstructure of Cogmition, vol 1, (pp.
.151-193). London : The MIT Press,



199

Rumelhart D. E, G. E. Hinton, R J. Williams (1986). Learning internal
representations by emor propagation. In Rumelhert, David E, James L,
McCleltand (Eds.). Paralfel Distributed Processing, Exploration in the
Microstructure of Cognition, vol I, {pp. 318-362). London ; The MIT Press,

Rumelhart, D. E,, G. E. Hinton, J. L. MCClelland {1986). A general framework for
paraflel distributed processing. In Rumelhart, David E., James L, McClelland
(Eds.). Parallel Distributed Processing, Exploration in the Microstructure of
Cognition, vol 1, {pp. 46-109). London : The MIT Press.

Scharf, Louis L. (1991). Statistical signal processing (pp.1-4). USA:
Addison-Wesley Publishing Company Inc.

Sethi, Ishwar K. (1990). Entropy nets: from decision trees to neural networks,
Proceedings of the IEEE, 78 (10), 1605-1613,

Shaudys, Fred E., Todd K. Leen (1992). Feature selection for improved
classification. Paper presented at 1992 IEEE International Joint Conference

on Neural Networks, 1V, 607-702.

Shimekoshi, Kiyoshi, Yukinao Hashitsuma {1989). 4 study of voice/non-voice
discrimination method using newral nefworks for integrated packet switching

systemns. Paper presented at 1989 ISCAS, 2096-2099.

. Shynk, J. 1. (1992, January). Frequency-domain and multirate adaptive filtering,
IEEE Signal Processing Mogazine, pp.14-37.

Simpson, Patrick K. (1990) Arsificial Nenral Systerns. Foundations, paradigms,

applications, and implementations. USA : Pergamon Press Inc.

Simpson, Patrick, K. (1992). Fuzzy min-max neural networks-part 1: classification,
IEEE Transactions on Neural Networks, 3(5), 776-786.

Simpson, Patrick K., {1993). Fuzzy min-max neural networks-part 2; clusiering,

IEEL Transactions on Fuzzy Sysiems, 1(1), 32- 45,

Soleit, E. A, O. R. Hintin, E. Horne (1988). 4 new adaptive recursive digital echo
canceller for baseband transmission channel. Paper presented at Proceeding

of the IASTED International Symposium Applied Informatics . Al'88, 67-69,



200

Srikanth, Radhakrishnan, Frederick E. Petry, Cris Koutsougeras (1993). Fuzzy
elastic clustering. Paper presented at 1993 IEEE Conference on Fuzzy
System, 2, [179-1182,

Srirengan, Swarmala, Chee-Kit Looi (1991). On wusing backpropagation for
prediction: an empirical study. Paper presented at 1991 IEEE International
Jaint Conference on Neural Networks, The Westing Stamford and Westin
Plaze, 18-2] November 1591, 1285-1289,

Stearn, Samuel D, (1988). Fundamentals of Adaptive signal processing, In Lim, Jae
8§, Alan V. Openheim (Eds.). Advanced Topic in Signal Processing (pp.
246-288), New Jersey: Prentice Hall.

Sugeno, Michio, Takahiro Yasukawa (1993). A fuzzy-logic-based approach to
qualitative modelling, IEEE Transactions on Fuzzy System, 1 (1), 7-30.

Sztipanovitz, Janos (1990). Adaptive processing with neural network controlled
resonator-banks, J/EEE Transactions on Circuits and Systems, 37(11), 1436-
1440. ’

Taber, Rod (1394, July). Fuzzy Cognitive Maps modes saciety systems. AJ Expert,
pp.19-23.

Thomopoulos, Stelios C. A., Dimitrios K. Bougoulias (1991). DIGNET: a
self~organizing neural network for amtowatic pattern recognition and
classification. Paper presented at 1991 IEEE Internationa! Joint Conference
on Neural Networks, The Westing Stamford and Westin Plaze, 18-21
November 1991, 3, 2683-2692,

Tomiinson. R. W., W. Treurniet (1990). Spectral processing of harmonic complex
tones and pitch by pdp networks, In Eckmiller, R,, G. Hartmann, (5. Hauske
(Eds.). Parallel processing in neural systems and compulters {pp. 399-403).
Norht-Holand : Elsevier Science Publishers B. V.

Tong, Lang, Ruey-wen Liu, Victor C. Soon, Yih-Fang Huang (1991), Indeterminacy
and identifiability of blind identification. IEEE Transactions on Circuits and

Systems, 38 (5), 499-509,



201

Treichler, John R., C. Richard Johnson JR, Michael G. Larimore (1586). Theory
and design of adaptive filters. USA: John Willey and Sons.

Trompf, Michael (1992). Neural nefwork development Jor.noise reduction in robust
speech recognition. Paper presented at 1992 IEEE International Joint
Conference on Neural Network, IV, 722-727,

Tsoi, A, C, D, 8 C. So, A Sergejew (1993, March), Classification of

eleciroencephalogram using artificial neural networks.

Ulug, M, E, (1992). A rapid learning orthonormal neural network for signal
processing, Paper presented at 1992 IEEE International Joint Conderence on

Neural Network, IV, 265-270,

Uncini, A., M . Marchesi, G. Odlandi, F. Piazza (1990). 4n adaptive neural networks
Jilters for evoked potentials, 1990 IEEE Intérnational Symposium on Circuits
and Systems, 2, 1086-1089.

Valiant, L. G. (1984). A theory of the leamnable. Communications of the ACM,
27(11), 1134-1142.

Vary, Peter (1 933). On the enhancement of noisy speech, In H, W, Schusster (Ed.).
SIGNAL PROCESSING H: Theories and Application {pp. 32?-33ﬁ).
North-Holland: Elsevier Science Publisher B. V,

Vassiliadis, C. A. (1990). Newral networks - twelve learning algorithms. Paper
presented at the 22™ Southeastern Symposium on System Theory, March
11-13, 1990, Tennessee Technological University, Cookeville, Tennessee,
449-454,

Venkatesh, Santosh 8. (1992). Compufation and lfearning in the confext of network
capacity. In Weshster, Harry (Ed)). Neural Networks for Perception:
Computatioﬁ, Learning, and Architecture (vol. 2) {pp. 173-207). United

Kingdom: Academic Press Inc.

Wang, Li-Xin, {1992). Fuzzy system are universal approximators, Paper presented at

1992 IEEE Conference on Fuzzy System, 1164-1170,



202

Wang, Li-Xin, Jerry M. Mendel (1992a), Fuzzy basis function, universal
approximation, and orthogonal least-squares learning. JEEE Transactions on
Nenral Networks, 3(5), 807-814.

Wang, Li-Xin, Jén'y M. Mendel (1992b). Generating fuzzy rules by learning from
examples, JEEE Transactions on Systems, Man, and Cybernetics, 22(6),
1414- 1427, '

Wang, Li-Xin, Jerry M., Mendel (1993a). Fuzzy adaptive filters, with a:f)plication to
nonlinear channel equalizafic_m. IEEE Transactions on Fuzzy Systems, 1(3),
161-170.

Wang, Li-Xin, Jerry M. Mendel (1993b). An RLS fuzzy adaptive filter with
application to nonlinear chamel equalization. Paper presented at 1993

IEEE International Conference on Fuzzy System, 2, 895-900,

Wasserman, Philip (1993). Advanced Methods in Newral Computing. New York:
Van Nostrand Reinhold.

Weber, Mark, Paul B. Crilly (1991). Adaptive Noise Filtering using an
Error-Backpropagation Neural Network. JEEE Transactions on

Instrumentation and Measurement, 40(5), 820-825.

Webos, Paul J. (1991). Links between artificial neural networks (ANN) and statistical
pattern recognition. In Sethi, 1. K, AK. Jain (Eds.). Artificial Newral
Networks and Statistical Paitern Recognition - Old and New Cormections

{pp. 11-31). North-Holland: Elsevier Science Publisher B, V.

Weibel, A, Hanazawa, T., Hinton, G. Shikano, K, and Lang, K. J, (1989). Phoneme
recognition using time-delay neural networks, JEEE ASSP, 37, 328-339.

'Widrow, B, M. E. Hoff, Jr. (1960). Adaptive switching circu'.it_'s.- 1960 IRE
WESCON Convention Record, part 4, pp. 96-104,

Widrow, B., §. D, Stearn (1935). Adapiive Signal Processing. New Jersey :
Pretice-Hall.

Wright, J. B, J. B. Foley (1990). Adaptive periodics noise cancellation for the

control of acoustic howling. Signal Processing V : Theories and Applications




203

- Proceedins of EUSIPCO-90. Fifth Ewropean Signal Processing Conference,
3, 1979-1982.

Xue, Q. Y. Hu, W.J. Thomas (1992). Neural Network-based Adaptive Matched
Filtering for QRS Detection. JEEE Transactions on Biomedical Engineering,
39(4), 317-329.

Yamakawa Takeshi, Masuo Furukawa (1992). A design algorithm of membership
Junctions for A fuzzy neuron using example-based learning. Paper presented
at 1992 IEEE Conference on Fuzzy System, 75-82.

Zadeh, L. A. (196 5). Fuzzy sets. Information Control, 8, 333-353.

Zadeh, Lotfi A (1992, March). The caleulus of fuzzy logic IF/THEN rules. A
Expert, pp, 23-27. o

Zadeh, Lotf A, (1994). Fuzzy logic, neural networks, and soft computing.
Communication of the ACM, 37 (3), 77-84.

Zhou, Li, Di Tang Fang (1988). The research on speech feature represenitaation
method and distance measure method. Paper presented at Proceeding of the
Fourth Annual Astificial Intelligence and Advanced Computer Technology
Conference, 631-633.



Appendix A
 Glossary of Acronyms

AMUSE  Algorithm for Muitipte Unknown Signat Extraction

ANC
ANFIS
ANN
ANVC
APNC
ARMA
ART
BDN
BP
CPN
CS
DCN
DFT
DN
EFOBI
FBF

FCPN
FFP
FET
FIR

FS
'GRNN
1cM
ICPN
IDFT

Adaptive Noise Cancelling

Adaptive Network based Fuzzy Inference System
Artificial Neura) Network

Adaptive Noise and Yibration Control
Adaptive Periodic Noise Cancellation
Auto Regressive Moving Average
Adaptive Resonance Theory
Bi-Directional Neurons
Backpropagation Network

Counter Propagation Network
Composite State

Defuzzifier Control Neuron

Discrete Fourier Transform
Defuzzifier Neuron

Extended Fourth Order Blind Idéntif'scation
Fuzzy Basis Function

Feed Back Path

Fuzzy Counter Propagation Netwark
Feed Forward Path '
Fast Fourier Transform

Finite Impulse Response

Fuzzy Neuron

Fuzzy System

General Regression Neural Network

Input Connection Map

- Interpolative Counter Propagation Network

Inverse Discrete Fourier Transform
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- IR
LBG
LMS
LPrC
LT™M

SOM
STF
STET
STM
TFBS
TFBY

Inverse Fast Fourier Transform
Infinite Impulse Response
Linear Basis Function

Least Means Square

Linear Predictive Coding

Long Term Memory

Maximum Entropy Method
Maximum Likelihood Methed
Modulating Parameter Structure

Mean Square Error

Algorithm for Muitiple Signal Classification Method

Network Input Element
Network Qutput Element
Output Connection Map
Parameter Adaptation Automata
Parameter Contro! State
Projective Field

Processing Kernel

Power Spectral Density

Parameter State Transition Function

Radial Basis Function
Receptive Field

Received Feedback Signal
Recursive Least Square

Root Mlean Square

Signal to Noise Ratio

Self Organising Map

State Transition Function
Shott Time Fourier Transform
Shott-Term Memory
Transmitting Feedback Signals

.Transmitting Feedback Vector
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UDN  Uni-Directional Neuron
VLSI  Very Large Scale Integrated circuit
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Appendix B
Mackev-Glass Chaotic Time§gries

Chaotic time series is a deterministic and non-linear series. Mackey-Glass chaotic
time series is generated from the following delay equation :

g’xﬂ_,-; ax(t—1)

dt T 1+x*(t-1) — bt ' (B.1)
In this work the following constants are used :
a=02; 5=01; ¢c=10 : (B.2)
Therefore the Eq. B.1 is rewritten as :
de(f) _ 0.2x(1-1)

dr T 1+x-1) (.llx(:) . ®3).
where the  value determines the chaotic behaviour of the function, Choosing the T
value > 17 produﬁes a chaotic behaviour. In this éxperiments, 1 equal to 30 is used.
This value s similar to the model that has been used by Wang and Mende] (Wang and
Mendel, 1992).

To generate the time series, Euler method is used lo solve the Eq. B.3. The
following initial values are used to generate the time series:

(=07

x(t)=x(0).+0.02 toit=1,2,...30
After t > 30, thé Euler method ts applied 1o procl_ucé x(t) where t = 31, ..., lOdO. |

This time series is shown in Figure B.1.
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Figure B.1 Mackey-Glass chaotic time series
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Appendix C
Example of Real Background Noise Elimination

In this simulation 3 kinds of real noise are used. The noises are taken from CD
sample (Spectacular Sound Effect, EMI Record Ltd, 1990). Those noises are

* Sound of Typical Street Noise.

® Sound of Crowd Cheering in a pub.

* Sound of troop marching.

Those sounds are sampled by using DSP board TMS320C25 from ba]anco Spry with
sample rate is equal to 5§ KHz. As the testing signal a 300 Hz sinuscidal wave which
is created by signal generator is used.

The Fuzzy-CPN is trained only ﬁsing one type of noise. After that the test '
signal is added with the same noise. This corrupted signal is fed into the system. The
Fuzzy-CPN eliminates the noise from the corrupted signal and produce a noise-free
signal. These steps are performed to all noise.

All these simulation have not been performed in real time. The spect.rogram
and the spectral subtraction and FFT is performed by using separate software, The
Fuzzy-CPN simulator software are only sypplied by the spectrogram and produces
the average periodograrm,

Firsﬂy, the noises are represented by using conventional spectrogram method
and the prd:posed..s]:ectrogram method in order to compare the doth methods. I

shows that the proposed method provide a clearer representation in order to detect

the noise. Secondly the simulation of background moise elimination using those

noises are shown.



210

Street Noise

This noise is typical noise of a street, there is sound of car, people walking,
people talking. This noise is combination of the stationary noise from the street

background and non-stationary noise, such as car, horn etc,,

x{t}
A

Figure C.1 Time-domain representation of street noise
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Figure C.2 Cenventional spectropram of signa! shown in Figure C.1
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Figure C.3 Contour diagram of Figure C.2
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Figure C.4 Proposed spectrogram of signal shown in Figure C.1
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Figure C.5 Contour diagram of Figure C.4
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Foot Step noise

This transient noise is recorded from the sound of foot step in the silence
environment. This noise is an example of non-broadband neise and non-gaussian

noise.

x(o4

v

Figure C.6 Time-domain representation of foot step noise
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Figure C.7 Conventional spectrogram of signal shown in Figure C.6
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Figure C.8 Contour diagram of Figure C.7
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Figure C.9 Proposed spectrogram of signal shown in Figure C.6
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Figure C.10 Contour diagram of Figure C.9



Crowded (people talking in 2 pub) noise
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This noise is example of broadband noise and stationary noise. However, this noise is

taken from the real environment which is non-gaussian.

x{t)

F

t

Figure C.11 Time-domain representation of crowded noise
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Figure C.14 Proposed spectrogram of signal shown in ¥Figure C.11

8, Q
U.S—I %
D_ 0.
0.1
_l].S
14 _
] a5 1] 5 1

Figure C.15 Contour diagram of Figure C.14
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Result of Real Noise Filtering
Street Noise
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Figure C.16 Input signal : sinousidal and street noise
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Figure C.17 Qutput signal



Crowd Cheering
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Figure c.18 Input signal : sinusoidal with crowd cheering noise

0137587 T T T T T T
Sy ]
0130174, | 1 | l l ! |
200 220 240 260 280 300 320 340
200 i 350

Figure C.19 Output signal



Troop Marching
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Figure C.20 Input signal : sinusoidal with troop marching noise
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Figure C.21 Output signal

221



Appendix D
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Neural Network-Based Adaptive Filtering
For Background Noise Elimination

H. N. Cheung I Made Wiryana and J. Millar
Dept. of Computer and *  Dept. of Computer Science
Communication Engineering

Edith Cowan University
Joondalup, Western Australia

ABSTRACT:

The elimination of background noise in applications where an uncorrupted input signal is required is nor a trivial
sask, especially when the noise is non-dererministic and non ionary. In addition, the duration of the noise may be
short compared with the observaiion intervals for the input signal. This paper reporis the development of a
background noise elimination fysiem which makes use of lime.frequency representation of the input signal and a
newral nerwork-based adaptive filter, Modifications are made 1o the rime-frequency transformation pracess to abrain
betier frequency repr ion of the signal and also o & Counter Propagarion Nepvork to have berter clustering
properties. Saftware simulation results with some nypical signals corrupted by Gawssian neise are also presented.

1. Introduction

In many areas of science and engineering in which input signals are obtained using sigmal acquisition
equipwent, such as eleciromagnatic and acoustic surveillance {Anderson et. al,, 1991, Casellman el al., 1991),
seismic signal processing (Magolra et. al., 1991}, speech processing (Kobatake ,1990), biomedical signal processing
(Uneini, 1991}, there is always a problem in detecting the presence of non-stalionary random signals or noise in the
background. The elimipalion of such background noise js nol a (ivial task dve to its non-stationary and
non-deterministic characteristics. In addition, the duration of this noise may be short compared (o the observalion
intervals for the input signals

Various methods have been proposed to tackle this problem including fixed fltering (Boll, 1579} md
adaptive filtering techniques using conventional filters, In the case of fized fillering techniques, the unavailabilily of
an ideal signal model and the use of predefined parameters of the filler makes this problem difficull 1o solve (Classen,
1983). ‘The use of adaptive methods has improved the performance of background noise elimination ta a large extent
(Vary, 1983), Wilh these methods, the parameters of the filters change (o adapt 1o the nen-deterministic
characteristics of lhe background noise. However, provision has to be made for the filters (o readapt to the change in
the environrment, Sometimes it may lead to the unsatisfactary performance of the overall system (Connel, 1990,

Artificial Newral Netwarks (ANN) offer an allemative lechnique for adapiive filtering. A general ANN
model] for adaptive filiering has been proposed by Nerrand (Nerrand et 2l. 1993). 1t has also been shown that ANN
can be applied 1o separile a signal into different signals (Cohen el al., 1991) and o perform signal classification
{(Malfkoff, 1992). In the area of background noise elimination, Xue (Nue, 1592) has applied ANN based adaplive
matehed filter biomedical processing. This paper reports on the wark o+ the development of an ANN mode] for Lhe
climination of background noise with applicalion to speech processing.,

s{1)+ni1} Time Reatul Adjuriable »
Frequency Network Filier ')
- Irequency
Trantfarm Tesponie

Figure 1. The proposed noise elimination system.

Shown in Fig. 1 is & block diagram of the propased noise elimination system. In this model, the sampled
input signal, corrupted by neise, is transformed into frequency domain to extract the frequency feature. Both time
and frequency representations of the signal are then fed into the neural network which has been trained to reject the
noise and to produce at ils gutput the filtered inpul signal.

2. Time-frequency representation of input signals
Fig. 2 shows a general model for noise elimination where at the input, the sequence s|k] represents the

desired inpul signzl and u[k] any extemal noise signal. Inside the model, (k] represents intemal broadban
measurement noise. The problem becomes ene of accuralely modeling the corrupted channel a(.) and the internal

Proceedings ANZIIS-93, Perth, Westen Auslralis
244



noisz by means of the filter B(.). In general, a(.) represents a oonlinesr medium, Therefore, A{.) must ba & nonlinear

function,
s(k] ; ‘“?

efki=s[k]

L[k ]

¥k}

Figure 2. General model of noise elimination

The background noise u(k) can be considered as consisting of & stationary continuous noise e(k) and isclated
noise m{k). In speech processing, the noise climination process is to detect and eliminate, from the non-stalionary
speech source, the three noise components, f.e. the detesministic and stationery inlernal noise o[k}, the
non-deterministic and stationary noise s(k). aod more jmportantly the non-deterministic and non-stationary nojse
k).

Detection and classification of the signal components in lime or frequency demain can be performed by
firstly sliding the signal through an observation window. Normally, to exiract the signal feature from either the time
or frequency domain representation of the signal is not sufficient for a complete analysis of (he signal. Therefore we
Ppropose to use a combined time and frequency reg ation

There are several methods 10 generate the 1ime-frequency distribution of a signal (Cohen, 1992), The method
adopled in our modet is the spectrogram approach, Given a signal, corrupted by noise, s(t), its time-frequescy
distribution is expressed as:

plef) = [ J e gy, iys = (u - S1)s(u + tn)e ¥ dvdud m

where g is the kermel Funclion,
For the spectragram representation, the kemel function is:

v, vy =[h" (e - L) P h(u + %t}du @
By substitating Equation {2) to (13, the time-frequency distribution can be written as:
P, ) = [ e s(uh(c - et | )

‘This formulation has been used to decompose a signal into different components (Cohen and Lee, 1592)
using one short-time Fourer Transform({STFT) for each non-overlapped block of signal. In our approach as showa in
Fig. 3, we first use the short-time Fourier Transform to get the frequency representations for overlapped blocks of
signal. Then another shorl-time Fourier Transform is performed at the same. frequency to all the resultant frequency
representalions to obtain the change of the frequency of the sigoal. The result of this manipulation is ta exiract finer
representalion of the frequency feature of (he signal. The final outcome of the transformation of the signal is a
two-dimensional array as shown in Fig. 3 of a singie time block of the input signal. This aray is then fed inlo the
neural network.

l— { Inpul 1tguence
Pt a——] — [ S,
— 1
—_—
. overlapped black NEURAL NETWORK
C
l l'_i Impul Dutpuﬁ
1
w 4[
Shory Time Fourtier Transfotm —I iller
|

.‘ h fEaponlG

Tezgai

Palturnm

' '; “. i Avalage
:T . 'I" ! Perlodogram
- -

Figure 3. Tnpwt signel acquisition procass.
3 Neural network and filter structures

The neural network that will be used in the model must satisfy some application constraints;
a) there is 0o clean speech signal for target patten, The target pattern should be derived from the input patiem;
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b) learning must be performed as fast as possible with & small aumber of iteration;
¢} the peural network should be able 1o edept its strucfure 1o minimize memory usage;
d} fest processing time is required for resl-time operation.
Tha three-layer Counter Propogation Network (Hecht-Nielsen, 1987) is edopled in our model. This class of networks
may be considered 1o consist of two overlapped network, i.e.. the clusiering network and the encoding network. The
clustering network is the input 2nd the middle layers, and the encoding network is the middle and output layers. This
nenral betwark structure §s chosen for its statistical modeling and fast learning capabilities

The first layer, which is part of the clustering network, of the neursl network receives the time-frequency
representation of the signal. Then the clusiering network perforins adaplive clustering. Based on the response of the
clustering network, the encoder network produces the frequency response of the filter, During training of the overall
network, instead of normal input signal, noise samples are used as input to the network and the target patterns are
extracted from ihe input pattems. The rwo networks will be discussed in delail in the following sections

3.1 Clustering network

Based on the standard clustering network with competitive training, we have made rome modifications in the
learning process to esable Lhe overall netwark 1o avoid the stuck vector problem, to cbtain better lusiering, and to
reorganise the middle layer in order to maximise the utilisation of the middle node,

During training, sfter applying the input pattern, the clustering network performs the clustering process by
calculaling the Euclidean distance §; of each templale with the input pallern:

N=1 2
= ’ r§0{W1,-_,-—.J'.) @)

where L = i*clement of the input patern,
N = number of nodes at input layer, and .
W], = Weight of the clustering nerwork where the templates are stored, ‘

After the Euclidean distances for all 1he 1emplalies have been calcufaled, 1he chosen cluster is the cluster with minimal
value of &, However, before the cluster is chosen, the similarity between the patizrn and the fnput must be checked
using the similarily factor p, to avoid ke stuck vector problem in generating a neuron, If min{5) > p, the cluster
cannot be chosen due to its dissimilarity to the templaie patrern. A new cluster must be created by generating a new
middle neuron. The input paitern will be siored as a new templaie by calculating the new values of the weights of the
connections using:

W), free = 4, W= Oy Crrr = | 5)

where the subscript free is the index of the free cluster. This mechanism is similar with the ART network when the
input pattern exceeds the vigilance level (Carpenier and Grossberg, 1988).

If min{8) < p, the clustzr may be selected and the output node of this emplale can be decided as the winner.
The output of the clustering network will perform a *winner-take-all’ selection. The weights of the network will be
updated to obtain the optimum classification of all members of the winning class, However, tc obtain beuter clusters.
we use the following formulation to update the weights so thal the frequency of occurrence of a class has been
selected is 1aken into cansideration:

(t+1) ( V?\::m o :\ (r+1) (”’Zf:fn ) 04 \
W1 iwin = k-w ) Pwim,k k ]jﬂ(;] ) (6}

wtn

where Wi, **" = the weight value of clustering network afier adjusting,

W2 ""“‘-- the weight value of the enceder netwark afier adjusting,

win = Ib index of the nods which wins 1he competition among the muddle aodes, and

0, = k™ element of the output pattern, or larget paltem.
The ¢ depends of how often this class has been chosen. This value can be czlculated by using equation (7), and
represents the information which is gained during the training process. 1f there is more information which is gained
in the learming process, the a value will decrease.

-1
(1)
o ( 1 + u‘”] M
I

Normally, when the neurons in the middle layer are fully wilized, training can still be performed by
adjusting the weiphis but nc new neurons can be created or no new class will be created. However, in our model,
when the middle layer is fully wtilized and if training is required, then the network wil} first look for any neuron
which ean be revsed based on the @ value of each node. The neuron which has the highest o value and exceads the
threshold value can be reused as a new cluster node, thus a new class will be created using this neuron,

However, if all the newrons have & value less Lhan the Ihresheld, il means that all peurons have gathered
enough information during training and min{3) > p, which means that the input paltem is too far from all stored
lemplates, then o' in Equation (6) will be assigned a small value and the clusler with the minimum distance will be

W
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clm‘s?n. However (he o™ value Tor this node is oot changed. In this case, the network will be attractad to the pew
position oaly with 2 small displacement.

3.2 Encoder network and output node connection

In this layer, the iraining is supsrvised, and the cutput pattern from the cluster network aad the target pattern
extricted from the overll input are fed inlo the encoding network. The output training pettern js derived from
averaging values of the spectrum of the training noise. The weights will be adjusted 1o match the ipput and the output
pattemn using the same approach as ihat in the clustering network. The edjustment of tbe weight is made sccording
to Equation {65).

In corma) operstion, the encoder networks performe a mapping of the input from the middle layer and
produces at its output the response of the externs] input signal to the neurs] netwark at every frequeacy. This
response is then fed into the filier and is used to update the filter coefficients. Thoe filler equation will be gencrated
and applied to the external input signal to produce (he outpul signal.

The adjustabls fillsr can be formed by using FIRAIR filter or by using resonator bank filter. [n this system
we use the frequency domain flter, Input to the filler are the external input and the output from the neural network.
Since the frequency domain repressotalion of the inputl signal is already available from the time-frequeacy
repiesentation, we can take advantage of this hy performing frequency domain filtering. This structure has ihe
problem in block boundaries, and may lead to 2 seuall discontinnity in y(n). However, Ihis problem is solved in our
model by overlapping the blocks.

4, Simulation

The software simulation for the system has been performed and Lhe results are given below. For simulation
purposes, Gaussian noise with various variances are used for training the network. The size of the network used
consists of 16*16 nodes for the input layer, only 20 neurons in the middle layer, and 16 in the output layer. A small
number of neurons are used in the middle layer so as lo fest the behavior of the generation and annihiletion of
neurons in the clustering netwaork.

.1 WMMW U‘ L kk I\,i i}u ;1 VAl J‘v\j\ /.V\ /WV\"{

Figure 4 {a) Sinusoida! input signal is corrupted by Figure 4 (b). Cutput signal after filtering,
gaussian noise with SNR equal to §7.49 dB with SNR equal to 27.07 dB.
K - T
e
L
Figure 5 (2). Sinuscidzl input sigual with Figure 5(b). Output signal after filtering,
Amplitude Modulated, with SNR equal to 20.31 dB with SNR equal o 25,52 4B,
i
, | i |
{ JW\ AL
1 1 L A
Figure 6(a). Sinusoidal input signal with Figure 6(b}. Output signal after fillering
frequency modulaled, with SNR equal to 12.37 dB. wilh SNR equal 10 25.03 dB,

Fig. 4 (a) shows Lhe input sinusoidal signal corrupted with Gaussian noise with SNR equal to 17.49 dB and
Fig. 4 (b} the resulted output signal from the system with an improved SNR equal to 27,07 dB To lest the magnitude
response of the system, sinusoidal signal which has beea amplinde modulated, shown in Fig. 5(a) is fed into the
system, The original signal is almost recovered with SNR 25,52, with ils amplitude unchanged. The frequency
selectivity of the system is tested by a frequency modulated signal as shown in Fig. 6(c). The results in Fig, 6(b)
shows that the original signal is recovered bul with a smali phase shift. The reason for the phase shift {s the use of
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frequency demain filtering for the filter. The problem caa be solved by using resonstor bank fliers instead of
frequency domain filter.

5. Conclusions

A noise elimination system has been developed in this paper. The system makes use of the both time and
frequency represenution of a signal as input to a neural network eased sdaptive filter. The formulation of the time
swequency representalion has been given and modifications of e transformation process to using overlupped blocks
of signal to produce the frequency representation of the signal lo overcome the boundery problem, In uddition, the
use of a second short-time Fourier Transform on the spectrogram lo extrac! finer details on the frequency chanpes of
the signal results in better representation on the frequency featurs of e signal.

For the neural network in the system, modifications are also made to the Counter Propagation Network sa
that the problemn of stuck vector is solved and the middle layer is re~arganized so that with better clusters resulted,
Software simulation of the system has besn performed 10 test the response of the system to varous signals corrupted
by Gaussian noise, and the results of the simulalion are promising.
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Absiract

Function approximation is one of the peural-network
applications. The counterpropagation nerwork which has
fast learning capability tends to produce discontinous
function approximation =~ This paper reports the
development of a fuzzy counterpropagation aetwork which
has fast learning, capability and can perform a continuous
function apgroximation. The proposed network consists of
3 fzzy clustering, layer, a defurzifier output node and a
modified trining procedure. A chaclic time series
prediction is used for demonstrating the applicability of the
proposed networkc

L. Introduction

The Counterpropagation  MNetwork  (CPN)
architecture i5 simple, fast, and easy (o train. CPN has
good statistical model representation of the input space. In
the network mappiog problem, CPN his a closed form of
ihe means square ermor, The capability of CPN to perform
a fast jeamning is useful for some applications, such as
adaptive control, trajectory problem of tsach and play
fobot, adaptive filter, that need an on-line learning
mechanigm,

Counterpropagation networks can be used for
patternt classication where ternplate matching and template
interpolation are desired (Hecht-Nielsen, 1588). CPN has
been applied in many problems such as Delphin
echolocation (Roitblat & al., 1989), Digital Feedback
Equalizer (Manabe and Kaneda, 1991}, and it has been
implemenied in 3 VLS! system (Kwaa and Tsang, 1990).

The CPN architscture is buill by combining the
Kohonen self-organizing map and the Grossberg Qutstar
architecture. The Kohonen self-organizing map performs
the classifiction task, and the Grossberg Qutstar performs
tae mapping fiunction. In general, it can be stated that the
CPN uses an adaptive table look-up mechanism to perform
the mapping whiile the the table is obtained by training.

Todesribe the operation of a typical CPN, let a et
of examples of input-outpat pairs (x,, ¥}, of a function ¢:

$:R" = R™, where y; = dlx)) (1)

Assuming Lhat thie set of examples cover al} the
characterisics of the inpu-output relationship of the
function, afler training the CPN with this set of examples,
the weights of the network are adjusted according to the
training sotin swueh a way that the inpuls zre classifed inio
clusters, The final clusters can be modelled in the form of

ATNNY

a look-up table with N entries, with the number N equal 10
the number of clusters (Hecht-Mielsen, 1985),

In order for a CPN to perform mapping of
continuous functions with good approximetion, a large
lock-up table is required which means that a network with
a large middle layer is raquired (Hocht-Nielssn, 1987). By
splitting the middle layer (Lin et al., £989), the number of
neurons in the middle layer can be reduced by a mediom
amoust.  As shown by Wang and Mendet (1993), a set of
furzy rules can be used for a universal function
approximation. In our proposad architecture, fuzzy logic
is incorporated to the middle layer of a CPN to provide a
smoother mapping Therefore the output of the middle
layer gives a membership value of the input belonging ta
each class. The original Grocsberg outstar layer is
replaced by a  layer of nodes which are controlled by a
defuzzifier node.

During training, the modified CEN ganerates the
fuzzy rules from the set of examples of input-oAiput pairs.
Each example of inpul-output pairs is oaly requiired to be
presented to the input of the network once and no iterative
training is required

In normmal operation, this proposed network
architecture does not produce a class as a winner in the
middle layer, but produces the membership values of the
input with respect to each class. By using proper
defurzification method, a continucus function can be
obizined at the output layer. Moreover, this mechanism is
suitable for on-line learming, because the gystem does not
yequire iterative learning.  Pspecially, in time series
grediction probiem, afier performing a prediction, the real
value of the next time scries can be wsed to refine the
network for predicting the following time series.

This method is different from the interpolalive
mode of conventional CPN. In the inlerpolative made,
more than cne node in the middle fayer can win and the
winning nodes are weighted with a fraction oumber and
the sum of all weighted numbet is equal to one. Therefore,
thers are the first, the second, and the third winner.
According to Hecht-Nielsen (1988}, in order o perform
the interpolative mode, a priori knowledge aboul the
problem is required to define the fraction numbers.

In the proposed network, by the use of fuzzy logic,
the number of neurons in the middle layer is pgreatly
reduced which leads lo shorier training time, and the
network  has  the capability to pedorm  function
approximation without the requirement of a prion
knowledge. Similar work in combining fuzzy logic and
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the neural system have been reported using diffcrent
approaches such as Fuzzy ARTMAP (Carpenter et 2b.
1992), Fuzzy Min-Max (Simpson, 1993).

2. Network Architecture

The proposed network uses fuzzy clustering
technique instead of Kohonen layer for the middle layer,
and Grossberg, Quistar is applied to store the centraid value
of each class, By adding a defuzifier node , the
defurzification is based on the centroids obtained in the
output layer. The architecturc of the network is shown in
Fig 2.

W1 is the synaplic weight which stores the
information of the prototype of the class (c) and each
neuron in middle layer sloves the value of farthest
deviation of each class () and «. W2 is the synaplic
weight which represents the information about the cutput
prototype of each class, Tt will be used in the
defuzzification step for calcularing the actual output,
Therefore an output node is slightly different from a
conventional neuron.

A
Figure 2. Network architecture
2.1 Classification and Membership Layer

The ¢lassification and membership layer, which is
the combination of the input and middle lzyers, partitions
the input space inte classes, Given an input vector X as
shown in Fig. 3, the Euclidean distances between the input
vector and all prototype vectors are calculatad e.g d,, and
d, By the Euclidean distance, the wembership value for
cach class can be obtzined e.p  m(x) and m'{x). In
nomal operation, the membership valus is then used to
derive the output vecior.

In the training process, the weight betwezn a node
in the input layer and that in the middle layer, W1, as
shown it Fig 2, is adiuded to captute the prototype of
each class which can be used for the membership value
decision. Ounly weights which connect the clossst cluster
(highest membership value) with the input vector will be
adjusted.

This middle layer works as an IF THEN rule in
fuzzy logic term.  All of these rules are built up in the
training phase automatically and is net pre-defined.  This
mechanism provides the network a capability to learn the
input-output pairs and build the fuzzy rules according to
the input-autput relationship.,
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2.2, Defupzifier node and output fayer

The defurzification process is done by Ihe
defuzzifier node and output layer, The defuzzification
method used is the ceniroid method.  All weights which
cannect the defuzzifier node to the middie nodes have
values squal 10 1. Therefore the output of the defuzzifier
node is the total of the membership function of each class.
This node is rather different from conventional neurons,
due to the adaptive gain characteristic of this node. The
gain of this nods is controlied by the defuzzifier nade,

Woas -
ol |- /-
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Figure 3. Membership function.

i

3. Mechapism of the network
1.1 Training mechanism

During training, the leaming mechanism
partitions the inpul and output spaces into class and
generates the fuzzy rule feor each class. The middle
node gtores the information about the mean of the class
and the farthest deviation of the class. The boundary of the
class has the membership value equal (¢ zero and the
prototype of the class has the membership vafue equal to
one.
Define

7. the maximum deviation of class {*

¢ the prototype vector of class i* of j dimension

I, the input vector of j dimension

0, the target vector of k dimension
The learning mechanism can be formulated as follows ;
Step 1. Start with 0 number of clusters
Step 2. New input is applied to the input [ayer,
Step 3. The Buclidean distance d, from the input to all
clusters that exist are calculated.

n 1
d; = ’_E: [ex=1))

Step 4, The membership associaled with the class that has
boen created is calculated. For simpler implementation we
use the trianguiar shape for the membership function, v, .

The real number, f,, deteimines the shape of membership

functions.
|
Bi = (l + ((’-iﬂ)n)

Step 5. The weight of the clusler which produces the
highest membership value is updated , according to:

wiee = 4 p(i- )
ACKN'04
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Wy =Wt v p(1-mgd) @
B=2y )

where a is the decay function, which has the inltial value
equal to 1.0. Tn this rodsi the value of o for each tralning
can be calculated jleratively by -

G+

In this case, the farthest deviation is updated according
10!

)

new
o wini

new _

win

A

it [EE WY o
Step 6, If the input pattern has zere membership valve to
all classes, a new class is created and the input patterm is
used a5 the prototype vector of the new class. In (his case,
the farthest deviation is gut (o the misimum value, This
minimum valuz determines the resolution of the function
approxination,

W™ =] ., Wrr=0 =p (8

Step 7. If all clusters have been used, choose the closest
class by finding the miniral value of D;

o e

Df=[ ?'i[m—m’] - ®
=1

Step 4. Repeat siep 2 through 6 for all other training
paterns,
3.2 Normal Operation Mechanism

In normal operation, when an ioput vector is
given, the middle [ayer calculates its membership value to
each class using Equation (2) and (3). All the membership
values are defuzzified using, the centroids from the output
layer and the defuzrifier node as ;

Output of defuzzifier node i :

1
Cutpr= L
DF= & Hi (1)

where p iz the number of clusters,

Thus the outpul Layer is equal 10;

Oufy = G[g i WZu)]

where G ig the gain factor which corresponds to the output
of the defuzzifier node;

an

=Gy (12
The cutput of the k™ output node is
=t
go 12
Ouly = *'——;_—1-— (13)
Ej [0}
¥
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4 Simulation Result

A simulation of the proposed mode] is performed
1o solve the (ime series prediction peoblem, Using some of
past daia, the prediction of next data will be performed. In
this paper, the Mackey-Glass chaolic time series will be
used to test the performance of the networic

4.1 Probles description

Chaotic time series i5 a datermdnistic and
non-dineas series.  Mackey-Glass chaolic time series is
generaled from the following delay equation (Wang and
Mendel, 1952);

ety 0.2x(-1)
dt " 14xWpr}

—0.1x(t)

(12

where t value determines the chaotic behavior of
the function, In this simulation, T equal to 30 {5 used. We
choose & for input and 1 for outpet. This means that we
predict the future value by using the 9 past values.

Figure 4, Mackey-Glass chactic time series

4.2, Simuulation result

‘The simulation is performed by using 8¢ peurons
in the middle layer, In our simulation, the training is
performed withoul repeating the training pattern. To
compare the simulation result, the mean square efror is
ured a5 the performance index.

1In the first simulation withowt cn-line adaptation,
the firet 200 data from 500 to 700 are used as the eraining
patterns, The prediction is performed for the resi of data
(701 up to 1000). The result and the comparison wath
theoretical calculation are shown in Fig 5. The prediction
is not 100 close enough, becauge the network has not been
trained with enough samples and only 60 of the nodes in
the middle layer have been used.  The mean square eror
is equal to 0.010715.

The gacond simulation is performed by using the
first 700 daa as the training patterns. The result is shown
in Fig. 6. Gy comparing it with theoretical result, it canbe
shown that the system performs prediction betfer than the
previous experiment, The mean square error is equal 10
0.0035749

In Fig 7 and Fig 8, the adaptive on-line training is
usad. When the on-line training is used for the case thal
the network has already becn trained using the past 700
data, there is no great difference, because the network has
converge, and the mean square emor is 0.00357490, N
shows that the adaptive training does not significanily
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affect the performance of the network. When this
mechanism is applied to the network which has only been
trained from .

R f\f/ \\"I

] I i 1 ]
g50 %00 980

100

Figure 5. Simulation using x(500) to x(700) as training
data

U
700 750 800 850 900 950 100

Figure 7. Simulation using  on-line adaptation
X(500)-x(700) as training patiern

G
00 950 100/

Figure 8 Simulation using on-line LAti O
as g e adaptation x(0)»x(760)

120

200 data, there is a large improvement. The
: . mean
erron s reduced from 0.010715 1o 0.009049 HQare

5. Conclusion

A new furzy feedforward counterpro i
Network has been introduced which wnsimrpufp:ga:mn
clustering layer and defizzifier output node, A
Modification of the training procedure has been made_ and

simulation results show that the proposed network
Architecture perform a continuous function approximation
by leaming a set of the input-cutput pairs, Moreaver, the
fuzzy rules are generated automatically in the learning,
Process,

The prediction of Mackey-Glass chatic time
series has been demonsirated by applying the propased
fNetwork. In addition, it has bsen shown that the on-line
update capability of this network provide the error
reduciion in the normal operation,
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