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Applications of 

Fuzzy Counterpropagation Neural Networks 

to Non-linear Function Approximation 

and Background Noise Elimination 

Abstract 

An adaptive filter which can operate in an unknown 

environment by performing a learning mechanism that is suitable for 

the speech enhancement process. This research develops a novel 

ANN model which incorporates the fuzzy set approach and which 

can perfonn a non-linear function approximation. The model is 

used as the basic structure of an adaptive filter. The learning 

capability of ANN is expected to be able to reduce the development 

time and cost of the designing adaptive filters based on fuzzy set 

approach. A combination ot both techniques may result in a 

learnable system that can tackle the vagueness problem of a 

changing environment where the adaptive filter operates. This 

proposed model is called Fuzzy Counterpropagation Network 

(Fuzzy CPN). It has fast learning capability and self-growing 

structure. This model is applied to non-linear function 

approximation, chaotic time series prediction and background noise 

elimination. 
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Principal Notations 

In this thesis follo-.ving notations are used : 

• A scalar is denoted using nonnal font, italic, and lowercase 

e.g. : x, y, z etc. 

• A vector is denoted using bold typeface, non-italic and in lowercase. 

e.g.: x,y,zetc. 

Component of a vector is denoted as scalar with single index 

e.g. : w: {w1, w,, ... , wN] 

• A matrix is notated using bold typeface, non-italic and in uppercase. 

e .. k :X, Y, Z etc. 

Components' of,, matrix are denoted as scalar with index more than one. 

e.g:X=[XJ,l XJ,l_l 
X2,1 X2,1 

• A set is denoted as 

X= {x1, ;os, .... , x,} 

• An ordered set is denoted as 

X= [x1,JS, ... , x.] 

• A function is notated using italic 

e.g.:.l(xl w) 

where/ is the function 

xis the set of function variable 

w is the set of function parameters 

• A mapping function is notated as : 

.fRN--l-R"' 

I 
J ,, 

;: 

f is a mapping function from tile domain with N-dimensional 

space to the range with M-dimensional space. 



1.1 Motivations 

Chapter 1 

Introduction 

Speech transmission and processing are often degraded by acoustic or electrical 

noises. In order to reduce and eliminate this degradation effect in speech 

transmission, a speech enhancement process is employed. This process improves the 

quality and intelligibility of the received signal by pre-processing or post-processing. 

Various methods have been proposed to perform speech enhancement, including 

fixed filtering and adaptive filtering. An adaptive filter is used when there is not 

enough information about the desired signal and the environment. 

An adaptive system consists of a time-varying digital signal processing system 

that learns to perfonn a particular transformation with respect to the input signal to 

be able to adapt to the environment by using an iterative process. The task of 

adaptive filters can be classified as system identification, signal estimation and signal 

correction. 

An adaptive filter uses some quality criteria t() perform the adaptation either 

in the time domain or in the frequency domain. Most of the conventional adaptive 

algorithms use the mean square error as the quality criterion, such as Least Mean 

Square (Ll\1S} algorithm and Recursive Least Square (RLS) algorithm. LMS is the 

most popular but has some limitations: the initial convergence is slow, the 

convergence of the system depends on the inpufsignal characteristics and a residual 

error still exists after convergence. Although, RLS has better perf01mance than LMS 

algorithm, this algorithm requires an initialisation matrix, and for some problems the 
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execution of the algorithm becomer; numerically unstable and impractical due to 

computational resource limitations. 

The conventional adaptive filter approaches typically employ some form of 

linear adaptive filters. They have proved valuable in signal processing problems 

where training data are available. However, for non-linear problems, a solution is 

difficult to obtain by using the conventional linear adaptive filter. Non-linear 

techniques have been developed as well, but these typically depend on a local 

linearisation of the probl!lm. The failure of conventional adaptive filters to solve the 

non-linear problems leads to the development of an adaptive filter using a non-linear 

processing model such as an Artificial Neural Netwmk (ANN) or a Fuzzy System 

(FS). 

By employing the ANN techniques, less ~:ssumptions are required to build a 

non-linear adaptive filter model, because the ANN has capability to learn the 

input-output relation of the non linear relationship. The ANN model is an alternative 

fonn ofinfonnation processing that is a fundamentally new and different information 

processing paradigm. ANN models have been considered particularly suitable for 

unstructured computations .. They have been proved to be more robust whr·., the 

signal distributions are generated by a non-linear processes and are strongly 

non-Gaussian. Basically, an ANN system consists of a number of interconnected 

neurons and most of them are arranged in the form of multi layer structure. There is 

the natural concept of a sequential flow of information which is a feature mapping 

from each layer to the subsequent upper layer. 

There are two phases of operation for an ANN, the teaming phase and the 

recall phase. During the teaming phase, by emploYing a learning scheme, an ANN 
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constructs the hypersurface function from sparse training data point by optimising the 

cost function in order to reach a global minimum. The result of the training yields a 

network which simulates the implemented function as closely as possible. This 

implemented function is used by the ANN to produce the output during the recall 

phase. 

Uncertainty of the input signal and the environment have been problems in the 

designing of an adaptive system. To deal with uncertainty, several paradigms such as 

probability or possibility may be used. Fuzzy systems which depend on possibility 

theory is one of the approaches in dealing with ambiguity or vagueness. 

Both ANN and FS techniques are modcl·free estimators that can estimate a 

function without knowing the mathematical model of the input-output relation. As 

stated by the existence theorem from Kolmogorov, an ANN model can implement a 

continuous function (Hecht-Nielsen, 1987). In the case of FS technique, a fuzzy 

system (FS) can be used as a universal approximator which is ensured by 

Stone-Weierstrass theorem (Wang, 1992). 

This research intends to develop a novel ANN model which incorporates the 

fuzzy approach that can be used as the basic block for adaptive filter. The learning 

capability of ANN is expected to be able to reduce the development time and cost of 

designing the fuzzy system A combination of both techniques may produce a 

learnable system that can tackle the vagueness problem. 

To build a basic structure of an adaptive filter that incorporate the ANN 

mudel with fuzzy approach, some application constraints should be considered: 

• there is no clean signal as the target signal for training purposes; 

• learning must be performed with a small number of iterations; 
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• the neural network should be able to adapt its structure to minimise memory 

usage; 

• fast-processing time in the recall phase is required for real-time operation. 

The proposed model is called Fuzzy~CPN, using the Counterpropagation 

(CPN) paradigm by incorporating the fuzzy set approach at the middle layer and by 

implementing the fuzzy leader clustering technique. This model .can be trained faster 

and has a self-growing structure. 

Basically, the Fuzzy-CPN model perfonns the function appcoximation.ofany 

arbitrary function that can be epresented by a training set. Somn parameters of the 

model affect the performance of the model in approximating a function. Study of the 

influence of the learning parameter on the overall performance is crucial before 

applying the model to the adr.ptive filter task 

Signal estimation is one class of the adaptive filter tasks that can be solved by 

using this proposed model. The Mackey-Glass chaotic time series prediction is 

performed by making use of the function approximation capability of this model. By 

employing the learning mechanism of the Fuzzy-CPN using the input-output pair of 

the past data and the present data, a prediction of the future data is obtained. 

The proposed model will also be applied to tackle the signal correction in a 

background noise elimination system which makes use of time-frequency 

representation of the input signal and a spectral sUbtraction filtering process. The 

elimination of background noise in applications where -~n lulcorrupted input signal is 

required is not a trivial task, especially when the noise is non-deterministic and 

non-stationary. In addition, the duration of the noise may be short compared with the 

observation intervals for the input signal. Background noise is an example of a 
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non-deteministic process that has no particular detenninistic structure. In the 

application of background noise elimination in speech acquisition in real environment, 

the speech signal depends on the speaker, on the environmental conditions and on the 

transmission characteristics. Therefore, speech is a non-stationary and 

non-deterministic signal as well. In speech processing, the noise elimination process 

is to detect and eliminate the three noise components namely, the deterministic and 

stationary internal noise, the non-detellJ)inistic and stationary noise, and more 

importantly the non-deterministic and non-stationary noise, from the non-stationary 

speech source. 

1.2 Methods of Investigation 

This thesis intends to address the problems associated with adaptive signal filtering in 

signal processing, especially the signal enhancement problem. Instead of using the 

conventional predictive method, the model that will be developed makes use of the 

techniques in ANN that incorporate the fuzzy set approach with a modified learning 

method. The system will be able to deal with complex, non-stationary, uncorrelated 

and non-detenninistic signals by applying the proposed model. 

The significance of the implementation in using the ANN model proposed in 

this thesis will improve the potential of ANN in digital signal processing systems, 

especially speech processing applications. It is perceived that the use of such a model 

could contribute to an increase in the perfonnance of adaptive digital filter systems in 

speech proce~sing systems. 

The first stage of this research is the investigation of a global definition of 

speech enhancement problems associated with the use of ANN. This research stage 
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also provides infonnation on the issues in speech enhancement in speech processing. 

Furthermore, the available conventional techniques are reviewed in this stage. 

The second stage is theoretical research which will be used in the 

development of a model for a signal enhancement system using an ANN as the 

adaptive filter. In this stage, a novel model is developed by taking some 

considerations. The first consideration is the speed of processing. Although ANNs 

are inherently parallel, but it requires a special hardware to implement them in parallel 

due to the requirement of complex intercommunication between simple processing 

units. The second consideration is the mechanism of perfonning the training of 

ANN. It may be on-line or off-line learning. On-line learning is desirable because the 

network would potentially be able to adjust to changes in the system. However, due 

to speed cons:derations, it may be nece.!'sary to train the network off-line and use lt as 

a non-adaptive system. 

The development of the proposed model defines the specifications of the 

model. Firstly, the configuration· of the network is specified. The specification 

includes architecture. topology, number of layers, number of nodes, type of 

non-linearity, and associated parameters. They determine the computatio!lal 

characteristics and the power of the neural network. Secondly, the teacher or the 

target pattern for training phase is to be decided, When supervised learning is 

applied, the type of teacher which is available to give the correct output has to be 

chosen. Thirdly, the training set must be specified to give an adequate representation 

of the type of inputs. Finally an appropriate learning algOrithm has to be choseiL A 

more efficient learning algorithm must be used to speed training and to guarantee the 

convergence without degrading the performance of the model. 
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The third stage of this research is applying the model to a problem that 

requires an adaptive filter. The system is targeted to use a speech signal as input and 

to produce a processed speech signal as output. 

1.3 Outline of the Thesis 

This th('_sis is organised as follow : 

Chapter l is the Introduction. Followed by the general literature review on 

the theoretical framework in Chapter 2, the conventional linear adaptive filter is 

described. In this chapter, the discussion covers the basic structure of adaptive filters 

and their classifications. The conventional adaptive algorithms, Least Mean Square 

(LMS) and Recursive Least Square (RLS), briefly are described. The role of 

adaptive filter in the speech processing problem is also stated in this chapter. 

Chapter 3 is gives a detail description of the Artificial Neural Network and 

Fuzzy System which will be used as the basic model of the proposed model in this 

work. Definitions of the terms, the formal neuron, and the architecture of an 

Artificial Neural Network (ANN) are covered in this chapter. 

Chapter 4 covers the development of the Fuzzy-CPN including the definitions 

of the basic processing units and the connections between them, as well as the 

learning and recall mechanism of this structure. Since this architecture has a 

self-growing structure, the adaptation mechanism of the structure is described as 

well. 

Chapter 5 and 6 detail the application of the proposed model in solving 

non-linearity problem. In Chapter 5, the capability of the Fuzzy-CPN in non-linear 

function approximation is shown. The influence of the learning parameters on the 
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network perfonnance is '·de.icribed. An application of this proposed model to the 

prediction of the Chaotic Time Series problem is desCribed. 

In Chapter 6, the capability of the Fuzzy-CPN to perfonn <!ssociative memory 

is described. This capability is applied to build a background noise elimination system 

by combining the Fuzzy-CPN with several digital signal processing techniques 

including noise power estimation, time-frequency representation of the signals, and 

the spectral subtraction method for the filtering process. 

Finally, in Chapter 7, conclusions of this work and the further improvements 

of the proposed model are described. 



Chapter 2 

Adaptive Filter 

9 

An adaptive system consists of a time-varying digital signal processing system that 

learns to perfonn a particular transfonnation with respect to the input signal. It is 

able to adapt to the environment, by using an iterative process. The basic structure 

of an adaptive filter is shown in Figure 2.1. An adaptive filter consists of an 

adjustable digital filter, with variable and adaptive coefficients, and a c.coefficient 

updating algorithm to adjust the variable filter coefficients on the basis of a 

mellliurement of the actual perfonnance, e.g. mean square error, at regular intervals. 

Programmable Digital Filter 
x(k) 

'·~···~--
'''""' L__---= ,~-~ r"'",-_j 

Ytkl + 

"" refaronoe 

_jr---:::,~-~~~·s~~'~'·~~~··"":.::-l.--J elk) 
~ for C<lefficlent Updating error algnBI 

Figure 2.1 Basic principle of adaptive filter 

As shown in Figure 2.1, after the input signal of the adaptive filter x(k) is fed into the 

system, the programmable digital filter produces the a priori output p(k) by 

perfonning the filter function with the current coefficient values. There is an error 

signal e(k) produced after comparing}(k) to the desired signal d(k). The coefficients 

of the programmable digital filter are adjusted in order to minimise a pre-defiil~d 

cost function with respect to the filter coefficients. The mean square error between 

filter output J(k) and an appropriate reference signal d(k) is a typical cost function 

(Matthews, 1990). Using the error signal e(k) and the input x(k), the adaptive 
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algorithm minimises e(k) until an optimal value is reached, The adaptive system wiU 

continually adjust its coefficients to reduce the error signal between the desired signal 

and its output. In this way, the system performs adaptation to its prescribed signal 

environment. Therefore, for performing coefficient adjustment, the adaptive digital 

filter needs a desired response and a performance criterion (Stearn, 1988). 

2.1 Structure of Adaptive Filter 

An adaptive system has some fundamental characteristics. Firstly, the task of an 

adaptive system will be influenced by an unknown system. Secondly, an adaptive 

system will only be able to start the filtering process after the unknown system 

becomes operative. The filtering process is established when a set of input signal has 

been fed into the system after an interval time. Finally, an adaptive system has to 

learn the function which has to be performed. The decision will be made according to 

measurement of the input signal. Therefore, it takes some time before a sufficiently 

reliable resuh is produced. As a result, in building an adaptive system, the basic 

system which is an adjustable digital filter must be able to change its parameters. 

Since the adaptive system works according to a quality criterion assessment, a quality 

criterion must be available. This criterion depends on the purpose of the system. In 

order to vary the coefficients of the adjustable digital filter, an algorithm must be 

found that is able to estimate the values of the coefficients. 

An ad~ptive system can be classified according to the following features: the 

quality.~riterion used to optimise the system, the algorithm used to detennine the 

coefficients, and the signal processing device used ~o build the system. Changing 

one of these features will yield a different class of adaptive systems. 



2.1.1 Classification of adaptive systems 

Adaptive systems can be divided to t!-iee major classes : 

Syii•em Identification 

This class of adaptive systems is shown in the Figure 2.2. 

xlkl tnp::-'T-<.[~~~~~§:}---r-. Unknown system 
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Figure 2.2 Adaptive system for signal identification 

II 

In Figure 2.2, the adaptive system takes measurements x(k) and estimates the 

numerical values of the param~ters !)(k) or the state of the unknown system under 

study §(k),_ at a certain instant. These real or vector values produced by the 

esti'mation of the adaptive system describes the unknown system. F?r this purpose, a 

priori knowledge about the system is needed to access to both the input and output 

signals of that system. This problem is similar to the combination of parameter 

estimation' and hypothesis testing in the statistical signal processing (Scharf, 1991). 

The adaptive fiiter system in this class adjusts its coefficients to produce a response 

that is as close as possible to the unknown system's response. If the internal noise of 
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the unknown system is small, the adaptive system will adapt to become a good model 

of the unknown system. 

In the situation where the output of the unknown system y(k), is used as the 

desired signal, the system is known as the forward modelling system, and it has a 

wide range of applications in biological, social, and economic science (Widrow and 

Stearn, 1985), digital filter design (Mutluay and Fahmy, 1984), geophysics (Magotra 

et at., 1991). When the input signal, which is passed through a delay processing, is 

used as the desired signal, the model is classified as the inverse modelling. This kind 

adaptive systems adjust the coefficients in order to become the inverse of the 

unknown system. The inverse modelling has been applied in many application such 

as channel equalisation (Qureshi, 1985). 

Signal Estimation 

The goal of this class is to estimate the output signal of an unknown system. 

It is used when the input signal is distorted. Typical examples of this class are echo 

canceller and noise suppresser (Gerald et a\., 1990). This class is shown in Figure 

2.3. 
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Figure 2.3 Adaptive system for signal estimation 
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As shown in Figure 2.3 the adaptive system of this cla~s takes measurement of the 

input signal x(k) and then estimates the signal.P(k). The output signal of the unknoY.'Il 

system is used as the desired signal d(k) for the adaptive system. The adaptive 

system which will minimise an error between the actual output signal y(k) and 

estimated output signal f(k). The system makes the output as close as possible to the 

future value of the input. The applications of this model are found in spee:h 

encoding (Horvarth, !983), spectral estimation (Vary, 1983}, event detection 

(Magotra et al., 1991), line enhancement (Solei!, 1988), and other areas. 

Signal Correction 

This system is applied when some unknown source has altered the 

characteristic of the signal. To be able to perform correction, a well defined criterion 

of signal quality must be available. This class of adaptive system is shown in Figure 

2.4. 

i yfk) 
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T 1 Lr criterion J I 
a priori knowledge i 

of the signal ! 
-· l 

Figure 2.4 Adaptive system for signal correction 

In Figure 2.4, an original input signal y(k) passes through the unknown system. The 

signal is distorted by the system. The unknown system produces x{k) which is the 

distorted version ofy{k). The filter estimates the signal x(k) and produces the ~k) as 
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the estimated output in order to produce the original signal y(k). Since the desired 

signal is not used in the adaptive processing, several techniques including prediction, 

filtering, and smoothing are used to extract information about the future, present and 

past from an input signal that is known to have some regularity or smoothness. 

The applications of this model can be found in adaptive intetference 

cancelling (Treichler et al., 1986), where the correlated noise is used as the criterion, 

and the input signal is the signal corrupted by the noise. The system will try to 

minimise the error by making the output adaptive subsystem approximate the noise. 

Therefore, it can be used to eliminate the noise in the signal. 

The parameters of the system are updated according to a quality criterion. 

Decision of the criterion used is an important issue in this class of adaptive filters. 

There are two major methods: Exact Least Square and Gradient Method. The Exact 

Least Square performs the calculation of the mean square enur after the system has 

collected a block of data. Consequently, it is slOw to track the change of 

environment. The Gradient method estimates the error when each sample arrives and 

it offers a faster solution for tracking the change of environment (Classen et al., 

1983). 

2.1.2 Time domain adaptive filter 

The simplest way in implementing adaptive filter algorithm is time delay tap structure. 

This filter structure is depicted in Figure 2.5, where z·l is a time delay unit and x(k) is 

the input signal at time index k. 
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Figure 2.5 Time domain adaptive filter 

The input signal x(k) and previous input signal [x(k-1), x(k-2) ... , x(k-N+I)] ar!! used 

together with a function having adaptable parameters F( ... lw) is used to produce the 

output signal y(k). After the function produces the output signal y(k), an aUaptation 

rule i& applied to change the parameters win the function F( ... lw). This adaptation is 

performed in order to reduce the error e(k+ I) when a new input signal x(k+ 1) arrives. 

The most widely used function F( .... lw) is a line combiner. The output of 

this function is a linear combination of some weights w(k) and the inputs x(k). In 

general, can be written as : 

M 

y(n) " L w(k)xO'- k) (2.1) 
~-M 

If M is co the filter is known as Infinite Impulse Response Filter (IIR), otherwise it is 

know as Finite Impulse Response Filter (FIR). The structure of which is shown in 

Figure 2.6. 
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Figure 2.6 Linear combiner structure 
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The output signal y(k) of the linear combiner is the linear combination of the input 

signal and the -adjustable weights. The adaptive algorithm will adjust the weight 

values {w0, w1, ••• , wL.d according to a perfonnance measurement. The advantage 

of this method is that it is easy to implement. However, this is a !inear system and 

therefore it cannot be used for any non-linear tasks, such as non-linear adaptive 

equalisation. 

The complexity of the algorithm is dictated by the number of taps, L, which 

detennines the delay of the filter, i.e. the delay will be longer with increasing the 

number of taps. In a typical system, the impulse response is vel)' long. Therefore, in 

order to satisfY the impulse response of this system, an FIR with many filter 

coefficients should be used, On the other hand, an IIR structure can be built using a 

recursive structure so that a long impulse response filter can be implemented only 

using a few filter coefficients. The complexity ofiiR model is lower than that of FIR. 

One of the disadvantages of the IIR structure is that the poles of the filter can move 

outside the unit circle in the z-plane during adaptation, and hence it may lead to 

instability, sl~w convergence and local minima (Shynk,. 1992). 
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The proposed model can be used in a time-domain adaptive filter structure 

and it replaces the linear combiner structure with a non-linear processing model, 

which will be described in the Chapter 5, by applying the proposed model to tackh 

time series prediction. This task is an example of adaptive filters used in signal 

estimation. 

2.1.3 Frequency domain adaptive filter 

In this structure, a frequency transformation is performed i.e., Fourier 

Transfonnation, before the adaptive algorithm is applied. The adaptation and the 

filtering are performed in the frequency domain, rather than in the time domain. The 

basic operation of a frequency-domain adaptive filter begins first by transforming the 

input signal into a frequency representation. It is achieved by an orthogonal 

transforms, such as Discrete Fourier Transformation (OFT) or Discrete Cosine 

Transformation (Malvar, 1992), of the input signal into frequency-domain. The 

desired signal, and the error ~ignal, which is the difference between the output signal 

and the desired signal, are transfonned into frequency domain as well. By performing 

an adaptive .algorithm, the weights of the filter in the frequency domain will be 

adjusted to pro.duce an output signal which approximates the desired signal. The 

adaptive algorithm. in frequency domain is a version of the complex adaptive 

algorithm (Shynk, 1992). An adaptive filter can be implemented on a block by block 

basis using the Fast Fourier Transform (FFT) and is shown in following ~iag~~ : 
'0 , .• ' • 
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Figure 2.7 Basic configuration of frequency domain filtering (Malvar, 1992) 

Suppose F is the frequency transformation function. 

x(k) .4 X(ei"') (2.2) . 

(2.3) 

Where x(k) is the input signal and y(k) is the output signal in the time domain 

representation. whereas X(.), is the input signal and Y(.) is the output signal in the 

frequency domain representation. qs(,) is a spectral manipulation function, i.e. 

spectral subtraction or spectral multiplication. T (.) is the frequency domain 

representation of the desired signal. The fol!owing equation sho\Vs the connection 

between the frequency domain and time domain operation. 

x(k) ® y(k) 4 X(d") · Y(&•) (2.4) 

In Eq 2.4 0 is the circular convolution. According the Eq. 2.4, the multiplication in 

the frequency dumain is equivalent to the circular convolution in time domain 

(Oppenheimer, 1989). Therefore, to achieve a linear convolution for filtering 

purpose by implementing a OFT algorithm, there are two approaches, the 

~verlap-save and overlap-add methods. By overlapping element of the input data and 

retaining only a part of the final OFT products, a linear convolution is obtained. 
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The frequency domain adaptive filtering method has primarily three 

advau~ages. Firstly, adaptive filtering using a block by block processing approach 

which is based on a fast transform could significantly reduce the computational 

complexity. An orthogonal transformation, i.e. FFT, can perform a linear 

convolution more efficiently than the conventional linear combiner structure. 

Secondly, the DFT structure can generate signals that are approximately 

uncorrelated. Thirdly, the frequency-domain adaptive filter converges faster (Shynk, 

1992), than the time domain adaptive filter. 

Since the adaptation and the filtering are performed in a block by block 

manner, this structure yields problems in the block boundaries. It leads to small 

discontinuities in the output signal y{k). In applicaf10ns where the input signal is 

already noisy, this lack of shift invariance is a minor concern. The boundal)' effect 

can be reduced by applying Orthogonal Lapped Transfonnation, but the complexity 

of the calculation will increase (Malvar, 1992). This approach may introduce longer 

end-to-end delay, because adaptation that the output filter produces after one block 

has been acctomulated. For non-stationary signals, the tracking performance of a 

block algorithm also generally becomes worse especially for large and highly 

non-stationary input data {Sbynk, 1992). 

Another approach of the frequency domain adaptive filters is described in 

Narayan {Narayan, 1983). In this ~tructure, there is no inverse transfonnation 

required. This filter structure is a. ~edification of the tr8.~sversal filter in which the 

output of the tapped delay line is first transfonned before being combined I Y the 
'' 

adaptive weights. The orthogonal transform acts as a filter banks, so that its output 

ts uncorrelated. The convergence of this filter is faster than aLMS transversal filter. 
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In this approach, the complexity is reduced because the algorithm does not perform 

the Inverse Transformation, and the speed of tracking is better because the 

transformation is performed by sliding the window (Narayan, 1983). 

In this work the function \f(.) is performed by the associative memory 

mechanism of the proposed model. It is expected to be able to enrich the system to 

deal with the non linear problem. It will be addressed in Chapter 6 for the noise 

elirrllnation problem which is one oft he appflcations of signal correction. 

2.2 Adaptive Filter Algorithms 

There are many adaptive algorithms which have been available. Most ofthem use the 

mean square error as the quality criterion (Classen, 1983). These algorithms are 

Exact Least Square, Least Mean Square, Recursive Least Square, Fast Least Square, 

and the variations of these algorithms which optimise the computation process to 

reduce the complexity of algorithms. 

It is assumed that all of the signals are stationary and have finite correlation 

function. In order to describe the algorithms, some notations are defined as follows: 

The input vector is : 

T 
X.t = [Xk>XH,· •• ,Xk-t+d 

L is the number oftap delay. 

The coefficient vector is : 

(2.5) 

(2.6) 

Let d(k) is the desired signal and y(k) is the output signal at time k. Then the error 

signal can be represented as : 
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'(k) "d(k)-y(k) (2.7) 

The crosscorelation between input signal x(k) and output d(k) is 

rdx(n) =E[dxXk+n] {2.8) 

The autocorrelation between input signal x(k) and x(k+n) is : 

(2.9) 

The crosscorrelation matrix R is given by : 

(2.10) 

This R matrix is L x L size, synunetric, and a Toeplitz matrix. Therefore it is easy to 

invert if not singular: 

R" 

r.a(O) 
r.a(l) 

r.a(J) 
r_...(O) 

... r:u(L- I) 

... r.u(L-2) 

r:a(L-l) r_..(L-2) ... r.u(O) 

The crosscorelation vector is: 

(2.11) 

(2.12) 

Since the coefficients are fixed for the moment, the output signal y(k) is stationary, 

and the MSE is given by: 

MSE"El':J "E((d,-y,)'] 
"El d;j +E[y;J -2E[d>Y>l 

= r JJ(O) + r..,.(O)- 2rJy(O) (2.13) 

As shown by Steams (Stearns, 1988), the MSE of an Adaptive Line Combiner such 

as a Finite Impulse Response Filter (FIR) w.hich follows Eq. 2.1 can be written as : '---
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(2.14) 

where w is the adjustable weight vector but for the moment is fixed. The MSE 

surface is an L-1 dimensional surface in the L dimensional space, where Lis number 

of adjustable weights. The adaptation process is to seek the minimum point on this 

error surface. 

The MSE can inEq. 2.14 be rewritten as·. 

(2.15) 

For the searching of the optimum w", instead of calculating the exact least square, a 

gradient descent method is used. The gradient vector which is a column vector is 

obtained by: 

=2Rw-2p (2.16) 

Since the global minimum MSE is obtained where V = 0, the Eq. 2.16 can be 

rewritten as: 

(2.17) 

To update the weight for each iteration of adaptation, the Eq. 2.16. is multiplied by 

R 1 and yield5 following equation: 

According to the Eq. 2.18, we should calculate R'1 and V. The problem for this 

task is that the matrix R is unknown, and V must be estimated using local statistical 

infonnation. It means that the actual value cannot be obtained, and only the 

estimation value can be found at each iteration of adaptation. 



Since 'V and R"1 are estimated, the modified version is introduced. For 

obtaining more stable behaviour, a factor fl is used to smooth the prediction value of 

R"1 and gradient 'V : 

{2.19) 

2.2.1 Least Mean Square (LMS) 

The crosscore!ation matrix R may not be invertible, and if even is theoretically 

invertible, the numerical precision required to invert R is beyond the capability of the 

computational system (Messerschmitt et al., 1986). The LMS algorithm is derived to 

tackle this problem and produces the simpler adaptive algorithm without calculating 

the inverse ofR. It is obtained by simplifYing the estimation of the R"1 
: 

(2.20) 

where 0 is a positive constant called the adaptation step size, and the lw is the 

identity matrix of order N. Eq. 2.19 can be wrhten in a simpler fonn a!. : 

(2.21) 

When the MSE is minimum, the weight is optimum and it is denoted by w0
• Let Jbe 

defined as the cost function of the system or the quality criterion of the system. In 

this case MSE is used as the quality criterion. 

(2.22) 

Therefore for all position in the MSE surface: 

!JJ>O forv:;tO,wherev.,w0 -w 
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The goal is to find the w0
, the weight vector for which the performance criterion J is 

minimised. Suppose w starts with an initial value, and the algorithm will choose the 

next value which is closer to the w0
• When updating is performed and /!,./is still 

greater than 0, the next improvement should be continued. The iteration will stop 

until !JJ reach e, where e is the convergence error. 

One method to search for w0 is by employing the gradient descent technique, 

By evaluating the derivative of the performance function J, the weight adaptation can 

move from the current value to the next value in order to improve the performance 

function J at time index k. Since MSE is used as th-e performance function J. the 

derivative of J can be written as : 

(2.23) 

To simplifY, the prediction error can be used to estimate the gradient ofJ: 

et~dt-wfxt 
• a a v, = 2<(k) aw, {d(k)- w'x(k)} = -2,(k) aw, {w'x(k)} 

= -2,(k)x(k) (2.24) 

The weight adaptation for LMS can be written as: 

w(k+ I)= w(k)+ )-te(k)x(k) (2.25) 

This algorithm has been popular for a long time since it was introduced by 

Widrow (Widrow et al., 1960). The step by step of LMS algorithm can be 

formalised as: 

Step I. The prediction value of output is calculated. 

y(k) =w'(k) x(k) (2.26) 
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Step 2. The error with reJpect to the desired signal d(k) is calculated. 

<(k) , d(k)-y(k) (2.27) 

Step 3. The coefficients of the filter is updated at;cording to: 

w(k+ I)"" w(k)+ 1.1 e(k) x(k) (2.28) 

This algorithm has been widely used, and there are many applications using 

this approach. such as echo removal (Kuo and Zhao, 1990), adaptive interference 

cance".lling (Treichler et al., 1986). However, this algorithm has some limitations. 

Firstly, the initial convergence is slow. Secondly, the convergence of the system 

depends on the input signal characteristics, due to the dependence of e(k) on the 

input signal. Finally, a residual error still exists after convergence because the 

weight adju~"tment will oscillate around the optimal value. 

There are some modifications from the standard LMS algorithm. Those 

modifications are the Griffith Algorithm (Griffith, !967) and the Sign Error LMS 

Algorithm (Gersho, 1984). 

2.2.2 Recursive Least Square (RLS) 

The RLS algorithm tries to approach the last adapted weights as the overall optimal 

weights. It is different from the LMS algorithm,. which will oscillate about the 

converge point, rather than actually converging to tlte optimal point. In the LMS 

algorithm, R'1 in Eq. 2.19 is assumed to be I, but the RLS algorithm make uses of the 

estimate ofR in Eq. 2.19: 

(2.29) 
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By estimating R, the algorithm starts wfth initial Rand initial w. The original 

RLS algorithm is: 

Step I. The autocorrelation matrix R is updated via : 

R.t+l = R; + x(k) x T(k) (2.30) 

Step 2. The crosscorelation vector p is updated via : 

Pt+l == P1 +d(k) x(k) (2.31) 

Step 3. R is inverted to produce the matrix R) 

(2.32) 

Step 4. The weight w can be updated by using P and R 1 

(2.33) 

The algorithm requires the inversion matrix of the matrix R, that leads a high 

computational complexity, i.e. it needs N3+2N2+N multiplications. To simplify the 

updating process, some refining methods have been developed. For example using 

(ABCD) Lenuna (Kailath, 1980) the inverse of R can be calculated successively: 

R_1 =R_1 _ Rj:1x(k)x(k)Rk1 

!+I * I +x1'(k)kj:1x(k) 
(2.34) 

From this equation, a;;1 is not calculated directly by inverting the R 

The implementation of the RLS algorithm is obtained by making use of the 

adaptation gain vector z(k), which is defined by expressing the gain as a function of 

the input signal only, and which can be updated using a set of adaptive prediction 

filters. The weight adaptation for RLS algorithm can be expressed in as: 

o o e(k)·Zt 
Wt+l""Wt +---r+q (2.35) 

where e(k) is the a priori error : 



27 

'(k) = d(k)- yo(k) 

y(k) is the a priori output : 

' ' 0 Yo(k)"' x (k)wk 

z is the filtered information vector or the adaptation gain vector : 

(2.36) 

q is the normalised input power : 

(2.37) 

Eq. 2.35 is used by the RLS algorithm for updating the weights at each iteration. It 

start with w~and then updates the weights according to the input signal x(k) and the 

desired signal d(k). The algorithm uprlates the w value in order to find the optimal 

value ofw. The adaptation ofw is controlled by three terms, e(k), ~.and q. 

The first tenn of adaptation, is the a priori error e(k), which is calculated by 

subtracting the desired si!¥1al d(k) with the a priori outputy(k). The a priori output is 

the output of the adaptive filter which is calculated using the previous optimal 

weights or the weights that have not been updated at this iteration. This a priori 

error is known as the prediction error. If the prediction error is equal to zero, 

updating will not be perfonncd. 

The second factor is z,, the adaptive gain vector. By multiplying R to vector 

x(k), the direction and length of vector x(k) is influenced by the matrix R. Therefore 

is z is the modification version of the input vector x(k) by R. 

The last tennis q which represents the input signal power. The input signal 

power xr(k).x(k) is nonnalised by Rk1
. This nonnalisation yields the input signal 

power average, rather than being proportional to the actual signal power. 
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However these three terms produces exactly the optimal weight update. And 

since R.. is not negative, l+q always equal or more than I. A more efficient RLS 

algorithm can be formalised as follow: 

Step I. A new input sample x(k) is accepted and shifted into the x(k), 

x(k) -> x(k) ;d(k) 

Step 2. The a priori output is computed. 

Yo(k) = wf1:t(k) 

Step 3. The priori error is computed 

•o(k) = d(k)-Yo(k) 

Step 4. Filter infonnation vector is computed 

Zk = R;;1x{k) 

Step 5. The normalised error power is computed 

Step 6. The gain constant is calculated 

•=-'­l+q 

Step 7. The normalised filtered infonnation vector is computed 

Step 8. The optimal weight vector is update 

Step 9. The inverse correlation matrix is updated by using the Eq. 2.41. 

R_, R-1 - r 
~+l = k -ZkZk 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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For each pair of the input-desired signal {x(k), d(k)}, the computational 

complexity ofthe RLS algorithm to calculate the output and the update of weight is 

2Jofl +4N multiplications, 2N'l +4N additions, and I division. Since this amount 

is used for one pair of input and desired signal, the total of multiplication over N-1 to 

L-1 is 

Cm = (L-N+ 1) · 2N2 +(L -N+ I)· 4N (2.42) 

The complexity is lower than the direct method, and does not require a matrix 

inversion calculation. The RLS algorithm has been successfully implemented for 

many applications such as dynamic modelling. The problem with this algoridun is the 

initialisation matrix, and fbr some problems, the calculation of R becomes numerical 

unstable. 

2.3 Application of Adaptive Filters to Signal Enhancement 

Problems 

Speech transmission and processing are often degraded by acoustic or electrical 

noises. The objective of speech enhancement is to improve the speech quality by 

pre-processing or post-processing. Noise reduction is a time series problem which 

requires a dynamic setting. In the DARPA Neural Network Study, Section 19.6.1 

Recovery of Noise-Corrupted or Distorted Waveforms, the following statements are 

made (Hoyt et al., 1990): 

"A classical signal processing problem is that of recovering an analog 

signal after transmission over a noisy or dispersive channel. In many 

cases there may [be] very little knowledge about the standard 

characteristics of the signal, noise or dispersion. Standard 



approaches to this problem include filtering for noise reduction and 

chaMel equalization to reduce dispersion, and the application of 

estimation theory to fonn an optimal estimate to the equalisation to 

reduce the dispersion, and the application of estimation theory to 

fonn an optimal estimate of the desired waveform. The lack of 

knowledge or relevant statistical characteristics hinders the use of 

estimation theory." 
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The speech enhancement process is required to improve the quality and intelligibility 

of the received signal. Some problems which require a speech enhancement are echo 

(Gee and Rupp, 1991), background noise (Hansen and Clements, 1991), 

transmission noise (Soleit et al., 1988), inter-symbol interference (Biglieri et al., 

1984), fading (Coloma et al., 1991), howling (Kuo and Chen, 1992). The 

unavailability of a clean signal as an ideal signal model or the channel model makes 

this problem hard to solve by using a conventional filter which is designed by using a 

predefined filter response (Classen et al., 1983). 

In speech enhancement, conventional signal processing has focused on 

compensating for distortions introduced by channel variations. Various methods 

have been proposed to tackle this problem including fixed filtering (Boll, 1979) and 

adaptive filtering techniques using conventional linear adaptive filters. Non-linear 

techniques have been developed as well, but these typically depend on a local 

linearisation of the problem. The use of adaptive methods has improved the 

perfonnance of background noise elimination to a large extent (Vary, \983). In these 

methods, the parameters of the filter are changed to adapt to the non-deterministic 

characteristics of the background noise. However, provision has to be made for the 
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filter to be able to change in the environment. Sometimes, it may lead to 

unsatisfactory performance ofthe overall system (Cannel et al., 1990). 

Most of t:1e conventional linear adaptive filters employ the LMS or RLS 

algorithms. However, the LMS and RLS algorithms have several limitations. Firstly 

they are designed to deal with the linear problem, since the output function is a linear 

combiner. Therefore, even though the filter performs adaptation, the output always 

follows Eq. 2, I. It means that the LMS or RLS performs piecewise Jinearisation to 

deal with non-linear problem. Secondly, for producing the best result, the filter needr. 

thousand of tap-deliys. It increases the amount. of calculation and the amount of 

delay. The adaptive filter only produce an output l ler thousand of input samples. 

Thirdly, since the LMS and RLS algorithms are derived by using assumptic:J.s that the 

signal is stationary, the filter cannot attack the non-stationary problem effectively 

(Sh'""' I 992). 

The failure of Adaptive Noise cancelling to adequately track the microphone 

spacing transfer function leads the use of a Neural Network as an arbitrary reference 

primary mapping element. (Cannel, 1990). There have been a number of Multilayer 

Perceptron Architecture to deal with this problem. Wi!ibel et al. (Waibel et al., 1989) 

used a time delay neural network architecture. In this architecture there is no 

feedback from a later layer to a previous layer. Another approach involves feedback 

from a hidden layer to the output layer (this is known as a recurrent network). A 

third approach is to use an intennediate structure between a global feedforward and a 

global recurrent architecture to yield an overall global feedforward with a local 

recurrent nature. This time delay network model uses Finite Impulse Response (FIR) 

and Infinite Impulse Response (IIR) synapses derived from a linear adaptive filter. 
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Back and Tsoi (Back and Tsoi, 1991) state that the FIR models will give better 

results than the IIR models. By combining a resonator-banks filter and an associative 

memory neural network, an adaptive filter has been developed by Sztipanovitz 

(Sztipanovitz, 1990). 

Artificial Neural Networks (ANNs) offer an alternative technique for adaptive 

filtering. Gonnan and Sejnowski (Gorman and Sejnowski, 1988) show that an ANN 

requires far less restrictive assumptions about the structure of the input signal than 

any traditional techniques. A general ANN model for adaptive filtering has been 

proposed by Nerrand et a!. (1993). It has also been shown that an ANN can be 

applied to separate a signal into different signals (Cohen eta\., 1991) and to perfonn 

signal classification (Malkolf, 1992). In the area of background noise elimination, 

Xue et al. (Xue et al., 1992) has applied an ANN~based adaptive matched filter for 

biomedical processing applications. 

There are similarities between the ANN model and the conventional adaptive 

filter model as mentioned by Marcos et al. (Marcos et al., 1992). An adaptive filter 

uses the gradient descent technique for adaptation of the filter coefficients, and this is 

also the common way of adjusting the weights of the connections in a supervised 

neural network. The significant difference between the neural network approach and 

the conventional adaptive filter is that the neural network normally synthesises a 

non-linear function of its inputs, as opposed to the linear function of the adaptive 

filters. ANNs are inherently non-li;:e:u inOdels, and ANN-based filtering methods are 

potentially useful for signals with inherent non-linearity. 

Parameter estimation is an important part of an adaptive filter system. A 

traditional self-tuning adaptive control system with Recursive Least Square is 
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sensitive to noise and can only deal with a linear system (Chow et ai., 1990). By 

usi~g a neural network, the parameter estimation process can be perfonned to reject 

the noise in the non-linear system. It sh~:-vs that a neural network has a great 

potential in system identification as mentioned by Chow et al. (Chow et al., 1990). A 

neural network which is fanned as a three-layer backpropagation model can be 

trained to be able to identifY the pole and zero·of the system. According to Kanekar 

et al. (Kanekar et al., 1990), by applying a Ma·d,aline net, and by using independent 

random noise as input, the network can perfonn parameter estimation better than 

using a Kalman filter method. It is shown that by _applying the associative 

characteristics of neural networks, they can handle signal estimation faster and more 

accurately than the conventional system. 

The signal detection problem can be modelled as a pattern classifier problem, 

and some neural network models can be used as pattern classifiers. A Kohonen 

feature map is one such model. Moreover, Adaptiv.;' Resonance Theory via an 

unsupervised neural network can deal with plasticity-stability dilemma, but will 

perform poorly when the input pattern is coloured by noise (Lippmann, 1987). 

Conventional adaptive filtering techniques have proved valuable in signal 

processing problems where training data are available. However, for non-linear 

problems, the solution is difficult. Therefore, it leads to the development of adaptive 

filter using Artificial Neural Network. By employing the Al\'N techniques, less 

assumptions are required to build the model, because the ANN has capability to learn 

the input-output relation in the non-linear relationship. It is indicated that in the 

problems where sufficient data are available for training, it may be useful to devdop a 

trainable system. The use of ANN introduces non-linear processing that adds more 
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flexibility to the system capability, which may lead to better perfonnance than 

conventional linear adaptive systems in certain applications. 

In Chapter 3, the basic model of an Artificial Neural Network combined with 

a Fuzzy System (FS) are described. The fonnal model of the ANN, which is a 

non-linear processing mode~ is explained fullowed by the discussion of FS as the 

model-free estimator which can deal with vagueness. Both techniques are used as the 

basic framework for designing a novel adaptive filter. 
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Chapter 3 

Artificial Neural Network and Fuzzy System 

An Artificial Neural Network (ANN) model is an alternative fonn of information 

processing that is fundamentally new and different information-processing paradigm. 

It is fast becoming an established discipline. However, it does not replace algorithmic 

programming, because on a philosophical level, they are not compatible. They 

complement each oth•Jr nicely. This chapter describes the theoretical framework of 

the Artificial Neural Network model, followed by the description of the Fuzzy 

System (FS). Both systems are used as the basic structure to build the proposed 

model. 

3.1 Artificial Neural Network 

ANNs are good at some tasks, e.g. solving complex pattern recognition, 

understanding continuous speech, identit)ring hand-written character, for what 

conventional algorithms are poor. ANN models have been considered particularly 

suitable for unstructured computations, such as pattern recognition, artificial 

intelligence problem solving, and approximation to large optimisation problems 

(Abu-Mostafa, 1989). The difference between ANNs and the other approaches in 

cognitive science and artificial intelligence is the inference process and the knowledge 

base in the ANN model is non-separable. In ANNs, the algorithms blur the 

distinction between data and program, and the algorithm is represented in their 
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architecture while their data are represented implicitly by the dynamics of ANN 

model (Mehra and Wah, 1992). 

In formal terminology, ANN are concerned with non~programmed adaptive 

information processing systems, that develop associations (transformation or 

mapping) between objects in response to the environment. Instead of being given a 

step-by-step procedure for canying out the desired transformation. an ANN 

generates its own internal rules governing the associatfon, and refines those rules by 

comparing its results to some examples (Hecht-Nielsen, 1988a). 

An ANN processes immense quantities of information in parallel and are 

inspired by models of brain behaviour. Hecht-Nielsen stated the following definition 

of artificial neural system (Hecht-Nielsen, \988b): 

"A neural network (NN) is a parallel, distributed infonnation 

processing structure consisting of processing elements (which can 

possess a local memory and carry out localised information 

processing operations) interconnected together with unidirectional 

signal channels called connections. Each processing element has a 

single output connection which branches ("fan out") into as many 

collateral connections as desired (each carrying the same signal-the 

processing element output signal). The processing element output 

signal can be of any mathematical type desired. All of the processing 

that goes on within each processing element must be completely 

local; i.e., it must depend only upon the current values of the input 

signal arriving at the processing element via impinging connections 

and upon values stored in the local memory". 

' 
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Figure 3.1 A neuron structure (Hecht-Nielsen, 1988b) 

Structurally a neural network can be defined as a n-on-linear directed graph with 

weighted edges that are able to store patterns by changing the edge weights and are 

able to recall patterns from incomplete and unknown inputs (Simpson, 1987). The 

transfer function of a neuron structure as shown in Figure 3.1 is a non-linear 

transformation. Non-linearity of the neural network increases the richness and 

facilitates noise suppression (Kosko, 1990). However, it also produces computational 

risk and analytical intractability. Furthermore in some conditions, the system can 

enter into dynamic instability. 

An ANN is a dynamic system that consists of a large number of simple 

processing elements connected in parallel (Vassiliadis, 1990). They may be proved to 

be more robust when distributions are generated by a non-linear process and are 

strong non-Gaussian (Lippman, 1987). An ANN model is specified by the functional 

description of the connections of network, network topology, neuron characteristics, 

and learning mechanism. These will be discns~~d in the following section. 

3.1.1 Formal description of a neuron 

Basically a artificial neural network system consists of a number of interconnected 

neurons. To formalise the description of an artificial neural network following 
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d.::rinition are used. This definition followJ the general model definition as stated by 

L<e (Lee, 1991): 

DEFINITION 3.1 

A discrete time neuron can be specified by 5 tuple : 

(3.1) 

The components of a neuron and the interactions between each components are 

shown in Figure 3.2. 
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Figure 3.2 A fonnal neuron 

Each neuron (as a generic processing unit) functions on a discrete time scale, and it 

operates on n-tuples of input x = (x1, ••• , xJ E Rand produces a real scalar y as the 

output of a neuron This value is propagated through the network via unidirectional 

connection to other neurons in the network. The set of input arguments x = {x1 x2, 

x.} is called the Receptive Field (RF) of this neuron. 

I 

I 
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I 
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I 
I 
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Signal flow path itt a neuron 

The signal flow path from the input port through to the output port is called the Feed 

Fonvard Path (FFP) and the signal flow path from the output port through .S to the 

input port is called the Feed Back Path (FBP). 

At any time index t, for the neuron N, the value presented in the RF of 

neuron N is designated by IN(NY. The output of the neuron N designated by 

OUT(N)', is equal to the state value q(NY of neuron N. Therefore, for the neuron N, 

IN(NY"" x' and OUT(N)' = q(Ny. 

e,. is called the Received Feedback Signal (RFBS) and is the feedback signal 

received from the output port of Neuron N. The signal e""' is called the 

Transmitting Feedback Vector (TFBV) and is the list of feedback signals, which 

are called the Transmitting Feedback Signals (TFBS). These feedback signals are 

transmitted upstream to the RF of neuron N. There is one to one correspondence 

between the variables in RF and the components of e .... and the dimension of IN is 

equal to the dimension of e,". 

Feed Fonrard Path Component 

For the feed forward path, the components that are used are : State Tran:;ition 

Function,F and Composite State, q. Those components are described in following 

discussion. 

State Transition Function (STFl 

F, is called the State Transition Function (STF) and is a parameterised function with 

w as the parameter vector of the function. F is used to generate the Composite 
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State, q of this neuron with q = F(s: lw), where the vector x = (x1 ,x1' ... ,x.) 

designates the list ofinput arguments for F. The function Fitselfis a triple: 

(3.2) 

This first mapping is mathematically described by a basis function fl. 

Further transformation is performed by a non-linear activation function 41, together 

with the external threshold 9, to yield a new activation value y. The final output y 

can usually be expressed as : 

y= <!>(~(xlw),8) (33) 

Basis Function (jl) 

13 : R" --)- R is a basis function, which is a delayless function and is normally in a very 

simple form. It may be a linear basis function or a radial basis function. A linear 

basis function (LBF) which is a hyperplane-type function that is a first order linear 

basis function. The output value ofthis function is a linear combiner ofthe inputs. 

" P(xlw) == L W!fXJ ,., (3.4) 

A radial basis function (RBF) is a hypersphere-type function and is a second 

order (non linear) basis function. The output value of the basis function represents 

the distance of the input vector to' the reference vector. 

(3.5) 

Weight (w) 

w = [w1, ... , w.] E R" is a weight vector of a neuron. This a-tuples of weight values 

are associated with each connection. w is called the Modulating Parameter 
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Structure (MPS) for F, because each parameter w in w is used to modulate the 

function F. The collection of all possible values ofw for a neuron N fonns a vector 

space, called the Neuron Parameter Space for the ANN. The property of this space 

is important for analysing the parameter adaptation (or learning process) of a neuron. 

Neuron decision rule (Ill) 

Ill: R -7 R is the neuron decision rule. The function ct> itself is a non linear function 

and it may be a step, ramp, sigmoid or Gaussian function. The most widely used is 

sigmoid for LBF network and gaussian function for RBF network. For LBF model, 

the type of neural decision function used only influences the speed of learning not the 

accuracy of the network (Kalman et al, \992). 

Sigmoid function is defined in following equation and shown in Figure 3.3: 

... 
<b(u)=-'-

" 1 +e-o 

"=""-----•,, 

Figure 3.3 Sigmoid function 

Gaussian function is stated in Eq 3.7 and depicted in Figure 3'.4.: 

"' <b(u) = ce-a2 

(3.6) 

(3.7) 
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... 

Figure 3.4 Gaussian function 

Real Threshold (9) 

9 e R is a real threshold which may be supplied from external or by fixing it with a 

constant value. 

Therefore, the final output or the activation value of the neurony is 

LBF neuron: (3.8) 

RBF neuron: (3.9) 

ComPosite State (q) 

q is the Composite State that represents the states of a neuron. The static state of a 

neuron is given by its last output value y. The dynamic state of the neuron is 

described by the first-order difference equation that governs the time evolution of 

they value or the neuron output. The time is not included as an independent variable 

and it is assumed to be fast at the neuron level, i.e. during time index t to time index 

t+ I there is not any change of the neuron's state. The dynamic state is only 

detennined by q" and q'. 
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Feed Back Path Component 

For the feedback path, the component which are used are: Parameter Adaptation 

Automata (PAA) and Parameter Control State (PCS). The feedback path is occurred 

after there is a feed forward path that produce the Composite State (q) this value is 

used by the feed back path components. 

Parameter Adaptation Automata CD 

r is called the Parameter Adaptation Automata (PAA) of a neuron and it is 

specified by a pair 

r= {o,a} (3.10} 

Where li is the Parameter Adjusting Function and a is the Parameter State Transition 

Function. 

Parameter Adjusting Function (0 ) 

0 is called the Parameter Adjusting Function . It is known as learning function of 

neuron Nand is a mapping that takes x', w', q', C\ e;"' as inputs to generate w1
•

1
, 

i.e., 

(3.11) 

Parameter State Transition Function (a) 

a is called the Parameter State Transition Function {PSTF) of neuron N and is 

characterised by the following equation: 

cr+l "'a'Xr qr wr er C') \ ... • • • fn• {3.12) 
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Parameter Control State <C) 

C is called Parameter Control State (PCS) of neuron, is a structure of variables 

used to control the parameters adjusting process Qearning process) of this neuron. 

A neuron which does not contain e;, and e
0 
.. inC, is called a Uni-Directional 

Neuron (UDN). Fonnal neurons with both e;., and ewt specified are called 

Bi-Directional Neurons (BDN). Nonnally, BDN is. used in supervised learning. 

The neurons in the backpropagation network are examples of this category. 

The neuron output y, in neural modelling is known as the Short-Tenn 

Memory (STM) of the network. Nonnally, a neuron will forget the previous value 

as soon as there is a new input signal. This storage mechanism is very short time. 

The weights of the network w, store the knowledge ofthe system. They encode the 

Long Term Memory (LTM) of the pattern infonnation (Kosko, 1990). 

A neuron operates in two phases of operation: the learning phase and the 

recall phase. During the learning phase, a neuron adjusts the w values according to 

the training set and the learning rules in order to optimise a particular quality 

criterion. The adjustment of w values is perfonned by the function 0 (Parameter 

Adjusting Function), and controlled by C (Parameter Controlled State). C itself 

changes during the learning phase, that is done by cr (Parameter State Transition 

Function). Not all types of neuron lea.nir.g process require C to be specified. A 

learning mechanism with PCS specified is .::tiled a learning mechanism with internal 

state, while a learning mechanism without PCS specified is called a memoryless 

learning mechanism. 

When a neuron is performing the recall phase, r and C are not used any 

more, or they are set to fixed values. In addition, for most of ANN architectures, r 
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and Care the same for the entire neurons in the network, respectively. Therefore. r 

and C can be pulled out from the single neuron model and be abstracted outside a 

neuron model. Thus, it controls the entire neurons in the ANN model. it produces 

the simpler neuron model but less general than the neuron model stated above. 

According to the Eq. 3.2, the key element of a neuron in recalling operation is an 

accumulation of information by a non-linear decision rule which operates on 

comparison between the accumulated information and a threshold. Therefore, in 

simplifYing the model in the recalling process the C, q, and r can be omitted from 

the single neuron model to produce the model depicted in Figure 3.5. 

The inhibitoty input is the input that tries to inhibit the neuron, i.e. has the 

negative connection, and the e)[citatory input is the input that activates the neuron, 

i.e. it contributes to the value that exceed the threshold value. 

l:xcl!atory 
lnp~t 

Inhibitory 
Input 

Figure 3.5 Process in neuron. 

This definition of a formal neuron is genera! and it covers most of the current neural 

network models. In perfonning more complex tasks, a single neuron is not 

sufficient and a number of neurons have to be arranged in a such way to build more 

complex system. This arrangement can be done in the same level orland in different 



46 

level. Each neuron in an ANN model is connected to another neuron with th synaptic 

weight w. 

DEFINITION 3,2 

A neural network consists of a collection of neurons interconnected in such a 

way that the output of each neuron functions as input to any sub-collection of 

neurons. Each neuron in the network receives one input from the output of the other 

neurons in the network, resp~.ctively. These connections may be excitatory or 

inhibitory connection. A set of neural input and output are identified as the networks 

input and networks outputs, respectively. The network state is the collection of 

individual neuron states 

Lay« L 

input loy~r hidden loyor output layer 

Figure 3.6 Neuron connection 

According to Definition 3.2, the architecture of an artificial neural network can be 

fonnaliscd and ~pecified by the set: 

(3.13) 
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Where A1 , A,, ... A~ are Network Elements (NE) and each network element is 

defined by a triple: 

.(3.14) 

where~ is the Processing Kernel (PK), R1 is called Input Connection Map (ICM) 

and 1; is called the Output Connection Map. This formalisation of the ,. 

network architecture that is uses Eq. 3.13 and Eq. 3.14 are used to def:n,~, 

proposed model in the Chapter 4. 

~ of A1 and can be either a neuron or a neural network. R1 for A1 contains the 

fan-in interconnection information. The set of variables connected toN, through R1 is 

called the Receptive Fie~d (RF) of A1• T. for A1 contains the fan-out interconnection 

information from Ar Furthermore, the set which contains all the variables conner:ted 

through r,·to the output of a NEA 1 is called the Projective Field (PF) of A
1
• 

The arrangement of the neurons can be perfonned in different levels known as 

multi-layer neuron structure. This structure provides more complex function (Cotter, 

1990) or more complex decision region (Sethi, 1990) of the ANN model in the 

overall system. Lippman (Lippman, 1987) has shown that a three-layer network is 

l'.dequate to fonn a complex decision regions which is required to solve the 

non-separable problem in the real application, i.e. for the non-separable classification 

task (Murphy, 1990) 

DEFINITION 3.3 

An L-layer feedforward neural network is built by L ordered sub-colicctions of 

neurons called layers with interconnections specified as follows: for I = 2, ... , L the 

inputs of the neuron at the 1-th layer are obtained from the outputs of the neurons at 
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the (1-1)-th layer. The inputs to the first layer (called the input layer), are the 

network inputs. The set of neurons with some input arguments received from the 

inputs of the network is called the Input Set (1-Set) of the network or is known as 

the Input Layer of the neural network model. Each neuron in the 1-Set is called a 

Neural Input Element (NIE) of the network. The outputs of the L-th layer are the 

network outputs. The set of neurons with output sent to the output port of the 

network is called the Output Set (0-Set) of the network and this set is know as 

Output Layer of the neural network model. Each neuron in the 0-Set is called a 

Network Output Element (NOE) of the network Layer 2 to L-1 are called hidden 

layers. 

A connection between each neuron at adjacent layers may be feedforward 

connection, feedback connection, lateral connections, or time delayed connection. In 

feedforward connection, data from a lower layer are propagated forward to neurons 

of an upper layer via feedforward connections. The feedback connections bring the 

output of a neuron of an upper layer back to neurons in the lower layer. A lateral 

connection is the connection of neuron at the same layer (Leemon, 1991). 

Time-Delayed connection uses a delay element in the connection to yield temporal 

dynamic of that connection (Werbos, 1989). 

The signal in the ANN model can flow in both directions, i.e. from input layer 

to output layer or from the output layer to the input layer. For the feedforward path, 

the inputs to the network are the signals extracted from the external variables which 

arc connected to the input ports of the network input elements or the input layer of 

the network. The outputs of the network are the signals generated by the network 

output elements or the output layer and are connected to the variables external to the 



49 

network. During the feed-forward operation, R defined in Eq. 3.14 assigns to each 

input argument of N, one of the output from other A's in G, or one of the input 

signals to the network. During the feedback operation, T defined in Eq. 3.14 assigns 

to each Received Feed back Signal (RFBS) of N, one of the Transmitting Feedback 

Signal from some A's in G or one of the RFBS of the network. 

3.1.2 Feature mapping in neural network 

Most of the current ANN models are multilayer neural network architectures. In 

feedforward multilayer networks, there is the natural concept of a sequential flow of 

infonnation from each layer to the subsequent upper layer. From each layer to the 

subsequent layer, a feature mapping process is performed. It means that each layer 

expresses a different internal representation of a specific feature of the input data 

(Abu-Mostafa, 1989). At the input layer, a neuron value represents the data that 

are still raw data, and in moving to higher layer, the neuron value'. expresses the 

higher representation of the input data. This gradual transformation from raw data to 

higher representation is very interesting, especially if the representation evolves 

spontanteneously via the learning mechanism. However, for some ANN 

architectures, the exact representation at each layer is still being investigated. 

Basically, this feature mapping between each layer is the transformation function of 

each neuron. The mapping networks can be classified into two classes 

(Hecht-Nie!sen, 1987). They are feature based networks and prototype based 

network. 
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Feature based networks 

These networks implement a functional input/output relationship that is 

expressed in tenns if general, modifiable functional fonn H. = { h1 ( • ), h2( • ), ••• , 

h.( . ) } which is a set of the fixed family functions. For a given neural network 

architecture (with 11 inputs), each specification of weight and threshold for the neuron 

by applying one or more learning rules within the processing element of network, 

gives rise to one ftmction in H.. The modification of weight is done to find the 

specific mapping that is to be approximated, by detennining h : X. -lo Y" and h E H,. 

Examples of this kind of networks are : Backpropagation (Rumelhart et al., 1986), 

Functional Link Neural Net (Pao, 1989), GRNN (Poggio and Girosi, 1990), Cascade 

Correlation (Fahlman and Lebiere, 1990). 

Prototype based networks 

These networks create a set of prototypes ((v1, w1), (v2, w2), ... , (vL, wL)) of 

input-output examples ((x1, y1), (x2, y2), ... , (x~, y,)) that statistically represent the 

function being approximated. This process is performed by employing one or more 

learning rules. The network produces the mapping on a new unknown vector by 

comparing the input vector with the set of prototype vectors stored in the networks. 

By using the result of a similarity comparison, for example minimum distance or 

maximum activation value, the ANN produces output vector as an estimate of j(x). 

Examples of this kind ·of networks are counterpropagation network (Hecht-Nielsen, 

1987) and MAXNET network {Lippman, 1987). Most of these ANNs in this class 

use the binary hidden units, as the winner nodes or the chosen prototypes. 

For a three-layer ANN model which uses binary hidden units, the existence of 

J-1 hidden units is the necessary r.ur>:.ufficient condition for givenJinput patterns. It 

I 
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has been proved by Arai (Arai, 1989) that a three-layer network with infinite hidden 

units and the activation function is absolutely integrable has the outputs are arbitrary 

for the continuous value. It has also been shown that the existence if the infinite 

hidden units is not only the sufficient condition, but also the necessaty condition if the 

activation function for the hidden units are discrete at most of countable points. 

3.1.3 Computation and learning in neural network 

According to Venkatesh (Venkatesh, 1992), any problem of finite dimensions is 

computable by a neural network. In the implementation of an ANN model for 

solving a problem, the ANN system. performs two main computational mechanisms 

which are the learning mechanism, and the recall mechanism or operation mechanism. 

The neurons and the neuron connections in an ANN model are considered as 

the hardware of the system, and the weights and threshold can be considered as the 

software. In order to program the ANN system, a set of weights which simulate the 

computation that will be perfom1ed have to be chosen. If this process of choosing 

the weight and threshold values can be automated, it will constitute a learning 

mechanism. 

Let G be an architecture of an ANN model which is defined in Eq. 3.13. Then 

learning is any change in any component ofG: 

(3.15) 

Those changes may be performed to each component ofG, theN; parameters of each 

neuron, the connection strengths and the connection directions R; and 1; , and the size 

of matrix for self growing neural network, i. It means that the changing can affect 
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the architecture of the ANN and the value of each weight and parameter of a neuron. 

Therefore, learning cannot be perfonned without changing (Kosko, 1991). 

The concept of learning by examples is depicted in Figure 3. 7. The learning 

mechanism builds an ANN that implements an arbitrary function f, when given a 

sufficient a number of input-output examples from that function. This mechanism is 

performed automatically as dictated by the learning algorithm. The learning process 

commences with a set of training examples in pairs of input and expected output i.e. 

{(x1,./(x1), (x,_,j{~), ... , (xk,J{X..) }. During the learning phase, the changing of neural 

networks configuration is made by adjustment of the weights and thresholds, so as to 

make the network simulate a function! It is performed with the goal to make the 

response of the network to the input x as close as possible to the desired outputj(x). 

The implementation may be only a good approximation of the function j This 

mechanism will eliminate the need to redesign a new network architecture each time 

there is a new function to be implemented by the ANN. 

{ lx ,y I) 

y ~ft< I 

Notwork lmplemeniJn~ y m fW 

Figure 3. 7 Learning mechanism concepts 

Different learning algorithms require different types of information from the learning 

environment and employ different heuristics rules for the weight and threshold 

modifications. Each learning mechanism operates in an infonnation environment. 

The processing elements are fed by incoming signals. An ANN is a distributed 
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information processing structure and each processing element is totally independent. 

All the processing elements can respond according to its transfer function applied to 

the incoming signals and performs self-adjustment in response to their local 

information environment. 

The interaction of an ANN with its environment is used to classifY the 

learning paradigms. The environment presents the input patterns to the ANN and 

may generate a feedback in reaction to the network's output. If feedback is 

prescriptive, that is if a desired output is specified for every training input, then the 

learning mechanism is classified as supervised learning. Supervised learning 

incorporates an external teacher and/or global information. If the feedback is 

evaluative, that is if only an evaluation of the output is provided, then the leami.1g is 

classified as reinforcement learning. Unsupervised learning does not require any 

feedback. The learning can still adapt in order to satisfY some internal objectives. 

Unsupervised learning involves no external teacher and relies upon only a local 

infonnation and internal control. It self-organises according to the presented data 

and discovers the emergent properties of data. It means that an unsupervised 

learning scheme will try to perfonn a property recognition of the input data without a 

definition (Simpson, 1992). 

The learning process in an ANN model based on a set of examples can be 

regarded as synthesising a multidimensional function which belongs to a problem of 

hypersurface consisting sparse data points. It simply means that the learning is the 

collecting process of the input coordinates x, and the corresponding output values 

f(x) at those input coordinates. It builds an adaptive look-up table of input-output 

relation. This problem is equivalent to the associative memory that retrieves the 
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appropriate output when presented with the input and uses generalisation to produce 

an output when presented a new input. It is also similar to the problem of estimating 

a system that transforms inputs into outputs given a set of examples of input-output" 

pairs. A generalisation can be perfonned by interpolation, which estimates a location 

f(d) in space (x,j(x)) after dis fed into the system where there are no examples i.e. 

no data about the location d andj(q). Interpolation is the limit of approximation. 

The capability of an ANN to perfonn interpolation shows the capability of the ANN 

in the plasticity problem. The plasticity problem arises whenever an ANN is supplied 

with unknown input, or the data which have not been used for the training data 

(Carpenter and Grossberg, 1988). 

A multivariate function j{x) is approximated or interpolated by an 

approximating fuitction H(xlw) having a number of parameters w and x as the input 

vector, where x and w are real vector. For a specific H(xlw), the learning process 

tries to find the set of parameters w that provide the best possible approximation ofj 

on a set of examples {(x1, Jl\)),(:tz, f(x.)), ... ,(xk, fi.x,))}. Therefore, it is very 

important to choose the type of an approximation function H that can represent/ as 

close as possible. There would be little point in trying to learn if the chosen 

approximating function H(~lw) could only give a very poor representation of f{x) 

even with optimal parameter values. 

In measuring the quality of approximation, a distance function p is usually 

used. It determines the distance between the approximation H(xlw) toj{x). Letf(x) 

be a continuous function defined on a set :::, and H(xlw) an approximating function 

defined continuously on w. The appro:dmation problem is to determine the optimal 

parameters w0 such that: 



p(H(xlw0 ),J(x)) < p(H(x lw)J{x)) 
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(3.16) 

for all w, The solution of this problem is said to be the best approximation. The 

number of examples needed to approximate a function reasonably well grows 

exponentially with the ratio between the dimensionality and its degree of smoothness 

p. 

In performing the construction of the hypersurface which approximatesfby 

using H(xlw), the current w' value will be updated to the next value w••L. Generally 

the updating mles for the parameters w is : 

for unsupervised learning : 

w'+l = w' -e'L{x', w') (3.17) 

for supervised learning : 

(3. 18) 

where Lis the function of the learning rule and it is equivalent tor in Eq 3.8 and w' 

denotes the weights of ANN in time t and consists of a set of w for each neuron. 

Therefore, w represents the components 1; and R; in Eq. 3.14 for each neuron in the 

ANN. The vector x is the input vector, and y is the desired vector, and the e is the 

modification step. The function L is the gradient of the cost function or a heuristic 

rule. In the learning process, a learning scheme moves from one state to the next 

state as to optimise the weights according to a particular cost function C, where L == 

VC. This movement has the goal to reach the global minima of that cost function 

(Battoud a"nd Gal!inari, 1992). 

Let x be an instance of a concept to learn. This concept is defined by a 

probability density function p(x) and w represent the parameters of the learning 

system. For a given state of the system, J(x, w) is a local cost function, which 
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measures how well the :;ystem behaves on x. The goal of learning is to optimise the 

global cost function C. The expectation of local cost function over the space X of 

the concept of!earning usually is written as : 

C(w) ")J(x, w)p(x)dx oE,(J(x, w)) 
X 

(3,19) 

Most often the explicit fOnn of p(x), and C(w) are unknown. The infonnation which 

is available comes from a series of examples of the variable x. Therefore, the 

realisation of J(x,w) is possible by a measurement based on the observation of {x;};,. 

A necessary condition of optimality for the parameters of the systems is : 

(3,20) 

where V is the gradient operator. Since C(w) is unknown and only the realisation of 

J(x,w) is available, the classical optimisation methods cannot be used. One solution is 

to apply adaptive algorithm: 

wr+l "'wr- yr'V ,.J('x.t' w') (3.21) 

where y is the gradient step. This modification strategy is similar to the technique 

that has been described in the Chapter 2. 

In learning by example there are two main problems : an infonnation problem 

and a complexity problem. 

The information problem is in the terms of generalisation. Under what 

combinations will the performance of the network on the set of examples persist on 

previously unseen input? The learning algorithm will construct f from only partial 

information on the input and output relation of[. i.e. a number of examples y = j(x). 

It is clear that there are cases when the examples are not enough to cover aU the 

information about f. In this situation, the algorithm cannot be expected to produce 
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an implementation of something it does not know. On the other hand, even if the 

examples contain enough infonnation about .f. the complexity this informatim1 may be 

prohibitive. For example, suppose there are only a few examples but a largu network 

is used. In this case, it cannot be eKpected to reach any good generalisation, In 

general, for a fixed set of examples, a smaller network will perform better 

generalisation although it does not mean that a small network is more likely to 

implement the function better. It is only more likely to behave similarly on an 

unknown input which never be represented in the set of example. The other 

conflicting requirement is that the network should be large enough to hilndle the 

function being implemented, regardless the generalisation question. 

The complexity problems can be posed in the tenns of polynomial time 

complexity. Under what conditions does there exist an algorithm that runs 

reasonably fast in time that is polynomial in the size of problem to produce a network 

implementation of/from the set of examples. Most ofleaming tasks run sufficiently 

fast for small problems. However, when the problem size increases the computation 

time scales poorly. It is consistent with the theoretical prediction. The complexity of 

learning has been studied and most of the results indicate that the learning 

complexity may be prohibitive (Abu~Mostafa, 1989). The representation of data is 

crucial to the complexity of problem. In feedfotward network, there are several 

internal representations of the data at each layer. This transfonnation from the raw 

data to higher level representation is very interesting in the research on ANNs, 

especially if the representations are derived spontantenously via the learning 

mechanism. 



Thus the learning scheme in a mapping neural network is a process of 

constructing the hypersurface function from sparse data point by optimising the cost 

function in order to reach the global minima. The result of the training yields a 

network which simulates the implemented function as close as possible according to 

the quality criterion which is used for the cost function. 

3.2 Fuzzy System 

Uncertainty of the information such as the dynamic or the static state of a complex 

system has been a problem in the designing an adaptive system. To deal with 

uncertainty many paradigms such as probability or possibility can be used (Dubois, 

1993). In order to measure the uncertainty of infonnation or vagueness, the entropy 

concept is used (Klirr and Folger, 1988). Fuzzy approach which builds up from the 

possibility theory arises from the ambiguity or the vagueness (Black, 1973) and has 

been applied in many areas such as control system (Lee, 1990a), pattern recognition 

(Lim eta\., 1992), speech processing {Jiangxin, 1992), social science (Taber, 1994), 

medicine (Klirr and Folger, 1988), management and decision making (Kaufmann and 

Gupta, 1988), and virtual reality (Kosko and Dickerson, 1994). 

3.2.1 Fuzzy set 

The concept of fuzzy_
1
set was introduced by Zadeh (Zatieh, 1965) fn his seminal 

)laper. It illustrated the simplicity and the significance of fuzzy sets in dealing with 

the vagueness. Zadeh's definition of a fuzzy set is stated in the following : 

Let X be a space of points (objects), with a generic element of X 

denoted by x. [X is often referred to as the universe of discourse]. A 
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fuzzy set (class) A in X is characterised by a membership 

(characteristic) function mA(x) which associates with each point in X a 

real number in the interval [0, 1], with the value of m.~{x) representing 

the ''grade of membership" ofx in A. Thus the nearer the value of 

mA(x) to unity, the higher the grade of membership ofx in A. 

DEFINITION 3.4 

If X is collection of objects, then a fuzzy set A is a subset of the univers,! of 

discourse X and the membership is defined as the ordered pair : 

A"' [x,mA(x)], (3 .22) 

where x E X and 0 S: m1,{x) S: I. The membership function mA('K) represents the 

degree to which the object x belongs to the set A where mA(x) "' 0 indicates that x 

does not belong to the set A, and mA(x) "' l represents full membership. It is the 

degree to which the detenninistic measurement .'1: is compatible with the vague 

concept of A. 

m..t(x) = Degree(x e A) (3.23) 

In Figure 3.8, suppose the objects are x1 and xl, and the membership function to set A 

is defined by m(x). The degree of object x1 belongs to set A is m1 and the degree of 

object x2 belongs to set A is 111!. 

mlxl 

m,~ 
m2 t.--:_~--_ . ' 

x1 x2 

Figure 3.8 Membership function 
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Kosko has extended the concept of the elementhood into a subsethood (Kosko, 

1989). The subsethood explains the degree of a set belonging to another set. It 

provides more capability for the fuzzy set approach to deal with vagueness. 

Fuzzy set operations are similar to the Cantor set operations such as AND, 

OR. and NOT (Zadeh, 1965). It has been improved by Kosko by adding another 

operations such as subsethood, supersethood and fuzzy entropy (Kosko, 1990). 

3.2.2 Fuzzy system components 

A Fuzzy System (FS} allows imprecise representation of the system rather than 

forcing the use of precise statement to describe the system transformation. There are 

four principal elements in a fuzzy system: fuzzification interface, fuzzy rule base, 

fuzzy inference machine, and defuzzification interface (Wang, 1992). The 

interconnection of them are shown in Figure 3.9. 

l~pUI 

' 
Fuzzy lnforoneo 

~ .~,x:: .. ; 
Base 

r-
0
-,c, ,-,-.,c,,-""-,c, ,-,, out p u 
lntorlace 

r 
Figure 3.9 Building block of fuzzy system 

The[uuiftcatioll interface 

This element describes the vagueness of the input signal by mapping from the 

observed input universe of discourse X to the fuzzy set defined in X. Let A be a 

fuzzy set defined in X and x an input to the fuzzification interface. Then the outputs 

of the fuzzification interface is mA(x). 
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There are two factors that should be considered in the fuzzification interface. 

They are the number of fuzzy sets and the specific membership functions used. 

• The number of fuzzy sets defined in the input universe of discourse. 

Let 1.1;"' I, 2, ... , n, be the number of fuzzy sets defined in the i' th subspace of 

X, where the i'th subspace of Xis the projection of X onto the i'th coordinate ofRn, i. 

e., it is the set {x!:x=(Xt,X2, ... ,Xn)eX}cR. The number of fuzzy sets 

detennines the complexity of the fuzzy system. This complexity includes time 

complexity, i. e. the computational requirement, and the space complexity, i.e. the 

storage requirement. Both complexities generally increase with the number of fuzzy 

sets, because the system produces more number of membership values of each fuzzy 

set when an input is fed into the fuzzification interface. On the other hand, more 

membership values increase the accuracy of inference. Therefore, there is alway:> a 

trade-off between accuracy and the complex:ity of the system. 

• The specific membership functions for these fuzzy sets. 

Let llP..i = 1,2, ... ,IIJ"" 1, 2, ... ,1111 are the membership functions of the j'th , 

fuzzy set defined in the i'th subspace of U. Those membership functions can be 

ex:prcssed in one ofthe following formats: 

Gaussian membership function: 

(3.24) 
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Figure 3.10 Two Gaussian membership tbr\Ction 

Triangle membership function: 

(3.25) 

Figure 3.11 Two triangle membership function 

The triangle membership function is the most widely used (Asakawa and Takagi, 

1994). Since the value a{ can be set to be equal to I for every membership function, 

it has only two main parameters x{and cr; 

(3.26) 

This membership function influences the smoothness of the input-output relation. In 

general, the sharper membership function is, the less smooth is the input-output 

surface. The choice of the membership function shape is still being investigated, and 

currently it is still determined by the application (Cox, 1992). 
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The fuzzy rule base 

A rule is made up of two parts: the antecedent or the premise, and the consequent. 

The antecedent can contain many clauses linked by the logical operator AND, OR, 

and NOT. Clauses can be further decomposed into variables and adjectives. These 

elements build a set of linguistic statements in the fonn of: 

"IF a set of conditions are satisfied THEN a set of consequmces are inferred" 

In fuzzy set approach, each adjective of a clause is assigned a membership function. 

Given a value for input variable, the membership function is used to calculate the 

truth value of that variable and each clause in antecedent can be assigned a fuzzy 

truth value. The next step is to assign a truth value to the entire antecedent. Fuzzy 

truth value is the degree by which a rule is relevant to a measured situation. It 

describes the degree by which the rule's antecedent is true in a fuzzy sense. The 

fuzzy truth value of a rule depends upon the fuzzy truth value of each of its clauses 

and upon the logical operators linking them. The consequent maps the truth value of 

the antecedent to the output space. 

The rules in the fuzzy rule base provide a natural form in which humans 

represent their knowledge. There are many forms of fuzzy rules (Lee, 1990b), in thiS 

work, only the following fonn in Eq. 3.27 is shown below: 

where x;=(i = I ,2, ... , n) are the inputs to the fuzzy systems, and z is the output of the 

fuzzy systems. A~ and Bf are the linguistic terms, and) is the number of fuzzy rules in 

the fuzzy rule base. The premise space is a n-dimensional and the input x1, X1, •.. , X0 
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is partitioned into the fuzzy subspaces. This partitioning is called premise structure in 

a fuzzy model. As a result the identification process in designing a fuzzy system 

implies determining how the input space should be partitioned. 

The fuzzy rule~ may be gathered from two sources: human experts, or a set of 

training data, A general method to generate fuzzy rules from numerical data has been 

proposed by (Wang and Mendel, 1992b). In designing the number of fuzzy rules in a 

fuzzy rule base the specific statement of each fuzzy rule has to be considered as a 

design parameter. 

The fuzzy inference machine 

This element perfonns the decision making logic which employs fuzzy rules from the 

fuzzy base to produce the fuzzy output as a function of the fuzzified inputs to the 

fuzzy system. It is similar to a human decision making procedure based on fuzzy 

concepts and linguistic statements. There are many different kinds of fuzzy logic 

operations which may be used in a fuzzy inference machine. Therefore, the decision 

on which specific fuzzy logic is used is an important factor in designing a FS. In this 

work, the inference process is not performed separately but perfonned together with 

the fuzzification input by the fuzzy neuron. 

T/Je tlefuu.ification interface. 

The final step is to combine the output values of each of the iules in a manner that 

reflects the truth value of each rule. This element transfonns the fuzzy output of a 

fuzzy system to produce a non-fuzzy output. There are 30 defuzzification techniques 

(FAQ, 1994). This process actually quantises the fuzzy output into a non-fuzzy 

output. In addition to the defuzzication technique which is applied, in designing a FS 
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system, the number of fuzzy sets defined in the Olltput universe discourse X and 

specific membership functions of these fuzzy sets have to be considered. The most 

important requirement is that. the defuzzication has to reflect the truth value of each 

rule. 

Among the defuzzification techniques, the centroid which is based on the 

centre of mass method seems to provide the best perfonnance for most applications 

(Cox, 1992). The centroid defuzzification technique can be written as: 

- J:y"(y) dy 

y = I: "(y)dy 
(3.28) 

Where y is the output value for each rule, 11 is the fit value of each rule to the input 

and theji is the final output ofdefuzzification interface. 

In the discrete case, it can be rewritten as : 

K 
L (:;1 ~·') 
<i-7.'--~x)=-, 

~ (,1) 
(3.29) 

j--1 

Where t is the output oft rule, vJ 's the fit value of the j"' rule, x is the input and 

f{x) is the final output of the fuzzy system. It is shown that a fuzzy system is a 

complicated non linear system which maps a non.fuzzy value in U c R" into the 

non.fuzzy value in R. A fuzzy system works with parallel associative inference. 

When an input is given, a fuzzy system fires each rule in parallel, but to a different 

degree to infer a conclusion or output. Thus, a fuzzy system reasons with sets, fuzzy 

or multivalued sets, instead of bivalent propositions. 

In summary, a fuzzy system has the some design parameters : number of 

fuzzy sets defined in the input and output universe of discourse, membership 

functions of these fuzzy sets, number of fuzzy rules in the fuzzy rule base, linguistic 
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statements of the fuzzy rules, decision making logic used in the fuzzy inference 

machine, and defuzzification method. Therefore, in building a FS system by using a 

set of training data, the building process has to be done in two phases. The first 

phase is the structure identification phase, which must solve two problems: finding 

input V!lriables and finding the input-output relationship. The second phase is the 

parameter identification, that is the detennination of the membership functions of the 

fuzzy set (Sugeno, 1992). 

3.3 Model-Free Function Approximator. 

An ANN or an FS basically performs a mapping from input space to the output 

space, and it means that the system performs a mathematical function. As stated by 

the existence theorem from Kolmogorov (Cotter, 1990), an ANN model can 

implement a continuous function {Hecht-Nielsen, 1989) by using a three-layer ANN 

model. As proved by Wang and Mendel (Wang and Mendel, 1992a), a fuzzy system 

(FS) can be used as a universal approximator as well, and separately Kosko (Kosko, 

I992a) has described the capability of additive fuzzy systems to perfonn 

approximation of any continuous function on a compact domain to any degree of 

accuracy. 

ANNs and FSs are modd-free estimators (Cox, 1992). Unlike the statistical 

estimator, they estimate a function without knowing the mathematkal model of the 

input-output relation. They learn from experience which is represe•.1ted as nur.1erical 

or sometimes linguistic data samples. Both ANN anrJ FS show the 1ritelligent 

capability by adaptively estimating continuous function fn,m data witho\J~ specifying 

mathematically how outputs depends on the inputs (Kosko, !993). Mathematically, 
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both ANN and FS transform input signal to output signal, and this transformation 

defines the system itself and detennines the characteristics ofthe system. 

3.3.1 Function approximation by neural network 

A function .f. denotedj: X --)o Y, maps an input domain X to an output range Y. For 

every element x, in the input domain X, the function/uniquely assigns the element y 

in the output range Y. This assignment is denoted as y = J(x), which is a function that 

defines the causal hypothesis. A mapping network simulates a function F : X --+ R 

defined on X c R by expressing the function being simulated by using a finite 

combination of additions and superposition with real functions of one variable. Any 

family Fw : X --+ Rm of mapping network parameterised by w E W will be called a 

mapping network architecture. A given architecture takes input from an input space 

x. (n represents the dimension of the input space) and produces the corresponding 

outputs in an output spaceY'" (m represents the dimension oft he output space). 

In an ANN, the mapping function is built up by training by examples, which is 

a collection of data { (x,, y,), I :;:; i :;:; k} i.e. (x1, y1), (x~, yll), ... , (x~, y~), where y, = 

fl..xJ Therefore, it is assumed that there is a set of examples which are available for 

training, and the aim is to produce a function g that approximates function f. as close 

as possible, so that g(x;) »< y1• For any given e > 0, the function f is said to be 

approximated within e by function g and denoted it by f= g, if and only if If. ql :;:; ~:. 

Specifically, the mapping neural network approximates a bounded mapping 

or function]: A c R"-t R"', from a compact subset A of ann-dimensional Euclidean 

space to a bounded subset ofj[A] in an m-dimensional Euclidean space by means of 

training by examples (X1J'1), (xl, yl) ... (x~ ,y1) where Yi"' f{x;). 
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This is quite similar to classical interpolation and estimation problems, where 

a function has to be found from a class of functions that interpolate the data as close 

as possible. One of the promising features of neural networks is that the 

mathematical model of the mapping is learned and the empirical data obtained from 

the application serves to define the problem without a formal mathematical model 

being specified. The concepts of approximating arbitrary function using functional 

forms that do not depend upon either orthogonatility or linear superposition turn out 

to be an important theme in neurocomputing (Hecht-Nielsen, l988a), because any 

reasonable function can be computed by some neural networks (Venkatesb, 1992). 

The ability to perfonn a function approximation is ensured by the 

Kolmogorov theorem, as stated by Kolmogorov's Mapping Neural Network 

Existence Theorem (Hecht-Nielsen, 1987). This theorem states that for any integers 

11 and m, given any E > 0 and any function f: [0, I]" c R"-> Rm, wherefl...r.) = y,f can 

be implemented exactly by a three-layer feedforward network having 11 fan-out 

processing elements in the first layer, (211 + I) processing elements in the middle 

layer, and m processing elements in the output layer. Thus,fis approximated within E 

mean square error accuracy in the family of three-layer feedforward neural networks 

comprised of sigmoid neurons in the first two layers and linear neurons in the output 

layer. Even though the theorem is proved for a continuous vector mapping on the 

unit cube [0, 1]", it can be extended to apply to any compact when required, i.e. 

closed and bounded. Cybenko {Cybenko, 1990) has shown that by using ·~ontinuous 

(but not necessarily monotonic) sigmoidal function the function approximation can 

be achieved. Specifically,: given an arbitrary collection of input-output data, the 

above theorem imp lie~ that by using a netwotk with sufficiently many'· hidden nodes, 
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all at one layer, the network parameters can be chosen to achieve any desired 

modelling error criterion. Therefore, a three-layer perceptron with infinite number 

(continuum) of computing elements is able to represent any absolutely integrable 

function on R" (Kowalczyk, 1991). This theorem shows that it is possible to perform 

a continuous fi.mction approximation by a neural network. However, this theorem is 

strictly an existence theorem, it does not provide a constructive explanation of the 

method for developing the network itself. Although this result shows the universality 

of ANNs with only a single hidden layer, the determination of the number of nodes is 

still a major question. 

Most of the models for function approximation are feedforward models. The 

backpropagation neural network model has been able to perform function 

approximation better than traditional method in the accuracy of time series prediction 

problem {Jones et al. 1989). In this problem, a certain number of points of a time 

series are given to the system and the values of the time series at some future time 

will be predicted. The backpropagation network has been used ir:. the prediction task 

of the sunspot series, department store sales data and stock index time series 

(Srirengan and Loci, 1991). 

However, there are some problems in employing a backpropagation neural 

network for the function approximation problem. Firstly, it requires a great deal of 

training data that covers most of the domain. Secondly, the interpolation is poor 

without a great deal of training i.e. the number of iterations has to be enough to make 

the system converge in the adaptation. Thirdly, it is much slow~r for comparable 

accuracy that the best non-neural network methods (Farmer and SidoroWk·.h,_l987). 

In some cases, large amount of data are not available therefore a functic~ 
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approximator should be able to interpolate and extrapolate from a small data set. 

Furthennore, in many applications the learning process must occur in real time and 

the slow learning in the backpropagation networks restricts the application areas of 

neural nets. 

To increase the speed of learning, several neural network models have been 

developed. By using a Radial Basis Function Network (RBF-Net) to replace the 

sigmoidal non-linear elements (Maddy and Darken, 1989), a significant improvement 

in speed has been achieved. However, it only addresses the problem of excessive 

training data or poor interpolation. To achieve comparable accuracy more neurons 

and more number of tl'liming data points are required. Some modification of the 

RBF-Net has been developed to improve the interpolation and to reduce the amount 

of training necessary. This modification is obtained by applying a nonnalisation and 

known as Connectio'nist Nonnalised Linear Spline Net (CNLS) (Lee, 1989, Jones 

1989, Howe] et al., 1989). 

The advantage over traditional methods of function approximation is that the 

network can be used as the development tool and the complex mathematical 

interactions between network nodes can provide a better model of process than more 

traditional approaches. This approach has been implemented in an embedded system 

for wind direction and wind speed detennination system (Farley, and Varhol 1992). 

In this application, the conventional method such as Kalman Filter cannot be used 

because the Kalman Filter method assumes white noise and an auto regressive 

moving average (ARMA) time series model which cannot be taken for a this 

application. 



71 

3.3.2 Function approximation by fuzzy system 

The function approximation problem has been attempted by using fuzzy system by 

Wang and Mendel (Wang and Mendel, 1992b). However, the rule assignment is 

performed manually. 

The combination of fuzzy basis function method with the conventional 

method such as Gram-Schmidt Orthogonal Least squares to detennine the significant 

basis functions and the remaining patterns has been developed (Wang and Mendel, 

1992c}. It provides a one-pass regression procedure. Therefore, it is much faster 

than the backpropagation a!gorithm. Also, it yields a more robust system which is 

insensitive to noise in its input. The combination of linguistic and numerical input 

provides important advantages over polynomials and radial basis function. Due to 

the fact that a linguistic input from the human expert can be encoded into the system. 

It has been proved that a fuzzy basis function is capable of approximating any real 

function (Wang and Mendel, J992a). This model has been applied to solve non-linear 

problems. 

' 

Figure 3.12 Function approximation by fuzzy patch (Kosko, 1992) 

In Fig, 3.12. it is shown that a function y = f{x) creates a line. Each value on x-axis is 

mapped to one or more values on y-axis by the fuzzy patch which is represented by 
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the shaded area. A fuzzy system creates overlapping fuzzy patches along this line. 

The fuzzy patches in the input-output product space X x Y cover the function/: X 

~ Y. The smaller and the crisper the fuzzy patches, the more they resemble the lir.e 

and produce better approximation of the function f When they become infinitely 

small and numerous they converge to the line. 

A fuzzy rule defines a fuzzy patch in the input-output space. In the 

conventional fuzzy systems the fuzzy rules are derived from experts. More recently, 

by using a statistical approach or a neural network, the fuzzy rules can be derived 

from the sample data (Munakata and Jani, 1994). Different experts or algorithms 

generate different sets of fuzzy rules. Some techniques to derive the fuzzy rules 

systematically has been investigated, most of them using optimisation technique such 

as RLS (Wang and Mendel, 1992c), membership adaptation (Dasarathy, 1992), 

Genetic Algorithm (Machado et al., 1992), or Neural Network (Mitra et al., 1994). 

If the function is simple i.e. y "'x, there is usually no reason to apply the fuzzy 

patch approach, it may do perfectly well using conventional approach mld fuzzy logic 

could worsen the result (Me Neill and Freiberger, 1993). However, when the 

function cannot be modelled mathematically, especially when the fun~tion is 

non-linear, discontinuous, or non-differentiable, the function can be divided and 

solved with fuzzy patches. Fuzzy patches can also be easier to derive and faster to 

use. Marco~·~., when a control situation cannot be formalised, an engineer simply 

does not know the exact function. Yet machine operators may know its approximate 

course by the vague rules of thumb they use to guide th~~ system. Therefore, fuzzy 

IF-THEN patches can deal with this situation (Kosko, 1993). 
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Figure 3.13 Fuzzy patch as fuzzy rule (Kosko, 1993). 

In approaching a function, an ANN model use numerical point samples {x, y) to build 

the function that approximates the actual function. In contrast, a FS estimates the 

function by using the fuzzy set samples. iloth kind of samples reside in the same 

input-output product space X x Y (Kosko, \993). In Figure. 3.13, the numerical 

point sample (x, y) is represented as dot. The fuzzy set sample as the membership 

function at each axis, and the fuzzy set association is a rule and it is represented as a 

box N. The fuzzy set sample (X,Y) encodes the structure of the fuzzy rule. It 

represent a mapping of minimal fuzzy association from a pan of the input space to a 

part of the output space. The x-axis represents the antecedent part as the input 

associant and the y-axis represents the consequence part of the fuzzy rule as the 

output associant Y. In Figure 3.13, the box is the fuzzy patch which behaves as a 

fuzzy rule. The association also represents the result of an adaptive clustering 

algorithm. 

In general, a fuzzy system S maps families of fuzzy sets to families of fuzzy 

sets, thus: 

S; /"I X ... '( /"•--)- f/'1 X • , • X f/'> (3.30) 
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Where r is the fuzzy set in each input variable and I" is the fuzzy set of the output 

variable. This work focuses on fuzzy system that maps hyper-sphere of fuzzy sets in 

r to hyper-sphere of fuzzy set in I": 

S:l"....+/P (3 .31) 

Thus, this FS behaves as an associative memory. The FS maps the closest input to 

the closest outputs One successful implementation of this FS system is Additive 

Fuzzy Associative Memory (Kosko, 1989). 

As proved by Wang (Wang, 1992), Jang (Jang, 1992) and Kosko (Kosko, 

1992) by using the Stone-Weierstrass theorem, there exists a FS that can be used for 

approximating an arbitrary non-linear continuous ma ping to any accuracy. This 

existence theorem is similar to Kolmogorov theorem in the ANN model. 

Since a neural network with learning capabilit can reduce the development 

time and cost of the designing a fuzzy system akawa artd Takagi, 1994), a 

combination of both techniques may result a leamable stem that can deal the 

vagueness. Adapti e Network based Fuzzy Inference S tern (ANFIS) applies 

neurons which employs D and OR operations. This fuzzy neural model is a highly 

non-linear mapping model. Therefore, it i superior to linear method in reproducing 

non-linear time series (Jang et al., 1993). However, this architecture is still employing 

backpropagation type gradient descent teaming (Jang, 1992). Furthermore, the 

IS model requires initial parameter setting which ha e to be able to capt,;.1re the 

underlying dynamics of the function . The RBF- t that is based on the hypersurface 

fitting technique has gained increasing popularity in many practical areas such as 

pattern re ognition signal processing system modelling, and control system. It is 

due to its simple structure weU-established theoretical basis, and fast learning. Nie 
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and Linkens (Nie and Linkens, 1993) have shown that there are some similarities 

between RBF-Net and Fuzzy control algorithm in approximating a function. The 

fuzzy approach which is applied by using RBF-Net has been applied for controlling 

the blood pressure in hospital intensive care unit (Nie and Linkens, 1993). 

In the Chapter 4, a combination model of Fuzzy System and Artificial Neural 

Network is described. This model is designed to be applied to adaptive filter tasks by 

exploiting the function approximation capability of the Fuzzy System and the learning 

capability of the Artificial Neural Network. 
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Fuzzy-CPN Model 
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This chapter addresses the development of a fuzzy counterpropagation network 

(Fuzzy-CPN) which has fast learning capability in order to perform a continuous 

function approximation in an adaptive filter. As mentioned by Rumelhart et al. 

(Rumelhart et al., 1986) in their seminal paper on the neural network model, there are 

eight major aspects : 

• A set of processing units , i.e. the set of A,· in the set G in Eq. 3. 13 . 

• A state of activation, the interpretation ofy in Eq . 3.3. 

• An output function for each unit Fin Eq 3.1 including the function <I> and p in 

the Eq. 3.2. 

• A pattern of connectivity among units i.e. the set of components R, and T,. of 

each A, in Eq. 3. 14. 

• A propagation rule for propagating patterns of acti itie through the network 

of connectivities, i.e. the direction of flow x, y, e'". and e0 ., in a neuron, and the 

flows of the information in T, and R, in the Eq. 3. 14 in the overall of . 

• An activation rule for combining the inputs impinging on units with the current 

state of that unit to produce a new level of activation of the unit. 

• A learning rule whereby patterns of connectivity incl ding the 6 and cr in the 

Eq. . 10, are modified by experience. 

• An environment within which the system must operate. 
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In order to introduce this proposed model, all of those aspects of an artificial neural 

network are described in this chapter. In addition, as the system is used as an 

adaptive filter, the ANN architecture that is designed must satisfy some application 

considerations of the system : 

• Learning must be performed in a minimal number of iterations of training. 

• Since the computation resource is limited, the network must be able to adapt 

the structure of neural network to optimise the memory. 

• The processing time should be considered to achieve a fast processing in the 

neural network and filtering, i.e. the structure of architecture can be 

implemented in a parallel way. 

4.1 Proposed Model 

Artificial Neural Networks (ANN) and Fuzzy System FS) are similar in many ways 

and share a more formal property and the same state space (Wassermann I 993). 

They are continuous vector mappers from the input space to the output space and 

can generalise in producing a correct respon e de pite minor variations in the input 

vectors. ANN and FS are model-free e timators hich learn from experience and 

encode their information in a numerical parallel-distributed framework . 

The ANN and FS process inexact information and process it inexactly. A 

number of uncertainty problems arise in the neural network's input data, propagation 

of result through the network, and interpretation of final result (Cohen and Hudson, 

1992). The model recognises iU-defined patterns without explicit specifications 

set of rules. The ANN acquires knowledge through training but it canno take the 

advantage of an expert's presence and statistical neural estimators require a 
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statistically representative sample set. In contrast, an FS estimates functions and 

controls the system with partial description of system behaviour, and can use the 

knowledge from an expert to solve the problem and derive the linguistic rule of the 

fuzzy system. 

However, there are fundamental differences between these techniques. An 

ANN model and a FS differ in how they estimate he sample function. These 

differences appear during the system construction. The neural approach requires the 

specification of a non-linear dynamic system, the acquisition of a sufficient 

representative set of numerical training samples, and the encoding of those training 

samples in the dynamic system by repeating the training cycles. A FS requires only 

partial information of the system in a linguistic rule matrix (Kosko, 1993). This task 

is simpler and faster to be solved than designing and training a neural network. After 

the system is constructed, the same numerical input to both system can be applied. 

The output resides in the same numerical space of alternatives and both systems 

define a surface or manifold in the input-output product space X Y. 

The combination of both approaches has been developed by many researchers 

such as the fuzzy neural network with fuzzy signals and weights (Hayashi et. al. , 

1993) which is used for fuzzy expert system, fuzzy hierarchical analysis, fuzzy 

modelling to derive the rules. Fuzzy Basis Functions (FBF) can be used for universal 

approximation by implementing an orthogonal Least-Square Leaming in order to 

design a ba is function (Wang and Mendel, 1992c). By using SOM, Nie et al. (Nie et 

al. , 1993) have shown that the factorised basis functions in RBF are equivalent to the 

membership functions in the fuzzy system. The combination of both techniques, 
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ANN and FS is expected to improve the overall performance of an adaptive filter 

system which is based on the Fuzzy Neural system. 

4.1.1 Formal description of Fuzzy-CPN 

The fuzzy neurons emit bounded signals from some minimum value to maximum 

value i.e. (0,1]. At each instant, then-vector of a neuron output defines a fuzzy unit 

or fit vector. Each fit value indicates the degree to which the neuron or element 

belongs to the n-dimensional fuzzy set. The state space of the fuzzy neuron that is the 

set of all possible fuzzy neuron outputs is equal to the set of all n-dimensional fit 

vectors. That state space are equal the to unit hypercube 111::(0, 1 ]"=(O, 1] x . .. x (0, 1 ], 

which is the set of all vectors of length n with co-ordinates in the unit interval (0, 1]. 

In this proposed model, the se of processing units state of activation and the 

output of each processing unit are described in this section. The processing units of 

this proposed model are fuzzy neurons, defuzzifier neurons and defuzzifier control 

neuron. These neuron models which represent the processing unit and which build 

the Fuzzy-CPN model are defined in this section. In thi model, a fuzzy neuron has 

some characteristics : 

• The process in a fuzzy neuron is the fuzzy process (Lee and ee 1975) F in Eq 

3. I including fuzzification or fuzzy inference. 

• The output signal is bounded i.e. [ 1] and the value of the y in Eq 3 .3 is (0, I]. 

• The output of a fuzzy neuron i interpreted as the membership value or fit value 

not as the activation value. Therefore q in Eq. 3. 1 i not interpreted as the final 

output of a neuron. 

• There is no inhibitory input to the neuron. 



DEFINITION 4.1 

A fonnal fuzzy neuron is a triple FN = { w, p, n } , where : 

• w = [w1, • •• , wn] E Rn is a weight vector ofa neuron. 

• p = {p1 , •.. , Pv} E Risa set of parameters of the membership function. 

• n : R -.. R is the fuzzy membership function. 

A fuzzy neuron is depicted in Fig. 4.1. 

C(w, w , w ... . ) 

p 

Figure 4.1 Fuzzy-neuron (FN). 

µ 
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As shown in Figure 4.1, a fuzzy neuron operates on N-tuples of input x = [x1 ... , xN] 

E R and produces a real scalar µ = (0 I] as an output. The weight vector w, 

encodes the centre of receptive field C(w1, w1, ... ,wN) of this fuzzy neuron. The 

spread of the receptive field is detennined by a parameter r . The e values, w and r 

are adjusted during the training phase. 

The output value µ of the fuzzy neuron is defined a follow: 

µ = O(dlp) (4.1) 

where the function n is the membership function with p as the set of the parameters 

of the function n and p = { r}. dis a similarity distance measure : 

d = \J'(xlw) (4.2) 
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The value J..L, of the function Q is not interpreted as the activation value, but as the 

membership value or the fit value of the input vector. The function lfl is the similari(v 

function between x and w. This function is a distance measure function such as 

Euclidean Distance or Absolute Value Distance (Zhou, 1988). In this work, the 

Euclidean distance is used as the similarity function. Therefore, Eq. 4.1 and Eq. 4.2 

can be written in the following equations: 

(4.3) 

where the function 1£1(.) is: 

lfl(x) = (4.4) 

where r is the parameter of the membership function. In this model, a triangular 

membership function is used, and r represents th.e farthest deviation of the 

membership function. This membership function has been shown in Figure 3.11. The 

Eq. 4.4 shows the basis function of this fuzzy neuron which is a radial basis function 

fonn, therefore thiS fuzzy neural model behaves likes RBF-Net which is stated in Eq. 

3.9. However, the difference is that the membership function used in this proposed 

model is a triangular shape and most of the RBF-Nets use Gaussian function to build 

the neurons as shown in Eq. 3.9 and the learning paradigms. 

This fuzzy neuron model is different from the fuzzy-neuron which has been 

developed by Lee and Lee (Lee and Lee, 1975). The fuzzy-neuron in this model 

works as a rule and partitions the input space. This neuron will be sensitive to a 

particular receptive field of the input space. The centre of the receptive field is 
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determined by the weight vector w, and the membership function parameters 

determine the response ofthe neuron to the receptive field around the vector w. 

A model for designing a membership function for a fuzzy neuron using 

example based learning bas been developed by Yamakawa and Furukawa 

(Yamakawa and Furukawa, 1992). The partition of the input and output space can 

be achieved by employing an adaptive clustering technique performed by the ANN 

modeL The result of this clustering task is used as the parameters which build the 

menilership function of the fuzzy system. 

Connection to Fuzzy Neuron 

,,, 

i r2 : 

Figure 4.2 The relation of the input space and output of the fuzzy neuron 

Figure 4.2 is used to give the explanation of the mechanism of the fuzzy neuron. In 

Figure 4.2 the input space is a 2-dimensional space (x1, xl). The area A1 is the 

receptive field of the neuron N1 and the area A.z is that of neuron Nl. These receptive 

fields are detennined by r1 and c1 for N1, and r1 and c2 for N2• 

Let I(I1, Il) be the input vector. It falls into the overlap region of both 

receptive fields ofN1 and N2• The fuzzy neuron N1 produces ~ 1 as the output and 

fuzzy neuron N2 produces 1J2. Both ~L1 and 11:! are greater than zero, because the input 
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vector falls into their receptive fields. L(L1, LJ is another input vector and it falls the 

N1, Therefore, the value of 111 is greater than 0 and~ is equal to zero. It means that 

only fuzzy neuron N1 is active. The output values of the fuzzy neurons, Jl1 and 1-lJ 

depend on the position of the input vector in the receptive fields ofthe fuzzy neurons. 

During the training phase, only the parameters of fuzzy neuron which 

produces the highest output will be adjusted. However, in the recall phase all fuzzy 

neuron outputs are used to determine the final output by applying a proper 

defuzzication technique in order to combine the contribution of each fuzzy neuron in 

determining the final' output. The defuzification task is performed by a defuzzifier 

neuron. The defuzzifier neuron is defined as follow : 

DEFINITION 4.2 

A defuzzifier neuron is formalise::! by DN== {w,M, G)} where: 

• w == [w1, w2, •.. , w,] is the weight vector. 

• M is the defuzzification method being used. 

• G is the gain control of the neuron. 

The defuzzifier neuron operates on n-tuples of input u "' [111, ... , 11,] E R and 

produces a real scalar y as an output: 

y == G · M(ulw) (4.5) 

Figure 4.3. Defuzzifier neuron (DN) 

' I 
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In this proposed model the centroid defuzzification is used and each component of 

the Eq. 4.5 can be written as : 

(4.6) 

The gain control G is controlled by the defuzzifier control node. This neuron has 

non-adjustable weights. 

DEFINITION 4,3 

The defuzzifier control neuron is denoted by DCN: 

• w = [w1, 11'2, ... , w,J is the weight vector of DCN. These weights are 

non-adjustable. 

The output of this neuron is: 

(4.7) 

By combining the ANN technique and FS approach, the proposed model perfonns 

tasks including: partitioning the input space and the output space, defining the 

mapping association bel'ween a fuzzy patch in the input space to the associated fuzzy 

patch in the output space, building the fuzzy membership function of each fuzzy 

' 
neuron, and obtaining the centroid value of each fuzzy neuron. In the l~}!·.ming 

process, the model generates the fuzzy neurons the number of which is equal to the 

number 'or membership functions. Therefore, it is not necessaiy to pre-define the 

number of rules and the membership functions. The number of rules and the 

membership function parameters will be determined automatically in the learning 

phase. 
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4.1.2 Counterpropagation paradigm 

In this section, the propagation rules for propagation patterns of activities through 

the network of connectivities are described. The flows of Transmitting Feedback 

Vector, Transmitting Feedback Signal, Receiving Feedback Signal and Receiving 

Feedback Vector in the Feedback Path and Feed Forward Path are described as well. 

In the proposed model, the Counterpropagat:on Network (CPN) architecture 

is chosen as the basic paradigm because it is simple, fast, and easy to train. CPN has 

a good representation of the statistical model of the input space and in the network 

mapping problem CPN has a closed form of the means square error. The capability 

of CPN to perform fast learning is useful for some applications that need an on-line 

learning mechanism, e.g. adaptive control, trajectory problem of teach and play 

robot, adaptive filter. 

Counterpropagation networks can be used fm pattern classification where 

template matching and template interpolation are desired (Hecht-Nielsen, 1987). 

CPN has been applied in many problems such as Dolphin echolocation (Roitblat et 

al., 1989), digital feedback equaliser (Manabe and Kaneda, 1991 ). In addition, it has 

been implemented in a VLSI system (Kwan and Tsang, 1990). It can be used for 

multidirectional associative memory (Naik et al., 1992) and data compression (Liu et 

al., 1992). 

The CPN architecture is built by combining the Kohonen self-organizing map 

and the Grossberg Outstar architecture. The Kohonen self-organizing map perfonns 

the clustering task and the Grossberg Outstar performs the encoding function. In 

general, it can be stated that the CPN uses an adaptive lookup table mechanism to 

perform the mapping while the table is obtained by training. 
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To describe the operation of a typical CPN, let (x;. y) be one of the 

input-output pairs ofa set of examples of a function ¢1: 

ljl : R" --)> Rm, where Y1 = ¢(x,) (4.8) 

Assuming that this set of examples cover all the characteristics of the input-output 

relationship of the function, after training the CPN with this set of examples, the 

weights of the network are adjusted according to the training set in such a way that 

the inputs are classified into clusters. The final clusters can be modelled in the form of 

a lookup table with N entries, where the number N is equal to the number of clusters 

(Hecht-Nielsen, 1988). 

Matching Process 

Figure 4.4 Counterpropagation mechanism 

Neurons in the CPN model are the Bi-Directional Model (BDM). This model of 

neurons usually are used for the supervised learning. Learning in CPN is perfonned 

in two directions: feed forward path and feedback path. The input pattern flows from 

the input layer to the middle layer ami the desired output pattern flows from the 

output layer to the middle layer. They match in the middle layer as shown in Figure 

4.4. Thee'", a feedback signal, flows from the output layer and is used to update the 

w parameter ofthe output layer but they do not continue to flow to the lower layer as 

in the backpropagation model. The C0111 of the output layer which is the error signal 

that flows to the lower layer is used in the matching process at the middle layer when 
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the signal Ymi.i of the middle layer arrives. This matching mechanism is suitable to 

provide a basic framework for a fuzzy neural system, which will be explained later. 

The recall mechanism to produce the output of a single neuron in the middle layer of 

CPN can be interpreted as : 

IF Jhe input is in cluster x, THEN the output is y, 

In order for a CPN to perform mapping of a continuous function with good 

approximation, a large lookup table is required which means that a network with a 

large middle layer is required (Hecht-Nielsen, 1987). By splitting a large middle layer 

to the smaller SOMs (Lin et al., 1989), the number of neurons in the middle layer can 

be reduced by a medium amount. 

As shown by Wang and Mendel (Wang and Mende!, \992a), a set of fuzzy 

rules can be used for a universal function approximation. in the proposed 

architecture, the fuzzy £et approach is incorporated into the middle layer of a CPN to 

provide a smoother mapping. Thus, the output of the middle layer gives a 

membership value of the input belr,nging to each cluster. The original Grossberg 

ouHtar layer is rep!ctced by a layer of neurons which arc controlled by a defuzzificr 

control neuron. Therefore, the proposed model is identified as a Fuzzy-CPN modeL 

During training, the modified CPN generates the fuzzy neurons from the set 

of examples of input-output pairs. Each fuzzy neuron represents a fuzzy rule. Each 

C):ample of input-output pairs is only required to be presented to the input of tbe 

network once and no iterative training is required. 

In recall phase, the proposed network architecture does not produce a cluster 

as a winner in the middle layer, but produces the membership values of the input with 
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' l 
respect to each class. By using proper defuzzitication method, a continuous function 

l 
l 

can be obtained at the output layer. Moreover, this mechanism is suitable for on~line 

learning, because the system does not require iterative learning. Especially in a time 

series prediction problem, after performing a prediction, the actual value of the next 

time series can be used to refine the network for predicting the future time series. 

This method is different from the interpolative mode of conventional CPN 

(Hecht·Nielsen, 191l8c). In the interpolative moUe, more than one node in the middle 

layer can win and the winning nodes are weighted with a fraction number and the 

sum of all weighted number is equal to one. The-refore, there are the first, the second, 

and the third winners. To perform the interpolative mode, a priori knowledge about 

the problem is required to define these fraction numbers. 

In the proposed network, by the usc of fuzzy logic, the number of neurons in 

the middle layer is greatly reduced which leads to shorter training time, and the 

network has the ca~ability to perform function approximation without the 

requirement of a priori knowledge. Similar work in combining fuzzy logic and the 

11eural system have been reported using different approaches such as Fuzzy 

ARTMAP (Carpenter et al., 1992) and Fuzzy Min-Max (Simpson, 1993). Some 

applications of these hybrid models can be found in the speech recognition (Jianxin 

et. al., 1992). 

4.1.3 Architecture of Fuzzy-CPN 

This section describes the pattern of connectivity among processing units in the 

Fu1.zy-CPN. Since the number of fuzzy neurons as the processing unit.~ an!:l. the 

membership functil.ms are not pre-defined, there should be a learning mechanism 
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which can add and delete fuzzy neurons automatically. It leads to the concepts of 

self growing and self-orgar.ising in the neural network architecture, which has 

capability to grow and prune the fuzzy neurons and build the network structure while 

training is perfonned (Fritzke, l993a). This class of networks has more capability for 

quantising the input space compared to Kohonen approach (Fritzke, 1993b). Some 

self-growing network architectures have been developed, for example, Comb NET -II 

(Iwata et aL, 1992), Dystal (Dynamically Stable Associative Learning) (Barbour, et 

a!., 1992), DIGNET (Thomopoulos, 1991) and by combining with Genetic 

techniques which has been developed by Nolfi et al. (Nolfi et al., 1992), 

The proposed network uses fuzzy leader clustering technique instead of 

~· 
Kohonen layer for the middle layer, and Grossberg Outstar is replaced by the 

defuzzifier neurons to store the centroid v11lue of each class. By adding a defuzzifier 

neurons, the defuzzification is based on the centroids obtained in the output layer. 

The architecture of the network is shown in Figure. 4.5. 
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Output laye 
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Figure 4.5 Fuzzy Counterpropagation Network architecture 
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By usingEq. 3.13, the Fuzzy-CPN can be formalised as follow: 

GFllzzy-CPN ={h •.. ,f,,M~, ... ,MJ,Oh ... , Ok,C} (4.9) 

where I is the input layer for the n-dimension input space, M is the middle layer with 

the maximum number of neurons equal to I, 0 is the output layer for the k-dimension 

output space and C is the special control neuron. Then each component of G in Eq 

3 .14 are defined as: 

I= [JP,Ru•-I, TJ-u] 

M = [FN,R1-M, {Tu-a, TM-e}J 

0 = [DFN(Roa-e),RO-J.!, To-aP] 

C = [DCN, Ru-e, Te-a a] 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

where the subscripts for the T and R represent the direction of the connection 

between the component indicated by the subscripts. The model GF=y-CPN consists of 

three layers of neurons, /, M and 0 in the Eq. 4.9 and r: is the special neuron model 

as defined in Eq. 4.13. The first layer I consists of linear processing units IP which 

receive the input vector R1M and the number of neurons in the input layer depends on 

the dimension of the input space n. The second layer or the middle layer is a set of 

fuzzy neurons FN, which are defined in Definition 4.1. The middle layer is a 

self-growing structure. During the training phase, it starts with no fuzzy neuron, and 

will grow depending on the training patterns and the final number of neuron in the 

middle layer is denoted by l. The input layer and the middle layer 1re fully connected 

by Wl = {T1.M,~1.1 }. Therefore; 7;.M is equal to R1.M for each component in! and M. 

The third layer is the output layer which consists of the defuzzifier neuron 

DFN(.) defined in Definition 4.2. The number of the neurons in the output layer is 
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detennined by the dimension of the output space, denoted by k. The gain of the 

defuzzifier neuron is controlled by the defuzzifier control neuron, DCN which is 

defined in Definition 4.3. The middle layer and output layer are both fully connected 

by W2 = {T M.o• Ro_M} and non adjustable weights are used to connect the middle 

layer to the defuzzifier control neuron which is {T~&e., Re-M}. These non-adjustable 

weights are set to be equal to I. 

WI is the synaptic weight matrix which stores the information of the centre of 

the receptive fields c of each neuron in middle layer. Furthermore, each fuzzy 

neuron at middle layer stores the value of farthest deviation of its receptive fields r 

and its learning parameter ct. Each fuzzy neuron at the middle layer does not have 

the same learning parameter. W2 is the synaptic weight matrix which encodes the 

infonnation about the output prototype of each fuzzy neuron. It will be used in the 

defuzzification step for calculating the final output. 

The first layer and the middle layer act as the clustering and membership 

assignment of the input vector. The output layer works as the defuzzification 

mechanism to defuzzif)' the fuzzy output value of each fuzzy neuron in order to 

produce the final output. 

Cfu.~tering and Member.~hip Layer 

A clustering network perfonns the clustering process by comparing the input pattern 

with the templates which are stored as the weights of the network. Some neural 

network models can be used as a pattern classifier or for data clustering. 

Self-Organizing Map (SOM) (Kohonen, 1990) is one such model and Adaptive 

Resonance Theory (ART) (Carpenter et al., 1988) is another model. SOM using 

Fuzziness Measures (Ghosh et al., 1993) has been applied for extracting an objec1 
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from noisy image. The Kohonen clustering technique has several problems which 

have been addressed by Bezdek et al. (Bezdek et al., 1992). The final output usually 

depends on the order of the input pattern sequence and tennination is not based on 

optimising a particular cost function. Therefore, different initial conditions produce 

different results. These problems is solved by applying Fuzzy Kohonen Clustering 

Network. The ART is another unsupervised neuml network which can deal with 

plasticity~stability dilemma, but will give bad performance when the input patterns are 

coloured by the noise (Lippman, \987). 

In the ART or SOM clustering strategy, the distance between the input 

vector and each template is used as the value that judges the winning cluster to 

perform the clustering process. In the proposed model the membership value assigned 

by the fuzzy neuron is used to perform the clustering in determination of the winning 

template. However, it is different from the Adaptive Fuzzy Leader Clustering 

proposed by Newton et al., (Newton eta\., 1992) that used ART to perform the 

recognition of the input pattern for the clustering of arbitrary data patterns. 

' ' ,, 

Figure 4.6 Me~bership function 

The classification and membership layer, which is the combination of the input and 

middle layers, partitions the input spac;o. into clusters. Given an input vector x as 
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shown in Figure. 4.6, the Euclidean distances between the input vector and all 

prototype vectors are calculated e.g. d1, and dz. By the Euclidean distances, the 

membership value for each c!ass can be obtained e.g. m0(x) and m1(x}. In nonnal 

operation, the membership value is then used to derive the output vector. 

In the training process, the weight vector between a node in the input layer 

and that in the middle layer, WI (as shown in Figure. 4.5) is adjusted to capture the 

prototype of each class which can be used for the membership value decision. Only 

weights which connect the closest cluster (highest membership value) with the input 

vector will be adjusted. This middle layer works as a matching process, i.e. each 

cluster of input space has an associative output value, or it can be stated as: 

IF the input vector is in Receptive Field of fuzzy llelii'0/111 THEN Output is y, 

It is similar to the rule in fuzzy logic term. All of those rules or matching process of a 

fuzzy neuron are built up in the training phase automatically and they are not 

pre-defined. This mechanism provides the network a capability to learn the 

input-output pairs and to build the fuzzy rules according to the input-output 

relationship. 

Similar techniques to the proposed model have been developed such as Fuzzy 

Elastic Clustering (Srikanth, 1993), Fuzzy C Spherical Cells (Krishnapuram et al., 

1992), Nearest Neighbour Pattern Classification method (Bang and Park, 1991). The 

problem of those techniques are that the ANN needs a sufficiently large amount of 

training. In the proposed model the clustering process is performed by using minimal 

iterations. 
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Since the optimal capacity of the network is affected by the number of 

clusters (Turunini, 1990), some mechanism must be provided to achieve the optimal 

capability of the network to store the templates. With pruning and adding neurons 

and clustering in product space (Berenji, eta!., 1993), the optimal capacity of ANN 

can be improved. This strategy will be implemented in the learning algorithm. 

Defuuijier neuron and output layer 

The neuron at the output layer of this proposed model does not just perfonn the 

summation over the input signal. Since the matching process at the middle layer does 

not produce only one winner as the most matched fuzzy neuron, the output layer has 

to provide a mechanism to combine the outputs of the fuzzy neurons from the middle 

layer. This combining process has to represent the degree of matching of each rule. 

It is similar to the defuzzification process. 

The defuzzification process is done by the defuzzifier neuron defined in 

Definition 4.2 and defuzzifier control neuron defined in Definition 4.3. The 

defuzzification method used is the centroid method or the centre of gravity. All 

weights which connect the defuzzifier control neurons (DCN) to the fuzzy neuron in 

the middle layer have values equal to I. Therefore. the output of the defuzzifier 

;.control neuron is the total of the membership values to each prototype. The neuron 

in the output layer which is defuzzifier neuron is rath.er different from conventional 

neurons, due to the adaptive gain characteristic of this neuron. The gain of this 

defuzzifier neuron is controlled by the defuzzifier control neuron. 
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4.2 Fuzzy-CPN Mechanism 

The Fuzzy-CPN has different behaviour and learning algorithm compared to the 

conventional CPNs. The similarities are only the basic paradigm, and the way of the 

networks feed the training signals and the propagation of the signals in the networks. 

This proposed network model is one of the k-winner take-all network. The 

equilibrium state of this class of ANNs has been addressed by Majani et a\. (Majani et 

al., 1992). The middle layer has self-growing and self-organizing behaviours and it is 

addressed in the following section followed by the learning rule and recall algorithm 

of the Fuzzy-CPN. Patterns of connectivity and the environment within which the 

system must operate are explained in this section. 

4.2.1 Adaptation mechanism 

The complexity of learning is dictated by the number of middle neurons. Thus, the 

number of middle neurons should be kept as small as possible to ensure low 

complexity of learning. A network infonnation criterion (Murata et a\., 1992) can be 

used to delermin~ the number of middle neurons in a multi~layer perceptron neural 

network. The minimisation of an information criterion has been applied as well for a 

competitive and self~organising network(Benaim, 1991). 

From the implementation point of view, the resource of computation is limited, 

i.e. the number of fuzzy neurons in the middle layer is limited. In order to achieve an 

overall good perfonnance of the network model any unnecessary component must 

be removed from the system without decreasing the performance. Therefore, a 

mechanism to optimise the use of the fuzzy neurons at the middle layer is introduced. 

In this proposed model, this mechanism is achieved by constructing the middle layer 
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as a self-growing structure of fuzzy neurons. Each fuzzy neuron is generated when it 

is required and will be annihilated automatically when it is not used efficiently with 

respect to the training patterns. During training phase. the Fuzzy-CPN perfonns the 

adaptation process in order to arrange the structure to tackle the problem. In most 

ANN models, the component of Eq 3.13 and 3.14 are fixed. In this model, at the 

initial time of the training, the number of fuzzy neuron~ at middle layer is not 

detennined. It grows during the training. This means that the component in Eq. 4.9 

will be changed during the training process. Therefore, this architecture can be 

classified as Structure Level Adaptation Neural Network (Lee, 1922). During the 

training process, fuzzy neurons will be generated, until all available source for 

creating fuzzy neurons has been used. A fuzzy neuron which has not been used for a 

fixed time will be annihilated, and then its resource can be used again. Since the 

structure of the network always adapts during the training process, there are three 

main activities of the neurons at the competitive layer. They are neuron gen(. ation, 

neuron adaptation and neuron annihilation. 

Neuron generation 

A fuzzy neuron in the middle layer is generated when the network cannot classify the 

current input vector according to the pre-defined criteria and there is still available 

resource to generate a fuzzy neuron. Since the memory is limited, there is a 

circumstances when it is not possible to generate a fuzzy neuron, i.e. all memory that 

is reserved for the fuzzy neurons have been used. 

If the mode! has enough fuzzy neurons to process the clustering of input 

space, then during the training phase the parameter structure of each fuzzy neuron 

will converge to a small neighbourhood region around a certain value in the neuron 
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parameter space. If the neural network does not contain enough fuzzy neurons to 

learn the clustering of problems the parameters will oscillate and a new fuzzy neuron 

should be generated. When::. fuzzy neuron is generated, then it must be placed to the 

position where it is most needed. To achieve this requirement in this model, the 

current input pattern is used as the centre of the receptive field of the fuzzy neuron. 

Therefore, it is assumed that the first pattern which causes the generation of a fuzzy 

neuron acts as the leader of clustering. The neuron generation adds the component 

Min the set GFuzzy.<:PN· in Eq. 4.9. By generating a fuzzy neuron means that adding a 

fuzzy rule in the fuzzy rule base. 

Neuron adaptation 

For a fuzzy neuron, the adaptation is the adjustment of WI and the r value of the 

neuron. It is perfonned only to the winning fuzzy neuron in the competition during 

training phase. This mechanism adjusts the receptive field of the winning fuzzy 

neuron in order to capture better representation of the input vector. Basically, this 

adjustment is performed to tune the parameter of the membership function in the 

fuzzy tenn. 

The adjustment of WI and r are similar to the changes of the IF-part of a 

fuzzy rule of a fuzzy system. The adaptation of the defuzzifier neuron is performed 

to W2 of the architecture. Since the value ofW2 represents the consequence part of 

the rule, this adjustment tunes the THEN-part of the fuzzy rule of the system. It is 

clear that the neuron adaptation provides a mechanism to tune the membership 

function and the fuzzy rule itself. This adaptation has to be maintaineci so as not to 

oscillate, and this is achieved by using a decay function that control the adaptation 

gain. 



.! 

98 

Neuron annihilation 

A fuzzy neuron will keep finding the position in the fuzzy neuron parameter space in 

this clustering layer which is a competitive layer. If a fuzzy neuron does not form the 

correct interconnection among other neurons, then it will die in the early 

development. The neurons compete with each other for resources and each neuron 

tries to inhibit other neurons from taking exactly the same functional role that it plays 

in the network. Th.is behaviour is used to optimise the network. The annihilation of 

neuron deletes the component Min the G,~?N in Eq. 4.9. However, the forgetting 

mechanism that provides the ability to delete specified equilibrium points from a 

given set stored equilibrium has to be performed without affecting the equilibria in 

the given network (Yen, 1991). Therefore, to annihilate a fuzzy neuron, some 

criteria have to be satisfied. Firstly, the fuzzy neuron should not be a functioning 

element in the network It means that by deleting that fuzzy neuron, the performance 

of the network will not be degraded Secondly, the fuzzy neuron is a redundant in the 

network. It means there are two or more fuzzy neurons that produce a similar output 

for the same input. 

The first criteria can be checked by watching the activity of a neuron. If the 

output activity is fixed over a very long time, i.e .. the cluster never wins, so not 

contribute to the function of the network, because it does not generate any information 

in its output. To measure the output activity, the Activity Variance (AV) can be 

used (Lee, 1992). The Activity Variance is related to the information content 

of the output signal of a neuron The entropy of the neuron can be used to describe 

the activity variance. If this value is zero it means that no information is generated by 

this neuron and it does not perform any signal processing function. Therefore, it can 
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be removed from the network. A neuron which is never used or inefficiently used 

can be evaluated using the entropy of the output of that neuron. [fthe entropy is less 

than a minimum level, then the neuron will be annihilated. 

For the second criterion, it can be checked by watching the dependency 

between output of the fuzzy neurons. If two neurons are totally dependent, then one 

of the neurons can be annihilated without affecting the performance of the network. 

If the weight vectors of two neurons are very close to each other then one of them 

can be eliminated. 

Hence, to optimise the middle neuron without violating those two criteria, the 

penalty technique is applied. In applying the penalty technique, some cost function 

can be used. According to Matsuyama (Matsuyama, 1992) there are many cost 

functions such as competitive learning with conscien-ce and entropy minimisation, 

which have been applied as the penalty measurement for the competitive mechanism. 

The amount of infonnation gained during the training phase is one of the important 

characterisations of learning process. Measuring this information gain can be 

obtained by the statistical distance between pre and post training (Lebin et al., 1990). 

Since a middle neuron acts as a rule, the minimum entropy can be used to find the 

information gain from the training examples:. This method has been used for rule 

learning from examples in the area of knowledge base systems {Pitas et. al., I 992). 

In this model, for simplicity of implementation, frequency occurrence which 

determines the entropy is used. Therefore, the learning parameter will be adjusted 

differently with respect to the cost function for each neuron which involves in the 

competitive learning mechanism. 
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4.2.2 Learning mechanism 

In this section, each component of the Parameter Adapt\ltion Automata as stated in 

Eq. 3.10 for the neurons in the Fuzzy~CPN is to be specified. The proposed model 

applies the learning mechanism which is a model of the constructive learning by 

specialisation (Refenes, 1991). A fuzzy neuron specialises to a particular receptive 

field in the input space to produce the associate output value. 

mechanism of this ANN model1s pictured in Figure. 4.7. 

ln~M: space 
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Figure. 1. 7 Learning mechanism in Fuzzy-CPN model 
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In Figure 4.7, the learning mechanism controls the generation of each fuzzy neuron 

from the numerical input-output data (X,Y). Each fuzzy neuron acts as a fuzzy rule. 

On every representation of training pattern (X, Y), which is represented by a dashed 

line in Figure 4.7, the learning mechanism automatically partitions the input space and 

generates the membership function _for each data without any a priori knowledge. It 

means that at this step, the IF~part of the fuzzy rule is being built. By performing a 

matching process with the output vector, the learning mechanism builds THEN-part 
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of the fuzzy rule. The matching process of the fuzzy neuron is performed according 

to the J.L of each fuzzy neuron. 

Therefore, a fuzzy neuron at the middle layer stores the infonnation about the 

IF-part which is the mean of the cluster and the farthest deviation of the cluster. The 

boundary of the cluster has the membership value equal to zero and the centre of the 

cluster has the membership value equal to one. The THEN-part is encoded in the 

W2 as the centroid values of each fuzzy rule's output, i.e. the output value of each 

fuzzy neuron. 

This model has some important parameters which are used to represent the 

conditions and relations of a pattern in the storing mechanism. 

Defines 

r; the maximum deviation ofilh cluster from the centre ofi"'cluster. 

ci; the prototype vector ofilh cluster of j dimensions. 

Xj the input vector ofj dimensions. 

Yk the target vector ofk dimensions. 

The learning mechanism can be formulated as follows : 

Step I. Start with 0 number of fuzzy neurons. 

Step 2. New input vector X, is applied to the input layer. 

Step 3. The output of each fuzzy neuron at middle layer is calculated. 

Step 3a. The Euclidean distance d;'s from the input vector to all prototype vectors, 

each of which is stored in a fuzzy neuron in the middle layer that exist are . 

calculated. 

d,= (4.14) 
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Step 3b. Each fuzzy neuron in the middle layer calculates the membership value of 

the input associated with the cluster, which are represented by fuzzy 

neurons that has been created. For ease of implementation, the triangular 

shape for the membership function, V.t is used. This function is rather similar 

to the membership function proposed by fuzzy MLP (Pal, et. al. 1992) 

( ( d, ~~-· 
llt =\I+ \(r,-d,))) (4.15) 

Step 4. The fuzzy neuron which produces the highest membership value is 

determined. It is indexed as win. At this step the competition mechanism is 

executed. 

Step 5. The Parameter Adjusting Function 0 in Eq. 3.11 for this model is applied in 

this step. For this model, the counterpropagation paradigm is applied, 

therefore, the weight vectors from both side Wl and W2 that connect to 

the fuzzy neuron which produces the highest output is updated, according 

to: 

W2"""', W2oiJ + n(y _ W2o/J) 
!<'in wl" 1-' wm (4.16) 

where f3 is the learning parameter ·!n the general. This value is updated 

automatically for each iteration. 

(4.17) 

where a is the Parameter Control State of each fuzzy neuron, which has the 

initial value equal to 1.0. In this model, to update the value of a: for each 
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training, the Parameter State Transition Function a in Eq. 3.12 is defined in 

order to calculate a. iteratively by : 

(4.18) 

In this case, the farthest deviation for the winning fuzzy neuron is updated 

according to : 

"~"'=old+ ~(Wln~w -WloiJ)' 
r "'" r "'" -"" J,wtn J,wln 

Fl 
(4.19) 

This step is the neuron adaptation mechanism. The fuzzy neuron adjusts its 

receptive field which is detennined by the values of the farthest deviation r, 

and the centre of receptive field which is encoded in the Wl. The response 

oft he fuzzy neuron to fi1ture learning, ct, is updated as well. Therefore, if a 

neuron has learnt more, the neuron will be less responsive to the learning, 

and will adapt with a very small change. The ~ value always decays. Thus it 

guarantees that the updating of the weight vector wil! not oscillate and will 

converge to a final value. This adaptation process is shown in Figure 4.8 by 

using 2 dimensional input space in X 1 and x1. 

: ........ · 
X 

Figure 4.8 The receptive field adaptation of a fuzzy neuron 
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Let I be the input vector, in Figure 4.8, as shown by a dot near the 

boundary of the circle. C" is the centre of the cluster before the adaptation 

and C" is the centre of cluster after the adaptation. r' is the farthest 

deviation of the cluster before adaptation and the r" is the farthest deviation 

of cluster after the adaptation. Assuming that the fuzzy neuron has just 

been generated, thus a is equal to I. This fuzzy neurons wins the 

competition. Therefore, this fuzzy neuron has to be updated. Since a: is 

equal to I, C" is just the midpoint between C' and L However, the farthest 

deviation of cluster, I' has to be updated. In updating the farthest deviation 

of cluster, the consistency between the area which is covered by the 

previous parameters of fuzzy neuron and the new parameter should be 

maintained. Therefore, the previous area of duster has to lie in the area of 

the new duster. It is shown by the circle with the dash-line. Using this 

approach, if a fuzzy neuron is activated by an input vector, after updating 

the parameter of that fuzzy neuron, the same input vector will still be able to 

activate the same fuzzy neuron. The difference is only the membership 

value which is produced by that fuzzy neuron with respect to the same input 

vector. 

Step 6. When executing Step 3, if all fuzzy neurons produce zero as the output, a 

new fuzzy neuron will be generated and th.e input pattern is used as the 

centre of the receptive field of the fuzzy neuron. In this case, the farthest 

deviation is set to a default value, p. 

Wl"""'=X; W2"""'=Y; r"""'=p a."""'= 1 (4.20) 
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This step is the neuron generation process. The learning parameter p 

detennines when a fuzzy neuron shoUld be generated in the learning 

process. It is similar to the vigilance parameter in the ART model 

(Carpenter et al., 1986). Using a smaller value of this learning parameter, 

the network tends to produce more fuzzy neurons, i.e. it tends to generate a 

new fuzzy neuron, when an input vector is applied. 

Step 7. When Step 6 cannot be accomplished because of all resources that are 

required to create a fuzzy neuron have been used, i.t:. there is not enough 

memory to create a new fuzzy neuron. The fuzzy neuron which has the 

highest a: value and exceeds a pre-defined threshold, a 1im,1 is chosen. And 

the parameter of this fuzzy neuron is set to be: 

WJO""=X; W2ann=y ; ra""=p ; a:=\ (4.21) 

This step is neuron annihilation process. A fuzzy neuron which is not used 

so much should be annihilated in order to decrease the learning complexity. 

It is performed by finding the fuzzy neuron wltich has the highest value of ct. 

The higher value of ct means that that fuzzy neuron has not won Vel)' often. 

Therefore, it can be deleted because it does not contribute so much in the 

competition process in the training mechanism. However, a threshold for ct 

has to be pre-defined in order for the annihilation process to be executed to 

the fuzzy neurons which have the C1 value more than the threshold. 

Step 8. In the situation when Step 7 cannot be perf-ormed, i.e., there is no fuzzy 

neuron which has the ct value more than the threshold. A fuzzy neuron is 

chosen by finding the minimum value of S, of ~ach fuzzy neuron to the input 

vector: 
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(4.22) 

These distance are shown in Figure 4.9. The distanceS is the distance to 

the Shell of the fuzzy neuron. This similar distance calculation is applied by 

the Fuzzy c-Shells Clustering techniques (Dave and Bhaswara, 1992). 

Figure 4.9. The shell distanceS 

Step 9. Step 2 through Step 8 are executed for all other training patterns. 

After finishing training the fuzzy neurons at the middle layer, the input space 

is covered by clusters as shown in Figure 4.10. There are two main learning 

parameters which determine the final result they are p and threshold of a or atim;1• It 

has to be defined in the beginning of training. However, by setting p equal to 0 and 

the limt<of a equal to I, i.e. there is no neuron annihilation performed, learning can 

still be executed and the result is the conventional CPN. 
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x, 

Figure 4.10. Training result of a 2-dimensional input space 

Figure 4.10 shows a typical final result after a Fuzzy-CPN has been trained through 

all training patterns which are assumed to cover the input space. In Figure 4.10 each 

circle represents the receptive field of each fuzzy neuron at the input space. There 

are many overlap areas of the receptive fields ofthe fuzzy neurons. However, during 

the recall mechanism only one neuron is activated which is a neuron with the highest 

activation value as in the conventional competitive model. All fuzzy neurons which 

have the receptive field covering the input vector me activated in different degrees. 

The defuzzifier neurons determine the final result. It makes this Fuzzy-CPN model 

different from the other competitive models. 

4.2.3 Recall mechanism 

This section describes the recall mechanism of this Fuzzy-CPN. The recall 

mechanism can be implemented in parallel processing, because in the middle layer 

there is no requirement to find the winning neuron like in the other competitive 

model. Each fuzzy-neuron processes the input vector and produces t~e output as the 

membership value to the defuzzifier neuron without being aware of the activation 

values of the other fuzzy neuron. It is different from the conventional CPN or any 

other ANN models with competitive paradigm, which produce the output by finding 
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the maximum output. Therefore, it reduces the complexity of computation in the 

middle layer when the recall phase is executed. 

The recall mechanism is shown in Figure 4.11. 

Input space 

X 

fuzzy neuron 
as fuzzy rule 

Figure 4.11 Recall mechanism 
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As shown in Figur~ 4.11, while the Fuzzy-CPN is perfonning recall operation, an 

input vector is given. Then, the middle layer calculates its membership values to each 

class using Eq. 4.9 and Eq. 4.10. These values (!J.1, 111, , J.lp) flow into the 

defuzzifier control neuron and the output layer in parailel. At the same time the 

centroids values are supplied to the defuzzifier neuron. By using the centroids which 

are encoded into the W2, the output layer calculates the final output value by 

activating the defuzzifier control neuron. All output values of the fuzzy neuron flow 

into the defuzzifier control neuron as well. 

In producing lhe output of the fuzzy neuron, the output is not superimposed 

like in the conventional ANN model. The output has to be averaged with respect to 

all the rules. The natural alternative is the fuzzy centroid defuzzification. It directly 

computes the real value output as nonnalised convex combination of fit values. At 
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the final stage, the defuzzifier neuron is used to quantise the output. The output of 

the system has to be able to represent the presence of all rules in the rule base. 

After obtaining the output of the middle layer, the final output of defuz.itfier 

control neuron is : 

OutvcN = f f.L1 ., (4.23) 

where p is the number of fuzzy neurons, 11 is the input vector to the defuzzifier 

control neuron. Thus the output from the output layer is equal to: 

(4.24) 

where G is the gain factor which corresponds to the output of the defuzzifier control 

neuron: 

0=-!-
0ufrx:N 

Hence the output of the k'" output node is : 

(4.25) 

(4.26) 

This recall mechanism is rather similar to the output calculation which is performed 

by the fuzzy system. The difference is that the inference process and the fuzzification 

are perfonned automatically together in the fuzzy 11eurons and the process of 

generating and tuning the membership functions are performed automatically by 

feeding the network with the input-output patterns. 
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4.3 Function Approximation in Adaptive Filter 

Although an ANN has capability for function approximation, there are still many 

problems in implementing the ANN model for this task. The main problem of the 

mapping function is the condition when the network underfits or overfits the training 

data. There is always a trade-off between the generillisation and the ..:omplexity of 

the network (Poggio et al., 1990). Generalisation is not possible if the mapping is 

completely random (Mostafa, 1989}. 

Basically, an adaptive system performs adaptation in two steps (Currie, 

199.?.). The first step is the prediction of the output value (a priori output) with 

respect to the input value and the current state of the system, including static and 

dynamic states. After that a particular error correction algorithm is applied with 

respect to the desired signal according to a quality criterion in order to minimise the 

error between the a priori output and the desired signal. A prediction of the a priori 

output is pt:rfbnned by applying a function approximation of the input-output 

relationship. Therefore, a function approximation capability of the adaptive 

processing should be considered as the main aspect in designing an adaptive system. 

Since a better prediction mechanism will yield an a priori output closer to the desired 

signal, a smaller error is produced. Hence, it makes the adaptive system converge 

faster and has a lower convergence error. 

Letjbe the transfer function of the system that will be modelled by using an 

adaptive system. Function/can be the transfer function that perfonns mapping from 

the corrupted signal space to the noise-free signal space in the signal correction 

problem, or from the input space to the output space of an unknown system for 

system identification. The simplest structure is a time-domain adaptive filter with 
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FIR structure. The output value y(t) is a linear combination of the input and the 

delay input signals [x(t), x(t-1), ... , (x(t-k)]: 

f' (x(t),x(t- !),. .. ,x(t- k),S)--> y(t) (4.27) 

The adaptive system produces Y{t) as the a priori output according to the value of 

[x(t), x(t-1), .. , x(t-k)] and the stateS of the adaptive system. Basically, the adaptive 

system builds the function approximation ofjby implementing a function g: 

g' (x(t),x(t- 1), ... ,x(t- k), S) --> j(t) (4.28) 

If the adaptive system can build the function g which approaches the f, the 

output of adaptive filter i.e. output of function g will be close to the output off 

Since the function g approaches the function/, the error e(t) will be minimised and 

hence produces a small convergence error. At each state of adaptation, the system 

will produce only a small error and it approaches the convergence point faster. It 

is clear that the function approximation of g which maps the input space to the output 

space is the important part of the adaptive system. If the function approximation is 

very good, the error produced by the system will approach to zero. Therefore, the 

error correction algorithm becomes less an important consideration in designing an 

adaptive system. 

This actual mapping function/ can be a non-linear function. Therefore, a non 

linear processor such as artificial neural network (ANN) or a fuzzy system (FS) or 

combination of both of them, which approximates the function/ by using non-linear 

function g, will produce a better result in the non-linear relation of input and output 

of the system than a conventional structure which employs a linear combiner. 
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Figure 4.12 Mechanism of adaptive system 

The black~box approach which is a model-free system \s more appropriate in the 

condition when the relevant mathematical model cannot be built, especially fur 

system identification task. Furthermore, in the condition when the details of the 

dynamic states of the system cannot be obtained, and only the inputs and outputs of 

system are available, using a black-box approach, such as a fuzzy system, is more 

appropriate for function approximation. It is encouraging to implement the 

Fuzzy-CPN model in order to perform the function approximation by learning the 

input-output data of the system. However, it has to be ensured that the Fuzzy-CPN 

will be able to perfonn the continuous function approximation. 

4.3.1 Fuzzy neuron as fuzzy rule 

Basically, a FS perfonns the mapping from the input space to the output space. In a 

conventional FS the mapping is controlled by the fuzzy rules and the fuzzy inference 

process. The input space and the output space are divided into ri fuzzy regions G "' I, 

2, ... , n) which forms the fuzzy hyperbox, if every fuzzy box. of the fuzzy rule base 

has a rule then there are N = r1 x r2 x ... x rn rules in the fuzzy rule base. The number 

offuzzy rules can be a huge number if the r'is and n are large. However, not all rules 

are used to detennine the final output. There are only a small fraction of these rules 
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that are really used in the decision of final output. The fuzzy rules which are used in 

the determination of the final output are called the active rules and they are applied to 

the particular input vector. Hence an active rule is defined as follows (Wang, I992a): 

DEFINITION 4.4 

The i"' fuzzy rule in the fuzzy rule base is active for x e Q : 

if mj(x1)¢0 for all}= l,2, ... ,n 

The mechanism to activate a rule from the all the rules is implemented using a fuzzy 

neuron in the Fuzzy-CPN (FCPN) model to control the mapping process from the 

input space to the output space. The fuzzy neuron implementation has to be able to 

provide a basic framer,ork to satisfY the function approximation task. 

Figure 4.13 Fuzzy neuron as fuzzy rule 

In Figure 4.l3 , each mapping is defined as the mapping from a fuzzy patch in the 

input space to another fuzzy patch in the output space. A fuzZy neuron is 

represented as a circle which connects the input space to the output space by an arc. 

A fuzzy neuron controls a mapping from a fuzzy patch in the input space to the 

corresponding fuzzy patch in the output space. Each neuron will be sensitive to a 
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particular receptive field and produces a response if the input signa] is in the area of 

the receptive field of that fuzzy neuron. The sensitive area of a fuzzy neuron is 

obtained during the training process as explained in the previous section. The fuzzy 

neuron will become active or excited i.e. the output is not equal to zero, when the 

input vector falls into the area which the neuron is sensitive to. Therefore the neuron 

perfonns the partition of the input space, because each neuron is only sensitive to a 

particular receptive field. Furthennore, the fuzzy neuron perfonns a mapping process 

which can be assigned arbitrarily. This assigning process is achieved in the learning 

process according to the input and output pairs as the training data by ~atching the 

flows ofinput vector and desired vector of the training pattern at the middle layer. 

The Fuzzy-CPN perfonns a non-linear transfonnation, and it maps fuzzy sets 

to fuzzy sets. It behaves as the associative memory of the input space and the output 

space. Given an input vector in the input space the fuzzy system will produce a 

corresponding vector in the output space. Generally, the Fuzzy-CPN system consists 

of a collection of different fuzzy neuron associations. All fuzzy neurons collectively 

attentpt to cover all area of the input space in order to satisfy the mapping from input 

space to the output space. 

Since a fuzzy neuron perfonns the functions of a fuzzy rule that can be stated 

as: 

IF m1 input is in area A THEN output will be in area B. 

As shown in Figure 4.13, when an input vector falls into region A, neuron n1 will 

become an active fuzzy neuron because it is sensitive to the area A in the input space. 

Hence, it yields the output value that is more than 0 and triggers the mapping process 



115 

to the area B as the mapping destination. This mechanism is similar to the active 

rule in a conventional FS. The output of the neuron represents the degree of fit value 

ofinput vector with respect to the rule in the fuzzy tenn. 

Since there are some areas which overlap, there may be more than one fuzzy 

neuron which fire. It is different to a competitive learning neural network, which 

only uses one neuron as the active neuron, or a backpropagation neural network 

which fires all neurons with different activation levels. Since there are more than one 

neuron which are active but not all of the neuron actives when a particular input is 

being applied, the system becomes more robust and has lower complexity in 

compurison to the competitive neural networ!cs and backpropagation neural 

networks. 

Actually, the fuzzy inference process can be enriched by connecting more 

than one fuzzy-neuron in a special relationship. Several n~w operations of fuzzy 

neuron can be applied, such as AND, OR which have been used in the Adaptive 

Neural Fuzzy Inference System (ANFIS) (Jang, 1992). However, this inference 

strategy increases the complexity of the learning mechanism and in this ANFIS 

model, the number of rules has to be pre-defined. 

4.3.2 Function approximation by Fuzzy-CPN model 

As stated by Wang (Wang, 1992), in order to satisfy the Stone-Weierstrass theorem 

which proves that a Fuzzy System is a universal function approximator, some 

assumptions have to be satisfied. This Fuzzy-CPN model can satisfy those 

assumptions and it will be explained as follows. 
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ASSUMPTION 1 

The fuzzy regions for the input and output spaces can be arbiJrarily 

defined. 

This assumption can be achieved because the receptive field of the fuzzy neurons and 

the centroids of the defuzzifier neuron can be assigned freely to cover the input space 

and output space with arbitrary size and shape. 

ASSUMPTION 2 

The membership functions IJ.j can be any continuous functions from 

[~. bi] to [0,1] for j=l,2, ... , n (i.e., for inputs) and from (-oo, oo) to 

(0,1] for j = 0, (i.e. for output), however 11: must satisfy the following 

constraint : 

ll}(xJ) ~ 0 for x1 ERG;, i= 1, 2, ... ,K,J= 0, 1, ... ,11, with x 0 = y 

This constrains means that the membership value of antecedent for a rule cannot be 

zero if the actual input value of this antecedent falls into the required region of the 

rule. It can be easily achieved because whenever the input vector falls into the 

receptive field of the fuzzy neuron the output is always greater than 0. 

ASSUMPTION 3 

Any rule can he assigned to any box of the fuzzy rule base. 

Since the centroid value of each defuzzifier neuron can be freely assigned and each 

fuzzy neuron at the middle layer can be freely connected to the defuzzifier neuron this 

assumption is satisfied easily. 

Therefore, after satisfying those assumptions, the same steps to prove the 

function approximation theorem can be established in a similar way as proposed by 

Wang (Wang, 1992a). This existence theorem shows that there exists a way of 
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defining fuzzy regions, a way of choosing membership functions, and a way of 

assigning fuzzy rules to the boxes of the fuzzy rule base, such that the resulting 

mapping approximates an arbitrary non-linear continuous mapping with any accuracy. 

This existence theorem is similar to Kolmogorov theorem in ANN model 

(Hecht-Nielsen, 1987). 

In this chapter, a new ANN model has been developed. This model is called 

Fuzzy-CPN using the Counterpropagation paradigm by incorporating fuzzy set 

approach at the middle layer and by implementing the fuzzy leader clustering 

technique. This model can be trained fast and has self-growing structure. During the 

learning phase, this model generates the fuzzy neurons and arranges them by 

adaptation in order to perform the mapping from the input space to the output space. 

The fuzzy neurons work as fuzzification and inference process in conventional FS. In 

the recall phase, by employing the defuzzifier neuron at the output layer, the final 

output is obtained in the parallel processing manner. This ANN architecture is used 

as an basic building block of the adaptive filters to perfonn function approximation. 

In the Chapter 5, this ANN model is used as an adaptive filter in the signal estimation 

class and be applied to solve the time series prediction. In the Chapter 6, this ANN 

model is used for another class of adaptive filter that is the signal correction and is 

applied to a noise elimination system. 
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Chapter 5 

Non Linear Function Approximation 

Function approximation is one of the ANN capabilities. Function approximation and 

time series prediction are important in an adaptive system as stated in Chapter 4. It 

has many applications such as chemical plants, cardiac pacemakers, vehicle control, 

sonar, manufacturing, music recording, stock market and power grids controls (Jones 

et al., 1989). An application of the function approximation using ANN is the control 

of a backing truck (Nguyen and Widrow, \989, Kosko 1991). In this application the 

ANN can Jearn how to back a truck to a loading dock. In this chapwr the 

Fuzzy-CPN model is used to solve the non-linear approximation problem. By 

employing the learning mechanism of the Fuzzy-CPN, the input-output pairs of the 

approximated function can be captured. In addition, by implementing the Fuzzy-CPN 

model as an adaptive system for the signal estimation class problem, the 

Mackey-Glass chaotic time series prediction is performed. 

5.1 Function Approximation Problem 

In Figure 5.1 in the function approximation task, given a set of examples {(x1, y1), (x1, 

y 1), ••• , (x1, y1)} where Y;= f(x;), the system has to approximate the function! It can be 

obtained by statistical technique of the model-free approach. The generalisation is 

performed when the input value is not in the set of examples, i.e. at the point between 

the examples. 
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Figure 5.1 Function approximation 

' 

119 

The simplest method is by employing the regression technique to all patterns but for 

some applications this technique cannot be used because it requires the basic 

assumption of the approximated function. Moreover, a statistical method requires an 

a priori knowledge about the function. However, in some applications, the 

input-output pairs cannot be obtained for all patterns, i.e. there are only x(k) andy(k) 

that are available at time index k. Therefore, the local infonnation at time index k has 

to be used. It leads to the use of the model-free function approximation which can be 

perfonned by an artificial neural network, fuzzy system, or the combination of both 

of them. The neural network and the fuzzy neural 11etwork require the learning 

mechanism to collect the knowledge about the function f. i.e. the input-output pairs 

are presented into the system. 

5.2 Comparison to another ANN Model 

In order to compare to the conventional CPN model, the following function is used : 

{ 

x~-x2 +0.03 ;forx<0.5 
f(x)" ' 

xl-x2 ;forx::?::O.S 
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The function that is represented in Eq. 5.1 is chosen due to its non~linearity and 

discontinuity characteristic. To test the performance of the network, tOOl points of 

the function are used, they partition the input space into the same size. The input 

pattern is {x<}l x1, ..• , x1000)} bounded at (0,1] and the output pattern is (y0, y 1, •.. , 

Ynloo}. The actual function is shown in Figure. 5.2. Thls function is non-linear and has 

a discontinuity at xJOO. 

g(x) o.o 

0 

0.0 

Figure 5.2 The function ofEq. :: .1. 

In order to perform the comparison the mean square error (MSE) is used. It is 

calculated by: 

I N > 
MSE=:-NL(h-Yr) ,., (5.2) 

where N is the number of testing data, y is the desired output value and J is the 

estimated output· produced by the ANN modeL 
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The training is performed to the proposed model, using 50 fuzzy neurons at 

the middle layer. The p value is equal to 0.01 and a.hmi< value is equal to 0.01. The 

Fuzzy-CPN (FCPN) structure is shown in F'rgure 5.3. It shows that the maximum 

number of fuzzy-neurons at the middle layer are fully exploited. However, during 

training, the number of fuzzy-neurons and their connections at the middle layer are 

varying from time to time and only during the recall phase are the number and the 

connections are fixed. The defuzzifier control neuron is used and denoted as the big 

circle in Fig•.:re 5.3. 

Self -Growing Structure 

Input Output 

Figure 5.3 The Fuzzy CPN used 

The training patterns {(X0J10), .•. , (x1000J11000)} are presented in the random order to 

the Fuzzy-CPN. After 7500 pairs of pattern have been exposed to the network, the 

training is stopped. After that, the input pattern is supplied to the network and the 
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network produces the output which approximates the given ·function. The result is 

depicted in Figure 5.4. In Figure 5.4, it is shown that the Fuzzy-CPN can 

approximate the function with acceptable error, and the MSE is equal to 4.906 x IO..s. 

It shows that the Fuzzy-CPN can track the function fl..x) in most areas. The 

discontinuity of the function can be approximated as well by the Fuzzy-CPN without 

smoothing the function. 

By assuming that the training patterns are represented in random order 

unifonnly, the training patterns are assumed to be fed into the Fuzzy-CPN not more 

than eight times for each input-output pattern. Therefore the training time is very 

short. The experiment is perfonned using 486DX 25 MHz machine and the training 

time is just less than one minute. 

0.0 

0 

g[x) 

0.0 

"·' 0.0 0.0 

Figure 5.4 Approximation ofEq. 5.1 using Fuzzy-CPN 
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In order to perform the comparison in approximating a function, the two modes of 

Counterpropagation network are used. By using the same training pattern set the 

training is perfonned to both networks. The training patterns are presented to the 

network unifonnly in random order. It is assumed that the representation has normal 

distribution. Therefore, it is able to cover the entire input space. However, for 

comparison it is assumed that the Counterpropagation Network (CPN) and CPN in 

interpolation mode (ICPN) are trained in the best way and yield the best result. For 

the Fuzzy~CPN (FCPN) the result is the average result after several testing cycles. 

5.2.1 Comparison to Counterpropagation network (CPN) 

The CPN used in this comparison has I neuron at the input layer, 50 neurons at the 

middle layer and I at the output layer. It is shown in Figure 5.5. The middle layer 

performs the competitive network using SOM paradigm. 

Input 

Figure 5.5 The CPN used 



124 

Training the CPN is still slow compared to the proposed model (Fuzzy-CPN). In the 

conventional CPN, the tmining has to be perfonned in order to build the Self 

Organising Map in a stable way. It requires many iterations before the SOM at the 

middle layer becomes stable. In the experiment, the number of iterations must be 

more than 1000. It takes about 10 minutes by representing all training patterns. In 

the Fuzzy-CPN model the number of iterations can be only 8, as long as the input 

space has been covered by the input pattern, and the network can approximate the 

function and produce acceptable result. The result of the approximation by CPN is 

shown in Figure 5.6. 

"" 

g!xl 0 

"' "·' 0.0 •• '·" 
Figure 5.6 Approximation CPN to the Eq. 5.1 

Assuming that this set of examples cover all the characteristics of the input~output 

relationship of the function, after training the CPN with this set of examples, the CPN 

build a look up table which has the number entries equal to the middle layer. It is 

equal to 50. Therefore, the output are 50 different discrete values. CPN builds the 
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SOM according to the input distribution. Since the input distribution is assumed to be 

unifonn, the input space is partitioned in the same size. To the best approximation, 

the CPN model covers the input space with the same distribution of the input pattern. 

In Figure 5.6, it is shown by the same size of the partition at the x-axis. Each 

partition of the input space has an associated value at the output space. Therefore, 

the CPN produces a non-smooth function approximation. The approximation of 

CPN produces a jagged line. In this experiment the CPN yields MSE that is equal to 

1.082xl0-s. 
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Figure 5.7 The difference approach between CPN and Fuzzy-CPN 

Figure 5.7 shows the d_itference between the conventional CPN approach and 

Fuzzy-CPN (FCPN). The areas N1 and N2 represent the output field and receptive 

field of each middle neuron in the input-output space. In this example, it is assumed 

that there art only two neurons in the middle layer that are used. Using conventional 

CPN, the function produced by the conventional CPN is a discrete function because 

the CPN builds the look-up table only with 2 entries, where {(A1 -7 y 1), (~ -7 y:J) 

A1 and A,_ represents the areas in the input space. In activating the middle layer (N1 

and N2), the competitive paradigm is implemented and the neuron which will be 
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triggered is only one neuron, i.e., N1 or N2• Both of them cannot be activated at the 

same time. Therefore, if there are only two neurons at the middle layer, the CPN 

produces on1y two different values ofthe output, i.e. y 1 or y2• 

The proposed model builds the set of fuzzy rules { (A1 ~ y1), (~ ---). y:J }. In 

the recalling phase, the competitive paradigm is not implemented any more. It is only 

implemented in the learning phase to build and tune the membership functions and 

fuzzy rules. During recal!ing process, each rule which is implemented by the fuzzy 

neuron at the middle layer is activated in different degree and the neuron at the 

output layer blends them to produce a smooth line fromy 1 to fl. This approach yields 

an interpolation mechanism between the training patterns. It is shown that by 

implementing the Fuzzy·CPN, a smoother function approximation can be achieved by 

using less middle neurons. Hence the generalisation can be achieved without 

sacrificing the computational resource. 

5.2.2 Comparison to the Interpolative CPN (ICPN) 

A Fuzzy.CPN is similar to the CPN in the interpolative mode (ICPN) in the sense 

that more than one neuron in the middle layer which is active and contributes to the 

final ouput. In the interpolative mode, the output value of CPN is : 

1111Y1 +ml,.V2 +IIIJY3 
y= Ill! +1112 +Ill) (5.3) 

where y is the final output value, and y 1, y2 and y 1 are the output of the active 

neurons. Three neurons which produce three·highest activation values. m1, m2 and 

m3 are the fractional values which are bounded [0,1). These values usua11y are 

calculated by using some heuristic approach (Hecht· Nielsen, 1987). 
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However, the Fuzzy-CPN is different from the interpolative mode of 

conventional CPN in performing interpolation between points in the output space. In 

the interpolative mode, in perfonning the interpolation between entries in the look-up 

table the CPN, uses linear interpolation between them. When the CPN receives an 

input vector and activates the middle layer, there are more than one neuron in the 

middle layer which win the competition between them and the winning neurons are 

weighted with a fraction number. The sum of all weighted numbers is equal to one. 

Therefore, there are the first, the second, and the third winners. According to 

Hecht-Nielsen (1988c), in order to perfonn the interpolative mode, a priori 

knowledge about the problem is required to define the fraction numbers i.e. m1, m2 

and ml. Furthermore, in the interpolative mode only three or a pre-defined number of 

middle neurons will be active. In the Fuzzy-CPN, the number of active neurons at the 

middle layer is not pre-defined and depends on the training patterns. 

The partition of the input space in defining the mapping function output is 

perfonned without overlap regions for the CPN. In Fuzzy-CPN the partition of input 

space is perfonned by the overlapped areas. In Figure 5.9, A1 and A,. in CPN do not 

overlap but A1 and A,. in the Fuzzy-CPN do. The smoothness of the function is 

detennined by the number of overlapped areas between the rules. 

To compare the result of the interpolative mode of CPN in the function 

approximation, the same training pattern is input to the same CPN and the final result 

in recall phase is calculated by using Equation 5.3. The values of m1, m2 and ml are 

calculated using this Equation 5.4 : 

(5.4) 
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where c"; is the n-th wiMer neuron. Therefore, it has to be determined from three 

templates which have the nearest distance to the input vector :r. After that, them for 

each template is calculated using Eq. 5.4. The final result of the ICPN follows Eq. 

5.3. The result of the ICPN to approximate the function in Eq. 5.1 is shown in 

Figure 5.8: 

"·" 
g(x) 

-0.1 

Figure 5.8 Approximation by the ICPN to the Eq. 5.1 

Figure 5.8 shows that ICPN approximates between the two partitions of input space 

with the same approximating function. The difference between each section is the 

starting point and the end point. Therefore, at the area where the function has a 

discontinuity, the ICPN tends to approximate the function with a smooth line. It is 

due to the mechanism of the ICPN that always want to generalise the third closest 

template patterns. The Fuzzy-CPN model can arrange the fuzzy-neuron in such way 
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to produce the discontinuity at that area, especially when the presentation order of 

examples is correct. The MSE ofiCPN is equal to 6.06h:J0-6. 

In addition to defining the way to calculate the fraction factor m, it requires 

extra time and a priori knowledge about the input-output relation. In Fuzzy-CPN, 

the learning parameter can be adjusted easily. The number of the neuron in the middle 

layer is set to the maximum, and the p is set to the small value. In the training 

process the Fuzzy-CPN determines by itself the numbers of neuron in the middle 

layer. When the result is bad and the number of neurons used in the middle layer is 

less than maximum, the p value should be increased. When the number of neurons in 

the middle layer is equal to the maximum, and the result is still not acceptable, the p 

value should be increased. Since the training can be executed very quickly, this 

adjustment process time is still acceptable. 

The following figure will show the difference of the function approximation 

between an ICPN r.nd the Fuzzy-CPN (FCPN). In Figure 5.9, the dots represent the 

training patterns. The functionjwhich will be approximated is a discrete function. 
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Figure 5.9. The difference approach between ICPN and Fuzzy-CPN approach. 
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The ICPN tends to generalise the function and produce a smooth function especially 

in the three nearest points. The Fuzzy-CPN produces the discrete. function. In this 

example, the Fuzzy-CPN use only two middle neurons, where N1 and N2 have 

receptive fields which do not overlap. The output is discrete because there are only 

two output values, y 1 and y2• 

In Figure 5.9, it is clear that the interpolative CPN always tends to generalise 

all training pattern in order to produce low MSE between the three training patterns 

that are close to each other. It produces a function/which is a smooth line in order to 

approximate the training patterns {(x1, Yt) .... , (xs. YsH- The ICPN always 

approximates using the same line model shown to At to AJ for all input values. In 

Puzzy-CPN. the system partitions the input space and produces the associative output 

value of each fuzzy neuron. In Figure 5.9, only two fuzzy neurons are used, N1 and 

N2. The fuzzy neuron N1 produces the output as y1 and the fuzzy neuron N2 produces 

the output y2• This mechanism provides the capability for Fuzzy-CPN to pr<;duce a 

non-smooth function. In addition, the Fuzzy-CPN shows a better localisation 

compared to the ICPN. 

Using different number of neurons at the middle layer, a comparison between 

the CPN, ICPN and Fuzzy-CPN is performed. After the simulation is perfonned the 

ideal results of all methods are compared and shown in Figure. 5.1 0. It shows that the 

Fuzzy-CPN has the lowest MSE. To produce the same MSE, the Fuzzy-CPN 

requires less neurons at the tniddle layer. 
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Figure 5.10 Comparison ofCPN, ICPN and Fuzzy-CPN (FCPN) 
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It is shown that the Fuzzy-CPN can produce a discontinuous and non-linear function 

as stated in Eq. 5.9 by performing training with a very small number ofiterations. It is 

suitable to the applications whenever the learning has to be done in real time. 

Moreover, this mechanism is suitable for on-line adaptation learning because the 

system does not require many iterations of learning. Especially, in time series 

prediction problem, after perfonning a prediction the real value of the next time series 

can be used to refine the network for predicting the next value in the time series. 

5.3 The Effect of Learning Parameter to the Performance 

In order to study the sensitivity of learning parameter in Fuzzy-CPN model for 

function approximation task, the following simple function is used : 

y=4x(l-x) (5.5) 
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This function was used in Jones et al. (Jones et al., 1989) to test the capability of 

ANN model in approximating a non-linear continuous function. 

The learning parameters should be easily set to suit the application. The 

difficulty of learning parameter setting is one of the considerations in applying a 

learning paradigm. However, if an ANN model requires less parameters, it is easier 

to tune. An ANN model does not have fonnalisation of tuning the learning 

parameters. Therefore to train a ANN model is time consuming, especially for a 

learning paradigm which requires many iterations for training, such as 

backpropagation network. 

In the Fuzzy-CPN, the first learning parameter that can influence the 

perfonnance i~ p, or the default value of the' farthest deviation when the neuron 

generation occurs. The second parameter is the ct.1im''' which is the parameter that 

detennines the neuron annihilation of a fuzzy neuron in the learning process. 

However, since the resource is limited, the number of fuzzy neurons at the middle 

layer detennines the performance of the overall network itself. 

First of all, the relationship parameter p and the number of fuzzy neurons 

ge,terated during the training process N, are studied. The training patterns are the set 

of pair { (x~, y~), ... , (x100, y100) }, where x "' [0, I) with the increment value equal to 

0.01. They are given to the network which has a non~limited number of neurons at 

the middle layer. The training set is presented in random order and iterated for 7500 

times. For the first experiment, ct.1;m,1 is equal to 0.0. Therefore, there will be no 

neuron annihilation during the learning phase. 

pis changed from 0.00\ up to 0.1 with increment value equal to 0.0~1. After 

the training is perfonned, the test patterns are given to the network. The test 
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patterns are a set {re> x1, ••• , XHo:.l where x = [0, I] wilh the increment value equal to 

0.001. Since some test patterns have not been supplied in the training phase, this 

testing will show the generalisation of the Fuzzy~CPN as well. After obtaining the 

result produced by the Fuzzy~CPN using several p values the result of this 

experiment is shown in Figure 5.11. and Figure 5.12. 

Number of 

FN 

'" 

" " 
p 

0.06 0.011 

Figure 5.11 Number of neurons generated versus p 

As shown in Figure 5.11, if the p value is large, there are more fuzzy neurons 

generated by the Fuzzy-CPN at the middle layer. It yields small partitions of the 

input space. However, it does not always produce better result for function 

approximation. In the case where the receptive field of each filzzy neuron does not 

overlap the Fuzzy-CPN produces the same result as CPN. Thef~f<ne, if the p value is 

too small it yields a Fuzzy-CPN that produces the same result as CPN. It shows that 

the p value about 0.01-0.02 produce the optimum result because the number of fuzzy 

neuron is reduced without increasing the MSE. The relationship between the MSE 

ofFuzzy-CPN versus pis shown in Figure 5.12. 
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Figure 5.12. MSE versus p 

It shows that if the p value is in the range 0.01-0.05 the MSE does not vary so much. 

After that the resulting MSE increases. Therefore for a rule of thumb the p value can 

be determined about 0.01-0.05 for \-dimension input space. 

Although using an unlimited number of fuzzy neurons at the middle layer and 

the small value of p value, an acceptable result which is equal to the CPN model still 

can be obtained, it produces a discontinuous function for the final result, because 

there are no overlapped areas in the receptive fields of the fuzzy neurons. The 

overlapped areas of the fuzzy neurons determine the smoothness of the function 

produced by the Fuzzy-CPN. Thus, to produce n continuous function it is 

reasonable to keep the number of fuzzy neurons nl the middle layer limited so as to 

enable the Fuzzy-CPN to create fuzzy neurons that have overlapped receptive fields. 

In order to study how to limit the fuzzy neurons at the middle layer, the 

following experiment is performed, using ten different p values. The p values are 

0.005, 0.01, 0.015, ... , 0.05. The available memory for creating fuuy neurons at 

the middle layer is limited by 10%, 20% ... , 90% of the fuzzy neurons that are 
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generated for the associated p value. This number is obtained by the first experiment. 

The result of this experiment is shown in Figure 5.13. 
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Figure 5.13 MSE versus number of neuron percentage 

As shown in Figure 5.13, the MSE increases when the percentage is less than 45% 

and more than 75%. However, the MSE increment when the number of percentage 

is below 10%, is higher than the MSE increment when the number of percentage is 

above 75%, because if the number of neurons is limited to less than 45% the 

Fuzzy~CPN tend to produce a very smooth line between each samples and tends to 

produce a straight line or it tends to generalise or under-fit. If the number of neurons 

is greater than 75% the Fuzzy-CPN only tends to produce a discontinuous function 

to approximate the function similar to CPN. In other words, it performs too much 
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localisation or over-fits the function being approximated with the error bounded to 

the error ofCPN. 

The other learning parameters is a 1.,;,· This value is bounded in [0, 1]. This 

parameter detennines the time when the Fuzzy-CPN annihilates a fuzzy neuron 

during the training phase. If this parameter is small, there will be less annihilated 

fuzzy neurons but if this parameter is high, the Fuzzy-CPN tries to annihilate more 

frequently the fuzzy neurons that are seldom used. In anothP.r word, the Fuzzy-CPN 

begins to forget the patterns learnt before. This value determines the behaviour in 

this self-growing structure network. To study the influence of this value to the overall 

performance of the network, the following experiment is performed. For this 

experiment, ten different values of p are used, with the same values as in the 

previous experiment. According to the previous result, the fuzzy neuron are limited 

to the 60% of the maximum number for each p value. Since this value tends to 

produce the lowest MSE. By varying the u1 .. ,for 0.05, 0.01, ... , 1.0, the training is 

perfonned. The result of this experiment is shown in Figure 5.14. 

Figure 5.14. shows that the variation of o;1ltn,. which does not effect so much 

the perfonnance of the network. After all, if the o;1im,1 value is in the range 0.57-0.65 

it decreases the MSE of the Fuzzy-CPN. The ali'"'' value does not produce 

significant improvement but it is useful in applications where temporal training data 

are required, for example time series prediction. The order of training sequence itself 

detennines the influences of the o:
1
,m,. to the network perfonnance. By keeping this 

o;
11 
.. , minimal, the Fuzzy-CPN works without performing any annihilation process. 
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0.75 ,,, 

It has been shown that the learning parameter of this network is easy to adjust and it 

does not affect the overall perfonnance much. Thus this Fuzzy~CPN is easy to build 

and train. To adjust the learning parameter, the following ~teps are used: 

• The number of middle neurons is set to be unlimited. 

• Set the pin the range 0.01-0.02 and choose p value that produces the lowest 

MSE with the smallest number of fuzzy neurons. 

• Reduce the number of available resource for middle layer to the 50%-60% of 

the maximum fuzzy neuron number generated for the chosen p. 

• To obtain further improvement, the et
1
;m;, can be set to be equal to 0.6. 
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5.4. Time Series Prediction 

To apply the capability of the Fuzzy-CPN to perform a non-linear function 

approximation, a simulation of the Fuzzy-CPN model is used to solve the time series 

prediction problem. Using some past data, the prediction of the future data is 

performed. The prediction is achieved by performing the function approximation 

from the past data to produce the future data. Suppose f is the function to estimate 

a future value, in time index k: 

j: [>(k),x(k- l), ... x(k-p)]->X(k+q) (5.6) 

where p detennines the number of the past data that are used to estimate the future 

data and q determines the future value that will bt~ predicted. Therefore, the function 

fis a (p+l)-dimcnsion surface, in the (p+2)-dimension space. To estimate the future 

value x(k+q), the values {x(k), ... , x(k-p)} can be applied to the function! Now the 

task becomes estimating the function/ by using a set of examples. 

In this section, the Mackey-Glass chaotic time series will be used to test the 

performance of the network. This problem is chosen because it is a benchmark 

problem that has been cited quite often in literature, (Roger et al, 1993, Wang and 

Mendel, 1992, Jang, 1992, Jones et al., 1989). 

Chaotic time series is a deterministic and non-linear series. Mackey-Glass 

chaotic time series is generated from the following delay equation : 

dx(t) = 0.2x(l-t) -O.lx(t) (5.7) 
dt l+x10 (t-t) 

where the t value determines the chaotic behaviour of the function. In this 

simulation, t equal to 30 is used. This value is similar to the model that has been 

used by Wang and Mendel (Wang and Mendel, 1992). This time series is shown in 
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Figure 5.11. This time series is not a random time series but it is a deterministic 

model that has chaotic behaviour. Therefore, it seems like a random series. 

x(t) 1 

••• 

• • .,, ... ... 1000 

Figure 5.15 Mackey~Giass chaotic time series 

In this application, to predict the future value of the time series, in Eq 5.6. p is equal 

to 8 and q is equal tll I This means that the future value is predicted by using 9 past 

values. The network is given the input (x(k), x(k-J ), ... , x(k-8)], and it has to predict 

the next value x(k+l). It means that the network perfonn a function approximation 

of function/, where: 

j:R9 -)R 

j: [x(k),x(k-1), ... ,x(k-8)]--l>x(k+ I) 

(5.8) 

(5.9) 

Thus the Fuzzy-CPN used in this simulation has 9 neurons at the input layer and 1 

neuron at the output layer. The maximum number of fuzzy neurons at middle layer is 

equal to 80 neurons. In the simulation, the training is performed without repeating 

the training patterns. The p value is equal to 0.0125 and ~imil value is equal to 0.7. 

The simulation is performed in two different learning strategies. The first 

strategy is to train the network by using all training patterns. Then, the Fuzzy-CPN is 
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used to estimate the rest of the future data. For the second strategy, after the 

FuzzywCPN estimates a future data, the actual future data is used to retrain the 

Fuzzy-CPN for further estimation. However, the retraining process is performed 

without repeating all previous training patterns, and only the last actual data are used. 

<It 

" 

• 

··~ r·· ''· ' 

' 

--···- i 

··-' I 

-- real value estimated value 

Figure 5.16 Simulation using x5()() to x700 as training data 

The first simulation is performed using the first strategy or without on-line 

adaptation. The first 200 data from XJoo to x10<J are used as the training patterns. The 

prediction is performed for the rest of data x101 up to x1000• The result and the 

comparison with theoretical calculation are shown in Fig 5.16. 

The prediction is not too close enough and the MSE is equal to 0.010715. 

This result is obtained because the network has not been trained with enough samples 

and only 60 fuzzy neurons are created in the middle layer. It shows that the 

Fuzzy-CPN has not been able to cover the input space, shown by some parts of the 

output that form a flat line even though the input changes. The overlapped areas of 

the receptive fields of fuzzy neurons determine the smoothness of the final output. 

For instance, they arc shown in the point x.,40 - x~~· X-rro- ~sa• and the other parts. In 

some points, the estimation has not be able to follow the dynamic of the system. The 
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changes of the estimation are left behind the actual output. For example, This is 

shown in the area X,10 - X,601 ~- ~w 

/ t··· 

••• r 

real value estimated value 

Figure 5.17 Simulation using x0- x700 as training data 

The second simulation is performed by using the first 700 data as the training 

patterns. The result is shown in Fig. 5.17. By comparing it with the theoretical 

result, it can be shown that the system perfonns prediction better than the previous 

experiment. The MSE is equal to 0.0035749. After being trained with 700 data, the 

Fuzzy-CPN has been able to perform the estimation and to capture the dynamic of 

the system. This result is quite similar to the result that were obtained by Wang and 

Mendel using backpropagation and Fuzzy System (Wang and Mendel , 1992), or 

Jang using ANFIS (Jang, 1992). However, in both works they used iterati:v~ training 

and in this work only one pass training is used. It proves the capability of the 

Fuzzy-CPN to perform very fast training. 
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Figure 5.18 Simulation using on-line adaptation xloo- X100 as training pattern 
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In Figure 5.18 and Figure 5.19 the second strategy, the adaptive on-line training is 

used. When the on-line training is used for the case that the network has already 

been trained using the past 700 data, there is no great difference, because the 

network has converged, and the mean square error is 0.00357490. It shows that the 

adaptive training does not significantly affect the perfonnance of the network. When 

this mechanism is applied to the network which has only been trained from 200 data, 

there is a large improvement. The mean square error is reduced from 0.010715 to 

0.009049. This mechanism is suitable for learning in the real-time application 

because the Fuzzy-CPN requires only a small number of iterations to produce an 

acceptable result. 

'"' 
t ' \v,, / 

1 \/ 
f\ 

"'" 
real value estimated value 

Figure 5.19 Simulation using on-line adaptation x0 - x100 as training pattern 
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The experiments show that the capability of the proposed model to perform 

function approximation. This function approximation capability is suitable for the 

adaptive filter task by perfonning the signal estimation class. The result is promising 

and shows that the Fuzzy-CPN has good generalisation and localisation when applied 

for the prediction task. The learning parameters do not affect the performance so 

much. Therefore, the setting of learning parameters is easy and not sensitive to the 

network performance. The prediction of Mackey-Glass chaotic time series bas been 

demonstrated by applying the proposed network. In addition, it has been shown that 

the on-line update capability of this network provides the error reduction in the 

normal operation. This on-line adaptation is hard to implement by using a learning 

mechanism which requires an iterative learning scheme. Therefore, this Fuzzy-CPN 

model is suitable for real time applications, e.g. in the problem where the network has 

to be trained before it will be used, in order to capture the change of the environment 

when the system is used. This proposed method will be further expanded to tackle 

noise elimination problem which will be described in Chapter 6. 
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The elimination of background noise in applications where an unconupted input 

signal is required is not a trivial task, especially when the noise is non-deterministic 

and non-stationary. This chapter addresses the application of the Fuzzy-CPN model 

as an adaptive filter that performs a signal enhancement in a noise elimination system 

which makes use of the time-frequency representation of the input signal and a 

spectral subtraction for filtering process. Software simulation results with some 

typical sigrals corrupted by Gaussian noise are also presented. 

6.1 Noise Elimination 

In many areas of science and engineering in which 'mput signals are obtained using 

signal acquisition equipment, such as electromagnetic and acoustic surveil!ance 

{Anderson et al., 1990, Casellman et al., 1991), seismic signal processing (Magotra et 

al., 1991), speech processing (Kobatake et al., 1990), biomedical signal processing 

(Uncini et al., 1990), there :~ always a problem in detecting the presence of 

non~stationary random signals or noise in the background. In addition, the duration 

of this noise may be short compared to the observation intervals for the input signals 

Enhancement of a noisy signal means raising the SNR of the signal. It is a 

mapping process from the noisy input signal space to the noise~reduced output signal 

space. This mapping can be linear or non~linear, and time~variant or time~invariant 

depending on signal characteristics (Trompf, 1992). Various methods have been 
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proposed to tackle this problem including fixed filtering (Boll, 1979) and adaptive 

filtering techniques using conventional filters. In the case affixed filtering techniques, 

the unavailability of an ideal signal model and the use of predefined parameters of the 

filter makes this problem difficult to solve (Classen et al., 1983). The use of adaptive 

methods have improved the performance of background noise elimination to a large 

extent (Vary, 1983). With these methods, the parameters of'' 

adapt to the non-detenninistic characteristics of the background r~. ever, 

provision has to be made for the filters to readapt to the change in the envin.... tent. 

Sometimes it may lead to the unsatisfactory performance of the overall system 

(Cannel et al., 1990). 

The conventional adaptive algorithm such as LMS algorithm with 32-tap FIR 

structure has been used for an Adaptive Periodic Noise Cancellation (APNC) for the 

control of acoustic howling for the hand-free telephone situation. However, for other 

applications which require the elimination of non-linearity and non-Gaussian noise 

do not produce satisfactory results (Wright and Foley, 1979). 

6.1.1 Noise elimination model 

The objective of speech enhancement is reduction of noise level, increase in 

intelligibility or reduction of the auditory fatigue (Cheng, 1991). Several techniques 

such as adaptive noise cancelling, spectral subtraction, adaptive comb filtering may be 

used. Figure 6.1 shows a general model for noise elimination where the input 

sequence .~(k) represents the desired input signal and u(k) any external noise signal. 

Inside the model, w(k) represents internal broadband measurement noise. The 

problem becomes one of accurately modelling the corrupted channel o:(.) and the 
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internal noise by means of the filter fl(.). In general, a.(.) represents a non~linear 

medium. Therefore, to achieve the best modelling of a:(.), p(.) must be a non-linear 

function. 

s(k) ------->( 
d(k) 

+ 
)=s(k) 

u(k) -+-------->1 

Figure 6.1 General model of noise elimination 

In thP- example of speech processing, the noise elimination process is to detect and 

eliminate the noise from the non-stationary speech source. In Figure 6.1, the signal 

received by the system is d(k) which is the noisy version of the signal s(k). The noise 

term is produced by u(k) which is any external noise signal and ro(k) represents the 

deterministic and stationary internal broadband measurement noise. Therefore, the 

signal d(k) is: 

d(k) = s(k) + a(u(k)) +ro(k) (6.1) 

The sequence u(k) itself has two components : 

r1(k) = c(k) + m(k) (6.2) 

where u(k) is the background noise that can be considered as consisting of a 

non-deterministic and stationary noise c(k) and non-deterministic and non-stationary 

noise isolated noise m(k). 

j{k) = p(.,(k) + ro(k)) (6.3) 
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In order to eliminate noise, the model tries to model the channel a by using the 

function p. The final output of the noise elimination model is the difference between 

the received signal and the noise estimated by the function p. 

•(k) = d(k)-y(k) (6.4) 

For the best estimation, the original signal can be recovered : 

(6.5) 

Such assumption should be taken to differentiate between the effect of the 

degradation process and the good input signal. These differences can be used to 

regenerate the good signal from the corrupted one. However, the problem will arise 

when the assumption fails. This assumption limits the algorithm that can be applied. 

The perfect restoration of the mixing of two signals which are random is impossible, 

since the mixing represents a loss of information (Betts and Reid, 1993). The 

algorithm will generate only the most likely good signal. 

The scope of the implementation of this model has been restricted to the 

following assumptions : 

• Source selection: recording of the noise and signal is assumed to he performed 

with a single microphone without microphone modification. Therefore, two 

microphones approach (Kiperztok, \993) should be ignored. Moreover, it is 

assumed that the listener cannot control the microphone. Therefore, the 

transducer does not have any modification to reduce the noise. 

• Noise characterisation : only additive noise uncorrelated with the clean signal 

will be considered. This approach will not try to model the background noise 

statistic. 

I 
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• Non speech distortion and cochannel distortion will not be considered as well 

(Boll, 1983). 

These assumptions are similar to those which have been stated by Boll (1983) for the 

Noise Suppression Problem. 

6.1.2 Background noise detectiou 

The speech signal is a very highly non-linear signal (Hambaba et al., 1990). 

Therefore, it is hard to extract it from the noise using analytical methods. The noise 

and the signal are assumed to be generated by two different sources: the signal source 

and the noise source. For an analytical method, in order to extract the signal from the 

noise, a knowledge about the relation 1 signals is required. Therefore, to 

detennine the relationship between the no.~e and the signal, the relationship between 

the sources plays the important role. Two considerations should be taken into 

account in determining the relationship between two signals in terms of their primary 

sources. Firstly, it has to be known whether the signal is related by single sources, 

dependent sources or independent sources. Secondly, if the two signals are related 

by a common source, it should be known if there is a time sequential relationship 

between them. The signal produced by a primary source can be highly independent of 

one another. However, it depends on the nature of the sources themselves (Brandt, 

1991). 

To determine the linear relationship between two signals, a frequency domain 

method such as coherence analysis can be employed. It is obtained by dividing the 

estimation of the cross-power spectra of the two signals by the product of their 

auto-spectra as a function of frequency. More complex analytical methods involve the 
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use of periodicity, pitch frequency, Linear Predictive Coding (LPC) has been 

proposed by Kobatake et al. (Kobatake et al., 1990), for the restoration speech 

contaminated by non-stationary noise. However, in many signal analysis problems, 

curvilinear regression cannot be applied effectively due to the fact that the order of 

the polynomial fit may be too high and the statistical characteristics of the signal 

changes in time, which means that the order of the polynomials should be calculated 

whenever the signal changes. 

In an effort to detect signal without many prior assumption about the signal 

and the medium, a blind identification method is developed (Tong et al., 1991). Blind 

identification has been motivated by practical problems that involve multiple source 

signals and multiple ~"nsors which share a common objective, i. e. separating and 

estimating the source signals without knowing the characteristics of the transmission 

channel. The characteristics of the medium is unknown because the relative position 

of the multiple sources are not known a priori. There are many conventional 

algorithms for blind identification task such as Extended Fourth Order Blind 

Identification (EFOBI) that assumes the source signals are independent. However 

this algorithm cannot handle Gaussian sources. The Algorithm for Multiple Unknown 

Signal Extraction (AMUSE) is developed in order to tackle the Gaussian noise and 

for non-white signals only. However, some basic assumptions should be taken into 

account to apply these algorithms to the real-world problems. Different algorithms 

require different environments and assumptions to be able to be applied successfully. 

For example, the MUSIC algorithm (Multiple Signal Classification Method) has 

better result than Maximum Likelihood Method (MLM) or Maximum Entropy 

Method (MEM) in detecting a signal. However, it requires the background noise to 
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be uncorrelated (Jefliies and Farrier, 1987). The MEM is suitable for modelling a 

smooth spectra but will not perform well on line spectra. Other methods, such as 

tdUSIC, models the signal as a number of line spectra and will not be able to model 

the ocean noise. 

It leads to the idea for making use of the adaptive fiker for performing btind 

deconvolution (Blesser and Kates, 1978). It is expected that the system will be able 

to adjust itself with respect to the change of environment. Some models such as 

Adaptive Noise Cancelling (ANC) using adaptive algorithm by Widrow (Furukawa 

and Kubota, 1990) only removes the low frequency sinusoidal noise during 

transmission. Therefore, for those methods it is always assumed that a good signal 

model is always available. In the contrary, this proposed model does not assume the 

good signal model to be available but assumes that the noise samples are available. 

6.1.3 Time-frequency representation as pre-processing 

Detection and classification of signal components in time or frequency domain can be 

performed by firstly sliding the signal through an observation window. Normally, to 

extract the signal feature from either the time or frequency domain, representation of 

the signal is not sufficient for a complete analysis of the signal. Therefore, a combined 

time and frequency representation is used in this proposed model. In this proposed 

model, the modified speech spectrogram is used. A speech spectrogram contains rich 

acoustic knowledge about speech. Therefore, it is a good tool in analysing speech 

(Flanagan, 1972). 

Some work has been done in combining ANN with the time-frequency 

representation in signal pre-processing. The backpropagation (BP) and Discrete 

---~-···~~----- --· ------
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Fourier Transformation (OFT) that performs channel filter bank is used to 

discriminate voice/non-voice for integrated packet switching (Shlmokoshi and 

Hashitsurne, 1989) and speech segmentation for a continuous speech recognizer 

(Finster, 1992). 

Instead of implementing a single huge ANN model to perform the complete 

task, the proposed model uses time-frequency representation of the signal to 

pre-process the input signal before it is processed by the ANN. The implementation 

of a single ANN is impractical because training the huge network is time consuming 

and difficult (Botros et a!., 1992). The time-representation of the signal reduces the 

work of ANN to perform the complete task. This mechanism is quite similar to the 

mechanism of the human ear to extract the interesting sound from the environment 

noise (Eisenberg et al., I 989). In order to process the acoustical images with neural 

network of the brain, both kinds of information the time and frequency information 

are required. 

The power spectra of the speech provides a good initial representation of 

speech. It could be discovered with minimal a priori assumptions about what are 

meaningful transformation or representation data. The result is better than when the 

network is presented with unanalysed digitised waveform (Hambaba et al., 1990). 

The speech spectrogram as the time·frequency representation method which combine 

the time representation and the frequency representation of the signal can provide 

data pre·processing for a neural network model. Although, the representation of the 

spectrogram appears more complicated in 2-dimension, it makes the network easier 

to process in order to detect and classifY the signal. It is shown by Palakal and Zoran 

(Palakal and Zoran, 1989) that the multi layer network models will be able to learn 
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the invariant features from the speech spectrogram. The RBF-Net can be trained to 

extract known discriminatory features in speech patterns from speech spectrogram 

(Niranjan and Fallside. 1990). Based on these evidences, the spectrogram approach is 

used as the time-frequency representation in the proposed model for noise elimination 

using Fuzzy-CPN, 

There are several methods to generate the time-frequency distribution of a 

signal (Cohen, 1992). The method adopted in the proposed model is the spectrogram 

approach. Given a signal s(t), cmrupted by noise, its time-frequency distribution is 

expressed as: 

p(tj) "'J J J eflm'(rHlg(v, t)s'(u- k•)s(u + k•)rrfZ.f'dvdudt (6.6) 

where g is the kernel function and l is the complex: conjugate of s. 

For the spectrogram representation, the kernel function is: 

g(v, 't) == J h"(u- !•)e-J2"""h(u + t-c)du 

where his a window function and h' is the complex conjugate of h. 

(6.7) 

By substituting Eq. 6.6. to Eq. 6.7., the conventional spectrogram approach for 

time-frequency representation of a signal is written: 

p(t,j) = lkfl"'.<(<)h(<- t)d<l' (6.8) 

In this work, the proposed spectrogram method is perfonned by performing 

further transformation form the result ofEq. 6.8. This modificatiOn is cione to ensure 

the time-shift invariance and the time-origin invariance·: propenies of the 

time-frequency representation of the signal. The proposed' spectrogram method is 

defined in Eq 6.9: 

(6.9) 
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To give the example of this transformation, suppose s(t) is the signal which will be 

used to illustrate the time-frequency transformation: 

fort <p 
forps.t<l 
for/s.t 

(6.10) 

The signal stCt) and sit) contain a stationary sinusoidal signal with frequency equal to 

m1 and a sinusoidal chirp with frequency equal to m2• These signals are shown in 

Figure 6.2. and Figure 6.3, respectively. The difference in the signals in the two 

figures is the starting point of the chirp with the frequency mz. 

K(t) 

~ 
Figure 6.2 Signal s1(t) in Eq.6.10 withp =56, I= 300 

xltl 

Figure 6.3 Signal s2(t) in Eq.6.10 withp = 256, I= 300 

As shown in Figure 6.2, the signal s1(t) has a chirp that starts at the point 116 and in 

Figure 6.3, it shows that s1 (t) has a chirp starting at the point 1216• Both signals are 

transformed using conv~'ntional spectrogram using Eq 6.8 and displayed in Figure 

6.4. and Figure 6.5. for a 3-dimension representation, the x-axis represents the 
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frequency component of signal.!, the y~axis represe!lts the time, I and the z-axis the 

magnitude ofthe signal component in a particular frequency, G, which is the result of 

Eq. 6.8. To make the representation clearer the corresponding contour diagram are 

shown in Figure 6.6. and Figure 6.7, respectively. 

Figure 6.4 Conventional Figure 6.5 Conventional 

Spectrogram ofs1(t) Spectrogram of s2(1) 

f, 

., 

Figure 6.6 Contour diagram of Figure 6.4 
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Figure 6.7 Contour diagram of Figure 6.5 

The conventional spectrogram representations of the two signals are different, even 

though the original signals are not different. The cause that produces the difference is 

only the starting point of each frame of transformation. If the both signals are 

transformed using proposed method in Eq. 6.9 the result are Figure 6.8 for S1(t) and 

Figure 6.9 for s
1
(t) The x-axis represents the frequency component of signal,/, y-axis 

represent!: the changing of a particular frequency component, 9 and z-axis represents 

the result of transformation, G, defined by Eq. 6.9. 

G 

Figure 6.8 Proposed spectrogram Figure 6. 9 Proposed spectrogram 
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Figure 6.10 Contour diagram of Figure 6.8 

0 

0. 

0 

o. 

0.~ o.' / 
Figure 6.11 Contour diagram of Figure 6.9 

By using the proposed model, the spectrogram representation does not produce 

significantly different representations of them. It reduces the complex,. in detecting 

the signal, especially for non-sl<~.tionary signals. 

This fonnulatinn has been used to decompose a signal into different 

components (Cohen and Lee, \992) using one Short Time Fourier Transform 

(STFT) for each non-overlapped block of signal. The optimal choice of window for 

the spectrogram must depend on the signal involved and its characteristics at the time 
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of observation (Cohen and Lee, 1990). More complex feature extraction techniques 

such as Karhunen-Loeve which has been elctended by Fukunaga and Koonts will 

provide better result for a feedforward network to classify the input signals (Shat.idy 

and Leen, 1992), especially for the spectrum of signal as the raw data. Wavelet 

tmnsfonn as another option for time-frequency representations and has been applied 

for pitch detection of speech signal (Kadambe and Bartels, 1992). The proposed 

spectrogram approach is chosen due to its simplicity and low computational 

complexity, because it is based on the Fourier Transfonn. Therefore, it can be easily 

implemented using FFT algorithm. In the Appendix C the time-frequency 

representation of real noises that are recorded from tlte sample CD are shown using 

the proposed method. 

6.1.4 Spectral processing for the noise elimination 

The final filtering process of the corrupted signal itself is perfonned in the frequency 

domain. It means that the system perfonns the filtering process by manipulating the 

spectrum of the original signal. The spectral subtraction is used to remove the noise 

power spectral component. For the spectral subtraction, a direct estimation of the 

short term spectral-magnitude is required. 

Speech is assumed to be a random process and the added noise is 

uncorrelated. A speech signal contains a noise can be written as: 

x(k) "'s(k) + n(k) (6.11) 

The noise is assumed to be stationary in short-tenn. Since it is assumed that x and s 

are stationary process for limited time and 11 is uncorrelated. 

(6.12) 
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where they are the power density spectrum (PDS) of x(k}, s(k), and n(k), 

respectively. Since they are only stationary within a time limited frame, the 

short-time power spectra are related by: 

P~(ro) = P~(ro) +P~(ro) (6.13) 

where the superscript i is a fmme index. This short time model of the speech can 

approxin-ate the non-stationary signal (Cheng, 1991). However, in the conventional 

techniques, the noise is estimated with the second order during the silent-times 

(Deller, 1992) or from reference channel (two microphone system). 

If P, and an estimate of P"{.) are available, it is possible to estimate the power 

density of the uncorrupted signaL The estimated noise power spectrum signal is 

subtracted from the transformed noisy input signal.: 

(6.14) 

Using DTFT, in the window size of/11, : 

f',(ro;m) = f_,(ro;m)- f' n(ro;m) (6.15) 

I. I' ' 1· I' Ss{ro;m) = IS..(ro;m)l - Sn(ro;m) (6.16) 

The filtering process of the noisy speech in general by using this approach can be 

shown in the following Figure 6.11. Details of this techniques can be found in Boll 

(1979), Deller et al, (1992). This method starts by performing a OFT to transform 

the signal conupted by noise into the frequency domain representation. After 

performing the noise spectra estimation, the spectra o.f signal corrupted by noise is 

modified by subtracting the estimated noise power spectra. Finally, the IDFT is 

performed to yield the time domain representation of the noise-free signal. 
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Figure 6.12 Speech enhancement process using STFT (Boll, 1987) 
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This method was first developed by Weiss et al. (Weiss et al., 1974) and used for 

suppressing tones, clicks and broadband additive noise. This spectral subtraction 

method has improved the intelligibility score as shown by Boll (1979). It has been 

used to restore old music records (Blesser, 1978). 

In this noise elimination model, the Fuzzy-CPN performs the estimation of the 

noise spectra in the signal. This estimation is perfonned by exploiting the associative 

memory capability of the Fuzzy-CPN. However, an additional process is still 

required in order to produce the final output of the filter. It can be done using 

spectral subtraction method (Boll, 1979), or adaptive comb filter or by using a 

structure such as graphic equali5er. 

Since the noise is not stationary for a long time period. A method for 

estimating the noise spectrum is required. The choice for this model i~. ~he average 

periodogram. Periodogram is one of the cost-eiTective techniques for estimating the 

speech signal (Godwin <:i a! . 1988). 

Define a truncated signal : 

forn=O, l,2, .. N-i 

otherwise 

The estimation of the power spectrum of this truncated signal is: 

(6.17) 

(6.18) 



160 

where the transfonns ofboth the original and truncated signal are : 

(6.19) 

to yield a consistent estimator of S {x(n), 11 = 0, I, ... N-1}. XN is divided into K 

segments, each oflength M = N/K. 

X(l)(n) = x(iM + 11) n=O,J, ... ,M-1 
i=O,l, ... ,K-1 

Periodogram of each segment oflength Misgiven by: 

The average of the periodogram is: 

K( ) 'I~,,, I 5;.1 co =K ~Jj.r(ro) 

(6.20) 

(6.21) 

(6.22) 

The average of the periodogram is a consistent estimator and unbiased estimator of 

the power spectra. x(n) is assumed to be stationary and JM is an :.tsymptotically 

unbiased estimator. Therefore, S is asymptotically unbiased as well. The correlation 

between x(n) and x(m) will be weaker as the difference between m and 11 become 

larger. 

In estimating power spectra using periodograrns, a finite number of the input 

signal sample is used by applying rectangular window to the input signaL The 

number of the input signal sample in that window determines the bias t-: the 

periodogram to estimate the power spectrum. The bias is inversely proportional to 

the number of the input signal sample. Furthermore, by using a finite number of the 

input signal sample, the periodogram produces poor frequency resolution 
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To choose the number of the input signal sample in a window that is used to 

estimate the PSD of the signal, there is a trade-off between the choice ofK and Min 

Eq. 6.20. For fixed N, once K is chosen so isM= N/K. IfK is larger, the reduction 

in the variance of 5t;.(oo) will be larger, but it has a larger bias and poorer frequency 

resolution. For a smaller K, the reduction in variance will be smaller, but S{:;(ro) has a 

smaller bias and better frequency resolution. 

In order to reduce the trade off between the variance and tl . .! frequency 

resolution, the block are partially overlapped the sequence. It reduces the bias of the 

periodogram in estimating the power spectrum because the correlation between 

i11 and W is stronger when \hey are adjacent blocks that overlap. Consequently the 

reduction of the variance of SZ(ro) will not be large as large as in the case of 

non-ovelapping blocks. It produce smaller bias and better frequency resolution. 

The process of calculating the periodogram is performed by exploiting the 

Fourier Transfonnation which is implemented using the Fast Fourier Transformation 

(FFT). The FFT algorithm has been developed for a long time and explored widely 

since Coley-Tukey released their paper (Coley and Tukey, 1965). Those algorithm 

are Coley-Tukey Algorithm, Rader-Brenner Algorithm, Good-Thomas Algorithm, 

Goertzel Algorithm, Winograd Algorithm., and the other modifications. The FFT 

algorithm can meet the lower bound on the multiplicative complexity of OFT 

(Duhamel, 1990). Th1~ algorithm has been improved by digit-reversal pennutation 

(Evans, 1987), split radix (Duhamel, 1986). For computing the inverse OFT, FFT can 

use the forward OFT (Duhamel et al., 1988). 

Cyclic con;•olution of real data can be performed efficiently using Fourier 

Trnnsform algorithm (Duhamel and Veterli, 1987). Therefore the final filtering 
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process is perfonned by implementing the spectral subtraction and the final result is 

obtained after executing the Inverse FFr. 

6.2 Fuzzy-CPN for Background Noise Elimination 

Artificial Neural Networks (ANNs) offer an alternative technique for adaptive 

filtering. In the area of background noise elimination, Xue (Xue et al., 1992) has 

applied an ANN-based adaptive matched filter in biomedical processing. Lippman et 

a\. (Lippman et al., 1989) have shown the capability of ANN to perform adaptive 

pre-processing for signal detection in non-gaussian noise. The noise reduction 

problem has been considered in the development of robust speech recognition 

(Trompf, 1992). 

Unsupervised learning can learn the hidden structure of speech (Hambaba,et 

al., 1990). The network can develop a rich internal representation and the learning 

provides a systematic way to find the features in data. It has been applied in many 

areas such as the pitch detection of an acoustic source (Cohen et. al., 1992) (Cole et 

al., 1991), initial data reduction to acoustic data in the engine fault detection (Hewitt 

et al, 1989), the electroencephalogram classification (Tsoi et al., 1993). the fault 

testing on the helicopter gear box using the vibration wave of machine (Rock et al., 

1993), and a spectral processing of harmonic complex tone and pitch (Tomlinson and 

Treurniet, 1990). The application of ANN model for signal detection and 

classification is due to the fact that it will be able to reduce the computational 

complexity. 

Backpropagation networks (BP) have been used for the adaptive noise 

filtering by using the spectral data as the input data to remove wh"1te noise from the 
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input signal. Although, BPs are successfully in reducing the overall error in ol~taining 

a pure signal from noisy spectrum, they fail to pay attention to the detal.ls of the 

spectrum (Weber et al., 1991). Moreover, BPs have three major problems. Firstly, 

the energy surface of cost function has many local minima. Secondly, it is difficult to 

analyse the behaviour of the hidden units. Thirdly, the BP learning algorithm is 

extremely slow. Conventional backpropagation networks cannot handle input data of 

a large dimension and not capable of extracting spatial features. Moreover, they 

cannot be applied effectively to extract the signal feature from the 2-dimensional FFT 

spectrum (Palakal and Zoran, 1992) .. 

Fuzzy logic has been used for Active Noise and Vibration Control (ANVC). 

(Kipersztok, 1993). This approach uses two microphones, one for the noise only and 

another for the combination of source signal and noise signal. lt has been applied to 

some areas such as noise control in rooms. However, it still uses an adjustable-FIR 

structure which is controlled by a fuzzy controller. 

Another method for applying the ANN model is the Orthonormal Neural 

Network (ONN) using the Fourier method to remove noise from the corrupted signal 

(Uiug, 1992). The speech enhancement auditory evidence method can be applied for 

stationary and non-stationary noise. The advantages of this method is that it does not 

need any a prior knowledge about the noise, and only a modest computation is 

required (Cheng et al., 1991 ). 

6.2.1 Structure of the model 

The proposed fuzzy neural model should be able to satisfY some application 

constraints: 
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• There is no clean speech signal for target patterns, which should be derived 

from the input patterns. The network cannot be trained using a clean -speech 

signal; 

• Learning must be performed as fast as possible with a small number of 

iterations; 

• The neural network should be able to adapt its structure to minimise memory 

usage; 

• Fast processing time is required for real-time operations, i.e. the network has to 

be implemented in parallel processing. 

In the proposed approach as shown in Figure 6.12, the Shc.rt-Time Fourier 

Transform (STFT) is first used to get the frequency representations for overlapped 

blocks of signal samples. Then another STFT is performed at the same frequency to 

all the resultant frequency representations to obtain the change of the frequency of 

the signal. The result of this manipulation is to extract finer representation of the 

frequency feature of the signal. The final outcome of the transformation of the signa: 

is a two-dimensional array as shown in Figure 6.9 or Figure 6.10. of a single time 

block of the input signal. This array is then fed into the neural network. 

Basically the noise elimination performs three main steps in eliminating the noise in 

the corrupted signal . 

• Detection of the noise; 

• Estimating the noise power spectra; 

• Performing spectral manipulations to produce the uncorrupted signal. 
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Figure 6.13 Input signal acquisitio-n process. 
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These steps are rather similar to the auditory evidence method that was proposed by 

Cheng (Cheng 1991), which incorporates the simulation of the ear's enhancement 

model. This method makes use of spectra average and perfonns the distance measure 

between spectra. The calculation involves direct and inverse fourier transforms, 

spectra convolution and time domain convolution (Cheng, 1991). The other model 

which is similar to the proposed model is the signal enhancement model that has been 

applied for audio restoration in music recording, i.e. to remove click and scratch. It 

works by detecting the click and scratch, thus removes them by performing an 

interpolation of the signal in time series. It has been used in the Gerrard MRM-101 

Music Recovery Module using signal interpolation techniques (Reid, 1989). 

However, the difference between this model is that the detection and the estimation 

of the noise spectra are perfonned using a trainable system Fuzzy-CPN without 

taking any assumption of the noise and the signal model. 
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The operation of the proposed system consists of two phases, the first is 

training phase and the second is the recall phase. In the training phase, the system 

picks up the background noise and trains the system to build the template of the noise 

which will be used to estimate the noise power spectra in the recalling phase. Each 

template is encoded as a fuzzy neuron in the middle layer and each of them is 

associated with a model of average periodogram as the power noise estimation of the 

noise. The average periodogram is encoded as the weights of the defuzzifier neuron. 

This training phase has to be done in real time with very small number of iterations 

because, every time the system is used, it has to be trained to model the background 

noise ofthe environment where the system is used. 

In the recall phase, after being input with the corrupted signal, the 

Fuzzy-CPN estimates the noise power spectrum of the signal by using associative 

characteristic of the Fuzzy-CPN. After that, this information is used to process the 

corrupted signal, and is fed into the adjustable filter. The adjustable filter can be 

formed by using Finite Impulse Response (FIR) filter, Infinite Impulse Response 

(IIR) filter or by using resonator bank filter (Sztipanovitz, 1989). In this work the 

spectral subtraction method is used in the frequency domain. Since the frequency 

domain representation of the input signal is already available from the time-frequency 

representation, frequency domain filtering is performed. However, this structure has 

a problem in the block boundaries, and may lead to small discontinuities at the filter 

output (Shynk, 1992). To an application such as speech, this r!isadvantage does not 

significantly effect the human testing. In our model, the effect of small discontinuities 

in the output signal is reduced by overlapping the blocks of input samples. 
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Suppose [x(k), ... , x(k+M)] is a block of the input signal samples, where x(k) 

is the input signal at time index k, and M+ l is the number of input samples for one 

block of signaL The first transfonnation is executed to the frames [x(k), ... ,x(k+N)], 

[x(k+L), ... , x(k+L+N)], ... , [x(k+PL), ... , x(k+PL+N)], where N is the number of 

sample in a frame for the first Short Time Fourier Transfonnation (STFT), L is the 

number of overlapped samples, P is the number of frames in a block which are 

processed by the STFT. 

Each successive block frame produces the magnitude of the STFT (F1, •• 

FM) and for all frames in one block they are denoted as : 

where for F IJ , the index i in the subscript represents :!h:quency number as the result 

of the SIFT. The index:j denotes the frame number. Thll conventional spectrogram 

approach stops at this point and produces this matrix F as the final result. 

For further step of the proposed transformation, the second STFT is 

performed to the F which has the same i-index. Therefore, the data are rearranged 

into this structure : 

Each block (F ... F) is processed using the STFT again and it yields the other 

matrix: 

Therefore, the matrix G represents the changing of signal at p!i>iic;.dar frequency or 

the changing ofth~.. ~~~.quency component of the signal. The matrix G is fed into the 
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Fuzzy-CPN system as the input signal. The value of first STFT (F ... F) is used to 

calculate the average periodogram in order to estimate the noise power spectra of the 

training patterns. Let h be the average periodogram of the signal from the {x(k) ... 

x(k+M)} and h is calculated using Eq.6.22. The frames of signal sequence are shown 

in Figure 6.14. 

~11<1 
xlk+1l xlk+L) 

• 
I I 

xlk+Ll xlk+L+N) 

Figure 6.14 Frames of the signal 

For this Fuzzy-CPN, the set of training patterns is {(Gp h1), (G2, h1), •.. , (G •• hn)}. 

This set of training patterns is supplied to the Fuzzy-CPN. The training is performed 

using G as the input signal and b as the desired signal. 

During the recall phase, after an input signal is given [x(k), ... , x(k+M)], the 

same steps are performed to produce the time~frequency representation of the input 

signal G;o· The Fuzzy-CPN produces the average periodogram h.u, as the noise 

power estimation of the signal corrupted by noise. After that, this h information is 

used to perform the spectral subtraction. The result of the spectral subtraction is the 

spectrum of the noise-reduced signal. 
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6.2.2 Fuzzy-CPN as associative memory 

As stated in the previous section, to eliminate the noise from the corrupted signal, the 

system performs the mapping from the signal corrupted by noise onto the 

noise-reduced signal space. In performing this mapping process, the system acts as an 

heteroassociative memory (Rumelhart, 1989). Given a time-frequency representation 

of the signal G, the system produces the average periodogram h of the noise 

associated with the received signal including noise. This average periodogram is used 

to perform spectral manipulation of the signa!. 

lima-Frequency 
Representation 

G FCPN Model 

cp Wlcpcp 
' Template I 

'-.l_;, I~ W2QQ 

Noise Powe 
Estimation 

......... 1 

Figure 6.15 Fuzzy-CPN (F"CPN) as associative memory 

In Figure 6.15, basically, the Fuzzy-CPN determines the time-frequency 

representation G of the signal and can classify it into one class of templates. In the 

Fuzzy-CPN, those templates are-encoded in the weight WI. Since the Fuzzy-CPN 

employs the fuzzy approach, in this classification process, it docs not produce a 

template as a winner. It produces a membership value of the input signal to be 

classified into each template. The periodogram of each template itself is encoded in 

the Wl as the centroid of each class. 
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In the Fuzzy-CPN, there is one to one correspondence ofG to h, i.e. {(G0 ~ 

hJ, (G1 -+ b1), ... , (GN-+ hN)}. It is clear that they actually represent a set of the 

fuzzy rule as : 

IF input is G; THEN output is h, 

However, since the system uses fuzzy set approach in detennining the output which 

relates to its template, the output is a combination of the templates or the new model 

of the template. The final output itself can never exist in the set of {h0, h1, ... h;) or a 

new fonn of h. 

The Fuzzy-CPN has the ability to do novelty detection (Kohonen, 1990). It is 

different from the conventional CPN which uses a winner take-all structure at the 

middle layer. For the associative memory, the output value of conventional CPN is 

limited to the number of neurons at middle layer. It meam that the capacity of the 

conventional CPN is equal to N, where N is the number llf neurons in middle layer 

(Singh et al., 1992). The capacity, that is the number of patterns that can be stored 

without the model performs an interpolation in the recall phase, in this proposed 

model is not limited by the number of neurons in the middle layer. Thus, the capacity 

is greater than N. The capacity is influenced by the overlapped areas of the receptive 

fields of the fuzzy neurons in the middle layer. It is due to the fact that the function 

produced by the Fuzzy-CPN becomes smoother whenever the fuzzy neurons have the 

overlapped area amongst each other. 

It can be viewed that the fuzzy neurons, besides performing IF-THEN rules, 

work as the attractors in the input space. After training is performed, the fuzzy 

neurons relax as a number of attractors. There is evidence that the representative 
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inner states do not necessarily correspond to any real input states. In other words, it 

does not necessary mean that an attractor represents a class of real noise. This 

associative capability of Fuzzy-CPN is exploited to perfonn the estimation of the 

noise power spectra ofthe signal corrupted by noise. 

6.3. Simulations 

The software simulation for the system has been performed and the results are given 

below. For simulation purposes, Gaussian noise are used for training the network. 

The size of the network used consists of 16x 16 nodes for the input layer, only 20 

neurons in the middle layer, and \6 neurons in the output layer. The pis equal to 0.1 

and the alin•• is equal to 0.25. 

The measurement of the filter performance is represented by using Signal to 

Noise Ratio (SNR). For this experiment, the SNR is calculated using 

(6.23) 

where P,r~»1 is the power of signal and P"""' is the power of noise. The simulation 

results are performed by using off-line simulation. The noise is obtained by 

generating the Gaussian noise using DSPWorks® sofiware (Momentum Data 

System, 1992). The noise elimination process is perfom1ed by the software 

simulation written in PASCAL. After training the Fuzzy-CPN with this noise, a 

signal corrupted by noise is given to the system. The result of noise elimination is 

shown in Figure 6.17. 
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Figure 6.16 Sinusoidal input signal corrupted by Gaussian noise with SNR equal to 

17.49 dB 

t 

Figure 6.17 Output signal after filtering, with SNR equal to 27.07 dB. 

Figure 6.16 shows the input sinusoidal signal corrupted with Gaussian noise with 

SNR equal to I 7.49 dB and Figure 6.17 the resultant output signal from the system 

with an improved SNR equal to 27.07 dB. It is shown that the corrupted signal can 

be recovered and only a small portion of noise still exists in the signal. However, the 

remaining noise can be eliminated by using a low pass filter, 



173 

<IU 

t 

Figure 6.18 Sinusoidal input signal with amplitude modulated, with SNR equal to 
' 

2Q.31 dB 

I 

t 

Figure 6.19 Output signal after filtering, with SNR equal to 25.52 dB. 

To test the magnitude response of the system, a sinusoidal signal _which has been 

amplitude modulated, as shown in Figure 6.18, is fed into the system. The original 

signal is almost recOvered with SNR 25.52 dB, which is shown by Figure 6.19, with 

its_ amplitude unchanged. However, there is a small boundary prob_lem in this 

simulation. 
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Figure 6.20 Sinusoidal input signal with frequency .modulated, with SNR equal to 

12.37 dB 

Figure 6.21 Output signal after filtering with SNR equal to 29.03 dB. 

The frequency selectivity of the system is tested by a frequency modulated signal as 

shown in Figure 6.20. The results in Figure 6.21 shows that the original signal is 

recovered but with a small phase shift. The reason for the phase shift is the use of 

frequency domain filtering for the filter. The problem can be solved by using 

resonator bank filterr instead of frequency domain filter, or making use of the phase 

information of the noise when the spectral subtraction is performed. 

To test the system with the real noise, some real noises are used. For 

investigation purposes, a I KHz sinusoidal signal is used as the desired input signal. 

The noises are sampled from CD by using TMS320C25 DSP Card (Dalanco Spry, 
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1993) which is controlled by DSPWorks® software (Momentum Data System, 

1992). Aft~_r the system has been trained using the noise, the sinusoidal _signal mixed 

with the noise is input to-the system. The system trie'S to eliminate this noise and 

produce the desired signal. The detailed result of this experiment are shown· in 

Appendix C. The results show a significant improvement. 

These simulations show that the proposed noise elimination model can work 

effectively in the situation where tl~e SNR of the corrupted signal is low. This 

condition makes the syste·m more easily detect and estimate the noise power spectra 

in order to perform spectral subtraction. When the SNR of corrupted signal is high, 

the signal becomes dominant compared to the noise. It creates difficulty for the 

Fuzzy-CPN to estimate the noise that corrupts the signal. Furthennore, for 

correlated noise, this method cannot produce a good result, because the spectral 

subtraction work under assumption that the noise is uncmrelated with the signal. 

This proposed model for noise elimination produces a promising result to be 

applied in the real time application using a dedicated signal processor system. The 

system makes use of both time and frequency representation of a signal as input to a 

neural network based adaptive filter. The formulation of the time frequency 

representation has been given and modifications of the transformation process using 

overlapped blocks of signal has produced the frequency representation of the signal 

to overcome the boundary problem. In addition, the use of a second short-time 

Fourier Transform on th"e spectrogram to extract finer details on the frequency 

changes of the signal results in better representation of the frequency feature of the 

signal. 
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Conclusions 

7.1 Summary of Results 
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The speech enhancement process is required because speech transmission and 

processing are often degraded by acoustic or ~lectrical noises. This process is 

expected to improve the quality and intelligibility of the received signal. In the 

non-linear problem, most of conventional linear adaptive filters technique, such as 

Least Mean Square (LMS) or Recursive Least Square (RLS), cannot tackle the 

speech enhancement task with satisfactory result. 

Basically, an adaptive filter perfonns the adaptation process by performing 

fin ction approximation to produce an a priori ouput, followed by a particular error 

correction algorithm to reduce the error between the a priori output and the desired 

signal. Therefore, by implementing a non-linear function approximator, an adaptive 

filter which can solve a non-linear problem can be built. Furthermore, a function 

approximation capability of the adaptive processing should be considered as the main 

aspect because it dictates the error produced by adaptive system. 

ANN has the capability to learn the input-output relation in the non-linear 

relationship and requires less assumptions to build the model. The fuzzy approach is 

built up from the possibility theory and may be used to deal with the ambiguity or the 

vagueness. Both ANN and Fuzzy System (FS) are model-free estimato-rs that can 

estimate a function without knowing th'~ mathematical mode_! of the inrut-output 

relation in performing a mapping from input space to the output space. It is ensured 

by the existence theorem from Kolmogorov for ANN and the Stone-Weierstrass 

I 

I 
---I 

I 
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theorem for the FS. The learning capability of ANN model can reduce the 

development time and the cost of designing the fuzzy system. A combination of both 

techniques yields a learnable system that can deal with the vagueness problem. 

A novel ANN model, namely Fuzzy Counterpropagatio~ Network 

(Fuzzy-CPN) has been developed, which is a prototype based mapping network with 

a self growing structure. It has a fast learning capability in order to perfonn a 

continuous function approximation in an 'adaptive -fil.ter. The Counterpropagation 

Network paradigm is chosen as 'the basic paradigm due to its features that are simple, 

fast, and easy to train. The architecture ofthis proposed model is self-growing. The 

architecture of the network always adapts during the training process and has three 

main activities of the fuzzy neurons at the middle layer : neuron generation, neuron 

adaptation and neuron annihilation. 

The constructive learning by specialisation with internal states is applied in 

this proposed model. It only requires minimal number of iterations. During the 

learning phase, the Fuzzy-CPN generates the fuzzy neurons from the set of examples 

of input-output pairs. Each fuzzy neuron performs the fuzzification process and acts 

as the fuzzy rule. 

Although the Fuzzy-CPN is a prototype-based mapping network, during the 

recall phase it does not produce a prototype as a winner but produces the fit value of 

the input vector to each prototype. Since there is no mechanism for finding the 

winning prototype, the recall mechanism can be implemented in parallel processing 

directly. Furth~rmore, this proposed model does not suffer from the· grandmother 

cell problem which is usually encountered by the competitive model and becomes 

more robust than the competitive model. 
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The Fuzzy-CPN has shown the capability to perform non-linear function 

approximation by employing the learning mechanism using the input-output pair of 
> > 

the approximated function. The FCPN can produce a discontinuous and non-linear 

function. The result is promising and shows that the FCPN has good generalisation 

and localisation properties in approximating a function This function approximation 

capability is suitable for the adaptive filter task such as system identification, signal 

estimation and signal correction in time domain or in frequency domain. 

The Fuzzy-CPN has learning parameters that are easy to specified arld not 

sensitive to the network performance. Thus, this Fuzzy-CPN is easy to build and 

train. To adjust the learning parameter the following steps &reapplied. Firstly, the 

number of middle neurons is set to be unlimited. Secondly, p is set in "the range 

0.01-0.02 and the p value that produce the lowest MSE with the smallest number of 

fuzzy neuron is chosen. Thirdly, the number of available resource for the middle 

layer is reduced to the 50%-60% of the maximum fuzzy neuron number generated for 

the chosen p. Furthermore, to obtain further improvement, the a.1imit can be set to be 

equal to 0.6. Since the learning is performed quickly the adjustment of the learning 

parameter is not time consuming. 

The Fuzzy-CPN model has been applied to solve to predict the Mackey-Glass 

chaotic time series. It is perfonned by applying the non-linear function 

approximation capability of the Fuzzy-CPN. In addition, it has been shown that the 

on-line update capability of this network provides an error reduction in the recall 

phase. In contrast with another ANN model whiclt requires an iterative leamin~ 

scheme, the Fuzzy-CPN can implement an on-line adaptation process. The on-line 

adaptation capability is suitable for the real time applications, especially, in time series 



179 

prediction problem, after perfonning a prediction, the real value of the next time 

series can be used to refine the network for predicting the future value. 

The associative memory capability of the Fuzzy-CPN is applied in a 

background noise elimination system for the input signal that is corrupted by 

non-deterministic noise and non-stationary noise. The Fuzzy-CPN model is combined 

with the spectrogram as time-frequency representation, the periodogram and 

associative memory for th~ noise power estimation that are used in the spectra 

subtraction technique. 

By extending the conventional spectrogram method to the proposed 

spectrogram method, the time-shift variance and time-origin variance of the signal 

can be tackled by the modeL Thus, the proposed spectrogram can extract finer 

details on the frequency changes of the signal results in better representation on the 

frequency feature of the signal. The fonnulation of the proposed spectrogram has 

been given. By using overlapped blocks of signal has produced the frequency 

representation of the signal to overcome the boundary problem and provides better 

noise power spectra estimation. 

Although the Fuzzy-CPN is a prototype based mapping network, the final 

output of the Fuzzy-CPN is not always one member of the prototype sets. This is 

due to the recall mechanism of the Fuzzy-CPN which employs the fuzzy set 

approach. The final output may be the combination of the prototypes or a new model 

of the prototype. The final output itself may be a new form of any member in the 

prototype set and never exists in the set of prototype. Therefore, the ability of the 

Fuzzy-CPN in doing novelty detector or to deal with plasticity-stability problem is 

shown. 
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Software simulation results with some typical signals corrupted by Gaussian 

noise are also presented. Followed by the simulation using the real noise which are 

the street noise, the crowded in a pub and the footstep. After the system has been 

tre:ned using a particular noise, the sinusoidal signal as the desired signal is mixed 

with that noise and the system eliminates the noise and reproduces the desired output 

signal. These simulations show that the proposed noise elimination model can work 

effectively in the situation where the SNR of the conupted signal is low. In a loFI 

SNR condition, the proposed noise elimination model performs noise power spectra 

estimation that is used in the spectral subtraction process better than in a high SNR 

condition. In a high SNR condition, the desired signal becomes dominant compare to 

the noise, therefore, the noise power spectra estimation becomes more difficult, but in 

this condition a noise elimination process becomes less important. The simulation 

shows a significant in.provement anC a promising result to be applied in the real time 

application using a dedicated signal processor systrm. 

7.2 Future Improvements 

In the implementation of this proposed model there are some constraints . Firstly, 

since tl-..., radial function is used as the basis function, the dimension of the input space 

determines the generalisation and the localisation of the model. Secondly, since this 

proposed model performs learning by using the internal state, the amount of memory 

that is used by the model limits the implementation of the model, because each 

neuron must store their own internal state. 

Further improvements to the model can be performed. They are suggested as 

follow: 

l 
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• When the fuzzy neuron perfonning the expansion of the receptive field in the 

Step 5. Eq 4.19. A coefficient of expansion can be inserted into this function 

to control that the receptive field will not grow unbounded. This mechanism 

give more effects to control the expansion of the receptive field of a fuzzy 

neuron when a fuzzy neuron is just generated. 

• Neuron fusion mechanism can be incorporated to this model. Instead of only' 

annihilating a fuzzy neuron, the fuzzy neuron that will be annihilated is merged 

to the closest fuzzy neuron. This mechanism improves the capability of the 

model to cover the whole input space without forgetting the old patterns. 

• In this proposed model, during the learning the receptive of fuzzy neuron is 

always expanded. It can be improved by conlr.acted the region of recliptive 

field which has been used in some fuzzy neural model such as Fuzzy Min-Max 

(Simpson et al., 199) 

• During the training a particular costfimction can be applied in order to control 

the neuron generation process or neuron annihilation process. This cost 

function can be MSE of the prediction output and the desired signal or the 

separation ofthe fuzzy partition. 

7.3 Conclusions 

The formal model of the neuron, fuzzy neumn and the architecture of an ANN model 

has been described in this thesis. This fotlotulation is used to specifY a novel fuzzy 

neural network arr,hitecture which is identified as the Fuzzy-CPN. Although this 

model is a prototype-based mapping network that employs Counterpropagation 

paradigm as the basic paradigm, it does not suffer from the grand mother cell 
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problem and it can perform the novelty detector. This proposed model combines the 

fuzzy set approach with the artificial neural network techniques, a combination of 

both techniques may result in a leamahle system that can tackle the vagueness 

problem of a changing environment The capability to perform a non-linear function 

approximation is used as the basic structure of the adaptive filter, which can operate 

in an unknown environment. The Fuzzy-CPN has fast learning capability and 

self-growing structure, and it applies the constructive learning by specialisation with 

the internal states. This learning scheme is expected to be able to reduce the 

development time and cost of the designing adaptive filters based on fuzzy set 

approach, because it is easy to specify the learning parameter of the Fuzzy-CPN. 

Tlte Fuzzy-CPN has been applied to tackle the adaptive filter tasks. It has been 

applied for the signal estimation problems. This model is used to predict the 

Mackey-Glass chaotic time series. The result of simulations shows that tlte 

Fuzzy-CPN can predict with only a small numbers of learning iteration and produces 

an acceptable result. For the signal correction tasks, this model has been applied for 

the background noise elimination problem by combining the Fuzzy-CPN with 

time-frcquer~cy representation and spectral subtraction method. The result is 

promising to be applied ir. a dedicated Digital Signal Processing system for real-time 

applications because this Fuzzy-CPN model can be easily implemented in a parallel 

processing system. 
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ANF!S 

ANN 

ANVC 

APNC 

ARMA 
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BDN 
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CPN 
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DFT 

DN 
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FBF 
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FCPN 

FFP 

FFT 

FIR 

FN 

FS 

GRNN 

ICM 

ICPN 

IDFT 

Appendix A 

Glossary of Acronyms 

Algorithm for Multiple Unknown Signal Extraction 

Adaptive Noise Cancelling 

Adaptive Network based Fuzzy Inference System 

Artificial Neural Network 

Adaptive Noise and Vibration Control 

Adaptive Periodic Noise Cancellation 

Auto Regressive Moving Average 

Adaptive Resonance Theory 

Bi-Directional Neurons 

Backpropagation Network 

Counter Propagation Network 

Composite State 

Defuzzifier Control Neuron 

Discrete Fourier Transfonn 

Defuzzifier Neuron 

Extended Fourth Order Blind Identification 

Fuzzy Basis Function 

Feed Back Path 

Fuzzy Counter Propagation Network 

Feed Forward Path 

Fast Fourier Transfonn 

Finite Impulse Response 

Fuzzy Neuron 

Fuzzy "ystem 

General Regression Neural Network 

Input Connection Map 

Interpolative Counter Propagation Network 

Inverse Discrete Fourier Transfonn 
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IFFT Inverse Fast Fourier Transfonn 

IIR Infinite Impulse Response 

LBG Linear Basis Function 

LMS Lea~t Means Square 

LPC Linear Predictive Coding 

LTM Long Tenn Memory 

MEM Maximum Entropy Method 

MLM Maximum Likelihood Method 

MPS Modulating Parameter Structure 

MSE Mean Square Error 

MUSIC Algorithm for Multiple Signal Classification Method 

NIE Network Input Element 

NOE Network Output Element 

OCM Output Connection Map 

PAA Parametel" Adaptation Automata 

PCS Parameter Control State 

PF Projective Field 

PK Processing Kernel 

PSD Power Spectral Density 

PSTF Parameter State Transition Function 

RBF Radial Basis Function 

RF Receptive Field 

RFBS Received Feedback Signal 

RLS Recursive Least Square 

RMS Root Mean Square 

SNR Signal to Noise Ratio 

SOM Self Organising Map 

STF State Transition Function 

STFT Short Time Fourier Transform 

STM Short-Tenn Memory 

TFBS Transmitting Feedback Signals 

TFBV Transmitting Feedback Vector 
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UDN Uni~Directiona1 Neuron 

VLSI Very Large Scale Integrated circuit 
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Mackey-Glass Chaotic Time Series 
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Chaotic time series is a detenninistic and non-linear series. Mackey-Glass chaotic 

time series is generated from the following delay equation : 

dx(t) =· ax( I-T) _ hx(t 
dt I +x"(t t) 

In this work the following constants are used : 

a=0.2; b=O.l ; c= 10 

Therefore the Eq. B.l is rewritten as : 

dx(t) = 0.2x(l- t) - O.Jx(t) 
dt I +x10(t -c) 

(B. I) 

(B.Z) 

(8.3) 

where the ' value detennines the chaotic behaviour of the function. Choosing the 1: 

value > 17 produces a chaotic behaviour. In this experiments, • equal to 30 is used. 

This value is similar to the model that has been used by Wang and Mendel (Wang and 

Mendel, 1992). 

To generate the time series, Euler method is used Lo solve the Eq. 8.3. The 

following initial values are used to generate the time series: 

x(0)"'0.7 

x(t)"'x(0)+0.02.t ;t=1,2, ... ,30 

After t > 30, the Euler method is applied to produce x(t) where t = 31, ... , 1000. 

This time series is shown in Figure B.l. 



208 

'1 
x(tl 1 

IV 

"·' 

,L-----L-----L-----1--L--L------•, 

" '"" '"" 1000 

Figure B. I Mackey-Glass chaotic tim~ series 
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4ppendix C 

Example of Real Background Noise Elimination 

In this simulation 3 kinds of real noise are used. The noises are taken from CD 

sample (Spectacular Sound Effect, EMI Record Ltd, 1990). Those noises are 

• Sound of Typical Street Noise. 

• Sound of Crowd Cheering in a pub. 

• Sound of troop marching. 

Those sounds are sampled by using DSP board TMS320C25 from Dalanco Spry with 

sample rate is equal to 5 KHz. As the testing signal a 300Hz sinusoidal wave which 

is created by signal generator is used. 

The Fuzzy~CPN is trained only using one type of noise. After that the test 

signal is added with the same noise. This corrupted signal is fed into the system. The 

Fuzzy-CPN eliminates the noise from the corrupted signal and produce a noise-free 

signal. These steps are performed to all noise. 

All these simulation have not been performed in real time. The spectrogram 

and the spectral subtraction and FFT is performed by using separate software. The 

Fuzzy-CPN simulator software are only supplied by the spectrogram and produces 

the average periodogram. 

Firstly, the noises are represented by using conventional spectrogram method 

and the proposed spectrogram method in order to compare the \loth methods. It 

shows that the proposed method provide a clearer representation in order to detect 

the noise. Secondly the simulation of background noise elimination using those 

noises are shown. 
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Street Noise 
This noise is typical noise of a street, there is sound of car, people walking, 

people talking. This noise is combination of the stationary noise from the street 

background and non-stationary noise, such as car, hom etc .. 

x(tl 

t 

Figure C.! Time-domain representation of street noise 



Figure C.2 Conventional spectrogram of signal shown in Figure C.! 
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Figure C.3 Contour diagram of Figure C.2 
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Figure C.4 Proposed spectrogram of signal shown in Figure C. I 
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Figure C.5 Contour diagram of Figure C.4 
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Foot Step noise 
This transient noise is recorded from the sound of foot step in the silence 

environment. This noise is an example of non-broadband noise and non-gaussian 

noise. 

xi~ 

Figure C.6 Time-domain representation offoot step noise 
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Figure C.7 Conventional spr..::trogram of signal shown in Figure C.6 
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Figure C.8 Contour diagram of Figure C.7 
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f 

Figure C.9 Proposed spectrogram of signal shown in Figure C.6 
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Figure C.\0 Contour diagram of Figure C.9 
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Crowded (people talking in a pub) noise 

This noise is example of broadband noise and stationary noise. However, this noise is 

taken from the real environment which is non~gaussian. 

x(t) 

t 

Figure C.l I Time-domain representation of crowded noise 
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Figure C.12 Convt:ntional spectrogram of signal shown in Figure C.ll 

Figure C.!3 Contour diagram of Figure C.\2 



Figure C.14 Proposed spectrogram of signal shown in :figure C. II 
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Figure C. IS Contour diagram of Figure C.l4 

218 



Result of Real Noise Filtering 

Street Noise 
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Figure C.\6 Input signal : sinousidal and street noise 
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Figure C.\7 Output signal 
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Crowd Cheering 
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Figure C. IS Input signal : sinusoidal with crowd cheering noise 
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Figure C.\9 Output signal 



Troop Marching 
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Figure C.20 Input signal : sinusoidal with troop marching noise 
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Figure C.21 Output signal 

221 



R= 

Appendix D 

List of Equations 

M 

y(n)= L w(k}x(n-k) 
>-M 

x(k) ~ X(ei"') 

1(ei•) = '!'(X(&"), Y(&")) 

x(k) ®y(k) {, X(d") · Y(d") 

<(k) = d(k)- y(k) 

r:u(O) r.u(l) ... rn(L-1) 
rn(i) r:u(O) ... r.a(L-2) 

r:u(L-1) r:u(L-2) . . . r:u(O) 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 



MSE=E(<l] =E[ (d,-y>J'] 

= E[ dl] + E[yl]- 2E[d<Y•l 
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=rdd(O)+r.»'(0)-2rt~y(O) (2.13) 

L-1 L-1 L-1 

MSE =raa(O)+ :E :E W/Wmrn:(i-m)- 2 :E w1rm(1) (2.14) 
"" M M 

MSE=rdd(O)+wlRw-2prw (2.15) 

V-iJ(MSE)_[iJ(MSE) i!(MSE) i!(MSE)]' 
- Ow - Owo Ow1 · • · OwL-1 

= 2Rw-2p 

w 0 =w-!R-1V 
' 

M=J-Jmio 

M>O for V'f:.O,wherev=w0 - w 

et=dt-wfx* 

V k = 2e(k) ~k (d(k)-wrx(k)} = -2e(k) ~k {wTx(k)} 

= -2<(k)•(k) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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w(k+ I)" w(k)+~e{k)x(k) (2.25) 

y(k)" w'(k) x(k) (2.26) 

<(k) "d(k)-Y(k) (2.27) 

w(k+ 1} = w(k) + ll e(k) x(k) (2.28) 

W.i:+J = Wt -11R:t1V k (2.29) 

Rt+l "'R,t+X(k) xr(k) (2.30) 

P.t+t = p,~- + d(k) x(k) (2.31) 

a--)- a-' (2.32) 

o a-1 
Wttl = .I:+LPk+l (2.33) 

R:t!t =a;' 
Ri' •(k),(k)Ri' 

(2.34) 
I +xr(k)Rf1x(k) 

wo -wo+ e(k)·z,~-
k+l - k ""T+"q (2.35) 

Zk~Ri1 x(k) (2.36) 

q = 1/(k)zt (2.37) 

'"_1_ 
l+q 

(2.38) 

Zk""V·Zk (2.39) 

w);+l = wk +eo(k)'ik (2.40) 

a-1 a-1 - r k+L = k ~zkzk (2.41) 

Cm = (J,-N+ 1) · 2JV2 + (L- N +I)· 4N (2.42) 
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N=(F,q,w,r,C) (3.1) 

F=(~.<I>,9) (3.2) 

y = <I>(~(xlw),9) (3.3) 

" ~(xlw) = :E WyXJ ,., (3.4) 

~(xlw) = " ' :E (XJ- Wy) ,., (3.5) 

I <b(u)= --u (3.6) 
1 +e-cr 

u' 
(3.7) -.,-

dl(u)=ce cr 

y=<b~w1ura) (3.8) 

y=<l>( ~(w;-x1)' -e) (3.9) 

f= (6,a} (3.10) 

wr+l =8(.i\qr,wr,ej,Cr) (3.11) 

cr+l = a(x1,q1, w',e:,,C1) (3.12) 

G= {Al>Az, ... ,A.} (3.13) 

Ar = [Nr,Rr, Trl (3.14) 

G•O (3.15) 

p(H(xlw0 ),J(x)) < p(H(xlw)J(x)) (3.16) 



w'+l = w'-e'L(x1, w') 

C(w) "I J(x, w)p(x)dx" E,{J(x, w)} 
X 

A= [x,m..t(x)], 

mA(x) = Degree(x r, A) 

S:J"I x . .. xr·~JPl x ... xJP• 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3 23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3 .29) 

(3.30) 

(3.31) 
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"=ll(dlp) (4.1) 

d= '¥(xlw) (4.2) 

y = G · M(ulw) (4.5) 

G=-1- (4.7) 
fIll ,., 

1jl: W--) W', where y, = $(x,) (4.8) 

l"'-[JP,Rw-I,Tt-u] (4.10) 

M = [FN, RI-M. { T.11-0, 1~r-c} j (4.11) 

0 = [DFN(Roo-e),Ro-M, To-aP] (4.12) 

C = [DCN,RM-e.Tc-oo] (4.13) 

( ( d, ~~-· 
J.l'=\1+\(r,-d,)JJ 

(4.14) 

(4.15) 



WI nno = WI old+ n(x _ W! old) 
win ~·m P "'" 

W2n~w = W2okl + n(r- wzotd) 
wm wfn P win 

P=a~t 

a.'· .. w = (-~-+ I) -• 
win old 

a •• 

n•w old 
r~;n =rwln+ 

228 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

WI ann =X ; W2""":.:: Y ; ra.n = p ; Cl. = 1 (4.21) 

a~-~­
OutocN 

{: (x(t), x(t- \), ... ,x(t- k), S) -)o y(t) 

g: (x(t),x(t- 1), ... ,x(t- k),S)-+ j{r) 

(4.22) 

(4.23) 

(4.24) 

(4.b) 

(4.26) 

(4.27) 

(4.28) 
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{ x1 -x'+0.03 ;fo.x<0.5 
j(x)= (5.1) 

x3-x2 ;forx<?:0.5 

1 N I 
MSE =- L (Y,-yl) (5.2) 

N i=t 

mzYt +m~2 +m3y3 
Y"' m1 +m2 +mJ (5.3) 

mn = ( JL<xf -c7)2
) -I (5.4) 

y=4x(I-x) (5.5) 

j' [x(k),>(k-1), ... x(k-p)]->x(k+q) (5.6) 

dx(t) 0.2x(t- •)-- 0.1x(t) (5.7) -= 
dt I +x 10 (1-t) 

f;R9 ----?R (5.8) 

j' [x(k),x(k- 1), ... ,x(k- 8)]->x(k+ I) (5.9) 
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d(k) =s(k) +o(u(k)) +ro(k) (6.1) 

u(k) ='(k) +m(k) (6.2) 

.i{k) = p(u(k) +ro(k)) (6.3) 

'(k) = d(k)-y(k) (6.4) 

•(k) = s(k) (6.5) 

p(t,j) "'J J J efl!W(•-r>g(v, t)s'(u- ft)s(u + kr.)e-ft'l'/•dvdudt (6.6) 

g(v, 1:) "'J h"(u- k't)e-fl"""h(u + t1:)du (6.7) 

((9,/) = J IP(I,f!l'&'""dt (6.9) 

x(k) == ~{k) + 11(k) 

fort<p 
forpSI<l 
for/-:;, t 

P x(m) = P ,(ro) + P n(ro) 

Pi(ro) = P;(ro) + P~(ro) 

P ,(ro) = Px(m)- P .(ro) 

f,(ro;m) = fx(ro;m)- f n(ro;m) 

I. I' ' I. I' S,(ro;m) = ISx(ro;m)l - S,(ro;m) 

xN=={Xn forn=0,1,2, .. N-l 
" 0 othenvise 

(6. 10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 
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(6.18) 

• N-' 
XN(w) = L ~ e-JmtJT, = L x~ e-Jn.,r, (6.19) - -

X{il(n) = x(iM + n) n=O, I, ... ,M-1 (6.20) 
i=O, l, ... ,K-1 

(6.21) 

K I I"' ,,, I Si.t (ro) = K ~ lj.f(ro) (6.22) 

(6.23) 
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ABSTRACT: 

Neural Network-Based Adaptive Filtering 
For Background Noise Elimination 

H. N. Cheung 
Dept. of Computer and 
Communication Engineering 

I Made Wiryana and J. Millar 
Dept. of Computer Science 

Edith Cowan University 
Joondalup, Western Australia 

Th~ dim/nation of background nois~ in applicotions where an uncorrupted inpur signal is required is not a trivial 
uuk, especially wh~n 1he noise is non.Jetermini.st/cand non·stmionary. In addition, rhe duration of rhe nels~ may be 
short compared wilh 1he observarlon imtn'als for the inpUI signal. Thir paper reports lhe d~tdopmem of a 
back!frowrd noise ~liminmlon zystem which makes use of rime-frequency represemmion of rh~ input si!fno/ and o 
neuralnen<-ork·biJ.!ed adapli>-efilrer. Modificorions ar" made /G /he rlme:frequency /ran.rfrmnarlan process 10 obtain 
bmer frequ<'<ney represemation of rhe sig11ol and also to a Coumer Propa;;mion Nerwork to ha\-e bemr clustering 
propenies. Sofrwar<'< simulation results with some I) pica/ signals corrupted by Gaussian liaise au also presented. 

1. Introduction 

In many areas of science and •ngmt!<:rins in which input si!;llals are obLained using signal acquisition 
equipment, such as dectromagnetic and acoustic su,.,.,·eillance (Anderson e!. al., 199\, Casellma.n el al., 1991), 
seismic signal processing (Magolra et. al., 1991), sp"<!<h processing (KobaLa!;e ,1990), biomedical sign• I proce10sing 
(Uneini, 199!), there is always a probl~m in detecting the pres.ence of non-sLatio~ary random signals or noise in ~e 
backgroUDd. The elimination of such background noise is not a trivial tm;k due !o its non-s::.tiooary and 
noo-<leterm.inistie characteristics. In addition, the duration of this noise may be short compared to the observation 
intervals for lbe input signals 

Various metbods ba\'e been proposed to tackle this probl~m including fixed filtering (Boll, 1979) and 
adaptive lil!erins techniques using conventional filters, In the case of fixed filtering techniques, lbe unavailability of 
an ideal signal model a.Ild !be u~e of pro.defmed parome!ers of the filter Illllkes this problem difficul! to solve (Classen, 
!983). The use of nd<lptive methods has improved the performance of background noi:;e elimination to a large ext<lll 
(Vary, \983), With these methods, !he parameters of the flhers chanse lo ad<lpt to the non-deterministic 
characteristics of the background noise. However, provision has to be made for the filters to readapt to the change in 
the environment Sometimes it may le.1d to the unsatisfactory performance of the Ol'erall system (Coone!, \990). 

Artificial Neural N<!Works (:'•.'''o/N) offer an alternative technique for ad<lptive filtering. A general ANN 
mcxlel for adaptiv• tilluing has be.:n proposed by Nerrand (Nerrand e! al. 1993). )l ha:; also been sbown ~a! ANN 
can be applied to sepamle a signal into different signals (Cohen el al., 1991) and to perform signal classification 
(Malfkoff, 1992). In the area of backgrou"d noise elimi"alion, Xue (Xue, 19S2) ha5 applied ANN based adaptive 
matched filler biomedical proccssin&. This paper repons on the work 0' the development of an ANN model for the 
elimination of background noise with application lo spee.;:h proceasing 

l(l)•nttl Tom< )l<Otll AdJUI\Ibl< _.,., 
I 

Ft<qu.n<y ~<twor< FHL<t 

r""''"'" r"~""'Y rupon" 

Ftgure \. The proposed notse ehmmalton system. 

Shown in Fig. I is a block diagram of the prop.osed noise elimination s~stem. In this made!, the sampled 
input signal, corrupted by noise, is transformed into frequency domain to ulrnct the frequency feature. Both lime 
and frequency represenUI!ions of the >ignal are then fed into the neural network which has been trained to reject the 

noise and to produce a! its output the fihered input signal. 

2. Time-frequency representation of input signals 

Fis. 2 sho"·' a general model for noi>e elimination "'here a! the input, the sequence s]k] ~presents the 
desired input sisnal and u]k] any extern•! noise signal. Inside the model, ru[k] represents internal broadband 
measurement noise. The problem b&omes one of accuratoly modeling the corrupted channel Cl(.) and the in!cf!lal 
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110i~ by means of the filler Jl(.). Ill general, a(.) rcpresc~~ts a DoDlinur medium. Therefore, p(.) must bela nonlinear 
fuoction. 

s [ k l 

u[k] 

Figure 2. General model of noise elimination 

The background noise u(k) Ull bel considered as consisting of a stationary continuous noiso c(k:) and isolated 
noise~m(k). Ill speech pro<:essing, the noise~ elimination pr= is to detect and eliminate, from the non·statio11.1ry 
&peeeb SOUIU:, the three noise compooeots, i.e. !he detctministic and s!.ltiooll!)' inLem.al noise co[k], the 
non-deterministic and stationary noise s(k), and more importantly the noo-cletcrmi.tristic and nOII-statiooll!)' noise 
m(k). 

Detection and classification of the signa] components in time or frequency domain can bel performod by 
fi.r.;tly sliding the signal through an observation window. Nort113.1ly, 10 extract the signal feature from either the time 
or frequency domain reprcsentJ.tion of the signal is not sufficient for a complete analysis of the signal. Tbom:fore we 
prcpose to use a ccmbined time and frequency representation. 

There are severa.l methods to generate the time· frequency distributicn of a signal (Cohen, 1992). The method 
adopted in our model is the spectrogram approach. Given a signal, corrupted by ooise, s(t), i!S time·frequeoey 
distributicn is expressed as: 

p(l,j) = j j J efl•l'(u-r)g(v,r)s • (u- i-r)s(tr + it)e-J'""dvdudt (I) 

where g is the kernel function. 
For the spectrosram repre.sentJ.tion, the kernel function is: 

g(v, t) = J h' (u- it)e"l1""' h(u + it)du (2) 

By substituting Equation (2) to (1), the Lime-frequency di•Lrihmion can be wrinon as: 

"' 
This fcrmu\ation bas been used tc decompose a signal into difforent components (Cohen and Lee, 1992) 

using one short-time Fcuri•r Transform(STFI) for each non-overlapped block of signal. In our apprcach llS shown in 
Fig. 3, we first use the shcrt-time Fourier Tram form to get the frequency representations for overlapped blocks of 
signal. Then another short-time Fourier Transform is performed at the same frequency to all the resultant frequency 
representations to obtain the change of the frequency of th"e signal. The result of this manipulation is to extract liner 
n:presentJ.tion oft he frequency feature of the signal. The final outcome of t.he transformation cf the signal is a 
two-dimensional array as shown in Fig. 3 of a sin~le time block of t.he input signal. This array is then fed into the 
neurnl network 

r-~~~;:::::::::::::=;~~:=:=·-~·~·~·~·~·~·~·:·-:·~·=::=:=;=~~~:=:==::-----~ 
~T ~..... .c:::·i::·:l:.~:::g 
n., Tt"'' '""" Tr .. .ror~ .• ~ /~!~'., 

~Hk ~: . J;~ ~j:~: l::l=:I~~,-=-·=· ~c·=-- :. I ·;::~:·:::·1 
. "fo.fc~l '• 'T • 

·····' 

Ftgure 3. Input stgnolacquisiticn process. 

3. Neural network and filter structures 

The neurn] network that wil] be used in the mOOel must satisfy some application co rut mints; 
a) there is no clean spee.:b signal for target pattern. The IJ.rgct palteru should bel derived from the input pattern; 
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b) leami.og must be performed as fast as possible wilh a 5mall num~r of itentioo; 
e) !be neullll network should be able to adopt its structure to minimize m~mol}' usag~; 
d) fast processing time is required for real-time operation. 
lb~ thrce-iay~r Couoter Propogation Network (Hecht-Nie\sen, 1987) is odopl.ed in our model. This ~\151; of networks 
may be COII5idcrcd to consist of twO overlapped network, i.e .• !be clustering network 1.11d lbe cncodillg network. The 
clustering network is t.h ill put and the middle layers, and the encoding netwOrk is lhe llliddle &nd output \ayclli. This 
neural network structure is cbos::n for its st.:nistic:d modeling and fast learning cap,abilities 

The first layer, which is part of the clusteriilg network, of !be neural network reaives !be ti~~JC-frequcncy 
repr=tatioo of !be signal. Then lhe clusteri~c network perfnrins adaptive clustering. Based 011 the respo!ISe of !be 
clustering octwork, !be encoder network produces !be frequl!ll~Y response of !be filter. During training of the overall 
network, Wstcad of normal iflput signal, noise samples arc used as input to !be network aod !be target p,attems arc 
e:ttrncted from o.bc input pottems. The two networks will be discussed in detail in the following &cc:tiolllj 

3.1 Clustering network 
Based on tbc sta.ndanl clustering network with competitive training, we have made rome modificatioos in !be 

learning process to enable !be ovct~~ll network. to avoid the stuck. vector problem, to obtain better clusterin£, &nd to 
reorganise the middle layer in order to m.,;imise the utilisation of !be middle node. 

During tlllining, after applying the input pattern, !be cluotering network performs the clustering process by 
calculating tho Euclidean dislall~e li, cf each template with the input pattern: 

N-t l 
li,:: :E (Wl,J -!,) 

~ 

where ~ '"'i .. dementoftheinputpattem, 
N "'num~r of nodes at ioputlayer, and 
W1, 1 '"' Weight of the clustering network where the templates are store<!. 

(4) 

After tbe Euclidean dista.nces for all the templates have been calculated, the chosen duster is the cluster with minimal 
value of li. However. before the cluster is chmen, the similarity betw.un the pattern and tbe input must be checkerl 
using tbe similarity factor p, to a\"Oid tbe stuck vector problem in s~nerating a neuron. lf min(li) > p, the cluster 
cannot be chos::n due to its dis.imilarity to the template pattern. A oew duster must be create<! by genet~~ting a oew 
middle oeuron. The input pattern will be stored as a new template by calculating the oew values of the weights of the 
connections usiog: 

Wl,1,,.::1, (5) 

where th subscript free is the indo~ of the fre.l duster. This mechanism is similar with the ART network whee the 
input pattern "-'•eeds the vigilance level (Carpenter and Grossberg. 1988). 

Ifmin(li) < p, the cluster may be selected and the output node of this template can be decided as the winner. 
The output of the clustering network will perform a 'winner-take-all' •election. The weights of the network will be 
updated to obtain the optimum classification of all memb-eri of the winning clas5. However, to obtain better clusters. 
we usc the fol!owing fomrulatioo to update the weights so that the fr"'luency of occurrence of a class has been 
selected is taken into consideration: 

( 
y(l) (I) \ 

Wl (t+l)- ' •. ~,.+a..,j, I 
1,win - I l+a.(l) ) 

\ . ~,. 

~V2(1+1) = 
wm,k 

where WJ,/•" "' the weight value of clustering network after adjusting, 
W2,~""""" !be weight value of the encoder network after adjusting, 
win ,. !be inde~ of !be node which wins tbe competition among the middle i"lodes, l!ld 
0 0 '"'k" element ofrhe output pattern, or target p•Uem. 

(6) 

The a. depends of how often this class has beo:o chosen. This value can be t:~!culated by using "'!uatio" (7), and 
represents the information which is ~ained during the lraioing proc<l.Ss. If there is more information which is gaioed 
io the learning process, the a. value will decrease. 

(1+\)=(t ..!_)-( 
0.) + I') ., (7) 

Normally, when the neurons in the middle layer are fully utilized, training can still be performed by 
adjusting the weighiS but nc new oeurons can be created or no MW class will be created. However, in our model, 
wben the middle layer is fully utilized and if training is required, then the network will first look for any neuron 
which can be reused ba.o;ed on the a. value of each node. The neuron which has the highest a. value and exceeds !be 
threshold value cao be reused as a new cluster node, rhus a n~w cla..<S will be created using this neuron. 

However, if all the neu,ons have a. value less than the threshold, it means that all neurons have galhered 
enough infomllltion during training and min(O) > p, which means that the input pattern is too far from all 5tored 
templates, then a.' in Equation (6) will be as•igned a small value and the cluster with the minimum dislallcc will be 
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cbo!Otll. However !he o;"1 valut for !his nOll~ is not ch.onged. In Lhis case, the netwnd.:: will be attractod to the new 
position oo.ly With a sMall displacement. 

3.2 Encoder network and output node connection 
In this layer, the training is supervised, and !he cutput pattern from the cluster netwcrk: and the target pattern 

e:uractod from the overall input arc fed into the encoding notwor>::. The output training pattern is derived from 
averaging nlucs of the spectrum of the training noise. The weigh IS will be adjusted to 10111Ch the input and tht output 
pattem using the :o~mc approach as thll in the clustering ne\Wrlrk:. The adjustmcol of !he weight is made -.ccording 
to Equation (6). 

In normal operation, the encoder networks pcrfoiJ!l.'l a m.apping of the input from the middle layer aod 
produces at its output the response of the c~tellllll input signal to the neural network at every frequency. This 
response is then fed into the filter and i' used to update the filter coefficients. The filter equation will be generated 
and applied to the utcmal input signal to produce lhe output ~goal. 

The adjuslllble filter can be formed by using FIRniR filter or by using resonator bm!k filter. In this &)'litem 
we usc the frequency domain filter. Input to the filter &re lhe extcmal input and the cutput from the neu.,.J network. 
Since the frequency domain representation of the input signal is olready available from the time-frequency 
representation, we can take advmtage of this by perfoncing frequency domain filtering. This strucrure ha.s the 
problem in bloek bolltldaties, ODd ~nay lead to a small dir.cootiouity in y(o). However, this problem is wived in our 
model by overlapping the blocks. 

4. Simulation 

The software simulation for the system has been performed and the resulu; arc given below. For simulation 
purposes, Gall!lsian noise with various variances are used for training the network. The siu: of the network used 
consisu; of 16"'16 nodes for tbe input layer, only 20 neurons in the middle layer, and 16 in the output layer. A small 
number of neurons are used in the middle layer so as to lest the behavior of the generation ODd annihilotion of 
neurons in the clustering network. 

Figure 4 {a) Sinusoidal input signal is Cotnlpted by 
gaussian noise with SNR equ.alto ]7.49 dB 

FigureS (a). Sinusoidal input signal with 
Amplirude Modulated, with SNR oqu.alto 20.3] dB 

Fir;nre 4 (b). Output signal after filtering, 
with SNR equ.al to 27.07 dB. 

Figure S(b). Output signal after filtering, 
with SNR equal to 25.52 dB. 

Figure 6(a). Sinusoidal input signal with Figure 6(b). Output signal after filtering 
frequency modulated, with SNR equal to 12.37 dB. with SNRequ.alto 29.03 dB, 

Fig. 4 (a) shows the input sinusoid~] signal corrupted with Gaussian noise with SNR equ.alto 17.49 dB and 
Fig. 4 (b) the resulted output signal from the system with an improved SNR equal to 27.07 dB To test the magnitude 
response of the system, sinusoidal signal which bas bt:en amplitude modulated, shown in Fig. S(•) is fed into the 
system. The original signal is almmt recovered with SNR 25.52, with its amplitude unchanged. The frequency 
selectivity of the system is tested by a frequency modulated signal as shown in F~g. 6(~). The results in Fig. 6(b) 
shows that the original ~icnal is reco,·cred but with a small phase shift. The reason for the phase shift i5 the use of 
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frequen~y dorlUiin filtering for the filter. The problem can be solved by using resonator bllllk filters instead of 
frequency domain filler. 

5. Conclusions 

A noise elimination system has been developed' in this ~aper. The system makes use of the both time and 
frequency representation of a signal as input to a neul"lll network ..ased adaptive filter. The formulation of the time 
;.-equcocy rcpreseutation has been given and modifications of ttie transformation proces!i to using overltpped blocks 
of signal to produce the frequency representation of the signal to nven;omc the boundal}' probleiO. In oddition, the 
USC of a second short-time Fourier Transform on the spectrogram to extract fmer det.ails on the frequency clwlges of 
the signal ruults in beuer reprcser:tation on tbe frequency feature of the signal. 

For the neural network in the system, modifications are also made to the Co110ter Propagation Network so 
that the problem of stuck vector is solved and the middle layer is re-organized so that with better clmters resulted, 
Software simulation of the system has been performed to test the response of the system to various signals corrupted 
by Gaussian noise, and the results nf the simulation are promising. 
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Abstract 
Function approx;imation is one of the neur.ll-net..wrk 
applications. The counterpropagation network which has 
ful learning c:apabi.lity tends to produce diocontinous 
!'unction approxi..ma!ion. This paper reports the 
~lopment of a fu.uy COUllterpropaga:r:ion net'M!rk which 
has fal;t learoing capability and ~ perform a rootinU0\15 
!'unction awroximatioo. The J!10P01100 nenwrk consists of 
a fuzzy c1U£tering l;zyer, a defuzzifier OU!p.lt node and a 
modified training procedure. A chaotic time series 
prediction is used for demonstr.Uing the applicability of the 
propooed nei'Mirl<.. 

I. Introduction 
The Cotmterpfopagation t~etwork: (CPN) 

architecture is simple, fast, and easy to train. CPN hall 
good statistical model representation of the input space. In 
the nenwrlr; mapping problem. CPN lws a closed form of 
the means~ error. The capabili~y of CPN to perform 
a fast learning is useful for !lOme applications, such a.; 

adaptive control. tr.ljcctory problem of teach and play 
rOOot, adaptive filter, tha1 neod an on-line learning 
mechanism. 

Countel:pi"Opag3tion netv.<~rk:s can be used for 
pattern clasr;ication where template ma1Chlng and template 
mterpo!ation are desired (Hecht-Nie\sen, \9&&). CPN has 
been <!pplied in many problems such as Dolphin 
echolocation (Roitblat et al., 1989), Digital Feedback 
Equaliz.er (Manabe and Kaneda, 1991), and it has been 
implemented in a VLSI ~m (Kwan and T&ang, 19'XJ). 

The CPN archite<:ture is built by combining the 
Kohonen self-organizing map and th~ Gro&r;berg Outrurr 
archlUcture. The Kobonen self-organizing map perform.; 
tbe c\assi.ficalion Usk. and the Gr!J!>&berg OJtsta! perform.; 
G1e mapping function. In general, it can b:· mtOO that the 
CPN uses an adaptiw table look-up mechanim1 to perform 
the mapping while the the table is obtained by training. 

Todesribe the operation of a typir;al CPN. let a set 
ofe~arnp!es of input""()lltput pairs (x,, y,), of a function': 

~: R" ~ R"', wh<!re y, = ~(r,) (I) 

Asruming that this set of examples cover all the 
cltaracteri51ics of tile input-output relationship of the 
functio_n, after training the CPN with this set of examples, 
lh~ ~1ghts of lhc nctv.ork arc adjusted according to the 
trammg set m sueil a way that the inpul!l ~: classifed into 
clusters. Th~ final clusters can be modl!lled in the form of 

a look· up table with N entrietl, with the number N equal to 
the number of clusters (Hocht·Nieh;en, 1988~ 

ln order for a CPN to perform mapping of 
continuous functions with good approximation, a large 
look-up table is required which me30S that a ~rk wilh 
a large middle layer is required (Hecbt-Nie!~:en, 19&7). By 
splitting the middle layer (Lin et al., 1989), the number of 
neurons in the middle layer can be rodu.oed by a lflcdium 
amounl Ar. shOWil by Wang and Mendel (1993), a set of 
fuzzy rules can be used for a universal function 
approx.lmation. ln our pr~ architecture, fuv:y log.ic 
is incorporated to the middle layer of a CP!-1 to provide a 
smoother mapping. Therefore the output of the middle 
layer gives a memberrohip value of the input belonging to 
each class. The original GrOG!iberg outstar la:yer is 
replaced by a layer (I( nodes which are controlled by a 
defuz:rifier node. 

During training, the modified CPN g.enerll!es the 
fun:y rules from the set of examples of input-output pairs. 
Each eiGli!lJile of inpul-ootput pairo is only required to be 
presented to the input (I( the nernurk once aud no iterative 
training is required. 

In normal oper.ltion. this prCip0600 network 
an:hitcctlln' docs nO! produce a das.s as a winner in the 
middle l;zyer, but pw::lucxs the memben;hip value10 of the 
input with respect to each class. By using proper 
defuzzification method. a continuous function c:an be 
obtained at the output ~r. Moreover, this mechanism is 
ruitable fO"T on-line learning. be<:aw;e the ;ystem does not 
mruire iterative learning. &pecia.lly, in time series 
prediction problem, after performing a prediction, the real 
value of the next time ~.:eries can be used to refine the 
netv.\"lrk for predic:tingthe following time series. 

This methDCI is different from the inte!pOlative 
mode of conventional CPN. In the interpolative mode, 
more than one nOOe in the middle la~r can win and the 
winning nodes are weighted v.lth a fr.lction number and 
the rum of all weighted number is equal to one. Therefore, 
there are the first, the second, and the third winner. 
According to Hecht-Nielsen (19&8), in order to perform 
the interpolatiw mode, a priori kno\!Aedg.e about the 
problem is required tc define the fraction numbers 

In the proposed network, by the ure of fuzzy logic, 
the number of neurons in the middle layer is greatly 
reduced which leads to shoner training time. and the 
network has the capability to pcrfornt function 
approximation without the requirement of a priori 
knowledge. Similar "{Irk in combining fuzzy logic and 

117 



the neural system have been reported using different 
approaches such as FL11.ZY ARTMAP (Carpenter et al .. 
1992), Fuuy Min·Max (Simpson, 1993). 

2. Network Archite-cture 
The proposed nclmlrk uses fuzzy clustering 

technique instead of Kohonen layer for the middle layer, 
and Grossberg Outstar is applied to store the centroid value 
of each class. By adding a defuzifier node , the 
defuxzilication is based M the Cllntroids obtained in the 
output layer. The architecture of the network is shown in 
Fig2. 

WI is the synaptic "-'!ight which stores the 
infonnalion of the protO!ype of the class (c) and each 
neuron in middle layer stores the value of farthest 
deviation of each class (r) and a. W2 is the synaptic 
weight which represents the information about the oulp.lt 
prototype of each class. It wiU be twed in the 
defuz:zification &tep for calculating the actual oulp.lt. 
Therefore an output node is sligbtly different from a 
conventional neuron. 

Figure 2. Network architecture 

2.1. CIIISSijiasiion tJlfdMorobaship Layu 
The cla&rification and member;hip layer, which is 

the combination of the input and middle layer;, partitions 
the input space into classes, Given an input vector x as 
sbowo in Pig. 3, the Euclidean distances betMCD the input 
vector and all proWtype vectors are calailiUd e.g. d,, and 
d,. By the Euclidean dirunce, the membership value for 
each cllwl can be obtained e.g. m'(x) and m'(x). In 
normal operation, the membership valllli is then w:ed to 
derive the output vector. 

In the training process, the w.:ight between a node 
in the input layer and that in the middle layer, WI, as 
shown in Fig. 2, is adjusted :o capture the prototype of 
each class which can be used for the mcmber;hip value 
decision. Only weights which IXlnnect the ciQ&eSt clw;ter 
(highut membenhip V<lluc) with the input vector will be 
adjustOO. 

This middle layer works as an IF THEN rule in 
Cuny Iogie tenn. All of those rule& are built up in the 
training phase automatically and is not pre-defined. This 
mechanism p1ovides the network a c;J.pability to learn the 
input-outpot pairs and build the fuzzy rules according to 
the input-output relationship. 

!18 

2.2. De/uuifi~r node and output lay~r. 
The defUU!fication process is done by the 

defuzzifier node and output layer, The defuzzification 
method used is the C"Cntroid method. All ...wigbts which 
connect the defuzzifier node to the middle nodes have 
vaiues oqualto I. Therefore the output of the defuzzifier 
node i~ the total of the rnernberdUp function of each class. 
This node is rather different from amventional neurons, 
due to the adaptive gain characteristic of this node. The 
gain of this node is controlled the defu='fier node. 

Figure 3. Member;hip function. 

3. Mechanism of the network 
J.J. Traillingmedu:nism 

:~(C) 

During training, the leamin& mechanism 
partitions the input and '>lllpllt space& irJo c\au and 
generates the fuz;ey rule fc:r each class. The middle 
node r;torCS the infolll)ll.tion about the mean of the class 
and the brtbest deviation of the class. T!ie boundary of the 
class has the membership V<llue equal to zero and the 
prowtypc of the class Ita<; the membmhip value equal to 

one. 
Define 

r the ma>o.imum deviation of class i"' 
~ the prototype 'ICC!or of class i"' of j dimension 

~ the input vector of j dimension 
(\ tlte target vector oft.:: dimeMioo 

The learning mechanism can be fmmulated as follows : 
Step 1. Start with 0 number of cluster; 

Step l. New inp.:t is applied to the input layer. 
Step 3. The Eucli<lean dirumce ~from the input to all 
clU&tern that exist art calculated. 

" ' :E {Cft-IJ) 

"' 
(2) 

Step 4. The member;Wp asoocia1ed with the class that has 
been created is calculated For simpler implementation IW 
use the triangular shape for the member;hip function, u, . 
The real number, 1;,. det~;,tnines the shape of member;Wp 

functions. 

( '"/•)"' 111 == I+ c.~.J (J) 

Step 5. The ~ight of the duster which produces the 
highest membership V<llue is up:taled, ac:cording to: 

Wl nno =WI ..JJ + n(J- WI <'I'd) 
"'" ..,n f.' "'" 
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IV2""-"" = wr1
J +n(1- W2"1J) "' 

w,n "'" 1-' "'" 

ll =a:\ (5) 

where a is the dto:ay function, which has the initial value 
equal to 1.0. In this model the value of a for each training 
can be talculaled iteratively by : 

a:;= c~ + lrt (6) -
In this case, the farthest deviation is updated acrordin& 

to: 

"'" ru ~[WI~ WI"')' r..;. =r,.;.+ ;, J,..t.- J,~<~n (7) 

4 Simulation Result 
A simulalion of the proposed model is perf<:mned 

to solve the time series prediction problem. Using some of 
past dal.a, the prediction of neKt dab. will be performed. In 
this paper, the Mackey-Glass chao!ic time series will be 
used to test the performance of the netwJJt. 

4.1 Piobtem thscripti011 
Chaotic time series is a detenninistlc and 

non-linear si!ries. Mackey-Glass cMotic tirnc series is 
generated from the fol!owing delay equation (Wang and 
Mendel, 1992): 

dx{l) = O.l<(H) - O.lx(t) 
dt l+rLC(t-'1") 

{12) 

where 't value determines the chaotic behavior of 
Step 6. If the input pattern bali zero met~~benhip value to the function. In this simulatioo_ 't tqUa( to JO is used We 
all c!asse~, a new class is created and the input pattern is choose 9 for inp.rt and 1 for ocapot This mtam~ that -
used as the prototype vector of the new class. In this cas&, predict the future value by using the 9 past values. 
the farthest deviatioo is s..>t to the mi.nin:zum value. Tb.is 
minimum value detennines the resolution of the function 
approximatioo. 

Wl,..=l W"'2""'=0 ; r-=p (&) 

Step 7. If all clusters have been used, chOOSt: the eloseG! 
class by finding the minimal value ofD,; 

(9) 

Step 8. Repeat 6l.q1- 2 throu&h 6 for all other training 

-~ .12. Nomud Operatic,. Mt.d!tudsnc 
In normal operation. v.ten an input vector is 

given, the middle layer cal~ it.s membership value to 
each class using Equation (2) and (3). All the membership 
valuec are defuxz.ified usin& the centroids from the output 
layer and the dduz:z:ifier oode as : 

Output ofdduxzifier node is: 

r' OutnF= k ~j (10) 
~ 

where pis the number of dusters. 
Thus the output layer is equal to: 

0uft = c[% (J.LI W2tt)] (II) 

where G is the gain factor which corresponds to the output 
of the defu.zzifier node: 

0=-'­o.,. 

The OUtpUt of the k"' outp.~t node is : 

AC:-:;\'!14 

(12) 

03) 

' 
~I IM l ·-

' 

' "" <00 600 "" 
Ftgure 4. Mackey-Glass chaotic ume &enes 

.(.2. Siml4latio,. ruuiJ 

woo 

T~ simulation is performed by using 80 neuron.; 
in the middle layer. In our simulation, the training is 
perfonned without repeating the training pal.tem. To 
compare the simulation result. th: mean squ:u-e error is 
w:ed as the perfonn;mce index. 

In the fiJOI limulatian without en-line adaptation. 
the first 200 dam from 500 to 700 are used as the training 
patterns. Tbe prediction is performed fer the rest of data 
(701 up to 1000). The ru:ult and the comparioon ...nth 
theoretical calculatian are shown in Fig 5. The ptediction 
is not toO close encuglt. because the net>Wrk: bas not been 
uained with enoug.h samples and only 60 of the nocles in 
the middle layer lw.-e been used The mean &qnare error 
is equal toO.OI071S. 

The f;e(:Qild simulation is performed by using the 
first 700 data as the training patterns. The result is shown 
in Fig. 6. Cy comparing it ...nth throrctical w;ult, it can be 
silol>,-n that the ~em performs prediction better than 1le 
previous experiment. The mean &qlll!TC error is equal to 
0.0035749 

In Fig 7 and i'"ig 8, the adaptive on-line training is 
used. When the on-line training is used for the ease that 
the net"\Wrk: has already been trained using the past 700 
data, there is no great difference. bocause the net\Wrk has 
converge, and the mean square Cll'Jr is 0.00357490. 11 
shows that the adaptive training does not significantly 
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affect the performance of the network. When this 
mechanism is applied to the network which lias only been 
trained from 

700 750 "' '" 900 950 ]00 

figure 5. Simulation using K(500) to K(700) as traimng 

"'"' 

700 750 "' "' 900 "' 10 

figure 6. Simulation usmg K(0)-K(700) as training data 

' 
700 750 "' "' 900 950 \() 

F~ 7. Simulation uring on--line adaptation 
K(500)-K(700) as training pattern 

700 750 "' '" 900 

' a s· tgur~ . . tmulaJton usmg on·hne adapratton ~(0)-x(700) 
as tra.Jrung pattern 
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200 ~there is a large Improvement. The mean !>quare 
erro, 1S reduced from 0.010715 to 0.009049 

S. Cone/usia,. 

A new fuuy feedfonw.rd counterpropag:uion 
network has been introduoed wh.Jch consisu of a fuz.zy 
clustering layer and deli1u.ifier output node. A 
~odificalion of the training procedure has been made and 

simulation results show that the Proposed n~rk 
arcb.itocrure perfonn a continuous ftmction approximation 
by learning a set of the input-output pairs. Mo!OOVer, th~ 
fuzzy rules are generated automatically in the learning 
process. 

The prediction of Mackey-Glass chaotic time 
series has been demonruated by applying the proposed 
lletv.tllk.. In addition, it has been shown that the on-line 
update capability of this net\Wrk prO\I:ide the error 
reduction in the normal oper.Won. 
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