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ABSTRACT 

Activated sludge process (ASP) is the most commonly used biological wastewater 

treatment system. Mathematical modelling of this process is important for improving its 

treatment efficiency and thus the quality of the effluent released into the receiving water 

body. This is because the models can help the operator to predict the performance of the 

plant in order to take cost-effective and timely remedial actions that would ensure 

consistent treatment efficiency and meeting discharge consents. However, due to the 

highly complex and non-linear characteristics of this biological system, traditional 

mathematical modelling of this treatment process has remained a challenge.  

This thesis presents the applications of Artificial Intelligence (AI) techniques for 

modelling the ASP. These include the Kohonen Self Organising Map (KSOM), 

backpropagation artificial neural networks (BPANN), and adaptive network based fuzzy 

inference system (ANFIS). A comparison between these techniques has been made and 

the possibility of the hybrids between them was also investigated and tested.  

The study demonstrated that AI techniques offer viable, flexible and effective modelling 

methodology alternative for the activated sludge system.  The KSOM was found to be 

an attractive tool for data preparation because it can easily accommodate missing data 

and outliers and because of its power in extracting salient features from raw data. As a 

consequence of the latter, the KSOM offers an excellent tool for the visualisation of 

high dimensional data. In addition, the KSOM was used to develop a software sensor to 

predict biological oxygen demand. This soft-sensor represents a significant advance in 

real-time BOD operational control by offering a very fast estimation of this important 

wastewater parameter when compared to the traditional 5-days bio-essay BOD test 

procedure. Furthermore, hybrids of KSOM-ANN and KSOM-ANFIS were shown to 

result much more improved model performance than using the respective modelling 

paradigms on their own.   
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CHAPTER 1  

 INTRODUCTION 

1.1 Problem background 

Increased regulations, through such as the EU urban wastewater treatment 

directive (EEC, 1991),  to protect the environment and water bodies have led to 

growing demands to reduce point source pollution impacts on the quality of 

receiving water ecosystem. Compounding the problems are increasing plant 

loadings due to the growth of urban areas which means that existing facilities are 

now operating close to the limit of their design capacity. In addition, the 

privatisation of water industry, in the UK for example, has led to increased 

pressures for efficient design and operation of wastewater treatment plants, and 

other cost saving initiatives.  

Achieving the desired protection and/or enhancement of receiving water quality 

will be either improving the performance of existing wastewater treatment plants 

or the construction of new facilities, as illustrated in Figure 1.1. The second 

approach is costly, as the capital expenditure required for the construction of new 

wastewater treatment facilities is very high and the required land may not be 

available due to planning and environmental constraints.  The time scale involved 

is also such that this option is not feasible in the short-to-medium term. Hence the 

first approach, which if properly done, can improve effluent water quality, reduce 

the need of chemicals and save energy and operational costs (Olsson et al., 2005; 

Vanrolleghm, 2001; 1998; Majalli et al, 2007).  
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Figure 1.1 Problems and solutions for wastewater treatment plant 

Therefore, sustainable solution to the problems of wastewater treatment will 

require the development of adequate information system for control and 

supervision of the process. However, because of variations in raw wastewater 

composition, as well as the changing and complex nature of the biological system 

of the activated sludge process, the operation and control of activated sludge 

wastewater treatment plants is quite complicated (Pu and Hung, 1995b). This 

reality has encouraged environmental engineers to use new modelling techniques 

to improve plant operation and control by designing operational control systems 

for qualitative and quantitative description of the dynamic behaviour of treatment 

plants. Such systems help the process engineer to convert unsatisfactory dynamic 

behaviour into satisfactory behaviour, thus reducing operational costs for meeting 

the requirement of regulatory agencies and minimising any adverse effects on the 

environment. Indeed, the mathematical modelling of the activated sludge process 

is a useful tool for the optimal control, mainly because the effects of adjusting the 

operating variables can be studied far more quickly on a computer than by doing 

experiments (Andrews, 1992; 1994). By using these models to simulate the effect 
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of possible correction actions, it is possible to rapidly respond to any change in 

the process, and devise an operational strategy, which can move the plant to new 

operating condition that improves its stability, the quality of the effluent and at the 

same time achieve reduction in the running costs.  

Several efforts have been devoted to the modelling of the activated sludge process 

using mechanistic models as summarised by Lessard and Beck (1993) and 

Manfred et al. (2002); these are also discussed in more detail in Chapter 2. 

However, most of the models have been proposed to simulate the dynamic 

behaviour of the biological reactor and the secondary settler as if they were 

separable, independent units; very few models have looked at the interconnection 

between these two units (Dupont and Henze, 1992; Hamed et al, 2004). Moreover, 

the models were developed using data obtained under controlled laboratory 

conditions and are therefore more suitable for the design of treatment plants and 

may not be suitable for operational control (Nokyo ,2002). More importantly, very 

few of them have been validated with real field data (Cote, 1995; Han and 

Kamber, 2001; Majalli, 2007).  

Thus, while models are vital for the effective control of wastewater treatment 

plants, the limitations of the currently available models necessitate more 

investigations in this field. One possibility, which has received increased attention 

recently, is the use of artificial intelligence (AI) modelling techniques. AI 

approaches are suitable for modelling the complex activated sludge process due to 

their learning ability to construct nonlinear relationships that can explain the 

complex relationships within the data without the difficult task of dealing with 

deterministic non-linear mathematics (Hamed et al, 2004). In addition, AI 

techniques can deal with complexity and uncertainty of the system in a manner 

similar to the human way of thinking and reasoning. Furthermore, AI models have 

the ability to generalize the input-output relationship to produce an output when 
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presented with previously unseen inputs. Although that might be possible with 

mechanistic models properly calibrated and validated, but mechanistic models 

require so much data that their effective calibration and validation are always 

difficult if not impossible. There is also the uncertainty associated with model 

identification for mechanistic models, i.e. The exact form of the functional 

relationship is unknown and so whatever mathematical expression is postulated 

for the unknown relationship, it bound to be a mere approximation. AI techniques 

on the other hand are data-driven techniques and there is no requirement to 

specify the mathematical form of the relationship being modelled. Among the 

commonly used AI tools and techniques are Fuzzy Logic system (FLS) and 

artificial neural networks (ANN), both of which have played an important role in 

the development of models for complex Environmental systems (Esteves, 2002; 

Cinar, 2005).  

The fundamental and complementary characteristics of fuzzy logic and ANNs 

techniques have led researchers to combine them into an integrated system termed 

Fuzzy Neural Network (FNN). FNN combines the benefits of both NNs and FLSs 

by bringing together the learning and the computation powers of NNs and the 

high level human-like thinking and reasoning of FLSs. In addition, FNNs do have 

other characteristics that make them such a versatile tool in modelling 

applications namely, highly parallel structure implying a certain level of fault 

tolerance and the natural ease in dealing with multivariable systems (Jang, 1993).  

This thesis does not go deep into many technical issues relating to the AI 

techniques as there are a plethora of excellent text books on the subject. Rather it 

merely utilized the most commonly used, well known, and easily understood of 

these techniques, namely Multi-Layered Perceptron artificial neural networks, 

Kohonen Self Organizing Maps (KSOM), and Fuzzy logic system to demonstrate 
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their feasibility for modelling complex environmental systems such as the 

activated sludge system (Jang, 1993).   

1.2 Aim and Objectives 

The aim of the work presented in this thesis is to provide a systematic and 

thorough approach to the development of artificial intelligence techniques in 

modelling and monitoring the activated sludge wastewater treatment plants and to 

show the potential of hybrid systems of these techniques to deal with the 

complexity and uncertainty in the process.  Thus, the specific objectives of the 

study are:  

1. To apply Kohonen Self Organising map (KSOM), unsupervised neural 

networks, to pre-process high-dimensional data of activated sludge process 

for the sole purpose of  predicting the missing values and replacing 

identified outliers which are sample values that differ notably from the 

mean of the measurement series, taking into account the multivariate 

nature of the system. 

2. To apply KSOM to extract the salient features of high-dimensional data, 

Activated sludge data, by removing the noise and redundant information in 

the available data and to visualise the correlation between wastewater 

treatment parameters in the resulting low dimensional data space. 

3. To develop a software sensor for the rapid prediction of biochemical 

oxygen demand, based on finding its correlation with other water quality 

variables, in order to facilitate the use of this parameter for real time 

monitoring and control of the activated sludge process. 
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4. To develop integrated unsupervised-supervised Artificial Neural Network 

models that improve the performance of ANN models through the use of 

KSOM feature extracted data. 

5. To develop integrated fuzzy-neural networks for modelling of the 

activated sludge process in order to absorb the advantages of both fuzzy 

logic and neural network in order to improve the prediction capability of 

the model.  

1.3 Structure of the thesis 

The thesis is divided into nine chapters.  Going through the thesis, the reader will 

be confronted with such widely varying disciplines as civil engineering, software 

engineering, microbiology, numerical analysis, control engineering, mathematical 

modelling, statistics, environmental and chemical engineering, and probably some 

more.  

Chapter 2, Activated Sludge Wastewater Treatment Systems, reviews the basics 

of activated sludge wastewater treatment plants. It presents the importance of 

wastewater treatment and its history and the structure of a conventional activated 

sludge wastewater treatment plant. The biochemistry and microbiology of the 

process are described. A review of activated sludge modelling techniques are 

presented. Finally the use of artificial intelligent techniques as a tool to model and 

control such processes is also reviewed.  

Chapter 3, Artificial Intelligence Techniques (AI), covers the essential 

background for understanding the subsequent chapters is briefly introduced. The 

main context of the  chapter is an overview of the basic of AI techniques used in 

this study, namely, backpropagation Artificial neural networks, Kohonen features 
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map (Kohonen self organising map) and fuzzy logic. The hybrid modelling 

systems are also presented and discussed.   

In chapter 4, Method and materials, the sources of the data sets used to develop 

the models in this study and the associated treatment works are described.  The 

chapter also descries the data treatment methods and  presents how to use the 

MATLAB programming language to program the AI models developed in this 

study. Models performance evaluation criteria are also discussed in this chapter.   

In essence therefore, the first four chapters have covered all that is needed to 

know about the theoretical basis of the methodology, the data and the various 

assumptions inherent in the subsequent analysis carried out. Consequently, the 

next chapters are presented as applications of the previously described tools to the 

case study data and treatment works. 

Chapter 5 contains Application 1 and presents the results of applying Kohonen 

Self-Organising Map (KSOM), unsupervised Neural Networks, for predicting the 

missing values and for replacing outliers of the time series data. This task is the 

first step in modelling the activated sludge wastewater treatment plants using 

intelligent techniques such as Fuzzy Logic and Artificial Neural Networks.  

Application 2 is in Chapter 6 and presents a completely novel methodology based 

on the use of the Kohonen self-organizing map (KSOM) models to predict 

biochemical oxygen demand (BOD5) concentrations in wastewater. Extensive 

testing and validation of the model shows that the model is sufficiently general to 

predict the BOD5 readily using variables, which can be measured within three 

hours or in real-time using on-line hardware sensors, thus making it possible to 

estimate BOD5 very rapidly. This allows for a timely intervention and cost 

reduction during problem diagnosis. 
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The third Application is contained in Chapter 7, Modelling ASP using hybrid 

KSOM-ANN, which presents the use of a new methodology based on a hybrid 

supervised-unsupervised artificial neural network to improve the performance of 

the basic backpropagation neural network method in modelling the activated 

sludge wastewater treatment plant. The findings prove the ability of KSOM to 

improve the performance of modelling using basic back-propagation neural 

networks, by extracting salient features from available noisy data which is a 

common problem with the process data of wastewater treatment plants.  

The final Application is in Chapter 8, Modelling ASP using hybrid KSOM-

ANFIS, and demonstrates the use of ANFIS for modelling wastewater treatment 

plants. The ANFIS allows fuzzy rules to be extracted and the ANN enabled 

optimised fuzzy membership functions to be determined, a significant important 

over the traditional trial-and-error method of the developing such membership 

functions. The results indicate that the KSOM-ANFIS hybrid not only 

outperforms the basic ANFIS model in modelling capability with different 

number of inputs and different number of fuzzy membership functions, it is also 

unhindered by missing values or gaps in the data.  

Chapter 9 documents the discussion, conclusions and recommendations for further 

research.  
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CHAPTER 2 

ACTIVATED SLUDGE WASTEWATER TREATMENT 

SYSTEMS 

2.1 Importance of wastewater treatment 

Water is special. Every living thing on earth- microorganisms, plants, animals, 

human and even our brain consists mostly of water. In addition, water is used for 

numerous purposes, for example domestic consumption, industrial production, 

irrigation, transport of material, energy production as well as cleaning. However, 

although more than 70% of the earth’s surface is covered by water, only 0.5% of 

this is suitable for all human uses (Gleick, 1996). This small fraction is 

diminishing as agriculture, industry, and domestic needs consume more and more 

of this small fraction, while the wastes generated constitute pollutants that further 

degrade the quality of the available water, thus rendering it unfit for purpose. That 

is because wastewater contains a considerable amount of organic materials, 

which, if discharged in large quantities to the receiving water bodies, would cause 

depletion of the dissolved oxygen levels and other environmental problems. This 

may lead to the environment becoming uninhabitable for higher life forms such as 

fish. In addition, toxic materials may be present due to industrial components 

(Metcalf & Eddy, 2003). 

Therefore, in order to protect the environment and sustain life, wastewater must 

be adequately treated prior to being discharged. In particular, the biological 

treatment of wastewater helps to reduce the organic content of the wastewater, 

thus limiting its dissolved oxygen impacts in the receiving water body.  Other 

benefits of biological wastewater treatment systems are (Metcalf and Eddy, 2003): 
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• Prevention of disease and nuisance conditions; 

• Avoidance of contamination of potable water supplies; 

• Maintenance of clean water for survival of fish, bathing, and recreation;  

• General conservation of water, soil, and even air quality for future use; 

• Reduction of ammonia concentration and hence, its toxicity to aquatic life 

forms, e.g. fish; 

• Elimination of other problems caused by excessive nitrogen compounds, 

e.g. cancer, blue-baby syndrome, and increased chlorine demands during 

disinfection; 

Although there are several methods of biological wastewater treatment, the most 

often used is the activated sludge biological treatment system (Spellman, 2003). 

This process is capable of removing soluble and particulate carbon, nitrogen and 

in some cases phosphorus from domestic sewage using chemical treatment. In the 

following sections, further details about the history of wastewater treatment in 

general and the activated sludge system in particular are given. The chapter 

concludes with the state of the art in modelling the process.  

2.2 Brief history of wastewater treatment  

Although the earliest sewers known in the world were the great underground drain 

of ancient Rome, wastewater treatment is a comparatively recent development 

dating from the late 1800s and early 1900 (Spellman, 2003). In England, 

wastewater treatment did not receive much attention until the construction of 

sewerage systems in the mid-1800 after the cholera plague, which claimed over 

25,000 victims between 1848 and 1854 (Cooper, 2002). Because of the relatively 

small sizes of the British rivers, untreated wastewater discharged into them readily 
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became a nuisance. As the rivers became polluted and the amount of land suited 

for wastewater disposal by irrigation was limited, the development of intensive 

methods of wastewater treatment became imperative. 

In the United States, wastewater treatment and disposal did not receive as much 

attention as in England because the extent of pollution caused by wastewater 

discharged into the relatively large bodies of water was little and because of the 

wide areas available for land treatment of wastewater (Spellman, 2003). The first 

septic tanks used in the US, according to Spellman (2003), were reported in 1876, 

and in 1887 the Lawrence Experiment station was established by the 

Massachusetts State Board of Health to study both water and wastewater 

treatment (Department of Army, 1975, reported by Spellman, 2003).  

The first idea of recovery of water quality through treatment was based on 

physical means, such as dilution and sedimentation. Spellman (2003) reported that 

the first wastewater treatment plant in Germany (Frankfurt/Main based on grit 

removal, screens, settling tank) was put into operation as late as 1887 (see also 

Seeger, 1999). However, this became insufficient as cities became larger and the 

environmental standards become more stringent with time. This led to 

improvement in treating through the development of biological treatment systems 

such as trickling filters or biological beds, which date back to the late 19th century 

and further developed and improved in the early 20th century. 

Another breakthrough in biological treatment of sewage was the discovery that 

supplemented aeration of wastewater resulted in better and faster purification. 

Thus, in the beginning of the 20th century, experiments were carried out on what 

was called the activated sludge process, which was discovered in 1913 by Ardern 

and Locket from laboratory experiments at Davyhulme treatment plant in 

Manchester, England (Cooper, 2002). It was named activated sludge because it 
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involves the production of an activated mass of the micro-organisms capable of 

stabilizing a waste aerobically. Many versions of the original process are in use 

today, but fundamentally, they are all similar. For example, activated sludge 

processes that have two or more aeration tanks may be designed to operate in a 

variety of modes of operation. The feed point of primary clarifier effluent or 

activated sludge influent and return activated sludge determine the mode of 

operation. Modes of operation include complete mix, plug-flow, step feed, and 

contact stabilisation as illustrated in Figure 2.1. 

Later on, chemical additions were introduced to increase the settleability of the 

waste during clarification. Furthermore, in some sensitive areas, tertiary treatment 

such as nitrogen removal techniques and sand filtration are introduced in order to 

improve the overall performance of the treatment plants. During the last few 

decades, wastewater treatment has become an industry of high complexity. 

2.3 The Structure of Wastewater Treatment Plant 

In modern wastewater treatment plants, treatment is generally carried out in 

several steps before it is released to the receiving water body: physical, chemical 

and biological treatment, which is used in many different combinations (Metcalf 

and Eddy, 2003; Spellman, 2003). A schematic of a typical plant is presented in 

Figure 2.2. Each of the treatment stages is described below.  

2.3.1 Preliminary treatment  

In this step, mechanical treatment is applied. The purpose of preliminary 

treatment is to protect plant equipment from clogs or jams or excessive 

mechanical wear by removing large objects such as rags, cans, sanitary pads, 

condoms, branches, leaves, roots, and many kinds of materials commonly known 

as trash. In addition, it saves valuable space within the treatment plant. 
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Preliminary treatment operations include screening, shredding, grit removal, pre-

aeration, chemical addition. More details can be found in (Spellman 2003; 

Metcalf and Eddy, 2003). 

 

 

Figure 2.1 Modes of operation commonly used in the activated sludge process 

(after Gerardi, 2002). 
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Figure 2.2 Schematic of a wastewater treatment plant based on the conventional 
activated sludge biological treatment 

2.3.2 Storm Tank 

Storm tanks serve the purpose of storing sewage flows caused by rainfall which 

are in excess of the capacity either of the treatment plant or of the sewer 

conveying flows to the treatment plant. Usually these tanks are located at the inlet 

of the plant. These tanks also allow the water stored to be partially treated by 

sedimentation. The importance of the storm tanks results from the fact that they 

can be used for control of the inflow to the treatment plant and for reduction of 

combined sewage overflow (CSO) discharges.  Also, storm tanks storm the first 

foul flush. 
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2.3.3 Primary treatment  

The purpose of primary treatment (primary sedimentation or primary clarification) 

is to remove settleable solids and floatable materials from wastewater. The 

efficiency of its operation influences directly the subsequent biological and sludge 

treatment units. Typically, 50 to 70 % of the total suspended solids are removed in 

this stage (Spellman, 2003). Since some of the solids are biodegradable, 

biochemical oxygen demand (BOD) is also removed, typically reduced by 30 to 

40% (Metcalf and Eddy, 2003; Gray, 2004). Primary clarification uses large 

basins in which settling is achieved via gravity conditions. Solids that are heavier 

than water and have adequate settling velocity will settle to the bottom within the 

allowed detention time, while solids that are lighter than water, such as oil and 

grease, float to the top. Within these basins, mechanical scrapers collect the 

settled solids into a hopper where they are pumped to sludge handling and 

treatment facilities. The oil, grease, and other floating materials (scum) are 

skimmed from the surface. The effluent is discharged over weirs into a collection 

trough and goes on to the next step in the treatment process. Standard retention 

times are about 0.5-2 hours, while retention times greater than 3 hours do not 

significantly improve the efficiency of the primary clarifiers (Spellman, 2003). 

The primary clarifier also has an equalizing effect on variations in influent 

wastewater concentration. Peak concentrations are damped due to a time lag of the 

order of the retention time (Spellman 2003; Metcalf and Eddy, 2003).  

2.3.4 Secondary treatment  

The main purpose of the secondary treatment, sometimes referred to as biological 

treatment, is to provide biological oxygen demand (BOD) removal beyond what is 

achievable by primary treatment, and in some configurations, nutrients are also 

removed. Secondary treatment takes advantage of the ability of microorganisms to 
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convert dissolved, suspended and colloidal organic wastes (or BOD) into more 

stable solids that can either be removed by settling or discharged to the 

environment without causing harm. 

Biological process is based on biological cultures. Gray (2004) reported that many 

different species have been observed to be present in the process namely, 

heterotrophic, autotrophic, yeasts, algae, fungi, filamentous bacteria, and 

protozoa. The organic pollutants in the wastewater serve as food and energy 

sources for the microbiological culture as it grows. The microbiological culture 

can either grow suspended in the water phase or in a fixed position on a surface of 

the media, as a biofilm (Metcalf and Eddy, 2003; Spellman, 2003). 

Fixed film systems, or the trickling filter, are processes that use a biological 

growth that is attached to some form of media like trickling filter. Wastewater 

passes over or around the media where the organisms remove and oxidize the 

organic solids. The media may be stone or any other substance that is strong 

(capable of withstanding weather conditions for many years), and provide a large 

area for biomass growth and an open space for ventilation. On the other hand, 

suspended growth systems are processes that use a biological growth that is mixed 

with the wastewater. Typically, suspended growth systems consist of various 

modifications of the activated sludge process, and are usually more compact than 

the trickling filter for the same population equivalent served.  

Due to the efficiency and compactness of activated sludge system for large 

wastewater treatment handling, this thesis only focussed on this type of treatment 

systems. Hence, more details about this system will be presented in the next 

section. 
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2.4 Activated Sludge Process  

The activated sludge process is the most commonly used biological wastewater 

treatment system. It mainly consists of several biological reactors (aerated tanks), 

and solid-liquid separators (secondary clarifiers or settlers). It is capable of 

performing four critical wastewater treatment functions, namely: the degradation 

or oxidation of carbonaceous wastes; the degradation or oxidation of nitrogenous 

wastes; the removal of fine solids; and the removal of heavy metals. These 

functions are achieved primarily through the growth and maintenance of a large, 

diverse, and active population of bacteria. Hence, it transforms the biodegradable 

constituents (substrate) into new biomass, carbon dioxide, water, and residual 

organic matter using the dissolved oxygen supplied by the aerators. The clarifier 

functions are to separate the suspended solids and biomass from the aerated 

sewage and thicken the sludge before it is recycled to the reactor (Spellman 2003; 

Metcalf and Eddy, 2003). 

As stated previously, activated sludge process is a biological process in which 

microorganisms oxidize and mineralize organic matter. Hence, the main 

requirement of the activated sludge process is to keep a high concentration of a 

mixed culture of microorganisms, known as the mixed liquor suspended solids 

(MLSS), in an artificially aerated reactor. The composition of the species of 

microorganisms depends not only on the influent wastewater but also on the 

operation of the wastewater treatment plant. The microorganisms grow slowly in 

the aerated tank and are kept suspended either by blowing air into the tank or by 

using agitators. Oxygen is used by the microorganisms to oxidize organic matter. 

On leaving the aeration tank (detention time typically 6 hours), the MLSS enters 

the secondary settling tank where it is clarified and thickened. To maintain the 

microbiological population in the aeration tank, part of the thickened sludge from 

the secondary clarifier is re-circulated back to the aeration tank; the surplus 
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thickened sludge is then wasted. The volume of sludge returned to the aeration 

basin is normally 40 to 60% of the wastewater flow. A basic schematic of the 

biological process in an activated sludge process is illustrated in Figure 2.3. 

 

Figure 2.3 basic schematic of the biological process in an activated sludge 

process. 

 

The biomass growth rate depends on many variables such as the amount of 

biomass, the substrate, temperature, pH, and the presence of toxins. The growth in 

number and diversity of bacteria occurs over time or increasing mean cell resident 

time (MCRT) or sludge age. During this time, the BOD is transformed into new 

less polluting wastes and more new bacterial cells or sludge. The bacteria along 

with ciliated protozoa and metazoan, remove fine solids and heavy metals from 

the bulk solution. An additional and critical role performed by the ciliated 

protozoan and metazoan is the consumption of the dispersed cells. The 

consumption of dispersed bacteria by these organisms is known as cropping 

action. By cropping bacteria the bacteria are removed from the waste stream 

(Spellman 2003; Metcalf and Eddy, 2003; Gerardi and Wiley, 2002). During bio-
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reduction (decay of microorganisms), biologically inert (non-biodegradable) 

matters are produced. Incoming wastewater will contain some inert matter as well. 

This matter flows unaffected through the process and is collected and removed in 

the settler. 

2.4.1 The Secondary Clarifier  

The secondary clarifier (SC) is an integral part of the activated sludge system. It 

has two main functions: it separates the biomass from the water in order to 

produce a good quality effluent free from settleable solids and it also thickens the 

biomass. Part of the thickened biomass is then wasted as sludge and part of it is 

returned to the biological reactor to maintain an appropriate biomass 

concentration. The SC also removes floating foam and scum produced in the 

aeration tank (Gerardi and Wiley, 2002; Spellman 2003). 

The operation of the secondary clarifier is crucial for the whole treatment plant 

(Gerardi and Wiley, 2002; Chen, 1993). As Beck (1984) puts it “it is in the 

secondary clarifier where adverse operational problems of bulking, rising, or 

dispersed sludge either develop or become critically apparent”. The term “bulking 

sludge” refers to sludge that has poor settling characteristics and poor 

compactability. Causes of sludge bulking include the growth of filamentous 

organisms or bacterial cells swelling through the addition of water. “Rising 

sludge” is caused by the denitrification in the secondary clarifier. Denitrification 

may result in nitrogen gas becoming trapped in the sludge layer and causing the 

sludge to rise. Another operational problem present in the absence of filamentous 

organisms is “dispersed sludge” which thickens easily but gives an effluent with 

high concentration of fine suspended solids. Hence, the main goal in the operation 

of the secondary clarifier is to prevent excessive rise of the sludge blanket, which 

eventually may result in loss of sludge into effluent. This not only increases the  



Chapter 2: Activated Sludge Wastewater Treatment System 
____________________________________________________________________________ 

 31 

effluent concentration of solids and organic mater considerably, it also affects the 

performance of the activated sludge process itself, since biomass which is 

necessary in the aeration tank for proper functioning of the process is lost from the 

system (Chen, 1993; Gerardi and Wiley, 2002; Spellman 2003). 

2.4.2 Operation of Activated sludge system 

To obtain the desired level of performance in an activated sludge system, a proper 

balance must be maintained between the amount of food (Organic matter), 

organisms (activated sludge), and dissolved oxygen (DO). The majority of 

problems with the activated sludge process results from an imbalance between 

these three parameters (Spellman, 2003). The actual operation of an activated 

sludge systems is thus regulated by three factors: aeration and dissolved oxygen, 

the rate of activated sludge recirculation (RAS) (pumped from the secondary 

clarifier back to the aeration tank), and the amount of excess sludge withdrawn 

from the system (WAS) (usually pumped from the secondary clarifier towards 

sludge treatment).  

Aeration and dissolved oxygen has two main objectives: keep the oxygen 

concentration within the appropriate limit, usually 2 mg/l, to maintain the 

microorganisms active, and ensure that the tank contents are sufficiently well 

mixed to keep the solids in suspension. Low dissolved oxygen concentration can 

limit the growth of microorganisms and encourage the predominance of 

filamentous bacteria with the subsequent deterioration of the effluent quality, as 

described previously in Section 2.4. On the other hand, high dissolved oxygen 

concentration represents a high energy waste through excess turbulence, 

especially with mechanical aerators, that may break up the biological floc 

resulting in poor settling characteristics and high concentration of solids in the 

effluent.   
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The return activated sludge (RAS) rate is a critical control variable as it 

redistributes the sludge between the secondary clarifier and the aeration tank, such 

that the healthy population of biomass is maintained in the aeration basin. Thus, 

the operator must maintain a continuous return of activated sludge to the aeration 

tank or the process will show drastic decrease in performance. If the RAS rate is 

too low, solids remain in the settling tank, resulting in solids loss and a septic 

return. If the rate is too high, the aeration tank can become hydraulically 

overloaded, causing reduced aeration time and poor performance. Therefore, there 

should be a balance between the return activated sludge and the wastage in order 

to achieve as desired performance. 

On other hand, because the activated sludge contains living organisms that grow, 

and produce waste matter, the amount of activated sludge is continuously 

increasing. If the activated sludge is allowed to remain in the system for too long, 

the performance of the process will decrease. If too much activated sludge is 

removed from the system, the solids become very light and will not settle quickly 

enough to be removed in the secondary clarifier. Hence, WAS is an important 

operational parameter because it allows the operator to establish the desired 

concentration of MLSS, food to microorganisms ratio (F: M), and sludge age. 

Furthermore, the separation of solids and liquid in the secondary clarifier results 

in a blanket solid. If solids are not removed from the clarifier at the same rate they 

enter, the blanket will increase in depth. If this occurs, the solids may carry over 

into the process effluent. The sludge blanket depth may be affected by other 

conditions, such as temperature variation or sludge bulking, as explained in 

Section 2.4.1.  
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2.4.3 Modelling activated sludge process 

Modelling the activated sludge process has an important role in implementing 

efficient control actions for better process performance. Models are helpful mainly 

because the effects of adjusting the operating variables can be studied far more 

quickly on a computer than by doing experiments as illustrated in Figure 2.3. 

Hence, many alternative designs and operational strategies can be compared 

without the need for physical trials of each scenario (Andrews, 1992, 1994; 

Olsson, 2005). By simulating these models with the possible correction actions, it 

is then possible to rapidly respond to any change in the process and devise an 

operational strategy, which can move the plant to new operating conditions that 

improve its stability, the quality of the effluent and at the same time achieve 

reduction in the running costs. Therefore, optimum process configurations, which 

meet given effluent quality standards at least cost, can be achieved (Olson, 2005; 

Rivas et al., 2008).  
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Figure 2.3 Applying models to solve problems in activated sludge wastewater 
treatment plant. The Figure illustrates that instead of applying the correction 
action on a real system, it is better to test several correction scenarios using the 
model and then apply the results on the real system.     

However, modelling the wastewater treatment process is not without its problems, 

namely: 

• The process is time varying. It consists of many sub-processes with strong 

dynamics of various scales. It has time constants, which range from 

seconds to months. Some variables are slow to change, for instance sludge 

dynamics (MLSS) and temperature, with time scales of days, weeks and 

even sometimes months. The daily variation in influent flow rate and 

substance concentrations is perhaps the most dominant variation in the 

process. However, there are even faster variations present, such as 

dissolved oxygen (DO).  
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• The process has a complex multivariable nature, with large amount of data 

collected by the measurement system. This high dimensionality makes it 

difficult to decide what should be considered as inputs and outputs. In 

addition, there is a significant complex interaction between variables. In 

other words, there is a complex cause-effect relationship caused by the 

biological cultures, recirculation and control actions. Furthermore, these 

variables typically exhibit complex nonlinear characteristics (Spellman, 

2003; Fu and Poch, 1995). 

• As a biological process, there is a lack of reliable on-line measurement 

instruments. For example, the process has variables, such as BOD, that are 

difficult to measure in real time. In addition, many sensors are not reliable 

because they are noisy, have long response time, require frequent 

maintenance and can drift (Schilling, 1994; Harremoës et al., 1993; 

Vanrolleghem et al., 1990; Steyer et al., 1999; Olsson, 2005). 

Consequently, most of the available data records have lots of missing 

and/or erroneous values (Rustum and Adeloye, 2007-a, b).  

• Many factors that affect the process are not routinely monitored in most 

wastewater treatment plants. For example, factors such as the soluble inert 

matter form part of the mechanistic model’s representation of the 

treatment process (ASM1 for example) but are rarely measured on full-

scale plants (Henze et al., 1986).  

• The process is subject to large unpredictable conditions such as the effect 

of toxic industrial materials, mechanical breakdowns (Manfred et al., 

2002), some of which are quite difficult to formulate mathematically. 

• No two wastewater treatment works are the same. Variations exist in the 

size and circumstances; the nature of the industrial waste inputs is site 



Chapter 2: Activated Sludge Wastewater Treatment System 
____________________________________________________________________________ 

 36 

specific. Climate differences are also to be expected. Therefore, there is a 

need to consider the specific features and circumstances of any wastewater 

treatment works that is to be simulated using mathematical models.  

Despite all of the above, some advances have been reported in modelling 

wastewater treatment process, especially the activated sludge system. 

2.4.4 Types of Modelling of the activated sludge process  

Mathematical modelling of the activated sludge processes has received 

considerable attention in the last three decades. A variety of model structures has 

been proposed to represent the processes occurring within the activated sludge 

system such as carbon oxidation, nitrification and denitrification (Manfred et al., 

2002).  

Activated sludge models can be classified into two classes, first according to the 

part of the plant to be modelled, for example primary clarifier, aeration reactor 

and secondary clarifier, and second according to the modelling strategy to be 

employed, i.e. fundamental or empirical. Models derived from mechanistic 

equations are called fundamental models. In contrast, empirical models fit the data 

but do not reflect physical consideration in the system. Empirical models are 

identified from system input-output data where the model coefficients are fitted to 

input-output map using statistical methods. The following subsections present the 

efforts devoted to modelling the activated sludge wastewater treatment plant 

based on the different modelling strategies.  

2.4.4.1 Fundamental models of the activated sludge wastewater treatment 

process 

a. Primary clarifier models 

Due to the importance of primary clarifiers (primary sedimentation tanks), not 

least because their performance affects the performance of subsequent units and 
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the sludge treatment, numerous efforts have been devoted to the development of 

primary clarifier models (Lessard and Beck, 1991). Primary clarification is often 

considered as being not very “sensitive”, resulting in the use of simplified models 

to represent its dynamic behaviour such as steady-state approach (Otterpohl and 

Freund, 1992). Most of the primary clarifier models do not consider any 

biological reactions to occur in the reactor, simulating only the suspended solids 

(SS) behaviour. However, in certain cases some biological phenomena take place 

in the primary settler as modelled by Lessard and Beck (1988).  

There are several problems associated with precise modelling of primary 

clarifiers. These problems are caused by the complexity of the dynamic behaviour 

of the sedimentation process and include: 

• Variability of influent characteristics; 

• Variability of particle size and corresponding velocities; 

• Presence of complex flow patterns and density currents in the tank; 

• Scouring phenomena and the effects of temperature. 

Although the above difficulties exist and are well documented, a variety of 

primary clarification models have been proposed ranging from simple steady-state 

models to lumped and distributed parameter models (Leassard and Beck, 1991). 

Simple models usually relate the removal efficiency to influent suspended solids 

concentration and overflow rate. Examples of primary clarifier models can be 

found in Alarie et al. (1980), Otterpohl and Freund (1992), Paraskevas et al. 

(2003). However, most of these models depend on parameters that are not 

measured in the real operation of the treatment works. For example, the model 

developed by Takacs et al. (1991) is frequently used to describe the dynamic 

behaviour of settlers. In this model, the clarifier is divided into a number of layers 
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(usually ten) and a mass balance is made over each layer to evaluate the SS profile 

in the settler. The particularity of the model is the use of a settling velocity model 

describing both clarification and thickening as described in Equation 2.2.  

jpjk XrXr

sj evevv −− −= 00                                                                                     (2.1) 

where:  

vsj is a settling velocity of the solids in the layer j (m/d); 

v0 is a maximum settling velocity (m/d); 

rk is  hindered settling parameter (m3/g);  

rp is flocculent settling parameter (m3/g);  

Xj is Xi – Xmin (Xi = SS concentration in layer j (g/m3);  

Xmin = fnsXin;  

fns = non-settleable fraction of Xin and  

Xin =influent SS concentration (g/m3). 

Therefore, according the characteristics of the primary clarifier influent and the 

design characteristics, its performance can be calculated. 

b. Biological reactor models 

Deterministic mathematical models rely on differential equations and kinetic 

parameters and coefficients to describe the process. These models take into 

account changes of flow rate, composition and concentration of the influent 

wastewater. Manfred et al.(2002) provide excellent reviews of the progress in 

modelling wastewater treatment plants using fundamental model from where it is 
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clear that the most widely known deterministic model is the Activated Sludge 

Model Number 1 (ASM1) (Henze et al., 1987). 

In 1986, the International Association of Water Pollution Research and Control 

(IAWPRC), later renamed International Association of Water Quality (IAWQ), 

and then International Water Association (IWA), formed a task group on 

“Mathematical Modelling for Design and Operation of Biological Wastewater 

Treatment” in order to promote the development of practical models for aiding the 

design of biological wastewater treatment plants. This group contained one 

representative from each of five countries (Denmark, USA, Switzerland, Republic 

of South Africa, and Japan). Each representative had experience in activated 

sludge modelling. Their assignment was to review existing models and to develop 

from the literature a consensus model able to realistically predict the performance 

of activated sludge process that perform carbon oxidation, nitrification and 

denitrification. This led to Activated Sludge Model No. 1 (ASM1) (Henze et al., 

1987).   

ASM1 represents the state of the art in modelling the activated sludge process and 

has been proven as a successful model in many applications (Béline et al., 2007; 

Chen and Ribarova, 1999; Maryns and Bauwens, 1997). Consequently, it has been 

introduced in a number of computer programs; e.g. Single Sludge Simulation 

Program (SSSP) developed by Bistrup and Grady (1988), ASIM (Gujer and 

Henze, 1991) and GPS-X (Patry and Takacs, 1990).  

ASM1 contains 18 parameters, made up of 5 stoichiometric and 13 kinetic 

coefficients. Table 2.1 lists the ASM1, whilst Tables 2.2 defines the state 

variables. Table 2.3 and 2.4 list the kinetic and stoichiometric coefficients, 

respectively. ASM1 models eight processes involving 13 state variables, including 

various fractions of organic matter, biomass, nitrogen components, particulates 
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and alkalinity. Model representation is usually done by listing the processes as 

rows of a matrix with the state variables as column headings. Each matrix entry 

indicates the appropriate stoichiometric coefficient for the relationship between 

the variables in the individual processes (see Table 2.1). Process equations for 

each state variable are easily read by summing up the products of each entry of the 

related column with the kinetic coefficients of the process, which are given in the 

right-most column of the matrix. For example,  
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Some useful hints for determination of some of the model’s parameters for a 

given treatment plant are given by Nowak et al. (1999).  

As remarked previously, the ASM1 has seen several practical applications 

worldwide. For example, Chen and Ribarova (1999) used the ASM1 to investigate 

the feasibility of upgrading Parada, a conventional WWTP in Portugal, for 

biological nitrogen removal. Very good correlations between measured data and 

simulation results were achieved using the parameter values proposed by the 

authors of ASM1. Computer simulations were done to study whether the capacity 

of the treatment plant is enough for biological nitrogen removal. They found that 

very high effluent quality can be achieved if the first tank volume is used for 

denitrification, the second and third tank volumes are used for BOD removal and 

nitrification, the recirculation flow ratio is 1.5 and the sludge age is 15 days.  

Further development of modelling the activated sludge wastewater treatment 

plants resulted in the ASM2, ASM2D, and ASM3 models. The ASM2 provided 

detailed biological kinetics and reflected the state of art on the understanding of 
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nitrification, denitrification, and biological phosphorus removal (Henze et al., 

1995). The ASM2D, an extension of ASM1 and ASM2, is a model for biological 

phosphorous removal with simultaneous nitrification-denitrification in activated 

sludge systems (Gujer et al., 1999). The ASM3 can predict oxygen consumption, 

sludge production, nitrification and denitrification for activated sludge system 

(Gujer et al., 1999). The ASM3, (Henze et al., 2000), also includes storage of 

organic substrates as a new process and the decay process was exchanged for an 

endogenous respiration process. Additionally, ASM3 is provided in a form that 

can be implemented in a PC code without further adjustments but it does not 

include biological phosphorous removal as it is contained in the ASM2. 

However, the complexity of these models and the detailed microorganism’s 

growth and decay data required by them mean that they are not appealing to 

process designers and operators as reported by Lessard and Beck (1991), and 

Weijers and Vanrolleghem (1997). For example, ASM1 requires the 

determination of about 31 parameters, coefficients and variables, most of which 

are not routinely measured by large wastewater treatment plants. Furthermore, a 

certain number of simplifications and assumptions must be made in order to make 

a model of a WWT system practically useful. Some of these are associated with 

the physical system itself, while others concern the mathematical model 

(Jeppsson, 1996). 
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Table 2.1 Activated Sludge Model Number 1 ASM1 (Manfred et al, 2002) 

 

 
 



Chapter 2: Activated Sludge Wastewater Treatment System 
____________________________________________________________________________ 

 43 

Table 2.2 Definition of state variables in the ASM1 

Component 

Number 

Component 

Symbol 
Definition 

1 SI Soluble inert organic matter M(COD)L-3 

2 SS Readily Biodegradable Matter M(COD)L-3 

3 XI Particulate inert organic matter M(COD)L-3 

4 XS Slowly biodegradable substrate M(COD)L-3 

5 XBH Active heterotrophic biomass M(COD)L-3 

6 XBA Active autotrophic biomass M(COD)L-3 

7 XP Products from biomass decay M(COD)L-3 

8 SO Dissolved Oxygen M(-COD)L-3 

9 SNO Nitrate and nitrite nitrogen M(N)L-3 

10 SNH Ammonia nitrogen M(N)L-3 

11 SND Soluble biodegradable organic nitrogen M(N)L-3 

12 XND Particulate biodegradable organic nitrogen M(N)L-3 

13 SALK  Alkalinity- Molar Unit 
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Table 2.3 Kinetic coefficients of the ASM1 

Kinetic event 
Symbol
s 

Unit 

Heterotrophic max. specific growth rate 
H

^

µ  
Day -1 

Heterotrophic decay rate bH Day -1 

Half-saturated coefficient (hsc) for heterotrophs KS g COD m-3 

Oxygen hsc for heterotrophs KNO g NO3-N m-3 

Autotrophic max. specific growth rate 
A

^

µ  
Day -1 

Autotrophic decay rate bA Day -1 

Oxygen hsc for autotrophs KO,A g O2 m
-3 

Ammonia hsc for autotrophs  KNH g NH3-N m-3 

Correction factor for anoxic growth of heterotrophs gµ  dimensionless 

Ammonification rate ka m3 (g COD day)-1 

Max specific hydrolysis rate kh 
g slowly biodeg. COD (g cell COD 
day)-1 

Hsc for hydrolysis of slowly biodeg. substrate Kx g slowly biodeg. COD (g cell COD)-1 

Correction factor for anoxic hydrolysis hµ  dimensionless 

 

Table 2.4 Stoichiometric coefficient of the ASM1 

Stoichiometric coefficient Symbol Unit 

Heterotrophic yield YH G cell COD formed (g COD oxidized)-1 

Autotrophic yield YA G cell COD formed (g N oxidized)-1 

Fraction of biomass yielding 
decay products 

fp 
Dimensionless 

Mass N/Mass COD in biomass iXB G N (g COD)-1 in biomass 

Mass N/Mass COD in decay 
products 

iXP 
G N (g COD)-1 in endogenous mass 
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c. Secondary clarifier model 

Generally, the final settling tanks are represented as two different processes: 

clarification and thickening. However, it is difficult to determine what the state of 

the art for dynamic models for the clarification and thickening is. That might be 

because relationships among operational variables of the reactor, the components 

of the sludge floc and its settling velocity are too complex to be quantitatively 

described (Chen, 1993). According to Lessard et al. (1993), final clarifier models 

are mostly based on empirical relationships and are largely related to the 

particular plant used to determine the parameters, and most models have not been 

evaluated thoroughly against experimental work at plant scale, especially for the 

thickener models.  

Existing secondary clarifier models range in complexity from very simple 

empirical models for clarification of the settler (Plósz et al., 2007) to some very 

complicated two and three dimensional models which considered hydro dynamic 

effects (Giokas et al., 2002). However, the most famous model for secondary 

clarifier is based on the work by Lessard and Beck (1993). Its clarification part 

used an empirical approach derived from data from the treatment plant of Celle/ 

Germany. This model consists of four layers as shown in Figure 2.4:   

1. Clarification zone of fixed volume where the water is assumed clean. 

2. Dead Zone which occupies the volume left by thickening zone where no 

reaction occurs. 

3. Thickening zone of variable volume where the water is separated from the 

sludge. 

4. Compression zone of fixed volume where the sludge has already settled. 
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Figure 2.4 Schematic representation of the zones in the final settling tank model 
(Lessard and Beck, 1993) 

 

In this model, the effluent suspended solids concentration is based on an empirical 

relationship determined by: 

)(21 RASeff QQaaSS +×+=                                                                                (2.3) 

Where  

SSeff : effluent suspended solids concentration (g/m3) 

a1: minimum effluent suspended solids concentration in the secondary clarifier 

effluent (g/m3), the minimum that can be achieved. 

a2: proportionality constant for the effluent of flow on effluent SS 

Q: Influent Flow (m3/s) 

QRAS: return activated sludge rate (m3/s) 

Influent 
Mixed Liquor 

Clarification Zone 
 (Fixed Volume) 

 
Effluent 

Dead Zone 
 (Variable Volume) 

Thickening Zone 
 (Variable Volume) 

Compression Zone 
 (Fixed Volume) 

Return Activated Sludge 
(RAS) 

Wasted Activated Sludge  
(WAS) 
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The thickening part of the model is based on the flux theory as presented by Dick 

and Young (1972) in which the relationship between sludge settling velocity and 

concentration is represented by: 

nXV −=
00v                                                                                                           (2.4) 

Where 

v: settling velocity (m/h) 

V0 : the start velocity (m/h) 

X0: the MLSS concentration (g/m3) 

n: is constant describe the sludge characteristics (l/g) 

However, the limitations of the Lessard and Beck (1993) and most of the other 

secondary clarifier modes can be summarised as: 

• These models can not describe dynamic process within the sludge blanket 

and there is hardly any potential for the prediction of the effluent quality 

(Krebs, 1995). 

• Most of these models are developed based on pilot-scale data sets and they 

were not evaluated against field data.  

• Most of these models are based on few number of layers to represent the 

thickening process. However, according to Jeppsen and Diehl (1996), at 

least 30 layers should be used in order to obtain reliable results under 

normal operating conditions. 
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•  According to Dupont and Dahl (1995),  most of these  models suffer from 

at least one of the following two problems when applied to full-scale 

wastewater treatment plants:  

o Incorrect calculation of sludge concentration profile near the 

effluent weirs; 

o Incorrect calculation of the return sludge concentration. 

• These models are dependent on specific site parameters, and would 

accordingly require extensive calibration efforts when applied to another 

site (Lessard and Beck, 1993).   

 

d. Limitations of fundamental models 

Although fundamental (deterministic) models are preferred because the models 

have the ability to predict beyond the range of existing operating data, their 

success is limited due to several factors; these factors can be summarised as: 

• Fundamental models are often developed using data obtained under 

controlled laboratory conditions and are ,therefore, more suitable for the 

design of treatment plants and may not be suitable for operational control 

(Nokyoo, 2002; Leassard and Beck, 1991).  

• Most fundamental models have been proposed to simulate the dynamic 

behaviour of the biological reactor and the secondary settler as 

independent units; very few models have looked at the interconnection 

between these two units (Dupont and Henze, 1992).  
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• Mechanistic models require recalibration, and they may be hard to 

reconfigure if the physical system is modified. That is because they are 

developed based on a specific physical system. 

• Mechanistic models require high number of parameters and coefficients 

that limits the accuracy of the model. Besides many of these variables and 

parameters are typically not parts of the routine monitoring of plant 

performance. For example, soluble inert, and particulate inert, form part of 

the ASM1 model’s representation of the treatment process but are rarely 

measured on full scale plants.  

• There are significant costs associated with the collection of data to support 

a modelling exercise using these deterministic models, as well as the cost 

of the time devoted to the development of these models (Stokes, 1998). 

Consequently, empirical models have been seeing increasing applications in the 

modelling of activated sludge wastewater treatment plants. In the next section, 

examples of empirical models available are presented with emphasis on those 

based on artificial intelligence paradigms. 

 

2.4.4.2 Empirical models of wastewater treatment plants  

The complexity of wastewater treatment plant necessitates more sophisticated 

control systems capable of delivering better and more flexible performance. 

Increasingly, control systems are required to have high dynamical performance 

and robust behaviour, and yet be able to cope with complex, uncertain and highly 

nonlinear process relationship over a wide operating environment. This requires 

the use of models of the system as argued previously. 
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However, due to the factors that limit the practicality of mechanistic models in 

modelling the wastewater treatment plant presented earlier, researchers are 

motivated to use new techniques to deal with the complexity and uncertainty in 

wastewater treatment plant operations. One of these techniques is the intelligent 

models that deal with complexity and uncertainty of the system in a manner 

similar to the human way of thinking and reasoning, without the difficult task of 

dealing with deterministic non-linear mathematics (Shankir, 2000). Among these 

tools and techniques are stochastic models, expert systems, Fuzzy Logic, data 

mining, and neural networks.  

Stochastic modelling (or time series analysis) is the methodology that deals with 

the study of a set of observations generated sequentially in time. It includes 

combinations of the Box-Jenkins models such as autoregressive (AR), 

autoregressive moving average (ARMA) and autoregressive integrated moving 

average (ARIMA) among others (Box and Jenkins, 1976). Several applications of 

stochastic models to forecasting of treatment process time series have been 

reported in the literature. For example, uni-variate and multivariate process 

models were applied by Capodaglio (1994) to make one day ahead predictions of 

the water flow and SS based on measurements of rainfall with good results. 

Stochastic models have also been incorporated into a prototype Real Time Control 

(RTC) system for the control of an activated sludge process in Denmark by 

Kristensen et al. (2004). The data originated from Fnjoskadalur wastewater 

treatment plant.  The goal was to predict the flow and the predictions were to be 

used for on-line automatic control in the wastewater treatment plant. The input 

data were precipitation, measured at the wastewater treatment plant, and the 

output data were flow data from the last pumping station before the treatment 

plant.  
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Expert systems (ES) models are implemented using expert knowledge and 

database (Capodaglio, 1994). Since the 1980s, several demonstration and research 

projects using ESs for control of WWTPs have been used (Andrew, 1992; 

Paraskevas et al, 2003). However, these models may not be generally applicable 

to every system as it is generally difficult to collect the expert’s knowledge 

(Esteves, 2002).  

Fuzzy logic models are a compromise between the vague statements which 

humans often use and the strict logic of expert systems. No complex mathematical 

relationships are required in the construction of fuzzy logic applications. Beside, it 

is believed to be conceptually easy to understand, flexible and tolerant of 

imprecise data allowing the modelling of complex non-linear functions. However, 

the drawback of fuzzy models is that tuning the parameters of the fuzzy 

membership functions is difficult and time consuming. Furthermore, the main 

difficulty is to define the number of necessary fuzzy rules.  

Because Fuzzy logic models can handle highly non-linear, imprecise and 

uncertain systems that are poorly understood mathematically and depend not only 

on black box concepts, such as ANN, but also use  a combination of knowledge of 

the system and operational experience, they have been suggested and applied to 

model wastewater treatment plants. Most of these applications are to simulate or 

control pilot plants (Tsai et al., 1993;1994; 1996; Muller et al. 1998;  Ferrer et al., 

1998; Manesis et al. 1998; Steyer et al.,1999; Carrasco et al.,002). Only few 

studies have used fuzzy modelling of the whole process including biological 

reactors and secondary settler (Tong et al.,1980; Geselbracht et al., 1988; Czogala 

and Rawilk, 1989; Yi et al., 1990; Fu and Poch, 1998; Watanabe et al., 1993;  Fu 

and Poch, 1995a,b; Marsili-Libelli, 1996; Cohen et al., 1997; Huang and Wang, 

1999; Kalker et al.,1999 ; Tomiello et al., 1999; Meyer et al., 2003;  Sanchez et 

al., 2001; 2003; Traore et al.,  2006). Some applications have been applied to 



Chapter 2: Activated Sludge Wastewater Treatment System 
____________________________________________________________________________ 

 52 

anaerobic digester as well (Boscolo et al., 1993; Estaben et al., 1997; Giraldo-

Gomez and Dugue, 1998; Steyer et al., 1999; Polit et al., 2001; Punal et al., 2002; 

Murnleitner et al., 2002). 

Artificial neural networks (ANNs) are non-linear mathematical structure that are 

capable of representing the arbitrary, complex non-linear functional relationship 

between the input and outputs of any system. ANN models have been used 

successfully to model complex non-linear input-output time series relationships in 

a wide variety of fields, including water resources, as for example, in predicting 

reservoir storage-yield-rehability relationship (Adeloye and Demnnari, 2006). 

Additionally, neural networks model was used for predicting the monthly values 

of water quality parameters in rivers (Diamantopoulou et.al, 2005). The success 

with which ANNs have been used to model dynamic systems suggests that the 

approach may prove to be an effective and efficient way to simulate complex 

wastewater treatment systems. Hence, the literature exhibits a wide range of 

applications of ANNs applied to wastewater treatment systems for example Mjalli 

et al. (2007), Hamed et al. (2004), Du et al. (1999), Raduly et al. (2007), Chen et 

al. (2003), Gamal-El-Din and Smith (2002). Further details about these data 

driven models will be given in the next chapter. In the mean time, some examples 

of their applications to wastewater treatment plants modelling and their limitations 

will be discussed. 

Mjalli  et al. (2007) used the ANN to model the Doha West wastewater treatment 

plant, Qatar. They used crude sewage quality characteristics inputs namely BOD, 

COD and TSS to predict the effluent stream BOD, COD and TSS. The authors 

used data over one year that were sampled every 5 days. They used smoothed data 

series instead of raw data to develop the model. The smoothing technique is used 

to reduce short-term volatility in the data by consolidating the available data 

points into longer units of time, namely an average of four historical data points. 
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For example, the data were performed every 5 days then every 4 points were 

smoothed, then every 20 days were represented by just one value which is not 

reasonable for wastewater treatment plant data. Thus, even though the 

performance of the model was relatively good, the peaks of the data were damped 

through the smoothing process. In addition, the authors did not mention the 

quality of the data and they just ignored the missing values in the measurement 

system. Furthermore, they used BOD as input to their model, although BOD takes 

5 days to be measured in the bioassay method. Moreover, the authors used single 

input single output with just 40 neurons in the hidden layer, but there was no 

sensitivity test of the impact of changing the number of hidden neurons. They got 

over 70% correlation coefficient, but they did not distinguish if these results were  

from the training, validation, or testing data set.  

Hamed et al. (2004) apply ANN to predict the performance of WWTP in a major 

conventional treatment plant in Great Cairo district, Egypt. Daily records of BOD 

and SS concentrations through various stages of the treatment process over 10 

months were used. The ANN model was found to provide an efficient and a 

robust tool in predicting WWTP performance in terms of BOD and SS.  The data 

records used in this study, BOD and SS, contain many missing values, for 

example, from 300 days,  247 were missing; they were merely ignored by the 

authors. The results obtained from this study indicated that R2 values ranged from 

0.63 to 0.81 for BOD and from 0.45 to 0.65 for SS. However, much more could 

have been achieved by their modelling if the missing values were in-filled. 

Moreover, Hamed et al. (2004) concluded that the model was hindered by the 

limitation of the data, the noisiness of the data, and the restriction of just two 

parameters, BOD and SS. There was also no mention of any independent 

validation of the model.  
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Du et al. (1999) develop a fuzzy- neural network hybrid model to predict the 

sludge age of the activated sludge process. It was found that fuzzy-neural network 

model is able to extract fuzzy rules from a set of numerical data that can be used 

to carryout heuristic reasoning. The model has three input variables; feed flow 

rate of activated sludge process (m3/day); feed substrate concentration of activated 

sludge process (g COD/m3) and sludge recycle rate (m3/day). The model has one 

output variable, the sludge age. The data record were obtained from rigorous 

ASM1 simulation investigation because real data were unavailable. They assumed 

that the feed stream of the activated sludge process under study is described in 

terms of the feed flow rate and the feed substrate concentration and they ignored 

other parameters or assumed them to be time invariant. The recycle rate is 

assumed to be the only manipulated variable.  

Choi and Park (2001) apply principal component analysis (PCA) to extract 

features of industrial wastewater treatment plant data. The extracted features are 

then used to predict the total Kjeldahl nitrogen (TKN) of influent industrial 

wastewater using the ANN as illustrated in Figure 2.5. The hybrid system shows 

an enhancement of prediction and reduces the over-fitting problem of ANN.  

Eleven industrial wastewater quality parameters are reduced to just five principal 

components, PR1-PR5 shown in Figure 2.5. These principal components became 

inputs to the ANN model. It is found that the PCA enhanced the performance of 

ANN. However, even if the PCA reduces the dimensionality of the data, the first 

two principal components could not extract more than 38% of the variance of the 

data due to the high nonlinearity of the system. Moreover, the developed model 

cannot deal with the presence of missing values in the measurement system. 
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Figure 2.5 The structure of hybrid neural network combined with principal 
component analysis (after Choi and Park, 2001) 

 

Raduly et al. (2007) apply ANN for rapid WWTP performance evaluation. 

However, the data used for training the ANN were generated using ASM3. In 

addition the input variables for the ANN were those not routinely measured at 

WWTP, for example, soluble inert material, readily biodegradable substrate, 

ammonium nitrogen, particulate inert material, and heterotrophy and autotrophy 

bacteria concentrations. The outputs of the model were the BOD, total COD 

(CODtot), TKN, Soluble ammonium, total nitrogen, and the TSS.  The results 

obtained from the work confirmed that ANNs can readily be used in simulation 

work for WWTP. In particular, it emerged that simulation with ANN was 36 

times faster than simulation with mechanistic model such as ASM1.  

Chen et al. (2003) develop a recurrent neural network model to predict the 

nitrogen contents in treated effluents to be used for ground water recharge. The 

model uses three online parameters, pH, Oxidation-reduction potential (ORP), and 

dissolved oxygen (DO) in conjunction with three off-line nutrient tests, BOD, 

Ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N). The outputs were 
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total nitrogen, NO3-N and NH4-N. The accuracy of this model was over 90% in 

this work. The quality of the data has not been mentioned in term of missing 

values and outliers.   

Gamal – El-Din and Smith (2002) develop an ANN model to predict wastewater 

inflow rate that enters the Gold Bar WWTP, Alberta, Canada. The neural model 

uses rainfall data observed in the collection system discharging to the plants as 

inputs to the ANN model. Eight rain gauges were selected to be used by the neural 

network inputs. An index to represent the day of the week and another index to 

represent the hour of the day were used as inputs to the neural network model as 

well. The raw data flow records had some negative values, which indicated 

segments of faulty data. These segments of data were eliminated and considered 

as data gaps.  

Traoré et al. (2006) developed a fuzzy model of the sludge height in the secondary 

settler. The modelling strategy was based on simple on-line data (influent, 

removal and recycle flows) and daily analytical values of the sludge volume index 

(SVI) allowing the fuzzy algorithm to reduce sludge height variations and thus to 

increase the settling process efficiency. The developed model has then been 

adapted and applied to the Cassà de la Selva activated sludge WWTP (Spain). The 

influent flow and the sludge volume index have been used as inputs to estimate 

the sludge recycle and removal flows. The use of fuzzy logic as control tool made 

it possible to combine two kinds of knowledge. The process qualitative 

knowledge or fuzzy rules were obtained from experts and operators working on 

the plant. The results obtained showed the fuzzy controller efficiency for both 

increasing and decreasing SVI values. The application of the controller to the 

Cassà-WWTP data also allowed an important reduction of suspended solids 

concentration fluctuations. 
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Polit et al. (2001) developed fuzzy estimators for the concentration of the 

substrate at the input, the total and partial alkalinity in the influent and in the 

effluent and the volatile fatty acid (VFA) concentration at the output of the reactor 

of a pilot-scale anaerobic digestion reactor for the treatment of raw industrial 

wine. Those observers were built on available on-line measurements like pH, 

temperature, input flow rate and output gaseous flow rate. The fuzzy observers 

follow quite well the measured values of the effluent partial and total alkalinity 

and of the VFA at the output of the reactor. Those quantities are difficult to 

measure on-line and nevertheless those values are very useful in the process 

knowledge.  

It is clear from the above discussion that a variety of neural networks models have 

been used in WWTP research. However, attention has focused on supervised 

neural networks and there is less directed at exploiting the Kohonen self 

organising map or (KSOM) in the field of wastewater treatment. Few exemptions 

of such applications are discussed in the following paragraphs. 

Garcia and Gonzalez (2004) apply KSOM for clustering data obtained from a 

steelworks wastewater treatment plant in order to estimate, monitor and visualise 

the process states. They use a combination of the KSOM and other clustering 

techniques to estimate and monitor the diverse state of the wastewater treatment, 

and they establish the correlation among process variables which is necessary in 

order to obtain a knowledge based system. 

Hong et al. (2003) applied the KSOM to analyse the multi-dimensional process 

data, and to diagnose the inter-relationship of process variable in a real activated 

sludge WWTP. By using the component planes, they discovered some local 

relationship between process variables under different operating conditions. They 

found that the KSOM provides an effective analysing and diagnosing tool to 
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understand the system behaviour and to extract knowledge contained in multi-

dimensional data of a large-scale WWTP. 

Cinar (2005) used KSOM to classify operational data of the Pelham WWTP in 

Western Carolina and to determine the reasons of high effluent concentration of 

BOD, TSS, and faecal Coliform. He found that the reasons causing high effluent 

concentration of these parameters were the high pH in the biological reactor and 

the high solid retention time (SRT).   

Gonzalez and Garcia (2006) proposed a self organising map and clustering 

algorithms to achieve the aerobic end point detection of a sequencing batch 

reactor in a coke wastewater treatment plant. They outlined the validation 

methods for KSOM training and testing the predefined criterion to determine the 

KSOM size.  

The above merely introduces the plausibility of AI modelling techniques for 

wastewater treatment plants system. Further details about the nature, structure, 

strength and limitations of AI models in treatment plant applications are given in 

the next chapter. 

2.5 Summary 

This chapter reviewed the background of activated sludge wastewater treatment 

plants. It presented the importance of wastewater treatment, its history and the 

structure of a conventional activated sludge wastewater treatment plant. The 

biochemistry and microbiology of the process are described. A review of the state 

of the art in modelling activated sludge wastewater treatment plants is also 

presented and discussed.  

The chapter concluded that the complexity of ASM1 and the detailed 

microorganism’s growth and decay data required by it mean that it is not 
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appealing to process operators. The ASM1 requires the determination of about 31 

parameters, coefficients and variables, most of which are not routinely measured 

by large wastewater treatment plants. Furthermore, a certain number of 

simplifications and assumptions must be made in order to make a model of a 

WWT system practically useful. Some of these are associated with the physical 

system itself, while others concern the mathematical model. 

The next Chapter will introduce the essential background of Artificial Intelligence 

Techniques used in this study. These techniques are backpropagation Artificial 

Neural Networks, Kohonen Self organising map and Fuzzy Logic. The adaptive 

neural networks based on fuzzy inference system will also be presented and 

discussed.   

 
 
 
 



 

CHAPTER 3  

ARTIFICIAL INTELLIGENCE TECHNIQUES (AI)  

 

3.1 Introduction 

Artificial intelligence (AI) techniques concern several areas relating to the 

simulation of human intelligence in a computing machine. However, research in 

AI techniques suffered in the past due largely to a lack of understanding of how 

the human brain actually works, but also due to the disbelief about the thinking 

machine, and the fact that the computational power required to apply these 

techniques was unavailable at that time. In 1973, the Lighthill Report (Lighthill, 

1973), in the United Kingdom concluded that there was no future in AI research 

and recommended that all research funding in the area be terminated. Despite this, 

however, work on AI has continued due to advances in the computing field. 

The primary attraction of AI techniques is that they are able to represent systems 

with non-linear characteristics, without the difficult task of dealing with 

deterministic non-linear mathematics. The existing modelling strategies of AI can 

be divided into three categories, namely, ‘white-box’, ‘black-box’, and ‘grey-box’ 

based on the type of knowledge used for the model development. In ‘white-box’ 

modelling strategies, also called deterministic models, the model development is 

mainly driven by the knowledge of the relevant mechanisms and balances. In 

other words the model equations are developed from general balance equations 

applied to mass and other conserved quantities, resulting in a set of differential 

equations. A ‘black-box’ or input-output model is mainly driven by the measured 

data obtained from the process. However, black-box model is only as good as the 



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 61 

data that were used to calibrate them (Gernaey et al., 2004). Indeed, ‘black box’ 

models are not believed to have any extrapolation properties; consequently, one 

has to obtain a large body of data that cover the possible range of fluctuations in 

the relevant input variables for process modelling. Finally, ‘grey-box’ model may 

be defined as a suitable combination of ‘black-box’ and ‘white-box’ model, in 

such a way that the model is developed using data driven techniques and at the 

same time can extract some useful knowledge from the data (The Mathworks, 

System Identification Toolbox  http://www.mathworks.com/products/sysid/).  

Among commonly used AI tools and techniques are Artificial Neural Networks 

(Black Box), Fuzzy logic (Grey Box), Expert Systems (white box), and a wide 

variety of search techniques such as genetic algorithms. However, the rest of this 

chapter will present just ANN and Fuzzy logic, as they are the core of this work.  

3.2 Artificial Neural Networks 

An artificial neural network (ANN), often just called “neural network” (NN) is a 

mathematical model or a form of computing algorithms inspired by the 

functioning of the biological nervous system (biological neural networks). In 

practical terms, neural networks are non-linear statistical data modelling tools 

used to model complex relationships between inputs and outputs or to find 

patterns in data. In most cases, an ANN is an adaptive system that changes its 

structure based on external or internal information that flows through the network 

during the learning phase. In other words, knowledge is acquired by the network 

through a learning process and the inter connections between the elements of the 

network store the knowledge (Arbib, 2003).  

In the past decades, interest in neural networks has increased dramatically. The 

number of papers published relating to ANNs and their applications is an 
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indication of the success of ANNs. Broadly, ANNs have been used to solve  

complex problems in various fields of application such as, pattern recognition, 

identification, classification, speech, vision, acoustics, robotics, image processing, 

financing, control systems, aerospace, banking, defence, electronics, 

manufacturing, medical, oil and gas exploration, securities, telecommunications 

and transportation. In recent years, ANNs have also been applied to address real 

life problems in neuroscience, biological science, earth science, physical science, 

chemical engineering, civil engineering, structural engineering, translation 

engineering, and others.   

In addition, ANNs have been used successfully to solve water resources problems 

such as rainfall-runoff modelling (Chiang et al., 2004), rainfall forecasting 

(Olsson et al., 2004), Water Demand modelling (Pulido-Calvo, 2007),  

generalised storage-yield- reliability planning (Adeloye and DE Munari , 2006). 

Moreover, ANNs have been used in forecasting water consumption (Pulido-Calvo 

and Gutiérrez-Estrada, 2008), water treatment process (Liu and Kim, 2008). The 

success with which ANNs have been used to model dynamic systems suggests 

that the approach may prove to be effective and efficient way to simulate the 

complex wastewater treatment systems. Hence, the literature contains some 

applications of ANNs applied to model wastewater treatment systems as discussed 

in section 2.4.4.2. 

3.2.1 Historical overview  

McCulloch and Pitts (1943) are recognised as the founding fathers of neural 

networks. They developed simple models of neural networks based on their 

understanding of neurology. However, since their seminal work, other groups 

have made further attempts to develop neural networks. For example, Rosenblatt 

(1958) made considerable improvement in the neural field when he designed and 
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developed the Perceptron. The Perceptron had three layers and could learn to 

connect or associate a given input to an output unit. Werbos (1974) developed and 

used the well-known back-propagation learning method, which is the most widely 

applied neural networks to-date. In the early 1980s, Hopfield (1982) introduced 

the network architecture. In the same year, Kohonen (1982) introduced the self-

organising features map (KSOM) to capture the essential features of the data. 

During the late 1980’s and early 1990’s, different combinations of network 

topologies were investigated. 

3.2.2 Inspiration from Neuroscience 

NN is inspired by knowledge from neuroscience but it draws its methods from 

statistical physics (Arbib, 2003). Therefore, ANNs are based on the parallel 

architecture of the human brain. The brain is composed of about 1011 neurons 

(nerve cells). Figure 3.1 is a schematic drawing of a single biological neuron. 

Tree-like networks of nerve fiber called dendrites are connected to the cell body. 

Extended from the cell body is a single long fiber called the axon that branches 

into strands or parts. At the end of these are the transmitting ends of the synaptic 

junctions to other neurons. The transmission of a signal from one cell to another is 

a complex chemical process. The ease of transmission of signals is altered by 

activity of the nervous system. The ability to adjust signals constitutes the 

mechanism for learning (Poznanski, 2001).     

The fundamental aspects of ANNs are the use of simple processing elements, 

which are models of the neurons in the brain. These elements (neurons) are then 

connected together in a well-structured way. The network then is taught, to 

achieve a particular task or function of interest,  by patterns of data presented, 

such that it can subsequently not only recognise such patterns when they occur 

again, but also recognise similar patterns by generalisation (Abrahart et al, 2004).    
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Figure 3.1 A schematic drawing of a biological neuron 
(www.utexas.edu/reearch/asrec) 

 

3.2.3 The architecture of ANN 

3.2.3.1 The neuron 

A neuron is the basic processing unit of a neural network, taken from the Greek 

meaning nerve cell. Figure 3.2 illustrates a single input neuron with scalar input p 

transmitted through the connection which is multiplied by the strength of the 

scalar connection weight w to form the product w*p. This product is summed 

along with the scalar bias b to form an output scalar n. The bias b provides an 

additional variable that can be adjusted to obtain the desired network 

performance. This sum is the argument of the transfer function f, which takes the 

argument and produces the output a. The transfer function limits the permissible 

amplitude range of the output signal to some finite values in the range [-1, 1]. 

Both w and b are adjustable parameters that enable the network to exhibit the 
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desired behaviour. Thus, the output a can be calculated as in Equation 3.1     

(Demuth and Beale, 1998). 

)()( bwpfnfa +==                                                                               (3.1) 

 

Figure 3.2 Schematic of Single input neuron 

In a multiple input neuron , illustrated in Figure 3.3., the individual inputs p(1), 

p(2), …, p(r) are weighted with elements w(1,1), w(1,2),…., w(1,r). These weighted 

values are inputs to the summing junction. The notation w(i,j) indicates that the 

scalar weighting has destination neuron i from source input/neuron j. As with the 

single input neuron, the bias b is summed with the weighted inputs to form the net 

input n and this is the argument presented to the transfer function f, as is in 

Equation 3.2. 

)()( bWPfnfa +==                                                                                (3.2) 

Where W is the weight Matrix and P is the input vector 
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Figure 3.3 Multiple input neuron 

Two or more neurons can be combined together in a layer. A layer includes the 

combination of weights, the multiplication and summing operation, the bias b and 

the transfer function f. It should be noted that, the number of neurons in a layer do 

not need to equal the number of inputs to that layer. A typical network consists of 

a sequence of layers with a connection weights between successive layers. 

Usually, these layers are called input layer, hidden layers and output layer as 

illustrated in Figure 3.4 (Demuth and Beale, 1998).  

 

 
Figure 3.4 Multilayer networks with two hidden layers 
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3.2.3.2 Types of transfer Functions 

Each hidden or output unit in a neural network receives values through the 

connections from the units of a previous layer and they are combined to a single 

value. After the combination, the scalar value is passed through a transfer 

function, also known activation function, which gives the power to the neural 

network to handle non-linearities. The choice of transfer functions depends on the 

complexity of the application. Many transfer functions are available in the 

literature (Figure 3.5); however, the most widely used transfer functions are:  hard 

limit transfer function, linear transfer function, and sigmoid transfer function.  

The hard-limit transfer function limits the output of the neuron to either 0, if the 

input argument n ( wp+b), is less than 0, or 1, if n is greater than or equal to 0 as 

can be seen from Equation 3.3. 
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In the linear transfer function, when n is the input to the neuron and a is the output 

after passing through the transfer function, the linear transfer function can be 

written as in Equation 3.4. The linear function is a popular choice for the output 

layer function as it allows the output to take any value. 

 nnfa == )(                                                                                                  (3.4) 

Sigmoid transfer function is a simple activation function that can introduce non-

linearity to the network. Sigmoid function produces output in the shape of ‘S’; 

hence the term sigmoid function. There are many variations of sigmoid functions 

in the literature; however, the most widely used is the logistic (ie. Log-Sigmoid) 

that takes the form in Equation 3.5. 
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The output of logistic sigmoid function ranges between zero and one. ‘Sigmoid’ 

functions are the most popular choice function for the hidden layer of a network 

due to its easily calculated derivative. The difference between hard limit transfer 

function and logistic sigmoid transfer function is that whereas a hard limit 

assumes the value of zero or one, a logistic function assumes a continuous range 

of values from zero to one.  

3.2.4 Neural network topology 

As stated previously, ANNs generally consist of a number of interconnected 

processing elements or neurons. How the inter-neuron connections are arranged 

determines the structure of a network. How the strengths or the weights of the 

connections are adjusted or trained to achieve a desired overall behaviour for the 

network is governed by its learning algorithm. Both the structure and learning 

algorithm constitute the architecture of the network. Therefore, the architecture 

defines the network structure, i.e. the number of the neurons in the network and 

their interconnectivity. Based on the architecture, ANNs can be grouped into two 

categories, namely feed-forward neural networks (FFNNs) and recurrent neural 

networks (RNs) (Bishop, 1995; Demuth and Beale, 1998). 
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Figure 3.5 Transfer functions Graphs (Demuth and Beale, 1998).  

 

3.2.4.1 Feed-forward neural networks (FFNNs) 

In the FFNNs, neurons are organised into layers where information is passed from 

the input layer to the final output layer in a unidirectional manner as illustrated in 

Figure 3.4. This type of ANNs is capable of mapping the given set of inputs to 

their corresponding outputs. Therefore, the FFNN is only capable of statically 
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mapping the input vectors to their corresponding targets. However, they are still 

widely used in dynamic system mapping by feeding the past input and current 

output values of the system to be modelled as inputs to the network (Bishop, 

1995; Gurney, 1997, Demuth and Beale, 1998). The widespread use of such a 

network is due to its ability to model complex functional relationship between the 

given input and output data sets by learning from examples. 

 

3.2.4.2 Recurrent Neural Networks (RNNs) 

In the recurrent neural networks (RNNs), feed-back connections within the 

network either between layers and/or between neurons can be found as illustrated 

in Figure 3.6. Therefore, RNNs are dynamic, meaning that the output at time t is 

dependent on the previous output or state of the neurons within the network as the 

result of the feed-back paths. The internal feedback paths allow the network to 

exhibit temporal behaviour and the greater the number of feedback 

interconnections, the richer the dynamic representation. It can be said that the 

introduction of feedback makes RNN a nonlinear dynamic system (the 

matheworks,Neural-networks-toolbox, 

http://www.mathworks.com/products/neuralnet/ ). The feedback loops involve the 

use of particular branches composed of unit-delay elements (denoted by D) which 

results in a nonlinear dynamic behaviour. As with FFNN, RNN can be multi-

layered (MRNN) or single-layered (SRNN) and fully or partially connected. 
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Figure 3.6 Recurrent neural networks 

3.2.5 Modelling using ANN  

Modelling is the process of finding a model that best regenerated the original 

output signals when subjected to the same input signals. ANNs could be utilised 

to model a process without having to take into account the complex physical laws 

that govern the system. Therefore, the task of modelling using ANNs essentially 

involves finding a suitable model structure and subsequently finding good 

numerical values for its parameters (weights and biases of the network), i.e. 

establishing the architecture. The architecture of a neural network should be 

optimised in order to achieve a better interaction with the system of interest. 

Unfortunately, there is no well theory for choosing the architecture of the ANN. 

Therefore, the number of neurons in the hidden layer(s) is generally determined 

through trial and error (Bishop, 1995; Demuth and Beale, 1998). However, the 

theoretical basis of non-linear modelling by using ANNs has been well 

established in the last decades. It has been shown that one hidden layer, having 

sufficient number of neurons, can approximate any complex relationships.  
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3.2.6 Learning Algorithm    

Learning algorithm is the process in which the weights and biases in NN are 

adjusted in response to input-output training data set. The learning process enables 

the network to find a set of weights that will produce the best possible 

input/output mapping. Normally, the best mapping is achieved by minimising of 

the error between network output and the desired output. Learning algorithm for 

neural networks can be classified into two major algorithms: supervised learning 

and unsupervised learning. 

3.2.6.1 Supervised learning algorithms 

Supervised learning, as the name implies, requires an external reference (teacher) 

to match each input vector with a desired output. When an input vector is 

introduced, the network proceeds to calculate the output of this input vector. Then 

the error between the network output and the desired output is calculated. This 

error is often used to modify the weights according to an adopted learning 

algorithm. The weights are then adjusted with each training iteration or epoch 

until the error for the entire set of training vectors reaches an acceptable level. A 

schematic representation of the supervised training is illustrated in Figure 3.7. An 

example of supervised learning algorithm is back propagation (Bishop, 1995; 

Demuth and Beale, 1998).  

3.2.6.1.1 Back-propagation algorithm 

The feed foreword multi layer perceptron artificial neural networks (FFMLP) are 

trained with the popular backpropagation algorithm. This training algorithm is 

used in perhaps 80 to 90% of practical modelling applications. Back propagation 

neural networks models are very effective in capturing the non-linear relationships 

that exist between input-output variables in complex systems. In other words, 



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 73 

back propagation ANN can be viewed as a form of regression model between 

input and output variables. 

 

Figure 3.7 Schematic representation of supervised learning 

 

The learning paradigm of backpropagation neural networks utilises a gradient 

descent optimisation method for the learning process. In this method, the network 

typically starts with randomly generated weights. Then it is exposed to a training 

set of input-output data. At each iteration or epoch, the network weights and 

biases are updated in the direction in which the performance function decreases. 

This means that it learns by making changes in its weights in a direction to 

minimise the objective function, e.g. mean square errors between its computed 

output and target output. As the training proceeds, the network’s weights are 

adjusted until it is responding within the required limits of accuracy (Demuth and 

Beale, 1998). 

The Backpropagation learning rules consists of two passes of the different layers 

of the ANN, a feedforward pass and backward pass. In the feedforward pass, the 
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input is applied to the ANN and is passed through the different layers, at this 

stage, the weights and biases are fixed and do not change. At the ANN output, an 

error is recorded which is the difference between the ANN output and the desired 

output. During the backward pass, the weights and biases are adjusted in 

accordance with the error-correction rules. The error signal is then propagated 

backward through the ANN and the parameters are adjusted layer by layer until 

the whole layers are covered.  

To teach the neural network training data set is needed. The training data set 

consists of input signals (p1 and p2) assigned with corresponding target (desired 

output) d. During training, the output predicted by the network )(ta  is compared 

with the actual (desired, target) output )(td  and the mean square error (MSE) 

between the two is calculated. The error function (or instantaneous value) at time 

t, E(t), is given by Equation 3.6.  
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where the set C includes all the neurons in the output layer. 

Then the error is propagated back to adjust the weights using Equation 3.7: 

)()()1( tWtWtW jijiji ∆+=+                                                                              (3.7) 

The weight increment jiW∆  is calculated using Equation 3.8 in which the gradient 

descent method is applied. This results in weights being changed in the direction 

of steepest descent down the error surface. The size of the step taken down the 

error surface is determined by the learning rateη . 

)/( WEWji ∂∂=∆ η                                                                                             (3.8) 
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The learning rate η affects network-teaching speed. There are a few techniques to 

select this parameter. The first method is to start teaching process with large value 

of the parameter. While weights coefficients are being established the parameter is 

being decreased gradually. The second, more complicated, method starts teaching 

with small parameter value. During the teaching process, the parameter is being 

increased when the teaching is advanced and then decreased again in the final 

stage (Demuth and Beale, 1998). 

3.2.6.1.2 Enhancing the performance of backpropagation neural networks  

Several problems are associated with the performance of the back propagation 

artificial neural networks. These are namely, over-fitting, local minima, and 

convergence. To avoid such problematic conditions and be successful in building 

the best-suited back propagation network for a particular application, it is 

important to be aware of these technical aspects. There is, however, no universal 

rule for avoiding their problems completely, but there are some rules given by 

practitioners, who have worked in the field. Some of these rules will be 

summarised in the next subsections. For now, the essential features of these 

problems are briefly explained.  

In the case of over-fitting, the mapping ability of neural networks can lead to a 

very accurate fit of the training data but result in a poor generalisation of unseen 

data (Bishop, 1995; Demuth and Beale, 1998). In such a case, the model is not 

only modelling the essential dynamic of the system but also undesirable features 

such as noise. One method of solving the problem of overfitting is to ensure the 

neural network is just large enough to provide an adequate data fit. However, it is 

difficult if not impossible to know beforehand how large the network should be. 

The most widely used method for improving the generalisation of neural networks 

is the early stopping (Demuth and Beale, 1998).  
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The problem of local minima is associated with the gradient descent procedure 

that may lead the training to be trapped in local minima of the error surface. 

Although it sometimes provides an acceptable solution, a network trapped into a 

local minimum during learning is likely to exhibit poor performance in terms of 

learning and generalisation capabilities (Rocha et al., 2007).  

The third problem is that of convergence. In this case, the learning process in back 

propagation is unpredictable and lengthy, and this is perhaps the most serious 

problem with the algorithm. Whilst some complex problems may require hours or 

days to train a network, under some circumstances, there is a possibility that the 

network will be unable to improve or achieve an acceptable performance at all 

(Kamarthi and Pittner, 1999).  

The above mentioned problems can be solved using several methods. These 

methods are summarised as:  

a. Sample size 

A simple way to alleviate the above-mentioned problems is to increase the 

number of examples in the database (Sahiner et al., 2008). Large sample size 

decreases the noise effects and improves generalisation of the network.   

b. Pre-processing and post-processing 

This method is used to scale all signals, both input and output, to the same 

variance. Hence, signals of differing magnitudes are equalised to ensure that 

signals of larger magnitudes will not become too dominant. This would certainly 

ensure that all the input signals apply the same influence throughout the training 

process. Moreover, scaling makes for a numerically more robust training 

algorithm and leads to faster convergence in neural network learning (Demuth and 

Beale, 1998). After the network has been trained, the outputs of the network have 
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to be post-processed to give the required output values using the inverse of the 

pre-processing transformation. When new data are to be presented to the network, 

they must first be pre-processed. They are then post processed to return to the 

original variable as output. 

A procedure for scaling network data set is to normalise it in which it will have 

zero mean and unit variance. The input and target variables are treated 

independently and for each variableix ; its mean 
__

ix  and standard deviation iσ  

and a standardised variable, xi-nor, is then obtained using:   
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c. Early Stopping  

Since the goal of the network training is not to learn the exact representation of 

the training data itself but to build a model of the process that generates the data, 

it is important that the network exhibits good generalisation. Early stopping is the 

most widely used technique to overcome the overfitting problem and to find the 

network having the best performance on new data. Early stopping involves the 

splitting of the available data into 3 subsets: training set, validation set and testing. 

During network training, the error on the validation set is monitored as well as the 

error on the training set. Training will continue until the error on the validation set 

increases implying overfitting (Bishop, 1995; Demuth and Beale, 1998). Training 

can therefore be stopped at the point of the smallest error with respect to the 

validation data set, since this gives a network that is expected to have the best 

generalization performance. After the model has been trained, another data set, 

testing set, is used to verify the effectiveness of the stopping criterion and to 

estimate the expected performance in the future (Adeloye and De Munari, 2006).  
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d. Selection of the network elements 

The choice of the number of layers and the number of hidden neurons in the 

hidden layers is a major concern in constructing a network, as they do not follow 

simple rules, but are a result of a process of trial and error. In theory, more hidden 

neurons produce better mapping ability. However, in practice, the networks may 

use the extra nodes to fit the noise in the data (Beltratti et al., 1996; Pulido-Calvo 

et al., 2007). Although having no formal mathematical basis and being the subject 

of a lot of research, some suggestions from empirical research indicate that one-

hidden-layer network with different number of hidden neurons is capable of 

accurate approximation to any complex system over a reasonably sample set 

(Demuth and Beale, 1998). Moreover, the number of inputs is often unknown and 

different models with different inputs can be trained in order to select the optimal 

model. The decision of the final model is usually determined by evaluating the 

trained model using several evaluation criteria on new data.  

3.2.7 Advantages and Limitations of Neural Networks 

The above are a clear demonstration of the usefulness of modelling complex 

environmental systems, particularly those exhibiting strong non-linearities which 

are difficult or impossible to specify in closed mathematical forms. ANNs offer 

other advantages that can be summarised as follows (Bishop, 1995): 

1. Although neural networks have the potential to solve complex problems, 

they are inherently simple to understand and develop. 

2. ANNs require no explicit knowledge of the system under study, which 

makes them well suited to applications where knowledge extraction is 

difficult or in cases where the interrelationship between process 

parameters are hard to model. 
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3. Compared to deterministic or mechanistic models, ANN internally 

encodes knowledge on a network of nodes and connections. The 

knowledge in the network is developed by using sufficient amount of 

actual historical observations from past experience. Therefore, there is no 

need to acquire rules or algorithms from human expert or from the 

mechanism of the process. 

4. ANNs learn by examples, and as long as examples are available and an 

appropriate design is adopted, effective solutions can be constructed far 

more quickly than is possible using traditional mechanistic models, which 

are entirely reliant on experience in a particular field. 

5. With careful design, ANN can be trained to give the correct response to 

data that have not been previously encountered or used during training.  

This aspect is often described as the ability to generalise on test data. 

6. The use of neural networks have the potential to reduce time spent on 

modelling complex processes and can give better  performance than other 

mechanistic models. 

However, a major drawback of using ANNs is that they are not able to simulate 

outputs outside the range of those they were trained with, i.e. they are poor 

extrapolators (Vos and Rientjes, 2005). 

 

3.2.6.2 Unsupervised learning algorithms 

As stated in subsection 3.2, there are two ways to train a network: supervised and 

unsupervised. In supervised learning, the network is presented with examples of 

known input-output data pairs, after which it starts to mimic the presented input-
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output behaviour or pattern. The network is then tested to see whether it is able to 

produce correct output, when new input is presented to it. In unsupervised 

learning, the network learns on their own, in a kind of self-study without teacher. 

In such a case, a data set is presented to such a network and they learn to 

recognize patterns in the data set. By so doing, the input data are categorised into 

groups or clusters. Of course, the net does not understand the meaning of the 

groups. It is up to human users to interpret or label the groups in some meaningful 

way (Back et al., 1998; Kalteh et al., 2008). The most widely used unsupervised 

neural network is the Kohonen Self-Organising Map, KSOM. Therefore, and due 

to the importance of this method in this research it will be discussed details in the 

next section. 

3.3 Kohonen Self-Organising Map (KSOM) 

The KSOM (also called feature map or Kohonen map) is one of the most widely 

used unsupervised artificial neural networks algorithms (Kohonen et al., 1996). It 

is usually presented as a dimensional grid or map whose units (nodes or neurons) 

become tuned to different input data patterns. Its algorithms are based on 

unsupervised competitive learning, which means that training is entirely data 

driven and the neurons or nodes on the map compete with each other. In contrast 

to supervised neural networks, which require that target values corresponding to 

input vectors are known, KSOM dose not require the desired output to be known, 

hence, no comparisons are done to predetermine the ideal responses. During 

training, only input patterns are presented to the network which automatically 

adapts the weights of its connections to cluster the input patterns into groups with 

similar features (Alhoniemi, 1997; 1998, Obu-Can, 2001; Astel et al., 2007).  

The principal goal of the KSOM is to transform an incoming signal pattern of 

arbitrary dimension into a two-dimensional discrete map. It involves clustering 



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 81 

the input patterns in such a way that similar patterns are represented by the same 

output neurons, or by one of its neighbours (Back et al., 1998). In this way, the 

KSOM can be viewed as a tool for reducing the amount of data by clustering, thus 

converting complex, nonlinear statistical relationship between high dimensional 

data into simple relationship on low dimensional display (Kangas, 1995; Kohonen 

et al., 1996; Zhang, 2009). This mapping roughly preserves the most important 

topological and metric relationship of the original data elements, implying that the 

KSOM translates the statistical dependences between the data into geometric 

relationships, whilst maintaining the most important topological and metric 

information contained in the original data. Hence, not much information is lost 

during the mapping. Hence, similarities relationship within the data and clusters 

can be visualised in a way that enables the user to explore and interpret the 

complex relationship within the data set.  

3.3.1 The structure of the KSOM 

The KSOM consists of two layers: the multi-dimensional input layer and the 

competitive or output layer; both of these layers are fully interconnected as 

illustrated in Figure 3.8. The output layer consists of M neurons arranged in a 

two-dimensional grid of nodes. Each node or neuron i (i = 1,2,…,M) is 

represented by an n-dimensional weight or  reference vector Mi= [mi1,….,min]. 

The weight vectors of the KSOM form a codebook. The M nodes can be ordered 

so that similar neurons are located together and dissimilar neurons are remotely 

located on the map.  
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Figure 3.8 Illustration of the winning node and its neighbourhood in the Kohonen 

Self-organizing Map 

The network topology is described by the number of output neurons presented in 

the network and by the way in which they are interconnected. Usually neurons in 

the output layer are arranged in either a rectangular or a hexagonal grid as seen 

from Figure 3.9. In a rectangular grid, each neuron is connected to four 

neighbours, except for the ones at the edge of the grid. However, in a hexagonal 

structure, every neuron is connected to exactly six neighbours, except for the ones 

at the edge of the grid (Back et al., 1998; Vesanto et al., 2000). There is a need to 

point out that while the rows and the columns on the output layer are interpreted 

as co-ordinate axes to locate units and upon which the output of the KSOM can be 

interpreted, they do not have explicit meaning or relations to the variables of the 

input data set.  
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Figure 3.9 Examples of map topologies in the KSOM 

The number of neurons (Map size), M,  may vary from a few dozen up to several 

thousands, where the number of neurons affects accuracy and generalisation 

capability of the KSOM (Alhoniemi, 1997; 1998) as will be seen later on in this 

subsection. The self-organising map team at the Helsinki University of 

Technology offers guidance for determining the optimum number of neurons 

using the heuristic formula presented in Equation 3.10 (Vesanto et al. 2000; 

Garcia and Conzalis, 2004). 

NM 5=                                                                                                       (3.10)                                                                                                           (4.?)

where M is the number of map units or neurons and N is the total number of data 

samples or records. Once M is known, the number of rows and columns in the 

KSOM can be determined. A guideline by the self-organising map team is in 

Equation 3.11:  
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where l1 and l2 are the number of rows and columns respectively, e1 is the biggest 

eigenvalue of the training data set and e2 is the second biggest eigenvalue.  

3.3.2 Training the KSOM 

Upon start of training, the initial values of the elements of the weight vectors in 

the grid are randomly assigned, usually numbers between zero and one. Then the 

weight vectors are updated using two types of training algorithms, sequential 

training algorithms and batch training algorithms. Both of these algorithms follow 

the same general procedures depicted in Figure 3.10. 

3.3.2.1 Sequential training algorithms 

The multi-dimensional input data is first standardised by deducting the mean and 

then dividing the result by the standard deviation (see Equation 3.9). This 

procedure ensures that every variable has equal importance in training the KSOM, 

so that no components will have excessive influence or control of the training 

results by virtue of its higher absolute value (Alhoniemi, 1998). Then a 

standardised input vector is chosen at random and presented to each of the 

individual neurons in the output layer or map for comparison with their code 

vectors in order to identify the code vector most similar to the presented input 

vector. The identification uses the Euclidian distance, which is defined in 

Equation 3.12. 

∑
=

=−=
n

j
ijiji MimxD

1

2 ,...,2,1;)(                                                              (3.12) 

Where Di is the Euclidian distance between the input vector and the weight  (or 

code) vector i;  xij is the j th  element of the current input vector; mij is the jth 

element of the weight vector i, n is the dimensionality of both the input and the 

code vector; and M is the number of neurons in the KSOM (or the size of the 
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map). The neuron whose vector most closely matches the input data vector (i.e. 

for which the Di is minimum) is chosen as a winning node or the best matching 

unit (BMU) as indicated in Figure 3.10. The weight vectors of this winning node 

and those of its adjacent neurons are then adjusted to match the input data using 

Equation 3.13,  thus bringing the weight vectors further into agreement with the 

input vector as seen from Figure 3.11 (Vesanto et al.,2000).  

    ( ) ( ) ( ) ( ) ( ) ( )[ ]tmtxthttmtm iciii −+=+ α1                                                         (3.13) 

where t denotes time, )(tα  is the learning rate at t, )(thci  is the neighbourhood 

function centred in the winner unit c at time t, ( )(thci defines the region of the 

influence that the input sample has on the KSOM as will be seen later on in this 

subsection ) and all the other variables are as defined previously. 

The nodes surrounding the winning node, its neighbourhood, are also updated so 

that they are made to look less like the input vector as seen from Figure 3.10. The 

size of adjustment in the weight vector of the neighbouring neurons is dependent 

on the distance of those neurons from the winner in the output array (Back et al., 

1998; Kalteh et al., 2008). This adaptation procedure stretches the BMU and its 

topological neighbours towards the sample vector.  
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Figure 3.10 the training procedures of the KSOM. Node 13 is the wining node, it 

can be seen how the neighbourhood of the BMU (node 13) moves toward the 

BMU with each iteration.  
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Figure 3.11 Prototype vector mi (t) of the neuron i is updated close to data vector 

x(t) to be mi(t+1). 

This process of random selection of a data record, competition of the winning 

node, and updating the node and its neighbourhood repeats many times-from 

1,000 to 25,000 or more. As the process continues, the area of the neighbourhood 

decreases, as does the magnitude of the adjustment to the winning and 

neighbourhood nodes. In this manner, each node in the map internally develops 

the ability to recognize input vectors similar to itself. This characteristic is 

referred to as Self-Organising, because no external information is supplied to lead 

to a classification (Penn, 2005).  

 

3.3.2.2 Batch training algorithms 

Batch training algorithm is also an iterative process, but instead of using a single 

data vector at a time, the whole data set is presented to the map before any 
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adjustments are made-hence the name “batch.” In each training step, the data set is 

partitioned between the map units according to their distance from that unit 

(Kohonen, 2001), i.e. each data vector belongs to the map unit to which it is 

closest. After this, the new weight vectors are calculated as: 

∑
∑
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==+
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j ic

n

j jic
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1

1

)(

)(
)1(                                                                                  (3.14) 

where c is the index of the BMU of data sample jx  

In other words, the new weight vector is a weighted average of the data samples, 

where the weight of each data sample is the neighbourhood function value )(thic  

at its best BMU unit c.  

Two parameters are used for training the KSOM: the learning rate ( )(tα ) and the 

neighbourhood width parameter (hc). The learning rate influences the size of the 

weight vector adjustments after each training step, whereas the neighbourhood 

width parameter determines to what extent the surrounded neurons are affected by 

the winner. An additional parameter is the training length, which measures the 

processing time, the number of iterations through the training data (Back et al., 

1998; Vesanto et al., 2000). Both the learning rate and the neighbourhood width 

are time dependent and are typically changed from large to small in order to 

provide the best performance with the smallest training time. 

There are different learning rate functions as shown in Figure 3.12. Linear 

function as in Equation 3.15 (solid line), power function as in Equation 3.16 (dot-

dashed), and other decreasing function such as Equation 3.17 (dashed):  

)/1()( 0 Ttt −= αα                                                                                             (3.15) 
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Ttt /

00 )/005.0()( ααα =                                                                                    (3.16) 

)/1001/()( 0 Ttt += αα                                                                                     (3.17) 

where T is the training length or the number of iterations and 0α is the initial 

learning rate. In the KSOM toolbox of Matlab, 0α  is specified as 0.5 (Vesanto, 

2000). 

 

Figure 3.12 Different types of learning rate decreasing functions. Linear function 

(solid line), power function (dot-dashed), and other decreasing function such as 

Equation (3.17) (dashed). 

 

Also there are different neighbourhood functions, however, the neighbourhood 

function is normally chosen to be Gaussian centred in the winner unit c, such that: 

))(2/())())(2/())(( 2222

expexp)( trrttd
ci

iccith σσ −−− ==                                                  (3.18) 

In other words, all neurons i located in a topological neighbourhood of the 

winning neurons c will have their weights updated usually with a strength related 
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to their distance dci from the winning neuron, where dci can be calculated using 

formula 3.19. 

icci rrd −=                                                                                                          (3.19) 

where rc and r i are the positions of nodes c and i on the KSOM grid known as the 

norm city-block distance.  

2σ  is the variance parameter specifying the spread of the Gaussian function.   

For this neighbourhood function the distance is determined considering the 

distance in the lattice in each dimension, and the one having the maximum value 

is chosen as dci . For example, if dci =2 corresponds to a square around BMU 

having side length of 3 . The weights of all neurons within this square are updated 

with, while the others remaining unchanged. As the training progresses, this 

neighbourhood gets smaller and smaller, resulting in a situation that only the 

neurons very close to the winner are updated towards the end of the training.  

To illustrate the concept of neighbourhoods, considering Figure 3.10, the diagram 

illustrates a two-dimensional neighbourhood of radious d=1 around nodes 13 and 

another diagram shows a neighbourhood of radious d=2. These neighbourhoods 

could be written as: 

N13 (1) = {8,12,13,14,18} and 

N13(2)={3,7,8,9,11,12,13,14,15,17,18,19,23} 

Like the learning rate )(tα , )(tσ  also decreases linearly as the number of 

iterations increases. In the early stages of training, the radius of the 

neighbourhood is large and most of the KSOM neurons belong to any node’s 

neighbourhood. As the training progresses, the radius is reduced to allow good 
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local ordering as seen from Figure 3.10. In the KSOM tool box in Matlab, the 

initial radius 0σ is specified as max (1, M/4), where M is the size of the map. 

The batch training algorithm was used because its implementation in Matlab is 

considerably more efficient than that of the sequential training algorithm as it 

requires less time for training and produce less quantisation and topographic 

errors (see section 3.3.3 below).  

3.3.3 The quality of the KSOM  

The quality of the trained KSOM is measured by the total average quantisation 

error and total topographic error (Garcia and Gonzalez, 2004). The quantisation 

error measures the quality of the map fitting to the data, i.e. the average distance 

between each data vector and its BMU at convergence. This error is calculated 

using: 
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1

                                                                                      (3.20) 

where qe is the quantisation error, xi is the i-th data sample or vector mc is the 

prototype vector of the best matching unit for xi and .  denotes Euclidian  

distance (Equation 3.12). 

The topographic error, te, is an indication of the degree of preservation of the 

topology of the data when fitting the map to the original data set. In other words, 

it measures the similarity between the neighbour on the model and on the input 

space. It is calculated as the proportion of sample vectors for which two best and 

the next best matching units for a given input vector are not adjacent, i.e., 
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                                                                                             (3.21)                                                                                    

where N is the number of samples, xi is the i-th data sample and u(xi) is a binary 

integer such that it is equal to 1 if the first and second best matching units of the 

map are not adjacent units; otherwise it is zero. The results of this error measure 

are very easy to interpret and are also directly comparable between different 

models. 

The number of map units determines the accuracy and generalization capability of 

the KSOM. The bigger the map size the lower the quantization error but the 

higher the topographic error. Moreover, the bigger the map size the higher the 

computational cost. Therefore, there is compromise between the increases of the 

topographic error and the reduction of the quantization error. A reasonable 

optimum solution of the compromise among the quantization error and the 

topographic error to determine the side lengths from the map is the heuristic 

formula presented in Equation 3.11 as stated previously. 

3.3.4 Applications of KSOM 

Over 5000 publications relating to the KSOM were documented in the last twenty 

years (Kaski et al. 1998; Oja et al. 2003). The KSOM can be used for many 

practical tasks, such as the reduction of the amount of training data for model 

identification, nonlinear interpolation and extrapolation, generalisation and 

compression of information for easy transmission (Kohonen et al.,1996; Kangas 

and Simula,1995). Indeed, the KSOM has been used for a wide variety of 

applications, mostly for engineering problems but also for data analysis (Tananaki 

et al., 2007; Badekas and Papamarkos, 2007). However, the most important 

applications of the KSOM have been in the visualisation of high-dimensional 
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systems and process data and the discovery of categories and features in raw data. 

This application is called the exploratory data analysis or data mining (Kohonen et 

al., 1996; Kangas and Simula, 1995).  

KSOM could be used to pre-process the incoming information in order to improve 

the performance of ANN or Fuzzy Logic models. This pre-processing ability 

would become quite significant when there was a combination of faulty 

information or uncertainty in the measurement system. The application of the 

KSOM for data pre-processing is described in more detail in Chapter 5 and and by  

Rustum and Adeloye (2007).  

 

3.4 Fuzzy Logic modelling technique 

Fuzzy logic models (also called linguistic models or fuzzy if-then rules) were first 

introduced by Mamdani (Mamdani and Assilian, 1975) based on Zadeh’s theory 

of fuzzy sets. These models have the capability to deal with systems that are 

highly uncertain (Klir et al., 1988; Firat and Güngör, 2007). The theory of fuzzy 

sets, firstly published by Zadeh (1965), presents a useful way of representing the 

uncertainty and imprecision in data without the need of complex mathematical 

relationships. These models have the advantages of being able to model non-linear 

functions in an easy and understandable way by explaining the reasoning 

linguistically rather than with numerical quantities. They provide a useful way of 

representing human knowledge in a readable way in the form of fuzzy rules 

(Nguyen and Walker, 2006). In the following subsections, the fuzzy logic 

concepts are presented. Furthermore, details about the ANFIS, which utilise the 

learning power of ANN to optimise the fuzzy rules and the parameters of fuzzy 

membership functions in the fuzzy logic system, are also described.  
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However, before this, it is pertinent to mention the difference between multiple 

regression or neural networks and fuzzy logic. Whilst the first two belong to 

black-box models, fuzzy logic models fall in the category of grey-box models (see 

section 3.1). This is because artificial neural networks regression are able to learn 

complex non-linear relationships between inputs and outputs of the process, but 

are not able to help improve the heuristic understanding of the operational 

problem or causal relationships of the process parameters. Fuzzy logic models are 

grey-box because the causal relationships between the conditions (inputs) and the 

fact (output) are clear in such fuzzy if-then rules. Thus, Fuzzy models depend not 

only on black box approach, but also on a combination of knowledge of the 

system and human expert in which fuzzy rules are built using physical knowledge 

of the process, while the parameters are tuned in a black-box manner (Sadiq et al., 

2004). 

3.4.1 Fuzzy Logic concepts  

Zadeh stated that “as complexity rises, precise statements lose meaning and 

meaningful statements lose precision”. From this statement, Zadeh (1965) 

introduced the concept of fuzzy logic where the truth of any statement becomes a 

matter of degree. This theory is an extension of conventional Boolean logic that 

was introduced to handle the concept of partial truth between completely true and 

completely false (Zadeh, 2008).  Zadeh used this concept as a mean to model the 

uncertainty of natural language. This technique is used for modelling of processes 

that are complex and ill-defined. A fuzzy logic model consists of linguistic if-then 

rules that depend on fuzzy set theory for representation and evaluation using 

computers.  



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 95 

3.4.2 Fuzzy Sets 

Fuzzy set theory is a mathematical way to represent and deal with vagueness in 

everyday life. Zadeh (1965) provided a theory that one of the reasons human are 

better at control than machines is that they are able to make effective decision on 

the basis of imprecise linguistic information. Fuzzy theory generalises classical 

sets theory in which the membership degree of any object to a set is not restricted 

to the integers [0 1], but may take any value between zero and one. By this 

definition, a fuzzy set is a set with imprecise boundaries in which the transition 

from one set to another is gradual rather than abrupt (Ross, 2004; Zadah, 2008; 

Fuzzy Logic Toolbox for use with Matlab, 2004). 

In classical mathematics, a classical set is a set with crisp boundary. For example, 

let X be a certain universe of discourse, where }:),......,,{ 21 XxxxxX nn ∈= ,  

and its elements nx  denote all the possible tall values (cm) of an adult person. A 

classical crisp set Ctall of X is defined as a function µ  called characteristic 

function of Ctall as in Equation 3.22. For any element x  of the universeX , the 

characteristic function µ  is equal to 1 if x is an element of set A, and is equal to 

0 if x  is not an element of A. Just as tall, another two similar crisp sets Caverage 

and Cshort can be defined as in Equations 3.23 and 3.24 respectively: 



=

otherwise

cmthanerlisxif
xtall 0

180arg1
)(µ                                         (3.22) 



=

otherwise

cmandcmbetweenisxif
xaver 0

1801601
)(.µ                            (3.23) 



=

otherwise

cmthanlessisxif
xshort 0

1601
)(µ                                            (3.24) 
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One problem arises if we have to define a linguistic term “tall” for example. The 

use of any crisp set above results in a stiff situation, when a person of 180 cm is 

considered to be a “tall man”, but a 179.99 cm-person is said to be “not tall”. In 

contrast to a classical set above, a fuzzy set is a set with fuzzy boundaries. The 

membership function of a fuzzy set is allowed to have values between 0 and 1, 

and it expresses the degree in which an element belongs to a given fuzzy set. This 

transition makes fuzzy sets more flexible and intelligent for the interaction 

between humans and machine.  

Using the same example as above, new fuzzy sets Ftall, Faverage, and FShort of X can 

be defined as in Equations 3.25, 3.26, and 3.27 respectively. 

{ XxxFxF talltall ∈= )),(,( µ                                                                          (3.25) 

{ XxxFxF averaver ∈= )),(,( µ                                                                        (3.26) 

{ XxxFxF shortshort ∈= )),(,( µ                                                                       (3.27) 

 

where Fµ is called the membership function (MF), and it gives the degree to 

which x is an element of set F. This degree, a value between 0 and 1, denotes the 

degree of membership, also called membership value. The difference between 

fuzzy and crisp definition of tall is better illustrated using Figure 3.13. For 

example, if a person is 170 cm tall then the membership degree for the fuzzy 

subset tall is about 0.6. At the same time, the membership degree for the fuzzy 

subset short equals to 0, and the membership degree for fuzzy subset average is 

equal to 1.  
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These membership functions map each element of X to a membership degree 

between 0 and 1. They are often Triangular, Trapezoidal, Gaussian, and Bell-

shaped functions as illustrated in Table 3.1. When the membership function takes 

only two values 0 and 1, F is identical to a crisp set that is defined by a 

characteristic function. In this instance, crisp sets can be looked at as special cases 

of fuzzy sets. In practice, the input space, universe of discourse, is usually 

partitioned into several fuzzy sets whose MFs cover X. These fuzzy sets carry 

names that conform to adjectives appearing in our daily linguistic usage, such as 

low, medium and high. These adjectives are called linguistic values or linguistic 

labels, and the universe of discourse is called the linguistic variable.   

 

 

Figure 3.13 Typical crisp sets (left) and typical fuzzy sets (right) characterising 
the human tall values. 

3.4.3 Fuzzy Logic System 

Fuzzy logic system (FLS) is a rule based system in which an input is first 

fuzzified (converted from crisp number to a fuzzy value) and subsequently 

processed by an inference engine that retrieves knowledge in the form of fuzzy 

rules contained in a rule-base (Ross, 2004). The fuzzy sets computed by the fuzzy 

inference as the output of each rule are then composed and defuzzifide (converted 
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from fuzzy set to a crisp number). By this, fuzzy logic systems are a nonlinear 

mapping from the input to the output space. The basics of fuzzy logic systems are 

based on three concepts, fuzzy sets, linguistic variables, and fuzzy if-then rules. 

The first implementation of the FLS idea was described by Mamdani and Assilian 

(Mamdani et al., 1974; 1975; 1977) which demonstrated its viability for the 

control of a small steam engine. Other early implementations of the FLS were a 

sludge controller for a wastewater treatment plant (Tong et al., 1980).  

 

3.4.3.1 Architecture of Fuzzy Logic System 

As noted previously, Fuzzy Logic Systems (FLS), also known as fuzzy-rule-based 

systems, fuzzy expert systems, fuzzy associative memory, or fuzzy controllers 

when it is used in control areas (Jang & Sun, 1995; Ross, 2004), consists of four 

basic components: the fuzzification inference, knowledge base (rule base or 

database), decision making (inference engine, or inference mechanisms) and 

defuzzification (Fuzzy Logic Toolbox for use with Matlab, 2004). These various 

components are related as illustrated in Figure 3.14. They involve membership 

functions, fuzzy logic operators, and fuzzy rules. The membership functions allow 

the representation of a degree of membership to a fuzzy set for a given numerical 

value, associated to a linguistic label.  The fuzzy IF-THEN rules introduce the 

expert knowledge in a computable way. 
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Table 3.1 Schematic of different membership functions 

Name Description Example 
Gaussian curve built-
in membership 
function  

The symmetric Gaussian function 
depends on two parameters b and a 
as given by: 
 

2

2

2

)(

),;( b

ax

ebaxf
−−

=  

 

 
gaussmf=f(x,5,2) 

Generalised bell-
shaped built-in 
membership function 

The generalised membership 
function depends on three 
parameters, a,b, and c as given bye: 

 
where the parameter b is usually 
positive. The parameter c locates the 
centre of the curve 

 
gbellmf=f(x;2,4,6) 

Triangular-shaped 
built-in membership 
function 

The triangular curve is a function of 
three scalar parameters a, b, and c, as 
given by: 

 
The parameters a and c locate the 
"feet" of the triangle and the 
parameter c locates the peak. 

 
trimf=f(x;3,6,8) 

Trapezoidal-shaped 
built-in membership 
function 

The trapezoidal curve is a function 
of a vector, x, and depends on four 
scalar parameters a, b, c, and d, as 
given by 

 
The parameters a and d locate the 
"feet" of the trapezoid and the 
parameters b and c locate the 
"shoulders." 

 
trapmf=f(x;1,5,7,8) 
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Figure 3.14 The basic structure of a fuzzy Logic inference system and its 
components 
 
 
 
1 The fuzzification unit      

The aim of the fuzzification unit is to obtain the membership degree of each input, 

i.e. fuzzifying the inputs. The data are processed in this unit and converted into 

linguistic variables by means of membership functions. The determiners of the 

membership functions are linguistic values (e.g. very low, low, normal, high, and 

very high). The outputs of this layer are fuzzy membership degree of the inputs. 

The relation between input and output using Gaussian membership function as a 

fuzzification process is as in Equation 3.28. 
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where ijy  is the membership degree for the input ix  in membership function ij , 

ij
a is the centre and 

ij
b  is the width of the membership function ij  as seen from 

Figure 3.15. These parameters can be used to define the region or the position of 
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the fuzzy sets. Essentially, for this particularly type of MF, 
ij

a  is the center of 

membership function ij  and 
ij

b  is its width as described in Table 3.1. 

2 The Knowledge base  

The knowledge base consists of database and linguistic rule base (or fuzzy rule 

base).  

a. The database  

The database includes all the definitions used for membership functions, fuzzy 

partitioning and definition of fuzzy sets. Partitioning of a universe of discourse is 

used to determine the initial number of fuzzy subsets required to represent that 

universe. These fuzzy sets can be represented as a function form such as Gaussian 

membership function, bell-shaped, triangle-shaped, trapezoid function, etc as 

stated previously.  

 
Figure 3.15 Parameters of Gaussian membership function for BOD Load as 
developed in the study. Low=gaussmf(BOD Load; 6670,5030), 
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Medium=gaussmf(BOD Load; 18510,5030) and High=gaussmf(BOD 
Load;30360,5030). 

b. The rule base  

The rule base contains the fuzzy rules obtained from the physical system of the 

process. These rules associate a condition using linguistic variables and fuzzy sets 

to make a conclusion. These rules can be extracted from different sources such as 

expert knowledge, operators control actions or knowledge extracted from the data. 

These fuzzy rules take the form:  

IF (a set of conditions occur) THEN (a set of conclusions can be inferred)   

Thus fuzzy rule has two parts: the IF or antecedent part that describes a condition 

and the THEN or consequent part that describes the conclusion. The antecedent 

part of each rule classifies the behaviour of measured variables by fuzzy 

membership functions, whereas the consequent part expresses the essential actions 

or conclusion. The collection of fuzzy rules forms the rule base of a FLS. An 

example that describes a simple fact is: 

IF Pressure is high, THEN volume is small 

where, as in the above example, pressure and volume are linguistic variables, high 

and small are linguistic values or labels that are characterised by membership 

functions. 

There are several factors that can influence the design and the implementation of 

fuzzy rules. These factors are the choice of input and output variables, the 

generation methods of fuzzy rules and the implementation method on fuzzy rules. 
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i)  The choice of input variables 

The choice of input variables influences the number of rules and the performance 

of the FLS. The selection of these variables relies on experience on one hand and 

the relation between these inputs and the desired output on the other. These 

relations can be determined using correlation matrix or the visualisation of the 

component planes of the KSOM. 

ii)  Generation method of fuzzy rules 

There are two methods to derive fuzzy rules. The first one is to generate fuzzy 

rules based on expert experience and control engineering knowledge. In this 

method, the expert put his experience as a linguistic relation between input and 

output variables of the FLS. This method is very difficult to be used if the process 

is very complex. The second method is based on the observed input-output data 

(Fuzzy Logic Toolbox for use with Matlab, 2004). As remarked earlier, the first 

approach was commonly used until the introduction of ANFIS (Tong et al, 1980; 

Mamdani et al., 1974; 1975; 1977).  

iii) Implementation method of fuzzy rules 

Fuzzy implication rule describes how several logic formulas involving linguistic 

variables are combined together. The combination can be achieved in many ways, 

all of which are derived from three fundamental operations, conjunction (AND), 

disjunction (OR), negation (NOT), in addition to the implication (Production 

rule). 

- The conjunction (intersection) of two fuzzy sets A and B is a fuzzy set C written 

as )( BAC ∩= or BANDAC =   . This fuzzy set C is a collection of 

objects that belong to both A and B and whose MF is related to those A and B by 

Equation 3.29. 
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})(),(min{)()()()(: xBxAxBxAxBAxCUx µµµµµµ =∩=∩=∈∀        (3.29)  

- The disjunction (union) of two fuzzy sets A and B is a fuzzy set C, written as 

)( BAC ∪= or BORAC = , which is a collection of objects that 

belongs to either A or B and whose MF is related to those A and B by Equation 

3.30. 

})(),(max{)()()()(: xBxAxBxAxBAxCUx µµµµµµ =∪=∪=∈∀       (3.30) 

- The complement of set A denotes by 
CA or NOT A is a collection of objects not 

belonging to the set A and whose MF is related to A and B by Equation 3.31. 

)(1)(: xxUx
A

C

A
µµ −=∈∀                                                                   (3.31) 

The operations of union, intersection, and complement introduced in the previous 

definitions are graphically illustrated in Figure 3.16. Note that these operations 

perform exactly as the corresponding operations for ordinary sets if the values of 

the membership functions are restricted to either 0 or 1.  
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Figure 3.16 Graphical examples of containment, union, intersection and 
complement 

 

3 The fuzzy inference  

The fuzzy inference (or inference mechanism or decision-making) unit applies a 

fuzzy reasoning mechanism to obtain a fuzzy output; in other words, combine the 

results of fuzzification process in a single fuzzy output for each rule. There are 

several types of fuzzy inference systems. However, the most commonly used are 

Mamdani inference system, type 1 in Figure 3.17 and Sugeno inference system, 

type 2 in Figure 3.17 (Ross, 2004). 

4 The defuzzification unit 

The defuzzification unit aggregates the outputs of all of the rules that have been 

fired for a particular input to produce a crisp output. In other words, the fuzzy 

output is transferred back to crisp value. This crisp value can be expressed as in 

Equation 3.32.   

x 

)(xµ  

1

0x x x 

x x x 

)(xµ  )(xµ  

)(xµ  )(xµ  )(xµ  

1 1

1 1 1

0x 0x 

0x 0x 0x 

A B A B

BA∪  

A

B

BA⊆  

A B A

BA∩  

A

___

A 



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 106 

)(CDefuzzifyz =                                                                                               (3.32) 

where z is the crisp output, C is the fuzzy set that represent the distribution of the 

results of the fuzzy inference as illustrated in Figure 3.17. 

The most common means of defuzzification is called the centre of gravity method 

in which the centre of gravity of the fuzzy set is measured and projected to the z-

axis to get the crisp result as illustrated by Figure 3.18. The output of this 

defuzzifier is a number z given by Equation 3.33. 

∫

∫
=

dzz

dzzz
z

izi

izii

)(

)(

µ

µ
                                                                                            (3.33) 

where z is the crisp output, ziµ is the fuzzy membership value at zi   
 

 

Figure 3.17 Different types of fuzzy inference systems (modified from Jang & Sun, 
1995). 
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Figure 3.18 Illustration of the defuzzification using the centre of the gravity 

 

3.4.3.2 Types of fuzzy logic systems 

The operation of a FLS is based on the rules contained in the rule base. Fuzzy 

rules, or Fuzzy if -then rules, are defined as a conditional statement in the form 

presented in Equation 3.34. 

R(l):IF x1 is A1 and x2 is A2 and ….and xn is An THEN z is B(l)                   (3.34) 

where  

R(l) is the l rule number 

x1, x2, …xn are the input variables 

A1, A2, ….An are linguistic fuzzy membership functions in the premise part 

B(l) is the membership function in the consequent part 

As illustrated in Figure 3.17, there exist two basic forms of fuzzy rules that have 

been developed to date: Mamdani’s fuzzy rules (Mamdani & Assilina ,1975) and 

Takagi-Sugeno-Kang’s (TSK) fuzzy rules (Sugeno & Kang, 1988; Takagi & 

Sugeno, 1985). Both types of fuzzy rules are widely used in system modelling and 

control areas. The differences between these two types of fuzzy rules appear in the 
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consequence part of the rule. For the Mamdani fuzzy model, both antecedent and 

consequent are fuzzy propositions; however, in the Takagi-Sugeno fuzzy model, 

the antecedent is a fuzzy proposition but the consequent is a crisp function.  

a. Mamdani fuzzy model 

In this model, the inputs and outputs are partitioned into fuzzy regions. The size, 

the shape, and the parameters of these fuzzy regions are decided by experience 

and the fuzzy rules are generated based on human expert. This model uses the 

minimum operation as a fuzzy implication function, and then the output variables 

are combined together to form a single fuzzy subset for each output variable. This 

combination is constructed by taking maximum overall of the fuzzy subsets 

assigned to output variable by the inference rule. The purpose here is to aggregate 

all individual rule outputs to obtain overall system output. Finally, the 

defuzzification step is implemented as presented previously (Keshwani et al., 

2008).   

The disadvantages of the Mamdani model are that the number and the shape of the 

membership functions are difficult to determine. In addition, the number of fuzzy 

rules increases dramatically as the number of input variable increase. In such a 

strategy, if we have no a priori knowledge about the system, the structure of the 

model becomes a difficult task and we have to select the structure by a trial and 

error process.  

b. Takagi and Sugeno model 

Fuzzy modelling using this approach was proposed by Takagi and Sugeno (1985). 

The Takagi-Sugeno fuzzy system is a specific case of Mamdani fuzzy system in 

that the premise or antecedent of the fuzzy  rules are defined with linguistic terms 

like very low, low, medium, high, very high but the consequence part is described 

by a non-fuzzy equation of the input variables (linear combination of the inputs), 
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instead of the fuzzy membership functions (see Ffigure 3.17). An example of the 

Takagi-Sugeno model is presented in Equation 3.35. 

R(l): IF x1 is A1 and x2 is A2 and ….and xn is An THEN  zi = ci + aix + biy   (3.35)                                                      

where 

R(l) is the l rule number 

x1, x2, …xn are the input variables 

A1, A2, ….An are linguistic fuzzy membership functions in the premise part 

zi is the crisp  output of the rule l 

ai, bi, ci are constants 

Takagi-Sugeno Model uses the weighted mean criterion to combine all local 

representations for the defuzzification (Equation 3.36). 

∑

∑
==

i

l

i
ii

w

zw
z 1                                                                                                      (3.36) 

where wi is the degree of fulfilment of the ith rule and l is the number of rules in 

the rule base. 

The performance of the fuzzy logic system depends on the rule base, the inference 

mechanisms and the defuzzification method and can be improved by tuning the 

membership functions. Normally, Mamdani’s method has seen more widespread 

use because it is easy to be understood by human experts. However, the advantage 

of Takagi-Sugeno’s method is that it has better computational efficiency, which 

makes it very good in modelling non-linear systems (Jang & Gulley, 1997; Jang & 
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Sun, 1995). Unfortunately, how to define the rules and membership functions 

requires a lot of prior knowledge (Ross, 2004). This is why the hybrid Neuro-

Fuzzy system, introduced in the next section, becomes important. 

3.5 Hybrid Neuro-Fuzzy Systems 

The major difficulty of fuzzy models is how to acquire the knowledge for building 

the fuzzy rules and how to tune the parameters in the membership functions. The 

proper selection of the number, the type and the parameters of the fuzzy 

membership functions and rules is crucial for achieving the desired performance. 

Tuning the parameters is difficult and time consuming since there are many tuning 

parameters. In addition, attention must be taken to select the most important 

features that describe the system under study (Jang, 1993). 

In the early applications of fuzzy logic models, the generation of the fuzzy rules 

and the adjustment of its membership functions were performed manually by trial 

and error and the best combination can be found by simulation test, which is a 

challenge (Ross, 2004). Subsequently, it has been found that the manual 

adjustments of membership functions sometimes lead to wrong conclusion (Jang, 

1993). Hence, there is a need to formalise a systematic approach to generate fuzzy 

rules from an input-output data set.   

To solve this problem, Jang (1993) provides a useful formalised method for 

tuning the parameters of fuzzy logic system (FLS) based on training data set of 

input values and their desired target outputs using the training algorithms of 

artificial neural networks. The method is called adaptive networks based on fuzzy 

inference system (ANFIS). The method takes advantages from both fuzzy logic 

systems and neural networks; it also avoids their individual shortcomings. For 

example neural network has an implicit knowledge representation; it is neither 
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easy to understand nor easy to explain its decision process. Fuzzy logic system is 

a subjective and heuristic system and it is time consuming to tune the fuzzy 

membership functions and develop the fuzzy rules. In other words, The ANFIS is 

fuzzy inference system implemented in the framework of adaptive network in 

order to map an input-output relation based on both human knowledge (in the 

form of fuzzy IF-THEN rules) and input-output data pairs, and hence obtain the 

best model from the given data. 

To validate his approach, Jang (1993) provided multiple examples of the ANFIS 

and the results were reported to be comparable with traditional backpropagation 

neural networks. Jang (1993) also found that with the supervised learning 

capabilities of neural networks and the heuristic reasoning capability of fuzzy 

rules, the ANFIS model is able to learn a complex functional relations and at the 

same time to generate fuzzy rules. Jang et al. (1997) showed that the ANFIS has 

unlimited approximation power for matching any non-linear function arbitrarily 

well; thus the ANFIS can be considered as a universal approximation (Jang, et al., 

1997).  

However, the tests by Jang et al. (1997) were done using noiseless data sets that 

were generated by functional equations; so the application of ANFIS on noisy 

field data was not proven. For example, when ANFIS was applied by Miller 

(2006) to predict the rainfall (precipitation) from noisy weather data (temperature 

and humidity), it was found that the model predicted negative values of rainfall on 

some occasions. To solve this problem, Miller (2006) suggested the pre-

processing of the data, e.g. by replacing the missing values and omitting the 

outliers, to improve the performance of ANFIS.  

Hence, Fuzzy logic modelling is a useful nonlinear mapping of an input data 

vector into a scalar output, if the problem associated with the developing and 
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parameterising the membership functions can be tackled effectively. This is 

because no complex mathematical relationships are required in the construction of 

fuzzy logic applications. Besides, it is conceptually easy to understand, flexible 

and tolerant of imprecise data.  

The usual design approach for a FLS is based on understanding the human expert 

approach and then implementing the strategy by direct translation of the linguistic 

rules and testing the developed FLS. The parameters can then be adjusted by trial 

and error and eventually it will yield good results, but offers no guarantee of 

optimality. The subjective strategy of such a system means that it cannot be 

readily applied. Therefore, there is a need for a more objective approach for 

converting heuristic rules, stated by a human operator, into an automatic strategy 

to tune the model parameters (Fuzzy Logic Toolbox for use with Matlab, 2004).  

The basic idea behind neuro-fuzzy combination is to design a system that uses a 

fuzzy system to represent knowledge in an interpretable manner and have the 

learning ability of NN to adjust its membership functions and parameters in order 

to enhance the system performance. The main drawbacks of both individual 

systems could therefore be avoided, i.e., the black box behaviour of NNs, and the 

problem of selecting suitable membership values for FLSs (Jang, 1993).  

Consequently, hybrid models of NN and FLS have been developed. The hybrid 

system can combine the advantages of two systems and avoid their drawbacks. 

This combination can constitute an interpretable model that is capable of learning, 

as NNs, and reasoning, as FLSs (Jange, 1993). Using this technique makes it 

possible to adjust the membership functions automatically from data by using NN 

learning algorithms.  
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In 1993, Jang and his colleagues started looking at the FLS as adaptive network 

(Adaptive Network Based on Fuzzy Inference System, ANFIS (Jang, 1993; Jang 

and Sun, 1995; Jang et al., 1997). This technique joins the linguistic interpretation 

of FLS with the computational power of neural networks that can be trained 

through gradient algorithms such as Back-propagation. A first foreword pass is 

performed to determine the network output and a second backward pass is 

performed to adjust the parameters for better approximation. They found that 

ANFIS could be easily implemented for a given input/output modelling technique. 

In the next sub-section, more detailed information about ANFIS is discussed. 

 
3.5.1 Adaptive-Network-based Fuzzy Inference System (ANFIS) 

Adaptive-Network-based Fuzzy Inference System (ANFIS) is a Sugeno-type 

(Sugeno & Kang ,1988; Takagi & Sugeno, 1985) fuzzy system in a five-layered 

network structure (Figure 3.19). The ANFIS has an interesting property: if the 

number of rules is not restricted, a Sugeno model can map any non-linear function 

(Jang, 1993). ANFIS is a multi-layer feedforward network in which each node 

performs a particular function on incoming signals. The parameters associated 

with these nodes are updated according to a given training data and a gradient 

based learning procedure in order to achieve a desired input-output mapping 

(Jang, 1993; Jang and Gulley, 1995, Jang et al, 1997; Chang and Change, 2006; 

Güngör, 2007). 
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Figure 3.19 Structure of fuzzy neural network (modified after Jang & Sun, 1993). 

ANFIS can be used to optimize membership functions and has the advantage of 

being able to construct fuzzy IF-THEN rules representing these optimized 

membership functions. The five layers in the ANFIS are: the input layer, the 

fuzzification layer, the rules layer, the standardization layer and the output layer 

shown in Figure 3.19.  

1- The input layer: The input layer contains the input variables to the model. The 

relation between the input and output of this layer is given by Equation 3.37. 
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)1(
iy is the output from the input layer 

2. The fuzzification layer: The aim of the fuzzification layer, as discussed 

previously, is to obtain the membership degree of each input, or fuzzifying the 

inputs. The data are processed in this layer and converted into linguistic variables 

by means of membership functions. The outputs of this layer are fuzzy 

membership degree of the inputs. The relation between input and output of this 

layer is as given by Equation 3.28.    The parameters in Equation 3.28 can be used 

to define the region or the position of the fuzzy sets.  

3- The rules layer: The inputs to this layer are the fuzzy membership degree 

output from the fuzzification layer. The output from this layer is also a 

membership degree and can be calculated from product fuzzy operation method 

for each rule using the formula in Equation 3.38. 

)2(

)(,

)2(

)2(,

)2(

)1(,

)3( ...... njijijik yyyy ∧∧∧=                                                                (3.38) 

where i is the input number,  j is the number of membership function in the input 

i, k is the number of rules, and ^ denotes an AND operation . The value 

)3(
ky obtained is called firing strength of the rules. 

4- The standardization layer: The main aim of this layer is to standardize the 

outputs from the third layer. In addition, the consequence parameters of the rule 

are determined in this layer. The output of this layer can be calculated as in 

Equation 3.39 and is called the normalized firing strength: 
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where: 
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5- The output layer or Defuzzification layer: This layer computes the overall 

output as the summation of all incoming signals. There is only one node in this 

layer. The output can be calculated as in Equation 3.41 

 ∑
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lkyy
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                                                                                                    (3.41) 

where l is the rule number 

Therefore, there are two adaptive layers in the ANFIS architecture, the second, 

and the fourth layer. There are two-modified parameters in the second layer, 

ija which is the centre and ijb  which is the width of the membership function (See 

Equation 3.28). These parameters are related to the shape and positions of the 

membership function. In the forth layer, there are i+1 modifiable parameters, 

ikkkk aaaa ,,,, 210 L which are related to the output of each rule.  

Jang (1993) introduces two pass algorithms for adjusting the parameters using 

backpropagation optimization algorithms. In the forward pass, the premise 

parameters (ija  and ijb ) are held fixed and the consequent parameters 

( ikkkk aaaa ,,,, 210 L ) are adjusted by least square error (LSE). In the backward 

pass, the network error is back- propagated through the network and the premise 

parameters are adjusted by gradient descent while the consequent parameters are 

fixed. A training process of ANFIS is to tune all these parameters, so that the 

model can give a satisfying output.   
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However, although ANFIS is fast, gives excellent performance in modelling and 

has good generalization capability that make it popular and ideal for modelling 

complex problems. It does require strong computational power. The number of 

parameters to be estimated can be very large. For example, depending on the 

number of inputs and the number of membership functions for each input, and the 

shape of membership function chosen, the total number of parameters is estimated 

by Equation 3.42.  

)()( cpppmfinputtotal NlNNNN ×+××=                                                     (3.42) 

inputN

mfNl )(=                                                                                                   (3.43) 

1+= inputcp NN
                                                                                                  (3.44) 

where, 

totalN  is the total number of modified parameters, i.e. to be estimated; 

inputN  is the number of inputs; 

mfN is the number of membership functions associated with each input; 

ppN is the number of modified parameters per membership function, i.e. 2 in case 

of Gaussian membership function; 

l is the number of rules; 

Ncp is the number of modified parameters in the sequence part of each rule;  

A comprehensive example of these equations is presented in Table 8.1. 



Chapter 3: Artificial Intelligence Techniques 
____________________________________________________________________________ 

 118 

3.6 Features Selection, Extraction, and visualisation 

When performing analysis of complex data, one of the major problems stems 

from the number of variables involved. Therefore, collected data must be 

processed further in order to get better results. Reasons for doing this may be 

easier subsequent analyses, improved classification, or prediction performance 

through more stable representation, removal of redundant or irrelevant 

information or an attempt to discover underlying structure or knowledge by 

obtaining a graphical representation. That is because analysis with a large number 

of variables generally requires a large amount of memory and computation power. 

Therefore, the number of variables used in the model must be kept as small as 

possible. Hence, the objective of features extraction and visualisation is to 

represent the data in a reduced number of dimensions. Given a set of 

measurements, dimensionality reduction can be achieved in two different ways, 

Features selection and features extraction. These two methods can be considered 

as part of the data preparation phase or data transformation phase.  

3.6.1 Features Selection 

Features selection in the measurement space is to identify the variables that 

contribute to the modelling task and omit others. Features selection is important 

for model learning as it supports the dimensionality reduction that supports 

modelling strategies in which it selects the relevant variables stored in the plant’s 

database. Using too many features is inefficient due to the curse of 

dimensionality. The curse of dimensionality refers to the fact that the number of 

data samples required to estimate some arbitrary multivariate distribution 

increases exponentially as the number of variables increases (Powell et al., 2007). 
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Algorithmic features selection is usually based on combinational optimization. 

The algorithm looks for the set of variables that minimize the cost function (the 

accuracy of the model) (Langley, 1994; Powell et al., 2007). Optimal feature 

selection requires an exhaustive search of all possible subsets of features. 

However, this requires a huge number of evaluations of the cost function, which is 

unfeasible with high-dimensional data set, hence, this is impractical. Instead of 

that, two common approaches are available for features selection. The first one is 

to start with minimum number of variables and then add one variable every time; 

the second one is to start with all variables and then gradually reduce the number 

eliminating. The popular method of evaluation of subsets can be done using the 

correlation between a candidate features and the desired output category (Guyon 

and Elisseeff, 2003; Powell, 2007). The last approach has been applied in this 

work as will be seen in Chapter 7 and 8.  

3.6.2 Features Extraction  

In general, the data set contains a collection of individual input sequences. So it is 

not feasible to estimate the model parameters for the whole data set, with its noise 

and outliers. Therefore, there is a need to extract a subset that is a sufficient 

representation of the entire data set but sufficient in size to be practical for model 

identification. Feature extraction is a general term for methods of constructing 

combinations of variables to get around the dimensionality problems while still 

describing the data with sufficient accuracy. These methods involve simplifying 

the amount of resources required to describe a large set of data through the 

transformation of the measurement space to a lower dimensional feature space 

that has higher manageable level. This transformation generates fewer, higher 

level of variables than the raw data itself for the modelling purpose. Usually, this 

process involves some form of aggregation in which variables which contribute 
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essentially the same information must be combined in a logical fashion in order to 

reduce the effective number of variables. It is found that by using this approach, 

the size of the feature sets can be effectively reduced and the accuracy of the 

classifiers can be increased (Torkkola , 2003; Wange et al., 2003). 

Features extraction may be linear or nonlinear combination of the original (May 

and Jain, 1995; Laine, 2003). A well known linear features extraction technique is 

Principal Component Analysis (PCA) while Kohonen Self-Organising Map is 

probably the most well known non-linear technique (Kohonen, 1996). In the case 

of PCA method, the original features space is rotated before projecting the feature 

vector onto a limited amount of axes. Thus, principal component analysis (PCA) 

is commonly applied in features extraction phase to transform the feature vectors 

to orthogonal coordinate system, and to select those that are used in the model 

(Torkkola, 2003). PCA produces an orthogonal coordinate system in which the 

axes are ordered in terms of the amount of variance in the original data for which 

the corresponding principal components account. Dimension reduction is gained 

when only those axes that account for the most of the variation are selected. New 

features vectors are then gained by transforming the original feature vector onto 

this lower dimensionality space. Hence, PCA is a statistical modelling tool that 

attempts to extract relevant information from the data and defines a feature space 

of principal components that aims to capture the variance of the data.  

There are several steps to find the PCA, these steps are (Jolliff, 2002; Keg et al., 

2007): 

1. Standardising the data: Sometimes, it makes sense to compute principal 

components for raw data. However, this is appropriate when all the variables are 

in the same units. Standardising the data is reasonable when the variables are in 

different units or when the variance of the different columns is substantial. 
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2. Calculating the covariance matrix. 

3. Calculate the eigenvectors and eigenvalues of the covariance matrix. 

4. Choosing components and forming a feature vector: once eigenvectors are 

found from the covariance matrix, the next step is to order them by eigenvalue, 

highest to lowest. This gives the components in order of significance. Now, the 

components of lesser significance can be ignored. In this case, some information 

is lost but if the eigenvalues are small, not too much information is lost. Hence, if 

some components are left out, the final data set will have fewer dimensions than 

the original. To be precise, if we originally have n dimensions in the data and we 

calculate n eigenvectors and eigenvalues, then we choose only the first desired 

values. What needs to be done now is to form a feature vector, which is matrix of 

the chosen eigenvectors. Therefore, the eigenvectors with the highest eigenvalues 

are the principle components of the data set. 

)( 321 neigeigeigeigvectorfeature K=                        

Hence, In the PCA, the directions are found which accounts for most of the 

variance in the data. This is done by calculating the eigenvectors e1, e2, …en and 

corresponding eigenvalues nλλλ ,...,, 21  of the covariance matrix of the data and 

ordering them by decreasing eigenvalues. The first direction e1 accounts for most 

of the variance in the data, the second for the second largest amount, and so on. 

By projecting the data to the space spanned by the first two eigenvectors as much 

of the variance is preserved as possible. The sum of the corresponding 

eigenvalues gives the amount of variance preserved in the projection and thus 

indicates the error made in the low-dimensional projection. 
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5. Deriving the new data set: this is the final step in PCA, and is also the easiest. 

Once we have chosen the components (eigenvectors) that we wish to keep in our 

data and formed a feature vector, we simply take the transpose of the vector and 

multiply it on the left of the original data set transposed. 

 TT DataRowvectorfeaturedataFinal )()( ×=                          

The first principal component is a single axis in space. When we project each 

observation on that axis, the resulting values form a new variable, the variance of 

this variable is the maximum among all possible choices of the first axis. The 

second principal component is another axis in space, perpendicular to the first. 

Projecting the observations on this axis generates another new variable. The 

variance of this variable is the maximum among all possible choices of this 

second axis. The full set of principal components is as large as the original set of 

variables. However, it is common place for the sum of the variances of the first 

few principal components to exceed 80% of the total variance of the original data 

(the mathworks, statistics toolbox). By examining plots of these few new 

variables, it is possible to develop a deeper understanding of the driving forces 

that generated the original data. 

From the projection plot, the clusters in the data can be seen. However, relations 

between individual variables are lost since the new coordinates are complex linear 

compensations of the original variables. Hence, projection visualisations are only 

applicable for detecting of similar groups of the objects. 

Nonetheless, PCA has many drawbacks (Jolliffe, 2002). For example, PCA 

reduces a linear combination of orthogonal variables, thus, PCA may not always 

be appropriate for data with highly nonlinear characteristics. Further PCs do not 
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necessarily have physical explanation. Each component is just a statistical 

construct representing variables in the data. 

However, PCA method suffers from several limitations. Its algorithm depends on 

strong assumptions of the properties of the data such as the linearity and normal 

distribution. Therefore, the use of these algorithms requires the user to pre-process 

the data to fit these assumptions. Hence, it may fail to capture non-linear 

phenomena, or the algorithm may produce poor models. Furthermore, it is 

difficult to understand these components, or it is just understandable only to 

mathematically literate persons (May and Jain, 1995; Laine, 2003). 

It should be noticed that a training data set has to contain a representative state of 

the system to be modelled using data driven techniques. Also, it is not of 

importance to repeat similar patterns in training data sets. Repeating patterns do 

not bring new particular learning benefit to give better performance but the 

training process is significantly slow. To solve this problem, the KSOM,  which 

recently have become widely used tool for clustering multivariate data as they 

allow overcoming limitations of statistical methods and allowing the analysis of 

data containing complex non-linear relationships (Kohonen, 1996), can construct 

optimal code abstract feature space as seen previously. Individual feature values 

can be replaced by these codes, which result in data compression. Each code 

vector corresponds to and represents a part of the input space, the set of those 

points in the space that are closer in distance to that code vector than to any other 

code vector. Therefore, KSOM attempts to enhance prediction by amplifying a 

pattern and discarding noise. The accuracy of modelling, therefore, increases 

quickly as will be seen in Chapters 7 and 8. 
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3.7 Summary 

In this chapter, the essential background for understanding the subsequent 

chapters is briefly introduced. The main context of the  chapter is an overview of 

the basic of AI techniques used in this study, namely, backpropagation 

feedforward Artificial neural networks, Kohonen features map (Kohonen self 

organising map) and fuzzy logic. The hybrid modelling systems were also 

presented and discussed.   

The Chapter discussed the learning ability of the artificial intelligence techniques 

to construct nonlinear relationships that can explain the complex relationship 

within the data without the difficult task of dealing with deterministic nonlinear 

mathematics. It also presented how these systems deal with the complexity and 

uncertainty of the system in a manner similar to the human way of thinking and 

reasoning. Furthermore, the Chapter presented the combination of fuzzy logic and 

neural networks that make them a versatile tool in modelling highly non-linear 

systems. 

The next Chapter will present the methods and materials used in this research 

such as the source of the data, the methodology used for data pre-processing and 

the software tools used in this study. 



 

CHAPTER 4 

METHODS AND MATERIALS  

 

4.1 Case study 

The methodology of this research work was applied to data from Seafield 

wastewater treatment plant in Edinburgh, UK and further details about this plant 

and the data are given in the next section. Additionally, data from East Calder and 

New-bridge treatment works also in the Lothian region of Scotland were used for 

validation. The three plants are part of the Almond Valley and Seafield project, an 

environmental regenerating initiative by Scottish Water for Edinburgh city and 

Lothian regions. The three plants are operated by Thames Water under a private 

finance initiative. Treated wastewater from East Calder and New-bridge is 

discharged to the Almond River as shown in Figure 4.1. The population 

equivalents (pe) of all the treatment plants in the Edinburgh area are given in 

Table 4.1 (Hill and Hare, 1999). 

The River Almond is designated as “sensitive area” under the terms of the urban 

wastewater treatment regulations (UWWTR) (Hill and Hare, 1999). This means 

that the discharges from its works would have to meet new more stringent 

standards and water quality objectives set by the Scottish Environmental 

Protection Agency (SEPA) in order to reduce the eutrophication phenomena. For 

example, the maximum discharged BOD and COD are 25 mg/l and 125 mg/l 

respectively; while Suspended Solids (SS) is not reported except where the works 

only provides primary treatment as consents vary from one works to another 

(SEPA, 2006). 
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Figure 4.1 The Almond Valley and Seafield, Edinburgh, Catchment Area. 1 is 
Seafield WWTP, 2 is Newbridge WWTP, 3 Broxburn WWTP, 4 East Calder 
WWTP, 5 Blackburn WWTP, 6 Whitburn WWTP. 
 
 
Table 4.1 Population Served in the Almond valley and Seafield project 

Population Served Treatment plants 
1999 2023 

projection 

Type of treatment 
(Secondary/tertiary) 

Seafield 
(Edinburgh) 

480000 520000 Activated sludge  

East Calder 65000 75000 Activated sludge,  Bio-
tower and sand filtration 

New-Bridge 19500 22500 Activated sludge and 
sand filtration 

Whit-burn* 11200 13000 Activated sludge 
Blackburn* 11500 12700 Trickling filter 
 
* These works do not form part of this study 
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Catchments served by the Almond valley and Seafield works contain both 

separate and combined sewerage systems with a number of combined storm 

overflows discharged to local watercourses. Each of the works has primary and 

secondary treatment, with some have additional tertiary treatment (see Table 4,1). 

All have storm tanks which come into operation at about 3 dry weather flows and 

discharge to the river when full.  

The East Calder plant employs a conventional activated sludge for secondary 

treatment and a biotower for nitrification. Final polishing of the effluent through a 

system of sand filters takes place prior to discharge. The much newer Newbridge 

plant uses a combined nitrification-denitrification activated sludge system for its 

biological oxidation stage. Additionally, prior phosphorus chemical precipitation 

takes place at inlet. The final effluent is also passed through a system of rapid 

sand filters prior to being discharged.  

The Seafield wastewater treatment plant is located in the eastern part of 

Edinburgh city. It receives water from Edinburgh catchment and adjacent 

contributions. The sewered catchment comprises many different sources of 

wastewater such as domestic effluent, industrial discharge and rainwater seepage. 

The outfall is situated adjacent to Portabello beach, designated a bathing beach, 

and the proposed multimillion pound housing, leisure, business and continental 

ferry development at Leith Docks. 

The Seafield treatment plant relies on a conventional activated sludge secondary 

treatment system. It aims to reduce the BOD and COD of the flow to such a level 

that there is no risk to the ecology of the receiving water body. The works 

discharges treated effluent through a long sea outfall to a point some 2.8 km 

offshore. Storm water is also discharged through the long sea outfall after 6mm 

screening and retention in 4 no 10,000 m3 tanks. 
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The Seafield plant comprises 8 circular sedimentation tanks, 4 rectangular non-

nitrifying aeration lanes, and 8 circular final settlement tanks. The main treatment 

is preceded by six screens (spacing: 6 mm) and four Detritor grit removal units. 

An overview of Seafield wastewater treatment plant is shown in Figure 4.2. Table 

4.2 presents the design characteristics of the Seafield treatment plant.   

Table 4.2 The design characteristics of Seafield treatment works 
Process Unit  

Existing number 4 No. 
Rectangular 

Length 100 m 
width 30  m 
Depth  3.4 m 
Volume  10,200 m3  

Storm Water 
Tanks 

Square Area 3,000 m2 
Existing number 6 Screening  
Type 6 mm screens 
Existing number 4 
Diameter 15 m 
Depth  2.3 m 
Volume  1,626 m3 

Grit Removal 

Square Area 2826 m2 
Existing number 8 No. Circular 
Diameter 55.0 m 
Depth 3.9 m 
Volume  9261 m3 

Primary 
sedimentation 

Square Area 2375 m2 
Existing Number 4 
Length 70 m 
Width/lane 21 m 

Aeration Lanes 

Depth 6.1 m 

Existing number 8 No. Circular 
Diameter 45.0 m 
Depth  2.5 m 
Floor Slope  5 O 
Volume 3974 m3 

Final Settlement 
Tanks 

Square Area 1590 m2 
 



 Chapter 4: Methods and Materials 

 
129 

 
Figure 4.2 a. Areal photograph of  Seafield wastewater treatment plant 

 
Figure 4.2 b Map of layout of Seafield wastewater treatment plant, 1 is the screen 
house, 2 are the detritors, 3 Grit washing mechanism, 4 sedimentation tanks, 5 
storm tanks, 6 aeration tanks, 7 final settling tanks, 8 UV treatment unit, 9 outfall 
tunnel 
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The average final effluent BOD concentration was around 10 mg/l with respect to 

the provided example data record, which is considerably much lower than the 

design consent of 25 mg/l was taken from an internal report commissioned by the 

treatment plant operator.  

4.2 Data 

4.2.1 Data collection system  

The Seafield wastewater treatment plant is equipped with data collecting systems. 

These systems are used for monitoring, automatic control, and as a decision base 

for operational strategies. The data are passed to the data acquisition unit 

(SCADA), located in the main control room, which store the data as databases. 

SCADA software allows set points to be altered and to communicate with the user 

via friendly interface screens and associated alarms. The system can alter the set 

points for the controlling parameters, e.g. desludging time, dissolved oxygen 

(DO), Return and waste activated sludge (RAS), (WAS).  

4.2.2 Data Description 

Historical daily database describing the operation of the Seafield activated sludge 

treatment plant in Edinburgh (Scotland, UK) for a period of approximately three 

years with a total of 1066 data vectors were obtained from Thames Water (plant 

operator). These data come from different sources. On-line data are gained 

directly from sensors and these include flow, temperature, and pH. Off-line data 

or manual samples are derived variables involving several intermediate steps 

before being presented in the record sheet. These variables include Specific 

Sludge Volume Index (SSVI), Biochemical Oxygen Demand (BOD), Chemical 

Oxygen Demand (COD), Suspended Solids (SS), and Ammonia Nitrogen (NH4). 

The third category of data is those calculated based on a combination of the above 
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measurements and include BOD-load, food to micro-organisms ratio (F/M), and 

Sludge Age. The performance of the three treatment plants is monitored on a 

routine basis by Thames Water staff and in some occasions by Scottish Water 

staff. Composite samples are collected at 9:30 and consist of “shots” taken over 

the previous 24 hours. These samples are collected from the works influent, 

primary clarifier effluent and secondary effluent streams. The frequency with 

which samples are analysed varies.  The parameters measured are discussed in the 

next supsections. 

4.2.2.1 Biochemical Oxygen Demand (BOD) 

The BOD test seeks to measure the biochemical oxygen demand exerted by the 

sample over a fixed period. It is therefore apparent that the oxygen uptake in the 

BOD bottle may not necessarily reflect the oxygen requirements of the 

wastewater treatment process having to treat the waste. The BOD5 is often quoted 

as being between 60% and 70% of the ultimate BOD (Orhon and Artan 1994; 

Spellman, 2003). The oxygen demand is an extremely important measurement of 

wastewater quality as it measures the potential for oxygen depletion in the water, 

and therefore is an important indicator of organic pollution. It is necessary to 

assess the overall efficiency of treatment processes as this has a direct bearing on 

the quality of the final effluent and the economy of the process. Considering the 

time for the analysis the BOD test is certainly not suitable for operation/control 

purposes. Furthermore, BOD is not a single point value but is time dependent, 

also is not precise measurement and the reproducibility is quite poor.  

4.2.2.2 Chemical Oxygen Demand (COD) 

COD is widely used to characterise the organic strength of wastewater. The test 

measures the amount of oxygen required for chemical oxidation of organic matter 

in the sample to CO2 and H2O. In the COD test, biodegradable as well as non-

biodegradable material is oxidised; however, cannot distinguish between 
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biodegradable and inert organic matter. There is no uniform relationship between 

the COD and BOD of wastewater except that the COD value must be greater than 

BOD (Olsson and Newell, 1999). An empirical correlation of COD to BOD for a 

particular wastewater can be determined which is useful as this method takes only 

hours. The COD/BOD or BOD/COD ratio provides an estimate of the proportion 

of biodegradable organic matter present in wastewater (Rustum et al., 2008-a).  

4.2.2.3 Dissolved Oxygen (DO) 

DO is one of the most important and useful measurement in activated sludge 

processes and is also the basis for the BOD and Oxygen uptake rate (OUR) tests. 

DO is measured on-line in the plant using DO probes. The probes have also a 

sensor for measuring temperature. Aeration is controlled by maintaining a set-

point for the DO concentration in the aeration tanks. A sufficient supply of 

oxygen is important for the removal of carbonaceous materials and essential of the 

nitrification process. Low oxygen concentration may not only inhibit nitrification, 

but may also deteriorate sludge settleability, worsen effluent quality and results in 

predominance of filamentous bacteria (Chen et al, 1993; Spellman, 2003). On the 

other hand, excessive oxygen supply results in high operational costs. 

Furthermore, high oxygen supply may lead to excessive nitrification and again to 

poorly settling sludge. DO concentrations in the aeration tanks are maintained at 

about 1.5 to 4 mg/l; 2 mg/l is used as a set point. Values above 4 mg/l do not 

improve operations significantly, but increase the aeration costs considerably. 

Aeration accounts typically for more than 50% of the total plant energy 

requirements (Gray, 2004; Spellman, 2003). 

4.2.2.4 Mixed Liquor Suspended Solids (MLSS and RAS-MLSS) 

The concentration of suspended solids in the mixed liquor (MLSS) and returned 

activated sludge (MLSS-RAS) are investigated on daily basis. A single discrete 

sample is collected and sent for analysis each day. The level of MLSS is 
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maintained by recycling the settled sludge (RAS) at a level sufficient to treat the 

incoming organic load, but there is a lack of reliable on-line information on how 

to control the RAS. Generally, increasing the MLSS produces an older, denser 

sludge, while decreasing MLSS produces a younger, less dense sludge. The mixed 

liquor suspended solids concentration is controlled by manual adjustment of 

wastage rates to achieve a value of approximately (2500 mg/l, special 

communication with the staff). This corresponds to a sludge age of between 3.3-

7.5 days. 

4.2.2.5 Quantification of settling properties (SSVI) 

Although there are now many automated system for quantification of settling 

properties, such as installing a measuring system that tracks the sludge blanket or 

concentration profiles in the full scale clarifier, or another optical systems that 

reveal the relation between sludge flocs structure and the settling properties 

(Vanrolleghem et al., 1996; Olsson and Newell, 1999); the Seafield plant still 

relies on the traditional way of quantifying sludge settleability by measuring the 

Stirred Specific Sludge Volume Index test (SSVI). This test is performed on 

samples of mixed liquor in order to have an idea about the settleability of the 

activated sludge.  

4.2.2.6 Flow 

Monitoring of flow in wastewater treatment plant is important for the 

determination of mass balance. Therefore, flow rates are measured at three points 

in the Seafield treatment works: 

a. Flow to full treatment  

Flow to the treatment plant is restricted to a maximum of three times average dry-

weather flow. Limitations of flow help to prevent extreme hydraulic shocks that 

would result in further deterioration of the treatment plant performance.  
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b. Return activated sludge (RAS) 

The setting of the return activated sludge rate is important for solids control in the 

activated sludge process. it is because it maintains a constant MLSS concentration 

that constitutes one of the most common methods of solids control, resulting in an 

equalised and improved effluent quality. The RAS rate, necessary to maintain a 

constant target MLSS concentration, can be calculated from a mass balance. In the 

Seafield wastewater treatment plant, the return sludge system includes pumps, a 

timer or variable speed drive to regulate pump delivery and a flow measurements 

device to determine actual flow rates. Generally, the RAS is related to the 

treatment plant inflow rate by a constant factor between 0.4 and 1.5, thus the 

sludge rate is increased with increasing flow (Harremoës et al., 1993; Spellman, 

2003). However, this control principle may lead to deterioration of the plant 

performance by imposing an additional hydraulic load to the clarifier as well as by 

a hydraulic shock to the thickener caused by sharp changes in the RAS rate 

(Spellman, 2003).  

c. Waste or surplus activated sludge (WAS) 

The WAS rate determines the rate at which sludge is removed from the activated 

sludge system. If a constant mean cell residence time (sludge age) and a constant 

MLSS are to be maintained, the wastage rate can be calculated from a simple 

mass balance involving the target MLSS concentration in the aeration tank and the 

MLSS concentration in the effluent and in the RAS (Tchobanoglous and Burton, 

1991; Spellman, 2003). In the Seafield wastewater treatment plant, the WAS 

withdrawal is accomplished by adjusting valves on the return system. 
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4.2.2.7 Sludge Age 

The length of time, or mean cell residence time, that the biomass remains in the 

secondary treatment stage is known as the sludge age. The conventional sludge 

age in UK is around 5 days and Seafield is not an exception with the sludge age, 

in the available data ranging between 3.35 and 7.52 days (Lessard and Beck, 

1993). 

4.2.2.8 Food to Micro-organisms ratio (F/M)  

In the UK, traditional practice has used the F/M ratio to control the activated 

sludge process, in units of Kg BOD5/Kg MLSS (or sludge loading rate). The food 

to micro-organisms ratio for Seafield treatment plant was between 0.08 and 0.23 

kg BOD5 applied per Kg MLSS day. 

Other water quality parameters such as pH and Temperature are also measured 

and recorded. 

4.2.3 Data treatment  

A major problem was the quality of the data from the full-scale wastewater 

treatment plant. For any modelling strategy, the quality of the outputs heavily 

depends on the quality of the inputs. Therefore, data treatment provides 

techniques on how measurement data can be validated and how the quality of data 

can be improved. This is important to obtain reliable analysis results.  

Different methods for exploring the available data were applied. Typically, 

descriptive statistics such as the mean, maximum, minimum were calculated. In 

addition, histograms were plotted. All measurements were examined with respect 

to erroneous values, missing data, possible outliers (See Rustum and Adeloye, 

2007). Missing values and outliers were located and replaced by “NAN”(Not a 

Number) in order to cope with the MATLAB requirements, then they were 



 Chapter 4: Methods and Materials 

 
136 

replaced as will be discussed in Chapter 5 (see  also Rustum and Adeloye, 2007-

a). In addition, data were manipulated in order to cope with the modelling 

strategy, e.g. the data were standardized before being fed to the ANN as described 

in Chapter 3.  

Erroneous Measurements were filtered out from the data using a priori knowledge 

of the process.  Statistical characteristics of the measured process variables are 

described in the more detail in Chapter 5. An important feature of the data is the 

large number of missing values, which would have made modelling by other 

methods such as regression analysis impractical. 

4.4 Computer Software 

The developed models were implemented using MATLAB 7 programming 

language with Neural Networks and Fuzzy Logic toolboxes (Version 7, Release 

14, Mathworks, Inc). Kohonen Self Organizing Maps were built and visualized 

using SOM Toolbox for MATLAB 5, developed at the Laboratory of Computer 

and Information Science (CIS) at Helsinki University of Technology. Supporting 

statistical analysis was conducted using Statistical Toolbox and various functions 

in MATLAB.   

The MATLAB programming language was chosen for model development 

because NN and ANFIS require intensive matrix computations. The Fuzzy Logic 

and Neural Network Toolboxes of MATLAB provide comprehensive support for 

design, implementing, and simulation of the models rapidly. Their consistent 

methodology and modular organization provide a flexible framework for 

experimentation, and simplify customization. The work was preformed using the 

available advices in the documentation of the software’s package and in the 

literature.  
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4.5 Selecting model structure 

In this work, an ANN and ANFIS will be adopted as the framework of the model 

structure, in addition to the KSOM for data analysis and features extraction. When 

developing the models there are difficulties that can be encountered. The task of 

choosing the appropriate model parameters,  i.e. number of inputs and outputs that 

the model has to take into consideration,  the number of neurons in the hidden 

layer in case of ANN and the shape of membership functions in case of ANFIS. 

Unfortunately, this is an empirical exercise that has to be carried out using trial 

and error approach until satisfactory results are obtained. That is due to the little 

information available to guide the user in the selection of particular model. 

Therefore, there is a need to evaluate those models and assess their predictive 

capabilities.   

4.5.1 KSOM modelling Strategy 

The topology of the KSOM grid was chosen to be the plain two –dimensional 

discreet map, the rational being that it is easy to visualise and to interpret. The 

topology of the grid was hexagonal, which is more homogeneous with respect to 

the directions on the KSOM plane than other frequently used alternative, 

rectangular, though, according to Nikkila (2005), the results can be very similar 

with both choices. The procedures for map training and visualisation are followed 

as presented in Chapter 3. 

4.5.2 Artificial Neural Network modelling strategy 

The neural networks models developed in this study were trained in MATLAB 

programming language using neural network graphical user interface according to 

the following steps: 
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1. Data Pre-processing: the data are normalized using the mean and standard 

deviation in order to improve the performance of the model. 

2. Creating a feed foreword back propagation network. 

3. Choosing Training and Learning functions: training and leaning functions 

are mathematical procedures used to automatically adjust the network 

weights and biases. The MATLAB includes several training function but 

the Levenberg-Marguard back propagation (Trainlm) was used.  

4. Choosing the performance function to calculate and monitor network 

efficiency during training. MSE is used to measure the network error in 

this study. 

5. Selecting transfer functions: transfer functions transform the output of 

each network layer according to a desired linear or nonlinear mapping. 

Tan-sigmoid, the most commonly used transfer unction, is used in the 

hidden layer and linear (purline) is used in the output layer.  

6. Post-processing: this can be achieved by examining the predictive power 

of the model with testing data set that has not been used during training.  

7. Presenting the results of training, validation and testing in figures and 

tables. 

4.5.3 ANFIS modelling strategy 

The ANFIS models were developed using the graphical user interface of the 

Fuzzy logic Toolbox according the following steps: 

1. Loading data (training, testing, and checking) ; 
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2. Generating an initial FIS model ; 

3. Choosing the FIS model parameter optimization method: backpropagation 

or a mixture of backpropagation and least squares (hybrid method). In this 

work the second approach is applied; 

4. Choosing the number of training epochs and the training error tolerance; 

5. Training the FLS model, this training adjusts the membership function 

parameters and plots the training (and/or checking data) error plot(s) in the 

plot region. 

4.6 Models performance evaluation criteria  

Once a model structure has been chosen and the network trained, the selected 

model needs to be evaluated. In practice, the accuracy of a model is determined by 

the ‘goodness of fit’ between outputs of the model and the system given the same 

input. Hence, some validation tests need to be considered. Generally, the accuracy 

of a model must be evaluated for three sets of data samples. These data sets are: 

training data that express the effectiveness of learning, validation data set that 

used to save the model from overfitting problem, and the testing data set that 

measure the generalisation capability of the network. There is a need to point out 

that the testing data set should ideally not have previously been presented to the 

network and it must represent the entire operation range. In this work, the 

following evaluation criteria have been considered. 

1. The average absolute error (AAE) measures the mean error of the predictions.  
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2. The relative average absolute error (RAAE) is the AAE scaled by the range 

(maximum subtracted by the minimum) of the data. For a well-performing model, 

the RAAE should be as small as possible. 

MinMax

AAE
RAAE

−
=                                                                                      (4.2) 

3. The normalized root mean squared error (NRMSE) measures the mean root 

squared error scaled by the standard deviation of the values. 

S

xx
NNRMSE

N

i
ii∑

=
−

= 1

2' )(
1

                                                                        (4.3) 

4. The mean square error (MSE) which is defined as: 
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5. The correlation coefficient (R) measures the similarity of the shapes of the 

original and predicted time series and ranges between -1 and 1; the absolute value 

of the correlation coefficient for perfect predictions is unity. 
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6. The classification error (CE) measures the fraction of over- and under-

predictions for a variable '
iii xxCE −=  . For purely random residuals, one would 

expect a 50:50 split between PR and NR. Otherwise, the model could be 

considered to be either upward or downward biased. 
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a. The positive rate (PR) is the fraction of over-predictions in the set of predicted 

values. 
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PR ii                                               (4.6) 

b. The negative rate (NR) is the fraction of under-predictions in the set of 

predicted values . 
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where  

N is the number of samples; 

ix  is the actual value;  

'
ix  is the value predicted by the model. 

Max and Min are the maximum and minimum data points of the range. 

'
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 S is the standard deviation given by  
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__

x  is the sample mean given by 
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4.7 Visualizing the performance of the model 

Although the evaluation criteria are very useful, probably the most valuable 

assessment of the model can be made using simple plots. These plots will 

compare the predictions made by the model with the actual data. It can give an 

indication of under and over-fitting data and will illustrate the model performance 

during training, validation and testing data sets. Several visualization techniques 

have been used in this work such as time series plots of the predicted and 

observed, Error distribution plot, scatter plots, etc. 

4.8 Summary 

 

This Chapter presents the methodology applied in this study. It starts with a 

thorough description of the case study used in work, which are three treatment 

works in the Almond River in Edinburgh, UK. Then a description of the data used 

and its characteristics is presented. An overview of computer softwares used in 

this study is also presented briefly. The Chapter ends with the performance 

evaluation criteria used to asses the developed modes. 

Thus the previous chapters have covered all the basis of the methodology, the data 

and the various assumptions required to understand the analysis presented in the 

next applications. Each of the next chapters represents a separate application of 

the previously described tools to the case study data and treatment works. 

 
 
 
 



   
 

CHAPTER 5 

APPLICATION I:  ACTIVATED SLUDGE DATA PRE-

PROCESSING USING THE KOHONEN SELF ORGANISING 

MAP 

 

5.1 Introduction 

Modelling the activated sludge wastewater treatment plant plays an important role 

in improving its performance. However, there are many limitations of the 

available data for model identification, calibration, and verification, such as the 

presence of missing values and outliers. Although, many treatment plants are 

equipped with properly designed data collection systems, there is often little or no 

attention paid to the quality of the data (Rosen, 1998). Thus, situations abound for 

data corruption, such as excessive disturbances, equipment malfunction, and 

human errors. These lead to some of the problems in the raw plant data such as 

noise, missing values, and outliers. The resultant effects of these are 

discontinuities or gaps in the data records and outliers, both of which create severe 

handicap in modelling and identification of the process. One obvious solution to 

the problem is to remove records containing the missing values and outliers; 

however, given the shortness of the available data and the time and expense for 

their collection, such a luxury cannot be afforded. So a considerable pre-

processing of the data is required, both to fill the missing gaps and to replace the 

outliers with more plausible values.  

The data obtained from all the case study wastewater treatment works are not 

exempt from missing values and outliers. Thus, the first in the series of 

applications of the novel tools developed in this study involved use of the KSOM 
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to replace outliers and missing values from the high dimensional data set for the 

Seafield treatment works. 

5.2 Outliers and Missing Values  

5.2.1 Outliers 

An outlier, a sample value that differs notably from the mean of the measurement 

series, can be caused by many factors such as electromagnetic interference, hostile 

measurement environment, defective installation, insufficient maintenance, or 

erroneous handling of the measurement system and intentional cover-up for lapses 

of the technician. A problem in detecting outliers is to decide whether they 

represent a true value or whether they are false due to disturbances in the 

measurement system.  

Detection of outliers can be accomplished by using redundant sensors (Barnett 

and Lewis, 1994). In the redundant sensors, at least two sensors (or 

measurements) are used and an outlier is indicated when the sensors or the 

analysed samples do not deliver the same value (within a reasonable margin). 

However, this is an expensive procedure because it requires a large number of 

sensors or samples. In the activated sludge process, in which the wastewater is 

normally treated in parallel lanes, it is possible to use measurements from another 

lane to make such a validity check. The conditions in the various lanes are rarely 

exactly the same but if the configurations do not differ significantly, one could use 

the information from one lane to validate the other. However, in this case, there 

are no parallel measurements to validate the outliers. In addition,  even where this 

is the case, it will be necessary to combine such evidence with a more formal one 

for detecting outliers such as the statistical Z-score and modified Z-score (Fallon 

and Spada, www.ewr.cee.vt.edu).   
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In the Z-score test, assuming that the data have a normal distribution, the mean 

and standard deviation of the entire data set are used to obtain a Z-score for each 

data point as in Equation 5.1.   
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where S is the sample standard deviation and  
__

x  is the sample mean given by 

Equations 4.8 and 4.9 respectively and N is the sample size. A test heuristic is that 

an observation with a Z-score greater than 3 should be labelled as an outlier.  

The problem with the Z-score approach is that its estimate depends on both the 

sample mean and standard deviation, both of which are affected by the outliers, 

particularly if N is small, i.e. below 20 (McBean and Rovers, 1998). To overcome 

this problem, a modified Z-score test based on outlier-resistant estimators, such as 

the median of absolute deviation about the mean (MAD), is used in place of the 

standard deviation to compute the Z-score in Equation 5.1, where MAD is 

expressed by Equation (5.2) (Fallon and Spada, www.ewr.cee.vt.edu, last visit 

12/1/2008). The condition for labelling an observation as an outlier using the 

modified z-score is 3.5 < Z < -3.5. 
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However, the above statistical techniques are not robust enough for labelling 

outliers since they depend on a number of assumptions, notably that a sample is 

normally distributed. Also, as illustrated for the Z-score method, the test statistic 

depends on parameters such as mean, median and standard deviation, which can 

be significantly affected by the outliers being detected. Therefore, a 

straightforward and practical method for the off-line detection of outliers is to 
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manually label the outliers by examining the time series plot. In time series, the 

human eye has a remarkable ability to pick out outliers with good result and by a 

careful investigation of the time series, manual detection of outliers can be as 

good as any more formalised method. Manual outlier detection from time series 

plots  is certainly preferable when preparing data for model identification or 

training because it gives the model builder a sense for the data and also what can 

be expected from the model (Rosen, 1998). Consequently, the manual labelling 

approach was applied in the study to identify the outliers, although comparisons 

with the results of the Z-score and the modified Z-score approaches will be 

presented.    

5.2.2 Missing Values  

A missing value is caused by a sensor that does not deliver a measurement value, 

or by a fault in the measurement tools, or even by human mistakes. Depending on 

the measurement equipment, missing values can appear in the record as, for 

instance, blanks, zeros or negative values for entities limited to positive values. 

Therefore, missing values are often simple to detect in a data record.  

Missing values are a serious problem as they distort the dynamic properties of the 

signal. Where outliers have been correctly identified, they too must be removed 

and replaced with more plausible values, thus exacerbating the sparseness of the 

data record. In order to perform a dynamic analysis, all missing values must be 

estimated, as failure to estimate them makes the complete sample difficult to be 

used. They may lead to severe problems in model identification process, 

particularly when tools such as Artificial Neural Networks and ANFIS are used. 

Since these tools require long periods of good and reliable data, it is important 

that the number of missing values be kept at a minimum. 
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5.3 Replacing outliers and missing values 

If there are relatively few missing points, there are some models which can be 

used to estimate values to complete the series, such as replacing missing values 

with the mean or median of the data. Also interpolation and extrapolation may be 

applied. In interpolation, a curve is projected between known data points to infer 

the value at points between. In extrapolation the value of unknown data points are 

predicted by projecting a function beyond the range of known data points. A more 

elaborate approach is to express any variable which is missing in value, in terms 

of regression over the other variables using the available data, and then to use the 

regression function to fill the missing values ((MacDonald and Zucchini, 1997; 

Harvey, 1989; Bishop, 1995). Regression will work best if the number of water 

quality parameters having missing values in their records is small; otherwise 

developing different predictive regression equations for a large number of water 

quality parameters will be time wasting. Back propagation artificial neural 

networks modelling (ANNs) described in Chapter 3 offers a solution for multi-

variable prediction but the performance of ANNs tends to decrease rapidly as the 

number of output variables increases, particularly when the output variables are 

not highly correlated (Adeloye and De Munari, 2006). Moreover, ANN models 

are affected by the missing values in the input space. 

Far from actually removing identified outliers from a data set, their influence on 

estimates of summary statistics of the data can be tempered or even completely 

eliminated through the use of trimmed means, other scale estimators apart from 

standard deviation (e.g. MAD) and Winsorization  (McBean and Rovers, 1998). 

In calculations of a trimmed mean, a fixed percentage of data is dropped from 

each end of an ordered data, thus eliminating the outliers. The mean is then 

calculated using the remaining data. Windsorization involves accommodating an 

outlier by replacing it with the next highest or next smallest value as appropriate. 
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However, using these types of models to predict missing values or outliers in a 

long time series is difficult and often unreliable, particularly if the number of 

values to be in-filled is relatively high in comparison with total record length. The 

accuracy of the estimate depends on how good and representative the model is 

and how long the period of missing values extends (Rosen and Lennox, 2001).  

The activated sludge treatment plant is a dynamic process, so any variable is 

dependent, not just on the historical time series of the same variable but also on 

several other variables or parameters of the process. In other words, the problem 

is an exercise in multivariate analysis rather than the univariate approach of most 

of the traditional methods of estimating missing values and outliers; a multivariate 

model will therefore be more representative than a univariate one for predicting 

missing values. The KSOM offers a simple and robust multivariate model for data 

analysis, thus providing good possibilities to estimate missing values, taking into 

account its relationship or correlation with other pertinent variables in the data 

record. In comparison to other data-driven modelling paradigms such as multi-

layer perceptron artificial neural networks (MLP ANNs) and classical multivariate 

regression analysis, the KSOM is not hindered by missing values. Moreover, time 

sequences of data is not a problem when compared to classical time series 

analysis (Vesanto et al., 2000). 

5.4 Overview of Predicting Missing values using KSOM 

The calibration of traditional predictive models with data is a supervised learning 

problem, because there is an output Xout which needs to be constructed from the 

input Xin. Multi-layer perceptron artificial neural networks (MLP-ANN) use this 

approach as described in Chapter 3. The KSOM algorithm, also described in detail 

in chapter 3,  is designed for unsupervised learning, in that there is no “teacher” as 

such in the process that compares the desired output with the model output. In 
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other words, the difference between the KSOM and the usual supervised approach 

such as the MLP-ANN is as follows (see Figure 5.1): In the multi-layers 

perceptron neural network (MLP), the vector Xin (t) is presented to the network 

input, while the Xout(t) is used at the network output to compute explicitly an error 

signal that guides learning. However, the KSOM learns to associate or correlate 

the inputs and outputs of the mapping without explicit computation of an error 

signal (Barreto and Araujo, 2004), as it just finds the similarities between the 

input vectors and the KSOM neurons or weight vectors to determine best 

matching units, BMU.  

 

 
Figure 5.1 Differences between (a) supervised and (b) KSOM identification 

 

Consequently, the KSOM can be easily used as a lookup-model. Taking any set of 

known values (the input variables or data sample), their BMUs from the KSOM 

can be determined and the corresponding prototype vector can be used to give 

values to the other variables which are missing in the input vector (Alhoniemi et 

al., 1997). In a sense, this is like predicting missing values using linear regression 

albeit in a multivariate platform. The general regression of Xout(t) on Xin(t) is the 

expectation of the output given the input and hence the calibrated regression 
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model can be used to predict Xout(t) if the Xin(t) is known. In the same vein, since 

the codebook vectors of the KSOM represent the local averages of the input 

vector, the map can be used for the prediction of missing components of an 

incomplete input vector. This is achieved by searching for the best matching unit 

(BMU) using the known vector components of the input vector and the output 

then gives an approximation of the unknown components of the vectors as shown 

in Figure 5.2 (Obu-Cann et al., 2001).  

 

 
Figure 5.2 Prediction of missing components of the input vector using the 
Kohonen Self-organizing Map. BMU = best matching unit. 

 

5.5 Experimental data 

The application is applied to the daily records from the operation of the Seafield 

wastewater treatment plant in Edinburgh, UK, presented in Chapter 4,  during a 

period of about three years with a total of N=1066 data samples (or records). 

Summary statistics of the measured process variables are shown in Table 5.1.  

 

As shown in Table 5.1, there are large numbers of missing values which cannot be 

thrown away. In addition, the missing values occur randomly within the data 

array. Thus, although the maximum number of missing values is 310 (for the 
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stirred sludge volume index, SSVI), the number of potentially discardable 

incomplete daily records or vectors in the data is much more than this number 

given the non-synchronization of the missing values. In the Seafield data, the total 

number of data records discardable as a result of non-synchronization was 496.  

Table 5.1 also contains the number of identified outliers using the three methods 

described previously. In general, the modified Z-score method tends to identify 

more outliers than either the visual inspection or the Z-score method. Indeed, the 

Z-score method produced the least number of outliers (148) as against 387 by the 

modified Z-score and 228 based on visual inspection. Because of the restrictive 

assumptions underpinning the Z-score and the modified Z-score approaches, 

however, the identified outliers using the visual inspection method were taken as 

the outliers for the subsequent analysis. These outliers were also removed and 

treated as missing values to be estimated so as to preserve the true dynamic 

history of the process as exemplified in the data.  

 

The data in Table 5.1 relate to the secondary treatment stage of the treatment 

plant. The decision to focus on the biological stage of treatment is because the 

secondary stage is often the terminal treatment offered at treatment plants 

discharging to inland rivers or coastal environments. The secondary treatment 

process helps to remove a substantial proportion of the SS and BOD5 in the 

wastewater; it therefore plays a significant role in meeting the quality objectives 

set for such receiving systems. An analysis such as the KSOM to estimate the 

missing values should therefore provide complete data for analysing and 

modelling the biological activated sludge process in wastewater treatment plant.   



   
 

Table 5.1 Summary statistics of the measured variables at Seafield Treatment plant 
 

Measurements Number of outliers 

Variables Unit 
Average Minimum Maximum 

Number 

of 

missing 

values 

Visual 

Inspection 
Z-score Modified Z-score 

Influent Flow  m3/d 259427 171367 466486 19 23 18 54 

Influent BOD5 mg/l 65 15 180 105 1 5 22 

Influent SS mg/l 68 3 268 87 7 22 41 

WAS Rate m3/d 3822 802 6016 146 15 9 20 

MLSS mg/l 2240 1126 4180 246 16 5 25 

RAS MLSS mg/l 4984 1748 1014 303 15 7 28 

SSVI ml/g 92 31 165 310 7 4 14 

Sludge Age Days 5 1 32 225 13 11 30 

Actual F/M Day-1 0.15 0.015 0.43 292 23 4 12 

Effluent Flow m3/d 250174 65000 461926 1 17 16 58 

Effluent SS mg/l 28 3 190 14 24 24 29 

Effluent COD mg/l 50 15 173 15 48 18 42 

Effluent BOD5 mg/l 9 2 351 8 19 5 12 



   
 

5.6 SOM analysis 

The computation for training and searching for the Best Map Units (BMUs) was 

done starting with the default values for the learning rate (=0.5) and 

neighbourhood radius  (=max(l1,l2)/4 ) parameters in the SOM Toolbox. Where l1 

and l2 are the dimensions of the map as presented in Chapter 3, Equation 3.11.  In 

computing the size (and dimension) of the map, the Toolbox uses the formulations 

in Equations 3.10 and 3..11, but adjust the final map units M such that it is equal 

to the product of l1 and l2 exactly. In making this final adjustment, the estimated 

number of map units may be slightly different from that obtained with Equation 

3.10. The analysis led to map size M = 168 map units which is slightly different 

from the  164≈M  obtainable using Equation 3.28 with N=1066 and sides l1 and 

l2 of 14 and 12 respectively. Table 5.2 contains other characteristics of the trained 

KSOM. 

 
Table 5.2 Characteristics of the trained KSOM 

Normalisation Method 
“var”: xxxx σ/)(\

−
−=  

Codebook 168*13 
Neighbourhood function Gaussian 
M size 14*12 
Lattice “Hexa” 
Shape Sheet 
Final quantisation error 1.801 
Final topographic error 0.066 

 

5.7 Results and discussion  

The component planes for each of the 13 variables are shown in Figure 5.3. Each 

component plane can be thought as a “sliced” version of the KSOM, because it 

consists of the values of single vector variable in all map units. In other words, the 

component planes show the value of the variables in each map unit (Vesanto et 
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al., 2000). These planes are built using colour levels to show the value of a given 

feature of each KSOM unit in the two dimensional lattice, such that the lighter the 

colour, the higher the relative component value of the corresponding weight 

vector.  

These component planes help to illustrate visually the relationship between the 

various parameters or characteristics of the wastewater treatment plant. For 

example, by looking at the upper left hand of the component planes, we can see 

that high sludge age is associated with a low waste activated sludge (WAS) rate. 

This is to be expected given the relationship between the sludge age and the 

wastage sludge rate (Equation 5.3):      

 
Ww

c LQ

VL=θ                                                                                                      (5.3)  

where cθ  is sludge age; V = volume of the reactor; L is the MLSS (mixed liquor 

suspended solids) in the aerator; Lw is the MLSS  in the waste activated sludge 

and Qw is the waste activated sludge rate. It is therefore to be expected that a 

combination of low Lw , low Qw and high L will produce a high cθ . Other notable 

relationships visible from the component planes is the low effluent SS, BOD5 and 

COD concentrations associated with low hydraulic loading rate to the aerator, 

which is a natural result of the higher retention time caused by a low hydraulic 

loading. The complete correlation matrix for all 13 variables of the prototype 

vectors is shown in Table 5.3, and although this is a simple tool for examining the 

linear relationship between various variable, its results seem to agree with the 

indications of the cross-correlation provided by the much more complex KSOM 

analysis that resulted in the component planes. 
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Figure 5.3 The component planes of the KSOM (I= influent, E=Effluent) 

 

The performance of the KSOM in predicting the various characteristics is 

demonstrated in Figure 5.4. In general, the performance is good as further 

confirmed by the associated statistical indices presented in Table 5.4. For most of 

the effluent characteristics, the correlation coefficient is generally above 0.90. The 

model has also particularly done well in predicting the sludge age and F/M ratio, 

two of the most commonly used parameters for controlling the activated sludge 

process. This offers some promise for the real-time control of the activated sludge 

treatment process using these parameters. 
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Table 5.3 Correlation matrix for variables in the features 
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Figure 5.4a Performance of the KSOM in predicting the process variables 
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Figure 5.4b Performance of the KSOM in predicting the process variables 



 Chapter 5: Activated Sludge Data Pre-Processing Using The KSOM  
___________________________________________________________________________ 

 
158 

0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

Observed F/M Ratio
F

/M
 R

at
io

150000 200000 250000 300000 350000
150000

200000

250000

300000

350000

Observed Final Effluent Flow (m3/day)

P
re

di
ct

ed
 F

in
al

 E
ffl

ue
nt

 F
lo

w
 

(m
3/

da
y)

0 5 10 15 20 25
0

5

10

15

20

25

Observed Effluent BOD5 (mg/l)

P
re

di
ct

ed
 E

ffl
ue

nt
 B

O
D

5 
(m

g/
l)

20 40 60 80 100

20

40

60

80

100

Observed Effluent COD (mg/l)

P
re

di
ct

ed
 E

ffl
ue

nt
 C

O
D

 (m
g/

l)

0 20 40 60 80
0

20

40

60

80

Observed Effluent SS (mg/l)

P
re

di
ct

ed
 E

ffl
ue

nt
 S

S
 (m

g/
l)

Data point

Predicted = Observ ed

Data point

Predicted = Observ ed

Data point

Predicted = Observ ed
Data point

Predicted = Observ ed

Data point

Predicted = Observ ed

 

          Figure 5.4c Performance of the KSOM in predicting the process variables 

 
 
 
Table 5.4 Correlation between measured and KSOM-predicted variables  

Variables  Correlation 
Coefficient 

(R) 
Flow to ASP .945 
Influent BOD5 to ASP .943 
Influent SS to ASP .898 
Waste activated sludge rate (WAS) .879 
MLSS .912 
RAS .933 
SSVI .905 
Sludge age .950 
Actual F/M .934 
Effluent Flow .946 
Effluent BOD .932 
Effluent COD .914 
Effluent SS .950 
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Visually, Figures 5.5 and 5.6 respectively show the comparison between the 

estimated and the measured values for the effluent concentrations of BOD5 and 

SS. Unlike Figure 5.4, Figures 5.5 and 5.6 help to illustrate how well the KSOM 

outputs have matched the observed data temporally. In general, the KSOM 

outputs have correctly reproduced the peaks and troughs in the observed time 

series data. The predicted missing values are also shown in Figure 5.5 and Figure 

5.6, from which it can be seen that their trend is in conformity with the overall 

trend of the observed data series. 

A further analysis was carried out to test whether the sample skewness 

coefficients of the residuals are statistically zero. This is required to ensure that 

the residuals have a normal distribution. The sample skew for a variable xi can be 

estimated using Equation 5.4. 

 

 
Figure 5.5 Comparing the observed and KSOM predicted time series plots for  
Effluent BOD5 
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Figure 5.6 Comparing the observed and KSOM predicted time series plots for 
effluent SS 
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where N is the sample size, 
__

x  is the sample mean and S is the sample standard 

deviation. Based on the null hypothesis that the skew is zero, the skew coefficient 

will have a normal distribution with a mean of zero and variance of 6/N. 

Therefore, The 95% confidence interval for a zero skew 

is ]/696.1,/696.1[ NN +− . If the estimated sample skew coefficient lies 

within this interval, then the null hypothesis cannot be rejected at the 5% level. 

The results of the hypothesis testing for all 13 variables are shown in Table 5.5 

from which it is clear that the residuals associated with most of the characteristics 

are distributed as normal. The only exceptions are the influent SS, F/M and the 
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effluent COD whose test statistics fall marginally outside the 95 % confidence 

interval for a zero skew. 

Table 5.5 Result of approximate normality test for the residuals 
Variables N   

 
Skew 
coefficient  

Normal  
(Y/N) 
(Skewed) 

Influent Flow  1002 -0.152 0.152 0.020 Y 
Influent BOD5 978 -0.154 0.154 0.154 Y 
Influent SS 982 -0.153 0.153 0.169 N 
WAS 887 -0.161 0.161 -0.093 Y 
MLSS 788 -0.171 0.171 0.026 Y 
RAS 703 -0.181 0.181 0.055 Y 
SSVI 327 -0.265 0.265 0.013 Y 
Sludge age 815 -0.168 0.168 0.152 Y 
F/M 726 -0.178 0.178 -0.193 N 
Effluent flow 1032 -0.149 0.149 -0.082 Y 
Effluent BOD5 1020 -0.150 0.150 0.143 Y 
Effluent COD 1011 -0.151 0.151 0.163 N 
Effluent SS 1005 -0.151 0.151 0.144 Y 

 

5.8 Discussion of Results 

The performance of the KSOM was compared with the use of simple linear 

regression and back propagation ANN for predicting the effluent BOD5. On the 

basis of the correlation matrix shown in Table 5.3, the independent (i.e. input) 

variables for both the regression and ANN were chosen as the effluent COD (R = 

0.96), effluent SS (R = 0.97) and the F/M ratio (R = 0.45). Since complete records 

are required for these two techniques, only the 770 data records with no missing 

values in these four parameters were used. Of these, 500 data records were used 

for model calibration and 270 were used for model testing. The final regression 

model was: 

BOD = − 1.01 + 11.59F/M + 0.075COD + 0.146SS (R = 0.75)                        (5.5) 

 

N

6
96.1 ×−

N

6
96.1 ×+
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The backpropagation ANN had a single hidden layer and the optimum number of 

neurons in this hidden layer was found to be 25. Table 5.6 compares the 

performances of the regression and ANN with the KSOM. In general, the linear 

regression model had the least performance of the three approaches. The 

backpropagation ANN was a much more improved approach than the regression, 

particularly during training, but its performance is still inferior to that of the 

KSOM. It should be noted that the KSOM statistics quoted in Table 5.6 relate to 

the reduced 770 sample size unlike those in Table 5.4, which relate to the entire 

1,066 data record.  A further advantage of the KSOM is that the same map can be 

used for predicting any missing value in any variable, whereas if the missing 

variable were to change from the BOD5, new regression and ANN models would 

have to be developed. Additionally, the KSOM is not affected by missing values, 

implying that it is unnecessary to carry out any pre-processing for identifying 

complete records before the method can be applied. Both the regression and ANN 

approaches require complete records and hence extensive pre-processing of the 

data is required before they can be applied. 

Table 5.6 Comparing KSOM, regression and ANN for predicting the effluent 
BOD5        

Modelling 
Method 

Data set 
(Training 500 data 
point/Testing 270 

Data points) 

Correlation MSE 
(Mean Square 

Error) 

AAE 
(Average 

Absolute Error) 

Training 0.75 20 2.5 Regression 
 

Testing 0.76 11.3 2.6 

Training 0.94 5.0 1.6 
BP-ANN (25 
neurons in the 
hidden layer, best 
number from 
trial and error) 

Testing 0.88 5.4 1.5 

Training 0.96 5.5 1.2 
KSOM 

Testing 0.95 6.0 0.9 
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5.9 Conclusion 

In this chapter, raw data of operational process variables obtained from the 

Seafield activated sludge wastewater treatment plant Edinburgh, UK during a 

period of about three years have been modelled to replace outliers and missing 

values using the Kohonen Self Organising Map (KSOM). Each sample comprises 

13 quality and process variables. 

After the iterative training of the KSOM, each of the 1066 samples was associated 

with an output unit known as the best map unit (BMU). The outliers or missing 

values were then replaced with the corresponding component from the BMU. The 

results demonstrated that the KSOM is an excellent tool for replacing outliers and 

missing values in high dimensional data sets. The predicted missing values are 

plausible and show a trend not dissimilar to that of the observed measurements.  

These results cannot be obtained from traditional time series models due to the 

multivariate, time varying and highly non-linear nature of the process. The 

method is simple, computationally efficient and highly accurate. The method was 

also shown to outperform linear regression and supervised-learning ANNs. The 

method therefore provides useful tool for a process engineer who is faced with 

improving the performance of the WWTP, given the usually incomplete and noise 

process time series data. 

The next Chapter present a novel methodology based on the same techniques 

presented in this Chapter to predict the biological oxygen demand concentration 

in wastewater based on its correlation with other water quality parameters that can 

be measured within three hours or in real time using on-line hardware sensors. 

This allows for a timely intervention and cost reduction during problem diagnosis. 

 

 



   
 
 

CHAPTER 6 

APPLICATION II: APPLYING KOHONEN SELF-

ORGANIZING MAP AS A SOFTWARE SENSOR TO PREDICT 

THE BIOCHEMICAL OXYGEN DEMAND 

 

6.1 Introduction 

The dissolved oxygen used during the bacterial oxidation of organic pollutants, 

usually determined under standard conditions (APHA, 1998), is known as the 

biological oxygen demand (BOD). The BOD is a widely applied parameter for 

assessing water quality, the bio-treatability of wastewater, performance of 

wastewater treatment operations, and organic loadings to treatment plants for the 

purpose of sizing aeration facilities. The BOD is also important for discharge 

consents for wastewater treatment plant facilities in many countries (EEC, 1991). 

However, the usefulness of the BOD for the effective monitoring and control of 

water pollution and wastewater treatment plant performance is severely 

constrained by the long time it takes to obtain an estimate, which precludes its use 

in ‘real time’ control. For example, considering a sustained low dissolved oxygen 

content in a river due to the discharge of large concentrations of organic 

pollutants, it will take at least five days before the problem can be effectively 

diagnosed; any remedial actions to be taken are likely to be too late. This is 

because the traditional bioassay method for determining the BOD requires 

incubation for at least 5 days; hence the term 5-days BOD or BOD5. 

Consequently, it has become very desirable to have a rapid and accurate 

inferential model for BOD prediction, thus removing the time delay associated 

with the laboratory-based bioassay method. 
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Due to the long time it takes to obtain the standard BOD5 , some have argued that 

the BOD data are not useful for the purpose of process control, and have therefore 

advocated the use of the chemical oxygen demand (COD) instead (Mohanty et al., 

2002; Scholz, 2006). However, in contrast to the COD, the BOD only 

characterizes the biodegradable component of organic matter in wastewater; it is 

therefore the most important water quality parameter for assessing biotreatability. 

Furthermore, previous attempts to calibrate BOD against COD have had only 

limited success, because of the wide variability often observed in the relationship 

between the two water quality variables (Mohanty et al. 2002; Scholz, 2006). 

Thus, although the COD is a faster water quality parameter to determine than the 

BOD, it is certainly not a direct substitute. 

An alternative to measure BOD is the development of biosensors, which are 

devices for the detection of an analyte that combines a biological component with 

a physicochemical detector component. Biosensors indirectly measure the BOD 

via a short term (e.g. < 30 minutes) BODst and a calibration curve which relates 

this BODst to the BOD (see Karube et al., 1977 for the pioneering work in this 

area). Consequently, biosensors are now commercially available, but as will be 

revealed in the next section, they do have several limitations such as their high 

maintenance costs, limited run lengths and the need for frequent reactivation, and 

their inability to respond effectively to rapidly changing water quality 

characteristics to which wastewater treatment streams can sometimes be subjected 

to, particularly during storm events (Praet et al., 1995). Another important 

limitation with the use of biosensors is the uncertainty associated with the 

calibration function for translating the BODst to the BOD5. 

Because of versatility of the KSOM in handling high dimensional data and 

establishing correlation or the cause-effect relationship in a multivariable 

framework, the KSOM was used in application II to develop intelligent models 
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for making rapid inferences about BOD5 using other easy to measure water 

quality parameters, which, unlike BOD5, can be obtained directly and reliably 

using on-line hardware sensors. This will make the use of BOD5 for on-line 

process monitoring and control a more plausible proposition. In comparison to 

other data-driven modelling paradigms such as multi-layer perceptrons artificial 

neural networks (MLP ANN) and classical multi-variate regression analysis, the 

KSOM is not inhibited by missing data. Moreover, time sequencing of data is not 

a problem when compared to classical time series analysis (Lee and Scholz, 

2006a,b). 

6.2 Review of alternatives to bioassay determination of the BOD5 

Attempts to improve the rapidity with which the BOD5 estimates are obtained 

have led to the development of BOD5 biosensors. A microbial BOD5 biosensor 

usually consists of microbial cells immobilized on an oxygen electrode. The first 

generation of such sensors was developed by Karube et al. (1977) for BOD5 

determination within minutes. However, biosensors do not measure the BOD5 

directly, but they record the enhanced respiration rate of the immobilized 

microbes caused by the influx of biodegradable organics in the presence of 

sufficient oxygen (Kim and Kwon, 1999). The graphical representation of the 

signals of this activity, which is picked up by the dissolved oxygen probe, is 

known as the respirogram, which can be correlated with the BOD5 after 

calibration as seen from Figures 6.1 and 6.2. It is therefore to be expected that the 

outcome of any BOD5 determination exercise with the biological electrodes will 

depend on the species composition of the immobilized micro-organism 

community, in addition to other boundary conditions and variables such as 

temperature, pH, the quantity of biodegradable organics, and the presence of 

toxins and other growth inhibiting substances (Scholz, 2006). 
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The original biosensor by Karube et al. (1977) used Trichosporon cutaneum, but 

later researchers applied other microbial species such as Bacillus subtilis (Tan et 

al., 1992; Riedel et al., 1988), Klebsiella oxytoca (Ohki et al., 1994) and activated 

sludge (Sakai et al., 1995). Praet et al. (1995) provided a detailed and critical 

review of available biological electrodes. They concluded that current BOD5 

biosensors are not a panacea for the limitations caused by the five days time delay 

associated with conventional bioassay BOD5 determination. 

Considering that hardware biosensors do not provide a satisfactory solution, work 

has also been carried out on the development of model-based software sensors for 

the rapid, on-line estimation of BOD5 and other water quality variables such as 

COD, heavy metals and nutrients (Lee and Scholz, 2006a,b; Mohanty et al. 2002). 

In contrast to hardware biosensors, software sensors attempt to obtain the BOD5 

directly and require little or no maintenance as it is based on finding the nonlinear 

correlation between the BOD5 and the other readily available water quality 

parameters. Furthermore, software sensors are readily updated if more data 

become available, unlike hardware sensors, which usually require huge expenses 

and time to regenerate when the biological cells within the probe are becoming 

ineffective. 

The majority of the available software sensors are based on data driven modelling 

approaches such as artificial neural networks presented in Chapter 3. The areas of 

application in water management predominantly include water and wastewater 

treatment plants, but also sewer systems and storm water runoff management 

control systems (Shen et al., 2006; Lee and Stenstrom, 2005; Lee and Scholz, 

2006a; Mohanty et al., 2002). For example, Brydon and Frodsham (2001) 

developed a MLP ANN to predict the settled sewage BOD5 for a wastewater 

treatment plant in England. Two models with different numbers of input variables 
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were successfully developed to predict the overall trends in BOD5 time series 

data. However, the measured peaks were often not well predicted. 

 

 

 
Figure 6.1 Construction of the BOD sensor, (1) Oxygen electrode, (2) digital 
multimeter, (3) recorder, (4) beaker, (5) thermostat and (6) magnetic stirrer 
(Chee et al., 1999). 
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Figure 6.2 Calibration graph for the BOD sensor using artificial wastewater 
solutions at pH 7.0, 30°C and 40 mg of immobilized microorganism (Chee et al., 
1999) 

 

Other applications of artificial neural networks to predict water quality parameters 

including BOD5 were discussed by Ellis et al. (1990), Hiraoka et al. (1990), Lee 

and Scholz (2006a,b), and Scholz (2006). The main objective of most of these 

studies was to provide a BOD5 estimate in a fraction of the time required for 

conventional bioassay determination, thus making the BOD5 a more realistic 

water quality parameter for real-time process control. 

In the current application of the tools developed in this study, unsupervised 

KSOM instead of the MLP ANN was used as BOD5 software sensor. The 

advantages of the KSOM over the MLP ANN are that the former can handle 

missing values and gaps in the data set without the need for a priori data infilling 

exercise. Moreover, KSOM can be used to visualize features in the data, thus 

providing easy to comprehend pictorial evidence of correlations between 

important water quality parameters. 

6.3. Methodology 

6.3.1 Case Study 

The application of the KSOM for prediction purposes was described in Chapter 5. 

As a summary, first, a KSOM is trained using the training data set. Then to predict 

a set of variables as part of an input vector, these variables are first removed from 

the vector and the depleted vector is subsequently presented to the KSOM to 

identify its BMU. The values for the missing variables are then obtained by their 

corresponding values in the BMU. 
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The KSOM was applied to data from the three wastewater treatment plants 

described in Chapter 4. The data from the largest Seafield treatment works in 

Edinburgh were used for model development (calibration and verification) while 

data from the two smaller works at East Calder and New Bridge, both outside 

Edinburgh, were used for independently validating the model. All the three works 

employ the activated sludge treatment process for the secondary biological 

oxidation; however, given that the emphasis of the study was on the influent (raw 

sewage) stream, the type of secondary biological process employed will have no 

bearing on the validity of the modelling results. Consequently, the model would 

equally apply were the secondary process to be the trickling filter or any other 

process technology. 

Exhaustive details about the Seafield works have been presented in Chapter 4; 

since the other two works also employ the activated sludge to the treatment 

process, they are essentially similar to the Seafield except for size. Summary of 

the data at the three works is shown in Table 6.1. All the data were provided by 

Thames Water plc, the plant operators. The Seafield data comprises daily 

measurements of raw sewage quality characteristics including the flow, BOD5, 

COD, the suspended solids (SS), etc. for a period of approximately three years, 

giving a total of 1066. An important feature of the three data sets is the large 

number of missing values, which would have made modelling by other methods 

such as regression analysis and MLP ANN impractical. Of the 1066 Seafield 

vectors, 800 were used for model development and the remaining 266 were used 

for verification of the model. All the 1091 data vectors (East Calder works) and 

1375 data vectors (New Bridge works) were used for independently validating the 

model. As shown in Table 6.1, the main characteristics at both East Calder and 

New Bridge are within the range of the Seafield values. 
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6.3.2 Numerical Analysis and Modelling 

The self-organizing map (SOM) toolbox for Matlab 5 was used for this case 

study. The toolbox was developed by the SOM team at the Helsinki University of 

Technology, Finland (http://www.cis.hut.fi). An initial pre-processing of the data 

provided by Thames Water for input into Matlab 5 was carried out using 

Microsoft Excel, such as changing the missing data or erroneous measurements 

into NAN (Not a Number) to cope with the Matlab requirement. 

Given the objective of the application, i.e. to develop a model for the rapid 

estimation of BOD5, a decision had to be made on which of the available water 

quality variables to include alongside BOD5 in the KSOM. This decision was 

based on two considerations: the rapidity with which the variables could be 

measured or evaluated using hardware sensors and the degree of association 

between the variable and the BOD5. The former consideration is important for the 

rapid prediction of the BOD5. Therefore, the inflow, COD, SS, ammonia-nitrogen, 

pH and temperature (Table 6.1) were chosen, because they can be measured 

within three hours or by on-line hardware sensors to allow BOD5 prediction in 

virtually ‘real’ time. 

For modelling purposes, the complete data set was subdivided into two sets; a first 

set of 800 observations to train the model (training set) and a second set of 266 

observations to test the model (validation set). Three different KSOM models 

were trained with the training data set, with each KSOM model having different 

input variables alongside BOD5. The corresponding list of variables for each 

KSOM model is given in Table 6.2. 
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Table 6.1 Water quality of the inflow characteristics 

Plant Symbol Description Unit Min. Max. Mean 

Inflow 
Flow rate to the treatment 
plant 

m3/d 100000 674000 300261 

COD Chemical oxygen demand mg/l 74 880 350.58 

SS Suspended solids mg/l 15 580 164.27 

NH4 Ammonia-nitrogen mg/l 0.50 35.84 13.83 

pH pH - 7.09 9.20 6.10 

T Temperature oC 9 19 14 

Seafield 

(1066 data 
points) 

BOD5 
Five days @ 20°C biological 
oxygen demand 

mg/l 19 244 117 

Inflow Flow rate to the treatment plant m3/d 18956 56052 30921 

COD Chemical oxygen demand mg/l 186 730 410 

SS Suspended solids mg/l 34 354 169 

pH pH  6.8 7.8 7.33 

NH4 Ammonia-nitrogen mg/l 3.85 30.14 18.23 

East 
Calder 

(1091 data 
points) 

BOD5 
Five days @ 20°C biological 
oxygen demand 

mg/l 30.5 152.5 96.4 

Inflow Flow rate to the treatment plant m3/d 7235 28389 13550 

COD Chemical oxygen demand mg/l 113 778 395 

SS Suspended solids mg/l 38 361 166 

NH4 Ammonia-nitrogen mg/l 3.18 38.33 17.51 

pH pH  6.1 7.7 7.2 

New 
Bridge 

(1375 data 
points) 

BOD5 
Five days @ 20°C biological 
oxygen demand 

mg/l 34.93 189.1 103.8 
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Table 6.2 The structure of the trained Kohonen self-organizing map models with a 
map size of 18×8 and a hexa lattice 

Map no. Input variables 
Quantization 
error 

Topographic 
error 

1 
Influent flow, COD, SS, NH4, pH, 
Temperature, BOD5 

1.176 0.059 

2 
Influent flow, COD, SS, NH4, 
pH,BOD5 

0.975 0.055 

3 
Influent Flow, COD, SS, NH4,BOD5 
 

0.723 0.022 

 
 

The estimated BOD5 concentrations from the BMU of the training set were 

compared with the actual concentrations to evaluate the performance during 

training. Following training, the models were then validated with the validation 

data set, which was not used during the training phase. In the verification phase, 

the BOD5 was omitted from the input vectors, essentially implying that BOD5 

values were ‘missing’. The BMU for each verification input vector were then 

determined to derive the missing BOD5 values. Finally, BOD5 concentrations 

obtained with the BMU were then compared with the actual observations to 

evaluate the performance during verification. The performance of the models 

during training and verification was evaluated using the evaluation criteria 

described in Chapter 4 (See section 4.6). 

6.4 Results 

The component planes for each variable of the three KSOM are shown in Figure 

6.3 to illustrate the associations between variables. Each component plane can be 

viewed as a ‘sliced’ version of the KSOM, because it consists of the values of 

single vector variables in all map units. In other words, the component planes 

show the values of the variables in each map unit (Vesanto et al., 2000). These 

planes are filled using colours to show the individual values of a given feature of 
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each KSOM unit in the two dimensional lattice, such that the lighter the colour 

grey, the higher the relative component value of the corresponding weight vector. 

Thus, the component planes help to visually illustrate the relationship between 

BOD5 and other variables considered in this analysis. For example, by looking at 

the upper left hand of the component planes, it can be seen that low BOD5 

concentrations are associated with a high influent flow rate, which is expected 

given the dilution effects of high inflow rates. Furthermore, low BOD5 

concentrations in the influent are associated with low COD, SS and ammonia-

nitrogen concentrations. While BOD5 is positively correlated with SS, ammonia-

nitrogen and COD, it is negatively correlated with the inflow rate. Furthermore, 

visual inspections of the component planes of pH and temperature do not reveal 

any obvious association with BOD5. In particular, the relationship between BOD5 

and pH is weak (Figure 6.3). 

 
 

 
 

Figure 6.3(a) Component planes for the Kohonen self-organizing map (KSOM) 
model 1  
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Figure 6.3(b) Component planes for the Kohonen self-organizing map (KSOM) 
model 2  

 
 

 
Figure 6.3(c) Component planes for the Kohonen self-organizing map (KSOM) 
model 3.  
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The structures of the three trained KSOM are summarised in Table 6.2. All the 

KSOM models have the same map size. However, the third map has the smallest 

quantization and topographic errors, which indicate that this is the best model for 

prediction purposes. Table 6.3 summarizes the errors during training and 

verification, which reinforce the superiority of the third KSOM model. For 

example, the correlation coefficient between the measured and KSOM-predicted 

BOD5 during training was 0.93 for map 3 in comparison to 0.86 and 0.91 for maps 

1 and 2, respectively. Map 3 also performs much better than maps 1 and 2 on the 

basis of the AAE: 4.34 as opposed to 18.86 and 14.78 for maps 1 and 2, 

respectively, during training. 

Assuming that the errors are normally distributed, the approximate 95% 

confidence interval is shown by Equation 6.1. 

N

S
AAEConf 96.1%95 ±=                                                                             (6.1) 

where 95% Conf is the 95% confidence interval; AAE is the average absolute 

error; S is the standard deviation of the absolute errors (Table 6.3); and N is the 

sample size, which is 800 for the training set and 266 for the validation set. 

The 95% confidence interval for the AAE of KSOM 3 is 4.034.4 ±   during 

training and 55.092.4 ± during verification (Table 6.3). In comparison, these 

errors are considerably lower than the errors obtained by Brydon and Frosham 

(2001) for their two MLP ANN models also predicting BOD5. 

The superiority of map 3 is also confirmed by the classification error (CE) as 

shown in Table 6.3. The fraction of the false positive rate is nearly equal to the 

fraction of the false negative rate. This implies little bias in predictions obtained 

by map 3 in comparison to predictions obtained by maps 1 and 2. The CE for 
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maps 1 and 2 during verification were worse than during training, which is a clear 

evidence of the significant upward bias in the BOD5 prediction for these two 

models.  

Both temperature and pH correlated weakly with the influent BOD5 (as noted 

earlier) but were included because of the theoretical importance of these two 

variables for the reaction kinetics in water and wastewater treatment (Mohanty et 

al., 2002; Scholz, 2006). The fact that the third KSOM, which contains neither the 

pH nor temperature, is performing better than the first two models, which 

included these variables (Table 6.2), confirms that both temperature and pH are 

not directly linked to BOD5. 

Because of the relative superiority of the map 3, further analysis was only 

undertaken with this map. Figures 6.4a and 6.4b show the time series of the 

observed and predicted BOD5 during testing and verification, respectively. These 

show that the performance of the KSOM is very good and in agreement with 

corresponding evidence presented in Table 6.3. The plot of residuals is shown in 

Figure 6.4c indicating that the residuals are random as expected from the 

approximate 50:50 split of the positive and negative prediction fractions of map 3. 

The observed and modelled values have been presented in Figures 6.5a (training) 

and 6.5b (verification) to better demonstrate how well the KSOM 3 is predicting 

the BOD5. Most data points are contained within the 95% prediction limits, 

particularly during verification. These findings support the use of the KSOM 

model for predicting mean BOD5 concentrations. Moreover, the 95% prediction 

limits during verification completely enclosed all the plotted points, implying that 

individual BOD5 concentrations can be predicted with sufficient accuracy using 

KSOM map 3. 
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6.5 Discussion of Results 

As shown above, the KSOM has performed reasonably well during calibration 

and verification with the Seafield data. However, this cannot be taken as evidence 

that the model is sufficiently general as to perform well when applied to an 

independent data set. In other words, to ascertain the true ability of the developed 

model to generalize, it must be applied to independent data sets unrelated to those 

used for the model development. 

Consequently, the KSOM model 3 was applied to the East Calder and New Bridge 

data sets for the purpose of validation. The validation exercise followed the same 

procedure used for verifying the model earlier, i.e. in which the BOD5 

measurement in each measured vector was removed, assumed missing. The 

validation results are summarised in Table 6.4. Also included in Table 6.4 is the 

summary of the verification results at Seafield. In general, the performance of the 

model is good. In particular, the correlation coefficient between the observed and 

predicted BOD5 during validation was very close to that obtained for the 

verification at Seafield. However, much more satisfying is that the model was able 

to better match the mean, minimum, and maximum concentrations at the 

validation sites than at the Seafield calibration sites.  

All of the above is proof that the KSOM model developed in this work is an 

adequate predictor for the BOD5, thus meeting the objective of this application 

which is to develop a rapid, software sensor for the BOD5. However, like any 

modelling exercise, the developed model has its limitations which should be borne 

in mind when applying the model. The first limitation is that the model has been 

developed using historical daily data only. The number of samples taken for each 

variable differs from one variable to another, which could have affected the 

accuracy and precision of the measurements. This is a result of inconsistencies in 
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the ‘real’ industrial sampling regime, which was not designed for research 

purposes.  

Table 6.3 Summary statistics of the three Kohonen self-organizing map models for 
predicting the biochemical oxygen demand during training and verification. The 
verification values are in parentheses. 

Map 
no. 

Statistics 
Mean 
(mg/l) 

Standard 
deviation (mg/l) 

Mini-mum 
(mg/l) 

Maxi-
mum 
(mg/l) 

Measured 126 (92) 45.83 (32.32) 19 (22) 244 (192) 

Estimated 124 (99) 
36.99 
(26.24) 

52 (52) 192 (186) 

Absolute error 
18.86 
(14.00) 

14.560 
(16.000) 

0.03 
(0.02) 

89.92 
(61.00) 

Correlation 0.86 (0.87) 
AAE 18.86 (14.00) 
RMAE 0.084 (0.082) 

NRMSE 0.520 (0.547) 

Fraction positive 45% (64%) 

1 

Fraction negative 55% (36%) 
Measured 126 (92) 45.83 (32.32) 19 (22) 244 (192) 

Estimated 124 (98) 
38.92 
(27.14) 

52 (52) 201 (193) 

Absolute error 
14.78 
(12.16) 

12.320 
(9.590) 

0.01 
(0.02) 

93.91 
(43.32) 

Correlation 0.91 (0.90) 
AAE 14.78 (12.16) 
RMAE 0.066 (0.072) 
NRMSE 0.420 (0.479) 
Fraction positive 47% (66%) 

2 

Fraction negative 53% (34%) 
Measured 126 (92) 45.83 (32.32) 19 (22) 244 (192) 

Estimated 125 (96) 
40.67 
(28.33) 

50 (50) 195 (187) 

Absolute error 
4.34 
(4.92) 

11.530 
(8.890) 

0.00 
(0.00) 

68.16 (47.06) 

Correlation 0.93 (0.91) 
AAE 4.34 (4.92) 
RMAE 0.055 (0.050) 
NRMSE 0.360 (0.414) 
Fraction positive 52 (53%) 

3 

Fraction negative 48 (47%) 
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Figure 6.4 Comparison of the observed and predicted five BOD5 concentrations 
of the Kohonen self-organizing model 3 during (a) training and (b) verification. 
The corresponding residuals are shown in part (c). 
 
 

Furthermore, the number of data points used to develop the model limits its 

overall performance. As a general rule of thumb, if more data points are available 

for the model development, the performance of the model is likely to increase, 

because it can extract more patterns out of a larger data set. Finally, the model has 

been developed using raw wastewater quality characteristics. However, its 

application can be widened if more data from other sources such as river water or 

treated effluent wastewater are available for analysis. More data from different 

sources would allow the model to capture the patterns of data from a wider range 

of scenarios. This may also lead to an increase of the model performance. 
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Figure 6.5 The performance of the Kohonen self-organizing map model 3 in 
predicting BOD5 during (a) training and (b) verification. 
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Table 6.4 Summary statistics of the validation for the Kohonen self-organizing 
map model number 3 for five days @ 20°C biochemical oxygen demand 
predictions with data from Seafield, East Calder, and New Bridge. 
 Seafield East Calder New Bridge 
MSE 79 98 112 
AAE 4.92 7.99 8.82 
Correlation 0.91 0.88 0.87 
Fraction positive (%) 53 44 53 
Fraction negative (%) 47 56 47 
Minimum measured 22 31 35 
Minimum predicted 52 50 50 
Maximum measured 192 152 189 
Maximum predicted 186 154 182 
Mean measured 92 96 104 
Mean predicted 96 96 103 

 

The proposed software sensor is fundamentally different from any biosensor, and 

only an empirical comparison rather than an objective statistical comparison is 

therefore possible. Biosensors do not measure BOD5 directly or estimate actual 

BOD5 concentrations based on historical BOD5 data such as the proposed model, 

but they rely on a linear correlation between the responses of a sensor and the 

BOD values. Considering that a large variety of organisms could be used as 

biosensors, a comparison with the proposed model is meaningless. Moreover, 

large numbers of biosensor data are rare and were not available for the case study 

site or the sites used for validation purposes. The only journal paper so far that 

refers to biosensors and neural networks for BOD5 determination in the same 

context has been written by Roche et al. (2006). However, neural networks were 

only used to model direct biosensor performances. 

The performance of the KSOM was compared with the use of simple linear 

regression for predicting the BOD5 On the basis of the correlation between BOD 

and COD. 800 data records were used for model calibration and 266 were used for 

model testing. The final regression model was [BOD = 18.24+ 0.296 COD] with 

correlation coefficient R = 0.75 during calibration data and 0.71 during testing. As 
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expected, the KSOM model performed better than the simple linear regression 

model.  

6.6 Summary 

The current work presents a completely novel methodology based on the use of 

the Kohonen self-organizing map (KSOM) models to predict five-days @ 20°C 

biochemical oxygen demand (BOD5) concentrations in wastewater, using raw 

sewage data obtained at three wastewater treatment plants in Scotland. Extensive 

testing and validation of the model shows that the model is sufficiently general to 

predict the BOD5 readily using variables, which can be measured within three 

hours or in real-time using on-line hardware sensors, thus making it possible to 

estimate BOD5 very rapidly. This allows for a timely intervention and cost 

reduction during problem diagnosis. 

The proposed BOD5 software sensor methodology is an alternative to BOD 

biosensors because the BOD5. The software sensor does not require calibration 

and cannot be negatively affected by toxins and other inhibitors. Moreover, the 

software sensor is very dynamic and can be readily updated when additional data 

become available, thus enhancing its accuracy. Furthermore, the performance of 

the software sensor is much better than the performance of simple linear 

regression between BOD and COD. 

The KSOM tool used for the development of the software sensor can readily deal 

with missing values in one or more of the input variables without significantly 

affecting the accuracy of the model. The proposed methodology is applicable for 

other water and environmental engineering problems, and this work could 

therefore be regarded as a teaching aid. 

 



  
 
 

CHAPTER 7 

APPLICATION III: MODELLING ACTIVATED SLUDGE 

PROCESS USING HYBRID KSOM-ANN 

 

7.1 Introduction 

As stated in Chapter 2, with tighter regulations on the receiving water quality, it is 

important to limit point source pollution by improving the performance of 

wastewater treatment plants. Controlling treatment plants through modelling is 

technically the most feasible and maybe least costly way of achieving a 

sustainable improvement in performance. This is because modelling the 

wastewater treatment units can help the operator to test some corrective actions on 

the computer and, in this way, identify the corrective actions that give better 

performance. However, modelling the activated sludge process (ASP) has many 

problems; all these problems give the ASP its nonlinear characteristics and time-

varying parameters. Thus, most approaches to modelling the ASP using 

mechanistic paradigms have relied on numerous simplifying assumptions in order 

to make the problem tractable.  

In Application III of this work, an alternative approach involving neural 

computing has been applied to model the ASP. Artificial neural networks (ANNs) 

can be used to model any complex, nonlinear and dynamic systems without the 

need to specify the functional form of the governing relationship a priori 

(Landeras et al., 2008). However, basic multi-layered perceptron (MLP-ANNs) 

are affected by the quality of the data such as noise and missing values, which can 

make effective training difficult. To solve this problem, a model based on the 

hybrid Kohonen self-organising map (KSOM) and multi-layered perceptron 
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artificial neural networks (MLP-ANN) was used. The best map units of the 

measurement vectors over the KSOM were used as inputs to the MLP-ANN to 

reduce the effects of noise and uncertainty in the measurement data, and to replace 

the missing elements. This hybrid KSOM-ANN modelling paradigm is illustrated 

in Figure 7.1.  

 

 

Figure 7.1 Diagrammatic representation of the integrated KSOM-ANN modelling 
strategy  

 

In the application, two situations were thus investigated for the prediction of the 

effluent BOD5 and SS concentrations: using the MLP-ANN on raw data; and 

using MLP-ANN of features extracted using the KSOM (i.e. the hybrid KSOM-

ANN).  

7.2 Methodology 

The theory and mathematical basis of artificial neural networks (ANNs) have been 

described in Chapter 3. ANNs consist of a set of artificial neurons which are 

called nodes, and they have connections between them, called weights. Optimal 

values for these weights are obtained by training the network. The most 
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commonly used form of ANNs is the multi-layer perceptron (MLP). In general, a 

three-layered MLP, trained using the Levenberg-Marquardt algorithm, can 

approximate any function with sufficient accuracy (Hagan et al., 1996; 

Daliakopoulos et al., 2005). The activation functions chosen were the tan sigmoid 

transfer function in the hidden layer and the linear function in the output layer.  

For both modelling paradigms, the choice of input variables was based on 

examining of correlation matrix. A correlation analysis, based on the features of 

the data, was performed between the variables to establish, at a preliminary stage, 

which of the inputs has the most influence for the performance of ASP(See Table 

7.1).  The highest 5 correlated variables with the effluent BOD5 and effluent SS, 

apart from effluent COD which is a quality output like effluent BOD and effluent 

SS, were found to be BOD-Load, which has a correlation coefficient of 0.34 and 

0.21 with effluent BOD5 and SS respectively; DO has a correlation coefficient of -

0.27 and -0.21 with effluent BOD5 and SS respectively; RAS-MLSS has a 

correlation coefficient of -0.34 and -0.47 with effluent BOD5 and SS respectively;  

F/M has a correlation coefficient of 0.44 and 0.33 with effluent BOD5 and SS 

respectively, and T has a correlation coefficient of 0.20 and 0.33 with effluent 

BOD5 and SS respectively.  These were thus chosen as possible input variables. 

To overcome the over-fitting problem, the early-stop rule was used which 

necessitated dividing the Seafield data, described in chapter 4, into three subsets 

for training (500 data points), validation (200 data points) and testing (366 data 

points). The validation data set was used to stop the training when the errors in 

this set begin to increase during the training, following a sustained period in 

which the error fell as seen from Figure 7.2. The testing set was used to assess the 

ability of the ANN to generalise. The input and target data were normalised in 

order to have zero mean and unit standard deviation. The outputs of the trained 
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networks were post-processed, using the inverse of the pre-processing 

transformation, to be compared with the desired outputs. 
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Figure 7.2 Training and validation errors for Model 1(F) with 5 hidden neurons 



  
 
 

Table 7.1 Correlation matrix of the features 

  Flow to 
ASP 

 
 

m3/d 

Infl. 
BOD to 

ASP 
 

mg/l 

BOD 
load 

 
kg/day 

Infl. 
SS 

to ASP 
 

mg/l 

DO 
 
 
 

mg/l 

WAS 
Rate 

 
 

m3/d 

MLSS 
 
 
 

mg/l 

RAS 
MLSS 

 
 

mg/l 

SSVI 
 
 
 

ml/g 

Sludge 
Age 

 
 

day 

F/M final 
Effluen
t Temp 
deg. C 

Final 
Effl. 
Flow 

 
m3/d 

BOD5 
 
 
 

mg/l 

COD 
 
 
 

mg/d 

SS 
 
 
 

mg/l 

Flow to ASP1               (m3/d) 
1.00                               

Influent BOD5 to ASP   (mg/l) 
-0.35 1.00                             

BOD load  (kg/day) 
-0.17 0.98 1.00                           

Influent SS to ASP         (mg/l) 
-0.47 0.91 0.86 1.00                         

DO                                  (mg/l) 
0.25 -0.57 -0.54 -0.51 1.00                       

WAS Rate                      (m3/d) 
-0.14 0.10 0.09 0.01 0.06 1.00                     

MLSS                             (mg/l)   
-0.29 0.60 0.56 0.59 -0.19 -0.35 1.00                   

RAS MLSS                    (mg/l)   
-0.33 0.38 0.33 0.49 -0.05 -0.43 0.86 1.00                 

SSVI                               (ml/g) 
-0.62 0.33 0.23 0.35 -0.47 0.25 -0.18 -0.29 1.00               

Sludge Age                      (day) 
0.16 -0.01 0.01 0.02 -0.08 -0.93 0.40 0.33 -0.20 1.00             

 F/M  
-0.11 0.91 0.95 0.78 -0.56 0.21 0.32 0.09 0.32 -0.11 1.00           

Final Effluent Temp.  (deg. C) 
0.08 -0.34 -0.33 -0.37 -0.02 0.46 -0.80 -0.89 0.45 -0.40 -0.12 1.00         

Final Effluent Flow       (m3/d) 0.92 -0.35 -0.19 -0.46 0.25 -0.19 -0.23 -0.26 -0.60 0.21 -0.14 0.04 1.00       
Effluent BOD5               (mg/l) 

0.23 0.29 0.34 0.16 -0.27 -0.04 -0.07 -0.34 0.26 0.17 0.44 0.20 0.22 1.00     
Effluent COD                 (mg/l) 

0.22 0.19 0.24 0.08 -0.23 0.03 -0.18 -0.45 0.33 0.10 0.35 0.37 0.20 0.96 1.00   
 Effluent SS                   (mg/l) 

0.31 0.14 0.21 0.03 -0.21 -0.01 -0.21 -0.47 0.25 0.14 0.33 0.33 0.30 0.97 0.98 1.00 
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Although the correlation analysis carried out gave an initial idea of the relative 

importance of the different variables that affect effluent BOD5 and SS concentrations, 

the best way to select the ideal input variables for a neural network is to train several 

models with different combinations of inputs and choose the one with best 

generalisation performance. This approach is time consuming but was used in this 

study. Therefore, several network architectures, in terms of the number of input 

neurons, were trained and tested. All of these architectures have one hidden layer. The 

output variables were the effluent BOD5 and SS concentrations. The models were 

evaluated using three criteria namely, correlation coefficient (R), mean square error 

(MSE) and average absolute error (AAE) as described in Chapter 4. 

To reach the suitable network architecture for the MLP-ANN, simulations were run 

for several of inputs and several of assumed numbers of hidden neurons. All the 

networks share the same specifications: Three-layer (input, hidden and output layers) 

feedforward neural networks, Backpropagation learning algorithm, with Levenberg-

Marquard optimization technique, Tan-sigmoid transfer function is used in the hidden 

layer and the linear transfer function is used in the output layer. The number of hidden 

neurons and the number of inputs nodes were found through a trial and error process. 

The number of hidden neurons was set to range from 5 to 40. The number of learning 

iterations was set to be 100 epochs or learning cycles. For best training performance, 

all of the data presented to the neural network for training were normalized ensuring 

no signal dominates the training process. This would certainly ensure that all the input 

signals apply the same influence throughout the training process. The normalization 

was done by deducing the mean and dividing by the standard deviation giving a 

transformed variable with a mean of 0 and variance of 1. 

Total of seventy two models were thus trained and tested. Models 1 to 36, denoted by 

M1 to M36, were trained and tested using the raw data with different number of input 

variables and different number of neurons in the hidden layer. Another set of models 
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(denoted by M1 (F) to M36 (F)), were trained and tested using the features of the data 

or their best map units over the KSOM. It is assumed at the beginning of the study 

that the features of the data will improve the performance of ANNs models since they 

reduce the effect of noise, outliers in the measurement system. Additionally, these 

features also allow the networks to be used when there are some missing values, 

satisfying one of the purposes of this study.  

7.3 RESULTS AND DISCUSSION 

7.3.1 Artificial neural networks models using raw data 

Table 7.2 shows the details of the 36 models trained with the raw data. In the first 12 

models, M1-M12, there were 5 inputs and 2 outputs with different number of neurons 

in the hidden layer.   As stated previously, the early stopping technique was employed 

in which the training process was stopped when the validation error started to 

increase. This ensures that overfitting dose not occurs. Figure 7.2 shows the training 

and validation errors for model M1(F) as an example.  In figure 7.2, the validation 

error started to rise after 14 epochs whilst the training error continues to fall. Stopping 

the training at epoch 14 is therefore warranted to avoid over-fitting. This is much 

lower than the maximum 100 epochs specified for the learning process.  

The next set of 12 models, denoted by M13 to M24, had 4 inputs (BOD-Load, RAS-

MLSS, F/M, and Temperature), 2 outputs (BOD5 and SS) with different numbers of 

neurons in the hidden layer. The last set of 12 models, denoted by M25 to M36, have 

3 inputs (BOD-Load, RAS-MLSS, F/M, and Temperature), 2 outputs (BOD5 and SS) 

with different numbers of neurons in the hidden layer.  

Table 7.3 and Table 7.4 also Figure 7.3  and Figure 7.4 show the comparison of the 

error criteria of the models developed in the three cases during training, validation and 

testing for effluent BOD5 and Effluent SS respectively. It can be seen from these 

results that using the raw data were hopeless and not acceptable for modelling 
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purpose. The matter that led us to investigate the possibility of using the features 

rather that the raw data as well be seen in the next section. 

Table 7.2 The structure of the developed ANN models using raw data 
 

Inputs Model Number Number of 
neurons in the 
hidden layer 

M1 5 
M2 7 
M3 10 
M4 13 
M5 16 
M6 18 
M7 20 
M8 23 
M9 26 
M10 30 
M11 35 

BOD-Load 
DO 
RAS-MLSS 
F/M 
T 

M12 40 
M13 5 
M14 7 
M15 10 
M16 13 
M17 16 
M18 18 
M19 20 
M20 23 
M21 26 
M22 30 
M23 35 

BOD-Load 
RAS-MLSS 
F/M 
T 

M24 40 
M25 5 
M26 7 
M27 10 
M28 13 
M29 16 
M30 18 
M31 20 
M32 23 
M33 26 
M34 30 
M35 35 

BOD-Load 
RAS-MLSS 
F/M 
 

M36 40 
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Table 7.3 Statistics analysis of modelling ASP using ANN to predict effluent BOD5 
MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M1 18.11 18.23 26.35 3.25 3.38 4.14 61.07 43.97 11.95 
M2 22.73 17.01 17.64 3.60 2.88 3.09 49.54 51.70 32.02 
M3 36.15 24.33 27.13 6.54 4.00 4.33 52.10 15.97 6.88 
M4 19.16 21.23 30.04 3.40 3.54 4.53 56.88 33.22 8.58 
M5 18.97 21.28 26.95 3.44 3.58 4.27 58.16 30.49 10.22 
M6 21.28 20.85 32.75 3.69 3.46 4.67 49.13 33.89 3.96 
M7 23.22 22.88 28.54 3.90 3.93 4.56 41.17 33.31 9.83 
M8 21.01 23.00 24.64 3.64 3.82 4.13 50.81 21.61 13.27 
M9 19.79 20.46 26.25 3.42 3.59 4.28 57.31 32.35 9.18 
M10 17.24 23.42 28.97 3.23 3.80 4.45 64.25 25.16 1.96 
M11 18.69 26.37 30.29 3.39 4.16 4.66 60.00 11.60 3.56 
M12 23.44 24.90 32.04 3.86 3.97 4.84 43.80 15.12 2.38 
M13 24.70 21.01 23.34 3.91 3.64 4.08 34.33 28.76 21.75 
M14 25.88 22.48 27.63 4.09 3.80 4.55 28.05 23.28 9.56 
M15 25.94 22.81 27.08 4.02 3.85 4.55 27.26 24.63 12.25 
M16 61.23 36.62 28.49 5.80 4.35 3.64 4.60 33.95 13.21 
M17 24.03 24.17 26.66 3.87 3.48 4.03 38.49 31.29 14.20 
M18 24.25 24.95 29.81 3.92 4.03 4.72 36.77 11.27 1.87 
M19 20.97 24.16 28.88 3.59 4.01 4.47 50.73 16.21 4.59 
M20 23.07 25.23 29.42 3.85 4.04 4.69 42.75 10.52 6.00 
M21 23.28 26.47 31.13 3.86 4.17 4.79 41.21 2.47 6.82 
M22 25.95 23.87 30.32 4.26 4.05 4.84 30.34 31.52 15.74 
M23 26.63 31.29 38.15 4.38 4.70 5.48 30.69 7.21 14.84 
M24 42.07 26.58 23.67 4.56 3.74 3.99 10.45 6.32 6.18 
M25 25.36 22.44 28.02 4.01 3.75 4.50 31.05 17.80 0.75 
M26 31.20 22.28 26.45 4.25 3.66 4.43 5.11 10.30 2.37 
M27 25.36 20.36 23.47 4.08 3.55 4.15 30.44 32.00 15.48 
M28 22.35 22.46 27.26 3.77 3.79 4.43 44.86 24.20 0.28 
M29 23.39 21.81 25.11 3.76 3.66 4.15 41.44 19.28 1.02 
M30 23.79 22.26 25.30 3.85 3.72 4.27 39.03 17.08 2.97 
M31 25.00 21.26 26.70 3.99 3.67 4.42 32.82 27.36 1.56 
M32 21.40 21.26 28.42 3.69 3.67 4.57 48.50 27.36 0.79 
M33 22.06 23.51 31.19 3.78 3.80 4.74 45.98 18.20 3.97 
M34 22.07 22.21 28.73 3.79 3.71 4.53 45.86 23.07 1.44 
M35 24.61 21.91 27.21 3.90 3.56 4.25 35.87 24.25 4.23 
M36 26.49 32.93 34.01 4.32 4.52 5.01 28.95 0.76 4.23 
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Table 7.4 Statistics analysis of modelling ASP using ANN  to predict SS 

MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M1 193.13 150.29 289.40 10.39 9.76 13.51 62.38 50.00 24.85 
M2 230.48 134.09 222.94 11.31 8.67 11.51 54.68 58.53 42.25 
M3 231.83 181.01 265.34 11.90 11.22 13.54 50.80 34.30 29.26 
M4 208.85 168.55 304.40 11.12 10.22 14.26 57.70 43.00 27.57 
M5 204.70 153.68 281.85 10.92 9.66 13.30 58.99 47.71 27.05 
M6 223.18 158.37 293.29 11.22 9.77 13.52 53.54 45.63 25.80 
M7 349.28 208.04 299.02 13.60 10.51 12.82 39.04 32.56 10.87 
M8 229.70 181.37 298.21 11.53 10.83 14.21 52.50 34.85 20.29 
M9 213.63 168.79 302.51 11.02 10.68 14.42 57.73 41.20 19.08 
M10 182.98 180.55 299.09 10.21 10.61 13.69 65.27 40.20 21.26 
M11 201.09 188.03 313.90 10.81 11.17 14.55 60.43 35.79 20.22 
M12 257.44 173.46 305.99 12.49 10.33 14.13 43.66 38.24 24.25 
M13 276.66 179.95 252.63 13.01 10.91 13.14 32.92 30.24 34.56 
M14 289.25 182.70 293.17 13.49 11.13 14.43 25.74 31.89 21.48 
M15 286.89 208.72 303.62 13.22 12.13 14.94 27.49 18.21 18.54 
M16 599.50 296.63 393.30 17.40 12.28 13.74 3.76 11.29 33.49 
M17 257.45 292.78 465.13 12.57 13.49 18.08 41.47 9.94 18.43 
M18 284.23 194.47 315.41 13.21 11.48 15.09 30.07 25.00 18.57 
M19 232.24 213.83 350.65 11.76 12.19 15.37 50.66 17.50 4.47 
M20 263.48 223.05 383.94 12.83 12.39 16.69 38.85 17.87 5.74 
M21 265.02 218.69 353.73 12.87 12.33 15.85 38.46 14.48 0.59 
M22 277.36 198.97 313.42 12.99 11.79 15.04 32.42 25.82 18.30 
M23 294.44 197.43 290.55 13.34 10.99 13.78 28.80 25.49 22.67 
M24 521.02 262.74 310.98 16.84 11.47 12.23 2.17 39.55 22.25 
M25 283.23 191.88 315.33 13.06 11.46 14.98 30.29 23.63 10.76 
M26 344.58 182.18 296.77 13.41 10.73 14.44 12.11 25.05 7.66 
M27 278.81 190.99 303.83 13.23 11.54 14.89 31.81 30.84 13.61 
M28 248.72 199.59 324.52 12.22 11.67 14.91 44.51 30.19 8.50 
M29 254.75 200.03 357.18 12.60 11.71 15.59 42.18 30.43 9.21 
M30 267.55 191.47 313.51 12.85 11.33 14.79 36.85 28.18 5.64 
M31 274.24 194.62 334.59 12.82 11.47 15.48 34.11 24.78 2.93 
M32 248.42 202.96 328.51 12.39 11.95 15.18 44.52 23.88 6.84 
M33 247.58 215.28 367.77 12.45 11.97 16.03 44.85 23.71 0.84 
M34 248.99 193.59 338.51 12.40 11.49 15.16 44.25 30.67 3.53 
M35 283.48 191.98 339.17 12.70 11.10 14.85 33.73 27.87 3.31 
M36 292.63 298.66 401.52 14.34 14.17 17.23 29.65 4.51 4.78 
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Figure 7.3 Selection of hidden neurons using raw data (effluent BOD) 
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 Figure 7.4 Selection of hidden neurons using raw data (effluent SS) 



  
 
 

7.3.2 Artificial neural networks using the features of the data 

Table 7.5 shows the details of the 36 models trained with the features of the data. 

In the first 12 models, M1(F)-M12(F), there were 5 inputs and 2 outputs with 

different number of neurons in the hidden layer were trained and tested.  As stated 

previously, the early stopping technique was employed in which the training 

process was stopped when the validation error started to increase. This ensures 

that overfitting dose not occurs.  

The next set of 12 models, denoted by M13(F) to M24(F), had 4 inputs (BOD-

Load, RAS-MLSS, F/M, and Temperature), 2 outputs (BOD5 and SS) with 

different numbers of neurons in the hidden layer. The last set of 12 models, 

denoted by M25(F) to M36(F), have 3 inputs (BOD-Load, RAS-MLSS, F/M, and 

Temperature), 2 outputs (BOD5 and SS) with different numbers of neurons in the 

hidden layer.  

Table 7.6 and Table 7.7, Figure 7.5  and Figure 7.6 show the comparison of the 

error criteria of the models developed in the three cases during training, validation 

and testing for effluent BOD5 and Effluent SS respectively.  

 
 

7.3.3 Comparison between the models 

The evaluation criteria (i.e. MSE, AAE, and R) were calculated for each 

architecture and the number of hidden neurons corresponding to the best 

performance during testing data set for each case was selected. Since the training 

was stopped according to the validation error, the number of epochs varied for 

each architecture. Table 7.8 shows the optimal architecture for each model and the 

number of epochs corresponding to the selected model. 
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Table 7.5 The structure of the developed ANN models using KSOM extracted 
features 

Inputs Model Number Number of 
neurons in the 
hidden layer 

M1(F) 5 
M2(F) 7 
M3(F) 10 
M4(F) 13 
M5(F) 16 
M6(F) 18 
M7(F) 20 
M8(F) 23 
M9(F) 26 
M10(F) 30 
M11(F) 35 

BOD-Load 
DO 
RAS-MLSS 
F/M 
T 

M12(F) 40 
M13(F) 5 
M14(F) 7 
M15(F) 10 
M16(F) 13 
M17(F) 16 
M18(F) 18 
M19(F) 20 
M20(F) 23 
M21(F) 26 
M22(F) 30 
M23(F) 35 

BOD-Load 
RAS-MLSS 
F/M 
T 

M24(F) 40 
M25(F) 5 
M26(F) 7 
M27(F) 10 
M28(F) 13 
M29(F) 16 
M30(F) 18 
M31(F) 20 
M32(F) 23 
M33(F) 26 
M34(F) 30 
M35(F) 35 

BOD-Load 
RAS-MLSS 
F/M 
 

M36(F) 40 
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Table 7.6 Statistics analysis of modelling ASP using KSOM-ANN to predict 
effluent BOD5 

MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M1F 12.62 14.50 12.14 2.67 2.74 2.57 74.92 60.99 60.90 
M2F 11.55 13.17 12.86 2.56 2.62 2.72 77.39 65.34 58.32 
M3F 11.65 13.30 11.55 2.60 2.61 2.54 77.64 66.18 63.34 
M4F 10.35 11.62 11.95 2.35 2.45 2.51 80.29 69.82 62.11 
M5F 10.77 12.01 11.96 2.43 2.41 2.50 79.96 68.30 62.00 
M6F 10.34 11.54 11.37 2.32 2.41 2.51 81.80 68.31 65.39 
M7F 10.67 12.30 12.45 2.38 2.41 2.39 79.59 67.35 60.26 
M8F 11.53 13.45 12.64 2.52 2.61 2.52 77.75 63.30 59.22 
M9F 11.76 14.00 13.22 2.55 2.60 2.66 77.50 62.47 56.37 
M10F 10.25 11.44 12.92 2.32 2.40 2.60 80.51 69.55 59.42 
M11F 11.48 12.64 12.84 2.53 2.54 2.65 77.82 67.36 58.54 
M12F 11.80 13.04 11.04 2.56 2.55 2.40 77.44 66.70 65.46 
M13F 13.72 15.11 14.89 2.75 2.90 3.00 72.21 56.58 49.17 
M14F 14.74 15.21 13.22 2.88 2.74 2.62 69.82 57.70 56.16 
M15F 14.44 16.28 13.17 2.79 2.82 2.64 70.99 54.25 56.59 
M16F 13.03 13.95 14.15 2.69 2.68 2.77 73.81 60.69 54.40 
M17F 11.81 13.46 12.71 2.55 2.60 2.61 77.06 63.42 58.50 
M18F 15.37 15.65 13.09 2.96 2.77 2.64 67.96 54.58 56.80 
M19F 10.19 12.12 13.85 2.32 2.45 2.71 80.40 66.97 56.79 
M20F 10.76 12.68 12.55 2.37 2.54 2.55 79.47 65.26 60.66 
M21F 11.42 13.71 13.30 2.43 2.60 2.62 78.04 62.99 56.00 
M22F 10.61 12.43 12.94 2.37 2.49 2.64 79.69 65.58 59.46 
M23F 11.22 12.83 12.92 2.43 2.53 2.60 78.76 65.66 58.69 
M24F 10.90 12.70 12.74 2.39 2.51 2.54 79.02 65.07 59.35 
M25F 22.62 15.50 14.86 3.74 2.86 3.01 44.89 55.44 49.67 
M26F 21.50 15.75 16.44 3.64 2.95 3.14 48.88 53.27 42.96 
M27F 21.05 15.53 16.31 3.58 2.77 3.09 50.68 55.19 44.04 
M28F 12.91 14.57 14.47 2.68 2.68 2.73 74.22 61.51 52.66 
M29F 20.23 15.56 15.73 3.50 2.82 2.97 54.58 54.98 45.91 
M30F 15.34 14.63 14.20 2.91 2.75 2.85 68.08 58.89 52.51 
M31F 15.86 14.46 14.50 2.97 2.69 2.80 66.96 60.57 51.48 
M32F 13.51 14.35 14.25 2.66 2.70 2.80 72.67 60.00 53.35 
M33F 13.48 12.95 13.15 2.68 2.64 2.71 72.56 65.42 57.96 
M34F 13.30 13.92 13.50 2.72 2.69 2.73 74.00 61.86 58.77 
M35F 13.26 13.64 12.79 2.65 2.62 2.58 73.34 63.10 59.01 
M36F 15.83 14.53 13.72 2.99 2.77 2.66 67.42 59.18 54.76 
 
 
 
 
 
 
 
 
 
 



 Chapter 7: Modelling ASP using KSOM-ANN  
___________________________________________________________________________ 

 
199 

 
 
Table 7.7 Statistics analysis of modelling ASP using KSOM-ANN to predict 
effluent SS  

MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M1F 140.37 130.17 169.34 8.77 8.39 9.44 74.35 58.82 62.47 
M2F 136.61 130.10 205.00 8.65 8.31 11.73 75.15 58.45 55.62 
M3F 136.28 123.06 211.00 8.58 7.87 11.64 75.49 63.00 60.28 
M4F 122.03 106.96 205.00 7.99 7.54 11.54 78.30 67.49 60.17 
M5F 128.07 108.13 204.00 8.14 7.56 11.52 77.41 66.73 58.90 
M6F 121.04 106.20 162.73 7.62 7.51 8.49 78.32 67.53 65.04 
M7F 127.01 117.28 210.00 8.06 7.79 11.43 77.21 63.70 59.06 
M8F 135.78 128.58 217.00 8.44 8.26 11.56 75.46 59.07 56.98 
M9F 137.77 124.72 175.95 8.53 7.89 9.28 75.25 61.54 60.02 
M10F 124.91 115.93 167.91 7.95 7.74 8.86 77.61 64.70 62.02 
M11F 135.36 120.92 179.09 8.39 7.95 9.53 75.52 62.06 58.13 
M12F 138.51 119.07 160.83 8.56 7.88 8.90 74.95 63.64 64.85 
M13F 157.86 132.02 191.50 9.29 8.62 10.24 70.29 56.62 54.85 
M14F 158.86 134.87 179.33 9.27 8.36 9.48 70.34 57.16 59.27 
M15F 158.76 141.77 177.63 9.12 8.59 9.22 70.73 55.60 61.61 
M16F 151.43 128.69 182.43 8.91 8.41 9.51 71.76 58.17 57.29 
M17F 137.72 124.66 166.98 8.48 8.05 9.15 75.07 61.16 62.91 
M18F 164.93 143.73 176.18 9.49 8.78 9.34 68.89 52.80 60.63 
M19F 124.73 118.18 174.04 8.05 7.85 9.36 77.51 63.72 60.31 
M20F 129.55 114.77 168.12 8.09 7.76 8.84 76.69 64.30 62.91 
M21F 136.43 125.43 180.13 8.35 7.99 9.27 74.92 61.08 57.89 
M22F 127.99 118.34 168.60 8.07 7.88 9.09 76.94 62.91 61.74 
M23F 134.52 114.20 177.77 8.25 7.80 9.39 75.69 64.57 59.53 
M24F 130.24 122.60 176.79 8.16 7.99 8.91 76.50 61.55 59.40 
M25F 240.08 148.83 188.53 12.03 8.97 10.17 47.84 50.17 55.64 
M26F 233.39 149.47 196.76 11.92 9.22 10.43 49.81 48.65 52.58 
M27F 223.14 157.78 188.54 11.49 9.47 9.91 53.39 50.00 55.83 
M28F 152.28 132.67 191.45 9.11 8.11 9.53 71.59 59.89 55.13 
M29F 220.48 152.86 200.09 11.34 9.02 9.97 55.20 49.27 51.28 
M30F 178.98 132.81 184.73 9.87 8.40 9.78 65.22 57.05 56.23 
M31F 181.61 142.06 189.33 9.90 8.49 9.57 64.75 54.22 55.17 
M32F 156.15 128.78 186.25 9.07 8.07 9.54 70.70 59.36 56.13 
M33F 159.46 125.12 162.75 9.12 8.07 9.22 69.79 60.05 61.15 
M34F 155.02 123.97 178.04 9.06 8.95 9.51 71.36 61.40 60.60 
M35F 154.49 114.66 160.24 9.03 8.06 9.05 70.39 58.06 61.40 
M36F 178.73 135.17 187.52 9.92 8.37 9.38 65.83 55.67 55.59 
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Figure 7.5 Selection of hidden neurons using KSOM features (effluent BOD) 



 Chapter 7: Modelling ASP using KSOM-ANN  
___________________________________________________________________________ 

 
201 

 

 Figure 7.6 Selection of hidden neurons using KSOM features (effluent SS) 



  
 
 

 
Table 7.8 Characteristics of neural network models 

 

Model Architecture Number of 
epochs 

M I 5-7-2 11 
M II 4-5-2 12 
M III 3-10-2 9 
M I (F) 5-18-2 22 
M II (F) 4-23-2 33 
M III (F) 3-35-2 23 

 

In order to find the best model, the evaluation criteria obtained during training, 

validation and testing for the best model in each case were compared. Table 7.9 

and Table 7.10 show the values of MSE, AAE, and R for BOD5 and SS 

respectively. The highlighted values are the best performance achieved, that is the 

lowest MSE and highest correlation R (%). The same results are represented in a 

graphical form in Figure 7.7. From Table 7.9, 7.10 and Figure 7.7, it is clear that 

using the features of the data produced better performance than using the raw data 

itself to train the models. 

 
 

This confirms the fact that KSOM features improve the performance of ANN. 

Also, From Table 7.9 and Table 7.10, and Figures 7.7, it is clear that model 

number M1 (F) (M6F in Table 7.6) has the best performance. The 18-node 

architecture can be taken as a compromise best structure since no significant 

improvement in all the three performance criteria occurs when the number of 

neurons is increased beyond 18.  
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Figure 7.7 Comparison between models 



  
 
 

Table 7.9 Comparison of statistical coefficient for effluent BOD for the best model 
with each category of models 

MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M I 5-7-2 22.73 17.01 17.64 3.60 2.88 3.09 49.54 51.71 32.02 
M II 4-5-2 24.70 21.01 23.34 3.91 3.64 4.08 34.33 28.76 21.75 
M III 3-10-2 25.36 20.36 23.47 4.08 3.55 4.15 30.44 32.00 15.48 
M I (F) 5-18-2 10.34 11.54 11.37 2.32 2.41 2.51 81.80 68.31 65.49 
M II (F) 4-23-2 10.76 12.68 12.55 2.37 2.54 2.55 79.47 65.26 60.66 
M III (F) 3-35-2 13.26 13.64 12.74 2.65 2.62 2.58 73.34 63.10 59.01 

 
 
Table 7.10 Comparison of statistical coefficient for effluent SS for the best model 
with each category of models 

MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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M I 5-7-2 230.48 134.09222.94 11.31 8.67 11.51 45.68 58.53 42.25
M II 4-5-2 276.66 179.95 252.63 13.01 10.91 13.14 32.92 30.24 34.56
M III 3-10-2 278.81 190.99 303.83 13.23 11.54 14.89 31.81 30.84 18.50
M I (F) 5-18-2 121.04 106.20 162.73 7.62 7.51 8.49 78.32 67.53 65.04
M II (F) 4-23-2 129.55 114.77 168.12 8.09 7.76 8.84 76.69 64.30 62.91
M III (F) 3-35-2 154.49 114.66 160.24 9.03 8.06 9.05 70.39 58.06 61.40

 
 
 

It is also evident from Tables 7.9 and 7.10 and Figure 7.7 that for each specific 

number of neurons in the hidden layer, the performance of the model is better 

using the features of the raw data than using the raw data itself. The relative 

superiority of the features-derived models is also evident when both the MSE and 

AAE are considered. This is because the features have eliminated the noise in the 

raw data set, which affected the performance of the basic ANN.  
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Because the ANN model with 18 neurons in the hidden layer using the features 

method, Model M I (F) has the best performance, further analysis was only done 

with this model. Table 7.6 and 7.7 show clearly that the performance results were 

good. However the best way of assessing the model prediction is by looking at the 

predicting plots and analysing wither they have good agreement. Figure 7.8 and 

7.9 show in the time series plots the comparison between the model predictions 

with the targets for BOD5 and SS during training, validation and Testing. Visual 

investigations of these figures demonstrates that the model is able to predict the 

output during operation conditions as the two lines (predicted and observed) are 

overlapped in the majority of the points.  Figure 7.10 and 7.11 show the residuals 

plots  of the model during training, validation and testing. Figures 7.12, 7.13, and 

7.14 show scatter plot of the measured and predicted BOD5 during training, 

validation and testing respectively. Figures 7.15, 7.16, and 7.17 show the scatter 

plot of the measured and observed of SS during training, validation and testing 

respectively. Most of the data points are around the predicted equals observed 

line.  
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Figure 7.8   Comparison of the observed (doted) and predicted (solid) effluent 
BOD values during training, validation and testing 

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Data Number (Training)

E
ff

lu
en

t 
S

S
 

(m
g/

l) 
  

  
 

500 520 540 560 580 600 620 640 660 680 700
0

20

40

60

80

Data Number (Validation)

E
ff

lu
en

t 
S

S
 

(m
g/

l) 
  

  
 

700 750 800 850 900 950 1000 1050
0

20

40

60

80

Data Number (Testing)

E
ff

lu
en

t 
S

S
 

(m
g/

l) 
  

  
 

 
Figure 7.9 Comparison of the observed (doted) and predicted (solid) effluent SS 
values during training, validation and testing 
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Figure 7.10 Residuals of the model during training validation and testing   
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Figure 7.11 Residuals of the model during training validation and testing 
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Figure 7.12 the performance of the model in predicting the effluent BOD during 
training 
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Figure 7.13 The performance of the model in predicting the effluent BOD during 
validation 
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Figure 7.14 The performance of the model in predicting the effluent BOD during 
testing 
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Figure 7.15 The performance of the model in predicting the effluent SS during 
training 
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Figure 7.16 the performance of the model in predicting the effluent SS during 
validation 
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Figure 7.17 the performance of the model in predicting the effluent SS during 
testing 
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7.4 Conclusion 

The current application used a new methodology based on a hybrid supervised-

unsupervised artificial neural network to improve the performance of the basic 

backpropagation neural network method in modelling the activated sludge 

wastewater treatment plant. The method was applied to data taken from the 

Seafield wastewater treatment plant in Edinburgh, UK, during a period of about 

three years. Input variables were selected based on their correlation with the 

effluent BOD5 and SS, which were the target prediction variable. Several ANN 

models with different numbers of neurons in the hidden layers were developed. 

For each model, two types of data were used, the first one is the raw data set and 

the second one is the extracted features of the raw data using the Kohonen self-

organising map. The results showed that the models using the features were better 

than those using the raw data. 

The findings prove the ability of KSOM to improve the performance of modelling 

using basic back-propagation neural networks, particularly when the available 

data are noisy, a common problem with the process data of wastewater treatment 

plants. Furthermore, the KSOM can readily deal with missing values in one or 

more of the input variables without significantly negative impacts on the accuracy 

of the model (see Rustum and Adeloye, 2007a). Results obtained prove that 

KSOM-ANN present a versatile tool in modelling ASP and provided an 

alternative methodology for predicting the performance of WWTPs.  

The developed models have several advantages as they were able to predict the 

effluent BOD5 and SS without explicit considering the mathematical relationship 

between the inputs and the outputs. However, it is necessary to underline the limit 

of using the methodology if the database is insufficient as it might lead to 

erroneous interpolations or restricted to narrow range of operating conditions. In 

other words, the developed models are not able to be applied to another plant with 
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input data outside the range of the inputs used for training. Therefore, care must 

be taken when extrapolating these results to other nonlinear systems. Furthermore, 

there are problems concerned with identifying the neural network elements and 

parameters. Examples of such elements and parameters are the number of hidden 

layers, the number of neurons in each layer, training function, and transfer 

function. Therefore, finding the best general model is time consuming as it is 

highly empirical, and the only way to optimize the models is by searching for the 

best network parameters iteratively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

CHAPTER 8 

APPLICATION IV: MODELLING ASP USING HYBRID 

KSOM-ANFIS 

 

8.1 Introduction 

In the previous chapter, the possibility of modelling ASP using artificial neural 

network was investigated. The results indicated that the KSOM extracted features 

improve the performance of backpropagation multilayer perceptron ANN. The 

learning algorithms were found to be suitable for modelling ASP. However, the 

concept or knowledge cannot be clearly expressed in a human understandable way 

in the form of if-then rules. In contrast, Fuzzy logic systems (FLS) are more 

favourable, in that their behaviours can be explained using fuzzy rules. In 

addition, FLSs can easily be interpreted in human understandable terms rather 

than with numerical quantities. In other words, fuzzy logic models depend not 

only on black box such as ANN, but are also based on a combination of 

knowledge of the system and operational experience.  

As discussed exhaustively in Chapter 3, the basic idea behind neuro-fuzzy 

combination is to design a system that uses a fuzzy system to represent knowledge 

in an interpretable manner and have the learning ability of neural network to 

adjust its membership functions and parameters in order to enhance the system 

performance. Consequently, the main drawbacks of both individual systems could 

be avoided, i.e., the black box nature of neural networks, and the problem of 

selecting suitable membership values for FLSs (Jang, 1993). The combination can 

constitute an interpretable model that is capable of learning, as NNs, and 

reasoning, as FLSs (Firat and Güngör, 2007). Using this technique makes it 
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possible to adjust the membership functions automatically from data by using 

neural network learning algorithms. The trained membership functions can 

provide a better understanding about the properties of the database.  

Because human-determined membership functions using trial and error are subject 

to the differences from one person to another and from time to time, they are 

rarely optimal in terms of reproducing desired outputs. To solve this problem, in 

1993, Jang and his colleagues started looking at the FLS as adaptive network 

(Adaptive Network Based on Fuzzy Inference System, ANFIS (Jang, 1993; Jang 

and sun, 1995; Jang et al., 1997). This technique joins the linguistic interpretation 

of FLS with the computational power of neural networks that can be trained 

through gradient algorithms such as Back-propagation. A first forward pass is 

performed to determine the network output and a second backward pass is 

performed to adjust the parameters for better approximation. They found that 

ANFIS could be easily implemented for a given input/output modelling technique 

as fully described in Chapter 3.  

Consequently, due to the power of KSOM in enhancing the performance of ANN 

as demonstrated in the previous chapter, the last application of this work 

investigates the possibility of integrating the KSOM with ANFIS in order to 

improve the performance of the ANFIS trained with raw data.  

8.2 Methodology 

The methodology presented in Section 3.4 has been applied to develop a fuzzy 

model for the ASP. The same Seafield treatment plant data set used in the 

previous chapter has been used in this application. The developed models were 

trained and testing using MATLAB 7 programming language with Fuzzy Logic 

toolboxes (Version 7, Release 14, Mathworks, Inc). Kohonen Self Organizing 
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Maps were built and visualized using SOM Toolbox for MATLAB 5, developed 

at the Laboratory of Computer and Information Science (CIS) at Helsinki 

University of Technology. Supporting statistical analysis was conducted using 

Statistical Toolbox and various functions in MATLAB.   

The key requirement to getting a good model is to choose the appropriate 

antecedent part variables. However, in activated sludge wastewater treatment 

plants , it is difficult to take into account the numerous factors that influence the 

specific bacterial growth rate and its metabolic activities. Therefore, the 

parameters were chosen from typical variables observed in the daily monitoring 

record of activated sludge process that used to asses in controlling the process.  

It is expected that the accuracy of the model will be improved by increasing the 

number of the variables in the antecedent part and by increasing the number of 

membership functions in each variable. However, that leads to a large number of 

rules and consequence parameters (see Chapter 3 for more details). Therefore, the 

first question was how many inputs can be put in a single ANFIS model when a 

model is trained on a personal computer? The second question was how many 

fuzzy membership functions can be used in each antecedent part in order to divide 

the input space into fuzzy divisions? That is because the computation cost 

increases by increasing the number of inputs and the number of membership 

functions of each input, as revealed in Equation 3.42. In addition, the volume of 

the training data plays a role in deciding the number of inputs and the number of 

membership functions associated with each input. For example, the total number 

of modified parameters must not exceed the total number of training data.    

Furthermore, the aim is to adjust the parameters in order to approximate the given 

samples with the least error and at the same time obtain good generalization 

ability. To do this, partitioning the available data into training, validation and 
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testing is performed in order to measure the generalization ability. This is because 

it is known that, a minimum training error does not necessarily correspond to a 

minimum testing error, or best generalization (Adeloye and De Munari, 2006).  

Since the number of rules in ANFIS and consequently the number of its 

parameters increases exponentially with the number of inputs, five inputs was the 

maximum number of input parameters that could be used given the available data 

base. For example, using five inputs with three membership functions associated 

with each input, the total number of modified parameters, according to Equation 

3.42 will be 1488 which exceeds the number of training data of 500. However, 

with two membership functions for each input, the total number of modified 

parameters will be 212, which is okay, because that will leave a significant 

number of degree of freedom. 

To choose the parameters to include, the analysis of the correlation matrix was 

carried out to determine the most likely parameters for predicting the effluent 

BOD5 and effluent SS, the tow target variables. The identified variables were the 

same as in the previous chapter.  

To decide the optimal number of input parameters and the optimal number of 

membership functions associated with each input,  several models have be 

developed using a variety of inputs and a variety of membership functions 

associated with each input taking into account that the priority is for inputs with 

high correlation with the effluent BOD5 and effluent SS concentrations.  Table 8.1 

and Table 8.2 present the structure of the models developed and tested in the 

study using Gaussian membership function.  
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8.3 Results and Discussion  

To ensure good generalization capability of the developed models, the available 

raw data (1066 data records) were divided into three subsets, training (500 data 

records), validation  (200 data records) to insure that model do not over fit the 

training data, and testing (366 data records). As was the case with Application III, 

two scenarios were considered: (a) an ANFIS model on the raw data, and (b) a 

hybrid KSOM-ANFIS model based features of the extracted using KSOM. 

Through evaluating the prediction capability of the developed ANFIS models 

(M1-M8) using several evaluation criteria such as mean square error (MSE),  

average absolute error (AAE) and correlation coefficient (R) (Table 8.3 and Table 

8.4), it can be seen that the performance of the models was not good. Moreover, 

the models generated negative values for BOD5 and SS on occasions as can be 

seen from Table 8.5 and 8.6.  Previously, Miller (2006) encountered negative 

predictions when using ANFIS to predict the rainfall (precipitation) from raw 

(noisy) weather data (temperature and humidity). Miller (2006) suggested the use 

of another technique for pre-processing the data to improve the performance of 

ANFIS that would deal with the noise by replacing the missing values and 

omitting the outliers. The original work by Jang (1993) on the ANFIS was 

validated with noiseless data generated by functional equations; it is therefore not 

surprising that he did not encounter negative predictions. 



  
 

Table 8.1 The structure of the ANFIS models developed and tested in the study for predicting effluent BOD concentrations using the 
Gaussian membership function*  

*  the choice of Gaussian membership function was because it has just two modified parameter, the centre and the width, hence it requires 

less number of training data.  
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Number of 
input 

parameters 
(Ninput) 

Input Parameters Number of 
membership 
functions in 
each input 

(Nmf) 

Number of 
linear 

Parameters 
P1=l*(N input+1) 

Number of non-
linear 

parameters 
P2=Ninput*Nmf*2 

Total number 
of 

parameters 
P=P1+P2 

Number of 
Fuzzy Rules 
l=(Nmf)

Ninput 

M1 5 (raw) BOD Load, DO, RAS-MLSS, F/M, Tem. 2 192 20 212 32 
M2 4 (raw) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 429 81 
M3 4(raw) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16 
M4 3 (raw) BOD Load, RAS-MLSS, F/M 6 864 36 900 216 
M5 3 (raw) BOD Load, RAS-MLSS, F/M 5 500 30 530 125 
M6 3 (raw) BOD Load, RAS-MLSS, F/M 4 256 24 280 64 
M7 3 (raw) BOD Load, RAS-MLSS, F/M 3 108 18 126 27 
M8 3 (raw) BOD Load, RAS-MLSS, F/M 2 32 12 44 8 
M9 5 (features) BOD Load, DO, RAS-MLSS, F/M, Tem. 2 192 20 212 32 
M10 4 (features) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 429 81 
M11 4 (features) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16 
M12 3 (features) BOD Load, RAS-MLSS, F/M 6 864 36 900 216 
M13 3 (features) BOD Load, RAS-MLSS, F/M 5 500 30 530 125 
M14 3 (features) BOD Load, RAS-MLSS, F/M 4 256 24 280 64 
M15 3 (features) BOD Load, RAS-MLSS, F/M 3 108 18 126 27 
M16 3 (features) BOD Load, RAS-MLSS, F/M 2 32 12 44 8 
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Table 8.2 The structure of the ANFIS models developed and tested in the study for predicting effluent SS using the Gaussian membership 
functions  
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Number of 
input 

parameters 
(Ninput) 

Input Parameters Number of 
membership 
functions in 
each input 

(Nmf) 

Number of 
linear 

Parameters 
P1=l*(N input+1

) 

Number of non-
linear parameters 
P2=Ninput*Nmf*2 

Total number 
of 

parameters 
P=P1+P2 

Number of 
Fuzzy 
Rules 

l=(Nmf)
Ninput 

M1 5 (raw) BOD Load, DO, RAS-MLSS, F/M, Tem. 2 192 20 212 32 
M2 4 (raw) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 429 81 
M3 4(raw) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16 
M4 3 (raw) BOD Load, RAS-MLSS, F/M 6 864 36 900 216 
M5 3 (raw) BOD Load, RAS-MLSS, F/M 5 500 30 530 125 
M6 3 (raw) BOD Load, RAS-MLSS, F/M 4 256 24 280 64 
M7 3 (raw) BOD Load, RAS-MLSS, F/M 3 108 18 126 27 
M8 3 (raw) BOD Load, RAS-MLSS, F/M 2 32 12 44 8 
M9 5 (features) BOD Load, DO, RAS-MLSS, F/M, Tem. 2 192 20 212 32 
M10 4 (features) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 429 81 
M11 4 (features) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16 
M12 3 (features) BOD Load, RAS-MLSS, F/M 6 864 36 900 216 
M13 3 (features) BOD Load, RAS-MLSS, F/M 5 500 30 530 125 
M14 3 (features) BOD Load, RAS-MLSS, F/M 4 256 24 280 64 
M15 3 (features) BOD Load, RAS-MLSS, F/M 3 108 18 126 27 
M16 3 (features) BOD Load, RAS-MLSS, F/M 2 32 12 44 8 



  
 

Table8.3 The performance of the ANFIS models to predict effluent BOD5 
MSE (mg/l)2 AAE (mg/l) Correlation coefficient 
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M1 5 (raw) 16.55 14.97 14.88 3.16 2.79 2.94 64.04 56.15 49.65 
M2 4 (raw) 17.44 13.41 14.00 3.05 2.57 2.85 62.06 61.99 53.05 
M3 4(Raw) 23.29 18.09 16.76 3.78 3.09 3.17 41.32 41.47 38.34 
M4 3 (raw) 636.49 28.30 17.96 10.42 3.54 3.00 16.39 13.74 14.64 
M5 3 (raw) 250.34 15.68 14.17 5.16 2.75 2.90 10.92 15.35 15.32 
M6 3 (raw) 1058.72 266.44 148.99 18.56 9.45 7.71 12.56 15.04 11.49 
M7 3 (raw) 23.91 16.54 16.25 3.85 2.93 3.14 38.90 49.07 42.35 
M8 3 (raw) 26.41 17.36 17.03 4.06 3.06 3.25 26.21 45.20 37.05 
M9 5 (features) 5.73 8.01 6.10 1.85 2.05 1.91 89.20 79.78 83.01 
M10 4 (features) 5.44 7.07 5.53 1.79 1.96 1.77 89.78 82.32 84.67 
M11 4 (features) 9.74 11.95 8.44 2.39 2.47 2.18 80.72 67.60 75.24 
M12 3 (features) 5.88 7.30 5.65 1.86 2.01 1.81 88.88 81.67 84.47 
M13 3 (features) 8.65 8.47 6.72 2.28 2.09 1.96 85.08 78.56 81.29 
M14 3 (features) 7.51 9.08 6.88 2.12 2.18 1.98 85.71 76.60 80.64 
M15 3 (features) 10.07 10.92 8.72 2.42 2.44 2.24 79.98 71.30 74.62 
M16 3 (features) 14.81 13.20 11.20 2.99 2.66 2.50 68.59 64.38 65.18 

 
 

Table 8.4 The performance of the ANFIS models to predict effluent SS 
MSE (mg/l)2 AAE (mg/l) Correlation coefficient 
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M1 5 (raw) 185.45 133.16 193.25 10.37 8.78 10.60 63.38 55.73 53.57 
M2 4 (raw) 182.33 121.89 174.17 10.02 8.01 9.91 64.12 60.85 59.71 
M3 4(Raw) 255.18 164.01 215.00 12.50 9.78 11.15 42.01 39.90 45.53 
M4 3 (raw) 1663.7 1344.3 682.66 24.90 23.95 18.29 21.57 19.71 27.73 
M5 3 (raw) 575.75 172.97 201.98 15.66 9.72 10.63 33.47 24.86 18.21 
M6 3 (raw) 1021.76 529.56 351.76 20.69 14.54 13.52 21.95 23.76 19.33 
M7 3 (raw) 264.41 148.26 221.59 12.45 9.31 11.58 39.16 48.31 42.86 
M8 3 (raw) 286.52 159.13 229.62 13.17 9.81 11.79 28.29 42.18 39.52 
M9 5 (features) 77.40 65.10 67.37 6.66 6.17 6.60 86.63 81.50 87.02 
M10 4 (features) 70.44 56.33 60.52 6.22 5.65 6.54 87.94 84.31 87.34 
M11 4 (features) 117.02 91.78 104.78 8.31 7.24 7.63 78.98 72.54 79.26 
M12 3 (features) 81.99 59.65 60.73 6.77 5.88 6.64 86.23 83.36 87.22 
M13 3 (features) 153.46 99.61 157.50 9.25 7.32 7.67 78.05 72.66 69.66 
M14 3 (features) 87.81 67.07 71.06 6.97 6.31 6.04 84.72 81.05 86.12 
M15 3 (features) 119.37 82.50 96.45 8.34 6.85 7.29 78.42 76.08 80.31 
M16 3 (features) 172.50 117.55 146.62 10.11 7.91 8.68 66.70 63.26 68.21 
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Table 85 Statistics summary of the ANFIS models to predict effluent BOD5 
Minimum Maximum mean 
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Observed 2.00 2.00 2.00 25.00 25.00 23.00 9.32 7.38 6.44 
M1 5 (raw) 0.35 2.24 0.15 25.89 14.09 14.53 9.07 7.32 6.97 
M2 4 (raw) 0.14 0.76 -0.99 33.23 18.82 14.63 9.08 7.41 6.80 
M3 4(Raw) 4.01 1.27 2.27 16.99 13.55 13.62 8.97 7.47 6.95 
M4 3 (raw) -98.85 -13.79 -4.31 240.35 38.44 37.53 10.37 7.58 7.09 
M5 3 (raw) -89.24 1.71 0.99 288.96 19.82 19.02 9.58 7.59 6.91 
M6 3 (raw) -93.35 -26.35 -34.69 215.89 116.20 108.68 14.81 10.78 7.90 
M7 3 (raw) 2.76 -1.51 2.07 18.73 14.30 14.12 8.96 7.47 7.08 
M8 3 (raw) 2.71 2.55 2.84 14.47 13.49 12.05 8.90 7.45 7.06 
M9 5 (features) 3.22 3.28 2.34 21.14 19.79 19.89 9.20 7.27 6.75 
M10 4 (features) 2.97 3.32 2.60 21.33 20.20 20.27 9.24 7.34 6.70 
M11 4 (features) 3.05 2.64 0.13 21.62 18.50 18.59 9.30 7.15 6.67 
M12 3 (features) 2.99 3.57 2.60 21.23 20.44 20.49 9.34 7.42 6.78 
M13 3 (features) 2.40 2.45 2.19 25.34 21.43 20.95 9.68 7.21 6.64 
M14 3 (features) 2.31 2.39 2.59 21.29 19.30 19.36 9.02 7.22 6.80 
M15 3 (features) 1.84 1.89 1.92 21.37 18.17 18.19 9.25 7.13 6.80 
M16 3 (features) 3.24 3.46 3.34 21.31 15.88 15.88 9.30 6.98 6.77 

 
Table8.6 Statistic summary of the ANFIS models to predict effluent SS 
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Observed 7.00 5.00 3.00 80.00 66.00 76.00 28.04 22.41 21.84 
M1 5 (raw) -2.13 4.46 1.43 79.99 46.49 50.55 27.55 22.19 22.64 
M2 4 (raw) -0.97 1.07 -5.42 93.19 54.60 63.89 27.98 21.88 22.42 
M3 4(Raw) 7.51 2.94 6.02 54.24 43.28 44.41 27.51 22.24 22.71 
M4 3 (raw) -96.43 -92.29 -75.11 270.13 206.26 133.98 29.35 18.91 21.72 
M5 3 (raw) -52.76 -0.84 -13.93 256.78 77.84 75.96 29.68 23.28 22.40 
M6 3 (raw) -90.00 -96.48 -29.70 224.21 172.41 166.60 26.06 21.32 23.23 
M7 3 (raw) 1.73 -1.32 -2.05 56.04 50.18 39.86 26.60 22.26 22.87 
M8 3 (raw) 5.40 5.44 7.93 42.73 42.17 35.29 27.03 22.78 23.04 
M9 5 (features) 8.25 8.06 8.35 65.52 64.07 64.07 28.37 21.97 21.69 
M10 4 (features) 7.60 7.99 7.65 65.24 64.94 64.94 28.46 21.85 21.51 
M11 4 (features) 7.42 7.42 0.03 63.16 60.80 60.80 28.79 21.87 21.12 
M12 3 (features) 5.48 8.80 7.15 68.62 65.38 64.49 29.22 22.23 21.60 
M13 3 (features) 3.65 3.65 3.71 81.04 64.32 64.32 31.92 22.08 23.25 
M14 3 (features) 8.69 8.83 8.54 65.28 61.40 61.40 28.45 21.50 21.69 
M15 3 (features) 1.66 8.13 6.31 65.88 58.19 58.19 28.42 21.35 21.68 
M16 3 (features) 8.27 8.27 8.27 64.02 50.51 50.79 28.79 21.09 21.58 
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To solve the problem, we found that the Kohonen self-organizing map (or 

Kohonen features map) has the power to extract features from noisy data and at 

the same time eliminate the effect of missing values that the ANFIS cannot deal 

with. Therefore, The KSOM was applied to extract the most relevant features of 

the raw data records. These features more closely represent the natural structures 

in data and were therefore used to drive the ANFIS as illustrated in Figure 8.1. 

This constitutes the hybrid KSOM-ANFIS model. 

 

 

Figure 8.1 Illustration of the integrated KSOM-ANFIS modelling using BMU 
features 

 

The hybrid KSOM-ANFIS modelling strategy was applied to several combination 

structures of ANFIS, models (9-16) in Tables 8.1 and 8.2. The performance of 

these models was evaluated using the usual criteria and the results are presented in 

as can be seen in Tables 8.3 and 8.4. It can be seen that for the same structure, the 

performance of the model has improved using the features of the measurement 

vectors than the measurement vectors themselves. For example, model number 2 

and model number 10 have the same structure, 4 inputs and three membership 

functions associated with each input. However, the performance of model number 
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10 was much better than model number 2, with the correlation coefficient in the 

testing data set jumping from 53.05% in model number 2 to 84.67% in model 

number 10 in case of BOD5. The same conclusion can be inferred for the rest of 

the models in the three evaluation criteria as can be seen in Tables 8.3 and 8.4.   

Furthermore, the new modelling strategy generates no negative values in all the 

combination structures as can be seen in Tables 8.5 and 8.6. 

The architecture that performs best was chosen as the final model for predicting 

the effluent BOD5 and SS concentrations. Model number 10 generates the best 

modelling performance in the two cases. Therefore, further discussions were only 

done on this model. This model has 4 inputs variables: BOD Load, RAS-MLSS, 

F/M, and temperature with 3 membership functions associated with each input as 

illustrated in Figure 8.2. Figure 8.3 show the Gaussian membership functions on 

the operating range. Tables 8.7 shows the parameters of the Gaussian membership 

functions associated with the input variables, where c is the centre of the 

corresponding membership function and b is the width. Both models (BOD5 and 

SS) contain 81 rules and the total number of modified parameters is 429, 

composing 24 premise parameters and 405 consequent parameters. 

 

Tables 8.8 and 8.9 present the optimized fuzzy rules generated using the 

modelling strategy developed in this study for model number 10. The fuzzy neural 

network model consists of a selection of the 81rules describing the relationship 

between the input variables and the output variable. The number of rules was 81 

and the aggregation process is illustrated in Figure 8.4. Each rule listed in the 

table consists of an IF and THEN part. The IF part specifies a set of conditions 

and the THEN part specifies the conclusion or the action. For example, rule 10 in 

Table 8.8 can be read as: 
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BOD Load 

RAS MLSS 

F/M 

Temperature 

f(u)

Effluent BOD/SS 

Activated     
Sludge Process

(sugeno)

81 rules

Membership Functions Rules Output

 
Figure 8.2 The structure of model number 10  

 

 

 
 
 
Figure 8.3 Fuzzy membership functions in the input space. 
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Table8.7 The parameters of Gaussian membership functions associated with the 
input variables  
Inputs 
(BOD Model) 

Membership Function b (Width) C 
(Centre) 

Low 5030 6670 
Medium  5030 18510 

BOD Load  

High 5030 30360 
Low 414.9 3912 
Medium  414.9 4889 

RAS-MLSS 

High 414.9 5866 
Low 0.04678 0.07901 
Medium  0.04678 0.1892 

F/M 

High 0.04678 0.2993 
Low 1.203 11.16 
Medium  1.203 13.99 

Temperature 

High 1.203 16.82 
 

 

IF (BOD Load) is Low and (RAS-MLSS) is Medium and (F/M) is Low and Tem. 

Is Low, THEN (effluent BOD) is -85.1- (0.05327*BOD Load) + (0.08111* RAS-

MLSS) - (5.697*F/M) – (18.55*Tem.).    

 

The trained model was tested using data that had not been employed for training. 

The time series plots of the observed and predicted effluent BOD5 and Effluent SS 

during training, validation, and testing data sets are shown in Figure 8.5 and 8.6 

respectively.  The residuals analysis of the model during training, validation and 

testing are illustrated in Figure (8.7 and 8.8). The scatter plot of modelled versus 

observed during training, validation and testing are shown in Figure (8.9 and 

8.10). 

 

In the conventional fuzzy inference system, the number of rules is decided by an 

expert who is familiar with the system to be modelled. The expert uses heuristic 

knowledge gathered over years of experience to generate these rules. In our case, 

no expert is needed and the number of membership functions assigned to each 

input variable is chosen empirically by trial and error. The proposed model was 
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able to determine the state of the process using the values of several variables 

together. Furthermore, the proposed model is much more robust with respect to 

degradation of any associated sensor or measurement equipment. In addition, 

fuzzy logic model is much easier to design than deterministic model.  

These aspects of the proposed modelling strategy are due to the merging of 

several techniques. Each of these techniques, NN, KSOM, and FLS appears to be 

extremely effective at handling dynamic, non-linear and noisy data. However, 

when utilized together, the strengths of each technique can be exploited in a good 

manner for the development of hybrid systems.  

However, different from BP-ANN models, the developed models do not only just 

give modelling accuracy, but also extract knowledge from the data, for example 

the adjustment  of membership functions and fuzzy rules. All the knowledge is 

presented in human understandable forms. This is important in order to 

understand the data and explain how the results were obtained. The extracted 

knowledge also let an operator know what an expert would say about the state of 

the process through the knowledge extracted from the linguistic rules. Each rule is 

a linguistic expression of human expert knowledge establishes relationships 

between variables, which lead to a diagnosis output. 

8.4 Conclusion 

In this chapter, the use of ANFIS for modelling wastewater treatment plants was 

demonstrated. The ANFIS allows fuzzy rules to be extracted and the ANN 

enabled optimised fuzzy membership functions to be determined. The 

methodology was applied to activated sludge data for Seafield wastewater 

treatment plant in order to predict the effluent BOD5 and SS. Initially, a set of 

measured, raw, data were used to train and test the ANFIS, but the resulting 

model did not perform well. This was attributed to the existing of noise in the raw 
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data. To overcome this, features of the data or their BMU were extracted with the 

KSOM and used for training and testing a new set of models that gave better 

performance. The results indicate that the KSOM-ANFIS not only outperforms 

the basic ANFIS model in modelling capability with different number of inputs 

and different number of fuzzy membership functions, it is unhindered by missing 

values or gaps in the data.  

However, although the extracted features of KSOM enhanced the performance of 

ANFIS, the input data cannot propagate directly from the input of the KSOM to 

an output of the ANFIS as the task were performed separately in this work. 

Therefore, developing a single model that incorporates the features and the ANN 

or ANFIS is one of the major open research issues. Moreover, even if  satisfactory 

results have been obtained based on integrated KSOM-ANFIS to deal with noise 

and missing values, the robustness of the developed models has not yet been 

analysed mathematically, for example, the effect of the number of missing values 

in each vector. Such an analysis together with further experimentation would be 

worth pursuing to prove conclusively the general validity of the proposed 

schemes.  



  
 

Table 8.8 Optimised fuzzy rules generated using the modelling strategy developed in this study for model number 10 (BOD Model) 
Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

1 Low Low Low Low  -1.464 0.6413 2.152 507.8 11.91 
2 Low Low Low Medium  0.2801 0.9969 23.75 -356.1 34.67 
3 Low Low Low High  0.02804 0.3626 -76.3 -80.99 -102.9 
4 Low Low Medium Low  27.95 -61.98 -0.1368 -19.02 -1.702 
5 Low Low Medium Medium  -1.463 -2.554 -11.29 1329 32.73 
6 Low Low Medium High  0.3338 -0.9537 -3.959 -0.8736 -104.8 
7 Low Low High Low  -434.7 -114.4 -0.006909 -0.4417 -0.01234 
8 Low Low High Medium  53.01 -116.3 -0.1005 -5.05 -1.549 
9 Low Low High High  -41.12 100.1 0.007273 -26.11 -0.7746 

10 Low Medium Low Low  -0.05327 0.08111 -5.697 -18.55 -85.1 
11 Low Medium Low Medium  -0.26 -0.481 66.87 235.6 168.5 
12 Low Medium Low High  0.3912 -0.594 -2.843 -98.61 6.734 
13 Low Medium Medium Low  2.437 -4.422 -3.428 491.2 2.402 
14 Low Medium Medium Medium  0.03674 -1.874 -12.9 628.4 32.39 
15 Low Medium Medium High  -0.8339 0.3398 -0.7227 483.2 17.3 
16 Low Medium High Low  64.32 -303.8 0.04543 0.9669 -0.04233 
17 Low Medium High Medium  -80.16 230.3 0.3187 45.79 0.6505 
18 Low Medium High High  9.89 -48.85 0.1341 -21.57 0.05542 
19 Low High Low Low  0.329 -0.1468 3.803 -182.3 -46.6 
20 Low High Low Medium  -2.684 5.404 4.49 -619.4 -18.23 
21 Low High Low High  -103.5 213.8 0.1728 6.23 0.1674 
22 Low High Medium Low  -0.6909 1.5 -3.579 137 7.24 
23 Low High Medium Medium  4.641 -10.72 -3.688 -198.4 -2.424 
24 Low High Medium High  101.6 -201.7 -0.1835 -19.62 -0.2552 
25 Low High High Low  155.5 -299.7 0.0369 -0.7076 -0.05671 
26 Low High High Medium  30.35 42.34 0.05174 -1.566 -0.05357 
27 Low High High High  -102.8 -125.2 -0.001678 -0.6948 -0.02658 
28 Medium Low Low Low  -26.1 68.72 0.07732 27.95 -0.9504 
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Table 8.8 Continue 
Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

29 Medium Low Low Medium  4.11 -10.64 1.76 204.5 14.46 
30 Medium Low Low High  -1.137 1.08 -6.471 281.7 2.76 
31 Medium Low Medium Low  22.74 -64.54 0.2399 96.05 3.981 
32 Medium Low Medium Medium  -2.099 6.206 -0.7487 360.9 23.64 
33 Medium Low Medium High  0.05308 -0.3521 -2.706 166 3.143 
34 Medium Low High Low  74.22 -328.3 0.03933 -0.5536 -0.05439 
35 Medium Low High Medium  8.44 -43.11 0.2981 41.34 -1.15 
36 Medium Low High High  -11.41 47.81 0.2932 -110.2 0.3064 
37 Medium Medium Low Low  -1.685 2.148 7.804 419.1 -3.966 
38 Medium Medium Low Medium  -0.946 4.292 26.61 -303.5 56.58 
39 Medium Medium Low High  1.011 -4.937 2.772 837.3 1.516 
40 Medium Medium Medium Low  1.807 -6.858 -8.68 437.6 -11.29 
41 Medium Medium Medium Medium  0.8092 -2.723 -29.89 152.4 -48.23 
42 Medium Medium Medium High  0.1212 -1.806 -2.909 368.6 3.74 
43 Medium Medium High Low  3.757 -2.811 0.17 12.25 0.598 
44 Medium Medium High Medium  -3.106 12.89 1.026 65.06 -0.008005 
45 Medium Medium High High  -6.956 35.79 0.232 -56.41 0.3373 
46 Medium High Low Low  0.4053 -1.34 9.16 20.45 10.54 
47 Medium High Low Medium  -3.665 10.76 7.984 -96.8 3.429 
48 Medium High Low High  35.4 -40.18 0.1678 3.029 0.03406 
49 Medium High Medium Low  -0.4842 1.674 -6.858 -200.5 13.02 
50 Medium High Medium Medium  0.9006 -2.767 -9.852 82.36 8.144 
51 Medium High Medium High  32.97 -143.9 -0.121 -19.74 0.1601 
52 Medium High High Low  17.38 -64.66 0.06569 -11.93 -0.2243 
53 Medium High High Medium  30.73 -124.5 0.268 6.056 -0.069 
54 Medium High High High  -46.98 413.6 0.01382 0.1548 0.06961 
55 High Low Low Low  -509.9 -193 -0.004156 -0.1879 -0.03211 
56 High Low Low Medium  250 -1244 0.01438 -7.833 -0.1029 
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Table 8.8 Continue  
Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

57 High Low Low High  86.59 -177.2 0.00813 8.405 0.0405 
58 High Low Medium Low  49.84 -454.1 -0.02964 -2.152 -0.1469 
59 High Low Medium Medium  -19.62 109.6 -0.1506 10.73 0.07485 
60 High Low Medium High  33.69 -155.3 -0.05348 -20.51 -0.2145 
61 High Low High Low  -20.91 83.51 -0.1133 5.447 0.0592 
62 High Low High Medium  3.586 -20.62 -0.4702 -19.08 -0.2712 
63 High Low High High  -84.27 501.6 -0.02081 0.622 0.03551 
64 High Medium Low Low  -189.2 699.2 0.09335 2.254 0.0933 
65 High Medium Low Medium  23.39 -85.35 0.2616 -3.211 -0.1131 
66 High Medium Low High  35.57 -211.9 0.01069 4.471 -0.121 
67 High Medium Medium Low  23.5 -88.46 0.005508 3.541 0.9487 
68 High Medium Medium Medium  8.804 -44.27 -0.7718 47.75 0.3608 
69 High Medium Medium High  1.795 -12.54 -0.1307 -9.892 0.2305 
70 High Medium High Low  41.96 -247.2 -0.2783 1.822 -0.3011 
71 High Medium High Medium  -1.042 5.463 -0.6585 -23.39 0.1907 
72 High Medium High High  20.66 -127.2 0.06481 6.189 0.2732 
73 High High Low Low  17.77 -48.53 0.07674 -4.994 0.05322 
74 High High Low Medium  35.01 -99.64 0.1146 2.731 0.07672 
75 High High Low High  216.2 30.32 0.002732 0.07731 0.007275 
76 High High Medium Low  -3.71 13.47 -0.03734 15.14 1.342 
77 High High Medium Medium  -8.635 28.76 -0.1598 12.29 -0.07895 
78 High High Medium High  -55.91 180.4 -0.01187 -0.6627 0.01127 
79 High High High Low  -2.27 14.08 0.0991 31.68 0.8121 
80 High High High Medium  -16.01 91.43 0.02866 4.486 0.1876 
81 High High High High  6.632 -13.57 -0.00177 -0.7383 -0.02826 
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Table 8.9 The optimised fuzzy rules generated using the modelling strategy developed in this study for model number 10 (SS Model) 

Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

1 Low Low Low Low  8.353 -18.46 5.569 1877 22.53 
2 Low Low Low Medium  0.9542 2.475 69.99 -993 119.2 
3 Low Low Low High  0.2811 1.08 -153.7 -279.6 -429.7 
4 Low Low Medium Low  75.82 -191 -0.2211 25.81 -5.111 
5 Low Low Medium Medium  -3.02 -11.33 -22.9 4271 120.8 
6 Low Low Medium High  0.8393 -5.881 -15.33 678.6 -320.1 
7 Low Low High Low  -509.7 -121.8 -0.01206 0.0611 0.04464 
8 Low Low High Medium  142.8 -354.6 -0.36 -22.47 -5.323 
9 Low Low High High  -88.69 264.3 0.2473 -50.52 -1.166 

10 Low Medium Low Low  -0.05756 0.3658 -9.819 -168.9 -235 
11 Low Medium Low Medium  -1.523 -1.28 169.9 957.3 722.6 
12 Low Medium Low High  1.339 -4.206 11.65 259.7 0.9296 
13 Low Medium Medium Low  1.984 -1.547 -8.724 1128 -2.023 
14 Low Medium Medium Medium  -0.06445 -7.299 -18.16 2640 128.4 
15 Low Medium Medium High  -3.665 5.211 -2.172 1370 71.47 
16 Low Medium High Low  190.3 -576.7 0.1592 2.334 -0.1674 
17 Low Medium High Medium  -153.8 428.8 1.051 182.3 2.709 
18 Low Medium High High  187.3 -505.3 0.3548 -85.27 -0.1046 
19 Low High Low Low  1.406 0.2621 5.936 -1219 -116.9 
20 Low High Low Medium  -9.543 17.55 7.509 -1372 -38.58 
21 Low High Low High  -319.6 625.7 0.3734 9.19 0.3032 
22 Low High Medium Low  -6.587 13.93 -8.545 458.4 23.72 
23 Low High Medium Medium  19.84 -45.26 -9.712 -548.3 -8.606 
24 Low High Medium High  243.9 -473.9 -0.4158 -75.74 -0.9188 
25 Low High High Low  602.2 -1326 0.1159 -3.235 -0.2693 
26 Low High High Medium  175.3 -310.4 0.1873 -6.43 -0.2758 
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Table 8.9 Continue 
Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

27 Low High High High  102.2 -303.3 -0.002048 -2.241 -0.06128 
28 Medium Low Low Low  -91.39 235 0.004699 103.2 -3.811 
29 Medium Low Low Medium  10.71 -29.9 2.278 956.1 45.44 
30 Medium Low Low High  -1.933 0.7618 -11.44 325.1 -41.33 
31 Medium Low Medium Low  34.4 -82.51 0.5056 315.7 12.15 
32 Medium Low Medium Medium  -5.334 18.68 -3.503 7.981 44.39 
33 Medium Low Medium High  -0.5462 3.719 -10.39 -39.71 7.438 
34 Medium Low High Low  340.1 -1540 0.146 1.28 -0.1943 
35 Medium Low High Medium  22.96 -110.7 0.9042 101.2 -5.582 
36 Medium Low High High  39.83 -147.6 0.9208 -413.9 1.215 
37 Medium Medium Low Low  -2.936 2.697 19.19 770.3 -19.71 
38 Medium Medium Low Medium  -4.99 18.29 52.65 -535.7 158.7 
39 Medium Medium Low High  3.035 -13.1 6.011 2001 11.73 
40 Medium Medium Medium Low  3.823 -14.36 -21.14 1009 -18.97 
41 Medium Medium Medium Medium  2.195 -7.084 -64.76 361.4 -177.2 
42 Medium Medium Medium High  0.5308 -5.216 -0.8529 580.7 4.666 
43 Medium Medium High Low  48.9 -182.8 0.6469 41.19 1.957 
44 Medium Medium High Medium  -3.638 19.11 3.225 253.1 -0.2107 
45 Medium Medium High High  -14.67 31.42 0.4245 -236.1 0.6424 
46 Medium High Low Low  3.743 -10.62 21.51 495.4 40.64 
47 Medium High Low Medium  -17.15 47.46 21.67 -359.4 7.952 
48 Medium High Low High  255.8 -479.7 0.3591 1.92 0.1752 
49 Medium High Medium Low  -2.645 8.256 -13.92 -400.8 14.08 
50 Medium High Medium Medium  2.932 -9.138 -26.59 213.9 12.02 
51 Medium High Medium High  91.24 -400.7 -0.0186 -79.48 1.231 
52 Medium High High Low  27.51 -119.4 -0.08227 -50.49 -0.981 
53 Medium High High Medium  85.98 -319.8 0.9399 41.63 0.1614 
54 Medium High High High  -334.6 1565 0.04873 -0.5903 0.2768 



 Chapter 8: Modelling ASP using KSOM-ANFIS  
___________________________________________________________________________ 

 233 

Table 8.9 Continue 
Rule Antecedent (If) Consequent Parameters Rule Number 
BOD-
Load 

RAS-
MLSS 

F/M Temp. 
Then 

a1 a2 a3 a4 a0 

55 High Low Low Low  -529.2 -249.5 -0.003354 0.3187 -0.02806 
56 High Low Low Medium  620.3 -3042 0.03459 -21.08 -0.2247 
57 High Low Low High  133.3 -125.6 0.02509 21.75 0.1826 
58 High Low Medium Low  288.6 -1946 -0.1056 -4.567 -0.5193 
59 High Low Medium Medium  -60.23 296.8 -0.3838 4.577 -0.2681 
60 High Low Medium High  38.45 -218.4 -0.1018 -60.39 -0.5869 
61 High Low High Low  114.5 -919.4 -0.3956 18.62 0.001931 
62 High Low High Medium  -10.09 66.95 -1.572 -73.31 -0.7882 
63 High Low High High  -277 1730 -0.09642 1.498 0.06121 
64 High Medium Low Low  -438.1 1618 0.2217 5.585 0.2336 
65 High Medium Low Medium  47.71 -169.1 0.5543 -16.35 -0.6082 
66 High Medium Low High  -29.82 -319 -0.005186 10.97 -0.3395 
67 High Medium Medium Low  41.65 -154.6 -0.1154 2.106 2.108 
68 High Medium Medium Medium  30.52 -147.3 -2.364 52.08 -1.395 
69 High Medium Medium High  -41.42 208.1 -0.1288 -21.43 0.9559 
70 High Medium High Low  84.29 -489.9 -1.092 2.629 -1.629 
71 High Medium High Medium  11.55 -77.51 -2.435 -125.7 -0.7623 
72 High Medium High High  8.38 -50.28 0.3089 31.38 1.376 
73 High High Low Low  133.5 -435.6 0.1543 -5.253 0.08619 
74 High High Low Medium  116.3 -205.7 0.3183 3.329 0.1459 
75 High High Low High  -155.7 -125.4 0.0004806 -0.3384 -0.01498 
76 High High Medium Low  -12.92 52.66 0.2382 125.8 5.846 
77 High High Medium Medium  -16.52 41.95 -0.3145 78.84 1.154 
78 High High Medium High  -99.72 208.3 -0.03955 -5.604 -0.09403 
79 High High High Low  -8.541 51.79 0.4702 228.6 4.584 
80 High High High Medium  -44.53 254.6 0.09065 23.1 1.051 
81 High High High High  18.32 176.6 -0.01171 -3.323 -0.09995 
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Figure 8.4 Fuzzy inference diagram for  model number 10 predicting effluent BOD5. 
the user just need to put the input values to get the output value as seen from the 
figure. 
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Figure 8.5 The time series plots of the observed and predicted BOD during training, 

validation and testing data sets for model number 10.  

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

E
ff
lu

en
t 
S
S
 

(m
g/

l) 
  
  
 

520 540 560 580 600 620 640 660 680 700
0

20

40

60

80

E
ff
lu

en
t 
S
S
 

(m
g/

l) 
  
  
 

750 800 850 900 950 1000 1050
0

20

40

60

80

100

Data Number

E
ff
lu

en
t 
S
S

 (
m

g/
l) 

  
 

Observed Effluent SS

Predicted Effluent SS

 

Figure 8.6 The time series plots of the observed and predicted SS during training, 

validation and testing data sets for model number 10 
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Figure 8.7 Residuals analysis of the BOD model during training, validation and 

testing for model number 10 
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Figure 8.8 Residuals analysis of the SS model during training, validation and testing 

for model number 10 
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Figure 8.9a The scatter plot of modelled versus observed during training for model 

number 10  
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Figure 8.9b The scatter plot of modelled versus observed during for model number 10  
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Figure 8.9c The scatter plot of modelled versus observed during  testing for model 

number 10  
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Figure 8.10a The scatter plot of modelled versus observed during training for model 

number 10 
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Figure 8.10b The scatter plot of modelled versus observed during validation for 

model number 10 
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Figure 8.10c The scatter plot of modelled versus observed during  testing for model 

number 10. 



 

CHAPTER 9 

DISCUSSION AND CONCLUSIONS 

 

9.1 Discussion 

Modelling the activated sludge process can improve the performance of 

wastewater treatment plant and can lead to a better understanding of the system. 

However, the complexity and uncertainty in the process make the task somewhat 

complicated using traditional deterministic models. Their exists another set of 

modelling techniques, known as artificial intelligence or data driven techniques, 

which require no prior knowledge of the structure or state of the system. 

However, the quality of these techniques depends strongly on the quality of the 

data.  

The advantages of AI models are that these models are able to predict the 

effluent concentrations without the previous knowledge of the system. In 

addition, assumptions about the mathematical relationships between inputs and 

outputs are not needed. Furthermore,   these models are able to recognize the 

relationships between the inputs and outputs without explicitly considering the 

physics of process.   

The main aim of this research work was to test the hypothesis that AI techniques 

can be used for modelling the activated sludge wastewater treatment plants. 

Consequently, the objectives of this study were to investigate the efficiency of 

KSOM in improving the data driven techniques developed in this study. Other 

objectives were also inherent in this project, namely preparation of the data to 

eliminate the effect of noise and missing values and developing a software sensor 

to predict the biological oxygen demand.  
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The study has provided a systematic and thorough approach to achieve the 

highlighted objectives. A variety of intelligent models were developed and 

applied, and significant differences between KSOM, ANN, and ANFIS were 

highlighted.  

9.1.1 Data preparation 

Measurement data collected at real wastewater treatment plants are often 

distorted by noise, outliers, and missing values. This calls for validation and 

reconstruction of data prior to any thorough analysis. In application I, the 

activated sludge data obtained from the Seafield activated sludge wastewater 

treatment plant Edinburgh, UK during a period of about three years have been 

modelled to replace outliers and missing values using the Kohonen Self 

Organising Map (KSOM). After the iterative training of the KSOM, each of the 

1066 samples was associated with an output unit known as the best map unit 

(BMU). The outliers or missing values were then replaced with the 

corresponding component from the BMU. The results demonstrated that the 

KSOM is an excellent tool for replacing outliers and missing values in high 

dimensional data sets. The predicted missing values are plausible and show a 

trend not dissimilar to that of the observed measurements.  These results cannot 

be obtained from traditional time series models due to the multivariate, time 

varying and highly non-linear nature of the process. The method is simple, 

computationally efficient and highly accurate.  

9.1.2 Features extraction and data visualization  

The most important issue in modelling the wastewater treatment plant using AI 

techniques is the quality of the data. Therefore, even when missing values and 

outliers have been dealt with as above, the ensuing data record still contains 

significant noise that must be filtered.  Therefore, features of the data need to be 

extracted. Furthermore, when it is decided to use data set to build the activated 
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sludge model, the first logical step was to have a general view of the possible 

major relationships between variables. For these two purposes, multidimensional 

features extraction tools had to be developed in order to extract the features and 

present it in an understandable form.  

The KSOM was applied for extracting features from the raw data. Then these 

features are organised in an understandable way using the component planes. 

These visualizations enable the human eyes to explore these large amounts of 

data and discover the complex correlation between process variables for 

diagnosing the potential cause for upset situations in the activated sludge 

wastewater treatment plant. The component planes of the KSOM reveal the 

complex relationship between the process variables without any extra 

information about the mechanism of this complex system. The results 

demonstrated the efficiency of KSOM as a tool for the discovery of correlations 

between large data sets, as well as the visualization of such correlations, thus 

making it easy to immediately identify cause-effect correlations between process 

variables.  

9.1.3 Software sensor for fast predicting of BOD5 

Application II of the study presented a completely novel methodology based on 

the use of the Kohonen self-organizing map (KSOM) models to predict five-days 

@ 20°C biochemical oxygen demand (BOD) concentrations in wastewater, using 

raw sewage data obtained at three wastewater treatment plants in Scotland. 

Extensive testing and validation of the model shows that the model is sufficiently 

general to predict the BOD readily using variables which can be measured within 

three hours or in real-time using on-line hardware sensors, thus making it 

possible to estimate BOD very rapidly. This allows for a timely intervention and 

cost reduction during problem diagnosis. 
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The proposed BOD software sensor methodology is preferred over BOD 

biosensors because the BOD can be estimated directly and no costly maintenance 

is required. The software sensor does not require calibration and cannot be 

negatively affected by toxins and other inhibitors. Moreover, the software sensor 

is very dynamic and can be readily updated when additional data become 

available, thus enhancing its accuracy. The KSOM tool used for the development 

of the software sensor can readily deal with missing values in one or more of the 

input variables without significantly impacting on the accuracy of the model.  

9.1.4 Modelling ASP using AI paradigms  

Application III used a new methodology based on a hybrid supervised-

unsupervised artificial neural network to improve the performance of the basic 

backpropagation neural network method in modelling the activated sludge 

wastewater treatment plant. Input variables were selected based on their 

correlation with the effluent BOD and SS, which were the target prediction 

variables. Several ANN models with different numbers of neurons in the hidden 

layers were developed. For each model, two types of data were used, the first one 

is the raw data set, and the second one is the extracted features of the raw data 

using the Kohonen self-organising map. The results showed that the models 

using the features were better than those using the raw data. 

The findings prove the ability of KSOM to improve the performance of 

modelling using basic back-propagation neural networks, particularly when the 

available data are noisy, a common problem with the process data of wastewater 

treatment plants. Furthermore, the KSOM can readily deal with missing values in 

one or more of the input variables without significantly negative impacts on the 

accuracy of the model. Results obtained provide that KSOM-ANN present a 

versatile tool in modelling ASP and provided an alternative methodology for 
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predicting the performance of WWTPs. The results also stated that the best ANN 

structure did not necessarily mean the most number of hidden neurons.  

The results indicated that the KSOM extracted features improve the performance 

of backpropagation multilayer perceptron. The learning algorithms were found to 

be suitable for modelling ASP. However, the concept or knowledge cannot be 

clearly expressed in a human understandable way in the form of if-then rules. In 

contrast, Fuzzy logic systems (FLS) are more favourable, in that their behaviours 

can be explained using fuzzy rules. In addition, FLSs can easily be interpreted in 

human understandable terms rather than with numerical quantities. In other 

words, fuzzy logic models depend not only on black box such as ANN, but are 

also based on a combination of knowledge of the system and operational 

experience.  

Therefore, due to the power of KSOM in enhancing the performance of ANN, 

the last application of this work investigates the possibility of integrating the 

KSOM with ANFIS in order to improve the performance of the ANFIS trained 

with raw data.  The ANFIS allows fuzzy rules to be extracted and the ANN 

enabled optimised fuzzy membership functions to be determined. The results 

indicate that the KSOM-ANFIS not only outperforms the basic ANFIS model in 

modelling capability with different number of inputs and different number of 

fuzzy membership functions, it is unhindered by missing values or gaps in the 

data.  

A comparison between different modelling strategies is illustrated in Table 9.1 

and 9.2. It can be seen that the performance of the models is better using the 

features than using the raw data. Indeed, the performance of the models can 

increase by more than 30% based on the correlation coefficient criterion. The 

results also indicated that KSOM-ANFIS was the best strategy in modelling the 

activated sludge process as it provides a correlation of more than 80%. 
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Table 9.1 Comparison of statistical coefficient for effluent BOD for the best 
model for each category of models 
Modelling Type MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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ANN  
(Raw) 22.73 17.01 17.64 3.60 2.88 3.09 49.54 51.71 32.02 

KSOM-ANN 
(Features) 10.34 11.54 11.37 2.32 2.41 2.51 81.80 68.31 65.49 

ANFIS 
 (Raw) 17.44 13.41 14.00 3.05 2.57 2.85 62.06 61.99 53.05 
KSOM-ANFIS 
(Features) 5.44 7.07 5.53 1.79 1.96 1.77 89.78 82.32 84.67 

 
Table 9.2 Comparison of statistical coefficient for effluent SS for the best model 
with each category of models 
Model Number MSE (mg/l)2 AAE (mg/l) Correlation (R) % 
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ANN  
(Raw) 230.48 134.09 222.94 11.31 8.67 11.51 45.68 58.53 42.25 

KSOM-ANN 
(Features) 121.04 106.20 162.73 7.62 7.51 8.49 78.32 67.53 65.04 

ANFIS 
 (Raw) 182.33 121.89 174.17 10.02 8.01 9.91 64.12 60.85 59.71 
KSOM-ANFIS 
(Features) 70.44 56.33 60.52 6.22 5.65 6.54 87.94 84.31 87.34 
 

 

It must be stressed here that modelling the activated sludge wastewater treatment 

plant as performed in this work is an alternative to the more widely used 

approach base on deterministic mathematical modelling. However, it is an 

alternative, and it is difficult to be compared with the traditional methods as it 

follows different modelling paradigms. While the traditional methods are useful 

for the design, the new approach is useful for operation. The results obtained 

from this study provide useful information for a process engineer who is faced 
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with improving the performance of the WWTP because the KSOM can reveal the 

complex dependencies among process variables which can be used to solve the 

operational problems in WWTP. In addition, the AI models developed in this 

study can aid the operator to predict the performance of the plant as well as fast 

predict the BOD values which is the key parameter in the operation of the 

treatment works. This will enable the operator to make some adjustments to 

prevent the failure of the works in case of overloading of influent concentrations 

or flow. Therefore, the operator will have enough time to take action for solving 

the problems such as manipulating RAS, WAS, etc.  

Although the success of the developed models so far is evident, they suffer from 

limitations which will affect their ability to give correct answers about the 

behaviour of the system under a new set of circumstances. The models may have 

been capable of predicting the correct output if the inputs are close to the features 

of training data; otherwise such cannot be guaranteed. In other words, the models 

may not able to simulate outputs outside the range of those they were trained 

with, i.e. they could prove to be poor extrapolation.  Therefore, care must be 

taken when extrapolating these results to other nonlinear systems.  

Furthermore, there are problems concerned with identifying the AI elements and 

parameters. Examples of the elements and parameters include the number of 

hidden layers, the number of neurons in each layer, training function, and 

transfer function in case of ANN and the number and shape of fuzzy membership 

function in case of ANFIS. Therefore, finding the best general model is time 

consuming as it is highly empirical, and the only way to optimize the models is 

by searching for the best network parameters through trials. In addition, the 

model parameters need to be re-calibrated from time to time, in order to make 

sure that the model maintains an adequate description of the process. 
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9.2 Conclusions  
 

The specific conclusions of this study are: 

9.2.1. The use of AI techniques for modelling the complex nature of activated 

sludge wastewater treatment has been shown to be feasible. Because 

these tools are essentially data-driven and do not require a priori 

specification of the mathematical form of the processes, they reduce the 

numerous uncertainties  associated with traditional mechanistic modelling 

especially with regards to the model identification and parameter 

estimation of such models. 

9.2.2.  The AI models developed in this work appear to be unaffected by 

missing values or outliers; consequently they could be applied to any 

treatment works with minor modification irrespective of the state or 

completeness of the available data. This is a major advantage since most 

process data records have some gaps in them.  

9.2.3.  The work has developed a software sensor for the BOD5, the single most 

important water quality parameter used for assessing wastewater bio-

treatability, monitoring effluent quality for the purpose of water pollution 

control and for assessing the overall performance of wastewater treatment 

plants. Contrary to the usual 5-days delay of traditional BOD5 bioassay 

techniques, the software sensor produces almost instantaneous estimate of 

BOD5 using simple and readily available water quality parameters. This 

is  a major development as it makes it possible to use the BOD5 for real 

time operational control of wastewater treatment. This aspect of the work 

has been published in the Journal of Water Environment Research. 
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9.2.4.  The use of the KSOM for the analysis and visualisation of large 

dimensional dataset has resulted in the prediction of missing values in 

data sets. The clustering capability of the KSOM means that such missing 

values maintain the multivariate correlation existing in the data and are 

hence the most accurate estimate possible for the missing data. The 

scarcity of water quality data and the huge expenses associated with its 

collection mean that data vectors with missing elements cannot be 

discarded; robust estimates for such missing values must be found.    

9.2.5.  Another significant output of the study is the advantage it has taken of 

the power of the KSOM to extract the essential features in a huge data 

base, thus producing “noiseless” data that essentially improve modelling 

performance. The superiority of modelling with the features-extracted 

data over raw data was clearly demonstrated in the work, leading to better 

models of wastewater treatment plants. 

9.2.6.  The imprecision associated with wastewater process data are better 

addressed using fuzzy inference modelling techniques. However, while 

the use of fuzzy logic in engineering applications is numerous, there 

remains the problem with establishing the membership functions. This 

difficulty was largely tackled in this work by combining the power of 

artificial neural networks with the linguistic capability of fuzzy inference 

system in order to optimise the membership functions and eliminate the 

traditional trial-and-error procedures. The resulting fuzzy model of the 

wastewater treatment plant was therefore more accurate but less onerous 

to develop. 

9.2.7. While  data driven modelling techniques- ANN, KSOM, fuzzy logic- are 

relatively adequate in their own right as demonstrated in numerous areas 

of this thesis, better performance often results when hybrids (or 
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combinations) of these tools are used. Thus, as shown in the work, 

combining ANN with KSOM extracted features of the data produced a 

much more improved model performance than if the ANN was 

implemented directly on the raw data. A similar observation was 

observed when ANFIS was combined with the KSOM extracted features. 

The reason for the enhanced performance when features are used is that 

the features are essentially “noiseless” data whereas the raw data contain 

a lot of noise. It is therefore proposed that future modelling using data 

driven techniques should take advantage of the sort of hybridisation 

tested in this work. 

9.2.8.  Because the simulation results are quite encouraging, it is believed that 

the proposed methodology is generic enough for applying to many other 

types of WWTP with minor modifications using different set of data. 

Hence, research will be pursued further in order to test the models in real 

time operation of activated sludge wastewater treatment plants.  

9.3 Recommendation for further work  

Despite the success recorded in this work, there are certain aspects which have 

been identified and would benefit from further investigations. Consequently, the 

following are suggested as areas for further work: 

9.3.1 Although the extracted features of KSOM enhanced the performance of 

back propagation ANN and ANFIS, the input data cannot propagate directly 

from the input of the KSOM to an output of the ANN or ANFIS as the task were 

performed separately in this work. Therefore, developing a single model that 

incorporates the features and the ANN or ANFIS is one of the major open 

research issues. 
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9.3.2. Although satisfactory results have been obtained based on integrated 

KSOM-ANN and KSOM-ANFIS to deal with noise and missing values, the 

robustness of the developed models has not yet been analysed mathematically, 

for example, the effect of the number of missing values in each vector. Such an 

analysis together with further experimentation would be worth pursuing to prove 

conclusively the general validity of the proposed schemes. 

9.3.2 The trial and error approach developed in this work to optimise the 

structure of ANN and ANFIS could be replaced by another search technique such 

as genetic algorithms.    

9.3.3 Applying other fault diagnosis techniques could provide more information 

about the quality of the data and other ways to improve  the performance of the 

developed models. 

9.3.4. It seems likely that a relationship between BOD and other relevant 

information such as conductivity, turbidity, DO, etc. could be used to develop a 

software sensor and a sensitivity analysis could be performed in order to obtain 

the best model. 

9.3.5. As discussed in the chapter 3, there exist a several types of features 

extraction techniques, such as PCA. The application of these features extraction 

on the same data and a comparison with the developed models is a good future 

research. 

9.3.6. Further studies using data from plants with wider ranges of features will 

ensure that models developed are sufficiently general to be applied to most 

activated sludge plants. Moreover, new input variables likely to affect the 

performance of the plant with respect to nitrogen and phosphorus would 

constitute a logical extension of this work. 
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9.3.7. Further validation of the model with more unseen data is necessary so as to 

ensure a rich level of accuracy, consistency and reliability of the models. 

9.3.8. The modelled effluent quality in this work was restricted to the BOD5 and 

SS. Given other quality parameter are now included in consents, e.g. nutrients, 

heavy metals, it will be good if models for these are developed as well. This, 

however, would require dedicated intensive monitoring and huge cost, since 

some of these variables are not routinely monitored for most treatment works.  

9.3.9. Developing the same techniques for different kinds of wastewater 

treatment plants such as trickling filter, aeration ponds, etc.  

9.3.10. Using different neural network structures: the ANNs developed in this 

study were restricted to just backpropagation neural networks with one hidden 

layer. While this proved adequate, there are many types of training algorithms 

possible, e.g. recurrent neural network, radial basis networks, etc., each of which 

has different advantages and disadvantages. Therefore, it is suggested to use 

these algorithms in the developed models; if only to test the sensitivity of the 

results to changes in the model assumptions. 

9.3.11. A software sensor for BOD5 was developed. However, as outlined in the 

thesis, a number of hardware sensors for BOD5 have been developed and are 

being used. A comparative study on the relative efficacy of the software and 

hardware sensors would also represent an interesting area of further research.  

9.3.12. If data-driven modelling techniques are going to have a foothold in 

wastewater treatment practice, then the data required for calibrating and 

validating these models must be available. Whilst this study was fortunate to 

have been supported by an organisation that has invested heavily in short-term, 

intensive monitoring of its works, this is often an exception and not a rule even in 

a developed economy such as the UK. Thus another support for further 
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investment in monitoring wastewater treatment plants so as to make data 

available for model development is appropriate.  
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