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ABSTRACT

Activated sludge process (ASP) is the most commardgd biological wastewater
treatment system. Mathematical modelling of thiscpsss is important for improving its
treatment efficiency and thus the quality of thidueht released into the receiving water
body. This is because the models can help the wpewapredict the performance of the
plant in order to take cost-effective and timelyneglial actions that would ensure
consistent treatment efficiency and meeting digghatonsents. However, due to the
highly complex and non-linear characteristics ofs thiological system, traditional

mathematical modelling of this treatment processrbeanained a challenge.

This thesis presents the applications of Artificlatelligence (Al) techniques for
modelling the ASP. These include the Kohonen Seaia@ising Map (KSOM),
backpropagation artificial neural networks (BPANBIn adaptive network based fuzzy
inference system (ANFIS). A comparison betweengheshniques has been made and

the possibility of the hybrids between them was @vestigated and tested.

The study demonstrated that Al techniques offebleigflexible and effective modelling
methodology alternative for the activated sludgstay. The KSOM was found to be
an attractive tool for data preparation becausauit easily accommodate missing data
and outliers and because of its power in extracagent features from raw data. As a
consequence of the latter, the KSOM offers an éxaetool for the visualisation of
high dimensional data. In addition, the KSOM wasdu® develop a software sensor to
predict biological oxygen demand. This soft-sens@resents a significant advance in
real-time BOD operational control by offering a ydast estimation of this important
wastewater parameter when compared to the tradltibrdays bio-essay BOD test
procedure. Furthermore, hybrids of KSOM-ANN and KBEBANFIS were shown to
result much more improved model performance thanguthe respective modelling

paradigms on their own.
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CHAPTER 1

INTRODUCTION

1.1 Problem background

Increased regulations, through such as the EU urvastewater treatment
directive (EEC, 1991), to protect the environmantl water bodies have led to
growing demands to reduce point source pollutiopaats on the quality of

receiving water ecosystem. Compounding the problemes increasing plant
loadings due to the growth of urban areas whichnei¢lhat existing facilities are
now operating close to the limit of their designpaeity. In addition, the

privatisation of water industry, in the UK for expl®, has led to increased
pressures for efficient design and operation oftewaater treatment plants, and

other cost saving initiatives.

Achieving the desired protection and/or enhancensémeceiving water quality

will be either improving the performance of exigtiwastewater treatment plants
or the construction of new facilities, as illusedtin Figure 1.1. The second
approach is costly, as the capital expenditureireddor the construction of new
wastewater treatment facilities is very high and tequired land may not be
available due to planning and environmental coimgga The time scale involved
is also such that this option is not feasible m short-to-medium term. Hence the
first approach, which if properly done, can impra&fuent water quality, reduce
the need of chemicals and save energy and opeastiosts (Olsson et al., 2005;

Vanrolleghm, 2001; 1998; Majalli et al, 2007).
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Figure 1.1 Problems and solutions for wastewater treatmentipla

Therefore, sustainable solution to the problemswaktewater treatment will
require the development of adequate informationtesysfor control and
supervision of the process. However, because aati@mns in raw wastewater
composition, as well as the changing and compléxraaf the biological system
of the activated sludge process, the operation aordrol of activated sludge
wastewater treatment plants is quite complicatad §Rd Hung, 1995b). This
reality has encouraged environmental engineersd¢onew modelling techniques
to improve plant operation and control by designipgrational control systems
for qualitative and quantitative description of thgnamic behaviour of treatment
plants. Such systems help the process engine@ntged unsatisfactory dynamic
behaviour into satisfactory behaviour, thus redg@perational costs for meeting
the requirement of regulatory agencies and minmgisiny adverse effects on the
environment. Indeed, the mathematical modellinghef activated sludge process
is a useful tool for the optimal control, mainlycaeise the effects of adjusting the
operating variables can be studied far more quioklya computer than by doing

experiments (Andrews, 1992; 1994). By using theedats to simulate the effect
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Chapter 1: Introduction

of possible correction actions, it is possible d@pidly respond to any change in
the process, and devise an operational strategghvdan move the plant to new
operating condition that improves its stabilitye tuality of the effluent and at the

same time achieve reduction in the running costs.

Several efforts have been devoted to the modedifrthe activated sludge process
using mechanistic models as summarised by Lessadd Beck (1993) and
Manfred et al. (2002); these are also discussethamne detail in Chapter 2.
However, most of the models have been proposedintolate the dynamic
behaviour of the biological reactor and the secondwttler as if they were
separable, independent units; very few models laeed at the interconnection
between these two units (Dupont and Henze, 199&hddeet al, 2004). Moreover,
the models were developed using data obtained undetrolled laboratory
conditions and are therefore more suitable fordigign of treatment plants and
may not be suitable for operational control (Nok8002). More importantly, very
few of them have been validated with real fieldadé€Cote, 1995; Han and
Kamber, 2001; Majalli, 2007).

Thus, while models are vital for the effective aohtof wastewater treatment
plants, the limitations of the currently availabteodels necessitate more
investigations in this field. One possibility, whibas received increased attention
recently, is the use of artificial intelligence §Amodelling techniques. Al
approaches are suitable for modelling the compitivated sludge process due to
their learning ability to construct nonlinear radaships that can explain the
complex relationships within the data without th#icult task of dealing with
deterministic non-linear mathematics (Hamed et 2004). In addition, Al
techniques can deal with complexity and uncertagftyhe system in a manner
similar to the human way of thinking and reasonifagrthermore, Al models have

the ability to generalize the input-output relasbip to produce an output when

13



Chapter 1: Introduction

presented with previously unseen inputs. Althouggit tmight be possible with
mechanistic models properly calibrated and valdiateut mechanistic models
require so much data that their effective caliloratand validation are always
difficult if not impossible. There is also the un@enty associated with model
identification for mechanistic models, i.e. The exdorm of the functional

relationship is unknown and so whatever mathemagéggpression is postulated
for the unknown relationship, it bound to be a megsproximation. Al techniques
on the other hand are data-driven techniques aetk tls no requirement to
specify the mathematical form of the relationshging modelled. Among the
commonly used Al tools and techniques are Fuzzyid.aystem (FLS) and

artificial neural networks (ANN), both of which haplayed an important role in
the development of models for complex Environmestatems (Esteves, 2002;

Cinar, 2005).

The fundamental and complementary characteristicRizzy logic and ANNs
techniques have led researchers to combine themamintegrated system termed
Fuzzy Neural Network (FNN). FNN combines the beseaff both NNs and FLSs
by bringing together the learning and the compatafpowers of NNs and the
high level human-like thinking and reasoning of EL& addition, FNNs do have
other characteristics that make them such a versatiol in modelling
applications namely, highly parallel structure ignpy a certain level of fault

tolerance and the natural ease in dealing withiawiable systems (Jang, 1993).

This thesis does not go deep into many technicales relating to the Al
techniques as there are a plethora of excellehtt@oks on the subject. Rather it
merely utilized the most commonly used, well knowand easily understood of
these techniques, namely Multi-Layered Perceptndificéal neural networks,

Kohonen Self Organizing Maps (KSOM), and Fuzzy ¢ogystem to demonstrate
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their feasibility for modelling complex environmahtsystems such as the

activated sludge system (Jang, 1993).

1.2 Aim and Objectives

The aim of the work presented in this thesis isptovide a systematic and
thorough approach to the development of artificigklligence techniques in
modelling and monitoring the activated sludge waater treatment plants and to
show the potential of hybrid systems of these tephes to deal with the
complexity and uncertainty in the process. Thhs, gpecific objectives of the

study are:

1. To apply Kohonen Self Organising map (KSOM), unsuged neural
networks, to pre-process high-dimensional datactvated sludge process
for the sole purpose of predicting the missingugal and replacing
identified outliers which are sample values thdtedinotably from the
mean of the measurement series, taking into accthentmultivariate

nature of the system.

2. To apply KSOM to extract the salient features afhhdimensional data,
Activated sludge data, by removing the noise addmdant information in
the available data and to visualise the correlatetween wastewater

treatment parameters in the resulting low dimeradidata space.

3. To develop a software sensor for the rapid premhctwf biochemical
oxygen demand, based on finding its correlatiorhwither water quality
variables, in order to facilitate the use of thasrgmeter for real time

monitoring and control of the activated sludge psx
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4. To develop integrated unsupervised-supervised iéiglfNeural Network
models that improve the performance of ANN modkisugh the use of

KSOM feature extracted data.

5. To develop integrated fuzzy-neural networks for elldg of the
activated sludge process in order to absorb tharddges of both fuzzy
logic and neural network in order to improve thediction capability of

the model.

1.3 Structureof thethesis

The thesis is divided into nine chapters. Goinmgulgh the thesis, the reader will
be confronted with such widely varying disciplirees civil engineering, software
engineering, microbiology, numerical analysis, coinéngineering, mathematical
modelling, statistics, environmental and chemicajieeering, and probably some

more.

Chapter 2, Activated Sludge Wastewater TreatmesteBys, reviews the basics
of activated sludge wastewater treatment plantqrdsents the importance of
wastewater treatment and its history and the straatf a conventional activated
sludge wastewater treatment plant. The biochemistry microbiology of the
process are described. A review of activated sludhgelelling techniques are
presented. Finally the use of artificial intelligeechnigues as a tool to model and

control such processes is also reviewed.

Chapter 3, Atrtificial Intelligence Techniques (Al)overs the essential
background for understanding the subsequent clagdriefly introduced. The
main context of the chapter is an overview of lthgic of Al techniques used in

this study, namely, backpropagation Artificial nelunetworks, Kohonen features
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map (Kohonen self organising map) and fuzzy logibe hybrid modelling

systems are also presented and discussed.

In chapter 4, Method and materials, the sourceth®fdata sets used to develop
the models in this study and the associated tredtmerks are described. The
chapter also descries the data treatment methadls @esents how to use the
MATLAB programming language to program the Al madeleveloped in this

study. Models performance evaluation criteria dse discussed in this chapter.

In essence therefore, the first four chapters haoxered all that is needed to
know about the theoretical basis of the methodqldg data and the various
assumptions inherent in the subsequent analysifedanut. Consequently, the
next chapters are presented as applications girthaously described tools to the

case study data and treatment works.

Chapter 5 contains Application 1 and presents éselts of applying Kohonen
Self-Organising Map (KSOM), unsupervised Neuralwdeks, for predicting the
missing values and for replacing outliers of theetiseries data. This task is the
first step in modelling the activated sludge wastew treatment plants using

intelligent techniques such as Fuzzy Logic andfisiéil Neural Networks.

Application 2 is in Chapter 6 and presents a cotaplenovel methodology based
on the use of the Kohonen self-organizing map (K§Qibdels to predict
biochemical oxygen demand (B@Dconcentrations in wastewater. Extensive
testing and validation of the model shows thatrtfwelel is sufficiently general to
predict the BOD readily using variables, which can be measuredtiwithree
hours or in real-time using on-line hardware sesistius making it possible to
estimate BODR very rapidly. This allows for a timely interventioand cost

reduction during problem diagnosis.
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The third Application is contained in Chapter 7, déting ASP using hybrid

KSOM-ANN, which presents the use of a new methagiplbased on a hybrid
supervised-unsupervised artificial neural netwarkniprove the performance of
the basic backpropagation neural network methodnodelling the activated
sludge wastewater treatment plant. The findingygrhe ability of KSOM to

improve the performance of modelling using basickbharopagation neural
networks, by extracting salient features from ald# noisy data which is a

common problem with the process data of wastewestatment plants.

The final Application is in Chapter 8, Modelling RSusing hybrid KSOM-
ANFIS, and demonstrates the use of ANFIS for maagglvastewater treatment
plants. The ANFIS allows fuzzy rules to be extrdcand the ANN enabled
optimised fuzzy membership functions to be deteeaijra significant important
over the traditional trial-and-error method of tteveloping such membership
functions. The results indicate that the KSOM-ANFIg/brid not only
outperforms the basic ANFIS model in modelling daliy with different
number of inputs and different number of fuzzy memship functions, it is also

unhindered by missing values or gaps in the data.

Chapter 9 documents the discussion, conclusionsesmminmendations for further

research.
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CHAPTER 2

ACTIVATED SLUDGE WASTEWATER TREATMENT
SYSTEMS

2.1 Importance of wastewater treatment

Water is special. Every living thing on earth- mierganisms, plants, animals,
human and even our brain consists mostly of wateaddition, water is used for
numerous purposes, for example domestic consumpithalustrial production,
irrigation, transport of material, energy produnt@s well as cleaning. However,
although more than 70% of the earth’s surface v@d by water, only 0.5% of
this is suitable for all human uses (Gleick, 1998his small fraction is
diminishing as agriculture, industry, and domesgeds consume more and more
of this small fraction, while the wastes generatedstitute pollutants that further
degrade the quality of the available water, thusleeing it unfit for purpose. That
is because wastewater contains a considerable d@nwdunrganic materials,
which, if discharged in large quantities to theeieing water bodies, would cause
depletion of the dissolved oxygen levels and o#rerironmental problems. This
may lead to the environment becoming uninhabitédridnigher life forms such as
fish. In addition, toxic materials may be present do industrial components

(Metcalf & Eddy, 2003).

Therefore, in order to protect the environment austain life, wastewater must
be adequately treated prior to being dischargedpdrticular, the biological

treatment of wastewater helps to reduce the orgemitent of the wastewater,
thus limiting its dissolved oxygen impacts in thexeiving water body. Other

benefits of biological wastewater treatment systanesMetcalf and Eddy, 2003):
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* Prevention of disease and nuisance conditions;

* Avoidance of contamination of potable water supplie

« Maintenance of clean water for survival of fishthdag, and recreation;
* General conservation of water, soil, and even @ity for future use;

* Reduction of ammonia concentration and hencepiigity to aquatic life

forms, e.qg. fish;

« Elimination of other problems caused by excessigen compounds,
e.g. cancer, blue-baby syndrome, and increasedimbldemands during

disinfection;

Although there are several methods of biologicastenater treatment, the most
often used is the activated sludge biological tregit system (Spellman, 2003).
This process is capable of removing soluble antiqoéaite carbon, nitrogen and
in some cases phosphorus from domestic sewage cisémgical treatment. In the
following sections, further details about the higtof wastewater treatment in
general and the activated sludge system in paaticate given. The chapter

concludes with the state of the art in modelling pinocess.

2.2 Brief history of wastewater treatment

Although the earliest sewers known in the worldeviére great underground drain
of ancient Rome, wastewater treatment is a compahatrecent development
dating from the late 1800s and early 1900 (Spellm2®03). In England,
wastewater treatment did not receive much attentiotil the construction of
sewerage systems in the mid-1800 after the chalergue, which claimed over
25,000 victims between 1848 and 1854 (Cooper, 2@2jause of the relatively

small sizes of the British rivers, untreated wast®wvdischarged into them readily
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became a nuisance. As the rivers became pollutédrenamount of land suited
for wastewater disposal by irrigation was limitéde development of intensive

methods of wastewater treatment became imperative.

In the United States, wastewater treatment andodapdid not receive as much
attention as in England because the extent of fimflucaused by wastewater
discharged into the relatively large bodies of watas little and because of the
wide areas available for land treatment of wastenggpellman, 2003). The first
septic tanks used in the US, according to Spell(8803), were reported in 1876,
and in 1887 the Lawrence Experiment station wasabéished by the

Massachusetts State Board of Health to study botiterwand wastewater

treatment (Department of Army, 1975, reported bglpan, 2003).

The first idea of recovery of water quality througteatment was based on
physical means, such as dilution and sedimentaBipaeliman (2003) reported that
the first wastewater treatment plant in Germanaiikfurt/Main based on grit

removal, screens, settling tank) was put into dpmraas late as 1887 (see also
Seeger, 1999). However, this became insufficienti@ss became larger and the
environmental standards become more stringent Withe. This led to

improvement in treating through the developmeriiofogical treatment systems
such as trickling filters or biological beds, whidate back to the late 19th century

and further developed and improved in the earfy @ntury.

Another breakthrough in biological treatment of ager was the discovery that
supplemented aeration of wastewater resulted itetb@nd faster purification.
Thus, in the beginning of the ®@entury, experiments were carried out on what
was called the activated sludge process, whichdisgovered in 1913 by Ardern
and Locket from laboratory experiments at Davyhultneatment plant in

Manchester, England (Cooper, 2002). It was naméidaaed sludge because it
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involves the production of an activated mass of rthiero-organisms capable of
stabilizing a waste aerobically. Many versions fté priginal process are in use
today, but fundamentally, they are all similar. Fetample, activated sludge
processes that have two or more aeration tanksbeajesigned to operate in a
variety of modes of operation. The feed point ofnary clarifier effluent or

activated sludge influent and return activated gdudietermine the mode of
operation. Modes of operation include complete rpixig-flow, step feed, and

contact stabilisation as illustrated in Figure 2.1.

Later on, chemical additions were introduced taease the settleability of the
waste during clarification. Furthermore, in somassiéve areas, tertiary treatment
such as nitrogen removal techniques and sandtifitrare introduced in order to
improve the overall performance of the treatmemnfd. During the last few

decades, wastewater treatment has become an iadbéisigh complexity.

2.3 The Structure of Wastewater Treatment Plant

In modern wastewater treatment plants, treatmergeiserally carried out in
several steps before it is released to the regemviater body: physical, chemical
and biological treatment, which is used in manyedi#nt combinations (Metcalf
and Eddy, 2003; Spellman, 2003). A schematic ofpécal plant is presented in

Figure 2.2. Each of the treatment stages is destielow.

2.3.1 Preliminary treatment

In this step, mechanical treatment is applied. Thepose of preliminary
treatment is to protect plant equipment from clags jams or excessive
mechanical wear by removing large objects suchags,rcans, sanitary pads,
condoms, branches, leaves, roots, and many kindsatérials commonly known

as trash. In addition, it saves valuable space invitihe treatment plant.
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Preliminary treatment operations include screensmgedding, grit removal, pre-
aeration, chemical addition. More details can bantb in (Spellman 2003;

Metcalf and Eddy, 2003).

f 'f.:
=R

a. Complex Mix M ode b. Plug-Flow Mode

c. Step Feed/Step L oading

d. Contact stabilization

Figure 2.1 Modes of operation commonly used in the activaledge process

(after Gerardi, 2002).
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Primary Biological Secondan
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Figure 2.2 Schematic of a wastewater treatment plant basetti®@conventional
activated sludge biological treatment

2.3.2 Storm Tank

Storm tanks serve the purpose of storing sewagesfltaused by rainfall which
are in excess of the capacity either of the treatnmant or of the sewer
conveying flows to the treatment plant. Usuallystaéanks are located at the inlet
of the plant. These tanks also allow the waterestdo be partially treated by
sedimentation. The importance of the storm tankslte from the fact that they
can be used for control of the inflow to the treaminplant and for reduction of
combined sewage overflow (CSO) discharges. Alsmpstanks storm the first

foul flush.
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2.3.3 Primary treatment

The purpose of primary treatment (primary sedimt@meor primary clarification)

is to remove settleable solids and floatable malterfrom wastewater. The
efficiency of its operation influences directly thebsequent biological and sludge
treatment units. Typically, 50 to 70 % of the tatabpended solids are removed in
this stage (Spellman, 2003). Since some of thedsohre biodegradable,
biochemical oxygen demand (BOD) is also removepicglly reduced by 30 to
40% (Metcalf and Eddy, 2003; Gray, 2004). Primalgrification uses large
basins in which settling is achieved via gravitypditions. Solids that are heavier
than water and have adequate settling velocity seitle to the bottom within the
allowed detention time, while solids that are lghthan water, such as oil and
grease, float to the top. Within these basins, raeicial scrapers collect the
settled solids into a hopper where they are pumipedludge handling and
treatment facilities. The oil, grease, and otheratihg materials (scum) are
skimmed from the surface. The effluent is dischdrgeer weirs into a collection
trough and goes on to the next step in the tredtmertess. Standard retention
times are about 0.5-2 hours, while retention tirgesater than 3 hours do not
significantly improve the efficiency of the primanfarifiers (Spellman, 2003).
The primary clarifier also has an equalizing effect variations in influent
wastewater concentration. Peak concentrationsaarged due to a time lag of the

order of the retention time (Spellman 2003; Metealfl Eddy, 2003).

2.3.4 Secondary treatment

The main purpose of the secondary treatment, sorastreferred to as biological
treatment, is to provide biological oxygen demaB@D) removal beyond what is
achievable by primary treatment, and in some caonitions, nutrients are also

removed. Secondary treatment takes advantage abiligy of microorganisms to
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convert dissolved, suspended and colloidal orgar@stes (or BOD) into more
stable solids that can either be removed by segttlin discharged to the

environment without causing harm.

Biological process is based on biological cultu@say (2004) reported that many
different species have been observed to be presenihe process namely,
heterotrophic, autotrophic, yeasts, algae, fungianmfentous bacteria, and
protozoa. The organic pollutants in the wastewatwve as food and energy
sources for the microbiological culture as it grovike microbiological culture

can either grow suspended in the water phaseafiked position on a surface of

the media, as a biofilm (Metcalf and Eddy, 2003I8pan, 2003).

Fixed film systems, or the trickling filter, aregmesses that use a biological
growth that is attached to some form of media likekling filter. Wastewater

passes over or around the media where the organmsmgve and oxidize the
organic solids. The media may be stone or any othbstance that is strong
(capable of withstanding weather conditions for yng@ars), and provide a large
area for biomass growth and an open space forlagoti. On the other hand,
suspended growth systems are processes that iglegidal growth that is mixed

with the wastewater. Typically, suspended growtBteys consist of various
modifications of the activated sludge process, amdusually more compact than

the trickling filter for the same population equiMat served.

Due to the efficiency and compactness of activagkmige system for large
wastewater treatment handling, this thesis only$sed on this type of treatment
systems. Hence, more details about this system beillpresented in the next

section.
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2.4 Activated Sludge Process

The activated sludge process is the most commaseyl biological wastewater
treatment system. It mainly consists of severalogical reactors (aerated tanks),
and solid-liquid separators (secondary clarifierssettlers). It is capable of
performing four critical wastewater treatment fuows, namely: the degradation
or oxidation of carbonaceous wastes; the degradatimxidation of nitrogenous
wastes; the removal of fine solids; and the remavaheavy metals. These
functions are achieved primarily through the groatid maintenance of a large,
diverse, and active population of bacteria. Hertceansforms the biodegradable
constituents (substrate) into new biomass, carkioridk, water, and residual
organic matter using the dissolved oxygen supphgdhe aerators. The clarifier
functions are to separate the suspended solidsbamdass from the aerated
sewage and thicken the sludge before it is recytddte reactor (Spellman 2003;

Metcalf and Eddy, 2003).

As stated previously, activated sludge process lisobbgical process in which
microorganisms oxidize and mineralize organic mmattelence, the main
requirement of the activated sludge process isegpka high concentration of a
mixed culture of microorganisms, known as the mikgdor suspended solids
(MLSS), in an artificially aerated reactor. The qmition of the species of
microorganisms depends not only on the influenttevaater but also on the
operation of the wastewater treatment plant. Thereorganisms grow slowly in
the aerated tank and are kept suspended eithelownly air into the tank or by
using agitators. Oxygen is used by the microorgasig oxidize organic matter.
On leaving the aeration tank (detention time tylbyc@ hours), the MLSS enters
the secondary settling tank where it is clarified dhickened. To maintain the
microbiological population in the aeration tankrtpaf the thickened sludge from

the secondary clarifier is re-circulated back te theration tank; the surplus
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thickened sludge is then wasted. The volume ofgaucturned to the aeration
basin is normally 40 to 60% of the wastewater fldwbasic schematic of the

biological process in an activated sludge proceflistrated in Figure 2.3.

Influent

Figure 2.3 basic schematic of the biological process in anivated sludge

process.

The biomass growth rate depends on many variahleb as the amount of
biomass, the substrate, temperature, pH, and @sepce of toxins. The growth in
number and diversity of bacteria occurs over timaoreasing mean cell resident
time (MCRT) or sludge age. During this time, the B@& transformed into new
less polluting wastes and more new bacterial a#llsludge. The bacteria along
with ciliated protozoa and metazoan, remove finkdsand heavy metals from
the bulk solution. An additional and critical rofgerformed by the ciliated
protozoan and metazoan is the consumption of thepedsed cells. The
consumption of dispersed bacteria by these organismknown as cropping
action. By cropping bacteria the bacteria are resdofrom the waste stream

(Spellman 2003; Metcalf and Eddy, 2003; Gerardi ®fitty, 2002). During bio-
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reduction (decay of microorganisms), biologicallyeit (non-biodegradable)
matters are produced. Incoming wastewater will @onsome inert matter as well.
This matter flows unaffected through the procestiarcollected and removed in

the settler.

2.4.1 The Secondary Clarifier

The secondary clarifier (SC) is an integral parthef activated sludge system. It
has two main functions: it separates the biomass fthe water in order to
produce a good quality effluent free from settleadblids and it also thickens the
biomass. Part of the thickened biomass is thenedass sludge and part of it is
returned to the biological reactor to maintain apprapriate biomass
concentration. The SC also removes floating foard stum produced in the

aeration tank (Gerardi and Wiley, 2002; Spellma@30

The operation of the secondary clarifier is cruéal the whole treatment plant
(Gerardi and Wiley, 2002; Chen, 1993). As Beck @)9Buts it “it is in the
secondary clarifier where adverse operational eroBl of bulking, rising, or
dispersed sludge either develop or become crjiegdparent”. The term “bulking
sludge” refers to sludge that has poor settling rattaristics and poor
compactability. Causes of sludge bulking include growth of filamentous
organisms or bacterial cells swelling through trddition of water. “Rising
sludge” is caused by the denitrification in theaw®tary clarifier. Denitrification
may result in nitrogen gas becoming trapped inslbhege layer and causing the
sludge to rise. Another operational problem pregemttie absence of filamentous
organisms is “dispersed sludge” which thickenslgdmit gives an effluent with
high concentration of fine suspended solids. Hetleemain goal in the operation
of the secondary clarifier is to prevent excessise of the sludge blanket, which

eventually may result in loss of sludge into effitieThis not only increases the
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effluent concentration of solids and organic matansiderably, it also affects the
performance of the activated sludge process itsaifce biomass which is
necessary in the aeration tank for proper funatigmif the process is lost from the

system (Chen, 1993; Gerardi and Wiley, 2002; Syzili2003).

2.4.2 Operation of Activated sludge system

To obtain the desired level of performance in aivated sludge system, a proper
balance must be maintained between the amount @d {®rganic matter),
organisms (activated sludge), and dissolved oxy@e@®). The majority of
problems with the activated sludge process redwts an imbalance between
these three parameters (Spellman, 2003). The aopexhtion of an activated
sludge systems is thus regulated by three factenstion and dissolved oxygen,
the rate of activated sludge recirculation (RAS)njped from the secondary
clarifier back to the aeration tank), and the amafrnexcess sludge withdrawn
from the system (WAS) (usually pumped from the seewy clarifier towards

sludge treatment).

Aeration and dissolved oxygen has two main objestivkeep the oxygen
concentration within the appropriate limit, usualy mg/l, to maintain the

microorganisms active, and ensure that the tankeots are sufficiently well

mixed to keep the solids in suspension. Low dissbloxygen concentration can
limit the growth of microorganisms and encourage thredominance of
filamentous bacteria with the subsequent detef@radf the effluent quality, as
described previously in Section 2.4. On the othemdy high dissolved oxygen
concentration represents a high energy waste throegcess turbulence,
especially with mechanical aerators, that may breakthe biological floc

resulting in poor settling characteristics and hagimcentration of solids in the

effluent.
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The return activated sludge (RAS) rate is a ciliticantrol variable as it

redistributes the sludge between the secondaryietaand the aeration tank, such
that the healthy population of biomass is maintimethe aeration basin. Thus,
the operator must maintain a continuous returnct¥ated sludge to the aeration
tank or the process will show drastic decreaseeifiopmance. If the RAS rate is
too low, solids remain in the settling tank, resgitin solids loss and a septic
return. If the rate is too high, the aeration tardn become hydraulically

overloaded, causing reduced aeration time and padormance. Therefore, there
should be a balance between the return activatetfjsland the wastage in order

to achieve as desired performance.

On other hand, because the activated sludge cesritaing organisms that grow,
and produce waste matter, the amount of activatadgs is continuously
increasing. If the activated sludge is alloweddmain in the system for too long,
the performance of the process will decrease. df nauch activated sludge is
removed from the system, the solids become veht hgd will not settle quickly
enough to be removed in the secondary clarifiemdde WAS is an important
operational parameter because it allows the opetatcestablish the desired
concentration of MLSS, food to microorganisms rgfo M), and sludge age.
Furthermore, the separation of solids and liquidhiea secondary clarifier results
in a blanket solid. If solids are not removed friima clarifier at the same rate they
enter, the blanket will increase in depth. If thicurs, the solids may carry over
into the process effluent. The sludge blanket depdy be affected by other
conditions, such as temperature variation or slubdgking, as explained in

Section 2.4.1.
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2.4.3 Modélling activated sludge process

Modelling the activated sludge process has an itaporole in implementing

efficient control actions for better process parfance. Models are helpful mainly
because the effects of adjusting the operatingalbbes can be studied far more
quickly on a computer than by doing experimentsllastrated in Figure 2.3.

Hence, many alternative designs and operationakegfies can be compared
without the need for physical trials of each scengAndrews, 1992, 1994,

Olsson, 2005). By simulating these models withghssible correction actions, it
is then possible to rapidly respond to any chamgéhé process and devise an
operational strategy, which can move the plantew wperating conditions that
improve its stability, the quality of the efflueand at the same time achieve
reduction in the running costs. Therefore, optinpnecess configurations, which
meet given effluent quality standards at least,ast be achieved (Olson, 2005;

Rivas et al., 2008).
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Experimenting
Activated .
Optimised
Sludge Process System
M odelling | mplementation
Reality
Virtual
Reality
Model of the Simulate Solution for the
process system

Figure 2.3 Applying models to solve problems in activated gdudrastewater
treatment plant. The Figure illustrates that instez applying the correction
action on a real system, it is better to test saheworrection scenarios using the
model and then apply the results on the real system

However, modelling the wastewater treatment proteast without its problems,

namely:

* The process is time varying. It consists of mary-grocesses with strong
dynamics of various scales. It has time constawtich range from
seconds to months. Some variables are slow to ehdmginstance sludge
dynamics (MLSS) and temperature, with time scaledays, weeks and
even sometimes months. The daily variation in iefiuflow rate and
substance concentrations is perhaps the most dotmuzaiation in the
process. However, there are even faster variatjpesent, such as

dissolved oxygen (DO).
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* The process has a complex multivariable naturdy laifge amount of data
collected by the measurement system. This high mineality makes it
difficult to decide what should be considered gsute and outputs. In
addition, there is a significant complex interactioetween variables. In
other words, there is a complex cause-effect malatiip caused by the
biological cultures, recirculation and control aat. Furthermore, these
variables typically exhibit complex nonlinear chamistics (Spellman,

2003; Fu and Poch, 1995).

* As a biological process, there is a lack of rekabh-line measurement
instruments. For example, the process has variadles as BOD, that are
difficult to measure in real time. In addition, nyasensors are not reliable
because they are noisy, have long response tingyiree frequent
maintenance and can drift (Schilling, 1994; Harrémaet al., 1993;
Vanrolleghem et al., 1990; Steyer et al., 1999; s@is 2005).
Consequently, most of the available data recordse Hats of missing

and/or erroneous values (Rustum and Adeloye, 2007-a

* Many factors that affect the process are not reltimonitored in most
wastewater treatment plants. For example, factah as the soluble inert
matter form part of the mechanistic model's repnéstion of the
treatment process (ASM1 for example) but are ranedasured on full-

scale plants (Henze et al., 1986).

» The process is subject to large unpredictable tiomdi such as the effect
of toxic industrial materials, mechanical breakdew{Manfred et al.,

2002), some of which are quite difficult to formi@anathematically.

* No two wastewater treatment works are the sameat#ams exist in the

size and circumstances; the nature of the indlsiréeste inputs is site
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specific. Climate differences are also to be exgukcTherefore, there is a
need to consider the specific features and circamesis of any wastewater

treatment works that is to be simulated using nmattial models.

Despite all of the above, some advances have beparted in modelling

wastewater treatment process, especially the aethaudge system.

2.4.4 Types of Modelling of the activated sludge process

Mathematical modelling of the activated sludge psses has received
considerable attention in the last three decadesrfety of model structures has
been proposed to represent the processes occwiihiop the activated sludge
system such as carbon oxidation, nitrification deditrification (Manfred et al.,

2002).

Activated sludge models can be classified into thasses, first according to the
part of the plant to be modelled, for example prynearifier, aeration reactor

and secondary clarifier, and second according ¢ontodelling strategy to be
employed, i.e. fundamental or empirical. Modelsivdat from mechanistic

equations are called fundamental models. In canteasgpirical models fit the data
but do not reflect physical consideration in thestegn. Empirical models are
identified from system input-output data where itnedel coefficients are fitted to
input-output map using statistical methods. Théofaing subsections present the
efforts devoted to modelling the activated sludgastewater treatment plant

based on the different modelling strategies.

2.4.4.1 Fundamental models of the activated sludge wastewater treatment
process

a. Primary clarifier models

Due to the importance of primary clarifiers (prippasedimentation tanks), not

least because their performance affects the peafioce of subsequent units and
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the sludge treatment, numerous efforts have beeotek to the development of
primary clarifier models (Lessard and Beck, 19%jmary clarification is often

considered as being not very “sensitive”, resultmthe use of simplified models
to represent its dynamic behaviour such as stetadig-approach (Otterpohl and
Freund, 1992). Most of the primary clarifier modeal® not consider any

biological reactions to occur in the reactor, siatinlg only the suspended solids
(SS) behaviour. However, in certain cases somegicdl phenomena take place

in the primary settler as modelled by Lessard aeckB§1988).

There are several problems associated with preniselelling of primary
clarifiers. These problems are caused by the codtyplef the dynamic behaviour

of the sedimentation process and include:

» Variability of influent characteristics;

Variability of particle size and corresponding \@ties;
» Presence of complex flow patterns and density atsr@ the tank;
» Scouring phenomena and the effects of temperature.

Although the above difficulties exist and are wdbbcumented, a variety of
primary clarification models have been proposediramnfrom simple steady-state
models to lumped and distributed parameter modaedagsard and Beck, 1991).
Simple models usually relate the removal efficienzynfluent suspended solids
concentration and overflow rate. Examples of primelarifier models can be
found in Alarie et al. (1980), Otterpohl and Freufi®92), Paraskevas et al.
(2003). However, most of these models depend omnpeters that are not
measured in the real operation of the treatmenksvdfor example, the model
developed by Takacs et al. (1991) is frequentlyduse describe the dynamic

behaviour of settlers. In this model, the clarifedivided into a number of layers
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(usually ten) and a mass balance is made overlagehto evaluate the SS profile
in the settler. The particularity of the modelhs tuse of a settling velocity model

describing both clarification and thickening asatd®d in Equation 2.2.

— “nXp o =T X
v, =V,e v,e 2.1)

where:

Vs; is a settling velocity of the solids in the lay¢m/d);
Vp is @ maximum settling velocity (m/d);

rgis hindered settling parameter?’(g);

rp is flocculent settling parameter 3(lrcg);

X is Xi — Xmin (Xi = SS concentration in layer j (glm
Xmin = fNSXn;

fns= non-settleable fraction &, and

Xin =influent SS concentration (gfin

Therefore, according the characteristics of thenary clarifier influent and the

design characteristics, its performance can beilzaéd.

b. Biological reactor models

Deterministic mathematical models rely on differaihtequations and kinetic
parameters and coefficients to describe the procEkssese models take into
account changes of flow rate, composition and comagon of the influent
wastewater. Manfred et al.(2002) provide excelleviews of the progress in

modelling wastewater treatment plants using funddaaienodel from where it is
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clear that the most widely known deterministic modethe Activated Sludge

Model Number 1 (ASM1) (Henze et al., 1987).

In 1986, the International Association of Waterl&twn Research and Control
(IAWPRC), later renamed International AssociatidnVater Quality (IAWQ),
and then International Water Association (IWA), med a task group on
“Mathematical Modelling for Design and Operation Biological Wastewater
Treatment” in order to promote the developmentratpcal models for aiding the
design of biological wastewater treatment planthisTgroup contained one
representative from each of five countries (Denmei®A, Switzerland, Republic
of South Africa, and Japan). Each representative éwperience in activated
sludge modelling. Their assignment was to revieistayg models and to develop
from the literature a consensus model able tostedily predict the performance
of activated sludge process that perform carbordadian, nitrification and
denitrification. This led to Activated Sludge Modgb. 1 (ASM1) (Henze et al.,
1987).

ASML1 represents the state of the art in modellhegdctivated sludge process and
has been proven as a successful model in manycapphs (Béline et al., 2007;
Chen and Ribarova, 1999; Maryns and Bauwens, 1@®f)sequently, it has been
introduced in a number of computer programs; eiggl® Sludge Simulation
Program (SSSP) developed by Bistrup and Grady (1988IM (Gujer and
Henze, 1991) and GPS-X (Patry and Takacs, 1990).

ASM1 contains 18 parameters, made up of 5 stoickiom and 13 kinetic
coefficients. Table 2.1 lists the ASM1, whilst Tebl 2.2 defines the state
variables. Table 2.3 and 2.4 list the kinetic andichiometric coefficients,
respectively. ASM1 models eight processes involigstate variables, including

various fractions of organic matter, biomass, gi&m components, particulates
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and alkalinity. Model representation is usually edvy listing the processes as
rows of a matrix with the state variables as columadings. Each matrix entry
indicates the appropriate stoichiometric coeffitiéar the relationship between
the variables in the individual processes (see éf&bl). Process equations for
each state variable are easily read by summingeiproducts of each entry of the
related column with the kinetic coefficients of thecess, which are given in the

right-most column of the matrix. For example,

Xs = A= f,)(By X ) + A= F,)(B Xg,) 1%

Xs! Xgy S Kon Sw
(s Ky +KS/XBH( [KOH +S)J+I7h[KOH +S)J[KNO+S\10j )XBH ) (2.2)

Some useful hints for determination of some of thedel's parameters for a

given treatment plant are given by Nowak et al9@)9

As remarked previously, the ASM1 has seen severattipal applications
worldwide. For example, Chen and Ribarova (1998juke ASML1 to investigate
the feasibility of upgrading Parada, a conventioddWTP in Portugal,for
biological nitrogen removal. Very good correlatidmstween measured data and
simulation results were achieved using the paramed®ies proposed by the
authors of ASM1. Computer simulations were donsttmly whether the capacity
of the treatment plant is enough for biologicategen removal. They found that
very high effluent quality can be achieved if thistftank volume is used for
denitrification, the second and third tank voluraes used for BOD removal and

nitrification, the recirculation flow ratio is 1&nd the sludge age is 15 days.

Further development of modelling the activated giidvastewater treatment
plants resulted in the ASM2, ASM2D, and ASM3 moddlse ASM2 provided

detailed biological kinetics and reflected the estat art on the understanding of
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nitrification, denitrification, and biological phpkorus removal (Henze et al.,
1995). The ASM2D, an extension of ASM1 and ASM2a isrodel for biological
phosphorous removal with simultaneous nitrificatdemitrification in activated
sludge systems (Guijer et al., 1999). The ASM3 aadipt oxygen consumption,
sludge production, nitrification and denitrificatidfor activated sludge system
(Gujer et al., 1999). The ASM3, (Henze et al., 20@0so includes storage of
organic substrates as a new process and the demagsp was exchanged for an
endogenous respiration process. Additionally, ASBI®rovided in a form that
can be implemented in a PC code without furtheustdjents but it does not

include biological phosphorous removal as it istaored in the ASM2.

However, the complexity of these models and theaibet microorganism’s

growth and decay data required by them mean thegt &re not appealing to
process designers and operators as reported byrdeasd Beck (1991), and
Weijers and Vanrolleghem (1997). For example, ASMéquires the

determination of about 31 parameters, coefficiams variables, most of which
are not routinely measured by large wastewatetnreat plants. Furthermore, a
certain number of simplifications and assumptionsiie made in order to make
a model of a WWT system practically useful. Somehefse are associated with
the physical system itself, while others concere tmathematical model

(Jeppsson, 1996).
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Table 2.1 Activated Sludge Model Number 1 ASM1 (Manfred,é1G02)
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Table 2.2 Definition of state variables in the ASM1

Component | Component
Definition
Number Symbol
1 S Soluble inert organic matter M(CODjJL
2 S Readily Biodegradable Matter M(CODSL
3 X Particulate inert organic matter M(COD)L
4 Xs Slowly biodegradable substrate M(COD)L
5 XaH Active heterotrophic biomass M(CODjL
6 XBA Active autotrophic biomass M(CODJL
7 Xp Products from biomass decay M(COD)L
8 S Dissolved Oxygen M(-COD)E
9 Swo Nitrate and nitrite nitrogen M(N)E
10 SwH Ammonia nitrogen M(N)[3
11 S\ Soluble biodegradable organic nitrogen M(N)L
12 XND Particulate biodegradable organic nitrogen M(RI)|L
13 Sk Alkalinity- Molar Unit
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Table 2.3 Kinetic coefficients of the ASM1

Kinetic event symbol Unit
. . A Day™

Heterotrophic max. specific growth rate Uy
Heterotrophic decay rate wb Day™
Half-saturated coefficient (hsc) for heterotrophs s K g cop m®
Oxygen hsc for heterotrophs N g NO-N m?

. . A Day™
Autotrophic max. specific growth rate Uy
Autotrophic decay rate b Day™
Oxygen hsc for autotrophs oy gom?®
Ammonia hsc for autotrophs K g NHz-N m;
Correction factor for anoxic growth of heterotrophs £/ dimensionless

Ammonification rate & m® (g COD day)*

Max specific hydrolysis rate nk gas)‘/')f’l""'y biodeg. COD (g cell COL
Hsc for hydrolysis of slowly biodeg. substrate x K g slowly biodeg. COD (g cell COD)
Correction factor for anoxic hydrolysis My, dimensionless

Table 2.4 Stoichiometric coefficient of the ASM1

Stoichiometric coefficient Symbol Unit

Heterotrophic yield '

G cell COD formed (g COD oxidized)

Autotrophic yield Ya

G cell COD formed (g N oxidized)

Fraction of biomass vyielding
f
decay products P

Dimensionless

Mass N/Mass COD in biomass | xgi

G N (g COD)! in biomass

Mass N/Mass COD
products

in decay.
Ixp

G N (g COD)! in endogenous mass
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c. Secondary clarifier model

Generally, the final settling tanks are represerdsdtwo different processes:
clarification and thickening. However, it is diffit to determine what the state of
the art for dynamic models for the clarificationdathickening is. That might be
because relationships among operational varialiléfseoreactor, the components
of the sludge floc and its settling velocity ar® twomplex to be quantitatively
described (Chen, 1993). According to Lessard &t1&93), final clarifier models
are mostly based on empirical relationships and largely related to the
particular plant used to determine the parameterd,most models have not been
evaluated thoroughly against experimental worklamtpscale, especially for the

thickener models.

Existing secondary clarifier models range in comipe from very simple
empirical models for clarification of the settld?ldsz et al., 2007) to some very
complicated two and three dimensional models whimhsidered hydro dynamic
effects (Giokas et al., 2002). However, the mosahdas model for secondary
clarifier is based on the work by Lessard and BE®&93). Its clarification part
used an empirical approach derived from data froentteatment plant of Celle/

Germany. This model consists of four layers as shiowFigure 2.4:

1. Clarification zone of fixed volume where the watassumed clean.

2. Dead Zone which occupies the volume left by thickgrzone where no

reaction occurs.

3. Thickening zone of variable volume where the wateseparated from the

sludge.

4. Compression zone of fixed volume where the sludgediready settled.
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Effluent

Clarification Zone

Influent (Fixed Volume)

Mixed Liquor

Dead Zone
(Variable Volume)

ThickeningZone
(Variable Volume)

Compressio Zone
(Fixed Volume)

Return Activated Slud
(RAS)

Wasted Activated Sludc
(WAS)

n
»

Pl
<

Figure 2.4 Schematic representation of the zones in the §etiling tank model
(Lessard and Beck, 1993)

In this model, the effluent suspended solids cotmaéion is based on an empirical

relationship determined by:
SSy =& +8, X(Q+Qrag) (2.3)
Where

SS : effluent suspended solids concentration &y/m

a;: minimum effluent suspended solids concentratiorthie secondary clarifier

effluent (g/nf), the minimum that can be achieved.
a: proportionality constant for the effluent of flam effluent SS
Q: Influent Flow (n/s)

Qras: return activated sludge rate3(8)

46



Chapter 2: Activated Sludge Wastewater TreatmesteBy

The thickening part of the model is based on the theory as presented by Dick
and Young (1972) in which the relationship betwskrge settling velocity and

concentration is represented by:

V=V X" (2.4)
Where

v: settling velocity (m/h)

Vo : the start velocity (m/h)

Xo: the MLSS concentration (gfin

n: is constant describe the sludge characteridtg)s (

However, the limitations of the Lessard and Bec®9@) and most of the other

secondary clarifier modes can be summarised as:

* These models can not describe dynamic processnttii sludge blanket
and there is hardly any potential for the predictad the effluent quality
(Krebs, 1995).

* Most of these models are developed based on médé slata sets and they

were not evaluated against field data.

* Most of these models are based on few number efrdalp represent the
thickening process. However, according to Jeppsehliehl (1996), at
least 30 layers should be used in order to obteliabie results under

normal operating conditions.
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* According to Dupont and Dahl (1995), most of thawodels suffer from
at least one of the following two problems when legbto full-scale

wastewater treatment plants:

o Incorrect calculation of sludge concentration peofnear the

effluent weirs;

0 Incorrect calculation of the return sludge concatidn.

« These models are dependent on specific site pasasneand would
accordingly require extensive calibration efforteem applied to another

site (Lessard and Beck, 1993).

d. Limitations of fundamental models
Although fundamental (deterministic) models arefgmed because the models
have the ability to predict beyond the range ofséxg operating data, their

success is limited due to several factors; thesterfscan be summarised as:

* Fundamental models are often developed using datained under
controlled laboratory conditions and are ,therefonere suitable for the
design of treatment plants and may not be suitbleperational control

(Nokyoo, 2002; Leassard and Beck, 1991).

* Most fundamental models have been proposed to atmihe dynamic
behaviour of the biological reactor and the secondaettler as
independent units; very few models have lookedhat ihterconnection

between these two units (Dupont and Henze, 1992).

48



Chapter 2: Activated Sludge Wastewater TreatmesteBy

Mechanistic models require recalibration, and thegy be hard to
reconfigure if the physical system is modified. Thebecause they are

developed based on a specific physical system.

Mechanistic models require high number of paramsetard coefficients
that limits the accuracy of the model. Besides mainghese variables and
parameters are typically not parts of the routinenitoring of plant

performance. For example, soluble inert, and pagte inert, form part of
the ASM1 model's representation of the treatmentess but are rarely

measured on full scale plants.

There are significant costs associated with theectbbn of data to support
a modelling exercise using these deterministic nsdes well as the cost

of the time devoted to the development of theseaiso(Gtokes, 1998).

Consequently, empirical models have been seeingastg applications in the

modelling of activated sludge wastewater treatmmants. In the next section,

examples of empirical models available are presemigh emphasis on those

based on artificial intelligence paradigms.

2.4.4.2 Empirical models of wastewater treatment plants

The complexity of wastewater treatment plant ndtaes more sophisticated

control systems capable of delivering better andemitexible performance.

Increasingly, control systems are required to hiaigh dynamical performance

and robust behaviour, and yet be able to cope eaithplex, uncertain and highly

nonlinear process relationship over a wide opeagatinvironment. This requires

the use of models of the system as argued previousl
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However, due to the factors that limit the pradiigaof mechanistic models in
modelling the wastewater treatment plant preserdadier, researchers are
motivated to use new techniques to deal with theptexity and uncertainty in
wastewater treatment plant operations. One of thedmniques is the intelligent
models that deal with complexity and uncertaintytioé system in a manner
similar to the human way of thinking and reasonwwghout the difficult task of
dealing with deterministic non-linear mathematigagnkir, 2000). Among these
tools and techniques are stochastic models, exystems, Fuzzy Logic, data

mining, and neural networks.

Stochastic modelling (or time series analysishe methodology that deals with
the study of a set of observations generated sdégllgnn time. It includes

combinations of the Box-Jenkins models such as regtessive (AR),

autoregressive moving average (ARMA) and autoregresintegrated moving

average (ARIMA) among others (Box and Jenkins, 19%6veral applications of
stochastic models to forecasting of treatment @®ceéme series have been
reported in the literature. For example, uni-variand multivariate process
models were applied by Capodaglio (1994) to make day ahead predictions of
the water flow and SS based on measurements ofalfaimith good results.

Stochastic models have also been incorporatedhiptototype Real Time Control
(RTC) system for the control of an activated sluggecess in Denmark by
Kristensen et al. (2004). The data originated frémoskadalur wastewater
treatment plant. The goal was to predict the flovd the predictions were to be
used for on-line automatic control in the wastewateatment plant. The input
data were precipitation, measured at the wastewag¢atment plant, and the
output data were flow data from the last pumpirgfieh before the treatment

plant.
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Expert systems (ES) models are implemented usirmgerexknowledge and
database (Capodaglio, 1994). Since the 1980s,aad@monstration and research
projects using ESs for control of WWTPs have besedu(Andrew, 1992;
Paraskevas et al, 2003). However, these modelsnoiaipe generally applicable
to every system as it is generally difficult to lect the expert’'s knowledge

(Esteves, 2002).

Fuzzy logic models are a compromise between thalevagjatements which
humans often use and the strict logic of experesys. No complex mathematical
relationships are required in the constructionuakf/ logic applications. Beside, it
is believed to be conceptually easy to understdlakible and tolerant of
imprecise data allowing the modelling of complex#imear functions. However,
the drawback of fuzzy models is that tuning theapaaters of the fuzzy
membership functions is difficult and time consugqirrurthermore, the main

difficulty is to define the number of necessaryzyzules.

Because Fuzzy logic models can handle highly noali, imprecise and
uncertain systems that are poorly understood matheatly and depend not only
on black box concepts, such as ANN, but also usengination of knowledge of
the system and operational experience, they haga beggested and applied to
model wastewater treatment plants. Most of thegdiGgtions are to simulate or
control pilot plants (Tsai et al., 1993;1994; 198Gjller et al. 1998; Ferrer et al.,
1998; Manesis et al. 1998; Steyer et al.,1999; &Gao et al.,002). Only few
studies have used fuzzy modelling of the whole @sscincluding biological
reactors and secondary settler (Tong et al.,1988g{Bracht et al., 1988; Czogala
and Rawilk, 1989; Yi et al., 1990; Fu and Poch,89%atanabe et al., 1993; Fu
and Poch, 1995a,b; Marsili-Libelli, 1996; Cohenakt 1997; Huang and Wang,
1999; Kalker et al.,1999 ; Tomiello et al., 1999eWr et al., 2003; Sanchez et
al., 2001; 2003; Traore et al., 2006). Some appbos have been applied to
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anaerobic digester as well (Boscolo et al.,, 1993alken et al., 1997; Giraldo-
Gomez and Dugue, 1998; Steyer et al., 1999; Pwdit. e2001; Punal et al., 2002;

Murnleitner et al., 2002).

Artificial neural networks (ANNs) are non-linear thematical structure that are
capable of representing the arbitrary, complex livwar functional relationship
between the input and outputs of any system. ANNdet® have been used
successfully to model complex non-linear input-atitiime series relationships in
a wide variety of fields, including water resourcas for example, in predicting
reservoir storage-yield-rehability relationship @aye and Demnnari, 2006).
Additionally, neural networks model was used foedgicting the monthly values
of water quality parameters in rivers (Diamantopouét.al, 2005). The success
with which ANNs have been used to model dynamidesys suggests that the
approach may prove to be an effective and efficigay to simulate complex
wastewater treatment systems. Hence, the literaguhebits a wide range of
applications of ANNs applied to wastewater treathsystems for example Mjalli
et al. (2007), Hamed et al. (2004), Du et al. (39%&aduly et al. (2007), Chen et
al. (2003), Gamal-EI-Din and Smith (2002). Furthdatails about these data
driven models will be given in the next chaptertie mean time, some examples
of their applications to wastewater treatment @anbdelling and their limitations

will be discussed.

Mjalli et al. (2007) used the ANN to model the Doha Wessdtewater treatment
plant, Qatar. They used crude sewage quality ctersiics inputs namely BOD,
COD and TSS to predict the effluent stream BOD, C&id TSS. The authors
used data over one year that were sampled eveay$ @They used smoothed data
series instead of raw data to develop the moded. sthoothing technique is used
to reduce short-term volatility in the data by adigdating the available data

points into longer units of time, namely an averagéour historical data points.
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For example, the data were performed every 5 dags every 4 points were
smoothed, then every 20 days were representeddbyope value which is not
reasonable for wastewater treatment plant data.s,Thaven though the
performance of the model was relatively good, thaks of the data were damped
through the smoothing process. In addition, thehanst did not mention the
quality of the data and they just ignored the migsralues in the measurement
system. Furthermore, they used BOD as input ta thedel, although BOD takes
5 days to be measured in the bioassay method. Merethe authors used single
input single output with just 40 neurons in thedad layer, but there was no
sensitivity test of the impact of changing the nemof hidden neurons. They got
over 70% correlation coefficient, but they did dattinguish if these results were

from the training, validation, or testing data set.

Hamed et al. (2004) apply ANN to predict the parfance of WWTP in a major
conventional treatment plant in Great Cairo distimypt. Daily records of BOD
and SS concentrations through various stages ofréament process over 10
months were used. The ANN model was found to peaa efficient and a
robust tool in predicting WWTP performance in teroi8OD and SS. The data
records used in this study, BOD and SS, containymaissing values, for
example, from 300 days, 247 were missing; theyewaerely ignored by the
authors. The results obtained from this study iattid that Rvalues ranged from
0.63 to 0.81 for BOD and from 0.45 to 0.65 for $®wever, much more could
have been achieved by their modelling if the mgsualues were in-filled.
Moreover, Hamed et al. (2004) concluded that thelehevas hindered by the
limitation of the data, the noisiness of the daad the restriction of just two
parameters, BOD and SS. There was also no mentioanyp independent

validation of the model.
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Du et al. (1999) develop a fuzzy- neural networloriy model to predict the
sludge age of the activated sludge process. Itfeasd that fuzzy-neural network
model is able to extract fuzzy rules from a sehwinerical data that can be used
to carryout heuristic reasoning. The model hasethnput variables; feed flow
rate of activated sludge process/gay); feed substrate concentration of activated
sludge process (g COD#nand sludge recycle rate {ftiay). The model has one
output variable, the sludge age. The data recond wétained from rigorous
ASML1 simulation investigation because real dateewsravailable. They assumed
that the feed stream of the activated sludge psooesler study is described in
terms of the feed flow rate and the feed substateentration and they ignored
other parameters or assumed them to be time imiariehe recycle rate is

assumed to be the only manipulated variable.

Choi and Park (2001) apply principal component ysial (PCA) to extract
features of industrial wastewater treatment platadThe extracted features are
then used to predict the total Kjeldahl nitrogerK) of influent industrial
wastewater using the ANN as illustrated in Figur® dhe hybrid system shows
an enhancement of prediction and reduces the datiegf problem of ANN.
Eleven industrial wastewater quality parametersredeiced to just five principal
components, PR1-PR5 shown in Figure 2.5. Theseipehcomponents became
inputs to the ANN model. It is found that the PC#hanced the performance of
ANN. However, even if the PCA reduces the dimenalion of the data, the first
two principal components could not extract morentB8% of the variance of the
data due to the high nonlinearity of the systemraédwer, the developed model

cannot deal with the presence of missing valug¢sérmeasurement system.
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Figure 2.5 The structure of hybrid neural network combinechwgitincipal
component analysis (after Choi and Park, 2001)

Raduly et al. (2007) apply ANN for rapid WWTP perfance evaluation.
However, the data used for training the ANN wer@egated using ASM3. In
addition the input variables for the ANN were thos#® routinely measured at
WWTP, for example, soluble inert material, readidijpdegradable substrate,
ammonium nitrogen, particulate inert material, dederotrophy and autotrophy
bacteria concentrations. The outputs of the modedewthe BOD, total COD
(CODtot), TKN, Soluble ammonium, total nitrogen, and th8ST The results
obtained from the work confirmed that ANNs can isaldle used in simulation

work for WWTP. In particular, it emerged that simtibn with ANN was 36

times faster than simulation with mechanistic madslh as ASM1.

Chen et al. (2003) develop a recurrent neural nétwoodel to predict the
nitrogen contents in treated effluents to be usedyfound water recharge. The
model uses three online parameters, pH, Oxidatdngtion potential (ORP), and
dissolved oxygen (DO) in conjunction with three-lifie nutrient tests, BOD,

Ammonium nitrogen (NEN) and nitrate nitrogen (N&EN). The outputs were
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total nitrogen, N@N and NH-N. The accuracy of this model was over 90% in
this work. The quality of the data has not been tinaed in term of missing

values and outliers.

Gamal — EI-Din and Smith (2002) develop an ANN middepredict wastewater

inflow rate that enters the Gold Bar WWTP, Albe@anada. The neural model
uses rainfall data observed in the collection systischarging to the plants as
inputs to the ANN model. Eight rain gauges wereaeld to be used by the neural
network inputs. An index to represent the day ef Week and another index to
represent the hour of the day were used as inputsetneural network model as
well. The raw data flow records had some negatigies, which indicated

segments of faulty data. These segments of data @leninated and considered

as data gaps.

Traoré et al. (2006) developed a fuzzy model ofsthege height in the secondary
settler. The modelling strategy was based on singuidine data (influent,
removal and recycle flows) and daily analyticalues of the sludge volume index
(SVI) allowing the fuzzy algorithm to reduce sludgeight variations and thus to
increase the settling process efficiency. The dgped model has then been
adapted and applied to the Cassa de la Selva tattisudge WWTP (Spain). The
influent flow and the sludge volume index have beead as inputs to estimate
the sludge recycle and removal flows. The use mfyfuogic as control tool made
it possible to combine two kinds of knowledge. Theocess qualitative
knowledge or fuzzy rules were obtained from exparid operators working on
the plant. The results obtained showed the fuzayrotler efficiency for both
increasing and decreasing SVI values. The appicatif the controller to the
Cassa-WWTP data also allowed an important reductibrsuspended solids

concentration fluctuations.
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Polit et al. (2001)developed fuzzy estimators for the concentrationthad
substrate at the input, the total and partial alkgl in the influent and in the
effluent and the volatile fatty acid (VFA) conceatton at the output of the reactor
of a pilot-scale anaerobic digestion reactor fag theatment of raw industrial
wine. Those observers were built on available pa-lmeasurements like pH,
temperature, input flow rate and output gaseous flate. The fuzzy observers
follow quite well the measured values of the effiupartial and total alkalinity
and of the VFA at the output of the reactor. Thgsentities are difficult to
measure on-line and nevertheless those values age useful in the process

knowledge.

It is clear from the above discussion that a varidtneural networks models have
been used in WWTP research. However, attentionftessed on supervised
neural networks and there is less directed at ékpdothe Kohonen self

organising map or (KSOM) in the field of wastewateatment. Few exemptions

of such applications are discussed in the followiagagraphs.

Garcia and Gonzalez (2004) apply KSOM for clustprdata obtained from a
steelworks wastewater treatment plant in orderstonate, monitor and visualise
the process states. They use a combination of ®@NK and other clustering
techniques to estimate and monitor the diverse sththe wastewater treatment,
and they establish the correlation among procesablas which is necessary in

order to obtain a knowledge based system.

Hong et al. (2003) applied the KSOM to analyse rihdti-dimensional process
data, and to diagnose the inter-relationship ot@ss variable in a real activated
sludge WWTP. By using the component planes, thegodiered some local
relationship between process variables under diffeoperating conditions. They

found that the KSOM provides an effective analysamgl diagnosing tool to
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understand the system behaviour and to extract leulm® contained in multi-

dimensional data of a large-scale WWTP.

Cinar (2005) used KSOM to classify operational datahe Pelham WWTP in
Western Carolina and to determine the reasonsgsf éffluent concentration of
BOD, TSS, and faecal Coliform. He found that thasmns causing high effluent
concentration of these parameters were the higlnpHe biological reactor and

the high solid retention time (SRT).

Gonzalez and Garcia (2006) proposed a self organisnap and clustering
algorithms to achieve the aerobic end point deatactf a sequencing batch
reactor in a coke wastewater treatment plant. Thatlined the validation
methods for KSOM training and testing the predefiodterion to determine the

KSOM size.

The above merely introduces the plausibility of #bdelling techniques for
wastewater treatment plants system. Further dedditgit the nature, structure,
strength and limitations of Al models in treatmetdnt applications are given in

the next chapter.

2.5 Summary

This chapter reviewed the background of activaledge wastewater treatment
plants. It presented the importance of wastewatsatment, its history and the
structure of a conventional activated sludge waatewtreatment plant. The
biochemistry and microbiology of the process argcdbed. A review of the state
of the art in modelling activated sludge wastewdteatment plants is also

presented and discussed.

The chapter concluded that the complexity of ASMmd athe detailed

microorganism’s growth and decay data required tynean that it is not
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appealing to process operators. The ASM1 requiresieétermination of about 31
parameters, coefficients and variables, most otklire not routinely measured
by large wastewater treatment plants. Furtherm@ecertain number of
simplifications and assumptions must be made irerotd make a model of a
WWT system practically useful. Some of these asoe@ated with the physical

system itself, while others concern the mathemiatncael.

The next Chapter will introduce the essential baolnd of Artificial Intelligence
Techniques used in this study. These techniquedackpropagation Artificial
Neural Networks, Kohonen Self organising map andzifl_ogic. The adaptive
neural networks based on fuzzy inference systerh alslo be presented and

discussed.
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CHAPTER 3

ARTIFICIAL INTELLIGENCE TECHNIQUES (Al)

3.1 Introduction

Artificial intelligence (Al) techniques concern szal areas relating to the
simulation of human intelligence in a computing tmae. However, research in
Al techniques suffered in the past due largely tack of understanding of how
the human brain actually works, but also due todisbelief about the thinking
machine, and the fact that the computational porweguired to apply these
techniques was unavailable at that time. In 19f8,Lighthill Report (Lighthill,
1973), in the United Kingdom concluded that thesswo future in Al research
and recommended that all research funding in tba be terminated. Despite this,

however, work on Al has continued due to advanceke computing field.

The primary attraction of Al techniques is thatytlzge able to represent systems
with non-linear characteristics, without the diffic task of dealing with
deterministic non-linear mathematics. The existimydelling strategies of Al can
be divided into three categories, namely, ‘whitepbtblack-box’, and ‘grey-box’
based on the type of knowledge used for the moeetldpment. In ‘white-box’
modelling strategies, also called deterministic eiledthe model development is
mainly driven by the knowledge of the relevant matibms and balances. In
other words the model equations are developed fyeneral balance equations
applied to mass and other conserved quantitiesltireg in a set of differential
equations. A ‘black-box’ or input-output model isimly driven by the measured

data obtained from the process. However, blacksorel is only as good as the
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data that were used to calibrate them (GernaeY,,e2G04). Indeed, ‘black box’
models are not believed to have any extrapolatimperties; consequently, one
has to obtain a large body of data that cover tissiple range of fluctuations in
the relevant input variables for process modelliigally, ‘grey-box’ model may
be defined as a suitable combination of ‘black-bard ‘white-box’ model, in
such a way that the model is developed using davardtechniques and at the
same time can extract some useful knowledge froendta (The Mathworks,

System ldentification Toolbox http://www.mathworésm/products/sysid/).

Among commonly used Al tools and techniques ardfigietl Neural Networks
(Black Box), Fuzzy logic (Grey Box), Expert Systeffwghite box), and a wide
variety of search techniques such as genetic #hgosi However, the rest of this

chapter will present just ANN and Fuzzy logic, lasyt are the core of this work.

3.2 Artificial Neural Networks

An artificial neural network (ANN), often just call “neural network” (NN) is a
mathematical model or a form of computing algorishrimspired by the
functioning of the biological nervous system (bgital neural networks). In
practical terms, neural networks are non-lineatistieal data modelling tools
used to model complex relationships between in@utd outputs or to find
patterns in data. In most cases, an ANN is an adagystem that changes its
structure based on external or internal informathat flows through the network
during the learning phase. In other words, knowdeidgacquired by the network
through a learning process and the inter connexti@miween the elements of the

network store the knowledge (Arbib, 2003).

In the past decades, interest in neural networksitareased dramatically. The

number of papers published relating to ANNs andir tlagplications is an
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indication of the success of ANNs. Broadly, ANNsvéabeen used to solve
complex problems in various fields of applicatiamcls as, pattern recognition,
identification, classification, speech, vision, astics, robotics, image processing,
financing, control systems, aerospace, banking, erief, electronics,
manufacturing, medical, oil and gas exploratiorgusiies, telecommunications
and transportation. In recent years, ANNs have bhé&sn applied to address real
life problems in neuroscience, biological sciereath science, physical science,
chemical engineering, civil engineering, structurahgineering, translation

engineering, and others.

In addition, ANNs have been used successfully teesvater resources problems
such as rainfall-runoff modelling (Chiang et al.003), rainfall forecasting
(Olsson et al, 2004), Water Demand modelling @ulCalvo, 2007),
generalised storage-yield- reliability planning €ale and DE Munari, 2006).
Moreover, ANNs have been used in forecasting watesumption (Pulido-Calvo
and Gutiérrez-Estrada, 2008), water treatment gsofeiu and Kim, 2008). The
success with which ANNs have been used to modeamjn systems suggests
that the approach may prove to be effective anttiefit way to simulate the
complex wastewater treatment systems. Hence, tkeatlire contains some
applications of ANNs applied to model wastewateatment systems as discussed

in section 2.4.4.2.

3.2.1 Historical overview

McCulloch and Pitts (1943) are recognised as thending fathers of neural
networks. They developed simple models of neuraoskks based on their
understanding of neurology. However, since themisal work, other groups
have made further attempts to develop neural n&svdfor example, Rosenblatt

(1958) made considerable improvement in the ndiglal when he designed and
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developed the Perceptron. The Perceptron had thyess and could learn to
connect or associate a given input to an output Werbos (1974) developed and
used the well-known back-propagation learning metlhich is the most widely
applied neural networks to-date. In the early 1980spfield (1982) introduced
the network architecture. In the same year, Kohgii®382) introduced the self-
organising features map (KSOM) to capture the dmdefeatures of the data.
During the late 1980’'s and early 1990’s, differem@mbinations of network

topologies were investigated.

3.2.2 Ingpiration from Neuroscience

NN is inspired by knowledge from neuroscience budraws its methods from
statistical physics (Arbib, 2003). Therefore, ANIdse based on the parallel
architecture of the human brain. The brain is cosepoof about 1011 neurons
(nerve cells). Figure 3.1 is a schematic drawingaadingle biological neuron.
Tree-like networks of nerve fiber called dendriégs connected to the cell body.
Extended from the cell body is a single long filbalied the axon that branches
into strands or parts. At the end of these aredrtresmitting ends of the synaptic
junctions to other neurons. The transmission ofiaas from one cell to another is
a complex chemical process. The ease of transmissisignals is altered by
activity of the nervous system. The ability to adjsignals constitutes the

mechanism for learning (Poznanski, 2001).

The fundamental aspects of ANNs are the use of Isippcessing elements,
which are models of the neurons in the brain. Tresments (neurons) are then
connected together in a well-structured way. Thewvokk then is taught, to

achieve a particular task or function of interesly patterns of data presented,
such that it can subsequently not only recognisd satterns when they occur

again, but also recognise similar patterns by gdisation (Abrahart et al, 2004).
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Figure 3.1 A schematic drawing of a biological neuron
(www.utexas.edu/reearch/asrec)

3.2.3 The architecture of ANN

3.2.3.1 The neuron

A neuron is the basic processing unit of a neuetivark, taken from the Greek
meaning nerve cell. Figure 3.2 illustrates a simgpait neuron with scalar inppt
transmitted through the connection which is mukigl by the strength of the
scalar connection weighw to form the productw*p. This product is summed
along with the scalar bids to form an output scalar. The biasb provides an
additional variable that can be adjusted to obt#e desired network
performance. This sum is the argument of the tearfsinctionf, which takes the
argument and produces the outpufThe transfer function limits the permissible
amplitude range of the output signal to some finiddues in the range [-1, 1].

Both w and b are adjustable parameters that enable the nettwogkhibit the
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desired behaviour. Thus, the outpaitcan be calculated as in Equation 3.1

(Demuth and Beale, 1998).

a=f(n)=f(wp+bh) (3.1)

Input Neuron with bias

Figure 3.2 Schematic of Single input neuron

In a multiple input neuron , illustrated in Figue3., the individual input®),

P2), ..., Ry are weighted with elements 1, Wa2),...., Wi). These weighted
values are inputs to the summing junction. The thmtaw;; indicates that the
scalar weighting has destination neurdrom source input/neurgn As with the
single input neuron, the bikss summed with the weighted inputs to form the net
input n and this is the argument presented to the trarisfestion f, as is in

Equation 3.2.
a=f(n)=f(WF+h) (3.2)

Where W is the weight Matrix and P is the inputteec
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Input Array Neuron

b
Ps) I

Figure 3.3 Multiple input neuron

Two or more neurons can be combined together ayerl A layer includes the
combination of weights, the multiplication and sumghoperation, the bias and
the transfer functiof It should be noted that, the number of neurorelayer do
not need to equal the number of inputs to thatrlafedypical network consists of
a sequence of layers with a connection weights é@twsuccessive layers.
Usually, these layers are called input layer, hidékeyers and output layer as

illustrated in Figure 3.4 (Demuth and Beale, 1998).

Input First hidden Second hidden Output
Layer layer layer Layer

Figure 3.4 Multilayer networks with two hidden layers
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3.2.3.2 Types of transfer Functions

Each hidden or output unit in a neural network nexe values through the
connections from the units of a previous layer #ray are combined to a single
value. After the combination, the scalar value &ssed through a transfer
function, also known activation function, which gs/the power to the neural
network to handle non-linearities. The choice ahsfer functions depends on the
complexity of the application. Many transfer fuicts are available in the
literature (Figure 3.5); however, the most widedgd transfer functions are: hard

limit transfer function, linear transfer functicemd sigmoid transfer function.

The hard-limit transfer function limits the outpaft the neuron to either 0, if the
input argumenh ( wp+b), is less than 0, or 1,nfis greater than or equal to 0 as

can be seen from Equation 3.3.

1 n > 0

f(n)= (3.3)
0 n < 0

In the linear transfer function, whens the input to the neuron aads the output

after passing through the transfer function, tmedr transfer function can be

written as in Equation 3.4. The linear functioraigpopular choice for the output

layer function as it allows the output to take &ajue.
a=f(n)=n (3.4)

Sigmoid transfer function is a simple activatiomdtion that can introduce non-
linearity to the network. Sigmoid function producastput in the shape of ‘S’;
hence the term sigmoid function. There are maniatians of sigmoid functions
in the literature; however, the most widely usethis logistic (ie. Log-Sigmoid)

that takes the form in Equation 3.5.
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1
a=f(n) =1+e‘” (3.5)

The output of logistic sigmoid function ranges bedw zero and one. ‘Sigmoid’
functions are the most popular choice functiontf@ hidden layer of a network
due to its easily calculated derivative. The défare between hard limit transfer
function and logistic sigmoid transfer function tisat whereas a hard limit
assumes the value of zero or one, a logistic fancissumes a continuous range

of values from zero to one.

3.2.4 Neural network topology

As stated previously, ANNs generally consist of @amber of interconnected
processing elements or neurons. How the inter-meaomnections are arranged
determines the structure of a network. How thengfifes or the weights of the
connections are adjusted or trained to achievesaetkeoverall behaviour for the
network is governed by its learning algorithm. Baltle structure and learning
algorithm constitute the architecture of the netwvdrherefore, the architecture
defines the network structure, i.e. the numberef teurons in the network and
their interconnectivity. Based on the architect&BNs can be grouped into two
categories, namely feed-forward neural networks\(R§) and recurrent neural

networks (RNs) (Bishop, 1995; Demuth and Beale8).99
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a = hardlim(n)

Hard-Limit Transfer Function

a = logsig(n)
Log-Sigmoid Transfer Function

a = satlin(n)

Satlin Transfer Function

a = tansig(n)

Tan-Sigmoid Transfer Function

a = hardlims(n)

Symmetric Hard-Limit Transfer Function

a = purelin(n)

Linear Transfer Function

a = satlins(n)

Satlins Transfer Function

a = netinv(n)

Netinv Transfer Function

a = poslin(n)

Positive Linear Transfer Function

0.833 | 40.833
a = radbas(n)

Radial Basis Function

a = tribas(n)

Triangular Basis Function

Figure 3.5 Transfer functions Graphs (Demuth and Beale, 1998).

3.2.4.1 Feed-forward neural networks (FFNNSs)

In the FFNNSs, neurons are organised into layergeviméormation is passed from

the input layer to the final output layer in a urédtional manner as illustrated in

Figure 3.4. This type of ANNSs is capable of mappihg given set of inputs to

their corresponding outputs. Therefore, the FFNMNn$y capable of statically
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mapping the input vectors to their correspondirrgets. However, they are still
widely used in dynamic system mapping by feedirg plast input and current
output values of the system to be modelled as smputthe network (Bishop,

1995; Gurney, 1997, Demuth and Beale, 1998). Traesyread use of such a
network is due to its ability to model complex ftinoal relationship between the

given input and output data sets by learning fraamgples.

3.2.4.2 Recurrent Neural Networks (RNNS)

In the recurrent neural networks (RNNs), feed-ba&cknections within the
network either between layers and/or between nsucan be found as illustrated
in Figure 3.6. Therefore, RNNs are dynamic, meativag the output at timeis
dependent on the previous output or state of theons within the network as the
result of the feed-back paths. The internal feekiljzaths allow the network to
exhibit temporal behaviour and the greater the remiof feedback
interconnections, the richer the dynamic represiemtalt can be said that the
introduction of feedback makes RNN a nonlinear dyica system (the
matheworks,Neural-networks-toolbox,
http://mww.mathworks.com/products/neuralnet/ ). Téedback loops involve the
use of particular branches composed of unit-delayents (denoted by D) which
results in a nonlinear dynamic behaviour. As wittfNIN, RNN can be multi-

layered (MRNN) or single-layered (SRNN) and fullypartially connected.
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Input Recurrent tansig layer Output purelin layer

al(k) = tansig (TWiip+LWiiauk-1) + bt) a2(k) = purelin(LW21a1(k) + b2

Figure 3.6 Recurrent neural networks

3.2.5 Modelling using ANN

Modelling is the process of finding a model thastbeegenerated the original
output signals when subjected to the same inpuiatsg ANNs could be utilised
to model a process without having to take into antthe complex physical laws
that govern the system. Therefore, the task of mindeusing ANNs essentially
involves finding a suitable model structure and saguently finding good
numerical values for its parameters (weights arabds of the network), i.e.
establishing the architecture. The architectureaofeural network should be
optimised in order to achieve a better interactath the system of interest.
Unfortunately, there is no well theory for choosihg architecture of the ANN.
Therefore, the number of neurons in the hiddenr{ayes generally determined
through trial and error (Bishop, 1995; Demuth arealB, 1998). However, the
theoretical basis of non-linear modelling by usiddNNs has been well
established in the last decades. It has been shmatrone hidden layer, having

sufficient number of neurons, can approximate amgmiex relationships.
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3.2.6 Learning Algorithm

Learning algorithm is the process in which the wi&sgand biases in NN are
adjusted in response to input-output training dataThe learning process enables
the network to find a set of weights that will poog the best possible
input/output mapping. Normally, the best mappin@dieved by minimising of
the error between network output and the desirédubuLearning algorithm for
neural networks can be classified into two majgodathms: supervised learning

and unsupervised learning.

3.2.6.1 Supervised learning algorithms

Supervised learning, as the name implies, reqainesxternal reference (teacher)
to match each input vector with a desired outpubhew an input vector is
introduced, the network proceeds to calculate thipui of this input vector. Then
the error between the network output and the dgsitgput is calculated. This
error is often used to modify the weights accordingan adopted learning
algorithm. The weights are then adjusted with etmaming iteration or epoch
until the error for the entire set of training vast reaches an acceptable level. A
schematic representation of the supervised traiisififustrated in Figure 3.7. An
example of supervised learning algorithm is bac&ppgation (Bishop, 1995;

Demuth and Beale, 1998).

3.2.6.1.1 Back-propagation algorithm

The feed foreword multi layer perceptron artificredural networks (FFMLP) are
trained with the popular backpropagation algorithfhis training algorithm is

used in perhaps 80 to 90% of practical modellingliagtions. Back propagation
neural networks models are very effective in captuthe non-linear relationships

that exist between input-output variables in compdgstems. In other words,
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back propagation ANN can be viewed as a form ofaggion model between

input and output variables.

System R Teacher
Desired
Response
Actual
Response +
| Learning

e System

Error Signal

Figure 3.7 Schematic representation of supervised learning

The learning paradigm of backpropagation neuralvoeds utilises a gradient

descent optimisation method for the learning precksthis method, the network
typically starts with randomly generated weightkeil it is exposed to a training
set of input-output data. At each iteration or dpoihe network weights and
biases are updated in the direction in which thdopmance function decreases.
This means that it learns by making changes invigghts in a direction to

minimise the objective function, e.g. mean squarerge between its computed
output and target output. As the training procedhs, network’s weights are
adjusted until it is responding within the requitexits of accuracy (Demuth and

Beale, 1998).

The Backpropagation learning rules consists of passes of the different layers

of the ANN, a feedforward pass and backward pasthe feedforward pass, the
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input is applied to the ANN and is passed through different layers, at this
stage, the weights and biases are fixed and dohaotge. At the ANN output, an
error is recorded which is the difference betwdenANN output and the desired
output. During the backward pass, the weights arabels are adjusted in
accordance with the error-correction rules. Theresignal is then propagated
backward through the ANN and the parameters anestat] layer by layer until

the whole layers are covered.

To teach the neural network training data set isded. The training data set
consists of input signalp{ andp,) assigned with corresponding target (desired

output)d. During training, the output predicted by the natkva(t) is compared
with the actual (desired, target) outpdft) and the mean square error (MSE)

between the two is calculated. The error functimnirgstantaneous value) at time

t, E(t), is given by Equation 3.6.

E(t) = %Zcﬂt) =13 () -dw)’ (3.6)

iic 23/
where the set C includes all the neurons in thpuidayer.
Then the error is propagated back to adjust thght®iusing Equation 3.7:
W, (t+1) =W, (1) + AW, (1) (3.7)

The weight incremenW; is calculated using Equation 3.8 in which the gzatli

descent method is applied. This results in weitpeing changed in the direction
of steepest descent down the error surface. Theo$idee step taken down the

error surface is determined by the learningsqate

AW, =77(9E | OW) (3.8)
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The learning ratey affects network-teaching speed. There are a fewniquls to

select this parameter. The first method is to $éathing process with large value
of the parameter. While weights coefficients armppestablished the parameter is
being decreased gradually. The second, more conmaicenethod starts teaching
with small parameter value. During the teachingcpss, the parameter is being
increased when the teaching is advanced and thereated again in the final

stage (Demuth and Beale, 1998).

3.2.6.1.2 Enhancing the performance of backpropagation neural networks

Several problems are associated with the performarfidhe back propagation
artificial neural networks. These are namely, owinf, local minima, and
convergence. To avoid such problematic conditiorts @ successful in building
the best-suited back propagation network for aiqder application, it is
important to be aware of these technical aspedtsrerlis, however, no universal
rule for avoiding their problems completely, bueté are some rules given by
practitioners, who have worked in the field. Somk tleese rules will be
summarised in the next subsections. For now, tlsentisl features of these

problems are briefly explained.

In the case of over-fitting, the mapping ability méural networks can lead to a
very accurate fit of the training data but resaltai poor generalisation of unseen
data (Bishop, 1995; Demuth and Beale, 1998). I sucase, the model is not
only modelling the essential dynamic of the systamalso undesirable features
such as noise. One method of solving the problemveffitting is to ensure the
neural network is just large enough to provide decaate data fit. However, it is
difficult if not impossible to know beforehand hdarge the network should be.
The most widely used method for improving the gahsation of neural networks

is the early stopping (Demuth and Beale, 1998).
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The problem of local minima is associated with gradient descent procedure
that may lead the training to be trapped in locatima of the error surface.
Although it sometimes provides an acceptable smita network trapped into a
local minimum during learning is likely to exhilpbor performance in terms of

learning and generalisation capabilities (Rochal.e2007).

The third problem is that of convergence. In tlase; the learning process in back
propagation is unpredictable and lengthy, and ihiperhaps the most serious
problem with the algorithm. Whilst some complexidemms may require hours or
days to train a network, under some circumstaritese is a possibility that the
network will be unable to improve or achieve anegqtable performance at all

(Kamarthi and Pittner, 1999).

The above mentioned problems can be solved usingralemethods. These

methods are summarised as:

a. Samplesize
A simple way to alleviate the above-mentioned peoi8 is to increase the
number of examples in the database (Sahiner e2@08). Large sample size

decreases the noise effects and improves gendi@iigd the network.

b. Pre-processing and post-processing

This method is used to scale all signals, both timmd output, to the same
variance. Hence, signals of differing magnitudes aqualised to ensure that
signals of larger magnitudes will not become tomdwnt. This would certainly
ensure that all the input signals apply the sarflaence throughout the training
process. Moreover, scaling makes for a numericatigre robust training
algorithm and leads to faster convergence in neng@bork learning (Demuth and

Beale, 1998). After the network has been trainiee,dutputs of the network have
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to be post-processed to give the required outplutegausing the inverse of the
pre-processing transformation. When new data abe tporesented to the network,
they must first be pre-processed. They are then pastessed to return to the

original variable as output.

A procedure for scaling network data set is to radige it in which it will have

zero mean and unit variance. The input and targmiables are treated

independently and for each variale its mean)z and standard deviatiod,

and a standardised variabkg,qr, is then obtained using:

o = 5N (3.9)

c. Early Stopping

Since the goal of the network training is not tarfethe exact representation of
the training data itself but to build a model of fhrocess that generates the data,
it is important that the network exhibits good gatisation. Early stopping is the
most widely used technique to overcome the overgitproblem and to find the
network having the best performance on new datdy Edopping involves the
splitting of the available data into 3 subsetsnirgy set, validation set and testing.
During network training, the error on the validatiget is monitored as well as the
error on the training set. Training will continuetiithe error on the validation set
increases implying overfitting (Bishop, 1995; Deimaind Beale, 1998). Training
can therefore be stopped at the point of the sstadleror with respect to the
validation data set, since this gives a network thaxpected to have the best
generalization performance. After the model hashbeained, another data set,
testing set, is used to verify the effectivenesshaf stopping criterion and to

estimate the expected performance in the futurel@®ed and De Munari, 2006).
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d. Selection of the network elements

The choice of the number of layers and the numlbenidden neurons in the

hidden layers is a major concern in constructimg@vork, as they do not follow

simple rules, but are a result of a process of @na error. In theory, more hidden
neurons produce better mapping ability. Howevemractice, the networks may
use the extra nodes to fit the noise in the da&ti@ti et al., 1996; Pulido-Calvo

et al., 2007). Although having no formal mathemeltizasis and being the subject
of a lot of research, some suggestions from enaliresearch indicate that one-
hidden-layer network with different number of hidd@eurons is capable of
accurate approximation to any complex system oveeasonably sample set
(Demuth and Beale, 1998). Moreover, the numbenpits is often unknown and

different models with different inputs can be tednin order to select the optimal
model. The decision of the final model is usuallyedmined by evaluating the

trained model using several evaluation criterianew data.

3.2.7 Advantages and Limitations of Neural Networks

The above are a clear demonstration of the usefslmé modelling complex
environmental systems, particularly those exhigitstrong non-linearities which
are difficult or impossible to specify in closed tmematical forms. ANNs offer

other advantages that can be summarised as fo{Bisisop, 1995):

1. Although neural networks have the potential to sademplex problems,

they are inherently simple to understand and dgvelo

2. ANNSs require no explicit knowledge of the systendenstudy, which
makes them well suited to applications where kndgde extraction is
difficult or in cases where the interrelationshipetieen process

parameters are hard to model.
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3.

4.

5.

Compared to deterministic or mechanistic models, NAhternally
encodes knowledge on a network of nodes and caonect The
knowledge in the network is developed by using isigifit amount of
actual historical observations from past experiefiterefore, there is no
need to acquire rules or algorithms from human expe from the

mechanism of the process.

ANNSs learn by examples, and as long as examples\agable and an
appropriate design is adopted, effective soluticas be constructed far
more quickly than is possible using traditional hetistic models, which

are entirely reliant on experience in a partictiksd.

With careful design, ANN can be trained to give ttwerect response to
data that have not been previously encounteredsed wuring training.

This aspect is often described as the ability toegalise on test data.

The use of neural networks have the potential tuce time spent on
modelling complex processes and can give bettefoqmeance than other

mechanistic models.

However, a major drawback of using ANNs is thatythee not able to simulate

outputs outside the range of those they were tdawvih, i.e. they are poor

extrapolators\{os and Rientjes, 2005

3.2.6.2 Unsupervised learning algorithms

As stated in subsection 3.2, there are two waysaio a network: supervised and

unsupervised. In supervised learning, the netwsrgresented with examples of

known input-output data pairs, after which it stad mimic the presented input-
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output behaviour or pattern. The network is thesteiek to see whether it is able to
produce correct output, when new input is preseritedt. In unsupervised
learning, the network learns on their own, in adkai self-study without teacher.
In such a case, a data set is presented to sudatwaork and they learn to
recognize patterns in the data set. By so doirgjrtput data are categorised into
groups or clusters. Of course, the net does noenstahd the meaning of the
groups. It is up to human users to interpret oelldise groups in some meaningful
way (Back et al., 1998; Kalteh et al., 2008). Thestnwidely used unsupervised
neural network is the Kohonen Self-Organising M&BOM. Therefore, and due
to the importance of this method in this reseatatill be discussed details in the

next section.

3.3 Kohonen Self-Organising Map (KSOM)

The KSOM (also called feature map or Kohonen mapjnie of the most widely
used unsupervised artificial neural networks athans (Kohonen et al., 1996). It
is usually presented as a dimensional grid or magse units (nodes or neurons)
become tuned to different input data patterns. aligorithms are based on
unsupervised competitive learning, which means thaihing is entirely data
driven and the neurons or nodes on the map comyittteesach other. In contrast
to supervised neural networks, which require thagdt values corresponding to
input vectors are known, KSOM dose not requiredésired output to be known,
hence, no comparisons are done to predetermingdted responses. During
training, only input patterns are presented to rieévork which automatically
adapts the weights of its connections to clusterinput patterns into groups with

similar features (Alhoniemi, 1997; 1998, Obu-CadQZ; Astel et al., 2007).

The principal goal of the KSOM is to transform artoming signal pattern of

arbitrary dimension into a two-dimensional discratap. It involves clustering
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the input patterns in such a way that similar paieare represented by the same
output neurons, or by one of its neighbours (Backle 1998). In this way, the
KSOM can be viewed as a tool for reducing the amof@idata by clustering, thus
converting complex, nonlinear statistical relatioipsbetween high dimensional
data into simple relationship on low dimensionalpthy (Kangas, 1995; Kohonen
et al., 1996; Zhang, 2009). This mapping roughlyserees the most important
topological and metric relationship of the origidialtta elements, implying that the
KSOM translates the statistical dependences betwlkeendata into geometric
relationships, whilst maintaining the most impottaopological and metric
information contained in the original data. Henoet much information is lost
during the mapping. Hence, similarities relatiopshithin the data and clusters
can be visualised in a way that enables the usexxpdore and interpret the

complex relationship within the data set.

3.3.1 The structure of the KSOM

The KSOM consists of two layers: the multi-dimemsib input layer and the
competitive or output layer; both of these layers &lly interconnected as
illustrated in Figure 3.8. The output layer corsief M neurons arranged in a
two-dimensional grid of nodes. Each node or neurofi E 1,2,....M) is

represented by an n-dimensional weight or refererector Mi= [mj,....,mi].

The weight vectors of the KSOM form a codebook. Mhaodes can be ordered
so that similar neurons are located together assirdilar neurons are remotely

located on the map.
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Kohonen Map
(Low-Dimensional Space)

Winning Node

Mapping ‘A, h /’/ Neighbourhood

Neurons (Nodes)

Input Vector
(High Dimensional Space)

(X1:X2,X3, ...... ,Xn)

Figure 3.8 lllustration of the winning node and its neighboooid in the Kohonen

Self-organizing Map

The network topology is described by the numbeowput neurons presented in
the network and by the way in which they are irtarected. Usually neurons in
the output layer are arranged in either a rectamgul a hexagonal grid as seen
from Figure 3.9. In a rectangular grid, each neursnconnected to four
neighbours, except for the ones at the edge oftite However, in a hexagonal
structure, every neuron is connected to exactlysighbours, except for the ones
at the edge of the grid (Back et al., 1998; Vesamtal., 2000). There is a need to
point out that while the rows and the columns an ditput layer are interpreted
as co-ordinate axes to locate units and upon whieloutput of the KSOM can be
interpreted, they do not have explicit meaningedations to the variables of the

input data set.
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Rectangular Hexagonal

P} |2

Figure 3.9 Examples of map topologies in the KSOM

The number of neurons (Map size), M, may vary fiofew dozen up to several
thousands, where the number of neurons affectsramguand generalisation
capability of the KSOM (Alhoniemi, 1997; 1998) adlwe seen later on in this
subsection. The self-organising map team at the imkelsUniversity of

Technology offers guidance for determining the mptin number of neurons
using the heuristic formula presented in Equatiobt03(Vesanto et al. 2000;

Garcia and Conzalis, 2004).

M =5J/N (3.10)

where M is the number of map units or neurons arnsl the total number of data
samples or records. Once M is known, the numbeowt and columns in the
KSOM can be determined. A guideline by the selfamiging map team is in

Equation 3.11:

1
Iz

(3.11)

D | 4D
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wherel; andl, are the number of rows and columns respectilis the biggest

eigenvalue of the training data set @ads the second biggest eigenvalue.

3.3.2 Training the KSOM

Upon start of training, the initial values of thiereents of the weight vectors in
the grid are randomly assigned, usually numberadrt zero and one. Then the
weight vectors are updated using two types of imgiralgorithms, sequential
training algorithms and batch training algorithrBsth of these algorithms follow

the same general procedures depicted in Figure 3.10

3.3.2.1 Sequential training algorithms

The multi-dimensional input data is first standaedi by deducting the mean and
then dividing the result by the standard deviati@ee Equation 3.9). This
procedure ensures that every variable has equalrtance in training the KSOM,
so that no components will have excessive influeoiceontrol of the training
results by virtue of its higher absolute value @demi, 1998). Then a
standardised input vector is chosen at random amedepted to each of the
individual neurons in the output layer or map famparison with their code
vectors in order to identify the code vector mastilar to the presented input
vector. The identification uses the Euclidian disegnavhich is defined in

Equation 3.12.

D :\/i(xj -m)%i=12,...M (3.12)

Where Di is the Euclidian distance between the inator and the weight (or
code) vector; x; is thej™ element of the current input vectary; is the ir
element of the weight vectoy n is the dimensionality of both the input and the

code vector; and M is the number of neurons iINnKBOM (or the size of the
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map). The neuron whose vector most closely matttesnput data vector (i.e.
for which the Di is minimum) is chosen as a winnimade or the best matching
unit (BMU) as indicated in Figure 3.10. The weiglettors of this winning node
and those of its adjacent neurons are then adjustathtch the input data using
Equation 3.13, thus bringing the weight vectonghfer into agreement with the

input vector as seen from Figure 3.11 (Vesantd. &000).
m(t+1)=m () + a(h. ©x0)-m 0] 613)

wheret denotes timeg (t) is the learning rate af h_ (t) is the neighbourhood

function centred in the winner unitat timet, (h, (t)defines the region of the

influence that the input sample has on the KSOMvidisbe seen later on in this

subsection ) and all the other variables are asetkpreviously.

The nodes surrounding the winning node, its neightmod, are also updated so
that they are made to look less like the inputmeas seen from Figure 3.10. The
size of adjustment in the weight vector of the hbmuring neurons is dependent
on the distance of those neurons from the winneheénoutput array (Back et al.,
1998; Kalteh et al., 2008). This adaptation procediretches the BMU and its

topological neighbours towards the sample vector.
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Initialise Network

L

Get Input <

L

Find winner
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Update winner
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Update neighbourhood
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Adjust neighbourhood size
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Figure 3.10 the training procedures of the KSOM. Node 13 isvir@ng node, it
can be seen how the neighbourhood of the BMU (h&Jenbves toward the

BMU with each iteration.
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x(t)

a(t)'hci (t)[xi (t) -m (t)]

Figure 3.11 Prototype vector fft) of the neuron i is updated close to data vecto
X(t) to be n(t+1).

This process of random selection of a data recoodjpetition of the winning

node, and updating the node and its neighbourhepeéats many times-from
1,000 to 25,000 or more. As the process contininesarea of the neighbourhood
decreases, as does the magnitude of the adjustioerthe winning and

neighbourhood nodes. In this manner, each nodaemtap internally develops
the ability to recognize input vectors similar tself. This characteristic is
referred to as Self-Organising, because no extémf@mmation is supplied to lead

to a classification (Penn, 2005).

3.3.2.2 Batch training algorithms

Batch training algorithm is also an iterative pregebut instead of using a single

data vector at a time, the whole data set is ptedeto the map before any
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adjustments are made-hence the name “batch.” Imteaiwing step, the data set is
partitioned between the map units according tortldéstance from that unit
(Kohonen, 2001), i.e. each data vector belongshéomap unit to which it is

closest. After this, the new weight vectors arewatted as:

Zﬂmmx

m(t+1) = (3.14)

> Lh®

where c is the index of the BMU of data samgle

In other words, the new weight vector is a weighdgdrage of the data samples,

where the weight of each data sample is the neigthlood function valueh, (t )

at its best BMU unit c.

Two parameters are used for training the KSOM:I¢laening rate &(t) ) and the

neighbourhood width parametdr), The learning rate influences the size of the
weight vector adjustments after each training steipereas the neighbourhood
width parameter determines to what extent the saded neurons are affected by
the winner. An additional parameter is the trainlaggth, which measures the
processing time, the number of iterations through training data (Back et al.,
1998; Vesanto et al., 2000). Both the learning eaté the neighbourhood width
are time dependent and are typically changed frargel to small in order to

provide the best performance with the smalleshingitime.

There are different learning rate functions as shaw Figure 3.12. Linear
function as in Equation 3.15 (solid line), powerdtian as in Equation 3.16 (dot-

dashed), and other decreasing function such asiBgual7 (dashed):

a(t)=a,d-t/T) (3.15)
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a(t) =a,(0.005/ a,)"" (3.16)

a(t)=a,/(1+10Q/T) (3.17)

where T is the training length or the number ofatems anda,is the initial
learning rate. In the KSOM toolbox of Matlal, is specified as 0.5 (Vesanto,

2000).

learning Fate

ET,

pasp E
aal ' .
nasf g g

naf A

i ) -

oS- i -

L i i I i I I 1 I =
19 20 >0 40 20 [ T [ L] 100

Time Step

Figure 3.12 Different types of learning rate decreasing funesioLinear function
(solid line), power function (dot-dashed), and eottecreasing function such as
Equation (3.17) (dashed).

Also there are different neighbourhood functionsywaver, the neighbourhood

function is normally chosen to be Gaussian ceritréde winner unit ¢, such that:
—(d . (+))2 2 _dlr —r V)2 2
h, (t) = exp (@127 O) = gy (Ire=x )2 /(20 (1)) .18)

In other words, all neurons located in a topological neighbourhood of the

winning neurons ¢ will have their weights updatedally with a strength related
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to their distancel; from the winning neuron, whemd; can be calculated using

formula 3.19.
dci = "rc - ri ” (319)

wherer. andr; are the positions of nodes ¢ and i on the KSOM gniown as the

norm city-block distance.

o’ is the variance parameter specifying the spreabdeoGaussian function.

For this neighbourhood function the distance isedreined considering the
distance in the lattice in each dimension, andotie having the maximum value
is chosen asl; . For example, ifd; =2 corresponds to a square around BMU
having side length of 3 . The weights of all newrarithin this square are updated
with, while the others remaining unchanged. As tf@ning progresses, this
neighbourhood gets smaller and smaller, resulting isituation that only the

neurons very close to the winner are updated tosvidmel end of the training.

To illustrate the concept of neighbourhoods, caerand Figure 3.10, the diagram
illustrates a two-dimensional neighbourhood of oadid=1 around nodes 13 and
another diagram shows a neighbourhood of radio&s @hese neighbourhoods

could be written as:
N13 (1) ={8,12,13,14,18} and
N13(2)={3,7,8,9,11,12,13,14,15,17,18,19,23}

Like the learning rate(t), o(t) also decreases linearly as the number of

iterations increases. In the early stages of mginithe radius of the
neighbourhood is large and most of the KSOM neulogisng to any node’s

neighbourhood. As the training progresses, theusadi reduced to allow good
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local ordering as seen from Figure 3.10. In the KBtol box in Matlab, the

initial radius g, is specified as max (1, M/4), where M is the sikzéhe map.

The batch training algorithm was used becausemfgeémentation in Matlab is
considerably more efficient than that of the segjaénraining algorithm as it
requires less time for training and produce lesantjsation and topographic

errors (see section 3.3.3 below).

3.3.3 The quality of the KSOM

The quality of the trained KSOM is measured by thial average quantisation
error and total topographic error (Garcia and Gteza2004). The quantisation
error measures the quality of the map fitting te tiata, i.e. the average distance
between each data vector and its BMU at convergeRais error is calculated

using:

1 N
q.=—2|x-m]|
= (3.20)

where e is the quantisation errox; is the i-th data sample or vector is the
prototype vector of the best matching unit forand |||| denotes Euclidian

distance (Equation 3.12).

The topographic errot, is an indication of the degree of preservationthsf

topology of the data when fitting the map to thiggioal data set. In other words,
it measures the similarity between the neighbouth@nmodel and on the input
space. It is calculated as the proportion of sanaptgors for which two best and

the next best matching units for a given input @eete not adjacent, i.e.,
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1 N
1:e :—ZU(Xi)
N i=1 (3-21)

where N is the number of samplesijs the i-th data sample angx) is a binary

integer such that it is equal to 1 if the first asstond best matching units of the
map are not adjacent units; otherwise it is zetee fesults of this error measure
are very easy to interpret and are also directisnmarable between different

models.

The number of map units determines the accuracygandralization capability of
the KSOM. The bigger the map size the lower thentmation error but the
higher the topographic error. Moreover, the bigther map size the higher the
computational cost. Therefore, there is comprorhesgveen the increases of the
topographic error and the reduction of the quatitmaerror. A reasonable
optimum solution of the compromise among the quatibn error and the
topographic error to determine the side lengthsnfihe map is the heuristic

formula presented in Equation 3.11 as stated pusiyo

3.3.4 Applications of KSOM

Over 5000 publications relating to the KSOM werewoented in the last twenty
years (Kaski et al. 1998; Oja et al. 2003). The KBCan be used for many
practical tasks, such as the reduction of the amofitraining data for model
identification, nonlinear interpolation and extrégimn, generalisation and
compression of information for easy transmissiooh&nen et al.,1996; Kangas
and Simula,1995). Indeed, the KSOM has been usedafwide variety of

applications, mostly for engineering problems Hsbdor data analysis (Tananaki
et al.,, 2007; Badekas and Papamarkos, 2007). Howéve most important

applications of the KSOM have been in the visu#ibsaof high-dimensional
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systems and process data and the discovery ofarse@nd features in raw data.
This application is called the exploratory datalgsia or data mining (Kohonen et

al., 1996; Kangas and Simula, 1995).

KSOM could be used to pre-process the incomingimétion in order to improve
the performance of ANN or Fuzzy Logic models. Thig-processing ability
would become quite significant when there was a lipation of faulty
information or uncertainty in the measurement syst&he application of the
KSOM for data pre-processing is described in mataitin Chapter 5 and and by
Rustum and Adeloye (2007).

3.4 Fuzzy L ogic modelling technique

Fuzzy logic models (also called linguistic modelsuzzy if-then rules) were first
introduced by Mamdani (Mamdani and Assilian, 19B&%ed on Zadeh's theory
of fuzzy sets. These models have the capabilitgdal with systems that are
highly uncertain (Klir et al., 1988; Firat and Giégng2007). The theory of fuzzy
sets, firstly published by Zadeh (1965), presentseful way of representing the
uncertainty and imprecision in data without the che¢ complex mathematical
relationships. These models have the advantagesing able to model non-linear
functions in an easy and understandable way bya@xph the reasoning
linguistically rather than with numerical quantitieThey provide a useful way of
representing human knowledge in a readable wayhéenform of fuzzy rules
(Nguyen and Walker, 2006). In the following subsmtwd, the fuzzy logic
concepts are presented. Furthermore, details abheufANFIS, which utilise the
learning power of ANN to optimise the fuzzy rulesdahe parameters of fuzzy

membership functions in the fuzzy logic system,ase described.
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However, before this, it is pertinent to mentioe tifference between multiple
regression or neural networks and fuzzy logic. #thihe first two belong to
black-box models, fuzzy logic models fall in théeggory of grey-box models (see
section 3.1). This is because artificial neuralvoeks regression are able to learn
complex non-linear relationships between inputs aagbuts of the process, but
are not able to help improve the heuristic undeditey of the operational
problem or causal relationships of the processmpaters. Fuzzy logic models are
grey-box because the causal relationships betweendnditions (inputs) and the
fact (output) are clear in such fuzzy if-then rul€us, Fuzzy models depend not
only on black box approach, but also on a commatif knowledge of the
system and human expert in which fuzzy rules aik bsing physical knowledge
of the process, while the parameters are tunediack-box manner (Sadiq et al.,

2004).

3.4.1 Fuzzy Logic concepts

Zadeh stated thata% complexity rises, precise statements lose megaaird
meaningful statements lose precisionFrom this statement, Zadeh (1965)
introduced the concept of fuzzy logic where thehtrof any statement becomes a
matter of degree. This theory is an extension oiveational Boolean logic that
was introduced to handle the concept of partidghthetween completely true and
completely false (Zadeh, 2008). Zadeh used thieept as a mean to model the
uncertainty of natural language. This techniquesisd for modelling of processes
that are complex and ill-defined. A fuzzy logic nebdonsists of linguistid-then
rules that depend on fuzzy set theory for reprediemt and evaluation using

computers.
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3.4.2 Fuzzy Sets

Fuzzy set theory is a mathematical way to repreaadtdeal with vagueness in
everyday life. Zadeh (1965) provided a theory thraé of the reasons human are
better at control than machines is that they ate tbmake effective decision on
the basis of imprecise linguistic information. Fuzheory generalises classical
sets theory in which the membership degree of djgcd to a set is not restricted
to the integers [0 1], but may take any value betweero and one. By this
definition, a fuzzy set is a set with imprecise bdaries in which the transition
from one set to another is gradual rather thanmbkiRoss, 2004; Zadah, 2008;

Fuzzy Logic Toolbox for use with Matlab, 2004).

In classical mathematics, a classical set is avibtcrisp boundary. For example,

let X be a certain universe of discourse, whe¢e={ X, X,,.......X.) : X, [0 X},
and its elements, denote all the possible tall values (cm) of anltagerson. A

classical crisp seCq of X is defined as a function/ called characteristic

function of Ciyy as in Equation 3.22. For any elementof the universeX , the
characteristic function/ is equal to 1 ifXis an element of set A, and is equal to
0 if X is not an element of A. Just as tall, another sivoilar crisp set€average

andCsport can be defined as in Equations 3.23 and 3.24 casply:

1 if x is larger than 180cm
= 3.22
Hrgl () {0 otherwise ( )
1 if X is between 160cm and 180cm
X) = 3.23
Haver, () {0 otherwise ( )
1 if X is less than 160cm
= 3.24
Hshort™) {O otherwise ( )
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One problem arises if we have to define a lingaitgrm ‘tall” for example. The
use of any crisp set above results in a stiff sitma when a person of 180 cm is
considered to be adll mar?, but a 179.99 cm-person is said to et tall’. In
contrast to a classical set above, a fuzzy setsetavith fuzzy boundaries. The
membership function of a fuzzy set is allowed twehaalues between 0 and 1,
and it expresses the degree in which an elemeahggelto a given fuzzy set. This
transition makes fuzzy sets more flexible and ligeht for the interaction

between humans and machine.

Using the same example as above, new fuzzyFs@tFaverage @NdFsport OF X can

be defined as in Equations 3.25, 3.26, and 3.Zmively.

Fo ={(x 4R, (), x0X (3.25)
Faver = {(X’ ﬂFaver(X))’ X D X (326)
Foron ={ (X P10 (X)), X O X (3.27)

wherelF is called the membership function (MF), and it givbe degree to

which Xis an element of set F. This degree, a value betWesnd 1, denotes the
degree of membership, also called membership valhe. difference between
fuzzy and crisp definition of tall is better illuated using Figure 3.13. For
example, if a person is 170 cm tall then the mestbprdegree for the fuzzy
subset tall is about 0.6. At the same time, the be¥ship degree for the fuzzy
subset short equals to 0, and the membership dégrdezzy subset average is

equal to 1.
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These membership functions map each element of X tembership degree
between 0 and 1. They are often Triangular, TraiproGaussian, and Bell-
shaped functions as illustrated in Table 3.1. Wiienmembership function takes
only two values 0 and 1, F is identical to a crisgt that is defined by a
characteristic function. In this instance, crisgss=n be looked at as special cases
of fuzzy sets. In practice, the input space, umsi@eof discourse, is usually
partitioned into several fuzzy sets whose MFs coXeiThese fuzzy sets carry
names that conform to adjectives appearing in aily dinguistic usage, such as
low, medium and high. These adjectives are calleglistic values or linguistic

labels, and the universe of discourse is calleditigaistic variable.

Crisp sets Fuzzy sets
Short Average Tall Short Average Tall
1 1 * arreree
2 = R
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Pl o < J HE
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12 6 220 12( 16C 18C 220
170

Figure 3.13 Typical crisp sets (left) and typical fuzzy seight) characterising
the human tall values.

3.4.3 Fuzzy Logic System

Fuzzy logic system (FLS) is a rule based systenwimch an input is first
fuzzified (converted from crisp number to a fuzzglue) and subsequently
processed by an inference engine that retrievewledge in the form of fuzzy
rules contained in a rule-base (Ross, 2004). Theyfgets computed by the fuzzy

inference as the output of each rule are then ceptband defuzzifide (converted
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from fuzzy set to a crisp number). By this, fuzogit systems are a nonlinear
mapping from the input to the output space. Thecbas fuzzy logic systems are

based on three concepts, fuzzy sets, linguistiabbes, and fuzzy if-then rules.

The first implementation of the FLS idea was ddsmtiby Mamdani and Assilian
(Mamdani et al., 1974; 1975; 1977) which demonettaits viability for the
control of a small steam engine. Other early im@etations of the FLS were a

sludge controller for a wastewater treatment p(@ong et al., 1980).

3.4.3.1 Architecture of Fuzzy Logic System

As noted previously, Fuzzy Logic Systems (FLS)pd&sown as fuzzy-rule-based
systems, fuzzy expert systems, fuzzy associativenang or fuzzy controllers

when it is used in control areas (Jang & Sun, 19815s, 2004), consists of four
basic components: the fuzzification inference, kiealge base (rule base or
database), decision making (inference engine, teréence mechanisms) and
defuzzification (Fuzzy Logic Toolbox for use withatlab, 2004). These various
components are related as illustrated in Figuré.3They involve membership
functions, fuzzy logic operators, and fuzzy rulese membership functions allow
the representation of a degree of membership tzayfset for a given numerical
value, associated to a linguistic label. The fuiZyTHEN rules introduce the

expert knowledge in a computable way.
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Table 3.1 Schematic of different membership functions

Name

Description

Gaussian curve builtt

in membership
function

The symmetric Gaussian function
depends on two parameters b and
as given by:

-(x-a)?

f(xab)=e

Example

1
075
05
025

2

4 6

8

=)

Generalised bell-
shaped built-in
membership function

The generalised membership
function depends on three
parameters, a,b, and c as given by

floab,c)= —_—
X —C ’2
a
where the parameter b is usually

positive. The parameter c locates t
centre of the curve

W

gaussmf=f(x,5,2)

1
0.75
05
0.25
0

2

gbellmf=f(x;2,4,6)

4 6

8

=)

Triangular-shaped
built-in membership
function

The triangular curve is a function o
three scalar parameters a, b, and ¢
given by:

o, XxX=Ea
x—a, a=x=h
flwade) =122
, b=x=c
c—5b
i, cEx

The parametera andc locate the
"feet" of the triangle and the
parameter c locates the peak.

=

2

4 6
trimf=f(x;3,6,8)

Trapezoidal-shaped
built-in membership
function

The trapezoidal curve is a function
of a vector, x, and depends on four
scalar parameters a, b, ¢, and d, as
given by

o, x<ea

, a=x=<h
F o a,b,e,d) — 1, Bcx=<e

c=x=d

d—c’
o, <

The parameters a and d locate the
"feet" of the trapezoid and the
parameters b and c locate the

"shoulders."

=

trapmf=f(x;1,5,7,8)
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Crisp Input

Figure 3.14 The basic structure of a fuzzy Logic inferenceesgsand its
components

1 The fuzzfication unit

The aim of the fuzzification unit is to obtain thrembership degree of each input,
i.e. fuzzifying the inputs. The data are processethis unit and converted into
linguistic variables by means of membership funioThe determiners of the
membership functions are linguistic values (e.gy Vew, low, normal, high, and
very high). The outputs of this layer are fuzzy rbenship degree of the inputs.
The relation between input and output using Ganssiambership function as a

fuzzification process is as in Equation 3.28.

(% _a'ij)z

3.28
o) (3.28)

Y; =expt

where y; is the membership degree for the inputin membership function),

61” is the centre andD“. is the width of the membership functignas seen from

Figure 3.15. These parameters can be used to deBneegion or the position of
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the fuzzy sets. Essentially, for this particulatype of MF, 6}] is the center of

membership functioi) and b”. is its width as described in Table 3.1.

2 The Knowledge base

The knowledge base consists of database and liguide base (or fuzzy rule

base).

a. The database

The database includes all the definitions usedniembership functions, fuzzy
partitioning and definition of fuzzy sets. Partiting of a universe of discourse is
used to determine the initial number of fuzzy stdbsequired to represent that
universe. These fuzzy sets can be representefuastéon form such as Gaussian
membership function, bell-shaped, triangle-shapeahezoid function, etc as

stated previously.

Low " Medium High

<
=)

0.6

Degree of membership

Centers aij x10

BOD Load (kg/day)

Figure 3.15 Parameters of Gaussian membership function for RO&d as
developed in the study. Low=gaussmf(BOD Load; 6&¥3D),
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Medium=gaussmf(BOD Load; 18510,5030) and High=gau§8OD
Load;30360,5030).

b. Therule base

The rule base contains the fuzzy rules obtainenh filoe physical system of the
process. These rules associate a condition usiggi$itic variables and fuzzy sets
to make a conclusion. These rules can be extrdcteddifferent sources such as
expert knowledge, operators control actions or kedge extracted from the data.

These fuzzy rules take the form:

IF (a set of conditions occuf)HEN (a set of conclusions can be inferred)

Thus fuzzy rule has two parts: the or antecedent part that describes a condition
and theTHEN or consequent part that describes the concludiba.antecedent
part of each rule classifies the behaviour of memabsuwariables by fuzzy
membership functions, whereas the consequent pareeses the essential actions
or conclusion. The collection of fuzzy rules foritie rule base of a FLS. An

example that describes a simple fact is:

I F Pressure is highf;HEN volume is small

where, as in the above example, pressure and vanenkénguistic variables, high
and small are linguistic values or labels that enaracterised by membership

functions.

There are several factors that can influence tlsggdeand the implementation of
fuzzy rules. These factors are the choice of inpatl output variables, the

generation methods of fuzzy rules and the impleatant method on fuzzy rules.
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i) Thechoice of input variables

The choice of input variables influences the nunddeules and the performance
of the FLS. The selection of these variables raieexperience on one hand and
the relation between these inputs and the desitggub on the other. These

relations can be determined using correlation mairithe visualisation of the

component planes of the KSOM.

i) Generation method of fuzzy rules

There are two methods to derive fuzzy rules. Thet fhine is to generate fuzzy
rules based on expert experience and control eegime knowledge. In this
method, the expert put his experience as a linguistation between input and
output variables of the FLS. This method is veffficlilt to be used if the process
is very complex. The second method is based ormliserved input-output data
(Fuzzy Logic Toolbox for use with Matlab, 2004). Asmarked earlier, the first
approach was commonly used until the introductibANFIS (Tong et al, 1980;
Mamdani et al., 1974; 1975; 1977).

iii) Implementation method of fuzzy rules

Fuzzy implication rule describes how several Idgianulas involving linguistic
variables are combined together. The combinationbeaachieved in many ways,
all of which are derived from three fundamental raiens, conjunction (AND),
disjunction (OR), negation (NOT), in addition toethmplication (Production

rule).

- The conjunction (intersection) of two fuzzy satend B is a fuzzy set C written
asC=(ANnB)orC=A AND B . This fuzzy set C is a collection of

objects that belong to both A and B and whose Mtelsted to those A and B by

Equation 3.29.
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OXOU e (%) = fp g (¥) = U (X) 0 pag (x) = min{u 5 (9, g (0} (3:29)

- The disjunction (union) of two fuzzy sets A and$Ba fuzzy set C, written as
C=(A0B)or C=A OR B, which is a collection of objects that

belongs to either A or B and whose MF is relatethttse A and B by Equation
3.30.

OXOU : 4 (9 = g (0 = 1A () O g (90 = maxdup (9, g (9} (3:30)

- The complement of set A denotes lﬁ\lcor NOT A is a collection of objects not

belonging to the set A and whose MF is related smd B by Equation 3.31.
OxOU @ 15 (X) =1 1, (X) (3.31)

The operations of union, intersection, and complanrgroduced in the previous
definitions are graphically illustrated in Figurel8. Note that these operations
perform exactly as the corresponding operationofdmary sets if the values of

the membership functions are restricted to either D.
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H(X) H(X) H(X)
1 1 1
B A B A B
| —
A
(0% X (0% X (0% X
> ® > >
ALB AL B
H(X) H(X) H(X)
1 1 1
A B A A
n—>
(094 X 0x X (04 X
An B A

Figure 3.16 Graphical examples of containment, union, interisecand
complement

3 The fuzzy inference

The fuzzy inference (or inference mechanism orgleesimaking) unit applies a
fuzzy reasoning mechanism to obtain a fuzzy outipubther words, combine the
results of fuzzification process in a single fuzaytput for each rule. There are
several types of fuzzy inference systems. Howether most commonly used are
Mamdani inference system, type 1 in Figure 3.17 &ndeno inference system,

type 2 in Figure 3.17 (Ross, 2004).

4 The defuzzfication unit

The defuzzification unit aggregates the outputslbbf the rules that have been
fired for a particular input to produce a crisp it In other words, the fuzzy
output is transferred back to crisp value. Thisgwalue can be expressed as in

Equation 3.32.
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z = DefuzzifyC) (3.32)

wherez is the crisp output, C is the fuzzy set that repnt the distribution of the

results of the fuzzy inference as illustrated igufe 3.17.

The most common means of defuzzification is calledcentre of gravity method
in which the centre of gravity of the fuzzy setmigasured and projected to the
axis to get the crisp result as illustrated by Feg3.18. The output of this

defuzzifier is a number z given by Equation 3.33.

IZ/&(Z )dz
z2=———— (3.33)
J./'Izi(z| )dZ
where z is the crisp output,;is the fuzzy membership value at z
Premise Part Consequent Part
Mamdani method Sugeno method
Al

r r r

,‘ \ C1
/ wi / \ Z1=aix + b1y +C1
>z
3

[\ c2
/ \ / 72=a2x +b2y +C2
w2

o L >

= ?{_ ' ll'ﬂa?\

C wiZ1 +W2Z72

[P =
Z

[=1 o

wl +w2

Centroid of the area

Figure 3.17 Different types of fuzzy inference systems (madifeen Jang & Sun,
1995).
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T,

v
N

I

Figure 3.18 lllustration of the defuzzification using the cenaf the gravity

3.4.3.2 Types of fuzzy logic systems

The operation of a FLS is based on the rules coathin the rule base. Fuzzy
rules, or Fuzzy if -then rules, are defined as addmnal statement in the form

presented in Equation 3.34.

Rq:IF x1is Ag and % is A, and ....and xis A, THEN z is B (3.34)

where

Rqy is thel rule number

X1, %, ... % are the input variables

Ay, A, ....A are linguistic fuzzy membership functions in thierpise part

Bgy is the membership function in the consequent part

As illustrated in Figure 3.17, there exist two lbafgirms of fuzzy rules that have
been developed to date: Mamdani’s fuzzy rules (Mamd@. Assilina ,1975) and
Takagi-Sugeno-Kang's (TSK) fuzzy rules (Sugeno &n#a1988; Takagi &
Sugeno, 1985). Both types of fuzzy rules are wideslgd in system modelling and

control areas. The differences between these tpestpf fuzzy rules appear in the
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consequence part of the rule. For the Mamdani fuaagel, both antecedent and
consequent are fuzzy propositions; however, inTiakagi-Sugeno fuzzy model,

the antecedent is a fuzzy proposition but the aquneset is a crisp function.

a. Mamdani fuzzy model

In this model, the inputs and outputs are partgbmto fuzzy regions. The size,
the shape, and the parameters of these fuzzy egimn decided by experience
and the fuzzy rules are generated based on hunm@arteX his model uses the
minimum operation as a fuzzy implication functiamd then the output variables
are combined together to form a single fuzzy sufigetach output variable. This
combination is constructed by taking maximum oveddl the fuzzy subsets
assigned to output variable by the inference rTihe purpose here is to aggregate
all individual rule outputs to obtain overall systeoutput. Finally, the
defuzzification step is implemented as presentexlipusly (Keshwani et al.,

2008).

The disadvantages of the Mamdani model are thatih&er and the shape of the
membership functions are difficult to determineabtdition, the number of fuzzy
rules increases dramatically as the number of inpuble increase. In such a
strategy, if we have no a priori knowledge aboet sgstem, the structure of the
model becomes a difficult task and we have to sefex structure by a trial and

error process.

b. Takagi and Sugeno model

Fuzzy modelling using this approach was proposetidkagi and Sugeno (1985).
The Takagi-Sugeno fuzzy system is a specific cdddamdani fuzzy system in
that the premise or antecedent of the fuzzy ratesdefined with linguistic terms
like very low, low, medium, high, very high but thensequence part is described

by a non-fuzzy equation of the input variablese#in combination of the inputs),
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instead of the fuzzy membership functions (seeuréi.17). An example of the

Takagi-Sugeno model is presented in Equation 3.35.

Ry IF xpis Ayand % is A and ....and xis A, THEN z =g +ax + hy (3.39

where

Rg) is thel rule number

X1, %, ...% are the input variables

A1, Ao, ....A are linguistic fuzzy membership functions in thierpise part

z is the crisp output of the rule

a;, b, ¢ are constants

Takagi-Sugeno Model uses the weighted mean cnitetdo combine all local

representations for the defuzzification (Equatid36}.

7=3 3.36)

wherew, is the degree of fulfilment of th& rule andl is the number of rules in

the rule base.

The performance of the fuzzy logic system depemdshe rule base, the inference
mechanisms and the defuzzification method and eammiproved by tuning the
membership functions. Normally, Mamdani’'s method kaen more widespread
use because it is easy to be understood by hunpamtexHowever, the advantage
of Takagi-Sugeno’s method is that it has better matational efficiency, which

makes it very good in modelling non-linear systédang & Gulley, 1997; Jang &
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Sun, 1995). Unfortunately, how to define the rutesl membership functions
requires a lot of prior knowledge (Ross, 2004).sTisi why the hybrid Neuro-

Fuzzy system, introduced in the next section, besoimportant.

3.5 Hybrid Neuro-Fuzzy Systems

The major difficulty of fuzzy models is how to adeuthe knowledge for building
the fuzzy rules and how to tune the parametereemiembership functions. The
proper selection of the number, the type and thearpeters of the fuzzy
membership functions and rules is crucial for aghig the desired performance.
Tuning the parameters is difficult and time consugrsince there are many tuning
parameters. In addition, attention must be takerselect the most important

features that describe the system under study (1298).

In the early applications of fuzzy logic modelsg theneration of the fuzzy rules
and the adjustment of its membership functions wperéormed manually by trial
and error and the best combination can be founditaylation test, which is a
challenge (Ross, 2004). Subsequently, it has beamdf that the manual
adjustments of membership functions sometimes teadong conclusion (Jang,
1993). Hence, there is a need to formalise a systempproach to generate fuzzy

rules from an input-output data set.

To solve this problem, Jang (1993) provides a uskftmalised method for
tuning the parameters of fuzzy logic system (FL&3da on training data set of
input values and their desired target outputs usirg training algorithms of
artificial neural networks. The method is calle@dpiive networks based on fuzzy
inference system (ANFIS). The method takes advastdgm both fuzzy logic
systems and neural networks; it also avoids thadividual shortcomings. For

example neural network has an implicit knowledgeresentation; it is neither
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easy to understand nor easy to explain its deci@ooess. Fuzzy logic system is
a subjective and heuristic system and it is timasaming to tune the fuzzy
membership functions and develop the fuzzy rulesther words, The ANFIS is
fuzzy inference system implemented in the framewoiladaptive network in

order to map an input-output relation based on ttiman knowledge (in the
form of fuzzy IF-THEN rules) and input-output dagtairs, and hence obtain the

best model from the given data.

To validate his approach, Jang (1993) provided iplalexamples of the ANFIS
and the results were reported to be comparable wattitional backpropagation
neural networks. Jang (1993) also found that whk supervised learning
capabilities of neural networks and the heuriséasoning capability of fuzzy
rules, the ANFIS model is able to learn a complaxctional relations and at the
same time to generate fuzzy rules. Jang et al.7(18%9owed that the ANFIS has
unlimited approximation power for matching any dorear function arbitrarily

well; thus the ANFIS can be considered as a unaresproximation (Jang, et al.,

1997).

However, the tests by Jang et al. (1997) were diteg noiseless data sets that
were generated by functional equations; so theicajmn of ANFIS on noisy
field data was not proven. For example, when ANRI& applied by Miller
(2006) to predict the rainfall (precipitation) fronoisy weather data (temperature
and humidity), it was found that the model prediategative values of rainfall on
some occasions. To solve this problem, Miller (20@6iggested the pre-
processing of the data, e.g. by replacing the missialues and omitting the

outliers, to improve the performance of ANFIS.

Hence, Fuzzy logic modelling is a useful nonlineaapping of an input data

vector into a scalar output, if the problem asgedawith the developing and
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parameterising the membership functions can beledckffectively. This is
because no complex mathematical relationshipseapained in the construction of
fuzzy logic applications. Besides, it is concepiualasy to understand, flexible

and tolerant of imprecise data.

The usual design approach for a FLS is based oarstahding the human expert
approach and then implementing the strategy bytiranslation of the linguistic

rules and testing the developed FLS. The parametershen be adjusted by trial
and error and eventually it will yield good resulit offers no guarantee of
optimality. The subjective strategy of such a systmeans that it cannot be
readily applied. Therefore, there is a need for @emobjective approach for
converting heuristic rules, stated by a human dperato an automatic strategy

to tune the model parameters (Fuzzy Logic Toollmmuke with Matlab, 2004).

The basic idea behind neuro-fuzzy combination iddsign a system that uses a
fuzzy system to represent knowledge in an integblet manner and have the
learning ability of NN to adjust its membership €tions and parameters in order
to enhance the system performance. The main drdwbat both individual
systems could therefore be avoided, i.e., the bimokbehaviour of NNs, and the

problem of selecting suitable membership values-fds (Jang, 1993).

Consequently, hybrid models of NN and FLS have b#mreloped. The hybrid
system can combine the advantages of two systechsawid their drawbacks.
This combination can constitute an interpretable@eh¢hat is capable of learning,
as NNs, and reasoning, as FLSs (Jange, 1993). Ukiagechnique makes it
possible to adjust the membership functions autalft from data by using NN

learning algorithms.
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In 1993, Jang and his colleagues started lookintyeaFLS as adaptive network
(Adaptive Network Based on Fuzzy Inference SystaMEIS (Jang, 1993; Jang
and Sun, 1995; Jang et al., 1997). This techniguns jthe linguistic interpretation
of FLS with the computational power of neural netkgothat can be trained
through gradient algorithms such as Back-propagatfo first foreword pass is
performed to determine the network output and eorsgcbackward pass is
performed to adjust the parameters for better aqmetion. They found that
ANFIS could be easily implemented for a given irputput modelling technique.

In the next sub-section, more detailed informatibout ANFIS is discussed.

3.5.1 Adaptive-Network-based Fuzzy | nference System (ANFIS)

Adaptive-Network-based Fuzzy Inference System (ANFiIs a Sugeno-type

(Sugeno & Kang ,1988; Takagi & Sugeno, 1985) fugzgstem in a five-layered

network structure (Figure 3.19). The ANFIS has mteresting property: if the

number of rules is not restricted, a Sugeno moaelmap any non-linear function
(Jang, 1993). ANFIS is a multi-layer feedforwardwerk in which each node

performs a particular function on incoming signalsie parameters associated
with these nodes are updated according to a giraning data and a gradient
based learning procedure in order to achieve aretkesnput-output mapping

(Jang, 1993; Jang and Gulley, 1995, Jang et alf;1©Bang and Change, 2006;
Gungor, 2007).
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Fuzzification
Layer

Input
Layer

Rules ‘ Standardization Output

Layer Layer Lavyer

Figure 3.19 Structure of fuzzy neural network (modified afi@ng & Sun, 1993).

ANFIS can be used to optimize membership functamngd has the advantage of
being able to construct fuzzy IF-THEN rules represg these optimized
membership functions. The five layers in the ANF: the input layer, the
fuzzification layer, the rules layer, the standaation layer and the output layer

shown in Figure 3.19.

1- Theinput layer: The input layer contains the input variables torttael. The

relation between the input and output of this lagegiven by Equation 3.37.
y? =x (3.37)

where

X; is the input to this layer
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y¥is the output from the input layer

2. The fuzzfication layer: The aim of the fuzzification layer, as discussed
previously, is to obtain the membership degreeawheinput, or fuzzifying the
inputs. The data are processed in this layer anderted into linguistic variables
by means of membership functions. The outputs o tayer are fuzzy
membership degree of the inputs. The relation betwaput and output of this
layer is as given by Equation 3.28. The parameteEquation 3.28 can be used

to define the region or the position of the fuzeyss

3- The rules layer: The inputs to this layer are the fuzzy membershegrele
output from the fuzzification layer. The output fiothis layer is also a
membership degree and can be calculated from prddmzy operation method

for each rule using the formula in Equation 3.38.

Yo =y, Ly, Lo Dy (3.38)

L J(n)

wherei is the input numberj is the number of membership function in the input

i, k is the number of rules, and * denotes an AND djmra. The value

y? obtained is called firing strength of the rules.

4- The standardization layer: The main aim of this layer is to standardize the
outputs from the third layer. In addition, the ceggence parameters of the rule
are determined in this layer. The output of thigelacan be calculated as in

Equation 3.39 and is called the normalized firitrgrsgth:

Yo =W (a, +ax +a,X +...+ax) (3.39)

where:
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(3)
W =e (3140
2 Y
k=1

5- The output layer or Defuzzfication layer: This layer computes the overall
output as the summation of all incoming signalseréhis only one node in this

layer. The output can be calculated as in Equétidfh
|
Y= Vi 43)
k=1

where | is the rule number

Therefore, there are two adaptive layers in the K\&rchitecture, the second,

and the fourth layer. There are two-modified par@msein the second layer,
a, which is the centre anl, which is the width of the membership function (See
Equation 3.28). These parameters are related tstihpe and positions of the
membership function. In the forth layer, there ar& modifiable parameters,

a,.a,,a,, --,a, which are related to the output of each rule.

Jang (1993) introduces two pass algorithms for sdiljg the parameters using

backpropagation optimization algorithms. In theward pass, the premise

parameters &, anchlj) are held fixed and the consequent parameters

(A, 8, +, 8, ) are adjusted by least square error (LSE). Inbihekward

pass, the network error is back- propagated thrabhigmetwork and the premise
parameters are adjusted by gradient descent wiglednsequent parameters are
fixed. A training process of ANFIS is to tune dhlese parameters, so that the

model can give a satisfying output.
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However, although ANFIS is fast, gives excellentf@@nance in modelling and
has good generalization capability that make itytampand ideal for modelling
complex problems. It does require strong computatiggower. The number of
parameters to be estimated can be very large. ¥am@e, depending on the
number of inputs and the number of membership fanstfor each input, and the
shape of membership function chosen, the total murobparameters is estimated

by Equation 3.42.

Ntotal = (Ninput X Nmf X Npp) + (I X Ncp) (342)

| =(N,,)" (3)4
Ncp = Ninput +1 (3)4
where,

N, is the total number of modified parameters, bebe estimated;

N.__is the number of inputs;

input

N, is the number of membership functions associatéll edch input;

Npp is the number of modified parameters per membersimgtion, i.e. 2 in case
of Gaussian membership function;

| is the number of rules;

N¢p is the number of modified parameters in the secui@act of each rule;

A comprehensive example of these equations is ptedén Table 8.1.
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3.6 Features Selection, Extraction, and visualisation

When performing analysis of complex data, one @& mhajor problems stems
from the number of variables involved. Therefor@llected data must be
processed further in order to get better resulessas@ns for doing this may be
easier subsequent analyses, improved classificatiorprediction performance
through more stable representation, removal of mddnt or irrelevant
information or an attempt to discover underlyingusture or knowledge by
obtaining a graphical representation. That is beeanalysis with a large number
of variables generally requires a large amount efmory and computation power.
Therefore, the number of variables used in the inodest be kept as small as
possible. Hence, the objective of features exwactand visualisation is to
represent the data in a reduced number of dimessi@iven a set of
measurements, dimensionality reduction can be aetién two different ways,
Features selection and features extraction. Thesertethods can be considered

as part of the data preparation phase or dataforamstion phase.

3.6.1 Features Selection

Features selection in the measurement space idettify the variables that
contribute to the modelling task and omit othematkres selection is important
for model learning as it supports the dimensiopafiéduction that supports
modelling strategies in which it selects the refgwariables stored in the plant’s
database. Using too many features is inefficiene dw the curse of
dimensionality. The curse of dimensionality refevghe fact that the number of
data samples required to estimate some arbitranftivamiate distribution

increases exponentially as the number of variahteases (Powell et al., 2007).
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Algorithmic features selection is usually based cambinational optimization.
The algorithm looks for the set of variables thanimize the cost function (the
accuracy of the model) (Langley, 1994; Powell et 2007). Optimal feature
selection requires an exhaustive search of all ipessubsets of features.
However, this requires a huge number of evaluatidrise cost function, which is
unfeasible with high-dimensional data set, henkis, is impractical. Instead of
that, two common approaches are available for featselection. The first one is
to start with minimum number of variables and tlagid one variable every time;
the second one is to start with all variables dreh tgradually reduce the number
eliminating. The popular method of evaluation obsets can be done using the
correlation between a candidate features and theedeoutput category (Guyon
and Elisseeff, 2003; Powell, 2007). The last apphnohas been applied in this

work as will be seen in Chapter 7 and 8.

3.6.2 Features Extraction

In general, the data set contains a collectiomdividual input sequences. So it is
not feasible to estimate the model parametershimthole data set, with its noise
and outliers. Therefore, there is a need to extsasubset that is a sufficient
representation of the entire data set but sufftdiesize to be practical for model
identification. Feature extraction is a generaimtéor methods of constructing
combinations of variables to get around the dinmrality problems while still

describing the data with sufficient accuracy. Thessthods involve simplifying

the amount of resources required to describe e lagy of data through the
transformation of the measurement space to a lalwveensional feature space
that has higher manageable level. This transfoonagjenerates fewer, higher
level of variables than the raw data itself for thedelling purpose. Usually, this

process involves some form of aggregation in whiahables which contribute
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essentially the same information must be combineallbgical fashion in order to
reduce the effective number of variables. It isniduhat by using this approach,
the size of the feature sets can be effectivelyieced and the accuracy of the

classifiers can be increased (Torkkola , 2003; aatcal., 2003).

Features extraction may be linear or nonlinear éoatlon of the original (May
and Jain, 1995; Laine, 2003). A well known linegaitiires extraction technique is
Principal Component Analysis (PCA) while Kohonenlf&rganising Map is
probably the most well known non-linear techniggel{onen, 1996). In the case
of PCA method, the original features space is eotétefore projecting the feature
vector onto a limited amount of axes. Thus, priatgomponent analysis (PCA)
is commonly applied in features extraction phastansform the feature vectors
to orthogonal coordinate system, and to selectethibat are used in the model
(Torkkola, 2003). PCA produces an orthogonal cowmtsi system in which the
axes are ordered in terms of the amount of variamntlee original data for which
the corresponding principal components account.edsion reduction is gained
when only those axes that account for the most@fvariation are selected. New
features vectors are then gained by transformiegotiiginal feature vector onto
this lower dimensionality space. Hence, PCA isaisical modelling tool that
attempts to extract relevant information from tla¢adand defines a feature space

of principal components that aims to capture théawae of the data.

There are several steps to find the PCA, theses stap (Jolliff, 2002; Keg et al.,
2007):

1. Standardising the data: Sometimes, it makes semseompute principal
components for raw data. However, this is apprognehen all the variables are
in the same units. Standardising the data is redderwhen the variables are in

different units or when the variance of the diffdreolumns is substantial.
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2. Calculating the covariance matrix.
3. Calculate the eigenvectors and eigenvalueseofdiwvariance matrix.

4. Choosing components and forming a feature vecoce eigenvectors are
found from the covariance matrix, the next stepoi®rder them by eigenvalue,
highest to lowest. This gives the components ireof significance. Now, the

components of lesser significance can be ignomedhit case, some information
is lost but if the eigenvalues are small, not taccminformation is lost. Hence, if
some components are left out, the final data skthave fewer dimensions than
the original. To be precise, if we originally havelimensions in the data and we
calculaten eigenvectors and eigenvalues, then we choose tbalyirst desired

values. What needs to be done now is to form aifeatector, which is matrix of

the chosen eigenvectors. Therefore, the eigenweutith the highest eigenvalues

are the principle components of the data set.
feature vector=(eig, eig, eig, ... eig,)

Hence, In the PCA, the directions are found whickoants for most of the

variance in the data. This is done by calculathm ¢igenvectors;, e, ... and
corresponding eigenvalued, A, ,...,A_ of the covariance matrix of the data and

ordering them by decreasing eigenvalues. Thedirsctione; accounts for most
of the variance in the data, the second for thersg&d¢argest amount, and so on.
By projecting the data to the space spanned bjidteéwo eigenvectors as much
of the variance is preserved as possible. The sdinthe corresponding
eigenvalues gives the amount of variance preseivdatie projection and thus

indicates the error made in the low-dimensionajeution.
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5. Deriving the new data set: this is the finapsie PCA, and is also the easiest.
Once we have chosen the components (eigenvecdt@atsjve wish to keep in our
data and formed a feature vector, we simply taketthnspose of the vector and

multiply it on the left of the original data seamisposed.
Final data=(feature vecto)' x(Row Data)’

The first principal component is a single axis pase. When we project each
observation on that axis, the resulting values farmew variable, the variance of
this variable is the maximum among all possibleict® of the first axisThe
second principal component is another axis in sppegendicular to the first
Projecting the observations on this axis generamsther new variable. The
variance of this variable is the maximum among pdbksible choices of this
second axisThe full set of principal components is as largetlee original set of
variables. However, it is common place for the safnthe variances of the first
few principal components to exceed 80% of the tedaiance of the original data
(the mathworks, statistics toolbox). By examininfptp of these few new
variables, it is possible to develop a deeper widrding of the driving forces

that generated the original data

From the projection plot, the clusters in the dz#a be seen. However, relations
between individual variables are lost since the newrdinates are complex linear
compensations of the original variables. Hencejeptmn visualisations are only

applicable for detecting of similar groups of tHgewts.

Nonetheless, PCA has many drawbacks (Jolliffe, 20G2r example, PCA
reduces a linear combination of orthogonal varisblbus, PCA may not always

be appropriate for data with highly nonlinear cleseastics. Further PCs do not
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necessarily have physical explanation. Each commone just a statistical

construct representing variables in the data.

However, PCA method suffers from several limitasiols algorithm depends on
strong assumptions of the properties of the data ag the linearity and normal
distribution. Therefore, the use of these algorgheyuires the user to pre-process
the data to fit these assumptions. Hence, it maly téa capture non-linear
phenomena, or the algorithm may produce poor modélsthermore, it is
difficult to understand these components, or ifust understandable only to

mathematically literate persons (May and Jain, 128fne, 2003).

It should be noticed that a training data set bashtain a representative state of
the system to be modelled using data driven teclasiqg Also, it is not of
importance to repeat similar patterns in trainiagadsets. Repeating patterns do
not bring new particular learning benefit to givetter performance but the
training process is significantly slow. To solveéstproblem, the KSOM, which
recently have become widely used tool for clustennultivariate data as they
allow overcoming limitations of statistical methodsd allowing the analysis of
data containing complex non-linear relationshipsh{@&nen, 1996), can construct
optimal code abstract feature space as seen pse#yidadividual feature values
can be replaced by these codes, which result ia dampression. Each code
vector corresponds to and represents a part oinfhg space, the set of those
points in the space that are closer in distandbabcode vector than to any other
code vector. Therefore, KSOM attempts to enhaneeligtion by amplifying a
pattern and discarding noise. The accuracy of nfiadeltherefore, increases

quickly as will be seen in Chapters 7 and 8.
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3.7 Summary

In this chapter, the essential background for ustdeding the subsequent
chapters is briefly introduced. The main contexth&f chapter is an overview of
the basic of Al techniques used in this study, rgmdackpropagation
feedforward Artificial neural networks, Kohonen figees map (Kohonen self
organising map) and fuzzy logic. The hybrid modeglisystems were also

presented and discussed.

The Chapter discussed the learning ability of thiéi@al intelligence techniques
to construct nonlinear relationships that can erpthe complex relationship
within the data without the difficult task of deadi with deterministic nonlinear
mathematics. It also presented how these systealswdéh the complexity and
uncertainty of the system in a manner similar ® tliman way of thinking and
reasoning. Furthermore, the Chapter presentedotmbdioation of fuzzy logic and
neural networks that make them a versatile toanodelling highly non-linear

systems.

The next Chapter will present the methods and nadgeused in this research
such as the source of the data, the methodology fesedata pre-processing and

the software tools used in this study.
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CHAPTER 4

METHODSAND MATERIALS

4.1 Case study

The methodology of this research work was applieddata from Seafield
wastewater treatment plant in Edinburgh, UK andhier details about this plant
and the data are given in the next section. Aduktliy, data from East Calder and
New-bridge treatment works also in the Lothian eegdf Scotland were used for
validation. The three plants are part of the AlImdfadley and Seafield project, an
environmental regenerating initiative by Scottistatéf for Edinburgh city and
Lothian regions. The three plants are operated mmies Water under a private
finance initiative. Treated wastewater from Eastld€a and New-bridge is
discharged to the Almond River as shown in Figuré. 4The population
equivalents (pe) of all the treatment plants in Bdinburgh area are given in

Table 4.1 (Hill and Hare, 1999).

The River Almond is designated as “sensitive argader the terms of the urban
wastewater treatment regulations (UWWTR) (Hill addre, 1999). This means
that the discharges from its works would have toetmeew more stringent
standards and water quality objectives set by tlettiSh Environmental

Protection Agency (SEPA) in order to reduce theagltication phenomena. For
example, the maximum discharged BOD and COD arengB8 and 125 mg/l

respectively; while Suspended Solids (SS) is nported except where the works
only provides primary treatment as consents vaoynfrone works to another

(SEPA, 2006).
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Figure 4.1 The Almond Valley and Seafield, Edinburgh, CatchrAeea. 1 is
Seafield WWTP, 2 is Newbridge WWTP, 3 Broxburn W\¥Hast Calder
WWTP, 5 Blackburn WWTP, 6 Whitburn WWTP.

Table 4.1 Population Served in the Almond valley and Seafiedgect

Treatment plantg

Population Served

Type of treatment

O-

j

1999 2023 (Secondary/tertiary)
projection
Seafield 480000 520000 Activated sludge
(Edinburgh)
East Calder 65000 75000 Activated sludge, B
tower and sand filtratior]
New-Bridge 19500 22500 Activated sludge an
sand filtration

Whit-burn* 11200 13000 Activated sludge
Blackburn* 11500 12700 Trickling filter

* These works do not form part of this study
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Catchments served by the Almond valley and Seafigtitks contain both
separate and combined sewerage systems with a nunmfibeombined storm
overflows discharged to local watercourses. Eacthefworks has primary and
secondary treatment, with some have additionahtgrtreatment (see Table 4,1).
All have storm tanks which come into operationtaiwt 3 dry weather flows and

discharge to the river when full.

The East Calder plant employs a conventional aeti/asludge for secondary
treatment and a biotower for nitrification. Finallighing of the effluent through a
system of sand filters takes place prior to disghailhe much newer Newbridge
plant uses a combined nitrification-denitrificatiantivated sludge system for its
biological oxidation stage. Additionally, prior psghorus chemical precipitation
takes place at inlet. The final effluent is alseg®l through a system of rapid

sand filters prior to being discharged.

The Seafield wastewater treatment plant is locatedthe eastern part of
Edinburgh city. It receives water from Edinburghtotenent and adjacent
contributions. The sewered catchment comprises ndiffgrent sources of
wastewater such as domestic effluent, industrsdttirge and rainwater seepage.
The outfall is situated adjacent to Portabello beaesignated a bathing beach,
and the proposed multimillion pound housing, legsususiness and continental

ferry development at Leith Docks.

The Seafield treatment plant relies on a conveatiactivated sludge secondary
treatment system. It aims to reduce the BOD and ©Otbe flow to such a level
that there is no risk to the ecology of the recejviwater body. The works
discharges treated effluent through a long seaabbuti a point some 2.8 km
offshore. Storm water is also discharged throughltimg sea outfall after 6mm

screening and retention in 4 no 10,000tamks.
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The Seafield plant comprises 8 circular sedimemtatanks, 4 rectangular non-
nitrifying aeration lanes, and 8 circular finaltinhent tanks. The main treatment
is preceded by six screens (spacing: 6 mm) and Dedritor grit removal units.

An overview of Seafield wastewater treatment plarghown in Figure 4.2. Table

4.2 presents the design characteristics of thee&aafeatment plant.

Table 4.2 The design characteristics of Seafield treatmemks/o

Process Unit
Storm Water Existing number 4 No.
Tanks Rectangular
Length 100 m
width 30 m
Depth 3.4m
Volume 10,200 rh
Square Area 3,000
Screening Existing number 6
Type 6 mm screens
Grit Removal Existing number 4
Diameter 15m
Depth 2.3m
Volume 1,626 m
Square Area 2826m
Primary Existing number 8 No. Circular
sedimentation | Diameter 55.0m
Depth 39m
Volume 9261
Square Area 2375
Aeration Lanes | Existing Number 4
Length 70m
Width/lane 21m
Depth 6.1m
Final Settlement] Existing number 8 No. Circular
Tanks Diameter 45.0 m
Depth 25m
Floor Slope 5
Volume 3974 M
Square Area 1590m
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Ty . . "t 1 L T T

Figure4.2 a. Areal hotogaph of Seafield wastewater Ereaﬂnpmnt

Figure 4.2 b Map of layout of Seafield wastewater treatment plans the screen
house, 2 are the detritors, 3 Grit washing mechani¥ sedimentation tanks, 5

storm tanks, 6 aeration tanks, 7 final settlingkgr8 UV treatment unit, 9 outfall
tunnel
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The average final effluent BOD concentration wasuad 10 mg/l with respect to
the provided example data record, which is conaldgrmuch lower than the
design consent of 25 mg/l was taken from an inteef@ort commissioned by the

treatment plant operator.

4.2 Data

4.2.1 Data collection system

The Seafield wastewater treatment plant is equippdddata collecting systems.
These systems are used for monitoring, automatitralp and as a decision base
for operational strategies. The data are passethéodata acquisition unit
(SCADA), located in the main control room, whicloret the data as databases.
SCADA software allows set points to be altered endommunicate with the user
via friendly interface screens and associated aairhe system can alter the set
points for the controlling parameters, e.g. deshglgime, dissolved oxygen

(DO), Return and waste activated sludge (RAS), (WAS

4.2.2 Data Description

Historical daily database describing the operatibthe Seafield activated sludge
treatment plant in Edinburgh (Scotland, UK) forexipd of approximately three
years with a total of 1066 data vectors were obthiftom Thames Water (plant
operator). These data come from different sours:line data are gained
directly from sensors and these include flow, terapege, and pH. Off-line data
or manual samples are derived variables involviageml intermediate steps
before being presented in the record sheet. Thasables include Specific
Sludge Volume Index (SSVI), Biochemical Oxygen DechgBOD), Chemical

Oxygen Demand (COD), Suspended Solids (SS), and @émarNitrogen (NH4).

The third category of data is those calculated dhasea combination of the above
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measurements and include BOD-load, food to micgaisms ratio (F/M), and
Sludge Age. The performance of the three treatnpdanits is monitored on a
routine basis by Thames Water staff and in somasions by Scottish Water
staff. Composite samples are collected at 9:30camsist of “shots” taken over
the previous 24 hours. These samples are colldctad the works influent,
primary clarifier effluent and secondary efflueriteams. The frequency with
which samples are analysed varies. The parameeaisured are discussed in the

next supsections.

4.2.2.1 Biochemical Oxygen Demand (BOD)

The BOD test seeks to measure the biochemical oxggenand exerted by the
sample over a fixed period. It is therefore appatieat the oxygen uptake in the
BOD bottle may not necessarily reflect the oxygesguirements of the
wastewater treatment process having to treat tltew@he BODR s often quoted
as being between 60% and 70% of the ultimate BOhd@@ and Artan 1994;
Spellman, 2003). The oxygen demand is an extremghprtant measurement of
wastewater quality as it measures the potentiabkggen depletion in the water,
and therefore is an important indicator of orgap@tlution. It is necessary to
assess the overall efficiency of treatment proceasethis has a direct bearing on
the quality of the final effluent and the econoniytlte process. Considering the
time for the analysis the BOD test is certainly soitable for operation/control
purposes. Furthermore, BOD is not a single poitiesdout is time dependent,

also is not precise measurement and the reproditicibiquite poor.

4.2.2.2 Chemical Oxygen Demand (COD)

COD is widely used to characterise the organicngtie of wastewater. The test
measures the amount of oxygen required for cheriddhtion of organic matter
in the sample to COand HO. In the COD test, biodegradable as well as non-

biodegradable material is oxidised; however, canudatinguish between
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biodegradable and inert organic matter. There ismiform relationship between
the COD and BOD of wastewater except that the C@Devmust be greater than
BOD (Olsson and Newell, 1999). An empirical cortiela of COD to BOD for a
particular wastewater can be determined whichesulss this method takes only
hours. The COD/BOD or BOD/COD ratio provides arineate of the proportion

of biodegradable organic matter present in wasew@&ustum et al., 2008-a).

4.2.2.3 Dissolved Oxygen (DO)

DO is one of the most important and useful measerénm activated sludge
processes and is also the basis for the BOD andié&xyptake rate (OUR) tests.
DO is measured on-line in the plant using DO proddse probes have also a
sensor for measuring temperature. Aeration is oblatt by maintaining a set-
point for the DO concentration in the aeration &@nR sufficient supply of
oxygen is important for the removal of carbonacenaserials and essential of the
nitrification process. Low oxygen concentration nmeg only inhibit nitrification,
but may also deteriorate sludge settleability, worsffluent quality and results in
predominance of filamentous bacteria (Chen et@931 Spellman, 2003). On the
other hand, excessive oxygen supply results in haperational costs.
Furthermore, high oxygen supply may lead to exwessitrification and again to
poorly settling sludge. DO concentrations in theatien tanks are maintained at
about 1.5 to 4 mg/l; 2 mg/l is used as a set pdiatues above 4 mg/l do not
improve operations significantly, but increase teration costs considerably.
Aeration accounts typically for more than 50% of tiotal plant energy

requirements (Gray, 2004; Spellman, 2003).

4.2.2.4 Mixed Liquor Suspended Solids (MLSS and RAS-MLSS)

The concentration of suspended solids in the mikgedr (MLSS) and returned
activated sludge (MLSS-RAS) are investigated onydaasis. A single discrete

sample is collected and sent for analysis each d&ge level of MLSS is
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maintained by recycling the settled sludge (RASa &vel sufficient to treat the
incoming organic load, but there is a lack of fgkaon-line information on how
to control the RAS. Generally, increasing the ML@®duces an older, denser
sludge, while decreasing MLSS produces a youngss, dense sludge. The mixed
liquor suspended solids concentration is controllsd manual adjustment of
wastage rates to achieve a value of approximat@y0Q mg/l, special
communication with the staff). This correspondsitsludge age of between 3.3-

7.5 days.

4.2.2.5 Quantification of settling properties (SSVI)

Although there are now many automated system f@ntfication of settling
properties, such as installing a measuring syskexrnttacks the sludge blanket or
concentration profiles in the full scale clarifien, another optical systems that
reveal the relation between sludge flocs structame the settling properties
(Vanrolleghem et al., 1996; Olsson and Newell, 998e Seafield plant still
relies on the traditional way of quantifying sludggttleability by measuring the
Stirred Specific Sludge Volume Index test (SSVIhisT test is performed on
samples of mixed liquor in order to have an ideaualihe settleability of the

activated sludge.

4226 Flow

Monitoring of flow in wastewater treatment plant isportant for the
determination of mass balance. Therefore, flowsrare measured at three points

in the Seafield treatment works:

a. Flow to full treatment

Flow to the treatment plant is restricted to a mmaxn of three times average dry-
weather flow. Limitations of flow help to preventteeme hydraulic shocks that

would result in further deterioration of the treatm plant performance.
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b. Return activated sludge (RAS)

The setting of the return activated sludge ratenortant for solids control in the
activated sludge process. it is because it maintmiconstant MLSS concentration
that constitutes one of the most common methodslads control, resulting in an
equalised and improved effluent quality. The RA% raecessary to maintain a
constant target MLSS concentration, can be calediftbm a mass balance. In the
Seafield wastewater treatment plant, the returdgdusystem includes pumps, a
timer or variable speed drive to regulate pumpvee)i and a flow measurements
device to determine actual flow rates. Generalhe RAS is related to the
treatment plant inflow rate by a constant factotween 0.4 and 1.5, thus the
sludge rate is increased with increasing flow (Earoés et al., 1993; Spellman,
2003). However, this control principle may lead deterioration of the plant
performance by imposing an additional hydraulidiéathe clarifier as well as by
a hydraulic shock to the thickener caused by sltdignges in the RAS rate
(Spellman, 2003).

c. Waste or surplus activated sludge (WAS)

The WAS rate determines the rate at which sludgensved from the activated
sludge system. If a constant mean cell residence (sludge age) and a constant
MLSS are to be maintained, the wastage rate caoalmilated from a simple
mass balance involving the target MLSS concentmatidhe aeration tank and the
MLSS concentration in the effluent and in the RA8hobanoglous and Burton,
1991; Spellman, 2003). In the Seafield wastewateatinent plant, the WAS

withdrawal is accomplished by adjusting valves fmaeturn system.
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4.2.2.7 Sludge Age

The length of time, or mean cell residence timat the biomass remains in the
secondary treatment stage is known as the sludgeTdg conventional sludge
age in UK is around 5 days and Seafield is notxaegion with the sludge age,
in the available data ranging between 3.35 and d&% (Lessard and Beck,

1993).

4.2.2.8 Food to Micro-organismsratio (F/M)

In the UK, traditional practice has used the F/Mordo control the activated

sludge process, in units of Kg BOD5/Kg MLSS (ordga loading rate). The food

to micro-organisms ratio for Seafield treatmeninplaas between 0.08 and 0.23

kg BOD:s applied per Kg MLSS day.

Other water quality parameters such as pH and Teathpe are also measured

and recorded.

4.2.3 Data treatment

A major problem was the quality of the data frone tull-scale wastewater
treatment plant. For any modelling strategy, thaliu of the outputs heavily
depends on the quality of the inputs. Thereforeta dixeatment provides
techniques on how measurement data can be validatttlow the quality of data

can be improved. This is important to obtain rdkadmalysis results.

Different methods for exploring the available dat@re applied. Typically,
descriptive statistics such as the mean, maximumimmum were calculated. In
addition, histograms were plotted. All measuremevedse examined with respect
to erroneous values, missing data, possible osti§ee Rustum and Adeloye,
2007). Missing values and outliers were located mpdaced by “NAN”(Not a

Number) in order to cope with the MATLAB requirentgnthen they were

135



Chapter 4: Methods and Materials

replaced as will be discussed in Chapter 5 (ss® RuUstum and Adeloye, 2007-
a). In addition, data were manipulated in orderctpe with the modelling
strategy, e.g. the data were standardized befang bed to the ANN as described

in Chapter 3.

Erroneous Measurements were filtered out from #ta dsing a priori knowledge
of the process. Statistical characteristics of rtreasured process variables are
described in the more detail in Chapter 5. An inguur feature of the data is the
large number of missing values, which would havedenanodelling by other

methods such as regression analysis impractical.

4.4 Computer Software

The developed models were implemented using MATLABprogramming
language with Neural Networks and Fuzzy Logic toaks (Version 7, Release
14, Mathworks, Inc). Kohonen Self Organizing Maperevbuilt and visualized
using SOM Toolbox for MATLAB 5, developed at thedamatory of Computer
and Information Science (CIS) at Helsinki Univeysif Technology. Supporting
statistical analysis was conducted using Statisficalbox and various functions

in MATLAB.

The MATLAB programming language was chosen for nhodevelopment

because NN and ANFIS require intensive matrix caaans. The Fuzzy Logic
and Neural Network Toolboxes of MATLAB provide corepensive support for
design, implementing, and simulation of the modelpidly. Their consistent
methodology and modular organization provide a ilflex framework for

experimentation, and simplify customization. Therkveras preformed using the
available advices in the documentation of the saféis package and in the

literature.

136



Chapter 4: Methods and Materials

4.5 Selecting model structure

In this work, an ANN and ANFIS will be adopted ae framework of the model

structure, in addition to the KSOM for data anayaind features extraction. When
developing the models there are difficulties that be encountered. The task of
choosing the appropriate model parameters, imbewn of inputs and outputs that
the model has to take into consideration, the remab neurons in the hidden
layer in case of ANN and the shape of membershigtfons in case of ANFIS.

Unfortunately, this is an empirical exercise thas lto be carried out using trial
and error approach until satisfactory results draioed. That is due to the little
information available to guide the user in the s@b® of particular model.

Therefore, there is a need to evaluate those madwlsassess their predictive

capabilities.

4.5.1 KSOM modelling Strategy

The topology of the KSOM grid was chosen to be gken two —dimensional
discreet map, the rational being that it is easyisoalise and to interpret. The
topology of the grid was hexagonal, which is mooenbgeneous with respect to
the directions on the KSOM plane than other fretjyensed alternative,
rectangular, though, according to Nikkila (2005 tresults can be very similar
with both choices. The procedures for map trairing visualisation are followed

as presented in Chapter 3.

4.5.2 Artificial Neural Network modelling strategy

The neural networks models developed in this studye trained in MATLAB
programming language using neural network graphisatl interface according to

the following steps:
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1. Data Pre-processing: the data are normalized ukagnean and standard

deviation in order to improve the performance &f thodel.
2. Creating a feed foreword back propagation network.

3. Choosing Training and Learning functions: trainangd leaning functions
are mathematical procedures used to automaticaljystthe network
weights and biases. The MATLAB includes severahing function but

the Levenberg-Marguard back propagatidra{nlm) was used.

4. Choosing the performance function to calculate amshitor network
efficiency during training. MSE is used to meastire network error in

this study.

5. Selecting transfer functions: transfer functionsngform the output of
each network layer according to a desired lineanamlinear mapping.
Tan-sigmoid, the most commonly used transfer unctie used in the

hidden layer and lineapqrline) is used in the output layer.

6. Post-processing: this can be achieved by examitiegoredictive power

of the model with testing data set that has nohhesed during training.

7. Presenting the results of training, validation aedting in figures and

tables.

4.5.3 ANFIS modelling strategy

The ANFIS models were developed using the graphisar interface of the

Fuzzy logic Toolbox according the following steps:

1. Loading data (training, testing, and checking) ;
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2. Generating an initial FIS model ;

3. Choosing the FIS model parameter optimization natthackpropagation
or a mixture of backpropagation and least squdrgsrid method). In this

work the second approach is applied;
4. Choosing the number of training epochs and theitrgierror tolerance;

5. Training the FLS model, this training adjusts themmbership function
parameters and plots the training (and/or chec#tatg) error plot(s) in the

plot region.

4.6 M odels performance evaluation criteria

Once a model structure has been chosen and thenketmined, the selected
model needs to be evaluated. In practice, the acgwf a model is determined by
the ‘goodness of fit' between outputs of the maated the system given the same
input. Hence, some validation tests need to beideresd. Generally, the accuracy
of a model must be evaluated for three sets of sktaples. These data sets are:
training data that express the effectiveness ahieg, validation data set that
used to save the model from overfitting problemd dime testing data set that
measure the generalisation capability of the nekwbhere is a need to point out
that the testing data set should ideally not haewipusly been presented to the
network and it must represent the entire operat@mge. In this work, the

following evaluation criteria have been considered.

1. The average absolute error (AAE) measures the meanof the predictions.

AAE = Z (x = x)) (4.1)

i=1

Z|-
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2. The relative average absolute error (RAAE) is A%E scaled by the range
(maximum subtracted by the minimum) of the data. & well-performing model,

the RAAE should be as small as possible.

AAE
RAAE= ———— 4.2)
Max—Min
3. The normalized root mean squared error (NRMSE)sores the mean root

squared error scaled by the standard deviationeoValues.

1 :
JNZXx-xY
NRMSE= = (4.3)
4. The mean square error (MSE) which is defined as:
V)2
MSE= Zf(X'TX') (4.4)

5. The correlation coefficient (R) measures the sinty of the shapes of the
original and predicted time series and ranges leriwe and 1; the absolute value
of the correlation coefficient for perfect preduts is unity.

N2 XX -2 % 2%

R= (4.5)

JINY X = (X %)’ IINY X = (X x)

6. The classification error (CE) measures the fractaf over- and under-
predictions for a variabl€E, = x, —x . For purely random residuals, one would

expect a 50:50 split between PR and NR. Otherwike, model could be

considered to be either upward or downward biased.
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a. The positive rate (PR) is the fraction of overegicions in the set of predicted

values.

_count CE (f CE < 0
N

PR

x100% (4.6)

b. The negative rate (NR) is the fraction of underdictions in the set of

predicted values .

_count CE (f CE > 0)
N

PR

x100% 4.7)

where

N is the number of samples;

X is the actual value;

X is the value predicted by the model.

Max and Min are the maximum and minimum data poafithe range.

CE =x —X

S is the standard deviation given by

(4.8)

X is the sample mean given by
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_ X
X = N (4.9)

4.7 Visualizing the performance of the model

Although the evaluation criteria are very usefutplgably the most valuable
assessment of the model can be made using simpts. plhese plots will

compare the predictions made by the model withattteial data. It can give an
indication of under and over-fitting data and wllistrate the model performance
during training, validation and testing data s&wsveral visualization techniques
have been used in this work such as time seriets @b the predicted and

observed, Error distribution plot, scatter plots, e

4.8 Summary

This Chapter presents the methodology applied is $kudy. It starts with a
thorough description of the case study used in watkich are three treatment
works in the Almond River in Edinburgh, UK. Themescription of the data used
and its characteristics is presented. An overviéwamputer softwares used in
this study is also presented briefly. The Chaptedsewith the performance

evaluation criteria used to asses the developedsod

Thus the previous chapters have covered all ths bathe methodology, the data
and the various assumptions required to understanénalysis presented in the
next applications. Each of the next chapters remtssa separate application of

the previously described tools to the case stutly aad treatment works.
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CHAPTER S

APPLICATION |: ACTIVATED SLUDGE DATA PRE-
PROCESSING USING THE KOHONEN SELF ORGANISING
MAP

5.1 Introduction

Modelling the activated sludge wastewater treatrpéanit plays an important role
in improving its performance. However, there arenyndimitations of the
available data for model identification, calibratjcand verification, such as the
presence of missing values and outliers. Althouglny treatment plants are
equipped with properly designed data collectioniesyis, there is often little or no
attention paid to the quality of the data (Ros&®8). Thus, situations abound for
data corruption, such as excessive disturbancasipragnt malfunction, and
human errors. These lead to some of the problentiseimaw plant data such as
noise, missing values, and outliers. The resulteffects of these are
discontinuities or gaps in the data records antieosit both of which create severe
handicap in modelling and identification of the gges. One obvious solution to
the problem is to remove records containing thesimgs values and outliers;
however, given the shortness of the available daththe time and expense for
their collection, such a luxury cannot be affordétb a considerable pre-
processing of the data is required, both to fd thissing gaps and to replace the

outliers with more plausible values.

The data obtained from all the case study wastewiegatment works are not
exempt from missing values and outliers. Thus, tingt in the series of

applications of the novel tools developed in thiglg involved use of the KSOM
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to replace outliers and missing values from thén ldgnensional data set for the

Seafield treatment works.

5.2 Outliersand Missing Values

5.2.1 Outliers

An outlier, a sample value that differs notablynfrthe mean of the measurement
series, can be caused by many factors such asoslegnetic interference, hostile
measurement environment, defective installatiorsufiicient maintenance, or
erroneous handling of the measurement system amtional cover-up for lapses
of the technician. A problem in detecting outliessto decide whether they
represent a true value or whether they are false tdudisturbances in the

measurement system.

Detection of outliers can be accomplished by usedundant sensors (Barnett
and Lewis, 1994). In the redundant sensors, attlda® sensors (or
measurements) are used and an outlier is indicategh the sensors or the
analysed samples do not deliver the same valudifwa reasonable margin).
However, this is an expensive procedure becausegitires a large number of
sensors or samples. In the activated sludge progesshich the wastewater is
normally treated in parallel lanes, it is possitil@ise measurements from another
lane to make such a validity check. The conditionthe various lanes are rarely
exactly the same but if the configurations do nffedsignificantly, one could use
the information from one lane to validate the otlidowever, in this case, there
are no parallel measurements to validate the ositlie addition, even where this
is the case, it will be necessary to combine swideace with a more formal one
for detecting outliers such as the statisticaicoreandmodified Z-scorgFallon

and Spada, www.ewr.cee.vt.edu).

144



Chapter 5: Activated Sludge Data Pre-ProcessiriggJehe KSOM

In the Z-scoretest, assuming that the data have a normal disioiln, the mean
and standard deviation of the entire data set sed tp obtain a Z-score for each

data point as in Equation 5.1.

Zi:(xS—X) 1i=1,2,......, N (5.1)

where S is the sample standard deviation axdis the sample mean given by
Equations 4.8 and 4.9 respectively and N is thepgasize. A test heuristic is that

an observation with A-scoregreater than 3 should be labelled as an outlier.

The problem with th&-scoreapproach is that its estimate depends on both the
sample mean and standard deviation, both of whiehaffected by the outliers,
particularly if N is small, i.e. below 20 (McBeandRovers, 1998). To overcome
this problem, a modified-scoretest based on outlier-resistant estimators, sach a
the median of absolute deviation about the mean@MAs used in place of the
standard deviation to compute tlescore in Equation 5.1, where MAD is
expressed by Equation (5.2) (Fallon and Spada, wwwncee.vt.edu, last visit
12/1/2008). The condition for labelling an obseimatas an outlier using the

modified z-score is 3.5 < Z < -3.5.

MAD = mediar{

X -ﬁ) (5-2)

However, the above statistical techniques are obtist enough for labelling
outliers since they depend on a number of assungtiootably that a sample is
normally distributed. Also, as illustrated for tAescoremethod, the test statistic
depends on parameters such as mean, median addrstateviation, which can
be significantly affected by the outliers being eftéd. Therefore, a

straightforward and practical method for the offelidetection of outliers is to
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manually label the outliers by examining the tinegiess plot. In time series, the
human eye has a remarkable ability to pick outierstiwith good result and by a
careful investigation of the time series, manuakdion of outliers can be as
good as any more formalised method. Manual outlegection from time series
plots is certainly preferable when preparing dfmia model identification or
training because it gives the model builder a sémisthe data and also what can
be expected from the model (Rosen, 1998). Consdguéime manual labelling
approach was applied in the study to identify thdiers, although comparisons
with the results of theZ-score and themodified Z-scoreapproaches will be

presented.

5.2.2 Missing Values

A missing value is caused by a sensor that doedeliMer a measurement value,
or by a fault in the measurement tools, or evehuoypan mistakes. Depending on
the measurement equipment, missing values can appethe record as, for
instance, blanks, zeros or negative values fottiesitlimited to positive values.

Therefore, missing values are often simple to detea data record.

Missing values are a serious problem as they digterdynamic properties of the
signal. Where outliers have been correctly idesdifithey too must be removed
and replaced with more plausible values, thus ekatieg the sparseness of the
data record. In order to perform a dynamic analyalismissing values must be
estimated, as failure to estimate them makes thgplste sample difficult to be
used. They may lead to severe problems in modenhtifa@tion process,
particularly when tools such as Artificial Neuraétorks and ANFIS are used.
Since these tools require long periods of good r@fidble data, it is important

that the number of missing values be kept at armim.
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5.3 Replacing outliers and missing values

If there are relatively few missing points, there aome models which can be
used to estimate values to complete the serie$, asigeplacing missing values
with the mean or median of the data. Also interpofaand extrapolation may be
applied. In interpolation, a curve is projectedwss#tn known data points to infer
the value at points between. In extrapolation thleer of unknown data points are
predicted by projecting a function beyond the raofgenown data points. A more
elaborate approach is to express any variable whkichissing in value, in terms
of regression over the other variables using ttalale data, and then to use the
regression function to fill the missing values (@P@nald and Zucchini, 1997;
Harvey, 1989; Bishop, 1995). Regression will wodsbif the number of water
quality parameters having missing values in therords is small; otherwise
developing different predictive regression equatifor a large number of water
guality parameters will be time wasting. Back pmgt#on artificial neural
networks modelling (ANNs) described in Chapter 81 a solution for multi-
variable prediction but the performance of ANNsd®to decrease rapidly as the
number of output variables increases, particuladyen the output variables are
not highly correlated (Adeloye and De Munari, 200@preover, ANN models

are affected by the missing values in the inputspa

Far from actually removing identified outliers fromdata set, their influence on
estimates of summary statistics of the data catefmpered or even completely
eliminated through the use of trimmed means, oficate estimators apart from
standard deviation (e.g. MAD) and Winsorization c@éan and Rovers, 1998).
In calculations of a trimmed mean, a fixed percgataf data is dropped from
each end of an ordered data, thus eliminating ttiecs. The mean is then
calculated using the remaining data. Windsorizatiorolves accommodating an

outlier by replacing it with the next highest oixhemallest value as appropriate.
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However, using these types of models to predicsimisvalues or outliers in a
long time series is difficult and often unreliabearticularly if the number of
values to be in-filled is relatively high in comsm with total record length. The
accuracy of the estimate depends on how good gresentative the model is

and how long the period of missing values exteRi#sén and Lennox, 2001).

The activated sludge treatment plant is a dynamdcgss, so any variable is
dependent, not just on the historical time seriethe same variable but also on
several other variables or parameters of the psodasother words, the problem
is an exercise in multivariate analysis rather ttr@nunivariate approach of most
of the traditional methods of estimating missinguea and outliers; a multivariate
model will therefore be more representative thamizariate one for predicting

missing values. The KSOM offers a simple and robusgltivariate model for data

analysis, thus providing good possibilities to restie missing values, taking into
account its relationship or correlation with othpartinent variables in the data
record. In comparison to other data-driven modegllparadigms such as multi-
layer perceptron artificial neural networks (MLP AB) and classical multivariate
regression analysis, the KSOM is not hindered kgsimg values. Moreover, time
sequences of data is not a problem when comparedatsical time series

analysis (Vesanto et al., 2000).

5.4 Overview of Predicting Missing values using KSOM

The calibration of traditional predictive modelsthwdata is a supervised learning
problem, because there is an outpui: ¥hich needs to be constructed from the
input X,. Multi-layer perceptron artificial neural networksILP-ANN) use this
approach as described in Chapter 3. The KSOM dlgorialso described in detail
in chapter 3, is designed for unsupervised legtnmthat there is no “teacher” as

such in the process that compares the desired towifu the model output. In
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other words, the difference between the KSOM aeduual supervised approach
such as the MLP-ANN is as follows (see Figure 5.Ih):the multi-layers
perceptron neural network (MLP), the vectar &) is presented to the network
input, while the X.(t) is used at the network output to compute exptian error
signal that guides learning. However, the KSOMieatio associate or correlate
the inputs and outputs of the mapping without expiomputation of an error
signal (Barreto and Araujo, 2004), as it just firttie similarities between the
input vectors and the KSOM neurons or weight vextty determine best

matching units, BMU.

x out t
p (t)
/ <
/l In //
X in (t), Supervised ANN | O(t) X (t) v our
> (MLP) ——>»  Unsuperviset O(t) = ws"(t)
e(t) ——  GOM
/,’ X out (t) I,'
/ Learning / -
algorithm / Learning
algorithm

(a) (b)

Figure 5.1 Differences between (a) supervised and (b) KSONMttifitsation

Consequently, the KSOM can be easily used as aipatodel. Taking any set of
known values (the input variables or data samphsiy BMUs from the KSOM
can be determined and the corresponding prototgmtor can be used to give
values to the other variables which are missintheninput vector (Alhoniemi et
al., 1997). In a sense, this is like predictingsimg values using linear regression
albeit in a multivariate platform. The general eggion of X,{t) on X (t) is the

expectation of the output given the input and hetiae calibrated regression
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model can be used to predicift) if the Xin(t) is known. In the same vein, since
the codebook vectors of the KSOM represent thel lagarages of the input
vector, the map can be used for the prediction @fsimy components of an
incomplete input vector. This is achieved by seiaghior the best matching unit
(BMU) using the known vector components of the inpector and the output
then gives an approximation of the unknown comptmehthe vectors as shown

in Figure 5.2 (Obu-Cann et al., 2001).

—> X
Known — X BMU X
Values — X

—> X Search BMU X

— X

—> X X

—> 2 —> —> X

5 X Prediction

Missing ? X
Values X

Figure 5.2 Prediction of missing components of the input wveasing the
Kohonen Self-organizing Map. BMU = best matching.un

5.5 Experimental data

The application is applied to the daily recordsiirthe operation of the Seafield
wastewater treatment plant in Edinburgh, UK, présgnn Chapter 4, during a
period of about three years with a total of N=1@&fa samples (or records).

Summary statistics of the measured process vasaoeshown in Table 5.1.

As shown in Table 5.1, there are large numbersis$ing values which cannot be
thrown away. In addition, the missing values octamdomly within the data

array. Thus, although the maximum number of missialyies is 310 (for the
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stirred sludge volume index, SSVI), the number atteptially discardable
incomplete daily records or vectors in the datanisch more than this number
given the non-synchronization of the missing valleshe Seafield data, the total

number of data records discardable as a resultrefsgnchronization was 496.

Table 5.1 also contains the number of identifietiens using the three methods
described previously. In general, the modified @recmethod tends to identify
more outliers than either the visual inspectiorniher Z-score method. Indeed, the
Z-score method produced the least number of osit{{ie48) as against 387 by the
modified Z-score and 228 based on visual inspectB@tause of the restrictive
assumptions underpinning the Z-score and the neamtifi-score approaches,
however, the identified outliers using the visuagection method were taken as
the outliers for the subsequent analysis. Theskemitwere also removed and
treated as missing values to be estimated so gwe&erve the true dynamic

history of the process as exemplified in the data.

The data in Table 5.1 relate to the secondary mrewat stage of the treatment
plant. The decision to focus on the biological etad treatment is because the
secondary stage is often the terminal treatmeneredf at treatment plants
discharging to inland rivers or coastal environrsertthe secondary treatment
process helps to remove a substantial proportiothefSS and BODin the
wastewater; it therefore plays a significant ralemeeting the quality objectives
set for such receiving systems. An analysis sucthasKSOM to estimate the
missing values should therefore provide completéa dimr analysing and

modelling the biological activated sludge proceswastewater treatment plant.
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Table 5.1 Summary statistics of the measured variables di€3éd reatment plant

Measurements Number Number of outliers
Variables Unit of Visual
Average Minimum Maximum missing _ Z-score  Modified Z-score
values Inspection

Influent Flow m/d 259427 171367 466486 19 23 18 54
Influent BOD5 mg/l 65 15 180 105 1 5 22
Influent SS mg/l 68 3 268 87 7 22 41
WAS Rate n/d 3822 802 6016 146 15 9 20
MLSS mg/| 2240 1126 4180 246 16 5 25
RAS MLSS mg/I 4984 1748 1014 303 15 7 28
SSVI ml/g 92 31 165 310 7 4 14
Sludge Age Days 5 1 32 225 13 11 30
Actual FIM Day" 0.15 0.015 0.43 292 23 4 12
Effluent Flow ni/d 250174 65000 461926 1 17 16 58
Effluent SS mg/l 28 3 190 14 24 24 29
Effluent COD mg/l 50 15 173 15 48 18 42
Effluent BOD5 mg/l 9 2 351 8 19 5 12




5.6 SOM analysis

The computation for training and searching for Best Map UnitgBMUs) was
done starting with the default values for the l@anrate (=0.5) and
neighbourhood radiug=max(l,l2)/4 ) parameters in the SOM Toolbox. Whéye
andl, are the dimensions of the map as presented int&h3pEquation 3.11. In
computing the size (and dimension) of the map Tih@box uses the formulations
in Equations 3.10 and 3..11, but adjust the finapmnitsM such that it is equal
to the product of; andl, exactly. In making this final adjustment, the estied
number of map units may be slightly different froinat obtained with Equation
3.10. The analysis led to map sidle= 168 map units which is slightly different
from the M =164 obtainable using Equation 3.28 with N=1066 ane@sigand
[, of 14 and 12 respectively. Table 5.2 contains rotharacteristics of the trained

KSOM.

Table 5.2 Characteristics of the trained KSOM

Normalisation Method W = (x—>_<)/a
“var’: X

Codebook 168*13

Neighbourhood function Gaussian

M size 14*12

Lattice “Hexa”

Shape Sheet

Final quantisation error 1.801

Final topographic error 0.066

5.7 Results and discussion

The component planes for each of the 13 variabileslaown in Figure 5.3. Each
component plane can be thought as a “sliced” versiothe KSOM, because it
consists of the values of single vector variablalimap units. In other words, the

component planes show the value of the variablesagh map unit (Vesanto et
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al., 2000). These planes are built using coloueleto show the value of a given
feature of each KSOM unit in the two dimension#ida, such that the lighter the
colour, the higher the relative component valueth® corresponding weight

vector.

These component planes help to illustrate visudey relationship between the
various parameters or characteristics of the wadmwtreatment plant. For
example, by looking at the upper left hand of tbenponent planes, we can see
that high sludge age is associated with a low wastiated sludge (WAS) rate.
This is to be expected given the relationship betwthe sludge age and the

wastage sludge rate (Equation 5.3):

VL
¢ QWLW

5.3)

where 6, is sludge age; V = volume of the reactor; L is MieSS (mixed liquor

suspended solids) in the aeratoy; is the MLSS in the waste activated sludge
and Q, is the waste activated sludge rate. It is theeetor be expected that a

combination of low |, , low Q, and high L will produce a high,. Other notable

relationships visible from the component planethéslow effluent SS, BODand
COD concentrations associated with low hydrauliadiog rate to the aerator,
which is a natural result of the higher retentionet caused by a low hydraulic
loading. The complete correlation matrix for all ¥8riables of the prototype
vectors is shown in Table 5.3, and although the sgimple tool for examining the
linear relationship between various variable, #gsults seem to agree with the
indications of the cross-correlation provided bg thuch more complex KSOM

analysis that resulted in the component planes.
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The performance of the KSOM in predicting the vasiocharacteristics is

demonstrated in Figure 5.4. In general, the perémwe is good as further
confirmed by the associated statistical indicesgméed in Table 5.4. For most of
the effluent characteristics, the correlation doefht is generally above 0.90. The
model has also particularly done well in predictihg sludge age and F/M ratio,
two of the most commonly used parameters for cdimtgothe activated sludge

process. This offers some promise for the real-towrol of the activated sludge

treatment process using these parameters.
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Table 5.3 Correlation matrix for variables in the features

=) () ) [a)
@ o |98 |¢& > g |o |9 |§
o)} 0 © I =
- m — [7)] = Y= ai] ®) —
‘:5 o c ) %) A < n _g> = % c c )
3 o o = < = o n 5 - 2 S 3 =
= c o = = =
£ = = “ 5 = = ]
Flow 1
Influent
-0.43 1
BOD
Influent
-0.44| 0.88 1
SS
WAS
-0.16 | 0.15| 0.13 1
Rate
MLSS -0.25| 0.63| 0.56| -0.21 1
RAS-
-0.18| 0.35| 0.45 -0.3q 0.77 1
MLSS
SSVI -0.62| 0.3| 0.29] 0.2q -0.19 -0.3 1
Sludge
0.09| 0.42| 0.21] -0.4¢ 0.74 0.4 -0.29
age
F/M -0.16 | 0.84| 0.74 0.2 0.2 0.0 0.35 0.13
Effluent
1.00| -0.42| -0.43] -0.14 -0.24 -0.17 -0.62 0.10 -0/151
flow
Effluent
0.03| 0.24| 0.19 -0.13 -0.10 -0.34 0.31 -0.p5 0.45 06| 1
BOD
Effluent
0.03| 0.12| 0.10 -0.09 -0.21 -0.44 0.38 -0.16 0.B4 0B| 0.96 1
COD
Effluent
0.09| 0.1| 0.09| -0.13 -0.21 -0.48 0.30 -0.15 0.8B3 D 10.97| 0.98
SS
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Figure 5.4c Performance of the KSOM in predicting the processables

Table 5.4 Correlation between measured and KSOM-predictethiées

Variables Correlation
Coefficient
R)
Flow to ASP .945
Influent BOD; to ASP .943
Influent SS to ASP .898
Waste activated sludge rate (WAS) .879
MLSS 912
RAS .933
SSVI .905
Sludge age .950
Actual F/M 934
Effluent Flow .946
Effluent BOD .932
Effluent COD 914
Effluent SS .950
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Visually, Figures 5.5 and 5.6 respectively show tmnparison between the
estimated and the measured values for the effloententrations of BODand
SS. Unlike Figure 5.4, Figures 5.5 and 5.6 helplustrate how well the KSOM
outputs have matched the observed data tempordalygeneral, the KSOM
outputs have correctly reproduced the peaks angghs in the observed time
series data. The predicted missing values aresalgan in Figure 5.5 and Figure
5.6, from which it can be seen that their trenchi€onformity with the overall

trend of the observed data series.

A further analysis was carried out to test whetllee sample skewness
coefficients of the residuals are statisticallyazeFhis is required to ensure that
the residuals have a normal distribution. The samsgkw for a variablg can be

estimated using Equation 5.4.
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Figure 5.5 Comparing the observed and KSOM predicted timesgyiots for
Effluent BOR
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Figure 5.6 Comparing the observed and KSOM predicted timesgqyiots for
effluent SS

skew= N i XX
(N-D(N-2)=| S

(5.4)

where N is the sample size, is the sample mean and S is the sample standard
deviation. Based on the null hypothesis that thewsls zero, the skew coefficient
will have a normal distribution with a mean of zeamd variance of 6/N.

Therefore, The 95% confidence interval for a zerokews

is[-196vV6/N,+196,/6/ N]. If the estimated sample skew coefficient lies

within this interval, then the null hypothesis cahibe rejected at the 5% level.
The results of the hypothesis testing for all 18aldes are shown in Table 5.5
from which it is clear that the residuals assocdiaté&th most of the characteristics

are distributed as normal. The only exceptionsthaeeinfluent SS, F/M and the
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effluent COD whose test statistics fall marginadlytside the 95 % confidence

interval for a zero skew.

Table 5.5 Result of approximate normality test for the resigu

Variables N 6 Skew Normal
- 196 x \/: + 196 x \/E coefficient| (Y/N)
N N (Skewed)
Influent Flow | 1002 -0.152 0.152 0.020 Y
Influent BOD; | 978 -0.154 0.154 0.154 Y
Influent SS 982 -0.153 0.153 0.169 N
WAS 887 -0.161 0.161 -0.093 Y
MLSS 788 -0.171 0.171 0.026 Y
RAS 703 -0.181 0.181 0.055 Y
SSVI 327 -0.265 0.265 0.013 Y
Sludge age 815 -0.168 0.168 0.152 Y
FIM 726 -0.178 0.178 -0.193 N
Effluent flow | 1032 -0.149 0.149 -0.082 Y
Effluent BOD; | 1020 -0.150 0.150 0.143 Y
Effluent COD | 1011 -0.151 0.151 0.163 N
Effluent SS 1005 -0.151 0.151 0.144 Y

5.8 Discussion of Results

The performance of the KSOM was compared with tee af simple linear
regression and back propagation ANN for predictimg effluent BOR. On the
basis of the correlation matrix shown in Table 5% independent (i.e. input)
variables for both the regression and ANN were ehass the effluent COD (R =
0.96), effluent SS (R = 0.97) and the F/M raticqR.45). Since complete records
are required for these two techniques, only the d&@ records with no missing
values in these four parameters were used. Of tB&€edata records were used
for model calibration and 270 were used for modstihg. The final regression

model was:

BOD = - 1.01 + 11.59F/M + 0.075COD + 0.146SS (R75) (5.5)
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The backpropagation ANN had a single hidden layer the optimum number of
neurons in this hidden layer was found to be 25bl&&.6 compares the
performances of the regression and ANN with the KIS general, the linear
regression model had the least performance of Hreet approaches. The
backpropagation ANN was a much more improved ampraban the regression,
particularly during training, but its performance still inferior to that of the
KSOM. It should be noted that the KSOM statisticetgd in Table 5.6 relate to
the reduced 770 sample size unlike those in Taldlevéhich relate to the entire
1,066 data record. A further advantage of the KS®Hhat the same map can be
used for predicting any missing value in any vdaalwhereas if the missing
variable were to change from the B§Dew regression and ANN models would
have to be developed. Additionally, the KSOM is affected by missing values,
implying that it is unnecessary to carry out ang-processing for identifying
complete records before the method can be apietth the regression and ANN
approaches require complete records and hencesesepre-processing of the

data is required before they can be applied.

Table 5.6 Comparing KSOM, regression and ANN for predicting ¢ffluent
BODs

Modelling Data set Correlation MSE AAE
Method (Training 500 data (Mean Square (Average
point/Testing 270 Error) Absolute Error)
Data points)

Regression Training 0.75 20 25
Testing 0.76 11.3 2.6

BP-ANN (25

neurons in the Training 0.94 5.0 1.6

hidden layer, be
number from

trial and error) Testing 0.88 5.4 15
Training 0.96 55 1.2
KSOM
Testing 0.95 6.0 0.9
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5.9 Conclusion

In this chapter, raw data of operational processakies obtained from the
Seafield activated sludge wastewater treatmentt fainburgh, UK during a
period of about three years have been modelle@ptace outliers and missing
values using the Kohonen Self Organising Map (KSOB#ch sample comprises

13 quality and process variables.

After the iterative training of the KSOM, each b&t1066 samples was associated
with an output unit known as the best map unit (BMThe outliers or missing
values were then replaced with the correspondimgpoment from the BMU. The
results demonstrated that the KSOM is an excettaitfor replacing outliers and
missing values in high dimensional data sets. Titeglipted missing values are
plausible and show a trend not dissimilar to tHathe observed measurements.
These results cannot be obtained from traditiomaé tseries models due to the
multivariate, time varying and highly non-lineartua of the process. The
method is simple, computationally efficient andhtygaccurate. The method was
also shown to outperform linear regression and rsiged-learning ANNs. The
method therefore provides useful tool for a procasgineer who is faced with
improving the performance of the WWTP, given theally incomplete and noise

process time series data.

The next Chapter present a novel methodology basethe same techniques
presented in this Chapter to predict the biologamalgen demand concentration
in wastewater based on its correlation with othatewquality parameters that can
be measured within three hours or in real time gigin-line hardware sensors.

This allows for a timely intervention and cost retion during problem diagnosis.
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CHAPTER 6

APPLICATION Il: APPLYING KOHONEN SELF-
ORGANIZING MAPASA SOFTWARE SENSOR TO PREDICT
THE BIOCHEMICAL OXYGEN DEMAND

6.1 Introduction

The dissolved oxygen used during the bacterial atiod of organic pollutants,
usually determined under standard conditions (APH®S98), is known as the
biological oxygen demand (BOD). The BOD is a widalyplied parameter for
assessing water quality, the bio-treatability of steavater, performance of
wastewater treatment operations, and organic lgadio treatment plants for the
purpose of sizing aeration facilities. The BOD Isoaimportant for discharge

consents for wastewater treatment plant facilitiemany countries (EEC, 1991).

However, the usefulness of the BOD for the effextiwonitoring and control of
water pollution and wastewater treatment plant grerhnce is severely
constrained by the long time it takes to obtairestimate, which precludes its use
in ‘real time’ control. For example, consideringastained low dissolved oxygen
content in a river due to the discharge of largecentrations of organic
pollutants, it will take at least five days befdtee problem can be effectively
diagnosed; any remedial actions to be taken amdylito be too late. This is
because the traditional bioassay method for detengnithe BOD requires
incubation for at least 5 days; hence the term y&dBOD or BOR.
Consequently, it has become very desirable to haveapid and accurate
inferential model for BOD prediction, thus removitige time delay associated

with the laboratory-based bioassay method.
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Due to the long time it takes to obtain the stadd®Ds , some have argued that
the BOD data are not useful for the purpose of ggscontrol, and have therefore
advocated the use of the chemical oxygen deman®j@@tead (Mohanty et al.,
2002; Scholz, 2006). However, in contrast to the DCQhe BOD only
characterizes the biodegradable component of argaaiter in wastewater; it is
therefore the most important water quality paramftieassessing biotreatability.
Furthermore, previous attempts to calibrate BODires§aCOD have had only
limited success, because of the wide variabilitgmfobserved in the relationship
between the two water quality variables (Mohantyakt2002; Scholz, 2006).
Thus, although the COD is a faster water qualitsapeeter to determine than the

BOD, it is certainly not a direct substitute.

An alternative to measure BOD is the developmenbiokensors, which are
devices for the detection of an analyte that coeh biological component with
a physicochemical detector component. Biosensatiseictly measure the BOD
via a short term (e.g. < 30 minutes) BQBnd a calibration curve which relates
this BOD;; to the BOD (see Karube et al., 1977 for the piongework in this
area). Consequently, biosensors are now commer@sahilable, but as will be
revealed in the next section, they do have sevenitiations such as their high
maintenance costs, limited run lengths and the faeflequent reactivation, and
their inability to respond effectively to rapidlyha&nging water quality
characteristics to which wastewater treatment stseegan sometimes be subjected
to, particularly during storm events (Praet et 4/995). Another important
limitation with the use of biosensors is the uraety associated with the

calibration function for translating the B@QDo the BOR.

Because of versatility of the KSOM in handling higimensional data and
establishing correlation or the cause-effect refethip in a multivariable

framework, the KSOM was used in application Il ®velop intelligent models
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for making rapid inferences about B@Dsing other easy to measure water
quality parameters, which, unlike B@Dcan be obtained directly and reliably
using on-line hardware sensors. This will make tise of BOR for on-line
process monitoring and control a more plausibleppsdion. In comparison to
other data-driven modelling paradigms such as Aaygr perceptrons artificial
neural networks (MLP ANN) and classical multi-vagiaegression analysis, the
KSOM is not inhibited by missing data. Moreoveméi sequencing of data is not
a problem when compared to classical time seriedysis (Lee and Scholz,

2006a,b).

6.2 Review of alternativesto bioassay deter mination of the BODg

Attempts to improve the rapidity with which the B@Bstimates are obtained
have led to the development of BODiosensors. A microbial BODbiosensor
usually consists of microbial cells immobilized an oxygen electrode. The first
generation of such sensors was developed by Kaetbs. (1977) for BOB
determination within minutes. However, biosensoosnbt measure the BQD
directly, but they record the enhanced respiratiate of the immobilized
microbes caused by the influx of biodegradable miggin the presence of
sufficient oxygen (Kim and Kwon, 1999). The graplicepresentation of the
signals of this activity, which is picked up by tdessolved oxygen probe, is
known as the respirogram, which can be correlateth whe BOD after
calibration as seen from Figures 6.1 and 6.2. thieésefore to be expected that the
outcome of any BOBdetermination exercise with the biological eled&s will
depend on the species composition of the immokilizmicro-organism
community, in addition to other boundary conditioasd variables such as
temperature, pH, the quantity of biodegradable miga and the presence of

toxins and other growth inhibiting substances ($c006).
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The original biosensor by Karube et al. (1977) usadhosporon cutaneupbut
later researchers applied other microbial speaiek ssBacillus subtilis(Tan et
al., 1992; Riedel et al., 1988), Klebsiella oxytg€dki et al., 1994) and activated
sludge (Sakai et al., 1995). Praet et al. (1995yiged a detailed and critical
review of available biological electrodes. They doded that current BOD
biosensors are not a panacea for the limitationsexhby the five days time delay

associated with conventional bioassay B@Btermination.

Considering that hardware biosensors do not proaidatisfactory solution, work
has also been carried out on the development obmaked software sensors for
the rapid, on-line estimation of B@Qxnd other water quality variables such as
COD, heavy metals and nutrients (Lee and Schol262®; Mohanty et al. 2002).
In contrast to hardware biosensors, software serattempt to obtain the BQD
directly and require little or no maintenance as lbased on finding the nonlinear
correlation between the BOD5 and the other readigilable water quality
parameters. Furthermore, software sensors arelyeapdated if more data
become available, unlike hardware sensors, whidallysrequire huge expenses
and time to regenerate when the biological cellhiwithe probe are becoming

ineffective.

The majority of the available software sensorsbased on data driven modelling
approaches such as artificial neural networks ptesein Chapter 3. The areas of
application in water management predominantly idelwater and wastewater
treatment plants, but also sewer systems and staater runoff management
control systems (Shen et al., 2006; Lee and StanstP005; Lee and Scholz,
2006a; Mohanty et al., 2002). For example, Brydow d@&rodsham (2001)

developed a MLP ANN to predict the settled sewa@2DB for a wastewater

treatment plant in England. Two models with diffgaraumbers of input variables
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were successfully developed to predict the ovdralhds in BORQ time series

data. However, the measured peaks were often ribpreelicted.

Figure 6.1 Construction of the BOD sensor, (1) Oxygen ebeldy (2) digital
multimeter, (3) recorder, (4) beaker, (5) thermostad (6) magnetic stirrer
(Chee et al., 1999).
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Figure 6.2 Calibration graph for the BOD sensor using artificwastewater
solutions at pH 7.0, 30°C and 40 mg of immobilizedroorganism (Chee et al.,
1999)

Other applications of artificial neural networkspiedict water quality parameters
including BOD; were discussed by Ellis et al. (1990), Hiraokale(1990), Lee
and Scholz (2006a,b), and Scholz (2006). The mhjactive of most of these
studies was to provide a B@@stimate in a fraction of the time required for
conventional bioassay determination, thus making BOD; a more realistic

water quality parameter for real-time process adntr

In the current application of the tools developedthis study, unsupervised
KSOM instead of the MLP ANN was used as BfOBbftware sensor. The
advantages of the KSOM over the MLP ANN are that thrmer can handle
missing values and gaps in the data set withouhé®el for a priori data infilling
exercise. Moreover, KSOM can be used to visualeaures in the data, thus
providing easy to comprehend pictorial evidence aafirelations between

important water quality parameters.

6.3. M ethodology

6.3.1 Case Study

The application of the KSOM for prediction purposess described in Chapter 5.
As a summary, first, a KSOM is trained using tl@ning data set. Then to predict
a set of variables as part of an input vector,eghesiables are first removed from
the vector and the depleted vector is subsequgmégented to the KSOM to
identify its BMU. The values for the missing vatied are then obtained by their

corresponding values in the BMU.
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The KSOM was applied to data from the three wadewaeatment plants
described in Chapter 4. The data from the largestfi€ld treatment works in
Edinburgh were used for model development (calibnaand verification) while

data from the two smaller works at East Calder Biedv Bridge, both outside
Edinburgh, were used for independently validatimg thodel. All the three works
employ the activated sludge treatment process lier decondary biological
oxidation; however, given that the emphasis ofgtuely was on the influent (raw
sewage) stream, the type of secondary biologiaagss employed will have no
bearing on the validity of the modelling result@rSequently, the model would
equally apply were the secondary process to beritiding filter or any other

process technology.

Exhaustive details about the Seafield works hawnhmresented in Chapter 4;
since the other two works also employ the activaskdige to the treatment
process, they are essentially similar to the Skeb&g&cept for size. Summary of
the data at the three works is shown in Table Alllithe data were provided by
Thames Water plc, the plant operators. The Seaftelth comprises daily
measurements of raw sewage quality characterigtadading the flow, BOI,
COD, the suspended solids (SS), etc. for a perfaabproximately three years,
giving a total of 1066. An important feature of ttleee data sets is the large
number of missing values, which would have made efiod) by other methods
such as regression analysis and MLP ANN impractiCdl the 1066 Seafield
vectors, 800 were used for model development aaddmaining 266 were used
for verification of the model. All the 1091 datacters (East Calder works) and
1375 data vectors (New Bridge works) were usednfdependently validating the
model. As shown in Table 6.1, the main characiesisit both East Calder and

New Bridge are within the range of the Seafieldieal
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6.3.2 Numerical Analysis and Modelling

The self-organizing map (SOM) toolbox for Matlabwas used for this case
study. The toolbox was developed by the SOM teatheatelsinki University of
Technology, Finland (http://www.cis.hut.fi). An ti@l pre-processing of the data
provided by Thames Water for input into Matlab 5swearried out using
Microsoft Excel, such as changing the missing aat@rroneous measurements

into NAN (Not a Number) to cope with the Matlab u#gment.

Given the objective of the application, i.e. to élep a model for the rapid
estimation of BOIg, a decision had to be made on which of the avieilalater
quality variables to include alongside BOQIh the KSOM. This decision was
based on two considerations: the rapidity with Wwhibe variables could be
measured or evaluated using hardware sensors andetiree of association
between the variable and the BOQDhe former consideration is important for the
rapid prediction of the BOD Therefore, the inflow, COD, SS, ammonia-nitrogen,
pH and temperature (Table 6.1) were chosen, bectngse can be measured
within three hours or by on-line hardware sensorsltow BOD; prediction in

virtually ‘real’ time.

For modelling purposes, the complete data set wadigded into two sets; a first
set of 800 observations to train the model (trajrset) and a second set of 266
observations to test the model (validation set)e€hdifferent KSOM models
were trained with the training data set, with eK&0OM model having different
input variables alongside B@DThe corresponding list of variables for each

KSOM model is given in Table 6.2.
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Table 6.1 Water quality of the inflow characteristics

oxygen demand

Plant Symbol Description Unit Min. M ax. Mean
seafield 1 | fiow gl'gm rate to the treatment m¥d | 100000 | 674000| 300263
(1066 data
points) COD Chemical oxygen demand mg/l 74 880 350.58
SS Suspended solids mg/l 15 580 164.27
NH,4 Ammonia-nitrogen mg/l 0.50 35.84 13.83
pH pH - 7.09 9.20 6.10
T Temperature °C 9 19 14
BOD: Five days @ 2TC biological mg/l 19 244 117
oxygen demand
Inflow Flow rate to the treatment plan 3hah 18956 56052 30921
COD Chemical oxygen demand mg/l 186 730 41(
(E:ZIS(;er SsS Suspended solids mg/l 34 354 166
(1091 data pH pH 6.8 7.8 7.33
points)
NH4 Ammonia-nitrogen mg/l 3.85 30.14 18.23
BODs Five days @ 2TC biological mg/l 305 152.5 96.4
oxygen demand
Inflow Flow rate to the treatment plan 3hah 7235 28389 13550
COD Chemical oxygen demand mg/l 113 778 395
gﬁ(‘;vge SS Suspended solids mg/l 38 361 166
(1375 data NH,4 Ammonia-nitrogen mg/l 3.18 38.33 17.51
points)
pH pH 6.1 7.7 7.2
Bop, | Five days @ 2@ biological mg/l 3493 | 1891 | 1038
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Table 6.2 The structure of the trained Kohonen self-orgamzimap models with a
map size of 183 and a hexa lattice

Map no.| Input variables Quantization Topographic
error error
Influent flow, COD, SS, NH4, pH,
1 Temperature, BOD5 1.176 0.059
Influent flow, COD, SS, NH4,
2 oH,BOD5 0.975 0.055
3 Influent Flow, COD, SS, NH4,BOD30.723 0.022

The estimated BOP concentrations from the BMU of the training setreve
compared with the actual concentrations to evaluhée performance during
training. Following training, the models were themlidated with the validation
data set, which was not used during the trainirgsphIn the verification phase,
the BOD, was omitted from the input vectors, essentiallplymg that BOR

values were ‘missing’. The BMU for each verificationput vector were then
determined to derive the missing B®Malues. Finally, BOB concentrations
obtained with the BMU were then compared with tlotual observations to
evaluate the performance during verification. Thaf@grmance of the models
during training and verification was evaluated gsithe evaluation criteria

described in Chapter 4 (See section 4.6).

6.4 Results

The component planes for each variable of the tKI®®M are shown in Figure
6.3 to illustrate the associations between vargalch component plane can be
viewed as a ‘sliced’ version of the KSOM, becauseonsists of the values of
single vector variables in all map units. In othesrds, the component planes
show the values of the variables in each map Wesdénto et al., 2000). These

planes are filled using colours to show the indigldvalues of a given feature of

173



Chapter 6: Applying KSOM As a Software Sensor iteditt The Biological Oxygen Demand

each KSOM unit in the two dimensional lattice, stiht the lighter the colour

grey, the higher the relative component value efdabrresponding weight vector.

Thus, the component planes help to visually illistrthe relationship between
BODs and other variables considered in this analysis.example, by looking at
the upper left hand of the component planes, it banseen that low BOD
concentrations are associated with a high inflfeaw rate, which is expected
given the dilution effects of high inflow rates. rthermore, low BODB
concentrations in the influent are associated \Wath COD, SS and ammonia-
nitrogen concentrations. While B@Ds positively correlated with SS, ammonia-
nitrogen and COD, it is negatively correlated wiitie inflow rate. Furthermore,
visual inspections of the component planes of pHl @mperature do not reveal
any obvious association with B@QDOn patrticular, the relationship between BOD

and pH is weak (Figure 6.3).
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Figure 6.3(a) Component planes for the Kohonen self-organizing (k&OM)
model 1
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Figure 6.3(b) Component planes for the Kohonen self-organizing (K&OM)
model 2
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Figure 6.3(c) Component planes for the Kohonen self-organizing (K&OM)
model 3.
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The structures of the three trained KSOM are suns®arin Table 6.2. All the
KSOM models have the same map size. However, ihe iep has the smallest
guantization and topographic errors, which indidhtd this is the best model for
prediction purposes. Table 6.3 summarizes the rouring training and
verification, which reinforce the superiority ofeththird KSOM model. For
example, the correlation coefficient between thesneed and KSOM-predicted
BOD:s during training was 0.93 for map 3 in comparisoi®86 and 0.91 for maps
1 and 2, respectively. Map 3 also performs muckebé&an maps 1 and 2 on the
basis of the AAE: 4.34 as opposed to 18.86 and8l4or maps 1 and 2,

respectively, during training.

Assuming that the errors are normally distributeéde approximate 95%

confidence interval is shown by Equation 6.1.

95%Conf = AAE+ 196> (6.1)

JN
where 95% Conf is the 95% confidence interval; AlEhe average absolute
error; S is the standard deviation of the absatuters (Table 6.3); and N is the

sample size, which is 800 for the training set 26@ for the validation set.

The 95% confidence interval for the AAE of KSOM € 4.34+ 0.4 during
training and 4.92 = 0.55during verification (Table 6.3). In comparison, she
errors are considerably lower than the errors abthiby Brydon and Frosham

(2001) for their two MLP ANN models also predictiB@Ds.

The superiority of map 3 is also confirmed by thassification error (CE) as
shown in Table 6.3. The fraction of the false pesitate is nearly equal to the
fraction of the false negative rate. This impligdel bias in predictions obtained

by map 3 in comparison to predictions obtained @psl and 2. The CE for
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maps 1 and 2 during verification were worse tharngutraining, which is a clear
evidence of the significant upward bias in the BQwediction for these two

models.

Both temperature and pH correlated weakly with itifuent BOD; (as noted
earlier) but were included because of the theaktimportance of these two
variables for the reaction kinetics in water andgtewater treatment (Mohanty et
al., 2002; Scholz, 2006). The fact that the thi@iM, which contains neither the
pH nor temperature, is performing better than thet ftwo models, which
included these variables (Table 6.2), confirms thath temperature and pH are

not directly linked to BOR

Because of the relative superiority of the map @ther analysis was only
undertaken with this map. Figures 6.4a and 6.4lwstie time series of the
observed and predicted B@During testing and verification, respectively. $ae
show that the performance of the KSOM is very gaod in agreement with
corresponding evidence presented in Table 6.3.pltteof residuals is shown in
Figure 6.4c indicating that the residuals are ramdas expected from the

approximate 50:50 split of the positive and negapvediction fractions of map 3.

The observed and modelled values have been présienkégures 6.5a (training)
and 6.5b (verification) to better demonstrate hogll\the KSOM 3 is predicting
the BOD. Most data points are contained within the 95%djoteon limits,
particularly during verification. These findingspgort the use of the KSOM
model for predicting mean BQDOconcentrations. Moreover, the 95% prediction
limits during verification completely enclosed #ike plotted points, implying that
individual BOD; concentrations can be predicted with sufficiertuaacy using

KSOM maps3.
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6.5 Discussion of Results

As shown above, the KSOM has performed reasonably during calibration
and verification with the Seafield data. Howevérs ttannot be taken as evidence
that the model is sufficiently general as to perfowell when applied to an
independent data set. In other words, to ascettiaitrue ability of the developed
model to generalize, it must be applied to independata sets unrelated to those

used for the model development.

Consequently, the KSOM model 3 was applied to thet Ealder and New Bridge
data sets for the purpose of validation. The vébaaexercise followed the same
procedure used for verifying the model earlier,. iie which the BOR
measurement in each measured vector was removedmed missing. The
validation results are summarised in Table 6.40Atgluded in Table 6.4 is the
summary of the verification results at Seafieldgémeral, the performance of the
model is good. In particular, the correlation caedint between the observed and
predicted BODR during validation was very close to that obtainked the
verification at Seafield. However, much more sgirgf is that the model was able
to better match the mean, minimum, and maximum ewinations at the

validation sites than at the Seafield calibratitbess

All of the above is proof that the KSOM model deymdd in this work is an
adequate predictor for the B@Dthus meeting the objective of this application
which is to develop a rapid, software sensor fa& BOD;. However, like any
modelling exercise, the developed model has itgdiimons which should be borne
in mind when applying the model. The first limitaiiis that the model has been
developed using historical daily data only. The bemof samples taken for each
variable differs from one variable to another, whicould have affected the

accuracy and precision of the measurements. Thigésult of inconsistencies in
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the ‘real’ industrial sampling regime, which wast ndesigned for research

purposes.

Table 6.3 Summary statistics of the three Kohonen self-omagimap models for
predicting the biochemical oxygen demand duringhtrey and verification. The
verification values are in parentheses.

Map - Mean Standard Mini-mum | MaXI-
no. | Staustics (mg/) | deviation (mg/) | (mgny | MYU™
(mg/l)
Measured 126 (92)| 45.83 (32.32) 19 (22) 244 (14
Estimated 124 (99) 556?294) 52 (52) | 192 (186)
18.86 14.560 0.03 89.92
Absolute error 1 14 00y | (16.000) 0.02) | (61.00)
1 Correlation 0.86 (0.87)
AAE 18.86 (14.00)
RMAE 0.084 (0.082)
NRMSE 0.520 (0.547)
Fraction positive 45% (64%)
Fraction negative 55% (36%)
Measured 126 (92)| 45.83 (32.32) 19 (22) 244 (14
Estimated 124 (98) ?287'?124) 52 (52) | 201 (193)
Absolute error 14.78 12.320 0.01 93.91
(12.16) | (9.590) (0.02) (43.32)
2 Correlation 0.91 (0.90)
AAE 14.78 (12.16)
RMAE 0.066 (0.072)
NRMSE 0.420 (0.479)
Fraction positive 47% (66%)
Fraction negative 53% (34%)
Measured 126 (92)| 45.83 (32.32) 19 (2p) 244 (192
Estimated 125 (96) ?205%’73) 50 (50) | 195 (187)
Absolute error ?43;'2) (181 85:(())) ((30080) 68.16 (47.06
3 Correlation 0.93 (0.91)
AAE 4.34 (4.92)
RMAE 0.055 (0.050)
NRMSE 0.360 (0.414)
Fraction positive 52 (53%)
Fraction negative 48 (47%)
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Figure 6.4 Comparison of the observed and predicted five B@ihcentrations
of the Kohonen self-organizing model 3 during (ajting and (b) verification.
The corresponding residuals are shown in part (c).

Furthermore, the number of data points used to Idpvihe model limits its
overall performance. As a general rule of thumimdfre data points are available
for the model development, the performance of tleelehis likely to increase,
because it can extract more patterns out of afalag set. Finally, the model has
been developed using raw wastewater quality chematits. However, its
application can be widened if more data from owirces such as river water or
treated effluent wastewater are available for asialyMore data from different
sources would allow the model to capture the padtef data from a wider range

of scenarios. This may also lead to an increaseeofnodel performance.
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Figure 6.5 The performance of the Kohonen self-organizing magel 3 in
predicting BOR during (a) training and (b) verification.
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Table 6.4 Summary statistics of the validation for the Kohogelf-organizing
map model number 3 for five days @QMiochemical oxygen demand

predictions with data from Seafield, East CalderddNew Bridge.

Seafield East Calder New Bridge
MSE 79 98 112
AAE 4,92 7.99 8.82
Correlation 0.91 0.88 0.87
Fraction positive (%) 53 44 53
Fraction negative (%) 47 56 47
Minimum measured 22 31 35
Minimum predicted 52 50 50
Maximum measured 192 152 189
Maximum predicted 186 154 182
Mean measured 92 96 104
Mean predicted 96 96 103

The proposed software sensor is fundamentally réiffiefrom any biosensor, and
only an empirical comparison rather than an objecstatistical comparison is
therefore possible. Biosensors do not measure Pdiectly or estimate actual
BODs concentrations based on historical BOfata such as the proposed model,
but they rely on a linear correlation between tbgponses of a sensor and the
BOD values. Considering that a large variety ofamigms could be used as
biosensors, a comparison with the proposed modehganingless. Moreover,
large numbers of biosensor data are rare and vatravailable for the case study
site or the sites used for validation purposes. dilg journal paper so far that
refers to biosensors and neural networks for B@Btermination in the same
context has been written by Roche et al. (2006)véi@r, neural networks were

only used to model direct biosensor performances.

The performance of the KSOM was compared with tee af simple linear
regression for predicting the B@QIDn the basis of the correlation between BOD
and COD. 800 data records were used for modelrasilim and 266 were used for
model testing. The final regression model was [BOD8.24+ 0.296 COD] with

correlation coefficient R = 0.75 during calibratidata and 0.71 during testing. As
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expected, the KSOM model performed better thansiheple linear regression

model.

6.6 Summary

The current work presents a completely novel meilogy based on the use of
the Kohonen self-organizing map (KSOM) models tedt five-days @ 2@
biochemical oxygen demand (B@Dconcentrations in wastewater, using raw
sewage data obtained at three wastewater treatents in Scotland. Extensive
testing and validation of the model shows thatrtfwelel is sufficiently general to
predict the BOD readily using variables, which can be measurediwithree
hours or in real-time using on-line hardware sesistirus making it possible to
estimate BODR very rapidly. This allows for a timely interventioand cost

reduction during problem diagnosis.

The proposed BOD software sensor methodology is an alternative @DB
biosensors because the BODhe software sensor does not require calibration
and cannot be negatively affected by toxins anerothhibitors. Moreover, the
software sensor is very dynamic and can be reagitiated when additional data
become available, thus enhancing its accuracyh€&urtore, the performance of
the software sensor is much better than the pedooam of simple linear

regression between BOD and COD.

The KSOM tool used for the development of the safewsensor can readily deal
with missing values in one or more of the inputiatles without significantly
affecting the accuracy of the model. The proposethodology is applicable for
other water and environmental engineering problears] this work could

therefore be regarded as a teaching aid.
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CHAPTER 7

APPLICATION III: MODELLINGACTIVATED SLUDGE
PROCESSUSING HYBRID KSOM-ANN

7.1 Introduction

As stated in Chapter 2, with tighter regulationgtomreceiving water quality, it is
important to limit point source pollution by impiag the performance of
wastewater treatment plants. Controlling treatm@ants through modelling is
technically the most feasible and maybe least yosthy of achieving a
sustainable improvement in performance. This is abse modelling the
wastewater treatment units can help the operatmstcssome corrective actions on
the computer and, in this way, identify the correctactions that give better
performance. However, modelling the activated stuggocess (ASP) has many
problems; all these problems give the ASP its maai characteristics and time-
varying parameters. Thus, most approaches to niogelthe ASP using
mechanistic paradigms have relied on numerous syimg assumptions in order

to make the problem tractable.

In Application Il of this work, an alternative amgach involving neural
computing has been applied to model the ASP. Aigifineural networks (ANNSs)
can be used to model any complex, nonlinear anémim systems without the
need to specify the functional form of the govegirelationship a priori
(Landeras et al., 2008). However, basic multi-lageperceptron (MLP-ANNS)
are affected by the quality of the data such asenand missing values, which can
make effective training difficult. To solve thisqginlem, a model based on the

hybrid Kohonen self-organising map (KSOM) and mlatiered perceptron
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artificial neural networks (MLP-ANN) was used. Thest map units of the
measurement vectors over the KSOM were used agsiripuhe MLP-ANN to
reduce the effects of noise and uncertainty imileasurement data, and to replace

the missing elements. This hybrid KSOM-ANN moddliparadigm is illustrated

in Figure 7.1.
Measurement KSOM BMU
Vector
X1 X1
X2 X2
MLP -ANN
> > —> —> — Output
? Xn-1
Xn Xn
Search for BMU

Figure 7.1 Diagrammatic representation of the integrated KS@MN modelling
strategy

In the application, two situations were thus inigeded for the prediction of the
effluent BODQy and SS concentrations: using the MLP-ANN on rawadand
using MLP-ANN of features extracted using the KSQ@M. the hybrid KSOM-
ANN).

7.2 M ethodology

The theory and mathematical basis of artificialraénetworks (ANNSs) have been
described in Chapter 3. ANNs consist of a set t¢ifi@al neurons which are
called nodes, and they have connections between, tballed weights. Optimal

values for these weights are obtained by trainihg nhetwork. The most
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commonly used form of ANNSs is the multi-layer pgrten (MLP). In general, a
three-layered MLP, trained using the Levenberg-Mardt algorithm, can
approximate any function with sufficient accuracidagan et al., 1996;
Daliakopoulos et al., 2005). The activation funeiacchosen were the tan sigmoid

transfer function in the hidden layer and the Imfeaction in the output layer.

For both modelling paradigms, the choice of inpatiables was based on
examining of correlation matrix. A correlation aysi$, based on the features of
the data, was performed between the variablestablesh, at a preliminary stage,
which of the inputs has the most influence for pleeformance of ASP(See Table
7.1). The highest 5 correlated variables with affauent BOD, and effluent SS,
apart from effluent COD which is a quality outpikiel effluent BOD and effluent
SS, were found to be BOD-Load, which has a coimeiatoefficient of 0.34 and
0.21 with effluent BOR and SS respectively; DO has a correlation coeffiicof -
0.27 and -0.21 with effluent BGQDand SS respectively; RAS-MLSS has a
correlation coefficient of -0.34 and -0.47 withle&éfint BOD; and SS respectively;
F/M has a correlation coefficient of 0.44 and 0W8i8h effluent BOQy and SS
respectively, and T has a correlation coefficiehD®0 and 0.33 with effluent

BODs and SS respectively. These were thus chosensasopminput variables.

To overcome the over-fitting problem, the earlypstule was used which
necessitated dividing the Seafield data, describezhapter 4, into three subsets
for training (500 data points), validation (200 algoints) and testing (366 data
points). The validation data set was used to steptiaining when the errors in
this set begin to increase during the traininglofeing a sustained period in
which the error fell as seen from Figure 7.2. Téstihg set was used to assess the
ability of the ANN to generalise. The input andgetr data were normalised in

order to have zero mean and unit standard devialiba outputs of the trained
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networks were post-processed, using the inverse thef pre-processing

transformation, to be compared with the desiregutst

10 ‘
----- Validation| -
—Training | |

10 12 14 16 18 20

20 Epochs

Figure 7.2 Training and validation errors for Model 1(F) withhidden neurons
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Table 7.1 Correlation matrix of the features

Flow to Infl. BOD Infl. DO WAS MLSS RAS SSVI Sludge FIM final Final BOD5 COD SS
ASP | BODto | load ss Rate MLSS Age Effluen | Effl
ASP to ASP t Temp Flow
kg/day deg.

m3/d | mgl mgl | mgl | m3d  mgl | mgl mlg day my/d | mol | mgid | mgl
Flow to ASP1 ) | o0
Influent BOD5 to ASP  (mg/l 035 1.00
BOD load (kg/day) 017 | 098 1.00
Influent SSto ASP-— (M) 5 47 | 091 o086 1.00
DO MM 925 057 -054 -051 1.0
WAS Rate ) | 014 o010 009 001 008  1.00
MLSS MM 920 o060 056 059 -019 035  1.00
RAS MLSS MM 533 038 033 049 -005 043 086 100
SSVI (M) 062 | 033 023 035 -047 025 -018 -0.29 1.00
Sludge Age @) 016 | 001 001 002 -008 093 040 033 -020 001
FIM 011 | 091 095 078 -056 021 032 009 032 10.11.00
Final Effluent Temp. (deg- C) 558 | .034| -033 -037 -002 046 080 -089 045040 -0.12 100
Final Effluent Flow  (1Hd) | 495 = 035 019 -046 025 -019 023 -0.26 -06®21 -014 004 100
Effluent BODS (M3 023 | 0209 034 016 027 -004 -007 -034 026 170, 044 020 022  1.00
Effluent COD M 922 019 024 008 028 003 018 -045 033 001035 037 020 096  1.0C
Effluent SS MM 031 | 044 021 003 021 -001 021 -047 025 140. 033 033 030 097 098 14
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Although the correlation analysis carried out gare initial idea of the relative
importance of the different variables that affdtiuent BODs and SS concentrations,
the best way to select the ideal input variablesafaeural network is to train several
models with different combinations of inputs andoase the one with best
generalisation performance. This approach is timeseming but was used in this
study. Therefore, several network architecturesteims of the number of input
neurons, were trained and tested. All of thesei@aiures have one hidden layer. The
output variables were the effluent BQBnd SS concentrations. The models were
evaluated using three criteria namely, correlatioefficient (R), mean square error

(MSE) and average absolute error (AAE) as desciibé&hapter 4.

To reach the suitable network architecture for Mie?-ANN, simulations were run
for several of inputs and several of assumed nusnbéridden neurons. All the
networks share the same specifications: Three-l@ayput, hidden and output layers)
feedforward neural networks, Backpropagation lesyralgorithm, with Levenberg-
Marquard optimization technique, Tan-sigmoid trengéinction is used in the hidden
layer and the linear transfer function is usechimautput layer. The number of hidden
neurons and the number of inputs nodes were fdudigh a trial and error process.
The number of hidden neurons was set to range roo40. The number of learning
iterations was set to be 100 epochs or learningesy&or best training performance,
all of the data presented to the neural networkriining were normalized ensuring
no signal dominates the training process. This deeltainly ensure that all the input
signals apply the same influence throughout thimitrg process. The normalization
was done by deducing the mean and dividing by thedsrd deviation giving a

transformed variable with a mean of 0 and variasfck

Total of seventy two models were thus trained asted. Models 1 to 36, denoted by
M1 to M36, were trained and tested using the rata dath different number of input

variables and different number of neurons in tldglén layer. Another set of models
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(denoted by M1 (F) to M36 (F)), were trained arstdd using the features of the data
or their best map units over the KSOM. It is assdirmethe beginning of the study
that the features of the data will improve the perfance of ANNs models since they
reduce the effect of noise, outliers in the measerg system. Additionally, these
features also allow the networks to be used whemnetlare some missing values,

satisfying one of the purposes of this study.

7.3 RESULTSAND DISCUSSION

7.3.1 Artificial neural networks models using raw data

Table 7.2 shows the details of the 36 models tchimigh the raw data. In the first 12
models, M1-M12, there were 5 inputs and 2 outputk different number of neurons
in the hidden layer. As stated previously, theyestopping technique was employed
in which the training process was stopped when whkdation error started to
increase. This ensures that overfitting dose notisc Figure 7.2 shows the training
and validation errors for model M1(F) as an example figure 7.2, the validation
error started to rise after 14 epochs whilst thaing error continues to fall. Stopping
the training at epoch 14 is therefore warrante@wvoid over-fitting. This is much

lower than the maximum 100 epochs specified foldhening process.

The next set of 12 models, denoted by M13 to M24] 4 inputs (BOD-Load, RAS-
MLSS, F/M, and Temperature), 2 outputs (BQdhd SS) with different numbers of
neurons in the hidden layer. The last set of 12efxpdienoted by M25 to M36, have
3 inputs (BOD-Load, RAS-MLSS, F/M, and Temperatu&putputs (BOD5 and SS)

with different numbers of neurons in the hidderelay

Table 7.3 and Table 7.4 also Figure 7.3 and Figudeshow the comparison of the
error criteria of the models developed in the tloages during training, validation and
testing for effluent BOP and Effluent SS respectively. It can be seen fthese

results that using the raw data were hopeless atdacceptable for modelling
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purpose. The matter that led us to investigatepihssibility of using the features

rather that the raw data as well be seen in thegsstion.

Table 7.2 The structure of the developed ANN models usingdater

Inputs Model Number Number of
neurons in the
hidden layer
BOD-Load | M1 5
DO M2 7
RAS-MLSS | M3 10
FIM M4 13
T M5 16
M6 18
M7 20
M8 23
M9 26
M10 30
M11 35
M12 40
BOD-Load | M13 5
RAS-MLSS | M14 7
F/IM M15 10
T M16 13
M17 16
M18 18
M19 20
M20 23
M21 26
M22 30
M23 35
M24 40
BOD-Load | M25 5
RAS-MLSS | M26 7
FIM M27 10
M28 13
M29 16
M30 18
M31 20
M32 23
M33 26
M34 30
M35 35
M36 40
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Table 7.3 Statistics analysis of modelling ASP using ANNrealjet effluent BOB

MSE (mg/ly AAE (mg/l) Correlation (R) %
2
: : s s
= g g 2 g 5 2|2 5 2
o £ 2 B £ 2 b7 £ 2 3
= = g 2 2 & | = £
M1 18.11 18.23 26.35 3.25 3.38 4141 61.07 43.97 11.95
M2 22.73 17.01 17.64 3.60 2.88 3.09]1 4954 51.70 32.02
M3 36.15 24.33 27.13 6.54 4.00 43315210 15.97 6.88
M4 19.16 21.23 30.04 3.40 3.54 453 ]56.88 33.22 8.58
M5 18.97 21.28 26.95 3.44 3.58 4.27158.16 30.49 10.22
M6 21.28 20.85 32.75 3.69 3.46 4.67 | 49.13 33.89 3.96
M7 23.22 22.88 28.54 3.90 3.93 4561 41.17 3331 9.83
M8 21.01 23.00 24.64 3.64 3.82 41315081 21.61 13.27
M9 19.79 20.46 2625 342 359 4285731 3235 9.18
M10 17.24 23.42 2897 | 323 380 4.45]|64.25 25.16 1.96
M11 18.69 26.37 3029 339 416 4.66]|60.00 11.60 3.56
M12 23.44 24.90 32.04 3.86 3.97 48414380 15.12 2.38
M13 24.70 21.01 23.34 3.91 3.64 4081 34.33 28.76 21.75
M14 25.88 22.48 27.63| 409 380 455]|28.05 2328 9.56
M15 25.94 22.81 27.08| 4.02 385 455]|27.26 2463 12.25
M16 61.23 36.62 2849 580 435 364]| 460 3395 1321
M17 24.03 24.17 26.66 | 3.87 348 4.03]|38.49 31.29 14.20
M18 24.25 24.95 2981 | 392 403 4.72]36.77 11.27 1.87
M19 20.97 24.16 2888 359 401 4.47]50.73 16.21 4.59
M20 23.07 25.23 2942 | 385 4.04 4.69] 4275 1052 6.00
M21 23.28 26.47 31.13]| 386 417 4.79]|41.21 247 6.82
M22 25.95 23.87 30.32| 426 405 4.84]30.34 3152 1574
M23 26.63 31.29 3815 438 470 5483069 7.21 14.84
M24 42.07 26.58 2367 456 374 399]1045 6.32 6.18
M25 25.36 22.44 28.02 4.01 3.75 4501 31.05 17.80 0.75
M26 31.20 22.28 2645 425 366 4.43]| 511 1030 237
M27 25.36 20.36 23.47 4.08 3.55 4151 30.44 32.00 15.48
M28 22.35 22.46 27.26 3.77 3.79 443 | 44.86 24.20 0.28
M29 23.39 21.81 25.11 3.76 3.66 4151 41.44 19.28 1.02
M30 23.79 22.26 25.30 3.85 3.72 4271 39.03 17.08 2.97
M31 25.00 21.26 26.70 3.99 3.67 4421 32.82 27.36 1.56
M32 21.40 21.26 2842 3.69 3.67 457]|4850 2736 0.79
M33 22.06 23.51 31.19] 3.78 380 4.74]| 4598 1820 3.97
M34 22.07 22.21 2873 379 371 4533|4586 23.07 1.44
M35 24.61 21.91 27.21 3.90 3.56 4251 35.87 24.25 4.23
M36 26.49 32.93 34.01 4.32 4.52 5.01 | 28.95 0.76 4.23
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Table 7.4 Statistics analysis of modelling ASP using ANNréaglict SS

MSE (mg/ly AAE (mg/l) Correlation (R) %
2
s : s s
= E 2 g 5 2|2 = 2
k) = gl = = he = = he =
S o T 3 o T 3 o T 3
= = > — = > - = > ~
M1 193.13 150.29 289.40 | 10.39 9.76 1351 ] 62.38 50.00 24.85
M2 230.48 134.09 2229411131 8.67 1151 |54.68 5853 4225
M3 231.83 181.01 265.34 | 11.90 11.22 1354 |50.80 34.30 29.26
M4 208.85 168.55 304.40 | 11.12 10.22 14.26 | 57.70 43.00 27.57
M5 204.70 153.68 281.85 | 10.92 9.66 13.30] 58.99 47.71 27.05
M6 223.18 158.37 293.29 | 11.22 9.77 1352|5354 4563 25.80
M7 349.28 208.04 299.02 | 13.60 10.51 12.82| 39.04 3256 10.87
M8 229.70 181.37 298.21 | 11.53 10.83 14.21| 5250 34.85 20.29
M9 213.63 168.79 302.51| 11.02 10.68 14.42|57.73 41.20 19.08
M10 182.98 180.55 299.09 | 10.21 10.61 13.69| 65.27 40.20 21.26
M11 201.09 188.03 313.90| 10.81 11.17 1455 60.43 35.79 20.22
M12 257.44 173.46 305.99 | 1249 10.33 14.13| 43.66 38.24 24.25
M13 276.66 179.95 252.63 | 13.01 1091 13.14] 32.92 30.24 34.56
M14 289.25 182.70 293.17 | 13.49 11.13 14.43| 25.74 31.89 2148
M15 286.89 208.72 303.62 | 13.22 12.13 1494 | 27.49 18.21 1854
M16 599.50 296.63 393.30| 17.40 12.28 13.74| 3.76 11.29 3349
M17 257.45 292.78 465.13 | 1257 13.49 18.08 | 41.47 994 18.43
M18 284.23 194.47 315411 13.21 11.48 15.09 ] 30.07 25.00 1857
M19 232.24 213.83 350.65| 11.76 12.19 15.37|50.66 17.50 4.47
M20 263.48 223.05 383.94 | 12.83 1239 16.69| 38.85 1787 5.74
M21 265.02 218.69 353.73 ]| 12.87 12.33 15.85] 38.46 14.48 0.59
M22 277.36 198.97 313.42 ] 1299 11.79 15.04] 3242 25.82 18.30
M23 294.44 197.43 290.55] 13.34 10.99 13.78 ] 28.80 25.49 22.67
M24 521.02 262.74 310.98 ] 16.84 11.47 12.23 2.17 3955 2225
M25 283.23 191.88 315.33 ]| 13.06 11.46 1498] 30.29 23.63 10.76
M26 34458 182.18 296.77 | 1341 10.73 14.44) 12.11 25.05 7.66
M27 278.81 190.99 303.83 | 13.23 1154 1489] 31.81 30.84 13.61
M28 248.72 199.59 324521 12.22 11.67 1491] 4451 30.19 8.50
M29 254,75 200.03 357.18 ] 12.60 11.71 15.59] 42.18 30.43 9.21
M30 267.55 191.47 31351 1285 11.33 14.79] 36.85 28.18 5.64
M31 274.24 194.62 33459 12.82 11.47 1548 34.11 24.78 2.93
M32 248.42 202.96 32851 | 12.39 1195 1518|4452 23.88 6.84
M33 247.58 215.28 367.77 )| 1245 1197 16.03]44.85 23.71 0.84
M34 248.99 193.59 338.51] 1240 11.49 15.16| 44.25 30.67 3.53
M35 283.48 191.98 339.17] 12.70 11.10 14.85]) 33.73 27.87 3.31
M36 292.63 298.66 401.52 | 14.34 1417 172312965 451 478
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7.3.2 Artificial neural networks using the features of the data

Table 7.5 shows the details of the 36 models tchimgh the features of the data.
In the first 12 models, M1(F)-M12(F), there werenputs and 2 outputs with
different number of neurons in the hidden layerenmeained and tested. As stated
previously, the early stopping technique was enmgdioyn which the training
process was stopped when the validation errorestad increase. This ensures

that overfitting dose not occurs.

The next set of 12 models, denoted by M13(F) to (#24had 4 inputs (BOD-
Load, RAS-MLSS, F/M, and Temperature), 2 output©OB and SS) with
different numbers of neurons in the hidden laydne Tast set of 12 models,
denoted by M25(F) to M36(F), have 3 inputs (BOD-LloRAS-MLSS, F/M, and
Temperature), 2 outputs (B@@nd SS) with different numbers of neurons in the

hidden layer.

Table 7.6 and Table 7.7, Figure 7.5 and Figuresid@v the comparison of the
error criteria of the models developed in the thoages during training, validation

and testing for effluent BOPand Effluent SS respectively.

7.3.3 Comparison between the models

The evaluation criteria (i.e. MSE, AAE, and R) wetalculated for each
architecture and the number of hidden neurons spormding to the best
performance during testing data set for each caseselected. Since the training
was stopped according to the validation error, ribeber of epochs varied for
each architecture. Table 7.8 shows the optimaliteictiire for each model and the

number of epochs corresponding to the selected inode
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Table 7.5 The structure of the developed ANN models usingNK8Qracted
features

Inputs Model Number Number of
neurons in the
hidden layer
BOD-Load | M1(F) 5
DO M2(F) 7
RAS-MLSS | M3(F) 10
FIM MA4(F) 13
T M5(F) 16
M6(F) 18
M7(F) 20
M8(F) 23
M9(F) 26
M10(F) 30
M11(F) 35
M12(F) 40
BOD-Load | M13(F) 5
RAS-MLSS | M14(F) 7
FIM M15(F) 10
T M16(F) 13
M17(F) 16
M18(F) 18
M19(F) 20
M20(F) 23
M21(F) 26
M22(F) 30
M23(F) 35
M24(F) 40
BOD-Load | M25(F) 5
RAS-MLSS | M26(F) 7
FIM M27(F) 10
M28(F) 13
M29(F) 16
M30(F) 18
M31(F) 20
M32(F) 23
M33(F) 26
M34(F) 30
M35(F) 35
M36(F) 40
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Table 7.6 Statistics analysis of modelling ASP using KSOM-Ad predict

effluent BOR

MSE (mg/ly AAE (mg/l) Correlation (R) %
2
s |. s - o 5
3 = K5 2 £ B 2 = 5 2
3 S 2 Z £ k=) 2 c = =
S £ S @ = g 2 e S8
M1F 12.62 14.50 12.14 2.67 2.74 2.57 | 7492 60.99 60.90
M2F 11.55 13.17 12.86 2.56 2.62 2.72 | 77.39 65.34 58.32
M3F 11.65 13.30 11.55 2.60 2.61 254 | 77.64 66.18 63.34
M4F 10.35 11.62 11.95 2.35 2.45 2.511]180.29 69.82 62.11
M5F 10.77 12.01 11.96 2.43 2.41 2.50] 79.96 68.30 62.00
M6F 10.34 11.54 11.37 2.32 2.41 25118180 68.31 65.39
M7F 10.67 12.30 12.45 2.38 2.41 2.39 | 79.59 67.35 60.26
M8F 11.53 13.45 12.64 2.52 2.61 252 | 77.75 63.30 59.22
MOF 11.76 14.00 13.22 2.55 2.60 2.66 | 77.50 62.47 56.37
M10F 10.25 11.44 12.92 2.32 2.40 2.60 | 80.51 69.55 59.42
M11F 11.48 1264 12.84| 253 254  265|77.82 67.36 58.54
M12F 11.80 13.04 11.04| 256 2.55 240 | 77.44 66.70 65.46
M13F 13.72 1511 14.89 2.75 2.90 3.00 [ 72.21 56.58 49.17
M14F 1474 1521 13.22 2.88 274  262|69.82 57.70 56.16
M15F 14.44 16.28 13.17 2.79 2.82 2647099 5425 56.59
M16F 13.03 1395 14.15 2.69 2.68 277 | 73.81 60.69 54.40
M17F 11.81 13.46 12.71 2.55 2.60 2.61]| 77.06 63.42 58.50
M18F 15.37 15.65 13.09 2.96 2.77 2.64|67.96 5458 56.80
M19F 10.19 12.12 13.85 2.32 2.45 2.71 ] 80.40 66.97 56.79
M20F 10.76 12.68 1255 2.37 254  255|79.47 65.26 60.66
M21F 11.42 1371 13.30 2.43 2.60 262 ] 78.04 62.99 56.00
M22F 10.61 12.43 12.94 2.37 2.49 2.64 | 79.69 65.58 59.46
M23F 11.22 1283 12.92 2.43 2.53 260 | 78.76 65.66 58.69
M24F 1090 1270 12.74| 2.39 2.51 254 | 79.02 65.07 59.35
M25F | 22.62 1550 14.86| 3.74 286 3.0l | 4489 5544 4967
M26F |2150 1575 16.44| 3.64 2.95 3.14 | 48.88 53.27 42.96
M27F | 2105 1553 16.31 3.58 2.77 3.09 | 50.68 55.19 44.04
M28F 12.91 1457 14.47 2.68 2.68 2.73| 7422 6151 52.66
M29F 20.23 15.56 15.73 3.50 2.82 2.97 | 54.58 5498 4591
M30F 15.34 14.63 14.20 2.91 2.75 2.85] 68.08 58.89 5251
M31F 15.86 14.46 1450 2.97 2.69 2.80 | 66.96 60.57 51.48
M32F 1351 14.35 14.25 2.66 2.70 2.80| 72.67 60.00 53.35
M33F 13.48 12.95 13.15 2.68 2.64 2.71]| 7256 65.42 57.96
M34F 13.30 13.92 13.50 2.72 2.69 2.73 1 74.00 61.86 58.77
M35F 13.26 13.64 12.79 2.65 2.62 2.58 | 73.34 63.10 59.01
M36F 15.83 14.53 13.72 2.99 2.77 2.66 | 67.42 59.18 54.76
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Table 7.7 Statistics analysis of modelling ASP using KSOM-Ad predict

effluent SS

MSE (mg/lf AAE (mg/l) Correlation (R) %
3
I - o 5
= = S 2 £ 2 e S8
M1F 140.37 130.17 169.34 | 8.77 8.39 9.44 | 74.35 58.82 62.47
M2F 136.61 130.10 205.00| 8.65 8.31 11.73 | 75.15 58.45 55.62
M3F 136.28 123.06 211.00| 8.58 7.87 11.64 | 75.49 63.00 60.28
M4F 122.03 106.96 205.00| 7.99 7.54 11.54 ]| 78.30 67.49 60.17
M5F 128.07 108.13 204.00| 8.14 7.56 1152 | 77.41 66.73 58.90
M6F 121.04 106.20 162.73 7.62 7.51 8.49 | 78.32 67.53 65.04
M7F 127.01 117.28 210.00| 8.06 7.79 11.43 ]| 77.21 63.70 59.06
M8F 135.78 128.58 217.00| 8.44 8.26 11.56 | 75.46 59.07 56.98
MOF 137.77 124.72 175.95| 8.53 7.89 9.28 | 75.25 61.54 60.02
M10F 12491 11593 167.91 7.95 7.74 8.86| 77.61 64.70 62.02
M11F 135.36 120.92 179.09 8.39 7.95 953 | 75.52 62.06 58.13
M12F 138.51 119.07 160.83 8.56 7.88 8.90 | 74.95 63.64 64.85
M13F 157.86 132.02 191.50 9.29 8.62 10.24 | 70.29 56.62 54.85
M14F 158.86 134.87 179.33 9.27 8.36 048 | 70.34 57.16 59.27
M15F 158.76 141.77 177.63 9.12 8.59 9.22 | 70.73 55.60 61.61
M16F 151.43 128.69 182.43 8.91 8.41 951 | 7176 58.17 57.29
M17F 137.72 124.66 166.98 8.48 8.05 9.15| 75.07 61.16 62.91
M18F 164.93 143.73 176.18 9.49 8.78 0.34 ]| 68.89 52.80 60.63
M19F 124.73 118.18 174.04 8.05 7.85 936 | 77.51 63.72 60.31
M20F 129.55 114.77 168.12 8.09 7.76 8.84 ]| 76.69 64.30 62.91
M21F 136.43 125.43 180.13 8.35 7.99 9.27 |1 7492 61.08 57.89
M22F 127.99 118.34 168.60 8.07 7.88 9.09]176.94 6291 61.74
M23F 13452 114.20 177.77 8.25 7.80 9.39| 75.69 64.57 59.53
M24F 130.24 122.60 176.79 8.16 7.99 8.91] 76.50 6155 59.40
M25F | 240.08 148.83 18853 | 1203 897 1017 | 47.84 5017 5564
M26F 233.39 149.47 196.76 | 11.92 9.22 10.43 |1 49.81 48.65 52.58
M27F 223.14 157.78 188.54 ] 11.49 9.47 9.91]53.39 50.00 55.83
M28F | 152.28 132.67 191.45| 911 811 953 |71.59 59.89 55.13
M29F 220.48 152.86 200.09 ] 11.34 9.02 9.97 | 55.20 49.27 51.28
M30F 178.98 132.81 184.73 9.87 8.40 9.78 | 65.22 57.05 56.23
M31F 181.61 142.06 189.33 9.90 8.49 957 | 64.75 54.22 55.17
M32F 156.15 128.78 186.25| 9.07 8.07 9.54 | 70.70 59.36 56.13
M33F 159.46 125.12 162.75| 9.12 8.07 9.22 | 69.79 60.05 61.15
M34F 155.02 123.97 178.04 | 9.06 8.95 951 | 71.36 6140 60.60
M35F 154.49 114.66 160.24 9.03 8.06 9.05] 70.39 58.06 61.40
M36F 178.73 135.17 187.52 9.92 8.37 9.38 | 65.83 55.67 55.59
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Table 7.8 Characteristics of neural network models

Model Architecturel  Number of
epochs

M I 5-7-2 11
M I 4-5-2 12
M I 3-10-2 9

M | (F) 5-18-2 22
M Il (F) 4-23-2 33
M Il (F) 3-35-2 23

In order to find the best model, the evaluationiecia obtained during training,

validation and testing for the best model in eaakecwere compared. Table 7.9
and Table 7.10 show the values of MSE, AAE, andoR BODs and SS

respectively. The highlighted values are the begtopmance achieved, that is the
lowest MSE and highest correlation R (%). The saesalts are represented in a
graphical form in Figure 7.7. From Table 7.9, 7at@ Figure 7.7, it is clear that
using the features of the data produced betteopeénce than using the raw data

itself to train the models.

This confirms the fact that KSOM features improhe fperformance of ANN.
Also, From Table 7.9 and Table 7.10, and Figurés if.is clear that model
number M1 (F) (M6F in Table 7.6) has the best pembnce. The 18-node
architecture can be taken as a compromise beattigteusince no significant
improvement in all the three performance criterauws when the number of

neurons is increased beyond 18.
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Table 7.9 Comparison of statistical coefficient for efflu@&®D for the best model
with each category of models

_ MSE (mg/lY AAE (mg/l) Correlation (R) %

(o]

= ©

2 2 5 5 5

=z O (@] = (@)] = (@) =

5 Q £ B 2 | B = £ B 2

S = s =2 g2 |£ =Z 2 s B B

) o © T O © © O © © 3}

= < [ > [ [ > [ (= > [

M | 5-7-2 | 22.73 17.01 1764 3.60 2.88 3.09 | 4954 51.71 32.02
M I 4-5-2 | 2470 21.01 23.34]| 3.91 3.64 4.08 | 34.33 28.76 21.75
M Il 3-10-2 | 25.36 20.36 23.47 | 4.08 3.55 4.15| 30.44 32.00 15.48
M I (F) 5-18-2110.34 1154 11.37| 2.32 2.41 2.51|81.80 68.31 65.49
M Il (F) 4-23-2| 10.76 12.68 12.55| 2.37 2.54 2.55| 79.47 65.26 60.66
MIIl(F) |3-35-2| 1326 1364 12.74| 2.65 2.62 2.58 | 73.34 63.10 59.01

Table 7.10 Comparison of statistical coefficient for efflu&® for the best model
with each category of models

_ MSE (mg/ly AAE (mg/l) Correlation (R) %
]
QO

o
= |z s 5 5
zZ O (o)) S (o)) L o L2
5 Qo £ B 2 | B 2 £ B =
S = h= e = h= §e) = = i) =
5] S S T & |8 B 3 S & 3
= < ~ > ~ ~ > ~ [ > [
M I 5-7-2 | 230.48 134.0 222.94] 11.31 8.67 11.51] 45.68 58.53 42.25
M Il 4-5-2 | 276.66 179.95 252.63| 13.01 10.91 13.14] 32.92 30.24 34.56
M Il 3-10-2 | 278.81 190.99 303.83] 13.23 11.54 14.89] 31.81 30.84 18.50
M I (F) 5-18-2] 121.04 106.20 162.73] 7.62 7.51 8.49] 78.32 67.53 65.04
MII(F) |4-23-2|129.55 114.77 168.12] 8.09 7.76 8.84 76.69 64.30 62.91
M Il (F) | 3-35-2| 154.49 114.66 160.24] 9.03 8.06 9.05 70.39 58.06 61.40

It is also evident from Tables 7.9 and 7.10 andukegr.7 that for each specific

number of neurons in the hidden layer, the perfoiceaof the model is better

using the features of the raw data than using #ve data itself. The relative

superiority of the features-derived models is &gmlent when both the MSE and

AAE are considered. This is because the features ebminated the noise in the

raw data set, which affected the performance obtwc ANN.
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Because the ANN model with 18 neurons in the hiddger using the features
method, Model M | (F) has the best performanceh@ranalysis was only done
with this model. Table 7.6 and 7.7 show clearlyt the performance results were
good. However the best way of assessing the maddiqtion is by looking at the
predicting plots and analysing wither they havedyagreement. Figure 7.8 and
7.9 show in the time series plots the comparisdawéen the model predictions
with the targets for BOPand SS during training, validation and Testingsuéal
investigations of these figures demonstrates tmatnodel is able to predict the
output during operation conditions as the two lig@®dicted and observed) are
overlapped in the majority of the points. Figur&07rand 7.11 show the residuals
plots of the model during training, validation aedting. Figures 7.12, 7.13, and
7.14 show scatter plot of the measured and pretiB®©Ds during training,
validation and testing respectively. Figures 7436, and 7.17 show the scatter
plot of the measured and observed of SS duringitrgj validation and testing
respectively. Most of the data points are aroure ghedicted equals observed

line.
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Figure 7.10 Residuals of the model during training validatiamdaesting
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Figure 7.11 Residuals of the model during training validatiamdaesting
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Figure 7.12 the performance of the model in predicting theuefit BOD during
training
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Figure 7.13 The performance of the model in predicting theuefft BOD during
validation
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Figure 7.14 The performance of the model in predicting theuefft BOD during
testing
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validation
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7.4 Conclusion

The current application used a new methodology dasea hybrid supervised-
unsupervised artificial neural network to improve tperformance of the basic
backpropagation neural network method in modellthg activated sludge
wastewater treatment plant. The method was appbedata taken from the
Seafield wastewater treatment plant in EdinburgK, during a period of about
three years. Input variables were selected baseth&in correlation with the
effluent BOD; and SS, which were the target prediction variaBkeveral ANN
models with different numbers of neurons in thedeil layers were developed.
For each model, two types of data were used, teedne is the raw data set and
the second one is the extracted features of thedetev using the Kohonen self-
organising map. The results showed that the madsigy the features were better

than those using the raw data.

The findings prove the ability of KSOM to improveet performance of modelling
using basic back-propagation neural networks, @agily when the available
data are noisy, a common problem with the process of wastewater treatment
plants. Furthermore, the KSOM can readily deal witissing values in one or
more of the input variables without significantlggative impacts on the accuracy
of the model (see Rustum and Adeloye, 2007a). Residtained prove that
KSOM-ANN present a versatile tool in modelling ASkhd provided an

alternative methodology for predicting the perfonoa of WWTPs.

The developed models have several advantages ysvidre able to predict the
effluent BOD, and SS without explicit considering the mathenadtielationship

between the inputs and the outputs. However,rieessary to underline the limit
of using the methodology if the database is insigfit as it might lead to
erroneous interpolations or restricted to narromgeaof operating conditions. In

other words, the developed models are not able @pplied to another plant with
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input data outside the range of the inputs usedréining. Therefore, care must
be taken when extrapolating these results to otbelinear systems. Furthermore,
there are problems concerned with identifying tleeiral network elements and
parameters. Examples of such elements and paravatethe number of hidden
layers, the number of neurons in each layer, tnginfiunction, and transfer
function. Therefore, finding the best general modetime consuming as it is
highly empirical, and the only way to optimize tm@dels is by searching for the

best network parameters iteratively.
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CHAPTER 8

APPLICATION IV: MODELLING ASPUSING HYBRID
KSOM-ANFIS

8.1 Introduction

In the previous chapter, the possibility of modgliASP using artificial neural
network was investigated. The results indicated i KSOM extracted features
improve the performance of backpropagation muldtaperceptron ANN. The
learning algorithms were found to be suitable fardelling ASP. However, the
concept or knowledge cannot be clearly expressadhimman understandable way
in the form of if-then rules. In contrast, Fuzzyil systems (FLS) are more
favourable, in that their behaviours can be explinusing fuzzy rules. In
addition, FLSs can easily be interpreted in humadeustandable terms rather
than with numerical quantities. In other words, Zjgzogic models depend not
only on black box such as ANN, but are also basedaocombination of

knowledge of the system and operational experience.

As discussed exhaustively in Chapter 3, the badeéa ibehind neuro-fuzzy
combination is to design a system that uses a fsiggtem to represent knowledge
in an interpretable manner and have the learninbityalbbf neural network to
adjust its membership functions and parametersrderato enhance the system
performance. Consequently, the main drawbacks tf indlividual systems could
be avoided, i.e., the black box nature of neuraWoeks, and the problem of
selecting suitable membership values for FLSs (J4993). The combination can
constitute an interpretable model that is capalflelearning, as NNs, and

reasoning, as FLSs (Firat and Gungo6r, 2007). Usimg technique makes it
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possible to adjust the membership functions autioailt from data by using
neural network learning algorithms. The trained rbership functions can

provide a better understanding about the propeofiise database.

Because human-determined membership functions usah@nd error are subject
to the differences from one person to another aadh ftime to time, they are
rarely optimal in terms of reproducing desired oitsp To solve this problem, in
1993, Jang and his colleagues started looking etFIlS as adaptive network
(Adaptive Network Based on Fuzzy Inference SystAMEIS (Jang, 1993; Jang
and sun, 1995; Jang et al., 1997). This technigims jhe linguistic interpretation
of FLS with the computational power of neural netkgothat can be trained
through gradient algorithms such as Back-propagatfo first forward pass is
performed to determine the network output and eorsgcbackward pass is
performed to adjust the parameters for better aqmation. They found that
ANFIS could be easily implemented for a given idputput modelling technique

as fully described in Chapter 3.

Consequently, due to the power of KSOM in enhantmegperformance of ANN
as demonstrated in the previous chapter, the lpptication of this work
investigates the possibility of integrating the K8Qvith ANFIS in order to

improve the performance of the ANFIS trained walvdata.

8.2 M ethodology

The methodology presented in Section 3.4 has bppled to develop a fuzzy
model for the ASP. The same Seafield treatmenttpita set used in the
previous chapter has been used in this applicafibe. developed models were
trained and testing using MATLAB 7 programming laage with Fuzzy Logic

toolboxes (Version 7, Release 14, Mathworks, Ik@Qhonen Self Organizing
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Maps were built and visualized using SOM Toolbox ¥ATLAB 5, developed
at the Laboratory of Computer and Information Sceer(CIS) at Helsinki
University of Technology. Supporting statisticaladysis was conducted using

Statistical Toolbox and various functions in MATLAB

The key requirement to getting a good model is hoose the appropriate
antecedent part variables. However, in activatediged wastewater treatment
plants , it is difficult to take into account themerous factors that influence the
specific bacterial growth rate and its metabolictivitees. Therefore, the
parameters were chosen from typical variables @bsgein the daily monitoring

record of activated sludge process that used #sasscontrolling the process.

It is expected that the accuracy of the model ballimproved by increasing the
number of the variables in the antecedent partkgnthcreasing the number of
membership functions in each variable. However, libads to a large number of
rules and consequence parameters (see Chaptentferdetails). Therefore, the
first question was how many inputs can be put gingle ANFIS model when a
model is trained on a personal computer? The seqaedtion was how many
fuzzy membership functions can be used in eacltedént part in order to divide
the input space into fuzzy divisions? That is beseathe computation cost
increases by increasing the number of inputs aednimmber of membership
functions of each input, as revealed in Equatiagt?2.3In addition, the volume of
the training data plays a role in deciding the namdf inputs and the number of
membership functions associated with each input.eikample, the total number

of modified parameters must not exceed the totaiber of training data.

Furthermore, the aim is to adjust the parameteosder to approximate the given
samples with the least error and at the same tibtairo good generalization

ability. To do this, partitioning the available dainto training, validation and
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testing is performed in order to measure the géimati@n ability. This is because
it is known that, a minimum training error does mecessarily correspond to a

minimum testing error, or best generalization (Ageland De Munari, 2006).

Since the number of rules in ANFIS and consequetity number of its
parameters increases exponentially with the nuraberputs, five inputs was the
maximum number of input parameters that could ksl @gven the available data
base. For example, using five inputs with three fmership functions associated
with each input, the total number of modified paedens, according to Equation
3.42 will be 1488 which exceeds the number of trgirdata of 500. However,
with two membership functions for each input, tlmak number of modified
parameters will be 212, which is okay, because thllt leave a significant

number of degree of freedom.

To choose the parameters to include, the analysibeocorrelation matrix was
carried out to determine the most likely parameferspredicting the effluent
BODs and effluent SS, the tow target variables. Thatifled variables were the

same as in the previous chapter.

To decide the optimal number of input parameterd e optimal number of
membership functions associated with each inpugverml models have be
developed using a variety of inputs and a varietym@mbership functions
associated with each input taking into account thatpriority is for inputs with
high correlation with the effluent BGQxnd effluent SS concentrations. Table 8.1
and Table 8.2 present the structure of the model®ldped and tested in the

study using Gaussian membership function.
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8.3 Results and Discussion

To ensure good generalization capability of theettgyed models, the available
raw data (1066 data records) were divided intoethgebsets, training (500 data
records), validation (200 data records) to inghia model do not over fit the
training data, and testing (366 data records). As the case with Application I,
two scenarios were considered: (a) an ANFIS modethe raw data, and (b) a

hybrid KSOM-ANFIS model based features of the eottd using KSOM.

Through evaluating the prediction capability of theveloped ANFIS models
(M1-M8) using several evaluation criteria such asam square error (MSE),
average absolute error (AAE) and correlation coedfit (R) (Table 8.3 and Table
8.4), it can be seen that the performance of thdetsowvas not good. Moreover,
the models generated negative values for B@ml SS on occasions as can be
seen from Table 8.5 and 8.6. Previously, Mille0d@) encountered negative
predictions when using ANFIS to predict the raihfgrecipitation) from raw
(noisy) weather data (temperature and humidity}leM{2006) suggested the use
of another technique for pre-processing the datenfwove the performance of
ANFIS that would deal with the noise by replacirfge tmissing values and
omitting the outliers. The original work by Jang99B) on the ANFIS was
validated with noiseless data generated by funatiequations; it is therefore not

surprising that he did not encounter negative jptexis.
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Table 8.1 The structure of the ANFIS models developed anedes the study for predicting effluent BOD corteations using the
Gaussian membership function*

Number of Input Parameters Number of  Number of Number of non-| Total number] Number of
5 input membership linear linear of Fuzzy Rules

T 2 | parameters functions in Parameters parameters | parameters| [=(N """
3 % (Ninpu?) each input | Pi=*(Ninpuctl) | P2=Ninpu*Nmi2 P=P;+P,
== (Nan)
M1 5 (raw) BOD Load, DO, RAS-MLSS, F/M, Tem| 2 192 20 212 32
M2 4 (raw) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 294 81
M3 4(raw) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16
M4 3 (raw) BOD Load, RAS-MLSS, F/IM 6 864 36 900 216
M5 3 (raw) BOD Load, RAS-MLSS, F/IM 5 500 30 530 125
M6 3 (raw) BOD Load, RAS-MLSS, F/IM 4 256 24 280 64
M7 3 (raw) BOD Load, RAS-MLSS, F/IM 3 108 18 126 27
M8 3 (raw) BOD Load, RAS-MLSS, F/IM 2 32 12 44 8
M9 | 5 (features)] BOD Load, DO, RAS-MLSS, F/M, Tem. 2 192 20 212 32
M10 | 4 (features)] BOD Load, RAS-MLSS, F/M, Tem. 3 540 24 429 81
M11 | 4 (features)] BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16
M12 | 3 (features)] BOD Load, RAS-MLSS, F/M 6 864 36 009 216
M13 | 3 (features)] BOD Load, RAS-MLSS, F/IM 5 500 30 305 125
M14 | 3 (features)] BOD Load, RAS-MLSS, F/IM 4 256 24 802 64
M15 | 3 (features)] BOD Load, RAS-MLSS, F/IM 3 108 18 261 27
M16 | 3 (features)] BOD Load, RAS-MLSS, F/M 2 32 12 44 8

* the choice of Gaussian membership function wesabse it has just two modified parameter, thereemtd the width, hence it requires

less number of training data.
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Table 8.2 The structure of the ANFIS models developed aneddes the study for predicting effluent SS ushg&aussian membership

functions
Number of Input Parameters Number of| Number of Number of non- | Total number| Number of
5 input membership linear linear parameters of Fuzzy
g g parameters functions in Parameters | P,=Ninpui*Nmi2 parameters Rules
o5 (Ninpu) each input | Py=I*(N jnpu+1 P=P+P, | I=(N """
==z (Nm) )
M1 5 (raw) BOD Load, DO, RAS-MLSS, F/M, Tem| 2 192 20 212 32
M2 4 (raw) BOD Load, RAS-MLSS, F/M, Tem. 3 405 24 294 81
M3 4(raw) BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16
M4 3 (raw) BOD Load, RAS-MLSS, F/IM 6 864 36 900 216
M5 3 (raw) BOD Load, RAS-MLSS, F/IM 5 500 30 530 125
M6 3 (raw) BOD Load, RAS-MLSS, F/IM 4 256 24 280 64
M7 3 (raw) BOD Load, RAS-MLSS, F/IM 3 108 18 126 27
M8 3 (raw) BOD Load, RAS-MLSS, F/IM 2 32 12 44 8
M9 | 5 (features)] BOD Load, DO, RAS-MLSS, F/M, Tenm. 2 192 20 212 32
M10 | 4 (features)] BOD Load, RAS-MLSS, F/M, Tem. 3 540 24 429 81
M11 | 4 (features)] BOD Load, RAS-MLSS, F/M, Tem. 2 80 16 96 16
M12 | 3 (features)] BOD Load, RAS-MLSS, F/IM 6 864 36 009 216
M13 | 3 (features)] BOD Load, RAS-MLSS, F/M 5 500 30 305 125
M14 | 3 (features)] BOD Load, RAS-MLSS, F/IM 4 256 24 802 64
M15 | 3 (features)] BOD Load, RAS-MLSS, F/M 3 108 18 261 27
M16 | 3 (features)] BOD Load, RAS-MLSS, F/IM 2 32 12 44 8
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TableB8.3 The performance of the ANFIS models to prediaieiti BOR

- MSE (mg/lY AAE (mg/l) Correlation coefficient

= 5 0

2 |38 z |g§ |2 |2 |[§ |g |2 |§ |¢g

g |t s |2 | [ |2 |EB |5 | |B

= |28 = g = = = = s |+
M1 5 (raw) 16.55 1497 | 14.88 | 3.16 2.79 2.94 64.04 | 56.15 | 49.65
M2 4 (raw) 17.44 13.41 | 14.00 | 3.05 2.57 2.85 62.06 | 61.99 | 53.05
M3 4(Raw) 23.29 18.09 | 16.76 | 3.78 3.09 3.17 41.32 | 41.47 | 38.34
M4 3 (raw) 636.49 | 28.30 | 17.96 ]| 1042 | 3.54 3.00 16.39 | 13.74 | 14.64
M5 3 (raw) 250.34 | 15.68 | 14.17 | 5.16 2.75 2.90 10.92 | 15.35 | 15.32
M6 3 (raw) 1058.72 | 266.44 | 148.99 | 18.56 | 9.45 7.71 12.56 | 15.04 | 11.49
M7 3 (raw) 23.91 16.54 | 16.25 | 3.85 2.93 3.14 38.90 | 49.07 | 42.35
M8 3 (raw) 26.41 17.36 | 17.03 | 4.06 3.06 3.25 26.21 | 45.20 | 37.05
M9 5 (features) 5.73 8.01 6.10 1.85 2.05 191 89.20 | 79.78 | 83.01
M10 | 4 (features) 5.44 7.07 5.53 1.79 1.96 1.77 89.78 | 82.32 | 84.67
M11 | 4 (features)| 9.74 11.95 8.44 2.39 2.47 2.18 80.72 | 67.60 | 75.24
M12 | 3 (features)| 5.88 7.30 5.65 1.86 2.01 181 88.88 | 81.67 | 84.47
M13 | 3 (features)| 8.65 8.47 6.72 2.28 2.09 1.96 85.08 | 78.56 | 81.29
M14 | 3 (features)| 7.51 9.08 6.88 2.12 2.18 1.98 85.71 | 76.60 | 80.64
M15 | 3 (features)| 10.07 10.92 8.72 2.42 2.44 2.24 79.98 | 71.30 | 74.62
M16 | 3 (features)| 14.81 13.20 | 11.20 | 2.99 2.66 2.50 68.59 | 64.38 | 65.18

Table 8.4 The performance of the ANFIS models to prediatefil SS

- MSE (mg/lY AAE (mg/l) Correlation coefficient

. 5 0

g | eS @

2 |58 g & |g |2 1§ |2 |2 |E |2

g |E¢ 5 s |3 |8 |2 |8 |§8 |2 |%

= |28 = g = = = = s | r
M1 5 (raw) 185.45 | 133.16 | 193.25 | 10.37 8.78 | 10.60| 63.38 | 55.73 | 53.57
M2 4 (raw) 182.33 | 121.89 | 174.17 | 10.02 8.01 9.91] 64.12 | 60.85 [ 59.71
M3 4(Raw) 255.18 | 164.01 | 215.00 | 12.50 9.78 | 11.15] 42.01 | 39.90 | 45.53
M4 3 (raw) 1663.7 | 1344.3 | 682.66 | 24.90 | 23.95( 18.29| 21.57 | 19.71 | 27.73
M5 3 (raw) 575.75 | 172.97 | 201.98 | 15.66 9.72 | 10.63 | 33.47 | 24.86 | 18.21
M6 3 (raw) 1021.76 | 529.56 | 351.76 | 20.69 | 14.54 | 13.52| 21.95]| 23.76 | 19.33
M7 3 (raw) 264.41 | 148.26 | 221.59 | 12.45 9.31| 11.58| 39.16 | 48.31 | 42.86
M8 3 (raw) 286.52 | 159.13 | 229.62 | 13.17 9.81 | 11.79| 28.29 | 42.18 | 39.52
M9 5 (features) 7740 | 65.10| 67.37| 6.66 6.17 6.60 | 86.63 | 81.50 | 87.02
M10 | 4 (features) 70.44 | 56.33| 60.52 | 6.22 5.65 6.54 | 87.94 | 84.31 | 87.34
M11 | 4 (features)| 117.02 | 91.78 | 104.78 | 8.31 7.24 7.63 | 78.98 | 72.54 | 79.26
M12 | 3 (features) 81.99 | 59.65| 60.73| 6.77 5.88 6.64 | 86.23 | 83.36 | 87.22
M13 | 3 (features)| 153.46 | 99.61 | 157.50 | 9.25 7.32 7.67 | 78.05| 72.66 | 69.66
M14 | 3 (features) 87.81| 67.07| 71.06| 6.97 6.31 6.04 | 84.72 | 81.05 | 86.12
M15 | 3 (features)| 119.37 | 8250 | 96.45| 8.34 6.85 7.29 | 78.42 | 76.08 | 80.31
M16 | 3 (features)| 172.50 | 117.55 | 146.62 | 10.11 7.91 8.68 | 66.70 | 63.26 | 68.21
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Table 85 Statistics summary of the ANFIS models to prediltient BODQ

. 5 = Minimum Maximum mean
[} Q_\Z_/
= c
IS — o c c c
> o o ()] o (@) (o)) o (@) (o)) o ()]
z ) £ = £ £ = £ £ = £
< o= £ z b7 £ K b £ i b
g |E¢ = s (& & |3 & |[& |z |®
g 3 g [ g — S [ g
Observed 2.00 2.00 2.00 | 25.00 | 25.00| 23.00 9.32| 7.38| 6.44
M1 5 (raw) 0.35 2.24 0.15] 25.89 | 14.09| 1453 9.07| 7.32| 6.97
M2 4 (raw) 0.14 0.76 -0.99 | 33.23| 1882 | 14.63 9.08| 7.41| 6.80
M3 4(Raw) 4.01 1.27 227 16.99 | 1355| 13.62 897 | 7.47| 6.95
M4 3 (raw) -98.85 | -13.79| -4.31]|24035| 3844 | 3753| 1037 | 7.58]| 7.09
M5 3 (raw) -89.24 1.71 0.99 | 288.96 | 19.82 | 19.02 958 | 759 | 6.91
M6 3 (raw) -93.35 | -26.35 | -34.69 | 215.89 | 116.20 | 108.68 | 14.81 | 10.78 | 7.90
M7 3 (raw) 2.76 -1.51 207 | 18.73| 14.30] 14.12 896 | 7.47| 7.08
M8 3 (raw) 2.71 2.55 284 | 1447 | 13.49 | 12.05 890 | 7.45| 7.06
M9 | 5 (features)] 3.22 3.28 2.34| 2114 19.79| 19.89 9.20 | 7.27| 6.75
M10 | 4 (features) 2.97 3.32 260 | 21.33| 20.20| 20.27 9.24 | 734 | 6.70
M11 [ 4 (features)] 3.05 2.64 0.13| 21.62 | 18.50| 18.59 9.30| 7.15| 6.67
M12 | 3 (features) 2.99 3.57 260 | 21.23| 20.44 | 20.49 9.34 | 742 | 6.78
M13 | 3 (features)] 2.40 2.45 219 | 2534 | 21.43| 20.95 9.68| 7.21| 6.64
M14 | 3 (features) 2.31 2.39 259 2129 | 1930 ] 19.36 9.02 | 7.22| 6.80
M15 | 3 (features)] 1.84 1.89 192 | 2137 | 18.17 | 18.19 9.25| 7.13| 6.80
M16 | 3 (features) 3.24 3.46 3.34| 21.31| 1588 ] 15.88 9.30 | 6.98| 6.77
Table8.6 Statistic summary of the ANFIS models to predict effluent SS
. 5o Minimum Maximum mean
[} Q_\Z_/
= c
£ — o c c c
> o Q ()] o (@) (@)] o [@)] ()] o (@)]
=z ] £ = = £ = £ £ = £
— o c c © b c © 7 < © 7
2 g IS a 2 o @ 2 ) a 2 )
Observed 7.00 5.00 3.00 | 80.00 | 66.00 | 76.00] 28.04 | 22.41 | 21.84
M1 5 (raw) -2.13 4.46 143 79.99 | 46.49 | 50.55] 27.55] 2219 | 22.64
M2 4 (raw) -0.97 1.07| -542| 9319 | 54.60| 63.89 | 27.98 | 21.88 | 22.42
M3 4(Raw) 7.51 2.94 6.02 | 5424 | 4328 | 4441 27.51 | 2224|2271
M4 3 (raw) -96.43 | -92.29 | -75.11 | 270.13 | 206.26 | 133.98 | 29.35 | 18.91 | 21.72
M5 3 (raw) -52.76 -0.84 | -13.93 ] 256.78 | 77.84 | 75.96| 29.68 | 23.28 | 22.40
M6 3 (raw) -90.00 | -96.48 | -29.70 | 224.21 | 172.41 | 166.60 | 26.06 | 21.32 | 23.23
M7 3 (raw) 173 -132| -2.05| 56.04 | 50.18| 39.86| 26.60 | 22.26 | 22.87
M8 3 (raw) 5.40 5.44 7.93| 42.73| 4217 | 35.29 | 27.03 | 22.78 | 23.04
M9 | 5 (features)] 8.25 8.06 8.35| 65.52 | 64.07 | 64.07 | 28.37 | 21.97 | 21.69
M10 | 4 (features) 7.60 7.99 7.65| 6524 | 6494 | 6494| 28.46 | 21.85 | 21.51
M11 | 4 (features)] 7.42 7.42 0.03| 63.16 | 60.80| 60.80| 28.79 |21.87 | 21.12
M12 [ 3 (features)] 5.48 8.80 7.15| 68.62 | 65.38| 64.49]| 29.22| 22.23 | 21.60
M13 | 3 (features)] 3.65 3.65 3.71| 81.04| 6432| 64.32]| 31.92| 22.08 | 23.25
M14 | 3 (features) 8.69 8.83 854 | 6528| 6140 | 61.40] 28.45]| 21.50 | 21.69
M15 | 3 (features) 1.66 8.13 6.31| 65.88| 58.19| 58.19| 28.42 | 21.35 | 21.68
M16 | 3 (features) 8.27 8.27 8.27 | 64.02| 5051 | 50.79] 28.79 | 21.09 | 21.58
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To solve the problem, we found that the Kohonerf-aganizing map (or
Kohonen features map) has the power to extractfesitfrom noisy data and at
the same time eliminate the effect of missing valtiat the ANFIS cannot deal
with. Therefore, The KSOM was applied to extra@ thost relevant features of
the raw data records. These features more closphgsent the natural structures
in data and were therefore used to drive the AN&dSllustrated in Figure 8.1.

This constitutes the hybrid KSOM-ANFIS model.

Measurement KSOM BMU ANFIS
Vector

Xl Xl

X X2

5 | - |— ANFIS [, Output
? Xn-1

Xn Xn

Search for BMU

Figure 8.1 lllustration of the integrated KSOM-ANFIS modwjliusing BMU
features

The hybrid KSOM-ANFIS modelling strategy was apglie several combination
structures of ANFIS, models (9-16) in Tables 8.1 &12. The performance of
these models was evaluated using the usual craadahe results are presented in
as can be seen in Tables 8.3 and 8.4. It can Ipetisaefor the same structure, the
performance of the model has improved using théufea of the measurement
vectors than the measurement vectors themselveexample, model number 2
and model number 10 have the same structure, 4sirgnd three membership

functions associated with each input. However pisgormance of model number
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10 was much better than model number 2, with theetadion coefficient in the
testing data set jumping from 53.05% in model numbéo 84.67% in model
number 10 in case of BQDThe same conclusion can be inferred for the o&st
the models in the three evaluation criteria as lmarseen in Tables 8.3 and 8.4.
Furthermore, the new modelling strategy generatesagative values in all the

combination structures as can be seen in Tablez8l®.6.

The architecture that performs best was chosehea$irial model for predicting
the effluent BOI@ and SS concentrations. Model number 10 generbhtedeast
modelling performance in the two cases. Thereflungher discussions were only
done on this model. This model has 4 inputs veembBOD Load, RAS-MLSS,
F/M, and temperature with 3 membership functiorsoesited with each input as
illustrated in Figure 8.2. Figure 8.3 show the G#ars membership functions on
the operating range. Tables 8.7 shows the parasnefi¢he Gaussian membership
functions associated with the input variables, wheris the centre of the
corresponding membership function and b is the lwiBoth models (BOPand
SS) contain 81 rules and the total number of medifparameters is 429,

composing 24 premise parameters and 405 consepaearheters.

Tables 8.8 and 8.9 present the optimized fuzzysrujenerated using the
modelling strategy developed in this study for madenber 10. The fuzzy neural
network model consists of a selection of the 8Fdescribing the relationship
between the input variables and the output varialie number of rules was 81
and the aggregation process is illustrated in [Eigdid. Each rule listed in the
table consists of an IF and THEN part. The IF gadcifies a set of conditions
and the THEN part specifies the conclusion or ttten. For example, rule 10 in

Table 8.8 can be read as:
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Activated
Sludge Process

(sugeno) f(u)

81 rules

Effluent BOD/SS

Temperature

Membership Functions Rules Output

Figure 8.2 The structure of model number 10
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o
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Figure 8.3 Fuzzy membership functions in the input space.
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Table8.7 The parameters of Gaussian membership functioreceged with the
input variables

Inputs Membership Function b (Width C
(BOD Model) (Centre)
BOD Load Low 5030 6670
Medium 5030 18510
High 5030 30360
RAS-MLSS Low 414.9 3912
Medium 414.9 4889
High 414.9 5866
FIM Low 0.04678 0.07901
Medium 0.04678 0.1892
High 0.04678 0.2993
Temperature | Low 1.203 11.16
Medium 1.203 13.99
High 1.203 16.82

IF (BOD Load) is Low and (RAS-MLSS) is Medium andNF/is Low and Tem.
Is Low, THEN (effluent BOD) is -85.1- (0.05327*BOD Load) + (8111* RAS-
MLSS) - (5.697*F/M) — (18.55*Tem.).

The trained model was tested using data that hatleen employed for training.
The time series plots of the observed and preditient BODQ and Effluent SS
during training, validation, and testing data s&&s shown in Figure 8.5 and 8.6
respectively. The residuals analysis of the maldeing training, validation and
testing are illustrated in Figure (8.7 and 8.8)e Heatter plot of modelled versus
observed during training, validation and testing ahown in Figure (8.9 and

8.10).

In the conventional fuzzy inference system, the Ineirof rules is decided by an
expert who is familiar with the system to be moelellThe expert uses heuristic
knowledge gathered over years of experience torgenéhese rules. In our case,
no expert is needed and the number of membershigtiéuins assigned to each

input variable is chosen empirically by trial andoe. The proposed model was
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able to determine the state of the process usiagvitiues of several variables
together. Furthermore, the proposed model is mueatemobust with respect to
degradation of any associated sensor or measureeggmpment. In addition,

fuzzy logic model is much easier to design thaewmheinistic model.

These aspects of the proposed modelling strategydae to the merging of
several techniques. Each of these techniques, \BOQM, and FLS appears to be
extremely effective at handling dynamic, non-lineard noisy data. However,
when utilized together, the strengths of each teglencan be exploited in a good

manner for the development of hybrid systems.

However, different from BP-ANN models, the develdprodels do not only just
give modelling accuracy, but also extract knowletlgen the data, for example
the adjustment of membership functions and fuzggs: All the knowledge is

presented in human understandable forms. This ipoftant in order to

understand the data and explain how the resultg wetained. The extracted
knowledge also let an operator know what an expettld say about the state of
the process through the knowledge extracted franitiguistic rules. Each rule is
a linguistic expression of human expert knowledgtaldishes relationships

between variables, which lead to a diagnosis output

8.4 Conclusion

In this chapter, the use of ANFIS for modelling veagater treatment plants was
demonstrated. The ANFIS allows fuzzy rules to béraeted and the ANN
enabled optimised fuzzy membership functions to determined. The
methodology was applied to activated sludge data Seafield wastewater
treatment plant in order to predict the effluent®Cand SS. Initially, a set of
measured, raw, data were used to train and tesAMES, but the resulting

model did not perform well. This was attributedtie existing of noise in the raw
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data. To overcome this, features of the data or BiU were extracted with the
KSOM and used for training and testing a new semmoflels that gave better
performance. The results indicate that the KSOM-MNRot only outperforms
the basic ANFIS model in modelling capability widifferent number of inputs
and different number of fuzzy membership functiahss unhindered by missing

values or gaps in the data.

However, although the extracted features of KSOMaeced the performance of
ANFIS, the input data cannot propagate directlyrfrie input of the KSOM to
an output of the ANFIS as the task were performegasately in this work.
Therefore, developing a single model that incorfasrahe features and the ANN
or ANFIS is one of the major open research issMeseover, even if satisfactory
results have been obtained based on integrated KB8MS to deal with noise
and missing values, the robustness of the developedels has not yet been
analysed mathematically, for example, the effeadhefnumber of missing values
in each vector. Such an analysis together witth&urexperimentation would be
worth pursuing to prove conclusively the generalidity of the proposed

schemes.
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Table 8.8 Optimised fuzzy rules generated using the modedlirajegy developed in this study for model nuni@efBOD Model)
Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & =N X
Load MLSS

1] Low Low Low Low -1.464 0.6413 2.152 507.8 11.91

2| Low Low Low Medium 0.2801 0.9969 23.75 -356.1 FA.6

3| Low Low Low High 0.02804 0.3626 -76.3 -80.99 -192.

4 | Low Low Medium Low 27.95 -61.98 -0.1368 -19.02 702

5| Low Low Medium Medium -1.463 -2.554 -11.29 1329 1R

6 | Low Low Medium High 0.3338 -0.9537 -3.959 -0.8736| -104.8

7 | Low Low High Low -434.7 -114.4 -0.006909 -0.4417| 0.01234

8 | Low Low High Medium 53.01 -116.3 -0.1005 -5.05 549

9| Low Low High High -41.12 100.1 0.007273 -26.11 7016
10 | Low Medium Low Low -0.05327 | 0.08111 -5.697 -18.55 | -85.1
11 | Low Medium Low Medium -0.26 -0.481 66.87 235.6 58
12 | Low Medium Low High 0.3912 -0.594 -2.843 -98.61 TH
13 | Low Medium Medium Low 2.437 -4.422 -3.428 491.2 4@
14 | Low Medium Medium Medium 0.03674 -1.874 -12.9 @R8. 32.39
15 | Low Medium Medium High -0.8339 0.3398 -0.7227 483. 17.3
16 | Low Medium High Low 64.32 -303.8 0.04543 0.9669 .04233
17 | Low Medium High Medium -80.16 230.3 0.3187 45.79 .6505
18 | Low Medium High High 9.89 -48.85 0.1341 -21.57 5502
19 | Low High Low Low 0.329 -0.1468 3.803 -182.3 -46.6
20 | Low High Low Medium -2.684 5.404 4.49 -619.4 -1B.2
21 | Low High Low High -103.5 213.8 0.1728 6.23 0.1674
22 | Low High Medium Low -0.6909 15 -3.579 137 7.24
23 | Low High Medium Medium 4.641 -10.72 -3.688 -198.4 | -2.424
24 | Low High Medium High 101.6 -201.7 -0.1835 -19.62 | 0.2552
25 | Low High High Low 155.5 -299.7 0.0369 -0.7076 801
26 | Low High High Medium 30.35 42.34 0.05174 -1.566 .09B57
27 | Low High High High -102.8 -125.2 -0.001678 -0.6948| -0.02658
28 | Medium Low Low Low -26.1 68.72 0.07732 27.95 -Ma5




Chapter 8: Modelling ASP using KSOM-ANFIS

Table 8.8 Continue
Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & =N X
Load MLSS

29 | Medium Low Low Medium 4,11 -10.64 1.76 204.5 14.46
30 | Medium Low Low High -1.137 1.08 -6.471 281.7 2.76
31 | Medium Low Medium Low 22.74 -64.54 0.2399 96.05 983
32 | Medium Low Medium Medium -2.099 6.206 -0.7487 360. 23.64
33 | Medium Low Medium High 0.05308 -0.3521 -2.706 166 3.143
34 | Medium Low High Low 74.22 -328.3 0.03933 -0.5536| 0.05439
35 | Medium Low High Medium 8.44 -43.11 0.2981 41.34 1581
36 | Medium Low High High -11.41 47.81 0.2932 -110.2 34
37 | Medium Medium Low Low -1.685 2.148 7.804 419.1 965
38 | Medium Medium Low Medium -0.946 4.292 26.61 -303.5 | 56.58
39 | Medium Medium Low High 1.011 -4.937 2.772 837.3 518
40 | Medium Medium Medium Low 1.807 -6.858 -8.68 437.6 | -11.29
41 | Medium Medium Medium Medium 0.8092 -2.723 -29.89 524 -48.23
42 | Medium Medium Medium High 0.1212 -1.806 -2.909 38 3.74
43 | Medium Medium High Low 3.757 -2.811 0.17 12.25 aB5
44 | Medium Medium High Medium -3.106 12.89 1.026 65.06 | -0.008005
45 | Medium Medium High High -6.956 35.79 0.232 -56.41 | 0.3373
46 | Medium High Low Low 0.4053 -1.34 9.16 20.45 10.54
47 | Medium High Low Medium -3.665 10.76 7.984 -96.8 428
48 | Medium High Low High 35.4 -40.18 0.1678 3.029 eLo8
49 | Medium High Medium Low -0.4842 1.674 -6.858 -200.5 | 13.02
50 | Medium High Medium Medium 0.9006 -2.767 -9.852 . 8.144
51 | Medium High Medium High 32.97 -143.9 -0.121 -19.74 | 0.1601
52 | Medium High High Low 17.38 -64.66 0.06569 -11.93 | 0.2243
53 | Medium High High Medium 30.73 -1245 0.268 6.056 0.069
54 | Medium High High High -46.98 413.6 0.01382 0.1548 | 0.06961
55 | High Low Low Low -509.9 -193 -0.004156 -0.1879 08r11
56 | High Low Low Medium 250 -1244 0.01438 -7.833 -220
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Table 8.8 Continue
Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & X
Load MLSS

57 | High Low Low High 86.59 -177.2 0.00813 8.405 0.840
58 | High Low Medium Low 49.84 -454.1 -0.02964 -2.152 | 0.1469
59 | High Low Medium Medium -19.62 109.6 -0.1506 10.73 | 0.07485
60 | High Low Medium High 33.69 -155.3 -0.05348 -20.51 | -0.2145
61 | High Low High Low -20.91 83.51 -0.1133 5.447 0.259
62 | High Low High Medium 3.586 -20.62 -0.4702 -19.08 | 0.2712
63 | High Low High High -84.27 501.6 -0.02081 0.622 3561
64 | High Medium Low Low -189.2 699.2 0.09335 2.254 9R8
65 | High Medium Low Medium 23.39 -85.35 0.2616 -3.211 | -0.1131
66 | High Medium Low High 35.57 -211.9 0.01069 4.471 1A
67 | High Medium Medium Low 23.5 -88.46 0.005508 3.541 | 0.9487
68 | High Medium Medium Medium 8.804 -44.27 -0.7718 5l . 0.3608
69 | High Medium Medium High 1.795 -12.54 -0.1307 -289 | 0.2305
70 | High Medium High Low 41.96 -247.2 -0.2783 1.822 3@l
71 | High Medium High Medium -1.042 5.463 -0.6585 -28.3 | 0.1907
72 | High Medium High High 20.66 -127.2 0.06481 6.189 2732
73 | High High Low Low 17.77 -48.53 0.07674 -4.994 (B2
74 | High High Low Medium 35.01 -99.64 0.1146 2.731 T&B02
75 | High High Low High 216.2 30.32 0.002732 0.07731 007275
76 | High High Medium Low -3.71 13.47 -0.03734 15.14 342
77 | High High Medium Medium -8.635 28.76 -0.1598 12.29 | -0.07895
78 | High High Medium High -55.91 180.4 -0.01187 -0.862 | 0.01127
79 | High High High Low -2.27 14.08 0.0991 31.68 0.8121
80 | High High High Medium -16.01 91.43 0.02866 4.486 .1876
81 | High High High High 6.632 -13.57 -0.00177 -0.7383| -0.02826
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Table 8.9 The optimised fuzzy rules generated using the nioglstrategy developed in this study for model bermlO (SS Model)

Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & =N X
Load MLSS

1] Low Low Low Low 8.353 -18.46 5.569 1877 22.53

2 | Low Low Low Medium 0.9542 2.475 69.99 -993 119.2

3| Low Low Low High 0.2811 1.08 -153.7 -279.6 -429.7

4 | Low Low Medium Low 75.82 -191 -0.2211 25.81 -5.111

5| Low Low Medium Medium -3.02 -11.33 -22.9 4271 ®0.

6 | Low Low Medium High 0.8393 -5.881 -15.33 678.6 03

7 | Low Low High Low -509.7 -121.8 -0.01206 0.0611 0164

8 | Low Low High Medium 142.8 -354.6 -0.36 -22.47 533

9 | Low Low High High -88.69 264.3 0.2473 -50.52 -1616
10 | Low Medium Low Low -0.05756 0.3658 -9.819 -168.9 | 235

11 | Low Medium Low Medium -1.523 -1.28 169.9 957.3 B2
12 | Low Medium Low High 1.339 -4.206 11.65 259.7 0.629
13 | Low Medium Medium Low 1.984 -1.547 -8.724 1128 023
14 | Low Medium Medium Medium -0.06445 -7.299 -18.16 406 128.4

15| Low Medium Medium High -3.665 5.211 -2.172 1370 AL
16 | Low Medium High Low 190.3 -576.7 0.1592 2.334 ar4a
17 | Low Medium High Medium -153.8 428.8 1.051 182.3 7R
18 | Low Medium High High 187.3 -505.3 0.3548 -85.27 .1ane6
19 | Low High Low Low 1.406 0.2621 5.936 -1219 -116.9
20 | Low High Low Medium -9.543 17.55 7.509 -1372 -3B.5
21 | Low High Low High -319.6 625.7 0.3734 9.19 0.3032
22 | Low High Medium Low -6.587 13.93 -8.545 458.4 2.7
23 | Low High Medium Medium 19.84 -45.26 -9.712 -548.3 | -8.606
24 | Low High Medium High 243.9 -473.9 -0.4158 -75.74 | 0.9188
25 | Low High High Low 602.2 -1326 0.1159 -3.235 -0.369
26 | Low High High Medium 175.3 -310.4 0.1873 -6.43 27568
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Table 8.9 Continue
Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & X
Load MLSS

27 | Low High High High 102.2 -303.3 -0.002048 -2.241 | 0.06128
28 | Medium Low Low Low -91.39 235 0.004699 103.2 -381
29 | Medium Low Low Medium 10.71 -29.9 2.278 956.1 45.4
30 | Medium Low Low High -1.933 0.7618 -11.44 325.1 2Bl
31 | Medium Low Medium Low 34.4 -82.51 0.5056 315.7 1.
32 | Medium Low Medium Medium -5.334 18.68 -3.503 7.981 | 44.39
33 | Medium Low Medium High -0.5462 3.719 -10.39 -39.71 | 7.438
34 | Medium Low High Low 340.1 -1540 0.146 1.28 -0.1943
35 | Medium Low High Medium 22.96 -110.7 0.9042 101.2 5.582
36 | Medium Low High High 39.83 -147.6 0.9208 -413.9 215
37 | Medium Medium Low Low -2.936 2.697 19.19 770.3 719
38 | Medium Medium Low Medium -4.99 18.29 52.65 -535.7 | 158.7
39 | Medium Medium Low High 3.035 -13.1 6.011 2001 BL.7
40 | Medium Medium Medium Low 3.823 -14.36 -21.14 1009 | -18.97
41 | Medium Medium Medium Medium 2.195 -7.084 -64.76 136 -177.2
42 | Medium Medium Medium High 0.5308 -5.216 -0.8529 058 4.666
43 | Medium Medium High Low 48.9 -182.8 0.6469 41.19 95l
44 | Medium Medium High Medium -3.638 19.11 3.225 253.1 | -0.2107
45 | Medium Medium High High -14.67 31.42 0.4245 -236.1 | 0.6424
46 | Medium High Low Low 3.743 -10.62 21.51 495.4 40.64
47 | Medium High Low Medium -17.15 47.46 21.67 -359.4 | .952
48 | Medium High Low High 255.8 -479.7 0.3591 1.92 ®27
49 | Medium High Medium Low -2.645 8.256 -13.92 -400.8 | 14.08
50 | Medium High Medium Medium 2.932 -9.138 -26.59 A3. 12.02
51 | Medium High Medium High 91.24 -400.7 -0.0186 -1.4 | 1.231
52 | Medium High High Low 27.51 -119.4 -0.08227 -50.49 | -0.981
53 | Medium High High Medium 85.98 -319.8 0.9399 41.63 | 0.1614
54 | Medium High High High -334.6 1565 0.04873 -0.5903| 0.2768
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Table 8.9 Continue
Rule Number Rule Antecedent (If) Then Consequent Parameters
BOD- RAS- FIM Temp. & 2 & X
Load MLSS

55 | High Low Low Low -529.2 -249.5 -0.003354 0.3187 .0ZB06
56 | High Low Low Medium 620.3 -3042 0.03459 -21.08 207
57 | High Low Low High 133.3 -125.6 0.02509 21.75 0.682
58 | High Low Medium Low 288.6 -1946 -0.1056 -4.567 5183
59 | High Low Medium Medium -60.23 296.8 -0.3838 4577 | -0.2681
60 | High Low Medium High 38.45 -218.4 -0.1018 -60.39 | 0.5869
61 | High Low High Low 114.5 -919.4 -0.3956 18.62 0.081
62 | High Low High Medium -10.09 66.95 -1.572 -73.31 71882
63 | High Low High High -277 1730 -0.09642 1.498 0.0612
64 | High Medium Low Low -438.1 1618 0.2217 5.585 0.233
65 | High Medium Low Medium 47.71 -169.1 0.5543 -16.35 | -0.6082
66 | High Medium Low High -29.82 -319 -0.005186 10.97 0.3395
67 | High Medium Medium Low 41.65 -154.6 -0.1154 2.106 | 2.108
68 | High Medium Medium Medium 30.52 -147.3 -2.364 ®.0 -1.395
69 | High Medium Medium High -41.42 208.1 -0.1288 -A.4 | 0.9559
70 | High Medium High Low 84.29 -489.9 -1.092 2.629 629
71 | High Medium High Medium 11.55 -77.51 -2.435 -125.7 | -0.7623
72 | High Medium High High 8.38 -50.28 0.3089 31.38 783
73 | High High Low Low 133.5 -435.6 0.1543 -5.253 0.086
74 | High High Low Medium 116.3 -205.7 0.3183 3.329 159
75 | High High Low High -155.7 -125.4 0.000480§ -0.3384| -0.01498
76 | High High Medium Low -12.92 52.66 0.2382 125.8 8
77 | High High Medium Medium -16.52 41.95 -0.3145 78.84 | 1.154
78 | High High Medium High -99.72 208.3 -0.03955 -5.604 | -0.09403
79 | High High High Low -8.541 51.79 0.4702 228.6 4.584
80 | High High High Medium -44.53 254.6 0.09065 23.1 051
81 | High High High High 18.32 176.6 -0.01171 -3.323 .09995
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Figure 8.4 Fuzzy inference diagram for model number 10 ptety effluent BOR
the user just need to put the input values tolgebutput value as seen from the
figure.
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Figure 8.5 The time series plots of the observed and prediB@D during training,

validation and testing data sets for model numiger 1
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CHAPTER 9

DISCUSSION AND CONCLUSIONS

9.1 Discussion

Modelling the activated sludge process can improke performance of
wastewater treatment plant and can lead to a hatderstanding of the system.
However, the complexity and uncertainty in the psxmake the task somewhat
complicated using traditional deterministic modeélbeir exists another set of
modelling techniques, known as artificial inteliige or data driven techniques,
which require no prior knowledge of the structune state of the system.
However, the quality of these techniques dependsgly on the quality of the

data.

The advantages of Al models are that these modelsable to predict the
effluent concentrations without the previous knalge of the system. In
addition, assumptions about the mathematical oglakiips between inputs and
outputs are not needed. Furthermore, these madelsible to recognize the
relationships between the inputs and outputs witleomlicitly considering the

physics of process.

The main aim of this research work was to testhiyyeothesis that Al techniques
can be used for modelling the activated sludge evester treatment plants.
Consequently, the objectives of this study weréntestigate the efficiency of
KSOM in improving the data driven techniques depelb in this study. Other
objectives were also inherent in this project, nignpeeparation of the data to
eliminate the effect of noise and missing values @eveloping a software sensor

to predict the biological oxygen demand.
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The study has provided a systematic and thorougitoaph to achieve the
highlighted objectives. A variety of intelligent whels were developed and
applied, and significant differences between KSOAMNN, and ANFIS were

highlighted.

9.1.1 Data preparation

Measurement data collected at real wastewater nigzdt plants are often
distorted by noise, outliers, and missing valuesis Tcalls for validation and
reconstruction of data prior to any thorough analy$n application I, the
activated sludge data obtained from the Seafiettdvated sludge wastewater
treatment plant Edinburgh, UK during a period obuatbthree years have been
modelled to replace outliers and missing valuesmgusihe Kohonen Self
Organising Map (KSOM). After the iterative training the KSOM, each of the
1066 samples was associated with an output univiknas the best map unit
(BMU). The outliers or missing values were then laepd with the
corresponding component from the BMU. The resultsndnstrated that the
KSOM is an excellent tool for replacing outliersdamissing values in high
dimensional data sets. The predicted missing vaduesplausible and show a
trend not dissimilar to that of the observed mearsignts. These results cannot
be obtained from traditional time series models ttuehe multivariate, time
varying and highly non-linear nature of the proceBee method is simple,

computationally efficient and highly accurate.

9.1.2 Features extraction and data visualization

The most important issue in modelling the wastewaigatment plant using Al
techniques is the quality of the data. Therefouenewhen missing values and
outliers have been dealt with as above, the ensdatg record still contains
significant noise that must be filtered. Therefdeatures of the data need to be

extracted. Furthermore, when it is decided to wsa det to build the activated
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sludge model, the first logical step was to havgeneral view of the possible
major relationships between variables. For thegepgurposes, multidimensional
features extraction tools had to be developed demto extract the features and

present it in an understandable form.

The KSOM was applied for extracting features frdma taw data. Then these
features are organised in an understandable wang uke component planes.
These visualizations enable the human eyes to expl®se large amounts of
data and discover the complex correlation betweercgss variables for
diagnosing the potential cause for upset situationghe activated sludge
wastewater treatment plant. The component planethefKSOM reveal the
complex relationship between the process variabhgthout any extra
information about the mechanism of this complexteays The results
demonstrated the efficiency of KSOM as a tool fa tiscovery of correlations
between large data sets, as well as the visuaizaif such correlations, thus
making it easy to immediately identify cause-effeatrelations between process

variables.

9.1.3 Software sensor for fast predicting of BODsg

Application Il of the study presented a completetvel methodology based on
the use of the Kohonen self-organizing map (KSOMylets to predict five-days
@ 20C biochemical oxygen demand (BOD) concentrationsastewater, using
raw sewage data obtained at three wastewater teatpiants in Scotland.
Extensive testing and validation of the model shtives the model is sufficiently
general to predict the BOD readily using variabigsch can be measured within
three hours or in real-time using on-line hardwaensors, thus making it
possible to estimate BOD very rapidly. This alldiesa timely intervention and

cost reduction during problem diagnosis.
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The proposed BOD software sensor methodology idepexl over BOD

biosensors because the BOD can be estimated giseadlno costly maintenance
is required. The software sensor does not requatibration and cannot be
negatively affected by toxins and other inhibitdvkreover, the software sensor
is very dynamic and can be readily updated whentiaddl data become

available, thus enhancing its accuracy. The KSOdllused for the development
of the software sensor can readily deal with mggsialues in one or more of the

input variables without significantly impacting tre accuracy of the model.

9.1.4 Modelling ASP using Al paradigms

Application Il used a new methodology based on ybrid supervised-

unsupervised artificial neural network to improve tperformance of the basic
backpropagation neural network method in modellthg activated sludge
wastewater treatment plant. Input variables werkecssd based on their
correlation with the effluent BOD and SS, which wehe target prediction

variables. Several ANN models with different nungbef neurons in the hidden
layers were developed. For each model, two typettf were used, the first one
is the raw data set, and the second one is thaatett features of the raw data
using the Kohonen self-organising map. The ressitswed that the models

using the features were better than those usintpthelata.

The findings prove the ability of KSOM to improvdiet performance of
modelling using basic back-propagation neural netg,oparticularly when the
available data are noisy, a common problem withptloeess data of wastewater
treatment plants. Furthermore, the KSOM can reatilyl with missing values in
one or more of the input variables without sigrafily negative impacts on the
accuracy of the model. Results obtained provide KBOM-ANN present a

versatile tool in modelling ASP and provided aremdative methodology for
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predicting the performance of WWTPs. The resulie atated that the best ANN

structure did not necessarily mean the most numibeidden neurons.

The results indicated that the KSOM extracted festimprove the performance
of backpropagation multilayer perceptron. The leagralgorithms were found to
be suitable for modelling ASP. However, the concapknowledge cannot be
clearly expressed in a human understandable wéyeifiorm of if-then rules. In
contrast, Fuzzy logic systems (FLS) are more faafoler, in that their behaviours
can be explained using fuzzy rules. In additionS&lcan easily be interpreted in
human understandable terms rather than with nualegoantities. In other
words, fuzzy logic models depend not only on blaok such as ANN, but are
also based on a combination of knowledge of thegesysand operational

experience.

Therefore, due to the power of KSOM in enhancing performance of ANN,
the last application of this work investigates fhessibility of integrating the
KSOM with ANFIS in order to improve the performangkthe ANFIS trained
with raw data. The ANFIS allows fuzzy rules to éetracted and the ANN
enabled optimised fuzzy membership functions todbtermined. The results
indicate that the KSOM-ANFIS not only outperfornme tbasic ANFIS model in
modelling capability with different number of inguaind different number of
fuzzy membership functions, it is unhindered bysimg values or gaps in the

data.

A comparison between different modelling strateggeslustrated in Table 9.1
and 9.2. It can be seen that the performance ofrtbéels is better using the
features than using the raw data. Indeed, the pedioce of the models can
increase by more than 30% based on the correlatefficient criterion. The
results also indicated that KSOM-ANFIS was the Is¢sitegy in modelling the

activated sludge process as it provides a coroglati more than 80%.
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Table 9.1 Comparison of statistical coefficient for efflu@&®D for the best

model for each category of models

Modelling Type MSE (mg/If AAE (mg/l) Correlation (R) %
5 5 5
(@] = (@] = (@] =
£ B 2 |g = 2 g & 2
s B 2 |£ B = s 2 5
© T ) © T ) © T [
— > [ — > — — > [
ANN
(Raw) 22.73 17.01 17.64| 3.60 2.88 3.09 | 49.54 51.71 32.02
KSOM-ANN
(Features) 10.34 1154 11.37] 2.32 2.41 2.51|81.80 68.31 65.49
ANFIS
(Raw) 17.44 13.41 14.00] 3.05 257 2.85 | 62.06 61.99 53.05
KSOM-ANFIS
(Features) 544 7.07 553|179 196 1.77 | 89.78 82.32 84.67

Table 9.2 Comparison of statistical coefficient for efflu&# for the best model

with each category of models

Model Number MSE (mgl/Iy AAE (mg/l) Correlation (R) %
S 5 5
(@] i (@] — (@] —
£ g 2 £ & 2l ® P2
£ S b £ S b .% o z
© T ) o T ) © T )
= > [ = > = = > =
ANN
(Raw) 230.48  134.09 222.94|11.31 8.67 11.51] 45.68 58.53 42.25
KSOM-ANN
(Features) 121.04 106.20 162.73| 7.62 751 8.49]78.32 67.53 65.04
ANFIS
(Raw) 182.33 121.89 174.17]10.02 801 991]64.12 60.85 59.71
KSOM-ANFIS
(Features) 7044 5633 6052| 622 565 6.54|87.94 8431 87.34

It must be stressed here that modelling the aetivaludge wastewater treatment

plant as performed in this work is an alternatieethe more widely used

approach base on deterministic mathematical modellHowever, it is an

alternative, and it is difficult to be compared twihe traditional methods as it

follows different modelling paradigms. While thaditional methods are useful

for the design, the new approach is useful for afpg@m. The results obtained

from this study provide useful information for eopess engineer who is faced
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with improving the performance of the WWTP becatleeKSOM can reveal the
complex dependencies among process variables whictbe used to solve the
operational problems in WWTP. In addition, the Abdels developed in this
study can aid the operator to predict the perfoceanf the plant as well as fast
predict the BOD values which is the key parametethie operation of the
treatment works. This will enable the operator taken some adjustments to
prevent the failure of the works in case of ovetlog of influent concentrations
or flow. Therefore, the operator will have enouighet to take action for solving

the problems such as manipulating RAS, WAS, etc.

Although the success of the developed models sis fwvident, they suffer from

limitations which will affect their ability to givecorrect answers about the
behaviour of the system under a new set of circantgts. The models may have
been capable of predicting the correct outputdfitiputs are close to the features
of training data; otherwise such cannot be guaeahts other words, the models
may not able to simulate outputs outside the rarfgihose they were trained

with, i.e. they could prove to be poor extrapolatioTherefore, care must be

taken when extrapolating these results to othelimear systems.

Furthermore, there are problems concerned withtiigerg the Al elements and
parameters. Examples of the elements and parametdugle the number of
hidden layers, the number of neurons in each lagraining function, and
transfer function in case of ANN and the number simape of fuzzy membership
function in case of ANFIS. Therefore, finding thesb general model is time
consuming as it is highly empirical, and the onlgywo optimize the models is
by searching for the best network parameters thrawigls. In addition, the
model parameters need to be re-calibrated from tonéme, in order to make

sure that the model maintains an adequate desctriptithe process.

246



Chapter 9: Discusion and Conclusions

9.2 Conclusions

The specific conclusions of this study are:

9.2.1.

9.2.2.

9.2.3.

The use of Al techniques for modelling the compheture of activated
sludge wastewater treatment has been shown to dsble. Because
these tools are essentially data-driven and do require a priori
specification of the mathematical form of the pszms, they reduce the
numerous uncertainties associated with traditiomethanistic modelling
especially with regards to the model identificatiamd parameter

estimation of such models.

The Al models developed in this work appear to umaffected by

missing values or outliers; consequently they cduddapplied to any
treatment works with minor modification irrespeetivof the state or
completeness of the available data. This is a n@joantage since most

process data records have some gaps in them.

The work has developed a software sensor for @BBthe single most
important water quality parameter used for assgswiastewater bio-
treatability, monitoring effluent quality for theugpose of water pollution
control and for assessing the overall performareeastewater treatment
plants. Contrary to the usual 5-days delay of trawial BOD; bioassay
techniques, the software sensor produces almdahitameous estimate of
BODs using simple and readily available water qualiéygmeters. This
is a major development as it makes it possiblese the BOD for real
time operational control of wastewater treatmehisspect of the work

has been published in the Journal of Water EnviemtrResearch.
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9.2.4.

9.2.5.

9.2.6.

9.2.7.

The use of the KSOM for the analysis and visutibsa of large

dimensional dataset has resulted in the prediatiomissing values in
data sets. The clustering capability of the KSOMangethat such missing
values maintain the multivariate correlation exigtin the data and are
hence the most accurate estimate possible for tissing data. The
scarcity of water quality data and the huge expem@ssociated with its
collection mean that data vectors with missing elet® cannot be

discarded; robust estimates for such missing vatuest be found.

Another significant output of the study is the adtage it has taken of
the power of the KSOM to extract the essentialuiest in a huge data
base, thus producing “noiseless” data that esdlgnitiaprove modelling

performance. The superiority of modelling with tfematures-extracted
data over raw data was clearly demonstrated invtr&, leading to better

models of wastewater treatment plants.

The imprecision associated with wastewater prociss are better
addressed using fuzzy inference modelling techmigttowever, while
the use of fuzzy logic in engineering applicatidasnumerous, there
remains the problem with establishing the membprétinctions. This
difficulty was largely tackled in this work by comning the power of
artificial neural networks with the linguistic cdplity of fuzzy inference
system in order to optimise the membership funstiand eliminate the
traditional trial-and-error procedures. The resgjtfuzzy model of the
wastewater treatment plant was therefore more atelout less onerous

to develop.

While data driven modelling techniques- ANN, KSOMzzy logic- are
relatively adequate in their own right as demonettan numerous areas

of this thesis, better performance often resultsenwhhybrids (or
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combinations) of these tools are used. Thus, asvrsha the work,
combining ANN with KSOM extracted features of thatal produced a
much more improved model performance than if the NANvas
implemented directly on the raw data. A similar etation was
observed when ANFIS was combined with the KSOMamtad features.
The reason for the enhanced performance when &sature used is that
the features are essentially “noiseless” data vasetiee raw data contain
a lot of noise. It is therefore proposed that fetamodelling using data
driven techniques should take advantage of the sbitybridisation

tested in this work.

9.2.8. Because the simulation results are quite encaugadfi is believed that
the proposed methodology is generic enough foryappito many other
types of WWTP with minor modifications using diféet set of data.
Hence, research will be pursued further in ordeesh the models in real

time operation of activated sludge wastewater tneat plants.

9.3 Recommendation for further work

Despite the success recorded in this work, thezecartain aspects which have
been identified and would benefit from further istrgations. Consequently, the

following are suggested as areas for further work:

9.3.1 Although the extracted features of KSOM ewckdnthe performance of
back propagation ANN and ANFIS, the input data canpropagate directly
from the input of the KSOM to an output of the AMNANFIS as the task were
performed separately in this work. Therefore, depilg a single model that
incorporates the features and the ANN or ANFIS me @f the major open

research issues.
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9.3.2. Although satisfactory results have been inbth based on integrated
KSOM-ANN and KSOM-ANFIS to deal with noise and nimgs values, the

robustness of the developed models has not yet dealysed mathematically,
for example, the effect of the number of missintuga in each vector. Such an
analysis together with further experimentation wiog worth pursuing to prove

conclusively the general validity of the proposetesnes.

9.3.2 The trial and error approach developed irs thork to optimise the
structure of ANN and ANFIS could be replaced bythrosearch technigue such

as genetic algorithms.

9.3.3 Applying other fault diagnosis techniquesldquovide more information
about the quality of the data and other ways torawp the performance of the

developed models.

9.3.4. It seems likely that a relationship betwe®@D and other relevant
information such as conductivity, turbidity, DOgcetould be used to develop a
software sensor and a sensitivity analysis coulgdréormed in order to obtain

the best model.

9.3.5. As discussed in the chapter 3, there exiskweral types of features
extraction techniques, such as PCA. The applicaifaimese features extraction
on the same data and a comparison with the dewtlomalels is a good future

research.

9.3.6. Further studies using data from plants wiitier ranges of features will
ensure that models developed are sufficiently géner be applied to most
activated sludge plants. Moreover, new input vdesblikely to affect the
performance of the plant with respect to nitrogerd gphosphorus would

constitute a logical extension of this work.
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9.3.7. Further validation of the model with mores@@n data is necessary so as to

ensure a rich level of accuracy, consistency almabibty of the models.

9.3.8. The modelled effluent quality in this worlasvrestricted to the BQand

SS. Given other quality parameter are now inclutkedonsents, e.g. nutrients,
heavy metals, it will be good if models for thege developed as well. This,
however, would require dedicated intensive monigprand huge cost, since

some of these variables are not routinely monitéoednost treatment works.

9.3.9. Developing the same techniques for differ&imtds of wastewater

treatment plants such as trickling filter, aerapmmds, etc.

9.3.10. Using different neural network structurdtee ANNs developed in this
study were restricted to just backpropagation remeswvorks with one hidden
layer. While this proved adequate, there are mgpgs of training algorithms
possible, e.g. recurrent neural network, radialsbastworks, etc., each of which
has different advantages and disadvantages. Theyefois suggested to use
these algorithms in the developed models; if oolydst the sensitivity of the

results to changes in the model assumptions.

9.3.11. A software sensor for B@Qvas developed. However, as outlined in the
thesis, a number of hardware sensors for B@&ve been developed and are
being used. A comparative study on the relativecatfy of the software and

hardware sensors would also represent an integestéa of further research.

9.3.12. If data-driven modelling techniques arengoto have a foothold in
wastewater treatment practice, then the data rmedufor calibrating and
validating these models must be available. Whits$ study was fortunate to
have been supported by an organisation that hasted heavily in short-term,
intensive monitoring of its works, this is often exception and not a rule even in

a developed economy such as the UK. Thus anothpposu for further
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investment in monitoring wastewater treatment @asb as to make data

available for model development is appropriate.
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