17 research outputs found

    Annual Report 2018

    No full text

    Pathway to the Square Kilometre Array - The German White Paper -

    Full text link
    The Square Kilometre Array (SKA) is the most ambitious radio telescope ever planned. With a collecting area of about a square kilometre, the SKA will be far superior in sensitivity and observing speed to all current radio facilities. The scientific capability promised by the SKA and its technological challenges provide an ideal base for interdisciplinary research, technology transfer, and collaboration between universities, research centres and industry. The SKA in the radio regime and the European Extreme Large Telescope (E-ELT) in the optical band are on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) and have been recognised as the essential facilities for European research in astronomy. This "White Paper" outlines the German science and R&D interests in the SKA project and will provide the basis for future funding applications to secure German involvement in the Square Kilometre Array.Comment: Editors: H. R. Kl\"ockner, M. Kramer, H. Falcke, D.J. Schwarz, A. Eckart, G. Kauffmann, A. Zensus; 150 pages (low resolution- and colour-scale images), published in July 2012, language English (including a foreword and an executive summary in German), the original file is available via the MPIfR homepag

    EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade

    Get PDF
    Astroparticle physics is undergoing a profound transformation, due to a series of extraordinary new results, such as the discovery of high-energy cosmic neutrinos with IceCube, the direct detection of gravitational waves with LIGO and Virgo, and many others. This white paper is the result of a collaborative effort that involved hundreds of theoretical astroparticle physicists and cosmologists, under the coordination of the European Consortium for Astroparticle Theory (EuCAPT). Addressed to the whole astroparticle physics community, it explores upcoming theoretical opportunities and challenges for our field of research, with particular emphasis on the possible synergies among different subfields, and the prospects for solving the most fundamental open questions with multi-messenger observations.Comment: White paper of the European Consortium for Astroparticle Theory (EuCAPT). 135 authors, 400 endorsers, 133 pages, 1382 reference

    Pathway to the Square Kilometre Array - The German White Paper -

    No full text
    The Square Kilometre Array (SKA) is the most ambitious radio telescope ever planned. With a collecting area of about a square kilometre, the SKA will be far superior in sensitivity and observing speed to all current radio facilities. The scientific capability promised by the SKA and its technological challenges provide an ideal base for interdisciplinary research, technology transfer, and collaboration between universities, research centres and industry. The SKA in the radio regime and the European Extreme Large Telescope (E-ELT) in the optical band are on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) and have been recognised as the essential facilities for European research in astronomy. This "White Paper" outlines the German science and R&D interests in the SKA project and will provide the basis for future funding applications to secure German involvement in the Square Kilometre Array

    National Astronomy Meeting 2019 Abstract Book

    Get PDF
    The National Astronomy Meeting 2019 Abstract Book. Abstracts accepted and presented, including both oral and poster presentations, at the Royal Astronomical Society's NAM2019 conference, held at Lancaster University between 30 June and 4 July 2019

    Numerical modelling of transient gas-liquid flows (application to stratified & slug flow regimes)

    Get PDF
    A new methodology was developed for the numerical simulation of transient two-phase flow in pipes. The method combines high-resolution numerical solvers and adaptive mesh refinement (AMR) techniques, and can achieve an order of magnitude improvement in computational time compared to solvers using conventional uniform grids. After a thorough analysis of the mathematical models used to describe the complex behaviour of two-phase flows, the methodology was used with three specific models in order to evaluate the robustness and accuracy of the numerical schemes developed, and to assess the ability of these models to predict two physical flow regimes, namely stratified and slug flows. The first stage of the validation work was to examine the physical correlations required for an accurate modelling of the stratified smooth and wavy flow patterns, and a new combination of existing correlations for the wall and interfacial friction factors was suggested in order to properly predict the flow features of the experimental transient case investigated. The second and final phase of the work dealt with the complex and multi-dimensional nature of slug flow. This flow regime remains a major and expensive headache for oil producers, due to its unsteady nature and high-pressure drop. The irregular flow results in poor oil/water separation, limits production and can cause flaring. The modelling approached that was adopted here is based on the two-fluid model, which can theoretically follows each formed slug and predicts its evolution, growth and decay, as it moves along the pipe. However, the slug flow study, performed here through a test case above the Inviscid Kelvin-Helmholtz transition from stratified to slug flow, showed that the incompressible two-fluid model used is unable to accurately predict most of the features of this complex flow. Mechanisms such as the interfacial wave formation, the slug growth and propagation, although observed from the simulations, cannot be accurately determined by the model.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Simulations of cosmic reionization

    Get PDF
    In this thesis we investigate numerically how ionizing photons emitted by stars in galaxies cause the reionization of the Universe, the transition during which most of the gas in the Universe from a mostly neutral, to a highly ionised state it is in today. To this end, we discuss and improve two techniques for the transport of ionising radiation across cosmological volumes, analyse the sources of ionising photons at high redshifts predicted by a semi-analytical galaxy formation model (GALFORM), and combine these to make consistent model of how reionization proceeds. Our improvements to the hybrid characteristics (HC) radiative transport scheme are significant, making the code faster and more accurate, as demonstrated by our contribution to a code comparison paper (Iliev et al., 2009). Our improvements to the SimpleX radiative transport scheme allow for accurate and significantly better numerically converged calculations of the speeds of ionization fronts of cosmological HII regions. This is accomplished by a much more thorough analysis of how to properly model the density field on the unstructured density field in SimpleX. The dependence of the ionizing emissivity of GALFORM galaxies on various parameters of the model is examined. We show that massive stars formed in abundance because of the assumed top-heavy stellar initial mass function during starbursts in the Baugh et al. (2005) model, triggered by galaxy mergers, are the dominant source of ionizing photons. We show that the luminosity functions predicted by this model are in good agreement with the most recent Hubble Space Telescope results at z \gtrsim 8. The model also demonstrates that most photons are produced in faint galaxies which are not yet seen in the current data. We then combine the sources predicted by GALFORM with the SimpleX RT scheme to model inhomogeneous reionization including the effects of source suppression. We investigate how the morphology of reionization depends on the model for the sources, which may be crucial for future observations of this cosmic epoch

    Scientific Report 2002 / 2003

    Get PDF
    corecore