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Abstract 
 
 
 
 
A new methodology was developed for the numerical simulation of transient two-phase 
flow in pipes. The method combines high-resolution numerical solvers and adaptive mesh 
refinement (AMR) techniques, and can achieve an order of magnitude improvement in 
computational time compared to solvers using conventional uniform grids. 
 
After a thorough analysis of the mathematical models used to describe the complex 
behaviour of two-phase flows, the methodology was used with three specific models in 
order to evaluate the robustness and accuracy of the numerical schemes developed, and to 
assess the ability of these models to predict two physical flow regimes, namely stratified 
and slug flows. 
 
The first stage of the validation work was to examine the physical correlations required for 
an accurate modelling of the stratified smooth and wavy flow patterns, and a new 
combination of existing correlations for the wall and interfacial friction factors was 
suggested in order to properly predict the flow features of the experimental transient case 
investigated.  
 
The second and final phase of the work dealt with the complex and multi-dimensional 
nature of slug flow. This flow regime remains a major and expensive headache for oil 
producers, due to its unsteady nature and high-pressure drop. The irregular flow results in 
poor oil/water separation, limits production and can cause flaring. The modelling 
approached that was adopted here is based on the two-fluid model, which can theoretically 
follows each formed slug and predicts its evolution, growth and decay, as it moves along 
the pipe.  
 
However, the slug flow study, performed here through a test case above the Inviscid 
Kelvin-Helmholtz transition from stratified to slug flow, showed that the incompressible 
two-fluid model used is unable to accurately predict most of the features of this complex 
flow. Mechanisms such as the interfacial wave formation, the slug growth and propagation, 
although observed from the simulations, cannot be accurately determined by the model. 
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1 Chapter 1 – Introduction 
 
 
 
 
 

1.1 Background  
 
The research described in this thesis deals with issues related to both mathematical and 
numerical methods for solving multiphase flows. The author performed some of this work 
as part of a project on transient multiphase flow (TMF) [Hewitt, 2002], initiated and funded 
by the UK Engineering and Physical Sciences Research Council (EPSRC) and by the oil 
and gas industry and their contractors. 
 
Many systems do not involve the flow of a single homogenous material (phase) such as 
gas, liquid or solid. Instead complex combinations of two or more of these phases 
predominate; with gas-liquid, gas-solid, liquid-solid, liquid-liquid, gas-liquid-liquid and 
even gas-liquid-solid flows frequently occurring in both nature and technology. For 
example, clouds are droplets of liquid moving in a gas. Oil, gas and water can coexist in 
rock. Near the surface of the Earth, particles are moved by interacting with air or water, 
resulting in the shaping of geological features. In the realm of human endeavours, boiling 
heat transfer is the workhorse of the energy industry, involving gas bubbles nucleating, 
growing, and coalescing. Chemical processing involves mixing, emulsifying, and catalysis 
in a myriad of flow scales, and finally, we drink carbonated beverages from soda water to 
champagne, and eat emulsions and suspensions such as mayonnaise. 
 
The widespread presence of these multi-fluid systems suggests the utility of a general 
technique of description to understand their behaviour. However, each of these systems has 
distinguishing characteristics that keep any particular multiphase model from being 
generally applicable. The result is that many disjoint modelling communities use their own 
specific formulation and approximations, slowing our progress in better understanding 
these complex flows. In the present study we focus on gas-liquid two-phase flows. They are 
commonly encountered in many types of process equipment from boilers and condensers to 
refrigerators, heat exchangers and even air conditioners. They are also prevalent in 
hydrocarbon recovery onshore and offshore where oil and gas are currently transported 
through pipelines. In the early 1970s, Beggs & Brill (1973) stated that more than half of the 
natural gas gathered in the United States at the time flowed in two-phase pipelines.  
 
In addition to being the most common of the two-phase cases, gas-liquid flow is also the 
most complex since it combines the characteristics of a deformable interface with those of a 
compressible phase. This means that for a specified channel design and inclination, and for 
a given fluids flowrate fed into the system, the gas-liquid interface can arrange itself into a 
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large variety of forms. As a result many investigators have concluded that, although 
theoretically possible, it is simply too difficult to solve this two-phase flow problem using 
the classic Navier-Stokes equations of fluid dynamics. This has led to the adoption of a 
phenomenological approach in which the flow distributions are classified into several 
distinct “patterns” enabling the main characteristics of each group to be studied separately. 
 
This chapter begins with a description of the potential flow regimes in gas-liquid horizontal 
flows, followed by a more detailed description of the objectives of the present study and 
concludes by a brief summary of each of the subsequent chapters included in this thesis. 
The research described here led to the development of a computational framework called 
EMAPS (Eulerian Multiphase Adaptive Pipeline Solver), which is presented in Appendix 
A, and will be constantly mentioned throughout the thesis. 
 
 

1.2 Two-Phase Flow Regimes 
 
As already mentioned, when oil and gas flow together in a pipeline, they can arrange 
themselves in a number of different configurations called flow patterns or flow regimes. 
Each flow pattern is characterised by a relatively similar distribution of the two fluids and 
their interfaces. Transition from one flow pattern to another takes place whenever a major 
change occurs in the geometry of the gas-liquid interface. However, classification and 
description of the flow distributions into recognised patterns is still often a very subjective 
process. The simple reason is that two-phase flow patterns and their behaviour are highly 
complex and far from being well understood. The recent book by Levy (1999) describes 
our present state of knowledge about flow regimes in all pipe inclinations and highlights 
the complications, shortcomings and differences in our understanding. In this thesis, we 
focus on horizontal or nearly horizontal pipes, and show in Figure 1.1 the typical flow 
patterns presented in the literature [Mandhane et al., 1974; Taitel & Dukler, 1976; Barnea, 
1987; Petalas & Aziz, 1998].  These include: 
 

1. Dispersed-Bubble flow: At high liquid flowrates and for a wide range of flowrates, 
small gas bubbles are dispersed throughout a continuous liquid phase. Due to the 
effect of buoyancy these bubbles tend to accumulate in the upper part of the tube. 

 
2. Stratified flow: At low liquid and gas flowrates, gravitational effects cause total 

separation of the two phases. This results in the liquid flowing along the bottom of 
the tube and the gas flowing along the top with a smooth interface. If the gas 
velocity is increased, the interfacial shear forces increase, rippling the liquid surface 
and producing a wavy interface. 

 
3. Slug flow: As the gas and liquid flowrates are increased further, the stratified liquid 

level grows and becomes progressively wavier until eventually the whole cross-
section of the pipe is blocked by a wave. The resultant “lump” of liquid called a 
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“slug” is then accelerated by the gas flow, surging along the pipe, and scooping up 
the liquid film in front as it progresses. A region containing an elongated gas bubble 
moving over a thin liquid film then follows this slug. Hence an intermittent regime 
develops in which elongated bubbles and liquid slugs alternately surge along the 
pipe. 

 
4. Annular flow: At even higher gas flowrates, the gas pushes through the centre of 

the pipe leaving a ring or annulus of liquid around the inside of the tube which, due 
to gravity, is thicker at the bottom. Some liquid may also be entrained in the gas 
core as small-dispersed droplets. 

 
A variety of other flow regimes have been reported in the literature, some of which are 
illustrated in Figure 1.1. In many cases, new names have been introduced to better define 
the distribution of the two-phase. For instance, the terms annular-wavy or stratified-wavy 
have been used to identify the presence of waves at the gas-liquid interface. Similarly, plug 
or semi-annular wording has been offered to describe transitional flow patterns, such as 
between bubble and slug or again between slug and annular flow. We consider here all such 
variations as sub-regimes of a specific flow pattern, and in the case of gas-liquid horizontal 
flows, we therefore need to recognize only the four major groups of flow regimes already 
identified: bubble, slug, stratified, and annular. 

 
Figure 1-1: Horizontal Gas-Liquid Flow Patterns (Shaha, 1999) 

 
In discussing each of the major types of flow patterns, it is necessary not only to specify 
such global properties as the pressure drop and the volumetric gas fraction, but also the 
conditions that determine the transition from one flow pattern to another. Furthermore, the 
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interface areas and the transfer processes at the interfaces need to be covered. Also, because 
the geometry at the interface is quite complex, it is often necessary to simplify it 
considerably to obtain an analytical representation. Finally, it would be naïve to expect that 
a single mathematical expression or empirical correlation could adequately describe the 
many existing variations of each flow regime. As matter of fact, several expressions have 
been developed to describe the conditions encountered within a single flow pattern and it 
can be quite difficult to choose among them. Some of these expressions will be reviewed in 
detail in subsequent chapters, exclusively for the stratified and slug flow patterns, which 
constitute the main targets of the current study. 
 
 

1.3 Thesis Objectives 
 
We are particularly interested in time-dependent phenomena in long pipelines in the 
petroleum industry. Although they are normally designed to operate under steady-state 
conditions, transient phenomena are frequently encountered in pipelines. These phenomena 
occur from changes in operational conditions such as a change in inlet flow rates or exit 
pressures (imposed transients) or from induced terrain slugging (these are natural transients 
due to the pipe geometry).  
 
A good knowledge of the flow characteristics, such as the operating flow regime, the 
pressure drop, the liquid holdup or the maximum slug length, is therefore very important to 
properly design two-phase flow lines, fluid treating and separation facilities. However, the 
prediction of these flow characteristics for oil and gas flows is, at present, based either on 
incomplete mathematical models or on experimental data obtained from small diameter 
pipelines with water and air typically being the operating fluids. Hence, there is still a need 
to develop reliable mathematical models for two-phase hydrocarbon flows in large diameter 
pipelines. 
 
However, the derivation of the “right” model is far from being achieved for unsteady 
multiphase flow problems encountered in nature or industrial applications and the 
numerical modelling of such flows remains a difficult and challenging task for researchers, 
mainly due the chaotic distribution of turbulent interfaces between the different phases. 
Hence, the main objectives of this thesis are: 
 

�� The evaluation of the limitations of the current modelling tools and if necessary the 
development of mathematical and physical models for transient two-phase flow in 
pipelines, which accurately describe the complexity of the flow features involved. 

�� The development of efficient and robust numerical solvers, which are applicable to a 
wide variety of industrially relevant problems. 

�� The development of accurate discretisations: second-order accuracy in space and 
time (in combination with good gridding strategies) can significantly reduce 
numerical errors and hence, allow better prediction of the physics of the problem. 



 
 
 

 
 

5 

�� The design of intelligent algorithms that will automatically and efficiently adapt 
locally the computing strategy to the nature of the solution and to the accuracy 
required. Here the main tool will be adaptive mesh refinement (AMR), and we will 
expect our approach to support local adaptation in space and time, giving maximum 
efficiency. 

 
Because of the diverse nature of two-phase flow regimes, particular effort has been devoted 
to the stratified flow and hydrodynamic slug flow regime in horizontal pipes. These flows 
are particularly challenging for computational schemes, and resolving them accurately will 
not only improve our understanding of gas-liquid flows but also provide a reliable tool for 
future predictions. 
 
However, investigating slug flow is made difficult by its transient nature and the multi-
dimensional fluid dynamic process that characterizes it. Because the flow is highly complex 
and unstable, it is difficult to predict parameters such as the pressure drop, and the heat and 
mass transfer, which are required for design purposes.  
 
Past studies have considered steady-state slug flow, in which the slug moves at constant 
velocity, and the slug characteristics are averaged. Knowledge of these averaged values 
alone, and without information about the longitudinal distribution, may be inadequate for 
design purposes, for example, slug catchers, which should prevent slugs from propagating 
downstream the system, are designed on the basis of the maximum slug length and not on 
the average.  
 
Therefore, as a final objective of this research, we will simulate the transient development 
of the gas and liquid distribution during slug flow as well as understand the dependence of 
flow parameters on the slug characteristics such as the slug and bubble lengths. This aspect 
of the study will be covered in the penultimate chapter of this thesis. 
 
 

1.4 Chapters Outline 
 
The thesis is structured into five main chapters (Chapters 2 to 6) that are followed by a 
short conclusion (Chapter 7) where the main findings and achievements of the research are 
summarized and suggestions for possible further work are given.  
 
To develop a successful two-phase model requires elements from many scientific areas, and 
we believe that it will be counter-productive in this thesis to encapsulate in one chapter the 
literature review of all the necessary parameters. Instead, we will present in every chapter, a 
small review of the key elements used for our modelling endeavour. 
 
Chapter 2, “Two-Phase Flow Models”, covers an extensive review and description of the 
mathematical models used to represent gas-liquid two-phase flows. It is split into three 
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main parts. The first one deals with the various modelling formulations existing in the 
literature, as well as a brief review of the three main commercial packages used in the 
petroleum industry for simulating transient two-phase flows. The second part discusses the 
general process of deriving or averaging multiphase flow equations, and the forms of the 
constitutive relations required to close the derived set of equations. The third section 
presents three specific mathematical formulations that we have implemented during the 
course of this thesis. A thorough study of their hyperbolicity as well as their stability limit 
is also provided in this final section.  
 
Chapter 3, “Numerical Methods”, focuses on the algorithmic techniques developed and 
implemented to solve the physical models presented in the second chapter.  This chapter 
also contains three main parts. The first one describes the explicit finite volume approach 
adopted in this study, and reports the various conservative flux schemes implemented, as 
well as the developed numerical schemes for the non-conservative terms appearing in some 
two-phase flow models. The second part discusses issues related to the selection of the time 
step or appropriate boundary conditions, which are constraints required by most numerical 
schemes in order to converge properly to a reliable solution. The final section presents the 
results from the simulation of simple test cases used to validate both single-phase basic 
models and two-phase flow models implemented in the present study.   
 
Chapter 4, “Adaptive Mesh Refinement (AMR)”, describes a specific spatial and 
temporal technique for speeding the convergence of numerical models developed and 
resolving more accurately complex features of the flows simulated. Compared to non-
adaptive schemes, AMR schemes are undeniably complicated and contain many elements, 
which require careful co-ordination. Hence, the main objective of this chapter is to explain 
the methodology and intricacies of the AMR algorithm that we have implemented. 
Therefore, the chapter starts by a short review of adaptive mesh schemes, and the reasons, 
which motivate the AMR strategy that was chosen. Then, follows a lengthy description of 
the two most important features of any mesh refinement scheme, which are its hierarchical 
grid data structure and the refinement process itself. Next we present two interesting 
consequences of the inter-grid communication, namely the boundary conditions and the 
mass conservation process. 
 
The effort required to correctly program the AMR algorithm is considerable, with a 
complete implementation requiring tens of thousands of code lines to express the core 
algorithm. Therefore the last part of this chapter presents simulations demonstrating that the 
resultant computational benefits make this effort worthwhile. Finally, the chapter is closed 
by a summary of the work, a list of conclusions that were drawn, and a few suggestions as 
to how this work could be usefully extended. 
 
Chapter 5, “Stratified Flow Modelling”, describes the first practical applications of the 
mathematical and numerical models developed. It aims at better understanding the phase 
interactions in both steady and transient two-phase stratified flows. The closure laws for 
wall and interfacial shear stress are the main uncertainties for the stratified flow models 
used here, therefore, a review and validation study of these key terms constitute the two 
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major parts of this chapter. Based on the quantitative analysis of the interfacial structure, 
new steady state expressions for shear stresses are derived and advocated for further 
stratified flow modeling purposes. 
 
Chapter 6, “Slug Flow Modeling”, examines the validity of one of the developed two-fluid 
models to predict the complex features of hydrodynamics slug flow. The chapter starts by 
explaining the mechanisms of slug flow formation following experimental observations. 
Then, we present a literature review of the key parameters (length, frequency, velocity) for 
an accurate prediction of slug flow, followed by a brief description of the various 
approaches used in the literature to numerically model this complex flow regime.  
 
The chapter continues with the analysis of the numerical simulations of a slug flow test 
case, investigating mechanisms such as slug initiation, growth and propagation using the 
validated stratified flow model described in Chapter 5. Finally, we conclude with some 
suggestions in order to improve the predictions of our incompressible code as well as the 
current commercial codes. 
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2 Chapter 2 - Two-Phase Flow Models 
 
 
 
 
 
 
 
 

2.1 Introduction 
 
Two-phase gas-liquid flows consist of interacting phases that are distributed in a complex 
way in space and time. The boundaries between the phases are delineated by interfaces, and 
the major difficulties in the mathematical description and subsequent prediction of the 
behaviour of a two-phase flow arise because of the presence of these interfaces. The 
properties that characterize the flow can vary considerably across the interface and in some 
cases are discontinuous. Despite the apparent self-organisation of the flow into flow 
regimes or flow patterns, each of which has a reasonably distinct average interfacial 
topology, the interfaces themselves can fluctuate widely in space and time and appear to 
have limitless degrees of freedom. 
 
The governing equations describing two-phase flow systems, coupled with accurate 
numerical resolution techniques, should provide a tool for investigating and predicting the 
mean flow features with an understanding of the limitations and uncertainties in their 
specifications. However, building the physical model is probably the most important part of 
the modelling process because numerical models developed from inappropriate conceptual 
models can have large uncertainties that are difficult to quantify, and may lead to results 
that differ significantly from the physical systems they seek to describe. In pipeline 
engineering applications, errors in flow and transport predictions could be contentious, 
dangerous, or very costly, but the complexity of the flow behaviour means that confidence 
in a conceptual model is developed through an iterative process of characterization, model 
building, prediction, field-testing, calibration, and refinement. 
 
We are particularly interested in time-dependent phenomena in long pipelines operating 
under two-phase stratified and slug flow conditions. Therefore, our objective is to develop a 
generic mathematical model capable of predicting the complex behaviour of these two flow 
regimes. Before we present some of the models that were investigated during the course of 
this thesis, we start the chapter by a review of various mathematical models found in the 
literature, followed by an overview of transient one-dimensional models used by 
commercially available simulators.  
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A two-phase flow is considered as a field that is subdivided in many single-phase regions 
with moving boundaries between the phases. Differential balance equations for each sub-
region can be derived with the appropriate interfacial boundary conditions, or so called 
“jump conditions” to match the conditions either side of the interface. Thus in theory, it is 
possible to describe a two-phase flow using local instantaneous variables. However, the 
resulting equations are computationally intractable and averaging techniques are generally 
used to derive practical two-phase flow equations. Hence, the next section presents a short 
note on the averaging techniques used in the literature, followed by a description of a full 
set of a one-dimensional compressible two-fluid equations obtained using an ensemble 
averaging technique [Drew & Passman, 1999]. 
 
One of the areas of controversy in multiphase modelling is the expression of constitutive 
relations or closure laws used for practical applications. Hence, the next section contains a 
description of two constitutive laws used for regularizing two-phase flow equations, namely 
the interfacial pressure correction and the virtual mass force. It also contains a short 
introduction of frictional drag laws, which constitute the main algebraic source terms in all 
mathematical models presented in this study. 
 
We conclude the chapter by two sections describing three specific models that were 
implemented in the EMAPS code. The penultimate section deals with the formulation of 
their governing equations, while the last one evaluates their stability via a characteristics 
analysis, and derives the limit of hyperbolicity, or range of applicability, of these models. 
 
  

2.2 Review of Two-Phase Mathematical Models  
 
Two-phase flows commonly occur in nature and in a multitude of other settings. They are 
not only of academic interest but are found in a wide range of engineering applications such 
as chemical plants, nuclear reactors or gas and oil pipelines. Because of obvious differences 
among these flows, and the complexity of various flow patterns encountered, many forms 
of descriptive equations representing their behaviour have been developed and are 
discussed by various authors [Stewart & Wendroff, 1984; Soo, 1990].  
 
Despite the numerous variations and forms of mathematical models found in the literature, 
they can be classified, in the Eulerian framework, in three separate groups, namely: 
 

�� Homogeneous Equilibrium Model (HEM) 
�� Drift-Flux Model (DFM) 
�� Two-Fluid Model (TFM) 

 
A more detailed description of these three generic models is given in the following sub-
sections. 
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2.2.1 Homogeneous Equilibrium Model (HEM) 
 
The simplest formulation for the hydrodynamics of a two-phase mixture is referred to as the 
homogeneous equilibrium model (HEM). In this model, one assumes that the velocity, 
temperature and pressure of the phases or components are equal. This assumption is based 
on the belief that differences in these three variables (and chemical potential if chemical 
reactions are considered) will promote momentum, energy, and mass transfer between the 
phases rapidly enough so that thermodynamic equilibrium is reached. This will be the case 
for drag-dominated flows where the two phases are strongly coupled and their relative 
velocities equalise over short spatial length scales. For example, when one phase is finely 
dispersed in another phase, a large interfacial area is generated and, under certain 
circumstances, this assumption can be made; e.g., bubbly flow of air in water or steam in 
water at high pressures.  
 
The governing equations of the HEM model resemble those of a pseudo-fluid with mixutre 
properties. They are, therefore, similar to the single-phase Euler equations with appropriate 
source terms [Corradini, 1997; Garcia et al., 2000]. To close the model and obtain the 
mixture properties, a thermodynamic equation of state that links the two phases is used. 
However, the multiphase transport properties, the viscosity and thermal conductivity, are a 
matter of concern for the model, because it is not clear whether one should average their 
effect in an area-average, mass average or volume-average sense. In many situations, such 
as for pressure drop calculations, the mixture transport properties are arbitrarily averaged 
on a volume or mass basis. However, these averaging schemes are not exact and are usually 
corrected by fitting coefficients to a set of experimental data. In other situations the effect 
of multiple phases is neglected and the liquid or gas property values for the viscosity and 
thermal conductivity are used. For example, when the amount of liquid in the pipe is large 
(low quality or void fraction), the viscosity can be taken to be that of the liquid.  
 
A modified version of the model for one-dimensional isothermal gas-liquid flows is 
presented in Section 2.6.1. It is characterized by  a separate continuity equation for each 
phase and a single momentum equation. Several investigators [Mori et al., 1976; Sharma et 
al., 1985; Ramos, 1995] have used this model for various engineering applications ranging 
from pressure wave propagation in pipelines to magma propagation in volcanic conduits. 
But critical comments on the applicability of the HEM model can be found in the review 
papers by Stewart & Wendroff (1984) and Manninen & Taivassalo (1996), and it is 
advisable to always check the validity of the equilibrium assumptions, whenever it is used, 
by comparing with more accurate theoretical models. For example, rapid acceleration or 
pressure changes cannot always be accurately modelled with the HEM model; i.e., shock 
wave propagation through a multiphase medium. This is especially true when the pressure 
change is large compared to the ambient pressure, or any of the driving potentials are large, 
relative to their reference values. Such a 'rule-of-thumb' is very crude and one must 
carefully consider the timescales for equilibration of these driving potentials with allowable 
characteristic times for the problem of interest.  
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2.2.2 Drift-Flux Model (DFM) 
 
In multiphase flows, gravity and centrifugal forces tend to cause velocity differences 
between the phases. To account for these, a group of models has been developed that uses a 
single momentum equation with an additional term to represent the effect of velocity 
differences between the phases. Depending on the exact formulation of the equations used 
to determine the velocity differences (and the personal preference of the author), this model 
is referred by various names, such as the drift-flux model [Zuber & Findlay, 1965], the 
mixture model [Ishii, 1975], the algebraic-slip model [Pericleous & Drake, 1986] or the 
local-equilibrium model [Johansen et al., 1990]. Here, the drift-flux designation will be 
used, because it is the name given by the first authors who dealt with the model.  
 
As previously mentioned, the salient feature of the drift-flux model is that the restriction on 
equal phase velocities is relaxed and the momentum exchange between the phases and the 
pipe is modelled separately with different velocities, e.g., gas and liquid velocities. The 
relaxation of equal velocities is most important when the densities between the phases are 
quite different in the presence of a gravitational potential field or large pressure gradients. 
Given a density difference, buoyancy effects tend to induce a drift velocity of the dispersed 
phase in the continuous phase. A measure of this density difference is the Atwood ratio that 
is defined in Table 11.1. It can be seen that, as this density ratio approaches zero, the HEM 
model would become more valid because the drift velocity would be reduced as the 
buoyancy of the lighter phase diminishes. The remaining assumptions of equal 
temperatures and pressures of the phases are usually retained in most applications. This is 
because it is usually assumed that the rates of mass and energy exchange are large enough 
to promote equilibrium. Once again a check with a more detailed model is recommended.  
 
The governing equations for the drift-flux model are not presented here, but can be found in 
the thesis by Theron (1989) and Bonzoni-Gavage (1991) as well as numerous articles 
[Pauchon et al., 1994; Boure, 1997; Masella, 1997; Faille & Heintze, 1999; Fjede & 
Karlsen, 1999; and Romate, 2000]. For isothermal flows, the model will be similar to the 
HEM model; it is therefore given in the form of a continuity equation for each phase and 
one momentum equation for the motion of the mixture. However, there are two important 
differences in the equations that one should notice. Firstly, the two continuity equations do 
not use the same velocity and secondly the momentum equation requires an algebraic 
correlation or a sub-model, based on a force balance for dispersed phases, for the 
computation of the relative velocities. The form of the constitutive equations for the relative 
velocities varies in the different mixture models. The basic assumption in this formulation 
is that a local equilibrium is established over short a spatial length scale. Due to the 
requirement of a strong coupling between the phases, the drift-flux model is more suited to 
liquid-particle mixtures than gas-particle mixtures. 
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2.2.3 Two-Fluid Model (TFM) 
 
The final type of multiphase model is the multiple fluid model (better known as the two- 
fluid model designating two phases or components). This model treats the general case of 
modelling each phase or component as a separate fluid with its own set of governing 
balance equations. In general, each phase has its own velocity, temperature and pressure. 
The velocity difference, as in the drift-flux model, is induced by density differences. The 
temperature difference between the phases is fundamentally induced by the time lag of 
energy transfer between the phases at the interface as thermal equilibrium is reached. If the 
multiphase system involves rapidly changing flow conditions due to area changes in steady 
flow or transient conditions then the time lag for reaching thermal equilibrium between the 
phases may become significant in comparison to the characteristic time it takes for flow 
conditions to change. According to Corradini (1997), one may estimate this condition by 
computing a characteristic Fourier number (Table 11.1) for the system under expected flow 
conditions. Hence, when thermal nonequilibrium becomes important, one must include the 
possibility of a temperature difference by separate energy balances in a multiphase model.  
 
The modelling of pressure nonequilibrium is much more complex [Ishii, 1975]. The 
pressure difference between two phases is caused by three main effects: surface energy of a 
curved interface, mass transfer, and dynamic effects. 
 
In the first case the simple existence of an interface (probably curved) requires that some 
pressure difference exist between the phases. This pressure difference is proportional to the 
interfacial surface tension and inversely proportional to the radius of curvature and is 
usually neglected in most applications. The second effect is noticeable when the mass flux 
due to phase change is large at the interface between the phases; e.g., large evaporation or 
condensation rates. The final effect occurs when one phase has a larger pressure relative to 
the other phase due to very rapid energy deposition or pressurization effects.  
 
A common example of an induced dynamic pressure difference is the flow of a mixture of 
air bubbles and water through a converging-diverging nozzle. If the rate of flow is high and 
the area change is dramatic enough, the liquid will depressurize quickly as it passes through 
the nozzle thereby leaving the vapor bubbles at a higher pressure. This dynamic pressure 
difference will cause the vapor bubbles to grow, overexpand and then oscillate around a 
new mean pressure [Corradini, 1997]. This example takes on the second effect for steam 
bubbles in water because mass transfer would also be present. The magnitude of pressure 
nonequilibrium between the phases is inversely proportional to the time scale of the rate of 
phase change or external pressure oscillations. For most applications of two-fluid modelling 
this pressure nonequilibrium is usually neglected; i.e., only when the rate of phase change 
and pressure oscillations become of equal time scales does this nonequilibrium effect 
become important. One way to estimate this is to compare the flow velocity to the speed of 
sound in the multiphase system (note that computing a mixture sound speed is not a 
straightforward task): i.e., only when the flow velocity approaches or exceeds the 
multiphase sound speed would the pressure nonequilibrium become important.  
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The two-fluid model equations are given in Section 2.6.3 for isothermal flows. They are 
formulated by considering the transfer processes of each phase separately, in terms of two 
sets of conservation equations that govern the balance of mass and momentum for each 
phase. One should note that when a two-fluid model is used, a number of interfacial 
transport coefficients are defined, which require constitutive relation models to complete 
the overall model. This approach has the advantage that the actual transport processes can 
be rigorously defined. However, one is required to model these kinetic processes in detail, 
which implies a much greater depth of experimental data and insight.  
 
By using a separate momentum equation for each phase and two independent velocity 
fields in the formulation, it is anticipated that the model will properly take into account the 
dynamic interactions between phases. Thus, it is expected that two-fluid models can be 
more useful to the analyses of wave propagation and flow regimes identification than the 
simpler mixture models (HEM, DFM). In particular, if the two-phases are weakly coupled 
so that the waves can propagate in each phase with different velocity, the two-fluid model 
should be used to study these phenomena. The second application to the analysis of the 
flow regimes can be explained by the fact that the changes of flow regimes occur mainly 
due to the instabilities of the interfaces, and the interfacial transfer of momentum governs 
the dynamics and stability of interfaces. 
 
 

2.3 Commercial Software 
 
Early studies on transient two-phase flow were conducted in the nuclear industry, as it 
became mandatory to predict the transient flow behaviour during potential Loss-of-Coolant 
Accidents (LOCAs) for licensing Pressurized Water Reactors (PWRs). Due to the nature of 
the two phases (steam/water), very fast transients and heat transfer phenomena were 
involved. Numerous large codes using a six-equation, two-fluid model such as TRAC 
[LASL, 1984], RELAPS5 [Shieh et al., 1994] or CATHARE [Bestion, 1990] were 
developed for this purpose. On the other hand, most of the transient phenomena 
encountered in the oil and gas industry are comparatively slow. Ruptures and pigging 
operations represent the extreme case of transients that can occur in a pipeline. Thus, the 
development of a tool that could predict the flow behaviour of hydrocarbon systems under 
different types of flow condition was needed. From numerous studies of different aspects of 
transient two-phase flows, some investigators have implemented and developed one-
dimensional software since the early 1980’s.  Below is a brief summary of the three major 
two-phase flow simulators commercially available for the petroleum industries. 
 
2.3.1 OLGA, PeTra 

 
In 1983, IFE and SINTEF [Bendiksen et al., (1986, 1991)] jointly started the development 
of OLGA, the first commercial software for pipelines transportation. Originally, it used a 
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classic two-fluid model, but subsequent developments have led to the implementation of an 
extended dynamic two-fluid model that assumes the possible existence of three different 
phases, namely gas, liquid film and liquid droplets. A separate mass equation is applied to 
each of these three phases. Two momentum equations, one for the gas and possible liquid 
droplets and the other for the liquid film, are utilised. An energy conservation equation for 
the mixture is also used. In this six-equation model, two basic flow pattern classes are 
considered: distributed (bubble and slug flow) and separated (stratified and annular-mist 
flow). The transition between the two flow patterns is based on the assumption of a 
continuous average void fraction and is determined according to a minimum slip concept, 
where the flow pattern yielding the minimum gas velocity is chosen. Comparisons of 
experimental or field data against OLGA predictions [Bendiksen et al., 1986; Klemp, 1987; 
Ellul et al., 1991; Rygg & Ellul, 1991] have shown good agreement. 
 
OLGA is one of the market-leading simulators for transient multiphase flow of oil, water 
and gas in wells and pipelines. However, based on recent R&D especially within three-
phase slug flow, Statoil has developed a prototype of a next generation multiphase flow 
simulation tool named PeTra [Larsen et al., 1997]. This prototype still lacks much of the 
functionality and robustness found in the latest OLGA 2000 version, therefore a new 
simulator, which combines the best from OLGA & PeTra is currently being developed by 
Scandpower Petroleum Technology and will commercially replace OLGA in the future. 
 
2.3.2 PLAC, ProFES 

 
The PipeLine Analysis Code (PLAC) has been developed by AEA Petroleum Services 
since 1987. This transient multiphase hydrocarbon simulator for pipeline systems is based 
on the structure of the nuclear code TRAC (Transient Reactor Analysis Code), and 
therefore employs a two-fluid model formulation considering mass, momentum and energy 
equations for each phase. The partial differential equations are solved using the Stability 
Enhancing Two-Step (SETS) method described by [Mahaffy, 1982] and in the software 
technical manual [AEA Technology, 1996]. The necessary closure laws for interfacial 
friction, heat and mass transfer are provided via the use of mechanistic models or accepted 
correlations. Only two flow pattern maps are used for the entire range of inclination angles. 
Some studies [Black et al., 1990; Philbin & Butcher, 1992] using PLAC confirmed its 
accuracy when compared to experimental data and demonstrated its practical applications 
and capabilities to support field development. 
  
A restructuration of the PLAC code in the late 1990’s led to the development of an 
integrated software environment called ProFES (Produced Fluids Engineering Software), 
which is now commercialised by AEA Technologies Services. 
 
2.3.3 TACITE 

 
Developed since 1990, TACITE [Pauchon et al., (1993, 1994)] is a drift-flux model for the 
hydrocarbon mixtures in pipeline networks. It was conceived under a joint research 
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program between the French Petroleum Institute (IFP) and the oil company TotalFinaElf. 
The model solves a set of four conservation equations: one for the mass of each phase, one 
for the mixture momentum, and one for the mixture energy. Information about the slip 
between phases is obtained from a steady-state flow regime dependent relationship. To 
determine flow patterns, a new concept is introduced; it assumes that there are only two 
basic flow patterns: separated flow (stratified or annular) and dispersed flow with bubbles 
or droplets [Fabre et al., 1989]. Intermittent flow is then considered as a combination of 
these two patterns. A set of closure laws validated with extensive experimental results is 
used and physical properties are determined via a thermodynamic package. The set of four 
conservation equations is then solved using an explicit time advancing method. 
Comparisons for steady-state conditions with experimental and field data showed good 
agreements. 
 
 

2.4 Derivation of Two-Phase Conservation Equations 
 
In general, two formulation methods are possible when deriving equations that describe 
two-phase flows. These formulations actually represent fundamentally different ways of 
thinking about such flows and, hence, provide complementary insight into the method 
chosen here. The first is the particle-source-in-cell method where the dispersed phase is 
treated from a Lagrangian point of view in which the individual particles are tracked. The 
continuous phase is seen from an Eulerian point of view with the effect of the dispersed 
phase entering through source terms in the conservation equations. This method, also 
known as the Eulerian-Lagrangian formulation, is physically intuitive but is not 
computationally practical for other than very dilute dispersed phases.  
 
The second method is the two-fluid model in which each phase is seen from an Eulerian 
point of view. This method regards the phases as two superimposed continua, much like 
two mixed gases, and defines local averaged quantities for each of them at each point of the 
physical space. The degree to which this description is accurate depends on how dispersed 
and dense each phase is, similar to the applicability of the continuum flow assumption in 
single-phase flows. Although not as accurate as the first method, the two-fluid model is the 
only alternative for practical computations when the dispersed phase is very dense. It is 
therefore the method chosen here. 
 
Several authors [Ishii, 1975; Drew, 1983; Daniels et al., 2003] have made rigorous 
derivations of the two-fluid model. The usual procedure is to write, based on the principles 
of continuum mechanics as elucidated in standard fluid mechanics books [Truesdell & 
Rajagopal, 2000], the local instantaneous conservation equations for mass, momentum and 
energy separately for each phase, together with the appropriate molecular transport 
properties. Conservation laws are also written for the infinitesimally thin boundary layer 
between the two phases. Several authors refer to these equations for the interfaces as "jump 
conditions". However, the instantaneous equations, while physically valid, are intractable 
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computationally even using supercomputers, because the phases and their interfaces are 
constantly changing with position and time. This condition is analogous in single-phase 
flow to using the local instantaneous Navier-Stokes equations to solve a turbulent flow 
problem. As with turbulent flow, the solution is to average the equations and the 
corresponding interfacial conditions. 
 
If done rigorously, averaging techniques lead to a computationally tractable and accurate 
set of equations that approximate the mean values of the desired flow variables and 
interfacial transfer effects. However, derivation of the conservation laws for two-phase 
flow by these methods is highly mathematical and to some extent can be viewed as a 
separate subject within two-phase flow. Therefore, the technical details of the derivation 
process will not be presented here, but instead a short description of various averaging 
procedures found in the literature, followed by a presentation of a one-dimensional set of 
equations obtained using a particular type of averaging technique. 
 
2.4.1 Averaging Procedures 
 
A number of different averaging methodologies have been proposed in the literature. They 
vary significantly, but usually are found to lead to equivalent forms of averaged balance 
equations. However, the physical variables that appear in each of the averaged balance 
equations involve different physical interpretations. A number of workers have made 
significant contributions to the development of averaged equations including Ishii (1975), 
Yadigaroglu & Lahey (1976), Mathers et al. (1978), Nigmatulin (1979), Drew (1983), 
Lahey & Drew (1988), and Daniels et al. (2003). The publications cited above are by no 
means an exhaustive list but have been selected because they are representative of all the 
different approaches that have been adopted in the literature. These various approaches can 
be summarized as: 
 

1. Spatial (volume or area averaging), with no averaging in time; 
2. Time averaging, with no spatial averaging; 
3. Ensemble averaging, with no averaging in space; 
4. Ensemble/space averaging or time/space averaging. 

 
Hence, the averaging process involves taking averages in time, space, over an ensemble or 
in some cases in combination. Daniels et al. (2003) pointed that, if carried out correctly, the 
averaging process acts as a filter removing information that occurs below certain length and 
time scales. This has two important consequences: firstly, the averaged equations will only 
be able to resolve flow features down to the limits defined by the averaging process, and 
secondly, in order to solve the averaged equations the information lost or filtered out by the 
averaging process will have to be supplied by extra constitutive relations, this is the so 
called “closure problem”, which will be tackled later in this chapter. 
 
Drew & Passman (1999) reviewed the different averaging techniques, their advantages and 
drawbacks, and suggested that any averaging procedure should lead to averaged flow 
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parameters that are continuous and have continuous first derivatives. However, there are 
some difficulties with the continuity of the first derivatives if they are spatially averaged. 
For example if we area-average on a cross-section, then the first derivatives becomes 
discontinuous each time an interface becomes tangential to the averaging plane. 
 
One possible way out of the conceptual difficulties with the use of spatial averages is to use 
ensemble-averaging techniques as proposed by Drew (1983), Joseph & Lundgren (1990), 
and Drew & Passman (1999). An ensemble-average is viewed as more general than the 
other averaging techniques and the set of equations, presented below, were obtained using 
this technique. 
  
 
2.4.2 One-Dimensional Conservation Equations 
 
Formulations derived from rigorous averaging techniques generally lead to a full set of 
three-dimensional equations. However, in many engineering systems, such as long 
pipelines, the geometry of the system will constrain the fluid motion to be largely in one 
dimension. Therefore, a pragmatic approach to developing a practical mathematical model 
is to integrate these derived 3D equations of motion over a cross-section and obtain a 
suitable one-dimensional two-fluid model or area averaged set of equations.  
 
For isothermal flows in a pipe with constant diameter, using time-average [Chan & 
Banerjee, 1981] or ensemble-average [Park et al., 1998] techniques, lead to the same set of 
one-dimensional conservation equations, which are:  
 
Mass conservation: 
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Momentum conservation: 
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where � is the pipe inclination from horizontal (Figure 2-1) and variables �k, Pk, Rk, and Vk 
are respectively the fluid density, pressure, volume fraction and velocity of phase-k. The 
parameter �Pki is known as the pressure correction term, while k� and Re

k�  represent 
respectively the viscous stress and the Reynolds or turbulent viscous stress. The terms Mki 
and Mkw describe respectively the interfacial and wall shear stresses. The mass transfer is 
expressed using �k while Vki gives the interfacial velocity for each phase.  
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Three extra relations supplement the mass and momentum conservation equations 
presented above. The first one is an algebraic constraint that expresses the fact the volume 
fractions of the two phases must sum to one, and the next two are the mass and momentum 
interfacial jump conditions, all given by: 
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The subscript i indicates an interfacial term while the subscript k can take value 1 or 2 to 
describe one phase or the other, but in subsequent models presented in this chapter, it will 
have the index value G or L clearly labeling either the gas or the liquid phase. 
 
Equations (2.1) – (2.5) will be refered as the generic two-fluid model and they can be used 
to model any two-phase flow system where a one-dimensional fluid motion is appropriate. 
However, the model is incomplete, as it contains 22 unknowns for only 7 equations. 
Therefore, additional constitutive relations are required to close and solve this generic 
model.  
 
Though some correlations for the Reynolds viscous stress Re

k�  have been postulated [Park 
et al., 1998], many other researchers [Lahey & Drew, 1988] believe that it is not possible to 
model this term accurately in two-phase flow. As a consequence, it is not often taken into 
consideration and will be neglected in the present study. As for the viscous stress k� , it has 
a minor effect on the flows considered here, so it is also neglected as well as the mass 
transfer k�  between the phases. Hence, the generic two-fluid model is reduced to 6 
equations for 14 unknowns (8 variables: �k, Pk, Rk, Vk + 6 closure terms: �Pki, Mkw, Mki). 
 
The required constitutive relations are complicated functions of the fluid velocities and 
their local properties, as well as the two-phase flow patterns. They sometimes contain 
derivative terms, and can therefore change the structure of the generic two-fluid model, its 
convective terms, and subsequently its wave propagation behaviour. Most of these closure 
relations are presented in the following section.  
 
 

2.5 Forms of Constitutive Relations 
 
The purpose here is not to enumerate all the constitutive equations presented in the 
literature for pressure, interfacial force or wall shear terms, but to briefly show the various 



 
 
 

 
 

20 

approaches adopted by researchers in modelling these terms, and clarify some of the 
assumptions made in deriving two specific two-fluid models presented in Section 2.6. 
 
2.5.1 Closure Laws for Pressure Terms 
 
The pressure terms in the momentum equation (2.2) appear in the literature in three 
equivalent formulations. For completeness, these forms are: 
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  (a)         (b)      (c) 
 
where the �Pki is defined by kikki PPP ��� . This term is often referred in the literature as a 
pressure correction term, and will be later renamed Pc is Section 2.6.3. 
 
Hence, to close the generic two-fluid model, additional relations need to be supplied to link 
the four distinct pressure terms (Pk, Pki, k = G, L) that appear in the system of equations. 
Depending on the pressure formulation and the extra closure relations, various two-fluid 
models have been proposed in the literature. This complicates the process of selecting a 
specific model for practical applications, especially that the underlying assumptions used to 
obtain these closure relations are not always clarified. 
 
2.5.1.1 Phase Pressure: Pk 
 
The pressure in a compressible fluid is related to the temperature and density of the fluid 
through a thermodynamic equation of state. However, for isothermal flows considered here, 
the phase pressure equation only depends upon the fluid density, and can be given as: 
  
     � �kkk PP ��      (2.7) 
 
The usual method of modelling pressure differences between the fluids is to assume that the 
pressure is equal in both phases. In this case, the two-fluid model is referred to as a single-
pressure model (SPM). If, as previously discussed, one finds that pressure nonequilibrium 
between the phases is important, one must introduce a local constitutive relation that 
accounts for this pressure difference due to dynamic and interfacial effects. In this case, the 
two-fluid model is refered as a two-pressure model (TPM).  
 
Many examples using a TPM formulation can be found in the literature [Ransom & Hicks, 
1984; Glimm et al., 1999; Saurel & Abgrall, 1999; Chung et al., 2002], and more and more 
researchers try to adopt this formulation, even for flow where there is an instantaneous 
pressure equilibrium, as the resulting model appears to be more stable for numerical 
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purposes. However, as some of the closure relations for the TPM are still not clarified, the 
simple SPM approach will be adopted here for further studies. 
 
 
2.5.1.2 Interfacial Phase Pressure: Pki  
 
The difference between the two interfacial pressures is generally related to the surface 
tension force, and appears to depend on the flow pattern considered. When this force 
becomes important, Barnea & Taitel (1993) suggested an expression for the stratified flow 
regime while Drew & Passman (1999) gave an alternative expression for bubbly flow. Both 
relations are given as: 
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where � is a constant surface tension, hL is the height of the liquid in the pipe if stratified 
flow, and rB is the radius of bubbles. 
 
However, the simplest way to obtain the interfacial pressure difference is to assume equal 
interface pressure, thereby neglecting the effect of surface tension. Mathematical models 
considered later in this chapter always use the equal interfacial pressure assumption and 
therefore adopt the following relation: 
 
    ILiGi PPP ��       (2.9) 
 
 
2.5.1.3 Pressure Correction Term: �Pk = Pk - Pki 
 
Early two-fluid models (TRAC, OLGA) did not consider this term in their formulation. 
However, its inclusion in the momentum equations allows, for example, an accurate 
propagation of gravity waves in stratified flow, and can have a significant effect on the 
hyperbolicity of the model. Therefore, recent models tend to include it in their formulation 
and, as a consequence, numerous expressions depending on the flow regime abound in the 
literature. In what follows, an account of pressure correction closure models for stratified 
and dispersed bubbly flow is given.  
 
Stratified Flow 
 
In stratified flow, the pressure correction is generally associated to the hydrostatic head, 
and Barnea & Taitel (1996) obtained their expression by averaging the liquid pressure PL 
over any cross-section as: 
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where b is the chord length [b(y)] and � is the angle of the pipe with the horizontal (Figure 
2-1). Using the Leibnitz rule for differentiation, they obtained: 
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A similar expression is obtained for the gas phase; hence for a constant cross-section, 
combining Equations (2.11) and (2.6c) gives the following relations: 
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Many authors [Taitel & Dukler, 1976; Watson, 1990; Barnea & Taitel, (1993, 1996)] use 
the above pressure correction expression in their momentum equations.  Therefore, it is the 
same expression that will be used later in the incompressible two-fluid model presented in 
Section 2.6. 
 
However, other expressions exist in the literature. Bestion (1990) proposed the following 
algebraic relation for the thermal hydraulic code CATHARE: 
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while different algebraic expressions, based on the distribution of hydrostatic pressures in 
the tube, are often used by researchers [Lahey & Drew, 1988; De Henau & Raithby, 1995; 
Masella et al., 1998]. The relations are given by:  
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where D is the pipe diameter, � is the angle subtended by the liquid wetted perimeter, and it 
is related to the liquid volume fraction by the relation RL=(�-sin �)/2�	�
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Dispersed Bubbly Flow 
 
The pressure correction term is sometimes considered as a stabilizing term for two-fluid 
models, and as such it is often neglected in favour of the virtual mass term in numerous 
codes [Pokharna et al., 1997] dealing with dispersed flows. However, Drew & Passman 
(1999) presented a detailed study of closure models for bubbly flows and proposed the 
following relation:  
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They suggested that for dilute flow, 
=1/4 when the boundary layer remains attached to the 
spherical particle, and for low Reynolds number flows, the calculation of the averaged 
fields indicates that 
 = -9/32. 

 
Some authors take into account pressure corrections for all configurations in such a way 
that they always have a conditionally hyperbolic system for the test cases studied. Toumi 
(1996), Coquel et al. (1997), and Bestion (1990) suggested the following expression: 
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where �  is an adjustable coefficient used to ensure that the resulting two-fluid model 
remains hyperbolic during numerical simulations. Toumi (1996) justified the choice of the 
pressure correction term (2.16) by assuming that gas and liquid expressions might be equal 
in order to satisfy the mixture momentum equation and that they must vanish when the gas 
velocity is equal to the liquid velocity: 
 
   � � 0VVas0P LGki ����     (2.17) 
 
The pressure correction (2.15) does not satisfy the equal value requirement for the gas and 
liquid expressions, but Drew & Passman (1999) explained its derivation using the 
“Bernoulli theorem” for the variation of pressure in a flowing inviscid fluid. And it is a 
similar expression, modified following Toumi (1996) approach, which will be used in the 
single pressure model (SPM) proposed in Section 2.6.3. 
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2.5.2 Interfacial Stress Term: Mki 
 
The interfacial stress term Mki arises from stresses acting on the interface. It is the most 
crucial transfer law in modelling multiphase isothermal flows, and can be expressed [Ishii, 
1975] as a linear combination of several important  physical forces, namely: 
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where the superscripts D, V, B, L, and C stand for the steady-state drag, virtual mass, 
Basset, lift, and collision forces respectively. Closure models for the interfacial drag and 
virtual mass forces are presented in the next sub-sections. As for the Basset force, Cheng et 
al. (1985) claimed that its effect was quite small in two-phase flow systems, so it will not 
be considered here, nor will the lift and collision forces, for which Ishii & Mishima (1984) 
suggested that their functional forms are not well known. 
 
 
2.5.2.1 Interfacial Shear Force 
 
In all specific two-phase flow models described later, the virtual mass force mentioned in 
the next sub-section will be neglected, making the interfacial drag law the only crucial 
closure term for modelling two-phase flows that were investigated in this thesis.   
 
The total interfacial shear force greatly depends upon the flow regime considered, and 
despite its great importance, it remains the greatest shortcoming of conventional two-fluid 
models and its real expression is not always known accurately. However, Ishii & Mishima 
(1984) suggested modelling it as the combination of two terms as: 
 
    kixkki

D
ki MRM ������     (2.19) 

 
The first term on the right-hand side represents the effect of the interfacial shear and the 
void gradient, and is particularly important for a separated flow. The second term is the 
generalized area-averaged particle drag and is important for a dispersed flow.  
 
 
Separated Flow 
 
In a stratified or annular flow, the contribution of the interfacial shear and void gradient is 
the dominant drag force. Ishii & Mishima (1984) have shown that, for separated flows in a 
tube, it can be given as: 
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where A is the pipe cross-section and Si is the wetted perimeter of the interface or the gas 
core, which will be defined in Chapter 5. The constitutive relation for the gas interfacial 
shear stress Gi� , which will be renamed I�  in the remaining of the thesis, is given in terms 
of the standard interfacial friction factor as: 
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There are a number of correlations for the interfacial friction factor fI. They depend upon 
the fluid’s local properties and the flow regime. They are not presented here, but will be 
reviewed in Chapter 5 in the case of stratified flow. 
 
Dispersed Bubble Flow 
 
The average drag force on a single particle or drop or bubble is the force felt by that object 
as it moves steadily through the surrounding fluid. It is usually given in terms of a 
dimensionless coefficient CD, where the drag force for a dispersed bubble flow is defined 
as: 
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Here, the drag coefficient CD is assumed to be a function of the gas volume fraction RG, the 
bubble diameter DB, the relative velocity rV  and the liquid viscosity. The dependence of 
CD on these parameters has been studied and many correlations for the drag coefficient CD 
have been suggested in the literature. They are summarized in the book by Clift et al. 
(1978), and the reference papers by Ishii & Zuber (1979) and Tomiyama et al. (1998). 
 
The important point, however, is that the averaged local relative velocity rV  must be 
approximated based on the drift flux formulation [Ishii & Mishima, 1984] and not as the 
difference between the area averaged mean velocities of phases � �LGrr VVVV ��� . The 
difference between these two relative velocities can be very large. The reason is that in the 
one-dimensional formulation, two completely different effects cause slip, Vr, between two 
phases; i.e., the local relative motion between two phases at a local point and the integral 
effect of the phase and velocity distributions arising due to the area averaging [Zuber & 
Findlay, 1965; Ishii, 1977]. 
 
 
2.5.2.2 Virtual Mass Force 
 
The virtual mass term in Equation (2.18) represents the interphase force, which results from 
the displacement of adjacent fluid mass in the case of relative acceleration between the 
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phases. The form of the virtual mass term in realistic two-phase flows is not known exactly 
and thus different computer codes for nuclear thermal hydraulics simulations [Bestion, 
(1990); Tiselj & Petelin, (1997)] use different forms of the virtual mass term. Drew et al. 
(1979) asserted that the most general form of the virtual mass contains first order space and 
time derivatives, and can be expressed as: 
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where Vr is the relative velocity, and the parameter ��should be a function of the gas 
volume fraction with the value 2 for RG � 0 and 0 for RG � 1. In the hydraulics codes 
RELAP5 and PDE2 [Tiselj & Petelin, 1997], the parameter � is set equal to 1. Toumi & 
Kumbaro (1996) also used the same value of � in their numerical model, and in all three 
cases, the liquid density �L in (2.23) is replaced by the product of the liquid volume fraction 
RL by the mixture density M� . The corresponding expression used is therefore: 
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The open parameter cvm in the virtual mass term can be used to adjust the interfacial 
momentum coupling with respect to different flow regimes. For idealised dispersed droplet 
or bubbly flow, a value of cvm = 0.5 has been derived from classical potential flow [Drew & 
Passmann, 1999]. For completely separated flows (e.g. stratified flow) it is expected that 
cvm tends to zero, but in the case of churn-turbulent two-phase flow with strong interfacial 
momentum coupling, a value of cvm > 0.5 might be more appropriate. For slug-flow, Ishii & 
Mishima (1984) calculated a factor of cvm = 3.3 to 5 depending on the form of slugs. 
 
To account for the interaction effects between phases, Zuber (1964) suggested using the 
following expression of the virtual mass coefficient 
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where Rd is the discontinuous phase fraction. However, Toumi & Kumbaro (1996) 
suggested defining cvm by a condition necessary to obtain a hyperbolic system. Thus for 
their set of equations they found that the system is hyperbolic if: 
 
  � �c1c4cc 0

vmvm ���       (2.26) 
 
where c is a concentration term defined as follows: 
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In the same way, the hyperbolicity of PDE2 code was achieved by a minor modification of 
the RELAP5 virtual mass coefficient cvm [Tiselj & Petelin, 1997], given as: 
 

   

�
�
�

��
�

�

�
�

�
�

�

�
�

5.0
2
23

5.0
22
21

5

G
G

G
G

G

RELAPvm

R
R

R
R
R

c     (2.28) 

 
      

� �� �

� ��
�

�

�
�

�

�

�
��

��
��

	



�
�


 �

�
�

�

�
�

5.0
1

121
2

23

5.0
22
21

2

22

G
GLGG

GG

G

G

G
G

G

PDEvm

R
RR

RR
R

R

R
R
R

c

��

  (2.29) 

 
In conclusion, it is worth noting that for many interesting cases, the inclusion or neglect of 
the virtual mass force in the phasic momentum does not appreciably change the momentum 
results. However, the inclusion of this term with its temporal and spatial derivative terms 
has an effect on the hyperbolicity of the system and the numerical scheme. Although it adds 
an extra complexity on the numerical scheme, Watanabe et al. (1990) claimed that the 
virtual mass force improves the computation efficiency of the solution scheme. 
 
 
2.5.3 Wall Shear Stress: Mkw 
 
The wall shear stress represents the stresses acting on the phase at the wall. Different 
methodologies have been proposed to calculate it and are reviewed in the book by [Levy, 
1999]. The wall shear stress is generally based on closure laws derived from fully 
developed steady state two-phase flows, and usually given as: 
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where Sk is the part of the wall wetted by phase k and 
k is the wall shear stress of the same 
phase. The constitutive relation for the wall shear stress is given in term of the standard 
wall friction factor fk as: 
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Correlations for gas and liquid wall frictions abound in the literature, as it is common 
practice to model two-phase wall friction factors using single-phase pipe formulas. These 
single-phase relations are not presented here, but they will be reviewed in Chapter 5. 
 
 

2.6 Formulation of Specific Models 
 
Three particular models were implemented and investigated during the course of the thesis; 
they all assume that the liquid phase is incompressible and that the flow of the two-phase 
mixture is isothermal. 
 
 
2.6.1 HEM-3 (Homogeneous Equilibrium Model) 
 
This model is recommended whenever the two phases are strongly coupled (bubble flow 
for example), such that the responses of the two phases are simultaneous and the wave 
propagation is firmly interlocked. However, in the present study, it has been mainly used 
for the algorithmic development and assessment of the numerical solvers that will be 
described in the next chapter because, while being physically realistic, it avoids two 
important numerical issues related to most two-fluid models: the presence of non-
conservative flux terms, and the ill-posedness of the governing equations. 
 
As already mentioned, this model assumes that all phases move at the same mixture 
velocity VM.  It is characterised by a combined momentum equation for all phases, but a 
separate mass conservation equation for each phase. The three one-dimensional equations 
that constitute the model are therefore: 

  
�� Conservation of gas mass 
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�� Conservation of liquid mass 
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�� Conservation of total momentum 
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where the mixture density �M and the mixture wall shear stress �w are defined by:  
 

LLGGM RR �����      (2.35) 
 

MMMww VVf
D2
1T ���     (2.36) 

 
The conservation of energy is not enforced explicitly: the flow is assumed to be isothermal. 
The liquid is assumed to be incompressible and the gas density is linked to the pressure P 
via a thermodynamic law such as Equation (2.7) or equivalent � �� �PGG ��� . 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1: Cross-section and side views of a stratified flow in a circular pipe 
 
 
2.6.2 PFM-2 (Pressure Free Model) 
 
One of the peculiar features of most two-fluid models is the non-conservative aspect of the 
governing equations. Hence, efficient numerical methods developed for single-phase 
conservative systems cannot be used for solving these two-fluid models and new methods 
should be designed for their numerical computation. This lengthy and difficult modelling 
process can be avoided if a specific two-fluid model presented by Watson (1990) is used. A 
brief description of the model derivation steps now follows (see Appendix B for a more 
detailed presentation).  
 
Consider the generic system of equations (2.1)-(2.5) and assume that the gas and liquid 
phases are incompressible, and that the two-phase mixture flows in a gravitationally 
separated configuration in a circular pipe of diameter D inclined at an angle � to the 
horizontal, as shown in Figure 2-1. Then using the pressure correction formulation (2.6b) 
and the stratified flow correlations (2.12), the following conservation equations can be 
derived: 
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�� A total mass conservation is obtained by summing the gas and liquid mass balance 
equation (2.1), giving:  
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�� A global momentum equation is obtained by combining the gas and liquid equation 

(2.2) so as to eliminate the interfacial pressure PI: 
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where SI represents the interfacial wetted perimeter while SG and SL are the gas and liquid 
wetted perimeters, all defined in Chapter 5. The parameter 
I is the interfacial shear stress 
defined by Equation (2.21), while 
G and 
L are respectively the gas and liquid wall shear 
stresses, both defined by Equation (2.31). 
 
The mass and momentum equations (2.37) and (2.38) must be supplemented by two more 
relationships. The first one is obtained from the geometric constraint that the areas occupied 
by the liquid and gas phases must fill the pipe, so that: 
 
  AAA GL �� ,  or 1RR GL ��     (2.39) 
 
The other condition is obtained from the original gas and liquid mass conservation 
equations. Since the phases are assumed to be incompressible, dividing the mass 
conservation equations by the appropriate density and adding them leads to the following 
relation:  
 

   � � .0VRVR
x GGLL ��
�

�  

 
Hence, a second algebraic constraint (2.40) is obtained from the above equation, where 

)t(Q  is a known function of time dependent on the inlet flow rates. 
 
   ,)t(QVRVR GGLL ��      (2.40) 
 
Therefore, the four original gas and liquid mass and momentum equations (2.1)-(2.2) have 
been reduced to just two differential conservative equations (2.37) and (2.38), and two 
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algebraic equations (2.39) and (2.40).  The resulting system of equations is very practical 
for stratified flows and suitable for numerical computations. 
 
Though the common interfacial pressure may be obtained directly from one of the gas or 
liquid momentum equation, or perhaps more elegantly from their sum, it was never 
evaluated when using this model. Therefore, the name given to the implemented model is 
PFM-2, which stands for Pressure Free Model, and the value 2 indicates the total number 
differential equations that constitute the model. 
 
 
2.6.3 SPM-4 (Single Pressure Model) 
 
The PFM-2 model presented above is restricted to fluid flow cases with constant properties, 
as the liquid and gas compressibility were ignored. This approach may be adequate for 
some two-phase flow patterns calculations but it fails to predict for example the true nature 
of slug movement in pipelines when the change in the volume of the gas due to 
compressibility effects becomes important. Therefore, a more general system of four 
equations based on the generic two-fluid model was analysed and implemented.  
 
The model still treats the liquid phase as incompressible, but considers the gas phase as 
compressible obeying a thermodynamic equation of state. It is named SPM-4 because it 
assumes a single pressure is common to both gas and liquid phases. The system of mass 
and momentum conservation equations that constitute the model is given as:  
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�� Gas & Liquid Momentum Conservation 
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where Bfk is the body or gravity force for phase-k defined by � ����� singRB kkfk . The 
term Tkw is the wall shear stress for phase-k defined by Equations (2.30)-(2.31) while TI is 
the interfacial shear stress defined by Equations (2.20)-(2.21) for separated flows and by 
Equation (2.22) for dispersed flows. 
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From the generic two-fluid model (2.1)-(2.2), it can be seen that the gas pressure correction 
has been neglected � �0PGi ��  as suggested by Drew & Pasmann (1999) and that the liquid 
pressure correction term has been renamed Pc. Two expressions of this term were 
investigated here; one is given by Equation (2.15) while the other one is used by the 
TRIUMPH code [Bonizzi et al., 2001] and it is defined as: 
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2.7 Hyperbolicity Analysis of Specific Models 
 
In this section, a study of the characteristics or the hyperbolicity of the specific models 
presented above is performed. Discussions about whether non-real characteristics should be 
allowed abound in the literature [Stewart, 1979; Arai, 1980; Prosperetti & Satrape, 1989]. 
Those in favour note that, in general mathematical terms, the most serious pathology 
associated with complex characteristics is the destruction of the continuous dependence on 
the initial data at short scales, and that any numerical discretisation procedure would 
introduce a minimum resolvable scale and enough dissipation, so that any problems 
associated with smaller scales are irrelevant in practice.  
 
However, while analysing the stability of a broad range of incompressible two-fluid 
models, Prosperetti & Satrape (1989) showed that the stability is independent of the 
wavelength, implying that if the existence of complex characteristics leads to instability at 
short scales, the same instability will also be present at all scales. Hence, a non-hyperbolic 
model is bound to be unstable and any numerical result to the contrary must be a 
consequence of an excessively dissipative numerical scheme or, possibly, a slow growth 
rate of the instability. 
 
It is, therefore, necessary to always check the hyperbolicity of any specific model used. Not 
only does the characteristic analysis give the range of validity of the model, but it may also 
be useful in developing numerical methods used to solve the physical model.   
 
Before proceeding with the three specific models presented in the previous section, it is 
convenient to note that their governing equations can be algebraically manipulated into the 
following matrix or primitive form: 
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where MA and MB are two non-singular square matrices of coefficients which are functions 
of the dependent flow variables.  The vector � contains the dependent flow variables or 
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primitive variables, while the vector S expresses the algebraic source terms for the 
interfacial and wall transfers of mass and momentum.  
 
Hence, the dependence of their solution on prescribed initial data or the study of their 
characteristics can be reduced to an investigation of the equation:  
 
    � � 0MMdet AB ���      (2.45) 
 
where � is a characteristic value. 
 
 
2.7.1 HEM-3 
 
Consider the primitive vector � with � �GML

T ,V,R ��� , then the HEM-3 system of 
equations (2.32)-(2.34) can be written in primitive formulation (2.44) using the following 
matrices: 
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where GL ������  is the density difference and 
G

2
G

PC
��

�
�  is the square of the gas speed 

of sound. 
 
The eigenvalues k� of the homogeneous equilibrium model based on the equations are then 
obtained by solving Equation (2.45). Combining matrices MA and MB from Equation (2.46) 
gives the following matrix: 
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Thus, setting the determinant of the matrix (MB-��A) to zero leads to the following 
relation:  
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Expanding Equation (2.48) gives the following characteristic polynomial: 
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Hence, the three eigenvalues of the HEM-3 model are: 
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where �M is the mixture density defined by Equation (2.35) and the parameter CM is the 
homogeneous speed of sound given by the following expression: 
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It should be noted that the three eigenvalues are always real; therefore, the HEM-3 is 
always hyperbolic, confirming a result that is already known in the literature.  
 
 
2.7.2 PFM-2  
 
Consider the primitive vector � �T

GL V,R�� , then it is possible to rewrite the PFM-2 set 
of conservative equations (2.37)-(2.38) using the matrix formulation (2.44). However, this 
process is cumbersome and left to Appendix B. Only the matrices MA and MB used in the 
primitive formulation are given here: 
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where GL ������  is the density difference and LGr VVV ��  is the relative velocity.  
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The characteristic polynomial of the PFM-2 model is obtained by solving Equation (2.45). 
Combining matrices (2.51a) and (2.51b) gives: 
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Thus, setting the determinant of the matrix (MB - ��A) to zero, gives the following 
characteristic polynomial: 
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By dividing the previous equation by LR�� , the following characteristic polynomial is 
obtained: 
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Hyperbolicity Condition 
 
For the quadratic (2.55) to have real characteristics, its discriminant �S, which is given 
below, must always be greater than or equal to zero. 
 



 
 
 

 
 

36 

� � � � ��
�

�
��
�

�
��

	�

��
�
��
�


LL

L2
G

2
L

2
GL

S

A
Acosg

VV1VV  

 

� � � �
LL

L2
LG

S

A
Acosg

1VV
��

���
��������    (2.56) 

 
Thus, satisfying the hyperbolicity condition 0S

��  gives a simple relation also known as 
the Inviscid Kelvin Helmholtz (IKH) condition (Section 5.4.3), and defined as: 
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Eigenvalues 
 
Providing that 0S

��  or that the hyperbolicity condition (2.57) is satisfied, the two real 
characteristics of the PFM-2 model are given by: 
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where the discriminant �S is given by Equation (2.56) and the density ratio � is defined by 
the following equation: 
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2.7.3 SPM-4 
 
Consider the primitive vector � with � �GLGL

T ,V,V,R ��� , then the SPM-4 system of 
equations (2.41)-(2.42) can be written as Equation (2.44) using the following matrices: 
 



 
 
 

 
 

37 

�
�
�
�

�

�

�
�
�
�

�

�

�

�

��

	

0R00
00R0
0001

R00

M

LL

GG

GG

A ,   (2.60a) 

 

�
�
�
�

�

�

�
�
�
�

�

�

�

�

���

	

2
GLLLLc

2
GGGGG

LL

GGGGGG

B

CRVR0P
CR0VR0
0R0V
VR0RV

M    (2.60b) 

 

where 
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�  is the square of the gas speed of sound. 

 
 
2.7.3.1 Characteristic Polynomial 
 
The eigenvalues k� of the single pressure model (SPM-4) are obtained by solving 
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Hence, 
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The determinant of the matrix M1 can be easily calculated and it is given by: 
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The determinant of the matrix M2 is calculated as follows: 
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Combining Equations (2.62), (2.64) and (2.65), and dividing the obtained expression by 
� �2

GLLG RR�� , gives the following characteristics polynomial: 
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where the parameter �  is the density ratio given by Equation (2.59).  
 
In the next section, the hyperbolicity of the SPM-4 model for two different expressions of 
the pressure correction term Pc will be determined using the small perturbation method. In 
the first case, Pc is equal to the hydrostatic term defined by Equation (2.43), and in the 
second case, the pressure correction term is given similarly to Equation (2.16) as a function 
of the relative or slip velocity between the gas and liquid phases. This latter case will be 
called the bubbly correction term while the former will be named the stratified correction 
term.  
 
Before proceeding, define the dimensionless parameters:  
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Then by dividing equation (2.66) by 4

GC , the characteristic polynomial becomes: 
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Expanding equation (2.68), gives the following expression: 
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  � � � � � � 0p̂p̂~~~2~~2~ 2223422 ��������������������  
 

  � � � � 0p̂~2p̂1~~2~ 22234 �������������������    (2.69) 
 
 
2.7.3.2 Perturbation Analysis 
 
The eigenvalues of SPM-4 system of equations are the roots of the characteristic 
polynomial (2.66). These roots can be computed analytically using a very lengthy and 
tedious process (Ferrari method for example), but here, their first order approximation will 
be derived using a perturbation method around the small parameter Gr CV�� , similar to 
the work of Toumi (1996) and Masella (1997). 
 
For the vast majority of flows encountered in pipelines, the relative velocity Vr, which 
characterises the slip velocity between the two phases, is in general of order of a metre per 
second, while the speed of sound in the gas is of order of 200 to 300 meters per second 
depending on the composition of the gas. Consequently the parameter � remains small and 
it appears reasonable to develop the eigenvalues according to this parameter.  
 
The perturbation method around a small parameter is explained in detail in many numerical 
textbooks. Here, we shall recall the 1964 lemma due to Goursat [Masella, 1997], which is 
required for first order root approximation.  
 
 
Lemma  (Goursat) 
 
Consider a polynomial function � ��,xP  of a small parameter �, with real coefficients in x, 
given by: 

    � � � � � � � �xP
2

xPxP,xP 2

2

10
�

�����    (2.70) 

where P0(x), P1(x) and P2(x) are three polynomials with real coefficients.  
 
We look for the roots of the polynomial � ��,xP  in the neighbourhood of a root x0 of the 
polynomial P0(x). We distinguish two cases depending on whether x0 is a single or a double 
root of P0(x).  
 
Case a):  if x0 is a single root of the polynomial P0(x), then there exist a first order 
approximation function � ��x , differentiable in ���such that � �� � 0,xP ��� . The function 
� ��x  is given by: 
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    � � � ������� ozxx 10     (2.71) 
 
where z1 is defined as: 

     
� �
� �00

01
1 xP

xP
z

�
��      (2.72) 

 
and 0P� is the first derivative of the polynomial P0(x).  
 
 
Case b): if x0 is a double root of the polynomial P0(x), then there exist two first order 
approximation functions � ��x  and � ��y , such that � �� � � �� � 0,yP,xP ������ . The functions 
� ��x  and � ��y  are given by: 

 
  � � � ������� ozxx 10       and     � � � ������� ozxy 20   (2.74) 
 
where z1 and z2 are the roots of the quadratic function: 
 
    � � � � � � 0xPzxP2zxP 0201

2
00 ������    (2.75) 

 
and 0P �� is the second derivative of the polynomial P0(x), while 1P� is the first derivative of 
the polynomial P1(x). 
 
 
Stratified Pressure Correction 

For stratified flow, the expression 
x

RP L
c
�

�  in Equation (2.43) is generally replaced by the 

following hydrostatic expression: 
 

  � � � �
x

R
cosg

A
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x
h

cosgR
x

R
P L
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L
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L
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�

�
�

�
��

�

�
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�

�
 

where hL is the liquid height, AL is the liquid cross section area and 
L

L
L dh

dA
A �� .  

 

Hence, we have the hydrostatic term � ���
�

� cosg
A
A

P L
L

L
c , and the dimensionless term 

��
�

�
��
�

�

�
�

	



	 2
GL

L
2
GL

c

CA
cosgA

C
P

p̂ .  Then, the characteristic equation (2.69) can be rewritten as: 

 
� � � � � � 0~1~1~2p̂p̂1~~ 22224 ������������������    (2.76) 
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Combining relations (2.70) and (2.76) leads to the following polynomial expressions: 
 

   
� � � �
� � � �
� � � ��

�

�
�

�

����

�����

��	�������

2
2

2
1

24
0

~12~P

~1~2~P
p̂p̂1~~~P

    (2.77) 

 
Hence, the zeros of the polynomial � ��~P0  are given by solving the following relation:  
 
   � � 0p̂p̂1~~ 24 ���������      (2.78) 
 
Set 2~y �� , Equation (2.78) becomes a quadratic: 
 
   � � 0p̂p̂1yy2 ������      (2.79) 
 
The discriminant of equation (2.79) is given by: 
 

  
� � � �� �

� � � � �
�
��

�
� ����
�
��

�
� 	��
�

����	���
	���
�

22S

2S

p̂1p̂1

p̂2p̂1p̂2p̂1p̂4p̂1
   (2.80) 

 
�

S is always positive if 0cos0p̂ ����  
 
Hence, the two roots of Equation (2.79) are given by the following expression: 
 

   

� �

� �
�
�
�

��
�

�

�����
	

�����
	

�

�

2
p̂1y

2
p̂1y

S

S

     (2.81) 

 
It can be shown that the two roots are positive; for the first one y+ it is obvious (all terms 
are positive), and for the second root y-, we can find a positive minimum limit, viz. 
 

   
� �

2
p̂1

yy
S
max

min

�����
��

��  

 
and    � � � � S

max
22 p̂1p̂4p̂1 ������������  



 
 
 

 
 

42 

 
so     0yy min ��

��  
 
 
Hence, the four eigenvalues of Equation (2.78) can be expressed as: 
 

    

�
�

�

�
�

�

�
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���

�

�

�

�

y~
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y~
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4

3

2

1

      (2.82) 

 
Because the four eigenvalues in (2.82) are single root, we can only apply the case a) of the 
lemma of Goursat to obtain the first order approximation term z of the eigenvalues. 
 
From Equation (2.77), the derivative of the zero order polynomial � ��~P0  is given by: 
 
    � � � �� �p̂1~2~2~P 2

0 ����������     (2.83) 
 
so, the generic expression of z is then given by: 
 

    
� �
� �

� �
� �p̂1~2

~1
~P

~P
z

2

2

0

1

�����

��
�

��

�
��    (2.84) 

 
and for the four reduced eigenvalues 4,3,2,1

~
� , we have the following expressions: 
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    (2.85) 

 
The reduced eigenvalues expression is then given by: 
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     (2.86) 
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Hence for the stratified correction term, the four eigenvalues are real, provided that 
0cos ��� , and their expression is given as: 
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   (2.87) 

 
 
Bubbly Pressure Correction 
In this case, the pressure correction term is given by: 
 
   22

rLc p̂vP �������     (2.88) 
 
Equations (2.78) or (2.79) can then be rewritten as: 
 
  � � � � � � 01~~~1~21~~ 22224 ����������������������   (2.89) 
 
Combining relations (2.70) and (2.89) leads to the following polynomial expressions: 
 

   
� � � �� �
� � � �
� � � ��

�
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�

�

��������	�

���	�
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1

22
0

    (2.90) 

 
The zero order approximation of the reduced eigenvalues is given by � � 0~P0 �� , which 
leads to: 

 

�
�

�
�

�

����

��

��	��
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1~

4

3,2

1

    (2.91) 

 
�� The eigenvalues 1

~
�  and 4

~
�  are single roots, so we can apply case a) of the lemma of 

Goursat to find the first order approximation of those roots. 
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� � � �� ���������� 1~2~2~P 2
0     (2.92) 

  

Hence,   
� �
� � � � ��

��
�

����

��
�

��

�
��

11~2

~1
~P

~P
z

2
4,1

2
4,1

4,10

4,11
4,1   (2.93) 

  
and, the single root eigenvalues are given by:     

 

4,14,1 z1~
������ �     (2.94) 

 
�� The eigenvalue 3,2

~
� is a double root, so we apply case b) of the lemma of Goursat to 

find the first order approximations z2 and z3 of the double root. According to the 
lemma, z2,3 are the solutions of the following quadratic expression: 
 

� � � � � � 0~Pz~P2z~P 3,223,21
2

3,20 ���������    (2.95) 
 

From the system of equations (2.90), the following expressions are derived: 
 

    � � � �

� ��
�
�

������

	��������

2~6~P
12~12~P

2
1

2
0     (2.96) 

 
Then Equation (2.95), combined with Equations (2.90) and (2.96), gives the 
following quadratic: 

 
    � � � � 01z21z2 �������     (2.97) 
 

The discriminant of Equation (2.97) is given by: 
 
    � �� �������� 111D      (2.98) 
 

which leads to: 

  
��

��
�

1
1z

D

3,2
�  if �D > 0   (2.99) 

 
The expression of the reduced eigenvalues is then given by: 
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     (2.100) 

  
Hence, for the bubbly correction term, the four eigenvalues are real, provided that 

0D
��� , and their expression is given as: 
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    (2.101) 

 
 
 
Hyperbolicity Condition 
 
The condition of hyperbolicity for the bubbly correction term is given by 0D

�� and 
implies that: 
 

� �� � 0111 �������  

� �
��

����
1

11  

GLLG

LG
0 RR

R
1 ���

�
�

��

�
�����    (2.102) 

 
For the special case where there is no pressure correction term � �0�� , but the slip or 
relative velocity between the two phases is not null, Equation (2.98) gives ����D , which 
means the roots 3,2� are always complex, and the single pressure model SPM-4 is never 
hyperbolic. This result obtained by the perturbation method, confirms a finding that can be 
easily demonstrated when the two phases are assumed incompressible, like in the PFM-2 
model. 
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 for example 00d ���  in Equation (2.88), with the bubble correction 
esults in the four approximate eigenvalues always being real, and 
M-4 system of equations being hyperbolic.  

, in gas-liquid superficial velocity axes, the stability limit of the single 
 the hydrostatic pressure correction and various coefficients of the 
actor d0. The stability limit using the hydrostatic pressure correction 
s the IKH limit (2.57) obtained from an incompressible model. And 
mprove the stability limit by increasing the bubble correction factor, 
tee that the resulting model accurately describes the physical flow 
haracteristics that we seek to simulate. 

ion 

 modelling approaches existing in the literature, we have presented in 
ecific models that we have implemented for the applications described 
hese three models are the HEM-3 (Homogeneous Equilibrium Model), 
odels, one incompressible: the PFM-2 (Pressure-Free Model), and the 

ible: the SPM-4 (Single Pressure Model).  
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For numerical purposes and a better understanding of the main characteristics of these 
models, we have performed their stability analysis, more specifically, we have analysed 
their hyperbolicity condition. Hence, we have shown that the homogeneous equilibrium 
model is always hyperbolic, and that the two-fluid incompressible model is hyperbolic for 
flow conditions below the inviscid Kelvin Helmholtz (IKH) condition (2.57).  We have also 
shown that the four approximate eigenvalues of SPM-4 model are always real. However, it 
should be noted that these approximate eigenvalues are only valid for the small parameter 

%5�� , or more specifically, the relative flow velocity Vr should be less than 15 m/s if gas 
speed of sound is 300 m/s.  
 
Furthermore, the reader should be warned against a confusion sometimes found in the 
literature, which suggests that the single pressure model SPM-4 is always hyperbolic. 
Though the approximate eigenvalues are always real, the true eigenvalues can be complex, 
and a numerical evaluation of these reveals that the condition of hyperbolicity or limit of 
validity of the SPM-4 model is similar to the two-fluid incompressible model PFM-2 i.e. 
critical flow above the same IKH condition (2.57). 
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3 Chapter 3 - Numerical Methods 
 
 
 
 
 

3.1 Introduction 
 
The governing equations described in the previous chapter cannot be solved analytically 
except for very simple cases, and for physical problems of interest, there is no alternative to 
computational methods for resolving these equations. Therefore, this chapter deals with the 
approach and resolution techniques that were used to handle these systems of equations. 
 
The chapter starts with a brief description of various numerical approaches for solving two-
phase flow models, as well as an explanation of the one that was adopted in this thesis. 
Following is the general formulation of the governing equations describing these models 
and their numerical discretisations. Then a presentation of the numerical schemes for 
conservative terms is given, followed by the methods adopted for non-conservative terms 
existing in the equations. The next section describes constraints imposed on the numerical 
schemes, notably the time step restriction and the boundary conditions.  
 
The last two sections deal with validation test cases for the numerical schemes 
implemented. Firstly, we present the results of these schemes for two well-known model 
equations (Burgers and Shallow Water). The cases from these two single-phase models are 
used as a test-bed for the convergence and accuracy of our numerical methods; they provide 
confidence in the numerical schemes, as analytical solutions for the selected cases are 
known. Secondly and finally, we describe various test cases that were used to validate the 
three specific two-phase flow models presented in the previous chapter.  
 
A small summary, reporting the findings from the numerical schemes and cases tested, will 
conclude the chapter, as well as the recommendation choice for the methods adopted. 
 
 

3.2 Numerical Approach 
 
Over the past two decades, important advances have taken place in computational fluid 
dynamics (CFD) with the aim of increasing numerical accuracy through the development of 
high-resolution schemes [Harten, 1983; Yee, 1989], improving efficiency through devising 
better solvers and solution algorithms [Patankar, 1981], and increasing the use of multigrid 
and mesh refinement techniques. 
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While all these advances have led to accurate, robust and efficient numerical solvers for the 
simulation of single phase flows, the developments in multi-fluid solution algorithms have 
lagged behind compared to single-fluid algorithms, partly because of the higher 
computational cost involved, and partly due to the numerical difficulties (non-hyperbolic 
and non-conservative model issues) associated with the simulation of multiphase flows.  
 
Despite these difficulties, successful numerical methods have been designed for the 
computation of two-fluid models. These algorithms can be divided into two groups based 
on the treatment of the pressure term. The first group includes segregated pressure-based 
solution algorithms and among them one finds the inter-phase slip algorithm (IPSA) and its 
variants devised by Spalding (1980, 1983), the implicit multi-field algorithms (IMF) 
proposed by Harlow & Amsdem (1975), Stewart (1979), and Mahaffy (1982), or the 
implicit method embodied in the TRIOMPH code at Imperial College [Issa & Kempf, 
2003].  
 
[Darwish & Moukalled, 2001] have recently reviewed this group of methods, which 
generally use a finite volume approach on staggered grids. Unfortunately, in contrast with 
the widespread information available on the solution algorithms of their single-fluid 
counterparts, much less information is available on multifluid solution procedures, a fact 
that has confined their implementation to a small community, slowed their development, 
and isolated them from the newer developments in single-fluid flow algorithms (all speed 
flows, etc.). 
 
Furthermore, their lack of generality has led many researchers to develop a second group of 
algorithms, which includes approximate Riemann solvers, upwind methods, flux splitting 
methods and other high resolution shock-capturing methods [Stadke et al., 1994; Toumi, 
1996; Tiselj & Petelin, 1997; Faille & Heinze, 1999; Romate 2000] for two-phase models. 
All these methods are generally adaptation of single-phase versions, and reviewing these 
single-fluid schemes is beyond the scope of this thesis. 
  
There is no clear indication in the literature for the selection of an appropriate numerical 
scheme for two-phase flow applications. Therefore, the approach adopted here is based on 
this second group of methods because they are much simpler to implement, and their 
widespread description makes them easy to generalize, which is an important development 
aspect when designing a solution algorithm for many mathematical models.  
 
However, our purpose is not to create or devise new numerical schemes. Hence, following 
the approach of Saurel & Abgrall (1999) for their two-fluid algorithm, we will use or 
combine of existing single-fluid schemes so that they can handle the three specific models 
(HEM-3, PFM-2 and SPM-4) described in the previous chapter.  
 
It should be noted that various mathematical concepts, such as convergence, consistency 
and stability, which are useful in determining the success of numerical algorithms, are not 
investigated in this chapter but can be found in many numerical textbooks [Hirsch, 1990; 
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Laney, 1998]. Hence, the following sections only describe the numerical schemes that were 
implemented in the EMAPS framework.  
 

3.3 Formulation & Discretisation of Equations 
 
3.3.1 General Formulation  
 
The governing equations of the three specific models presented in the previous chapter fall 
in two different categories of numerical formulation and therefore, require different 
numerical schemes or resolution techniques. The homogeneous model HEM-3 and the 
incompressible model PFM-2 model are known as conservative systems defined by: 
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�       (3.1) 

 
where Q is a vector field of conservative variables, typically mass and momentum. The 
vectors F and S are algebraic functions of Q only, and respectively express the fluxes and 
source terms appearing in the appropriate model.  
 
On the other hand the single pressure model SPM-4 is a non-conservative system and can 
be expressed as: 
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where the first term xQH ��  in the right hand side of Equation (3.2) is a matrix-vector 
product that contains all the non-conservative terms present in the model. The remaining 
vectors Q, F and S have similar meanings to those of the conservative formulation (3.1). 
For completeness, the vector and matrix forms, of the three specific models mentioned in 
this section, are explicitly given in Appendix C. 
 
3.3.2 Discretisation of Equations 
 
The approach adopted here is the finite difference method, widely used in computational 
fluid dynamics (CFD) and described in many numerical textbooks [Fletcher, 1988; Hirsch, 
1990; LeVeque, 1990; Toro, 1997; and Laney 1998]. The essence of this method is to 
replace partial derivatives in the governing flow equations with algebraic difference 
quotients, resulting in a system of discrete difference equations for the dependent variables 
at each grid or mesh cell. For the conservative system (3.1), the finite difference 
discretisation leads to the following expression: 
 

� � j21j21j
n
j

1n
j tSF̂F̂QQ ������

��

�     (3.3) 



 
 
 

 
 

58 

 

where �t is the time step, 
x
t

�

�
��  (with �x the mesh size), and F̂  is the numerical flux, 

which expression defines the numerical conservative scheme. The subscript j represents the 
mesh cell index, while the superscripts n and n+1 are time indexes, representing 
respectively the old and new or updated time values. 
 
For the non-conservative formulation (3.2), the finite difference discretisation can be 
expressed as: 
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   (3.4) 

 
The numerical flux term (NFT), the non-conservative term (NCT) and the source term Sj in 
expressions (3.3) or (3.4) can be evaluated at the old or new time increment (n or n+1) 
leading to either an explicit or an implicit numerical method. As for choosing between 
these two types of approaches, we opt for explicit schemes because they are relatively easy 
to set up and program. Advantages and disadvantages of these two approaches can be found 
in the book by Wendt (1996) or in the paper by Yee (1989). 
 
It should be noted that the conservative formulation (3.1) and its discretisation (3.3) are 
fully embodied in their respective non-conservative expressions (3.2) and (3.4), in which 
cases the matrix coefficient H is set to zero. Therefore, the non-conservative formulation 
and discretisation, which are more generic than their conservative counterparts, were used 
to construct the single solution algorithm that has been implemented in the EMAPS 
framework.  
 
Hence, to advance explicitly the vector solution Q in time for any of the mathematical 
models studied, we use the following expression: 
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where the increment vector �Q at a mesh point labelled j is derived from the non-
conservative expression (3.4) and is given by: 
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The superscript n in Equation (3.6) means that the increment vector is obtained using old 
time step solution vectors Qn, for example the numerical source term value at mesh cell j is 
defined by � �n

j
n
j QSS � .  
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The numerical expressions for the flux term F̂ , referred to here as conservative flux 
methods, are given in the next section, while the numerical expressions for � �n

jxQH �� , 
known as non-conservative terms methods will be defined in Section 3.5. 
  
  

3.4 Methods for the Conservative Flux 
 
The numerical flux schemes that we have implemented can be classified, in terms of 
accuracy, as first order, second order and high-resolution methods (second order in the 
smooth regions of the solution and first order where there are discontinuities or shocks in 
the solution).  
 
They are grouped into two categories, namely central and upwind methods. Originally, we 
focused on central schemes, because we needed a general-purpose solver for hyperbolic 
conservative systems describing multiphase flow phenomena. These schemes were selected 
so that they do not require any algebraic manipulation of the Jacobian of the flux vector, or 
any knowledge of the characteristics of the model simulated. 
 
Although the central flux schemes can be easily used to solve any conservative one-
dimensional model, they were sometimes found not to be accurate and robust for some flow 
situations. Therefore, a second group of numerical flux methods based on the knowledge of 
the model characteristics were implemented to deal with these problems. 
 
Hence, the first part of this section describes the four central schemes investigated, while 
the second part presents the two characteristics based schemes that were implemented.  
 
 
3.4.1 Central Schemes 
 
3.4.1.1 Lax-Friedrichs 
 
This scheme is the simplest and most common explicit method found in numerical 
textbooks [Hirsch, 1990; Toro, 1997]. It belongs to the Lax family of central schemes, and 
it is first order in space and time. Its intercell flux expression is given as:  
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where the numerical flux value at mesh point j is defined by � �n

j
n
j QFF �  with the function 

F representing the physical expression of the flux terms described by the mathematical 
model under investigation.  
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3.4.1.2 Ritchmyer (Lax-Wendroff Two-Step) 
 
Most numerical schemes are based directly on finite difference approximations to the 
Partial Differential Equations (PDEs). An exception is the Lax-Wendroff central scheme, 
which is based on the Taylor series approximations. The book by Hirsch (1990) describes 
the one-step version of the scheme and it is not repeated here. It is second-order accurate in 
time and space, but requires an evaluation of the flux vector Jacobian when using it. On the 
other hand, the two-step scheme that follows removes the need to compute the Jacobian of 
the flux vector resulting in a gain in computational time and simpler programming. 
 
Two different versions of the two-step scheme exist in the literature, the McCormack 
version, which is popular in the Aeronautics community, and the Richtmyer version, which 
is described here. These two versions lead to almost identical solutions, but in our view the 
Richtmyer version is the most effective and simpler one to implement. It is characterised by 
an intermediate first step applying the Lax-Friedrichs scheme to midpoints, and a second 
step that is the application of a leapfrog scheme (for a description of the leapfrog scheme, 
see for instance the book by Hirsch (1990). In the conservative formulation, this second 
order flux scheme is defined by: 
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where the intermediate vector solution 21jQ

�
is given as: 
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The average vector n

21jQ
�

 is expressed as follows: 
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Note that the implementation of the Richtmyer scheme is actually done in the reverse order 
(from relation (3.8c) to (3.8a)) to the one presented above. 
 
 
3.4.1.3 Force 
 
The Lax-Friedrichs and Richtmyer schemes presented above are almost never used for 
practical fluid flow applications. The first one is extremely diffusive and will damp most 
flow features, and the second scheme is dispersive (like most second order schemes), and 
may induce numerical spurious waves, or oscillatory solutions, which are termed 
“wiggles”.  To avoid the well known ill-effects of these two schemes, Toro (1997) 
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proposed a simple deterministic first-order centred scheme (force), in which the intercell 
flux is in fact an arithmetic mean of the Lax-Friedrichs flux (3.7) and the Richtmyer flux 
(3.8). It is therefore given by: 
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2
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3.4.1.4 Flux Corrected Transport (FCT) 
 
This method developed by Boris & Book (1973) and Book et al. (1975) was the first high-
resolution scheme to introduce the concept of limiters in the literature. It can be seen as a 
“predictor/corrector” method in which a large amount of diffusion is introduced in the 
predictor stage, and an (almost) equal amount of anti-diffusion is introduced in the 
corrector stage. However, the anti-diffusion is limited so that no new maximum or 
minimum can appear in the solution, nor can existing extrema be accentuated. 
 
Let Qn be the previous time step solution, and Q~  be the new updated solution generated by 
the second-order Ritchmyer scheme (3.8), then the FCT algorithm described below consists 
of five steps, and can be found in the second volume of the book by [Fletcher, 1988].  
 

1. Generation of diffusive fluxes 
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2. Diffusion of the solution 
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3. Generation of anti-diffusive fluxes 
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4. Limitation of the anti-diffusive fluxes 
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5. Generation of intercell flux 
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For our algorithm, the diffusion and anti-diffusion coefficients � and � have been taken 
constants, and both equal to 0.125 as suggested by Lezeau & Thompson (1999). 
 
 
3.4.2 Characteristics Based Schemes 
 
We have implemented two schemes that use the maximum eigenvalue or characteristic of 
the model studied. The first one is a first-order scheme while the second one is a high-
resolution scheme using the Total Variation Diminishing (TVD) approach [Harten, 1983]. 
Theses two schemes were selected because they do not use a local Riemann solution [Toro, 
1997], and can therefore be applied to any system of conservation laws without a full 
knowledge of the characteristic waves. They are respectively known as Rusanov and TVD 
Lax- Friedrichs, and are described below. 
 
3.4.2.1 Rusanov 
 
For general non-linear systems in one dimension, the simplest characteristic based flux 
scheme is the first order Rusanov scheme, for which the intercell flux takes the form: 
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where 21j��  is an average wave speed value. Various choices are possible for its estimate, 
but here we use the upper bound of the absolute values of the characteristic speeds in either 
cell as suggested by Trangenstein (2000). Hence, it is given by: 
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where Neq is the total number of partial differential equations in the model, for example two 
for the incompressible two-fluid model PFM-2 and three for the HEM-3 model. 
 
3.4.2.2 TVD Lax-Friedrichs 
 
In order to limit the excessive diffusion generated by the Lax-Friedrichs scheme, Yee 
(1989) proposed a TVD version of the scheme using the van Leer (1979) MUSCL 
approach. The resulting scheme is still slightly more dissipative than the use of the first-
order upwind scheme. Therefore variations of this scheme have been recently presented in 
the literature, a simplified version was suggested by Barmin et al. (1996) while the version 
implemented here was proposed by Tóth & Odstrčil (1996) as: 
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The left and right state vectors denoted by QL and QR are formed from an intermediate state 

21nQ �  (3.12c) and the limited differences nQ�  (3.12f) as: 
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The intermediate vector or predictor step value is given by: 
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The dissipative limiter LR

�  in Equation (3.12a) is a function of QLR (some symmetric 
average vector of QL and QR), and of the spatial difference vector LRLR QQQ ��� . Yee 
(1989) originally defined LRLR Q���  not making use of any characteristic wave speed, 
but as already mentioned this leads to a very diffusive scheme. Hence, to reduce the 
numerical diffusion, Barmin et al. (1996) and Tóth & Odstrčil (1996) multiplied LR

Yee�  by 
the local courant number and proposed the following relation: 
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Cockburn et al. (1989) used the expression (3.11b) for their value of max

21j��  in the above 
equation. In this case, the scheme has the same diffusion coefficient as the Rusanov scheme 
described in the previous section, and should be called MUSCL-Rusanov instead of TVD 
Lax-Friedrichs.  Here, we use the relation proposed by Barmin et al. (1996), which is 
computationally less expensive than the expression (3.11b). This relation was also adopted 
by Tóth & Odstrčil (1996) and it is given as: 
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There are many flux limiter functions defined in the literature [Yee, 1989; Tóth & Odstrčil, 
1996], but for the limited differences nQ�  in Equations (3.12b) and (3.12c), we opt for the 
simple Minmod function described by Equation (3.14), and therefore use the following 
relation: 
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The programming of the TVD Lax-Friedrichs scheme does not exactly follow the 
description given above. Therefore, the proper sequence for implementing this scheme is 
(3.12f), (3.12c), (3.12b), (3.12e), (3.12d) and (3.12a).  
 
 

3.5 Methods for the Non-Conservative Terms 
 
The generic discretisation (3.4) involves flux conservative terms, which can be expressed 
using any of the numerical flux schemes described above, and non-conservative terms 

xQH ��  that need to be dealt with more carefully. Several types of simple spatial 
discretisation for these terms have been implemented and are listed below: 
 
3.5.1 MinMod Scheme 
 
Coquel et al. (1997) suggested this type upwind discretisation for their two-fluid model, 
and proposed the following relation:  
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where the Minmod function is defined by: 
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The discretisation (3.13) is first order in space and was named Minmod-1 in the EMAPS 
framework. It was found to be very diffusive; therefore a second order version proposed by 
Harten (1989) was implemented. It is given by: 
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where the function 
 

 � �
� �

�
�
� ��

�
otherwise0

)z(sign)y(sign)x(signifz,y,xmin.s
z,y,xmodMin  (3.16) 

 
The non-conservative terms discretisation (3.15) was named Minmod-2 in the code. 
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3.5.2 Centred Scheme 
 
A simple central discretisation has also been implemented for the non-conservative terms. 
It is second order in space, and is given by: 
 

   
x2
QQ

H
x
QH

n
1j

n
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j �

�
��

�

	


�

�



 ��      (3.17) 

 
This centred spatial discretisation usually generates spurious oscillations; therefore the non-
conservative terms are generally expressed using the second-order Minmod-2 scheme 
described above.  
 
 

3.6 Constraints on Numerical Methods 
 
For the numerical schemes described above to successfully simulate physical problems, 
appropriate boundary conditions need to be implemented. The approach adopted for these 
conditions is described later in this section, but first we present the procedure of selecting 
time step �t used by the computational schemes, because while the user may freely specify 
the mesh size �x, the time step size is usually restricted to the stability condition of the 
particular numerical scheme used. 
 
3.6.1 Time Step Size 
 
The mathematical models and numerical schemes described above were implemented in an 
adaptive mesh refinement (AMR) framework. The full details of this automatic spatial 
refinement technique will be presented in the next chapter, and a short description can be 
found in the paper by Omgba-Essama et al. (2000).  
 
Hence, the spatial discretisation length �x is generally dictated by the AMR scheme 
depending upon the desired accuracy. As for the time step �t appearing in the discrete 
equations, the explicit formulation of the numerical schemes constrains its size with the 
usual Courant-Friedrichs-Levy (CFL) number. It is therefore given by:  
 

    n
max

xCFLt
�

�
��      (3.18) 

 
where CFL is a positive coefficient restricted to a limiting value, usually one. The closer 
this coefficient is to its upper limit, the more efficient is the numerical time marching 
scheme. For all the numerical schemes described above, except for FCT, their stability 
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analysis requires the value CFL <= 1, but for the FCT scheme, Sod (1985) showed that the 
CFL value should be less than 0.5.   
 
The term n

max�  in Equation (3.18) is the largest wave speed present throughout the domain 
at time level n. It is estimated for the mathematical models HEM-3, PFM-2 and SPM-4 as 
the largest absolute value of their analytical characteristics defined in the first chapter. 
Hence, for a system of k differential equations in a computational domain with M cells 
(Figure 3-1), this term is given as: 
 
  � � Neq,1k;M,,1jformaxmax k

jkj

n
max ����� �   (3.19) 

 
It should be noted that for the single pressure model SPM-4, the approximate eigenvalues 
described in the previous chapter are only valid for the small relative velocities compared to 
gas speed of sound (Vr/CG < 5%). Therefore to obtain the eigenvalues for this model, we 
use a combination of analytical approximate values and numerical exact values calculated 
by the numerical recipes [Press et al., 1992] function “HQR” for solving arbitrary matrix 
eigenvalues. 
 
3.6.2 Boundary Conditions 
 
For a computing domain [0, L] discretised into M computing cells of length �x, we need 
special conditions at the boundary positions x = 0 and x = L as illustrated in Figure 3-1. 
These boundary conditions are expected to provide for example the numerical fluxes 

21F̂ and 21MF̂
�

, which are required by finite difference discretisation such as (3.3) or (3.4) in 
order to advance the extreme cells 1 and M to the next time level. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1: Boundary Conditions. Fictitious cells outside the computational domain are 
created (Toro, 1997) 

 
For each mesh cell of the computational domain, two numerical fluxes are required to 
update the vector solution n

jQ . However, for cells 1 and M, which are adjacent to the left 
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and right boundaries respectively, we only have one intercell flux. Hence, some special 
procedure needs to be implemented. Let us consider the left boundary x = 0. As mentioned 
by Toro (1997), one possibility is to assume a boundary function Q1(t) prescribed there. 
Then we could define an intercell flux at the boundary by setting � �)t(QFF̂ 121 � .  
 
A more attractive alternative, which is adopted in EMAPS, is to specify a fictitious (also 
referred to as ghost or dummy) cell 0 to the left of the boundary x = 0 together with a cell 
average n

0Q , at each time level n, so that the missing intercell flux 21F̂ can be solved using 

� �n
1

n
0 Q,Q . For the right boundary, we prescribe a fictitious cell M+1 and a cell average 

n
1MQ

�
 to find the intercell flux 21MF̂

�
. The prescription of these fictitious states or boundary 

conditions depends entirely on the physics of the particular problem at hand. 
 
 

3.7 Numerical Validation of Single-Phase Models  
 
Since there are no non-trivial analytical solutions to two-phase flow problems against 
which to compare the numerical results, confidence in the numerical simulations is 
enhanced by utilizing other unrelated numerical schemes or by solving mathematically 
similar problems with known solution from other disciplines. This motivated the validation 
work on single-phase models. Two simple and well-known one-dimensional systems, 
namely the Burgers and Shallow water equations, were used to analyse and assess the 
accuracy and robustness of the numerical schemes implemented. Their description is 
presented in this section.  
 
3.7.1 Inviscid Burgers Model 
 
3.7.1.1 Equation 
 
The inviscid Burgers equation is a single non-linear equation given in conservative form by 
equation (3.20). The simplicity of its convective term makes this scalar equation a very 
suitable model for testing computational algorithms for flows where severe gradients or 
shocks are anticipated. 
 

    � � 0
x

2/u
t
u 2

�
�

�
�

�

�      (3.20) 

 
The variable u in relation (3.20) is the fluid flow axial velocity, and although this inviscid 
equation is mainly used nowadays for algorithmic and not physical purposes, it should be 
mentioned that the original Burgers equation, which is reviewed and studied by Benton & 
Platzman (1972), contains a viscous term and it is special case of some mathematical 
models of turbulence. 
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3.7.1.2 Analytical Solution (Riemann Problem) 
 
For any scalar conservation equation, or any system of conservation laws such as the one-
dimensional Euler equations, the Riemann problem [Toro, 1997; Laney, 1998] has uniform 
initial conditions on a finite spatial domain, except for a single jump discontinuity. For the 
Burgers equation, the initial data are given by: 
    

�
�
�

�

�
�

dR

dL

xxu
xxu

)0,x(u      (3.21) 

 
where uL and uR are constant left and right velocity values, and xd is the location of the 
discontinuity. 
 
The Riemann problem has an exact analytical solution, and the form of this solution 
depends on the relation between uL and uR. If (uL > uR), the solution is called a shock wave, 
while it is referred to as a rarefaction wave in the opposite case. For xd = 0 in expression 
(3.21), the exact solution as described in the book by Toro (1997) is: 
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   (3.22) 

 
The parameter S is the shock wave velocity, the speed at which the discontinuity travels. If 
the discontinuity position xd is different from zero, then the above solution remains valid 
providing that x is replaced by (x-xd).  
 
A more detailed discussion on the solutions of the Riemann problem for the inviscid 
Burgers equation can be found in numerical textbooks [LeVeque, 1992; Toro, 1997]. For 
general analysis of other solutions of the Burgers equation, we refer the reader to the paper 
by Benton & Platzman (1972) and the book by Whitham (1974).  
 
3.7.1.3 Numerical Results 
 
The results presented in Figure 3-2 are for a shock wave case at 1.5 sec, where the initial 
velocities are uL = 1 m/s, and uR = 0.5 m/s, and the initial shock position is xd = 0.2. 
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Figure 3-2: Burgers results for central schemes at time = 1.5 s, using 100 cells. 
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Figure 3-3: Burgers results for upwind schemes at time = 1.5 s, using 100 cells. 
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The pipe length is 2 m, and the number of cells is set to 100 giving a mesh size �x of 0.02 
m. Figure 3-2 shows the comparative results for all the central schemes described in 
Section 3.4.1, while Figure 3-3 compares the results of the two characteristics based 
schemes described in Section 3.4.2 with the analytical solution (3.22). 
 
All the simulations presented in Figures 3-2 and 3-3 use a CFL value of 0.2 to calculate the 
time step. Though not providing the most accurate results for the test in hand, this value 
was selected for all single-phase flow validations for two reasons. Firstly, because it 
highlights a bit better the differences between the numerical schemes evaluated, and 
secondly and more importantly because it is the CFL value generally used for two-phase 
flow simulations presented later in this thesis. 
 
In general, the characteristic-based schemes are less diffusive and more accurate than the 
central ones. But for the Burgers equation, we found that the FCT scheme is the most 
accurate, followed closely by the TVD Lax-Friedrichs scheme, then the Rusanov and Force 
schemes. The Lax-Friedrichs results appear the least accurate of all the numerical results, as 
the scheme easily spreads the initial cell discontinuity over many cells while advancing in 
time.  
 
As for the Ritchmyer scheme, it is very dispersive and generates spurious oscillations near 
the discontinuity, which may be unstable for long or more complex simulations, and 
probably crash the code as a result. Therefore, we will no longer consider this scheme alone 
for further numerical simulations; however it will still be used by the FCT and the Force 
schemes, as it remains one of the building blocks of these schemes. 
 
 
3.7.2 Shallow Water Model 
 
3.7.2.1 Equations 
 
This system describes the height h of a free water surface in a stream with velocity u 
[Whitham, 1974]. It was selected for numerical validation, not only because of known 
analytical solutions, but also because its system of equations is analogous to the two-phase 
incompressible model PFM-2 presented in the first chapter, see the paper by Watson (1990) 
for similarities. Referring to the conservative formulation (3.1), the shallow water equations 
can be written as follows: 
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where g is the gravitational acceleration constant. The physical properties of the flow are 
directly related to the mathematical properties of the model simulated, and in the case of the 
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shallow water system, we can obtain the two characteristic velocities �1,2 by calculating the 
eigenvalues of J, the Jacobian of the flux vector F.  
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FJ 2     (3.24) 

 
These velocities represent the speed of propagation of the two wave fronts (see Figure 3-4) 
and are given as: 
 
     ghu2,1 ���     (3.25) 
 
3.7.2.2 Analytical Solution (Dam Break Problem) 
 
The dam break test simulates the rupture of a barrier placed across a channel. The initial 
conditions for this physical problem are:  
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Louaked & Hanich (1998) presented the analytical solution for this problem as:  
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The terms hm and um are defined in function of the wave propagation velocity s as: 
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where s is the positive real solution of the following equation: 
 
   0gh2gh2u Lmm ���      (3.31) 
 
The root finding program for solving Equation (3.31), and consequently deriving the dam 
break analytical solution, uses an iterative scheme such as the dichotomy method, which 
can be found in the numerical recipes book [Press et al., 1992]. However, this exact 
solution was kindly provided to us by Dr Hanich, one of the authors of the paper mentioned 
above. 
 
3.7.2.3 Numerical Results 
 
The initial heights for the test simulated were hL = 0.1 and hR = 0.5 with a discontinuity 
located at 0.5 m, which is half of the axial distance used for the simulation. 
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Figure 3-4: Shallow Water [Dam Break]. Height Profile at T = 0.1s for Central and 
Upwind Schemes. 
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Figure 3-5: Shallow Water [Dam Break]. Velocity Profile at T = 0.1s for Central and 
Upwind Schemes. 

 
 
Figures 3-4 and 3-5 show the height and velocity profiles obtained with the Shallow Water 
model at 0.1 second when using the central and upwind schemes previously described. In 
terms of accuracy, we found identical trends to those of the Burgers equation. The high-
resolution FCT and TVD Lax-Friedrichs schemes remain the most accurate while the Force 
and Lax-Friedrichs are the least accurate ones. 
 
The Lax-Friedrichs scheme is so dissipative that it easily damps discontinuities and can 
lead to the disappearance of shock fronts for long simulations, even with fine meshes. This 
fact is undesired for some two-phase flow simulations, in particular slug flow where the 
front of the slug can be viewed as a hydraulic jump. Therefore, this scheme will not be 
considered for two-phase flow simulations, leaving only four flux schemes, two central 
(Force and FCT) and two upwind ones (Rusanov and TVD Lax-Friedrichs) for evaluation. 
 
It should be noted that other numerical tests were performed with this model [Omgba-
Essama, 1999], and with the single-phase Euler equations [Omgba-Essama, 2000]. They 
are not reported here because our primary focus is on multiphase flows, and because they 
lead to similar conclusions to those mentioned above, concerning the accuracy and 
robustness of the numerical schemes implemented. 
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3.8 Numerical Validation of Two-Phase Models 
 
In this section, we present various test cases for validating the three specific models 
described in the first chapter. The purpose of these tests is not necessarily to assess the 
ability of the physical models to accurately predict salient two-phase flow features for 
problems of interest, but to evaluate the accuracy and robustness of the numerical methods 
in predicting simple cases found in the literature, with known or unknown analytical 
solutions.  
 
 
3.8.1 IFP Test-Case 
 
3.8.1.1 Problem Summary  
 
The French Petroleum Institute (IFP) proposed this simple but meaningful test case in order 
to evaluate the numerical performance of our implementation. An isothermal gas-liquid 
simulation of a long horizontal pipeline of constant diameter is performed. For a given 
combination of inlet flow rates and outlet pressure, there exists a steady-state solution. The 
gas mass flow rate is then quickly doubled. As a result, a volume fraction wave propagates 
down the line. When it reaches the outlet, the line has settled in a different steady state. The 
specifications of the problem are as follows: 
 

�� Length of the pipeline: 10 km 
�� Diameter of the pipeline: 0.146 m 
�� Operating fluids: air and water (�G variable,��L = 1000kg/m3) 
�� Flow temperature: T = 5��C 

 
The objective of this test is not only to correctly predict the holdup wave propagation, but 
also to evaluate the ability of the numerical schemes to handle frictional source terms, 
which have a major effect in the pipeline problems we are interested in. For this test case 
only the HEM model was used, as comparisons with TACITE drift-flux model are possible, 
and therefore only the wall friction factor fw in relation (2.36) is required for the two-phase 
mixture and it was taken constant and equal to 0.02. 
 
3.8.1.2 Initial & Boundary Conditions 
 
Figure 3-6 describes the operating conditions for this test case. The inlet liquid mass 
flowrate is constant and equal to 20 kg/s, while the gas mass flowrate is initially equal to 
0.2 kg/s, then it is doubled to 0.4 kg/s in a linear ramp between t = 1000s and t = 1010s.  
 
The outlet pressure is kept fixed at 10 bar, and referring to equation (2.7) relating the gas 
density to the pressure, the perfect gas law is utilized and expressed as:  
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�
     (3.32) 

 
where the normal conditions are given by: Pnorm= 1 bar, Tnorm= 300 K, �norm = 1 kg/m3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-6: Schematic of operating conditions for the IFP test case 
  
 
3.8.1.3 Numerical Results (HEM-3) 
 
Various effects have been studied using the homogeneous equilibrium model (HEM-3) in 
combination with the numerical schemes described earlier in this chapter, and they are 
reported in this section. 
 
FCT Diffusion Effect 
 
The diffusion (d) and anti-diffusion (ad) coefficients implemented in the FCT scheme 
described in Section 3.4.1.4 were suggested by Lezeau & Thompson (1999), and are both 
set equal to a constant value of 0.125. As already mentioned, these coefficients work 
perfectly well for most problems with discontinuities and suppress unwanted oscillations, 
giving highly accurate resolutions for all single-phase flow cases presented in the previous 
sections. However, for two-phase flow problems, they sometimes lead to artificial wiggles 
near the discontinuity (Figure 3-7), so we performed an analysis of the effect of these 
diffusive coefficients for the IFP test case.  
 
The results of slightly varying the diffusion coefficient while keeping the anti-diffusion 
coefficient constant are presented in Figure 3-7. They show that increasing the diffusion 
coefficient by a small amount such as 1%, can remove the unwanted numerical wiggles, 
while maintaining a sharp resolution of the discontinuities. Therefore, the implementation 
of the FCT scheme was modified accordingly and all two-phase flow numerical results 
presented in this thesis were obtained with the FCT scheme that uses constant coefficient 
values 0.126 and 0.125 for diffusion and the anti-diffusion parameters respectively. 
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Figure 3-7: HEM-3 [IFP Case]. Effect of the FCT diffusion and anti-diffusion coefficients 

 
 
Schemes Comparison 
 
Figure 3-8 summarises the solutions obtained on a uniform grid (�x = 40 m) for a one-hour 
simulation with different numerical schemes. These results show that while a global 
variable such as the pressure drop can be accurately predicted by any of the numerical 
methods implemented, even first order ones, other quantities such as holdup or mass 
flowrates require high-resolution schemes for an accurate description of their behaviour.  
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Figure 3-8: HEM-3 [IFP Case]. Numerical schemes comparison for the liquid hold-up and 
mass flowrate (top), the gas mass flowrate and common pressure (bottom) at t = 1 h. 
 
Mesh Refinement Effect 
 
Figure 3-9 summarises the behaviour of the numerical solutions obtained using the TVD 
Lax-Friedrichs scheme with different grid sizes. The results show that the finer the mesh 
size is, the more convergent the solution is, evidence of a well-behaved numerical model.  
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Figure 3-9: HEM-3 [IFP Case]. Mesh Refinement for the liquid holdup (top), the gas and 
liquid mass flowrates (bottom) at time = 1 hour, using the TVD Lax-Friedrichs scheme. 
 
Flow Evolution 
 
Figure 3-10 presents the time evolution of the liquid holdup and gas mass flowrate at 
different time steps using the FCT scheme. These results are in good agreement with those 
obtained by TACITE commercial software, and reported by Lezeau & Thompson (1999). 
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Figure 3-10: HEM-3 [IFP Case]. Time evolution of the liquid hold-up (top) and the gas 
mass flowrate (bottom) using the FCT scheme with 500 grid cells. 

 
All the numerical results presented for the IFP case clearly demonstrate the importance of 
high-resolution numerical schemes. As with single-phase cases, the FCT and the TVD Lax-
Friedrichs are the only viable schemes for simulations over a long period of time. For the 
IFP case, low-order schemes such as Force or Rusanov dissipate the strength of the holdup 
front discontinuity (Figure 3-8) in a way that it can disappear in time, even with the use of 
fine grid cells.   
 
 
3.8.2 Water Faucet Case 
 
3.8.2.1 Problem Summary 
 
This popular problem, devised by Ransom (1987), consists of a liquid stream entering a 
vertical solution space at the top and falling under the action of gravity to form a stream of 
uniformly decreasing cross-section. It is illustrated schematically in Figure 3-11, and the 
specifications of the problem are given as: 
 

�� Length of the vertical pipe: 12 m 
�� Diameter of the vertical pipe: 1 m 
�� Operating fluids: air and water (�G = 1.16 kg/m3, �L = 1000 kg/m3) 
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�� Flow temperature: T = 50��C 
 
The objective of the problem is to test the interaction of the body force terms with temporal 
and convective acceleration terms in the momentum formulation. A temporal acceleration 
exists in the initial part of the transient and the initial uniform volume fraction profile is 
convected out of the system as the fluid accelerates through the solution domain. These 
features test the void propagation characteristic and stability of the numerical solution 
method.  The diffusive character of the numerical method is also tested since a 
discontinuity in void fraction is propagated through the solution space and the extent that 
the discontinuity is smeared can be quantitatively established. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11: Schematic of the water faucet test case 
 
The incompressible two-fluid model (PFM-2), in which both wall friction and interfacial 
friction are omitted, was used to simulate this test case, and the numerical results obtained 
from this model will be compared to the simple analytical solution that will be presented in 
Section 3.8.2.3. 
 
 
3.8.2.2 Initial & Boundary Conditions 
 
Initially (t = 0 s), the tube is filled with a uniform column of water at velocity of 10 m/s 
surrounded by a stagnant gas (VG0 = 0 m/s), such that the gas volume fraction is 0.2. The 
thermodynamic properties of system at the initial state are assumed constant at values 
appropriate for air-water mixture and are 50°C for the temperature and 1 bar for the 
pressure. 
 

Initial conditions 
(t  = 0.0 s) 

Time t Steady state 
(t = 1.0 s) 

12
m
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The boundary conditions at the inlet or top of the tube are similar to the initial input data, 
and are given as: 
  

��Inlet gas void fraction = 0.2 
��Inlet liquid velocity = 10 m/s 
��Inlet gas velocity  = 0 m/s 

 
The only outflow boundary condition at the bottom of the tube is constant atmospheric 
pressure (1 bar). However, because we use the incompressible two-fluid model to simulate 
this problem, we do not enforce explicitly this condition, but consider the bottom of the 
tube as an open boundary for the conservative variables used by the model. 
 
3.8.2.3 Analytical Solution 
 
Transient 
 
The fact that the transient solution of the water-faucet has a particularly simple analytical 
expression has made this test case one of the most popular test-beds for validating 
numerical methods for two-phase flow models. This transient analytical solution is derived 
in this section, by assuming that the liquid phase is incompressible and that pressure 
variation terms in the liquid phase are ignored. 
 
Moreover, with the additional assumptions of no wall and interfacial friction, the liquid-
phase momentum equation, resulting from equation (2.2), only contains nonzero terms for 
the temporal and spatial acceleration and the body force, and it is given by: 
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�      (3.33) 

 
Assuming no mass transfer, the associated differential equation for the liquid phase volume 
fraction is established from continuity considerations (2.1) and is expressed as: 
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The solution for the liquid velocity and volume fraction response can be obtained in closed 
form since Equation (3.34) is a single hyperbolic partial differential equation having real 
characteristics. The characteristic curves are defined by: 
 

dtVdx L�      (3.35) 
 
which is the path of a liquid particle, and along this path, Equation (3.33) can be integrated 
directly to obtain the following expression for the liquid velocity: 
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 � �00LL ttgVV ���      (3.36) 
 
Where VL0 is the initial or boundary velocity corresponding to the point x0, t0. The 
corresponding length coordinate along the particle path is obtained by integration of 
Equation (3.35) and using the liquid velocity relation (3.36) giving the following relation. 
 

� � � �2
000L0 tt

2
gttVxx �����     (3.37) 

 
Using the solution for the velocity, Equation (3.34) can be integrated to obtain the solution 
for the liquid fraction along the characteristic curve. In this case two possible solutions are 
obtained, the first applies if the initial point of the characteristic curve lies on the t0 = 0 
(initial value) curve and is: 
 

  0LL RR �      (3.38) 
 
The second corresponds to cases where the initial point on the characteristic curve lies on 
the x0 =0 boundary. In this case the liquid volume fraction is given by: 
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Solving the preceding equations (3.37) and (3.39) to eliminate (t-t0), we get the following 
expression: 
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which gives the following liquid holdup and velocity relations: 
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The above liquid holdup and velocity expressions (3.41) and (3.42) are also steady state 
solutions and can be easily obtained by neglecting the temporal variations in the continuity 
and momentum equations (3.34) and (3.33). In this case, the initial values (with subscript 0 
in this section) are replaced by the inlet boundary values. 
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To summarize, combining relations (3.36) – (3.38), and equations (3.41) - (3.42) give the 
following transient solution: 
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The term xinlet represents the location of the pipe inlet and is generally set to zero; therefore, 
only specifying the inlet liquid velocity completes the above transient solution.  
 
 
3.8.2.4 Numerical Results (PFM-2) 
 
The numerical schemes described earlier in this chapter have been applied to the two-fluid 
incompressible model (PFM-2) in order to evaluate various numerical effects. All the 
computational results reported in this section were obtained with a CFL value of 0.5. 
 
Scheme Comparison 
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Figure 3-12: PFM-2 [Water Faucet]: Analytical comparison with various numerical 
schemes for the gas holdup (left) and liquid velocity (right) at time = 0.5 second. 
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Figure 3-12 presents the numerical results of the gas holdup and liquid velocity profiles, 
together with their analytical solutions, for four explicit solvers. The results obtained using 
60 cells (�x = 0.2 m) show that all the four numerical solvers accurately predict the liquid 
velocity profile, but for the gas volume fraction, the best looking results appear to be 
obtained with the first order schemes, namely Rusanov and Force, contrary to the findings 
of the previous case (IFP).  
 
The results obtained with high-resolution schemes such as FCT or TVD Lax-Friedrichs 
(Figure 3-13) produced clearly visible overshoots before and after the front of the gas 
holdup discontinuity, resulting in a code crash for fine mesh simulations. We emphasize 
that these oscillatory spikes are not of numerical nature, but rather of mathematical nature, 
related to the ill-posedness or the non-hyperbolicity of the model used for this particular 
test case. 
 
Therefore, the massive artificial viscosity embedded in the first order schemes only hide the 
mathematical instability visible in Figure 3-13, and it is expected that for very fine meshes, 
the first order schemes will exhibit a similar behaviour to the more accurate high-resolution 
schemes. 
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Figure 3-13: PFM-2 [Water Faucet]: Analytical comparison with high-resolution schemes 

(TVD Lax-F and FCT) for the liquid holdup at time = 0.5 second. 
 
Mesh Refinement 
 
Figure 3-14 shows a grid convergence study of the gas void fraction profile, at time = 0.5 
second, computed with the Rusanov scheme. The plot shows typical first order behaviour in 
terms of spatial accuracy, and bears very close resemblance to Toumi (1995) and Paillere et 
al. (2003) results that were obtained using two-fluid pressure based models and respectively 
an approximate Riemann solver and a flux vector splitting solver named AUSM+ 
(Advection Upwind Splitting Method) as numerical schemes. 
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Figure 3-14: PFM-2 [Water Faucet]: Mesh Refinement for the gas holdup at time = 0.5 
second, using the first order Rusanov scheme. 

 
As already mentioned, a very small and almost invisible overshoot appears in Figure 3-14 
for 240 cells. If we were to plot the results for finer meshes (i.e. 1200 cells) like some 
researchers in the literature, then bigger overshoots similar to the ones in Figure 3-13 will 
be visible in the numerical solutions.  
 
 
Flow Evolution 
 
The calculations were carried out for a range of time-step size in order to demonstrate the 
temporal convergence of the numerical schemes. For the specific initial and boundary 
conditions simulated, a steady state solution is theoretically attained in 0.85 second, when 
the void fraction discontinuity reaches the pipe outlet, thus the calculations were carried out 
to at least 1.0 second to also test the numerical convergence to steady state. 
 
Figure 3-15 presents the time evolution of the gas void fraction (top) and the liquid velocity 
(bottom) profiles obtained using the first order scheme Force with 200 cells. An agreement 
with the analytical solutions is observed, proving the ability of the numerical scheme to 
correctly predict the flow features for the water faucet problem. The acceleration of the 
liquid velocity is also clearly visible in Figure 3-15, starting from 10 m/s at the inlet to 
more than 18 m/s at the outlet at “steady state”.  
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Figure 3-15: PFM-2 [Water Faucet]: Time evolution of the gas holdup (top) and liquid 
velocity (bottom) using the first order centred scheme (Force) with 200 cells. 
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3.8.3 Stratified Flow Case 
 
3.8.3.1 Problem Summary 
 
A horizontal duct is divided into two equal length parts by a diaphragm; each part contains 
water and air, the former lying below the latter. The depth of the water is somewhat greater 
on the left of the diaphragm than on the right. The problem is illustrated schematically in 
Figure 3-16, and its specifications are given as: 
 

�� Length of the horizontal pipe: 10 m 
�� Diameter of the horizontal pipe: 1 m 
�� Operating fluids: air and water (�G = 1.16 kg/m3, �L = 1000 kg/m3) 
�� Atmospheric flow conditions: (T = 20��C, P = 1 bar) 

 
The objective of the simple case proposed by Youngs (1987) is to assess the ability of the 
model and numerics to predict stratified wave structures, which is one of the primary goals 
of this study. At the beginning of the simulation, the diaphragm is supposed suddenly to 
break; the task is then to calculate what happens during the next few seconds, during which 
the water and air are set in motion, in opposite directions, as gravity waves travel from the 
diaphragm-rupture point towards the two ends. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-16: Schematic diagram of the stratified flow problem 
 
 
The two–fluid incompressible model (PFM-2) is used, but without allowance for the 
interfacial friction between the phases. The wall friction between the fluids and the pipe 
wall is also neglected, suppressing the momentum transfer between the phases. However, 
the effects of gravity are accounted for by way of the appropriate sources in the momentum 
equations for the two fluids. These sources are obtained from the presumption that the 
pressure variation in the vertical direction is hydrostatic, and account for the influence of 
the cross-sectional shape is taken into consideration. 
 
In the original paper Youngs (1987) considered two cases, differing in respect of the 
postulated cross-section of the duct. In the first case, the cross-section is square, whereas in 

Diaphragm (t = 0)

Water 

Air
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the second case it is circular. And though an analytical solution [Kurasaki & Spalding, 
1979] based on the shallow water theory exists for the square cross-section, in this study, 
we only consider the circular cross-section case, because all the mathematical models 
developed in this study assumed a circular duct shape by default. Therefore, for 
comparative purposes, our numerical results will be assessed in relation to the other 
numerical results presented by others researchers in the literature.  
 
 
3.8.3.2 Initial & Boundary Conditions 
 
The volume fraction of water on the left-hand side of the diaphragm is 0.51, and that on the 
right hand side is 0.49. Initially, both fluids are at rest (VL = VG = 0 m/s); and the pressure 
in the air is at atmospheric conditions on both sides of the diaphragm. 
 
For the boundary conditions, the duct is closed at both ends; this forces the velocities of the 
two fluids to be zero at the two ends of the duct (VL = VG = 0 m/s at x = 0 and x =10 m). 
 
 
3.8.3.3 Numerical Results (PFM-2) 
 
Various numerical effects are presented in this section for the stratified test case. The 
computational results for the fluid volume fractions and velocities presented here are at 
different time steps with various grid cells, and all were performed using a CFL value of 
0.5. 
 
 
Scheme Comparison 
 
Using 100 grid cells, we compare in Figure 3-17 the FCT and TVD Lax-Friedrichs results 
for the liquid holdup, the gas and liquid velocities versus the duct length. The graphs are 
shown for two time values, 5.0 s (left) and 10.0 s (right), and we can see from the figure 
that there is very little difference between these two high-resolution schemes for the liquid 
holdup.  
 
However, for the fluid velocities the differences are clearly visible with the FCT scheme 
providing the most accurate predictions in both simulations. For both the gas and liquid, the 
absolute peak velocity is more than twice in the case of the FCT compared to the TVD Lax-
Friedrichs scheme. This is undoubtedly due to huge amount of numerical viscosity or 
diffusion embedded in the latter scheme, justifying the selection of the FCT scheme as our 
preferred numerical method for the incompressible two-fluid model.   
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Figure 3-17: PFM-2 [Stratified Flow]: Comparison of FCT and TVD Lax-Friedrichs 
schemes for the liquid holdup (top), the gas velocity (middle) and the liquid velocity 

(bottom) at time = 5.0 s (left) and time = 10.0 s (right). 
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Mesh Refinement 
 
In Figures 3-18 and 3-19, we present the effect of spatial refinement for the most diffusive 
of the high-resolution schemes that we implemented (TVD Lax-Friedrichs), and as 
expected, we found that the results are more accurate for finer meshes. 
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Figure 3-18: PFM-2 [Stratified Flow]: Mesh refinement for the liquid holdup at time = 20 

seconds using the high-resolution scheme TVD Lax-Friedrichs. 
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Figure 3-19: PFM-2 [Stratified Flow]: Mesh refinement for the gas (left) and liquid (right) 

velocities at 20 seconds using the TVD Lax-Friedrichs scheme. 
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Figure 3-18 shows the liquid holdup at 20 seconds for various mesh sizes, and we can see 
that there is no difference in the profile between 400 and 800 cells, proving that the 
numerical scheme has converged to a reliable solution. This figure also shows that for these 
two finer meshes, there is a step change or sort of contact discontinuity in the holdup 
profile, which is not visible with coarser meshes for which the high artificial viscosity 
smoothes the holdup profile near the discontinuity, thereby suppressing the step change 
feature. 
 
Figure 3.19 presents the gas and liquid velocities, also at 20 seconds, for various mesh 
sizes, and we can see that from 100 cells onward, the prediction pattern is similar to the one 
observed with the holdup profile, where we had an improved accuracy for finer meshes. 
However, with the coarsest mesh (50 cells), we observed a very peculiar behaviour, where 
the discontinuity wave appears in the opposite direction to what it is expected, emphasizing 
once again the importance of carefully selecting the mesh size for a particular simulation. 
 
 
Flow Evolution 
 
To demonstrate the temporal convergence of the FCT scheme for the stratified case, we 
carried out simulations using various times, and the results obtained are summarized in 
Figure 3-20 for the liquid holdup and in Figure 3-21 for the gas and liquid velocities. These 
results are in agreement with the ones presented in the literature [Youngs, 1987], which 
revealed alternating profiles every five seconds for all the flow parameters (holdup and 
velocities) shown here.  
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Figure 3-20: PFM-2 [Stratified Flow]: Time evolution of the liquid holdup using the TVD 

Lax-Friedrichs scheme with 200 grid cells. 
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Figure 3-21: PFM-2 [Stratified Flow]: Time evolution of the gas (top) and liquid (bottom) 
velocities using the TVD Lax-Friedrichs scheme with 200 grid cells. 
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3.8.4 Sedimentation Case 
 
3.8.4.1 Problem Summary 
 
The problem consists of a long vertical pipe initially filled with stationary gas and liquid in 
a fully homogeneous mixture. As time proceeds, gravity acts downwards, and particles of 
light fluid rise and particles of dense fluid fall. Eventually, the dense phase collects at the 
bottom of the pipe and the light fluid collects at the top of the pipe.  
 
The problem is illustrated schematically in Figure 3-22, and its specifications are given as 
follows: 
 

�� Length of the vertical pipe: 7.5 m 
�� Diameter of the vertical pipe: 1 m 
�� Operating fluids: air and water (�G variable, �L = 1000 kg/m3) 
�� Atmospheric flow conditions: (Tinlet = 20��C, Poutlet = 1 bar) 

 
The primary objective of this test case is to evaluate the single-pressure model (SPM-4) 
numerical scheme described earlier in the chapter. The computational results are sensitive 
to numerical diffusion in the volume fraction equations if incompressible flow is assumed. 
Hence, this problem provides a good test for the prediction abilities of the SPM-4 numerics 
that we have implemented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-22: Schematic diagram of the sedimentation problem  
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Analytical Solution 
 
Youngs (1987) who also proposed this test case stated that when the two fluid densities �G 
and �L are chosen to be almost equal, an analytical solution exits. However, the expression 
of this exact solution was not provided, therefore, air and water are used here as fluids 
similarly to Coquel et al. (1997) and Paillère et al. (2003), and our results will be compared 
to ones of these later researchers.  
 
 
3.8.4.2 Initial & Boundary Conditions 
 
At the beginning of the simulation (time = 0), the two fluids are at rest everywhere in the 
vertical pipe [VG (x) = VL (x) = 0 m/s], such that the gas volume fraction is 0.5. The 
thermodynamic properties of system at this initial state are assumed constant at atmospheric 
conditions (20°C for the inlet temperature and 1 bar for the outlet pressure). 
 
These initial thermodynamics properties are the same throughout the simulation, as for the 
other boundary conditions, the duct is closed at both ends, forcing gas and liquid velocities 
to be null at the ends of the duct (VL = VG = 0 m/s at x  = 0 and x =7.5 m). 
 
 
3.8.4.3 Numerical Results (SPM-4) 
 
In order to evaluate various numerical effects, a combination of the TVD Lax-Friedrichs 
scheme (3.12) and the MinMod-2 scheme (3.15) has been applied to the single pressure 
model (SPM-4), respectively for the conservative and non-conservative terms of the 
system. The computational results of these effects for the sedimentation test case are 
presented in this section, where all the simulations were performed using a stable CFL 
value of 0.5, and neglecting the wall and interfacial frictions.  
 
 
Mesh Refinement 
 
Figure 3-23 summarises the behaviour of the gas holdup profile obtained using our 
combined TVD Lax-Friedrichs / MinMod-2 scheme with different grid sizes. The results 
shown are a little bit diffusive in general, but the finer the mesh size is, the more accurate is 
the solution of the two-fluid model, evidence of a well-behaved numerical method.  
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Figure 3-23: SPM-4 [sedimentation]: Mesh Refinement for the gas holdup at 2.5 seconds 

using the combination TVD Lax-Friedrichs and Minmod-2 schemes. 
 
 
 
Flow Evolution 
 
In Figure 3-24, we present the time evolution of the gas holdup at different times using the 
combined TVD Lax-F/ MinMod-2 scheme with 200 grid cells. These results are in good 
agreement with those described in the literature [Coquel et al., 1997; Paillère et al., 2003], 
and show that as the time increases, the initially mixed two phases evolve naturally toward 
full separation with the denser fluid on the bottom half of the vertical tube and lighter fluid 
on the top half. And after 2.5 seconds, the gas holdup profile can be considered as the 
steady state solution where the gas and liquid phases are well separated, with a void 
fraction below 0.01 in the region of ‘‘pure’’ water, and a void fraction above 0.99 in the 
region of pure air. 
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Figure 3-24: SPM-4 [sedimentation]: Time evolution of the gas holdup profile using the 
combined TVD Lax-Friedrichs / Minmod-2 scheme with 200 grid cells. 
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Figure 3-25: SPM-4 [sedimentation]: Steady state profile for pressure using the combined 

TVD Lax-Friedrichs / Minmod scheme with various mesh sizes. 
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Steady State Results 
 
When the interfacial friction factor is neglected, Youngs (1987) stated that the steady state 
solution of the sedimentation case is reached after 4.0 seconds, we therefore present in 
Figure 3-25 the pressure profile from our model obtained after 5.0 seconds. Although, there 
is a 15% deviation between the atmospheric pressure at the pressure value in the gas region, 
we found that the numerical scheme developed for our two-fluid compressible model 
computes fairly well the theoretical hydrostatic pressure profile in the liquid region (peak 
theoretical pressure value is roughly equal to �L g hL + Pinitial = 1.37 bar). 
 
The single-pressure model (SPM-4) was developed as an improvement of the 
incompressible model, and though its current implementation appears robust and accurate, 
more test cases are necessary to fully validate this complex model. 
 
 

3.9 Conclusion 
 
We presented in this chapter the finite difference numerical approach that we have adopted 
for solving the two-phase gas-liquid models mentioned in the previous chapter, and 
described in detail the numerical schemes that we have implemented and investigated, 
during the course of this work. We also validated these schemes with both simple single-
phase and two-phase flow cases, and the results presented in various figures in this chapter, 
clearly show that first order schemes such as Lax-Friedrichs or Rusanov are too dissipative, 
while the second-order Ritchmyer is too dispersive in the neighbourhood of the shock. 
These facts, which have been known for a long time in the single-phase flow community 
and reported in many numerical textbooks, are more disturbing for two-phase flow models 
and generally lead to non-converging solutions or total disappearance of key flow features. 
 
On the other hand, the high-resolution schemes FCT and TVD Lax-Friedrichs work well 
for our two-phase flow models, and are able to capture strong discontinuities in the flow 
with a high accuracy. A comparative study of high-resolution schemes presented by Yang 
& Przekwas (1992), shows that the FCT scheme is one of the most competitive for flows 
with severe gradients, and the small modification made to this scheme in this work, has 
proven that our implemented version is very robust and accurate for the conservative 
models such as the homogeneous model (HEM-3) or the incompressible two-fluid model 
(PFM-2). It is therefore our default scheme that we advocated for these models. However, 
for the single-pressure model (SPM-4), the presence of non-conservative terms makes it 
difficult to use the predictor-corrector FCT scheme and we found that the combined TVD 
Lax-Friedrichs / MinMod-2 scheme will provide fairly good results.  
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4 Chapter 4 - Adaptive Mesh 
Refinement (AMR) 

 
 
 
 

4.1 Introduction 
 
Multiphase flows encountered in transportation pipelines generally exhibit multiscale 
physical phenomena that are extremely difficult to simulate. These flows are time varying 
in nature with the local phase content and velocity varying with time and position due to 
turbulence and the passage of the interface. An extreme case of such variations is that of 
slug flow, which will be studied in Chapter 6, and which is characterized by alternating 
liquid and gas continuous zones passing along the pipe. 
 
Chapter 6 will show that by using shock-capturing schemes presented in the previous 
chapter, and very high grid resolution, it is possible to overcome the numerical design 
difficulties associated with such complex flows. However, it will also be clear that there are 
often large portions of the flow where a fine grid resolution is not needed. Thus, using a 
uniform and highly refined grid in these regions represents a tremendous waste of 
computational effort. In addition, limitations on computational resources often force a 
compromise on grid resolution, resulting in inaccurate description of some flow features. 
 
Furthermore, the fine grid resolution approach is not computationally attractive for flows in 
long industrial pipelines, as the number of nodes per unit of length required for these flows 
is typically one or two order of magnitude greater than the number per unit length used in 
commercial calculations, therefore a better resolution technique is needed to deal with such 
flows. In this chapter, we present the adaptive mesh refinement (AMR) scheme, which has 
been developed to simulate fluid flows with disparate localised and moving features at low 
cost. 
   
AMR techniques attempt to match the local resolution of the computational grid to the 
requirements of the local flow solution, by locally and automatically modifying the 
computational grid. Thus, very fine mesh cells are precisely concentrated and restricted to 
regions where they are needed, and elsewhere the computational grid may be quite coarse. 
Such a strategy can dramatically reduce the computational effort required to perform 
simulations of problems that contain disparate physical length scales. Quirk (1991) 
estimated, for example, the duration of a detonation simulation to more than two years 
using an appropriate uniform mesh, whereas a good adaptive mesh refinement will just take 
seven hours. 
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4.2 Chapter Outline 
 
Compared to non-adaptive schemes, AMR schemes are undeniably complicated; they 
contain many elements, which require careful co-ordination. However, because the 
potential savings are so large, a wide variety of strategies have been developed. Therefore, 
this chapter starts by a short review of adaptive mesh schemes, and the reasons, which 
motivate the code AMR paradigm, are explained. 
 
The main objective of this chapter being to explain the methodology and intricacies of the 
AMR algorithm that we have implemented, the majority of our description will be 
dedicated to this purpose. Hence, the chapter carries on by a presentation of the principles 
or premises of the Berger’s AMR strategy that was chosen. Then, follows a lengthy 
description of the two most important features of any mesh refinement scheme, which are 
its hierarchical grid data structure and the refinement process itself. Next we present two 
interesting consequences of the inter-grid communication, namely the boundary conditions 
and the mass conservation process. 
 
The numerical solver, which is also an important aspect in any AMR algorithm, will not be 
repeated in this chapter, as it is mainly one of the two explicit high-resolution schemes 
described in the previous chapter (Flux Corrected Transport (FCT) or TVD Lax Friedrichs). 
But, in order to understand how AMR functions mentioned above are linked together, a 
pseudo-code that accurately describes the sequencing of our adaptive strategy will be 
presented. This can also be valuable to any person who wishes to implement the ideas 
described in this chapter.  
 
The effort required to correctly implement the AMR algorithm discussed below is 
considerable, with a complete implementation requiring tens of thousands of code lines to 
express the core algorithm. Therefore the last part of this chapter presents simulations 
demonstrating that the resultant computational benefits make this effort worthwhile. 
Finally, the chapter is closed by a summary of the work, a list of conclusions that were 
drawn, and a few suggestions as to how this work could be usefully extended. 
 
 

4.3 Review of AMR Schemes 
 
The literature for computational simulation of physical phenomena contains a wealth of 
material about adaptive mesh refinement on both structured and unstructured meshes. 
However, Mavripilis (1990) points out that the use of unstructured mesh techniques in the 
computational fluid dynamics (CFD) field constitutes a relatively recent phenomenon, and 
despite their flexibility in dealing with arbitrary complex geometries, there are several 
drawbacks associated with unstructured mesh refinement, notably large overheads, which 
become particularly troublesome for transient flow simulations.  
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Furthermore, the main advantage of unstructured mesh techniques over structured mesh 
ones, is their natural ability to discretise complex multidimensional geometries, which is 
not an issue for one-dimensional models considered in the present study. Therefore, these 
types of adaptive strategies were not considered here and the interested user is referred to 
the review papers by Mavripilis (1998) and Lohner (1998) for a complete discussion on 
unstructured mesh generation and adaptivity issues. 
 
Thus, this section mainly focuses on structured mesh techniques. However, many strategies 
have been developed with the sole aim of dealing with a specific flow; they serve their 
special purpose well, but lack generality. Other methods appear unsuited to discontinuities, 
steep gradients or shock flows. Given this variety, it would serve no purpose to encompass 
in this chapter a full and lengthy review of adaptive mesh schemes. Instead it is more 
appropriate that we simply allude to some of the reasoning that has shaped the development 
of the AMR algorithm. To this end, we briefly touch on two structured adaptive mesh 
strategies that are frequently applied to compressible flow problems, highlighting their 
respective advantages and disadvantages.  
 
4.3.1 Mesh Enrichment (Local Cell Refinement) 
 
The first strategy is commonly known as the local cell refinement, which is implemented 
by refining or splitting individual cells one at a time. This approach tends to produce 
regions that more tightly conform to the spatial structure of the features requiring mesh 
refinement. However the computational tasks are organised necessarily by operations 
performed on an individual cell. This leads to indirect addressing and irregular difference 
schemes to maintain communication among data associated with computational cells on the 
composite mesh. Moreover, the data structures maintaining the cell refinement need to be 
closely tied to the finite difference stencils used by the numerical methods. Numerous 
variations of this type of mesh refinement strategy are reported in the literature and they are 
reviewed in the thesis by Neeman (1996).  
 
4.3.2 Mesh Redistribution (Moving Mesh Methods) 
 
The second class of adaptive strategies are the moving mesh methods, which refine by 
redistributing mesh points, rather than creating new meshes at different resolutions [Li & 
Petzold, 1997; Stockie et al., 2001; and Tang & Tang, 2003]. They were developed to 
handle many non-linear hyperbolic and parabolic problems that contain shocks or other 
sharp moving fronts, and they are fairly easy to implement. Thus, while they may be useful 
for a limited class of applications, they are inherently non-uniform, therefore inappropriate 
for existing uniform grid solvers. In addition, the number of grid cells does not grow, but 
the complexity of the solution can, so a given mesh size may prove insufficient for some 
evolving simulation, causing some regions which require very high resolution to “steal” 
nodes from other regions which are then insufficiently resolved. 
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4.4 AMR Constraints for Transient Flows 
 
The fact, that there is no standard way of implementing AMR schemes in the literature, has 
led many researchers to develop numerous variations of the two classes of adaptive grid 
methods, described in the previous section, and for various multidimensional applications. 
But despite their undoubted popularity, neither the generic moving mesh methods nor the 
local cell refinement methods were judged to be suitable for our transient multiphase flow 
purposes. Nevertheless, these AMR schemes both exhibit, many of the qualities we wished 
to instil into our algorithm, and many of the disadvantages we wish to avoid. Hence, the 
following is a list of properties that we have required for our scheme. 
 

�� The scheme must be conservative and general purpose – we want to apply it to a 
variety of single, two- or three-phase flow problems in which the mesh change 
should not result in the production or loss of mass, momentum or energy. 

�� The scheme must be well suited to unsteady simulations – our main interest lies in 
simulating time-dependent or transient multiphase flow problems. 

�� No unreasonable constraint should be placed on the numerical solver used to 
integrate the flow solution – we hope to employ the adaptive method with both a 
variety of shock capturing schemes and a number of different flow models. 

�� The method should not produce elements that are too small, as this would reduce 
too severely the timestep allowable for the explicit flow solvers employed. 

�� The refinement process must be cheap and easy in order to minimise the overheads 
associated with complex data structure used by adaptive methods. 

 
These criteria severely limit the field of applicable strategies found in the literature, and 
have led us to opt for the block-structured approach to local refinement proposed by Berger 
and her collaborators [Berger & Oliger, 1984; Berger & Colella, 1989]. In this approach, 
the refined regions are not individual cells, but rather large collections of fine cells in each 
block. As a result, it is possible to reduce the overhead of managing the complex data 
structures, which describe the computational region. In addition, almost all of the numerical 
work is done on regular arrays of floating point numbers. 
 
However, the structure of our global implementation follows the approach adopted by 
Quirk (1991), Neeman (1996), and Boden (1997), which removes much of the complexity 
of Berger’s original scheme, without compromising the quality of the resultant simulations. 
In order to achieve an easy refinement process for our one-dimensional problems, the 
bisection technique proposed by Arney (1989) was retained in the present study. This 
refinement strategy, in which each patch is split into identical sub-patches, was also used by 
Thompson et al. (1992) to solve the incompressible Navier-Stokes equations, and they 
reported good results.  The AMR scheme in general presents as many obstacles to the 
programmer as it presents benefits to the user. Therefore, all the various elements of our 
strategy will be deeply detailed in the following paragraphs, starting with the general 
principles of the scheme that we have selected. 
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4.5 Principles of Berger Strategy 
 
Berger developed in the early 1980’s an adaptive mesh refinement strategy for hyperbolic 
systems of conservation that has been successfully applied to simulation of time-unsteady 
gas-dynamic flows in two dimensions [Berger & Colella, 1989] and three dimensions [Bell 
et al., 1994]. It enables the simulation of complex problems with reduced computational 
and storage requirements because it allows computational effort to be concentrated 
precisely where it is required to maintain high accuracy. 
 
To locally refine the computational grid, Berger adopted a structured mesh approach, which 
is based on the notion of multiple, independently solvable grids, all of identical type but 
each of arbitrary size and shape. Therefore, the underlying premise of this strategy is that 
once individual cells are selected for refinement, the algorithm clusters them to form a 
collection of cells called a patch or sub-grid on a fine resolution level, and the process is 
repeated until the finest existing level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1: AMR Driver: Sequence of Integration. 
 
Thus, all grids of any given resolution that cover a problem domain and given proper 
boundary information are equivalent in the sense that they can be solved independently by 
identical means. In essence, the multigrid concept [Brandt, 1977] is adjusted, reducing it 
from the highly accurate but computationally expensive set of increasingly finely resolved 
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grids, each covering the entire domain, to a set of resolution levels, each employing a 
disjoint set of sub-grids to cover progressively less of the domain. 
 
Hence, Berger’s algorithmic methodology manages a hierarchy of grids. The hierarchy 
consists of several levels of refinement. On each level L, there is a single grid spacing Lx�  
(Figure 4-3), but different levels have different grid spacing related by an integer divisor. 
The coarsest grid covers the entire physical domain. Within that domain, finer grids cover 
rectangular sub-regions. Additional refinement may be achieved by recursively placing still 
finer grids. Finer grids take smaller time-steps, which are proportional to the x�  on the 
grid. As time evolves, the regions of the physical domain requiring high resolution will in 
general change, requiring the hierarchy of coarse and finer grids to adapt dynamically to the 
changing solution. 
 
The time advancement procedure for AMR is recursive (Figure 4-1), and if R is the 
refinement ratio between levels, 1LL xxR

�
��� , then the L+1th level must make R time-

steps for every single time-step of the L level, resulting in a multigrid W-cycle for 
advancing the solution (Figure 4-2). During the recursive evolution, the AMR algorithm 
must take additional steps to maintain consistency between different levels of refinement. 
Since error is proportional to a positive power of the grid spacing �x, the values calculated 
on finer grids are more accurate than the values of the coarser grids. Wherever fine grid 
cells overlie coarse grid cells, the coarse grid cells are replaced with the average of the 
overlying fine cells at the completion of each coarse-grid time-step. An additional step must 
be taken to maintain conservation at the boundary between coarse and fine grids. Coarse 
grid cells that adjoin a fine grid but are not overlain by fine grids must be updated using 
fluxes, which agree with the fluxes that are used on the adjoining fine grid cells. Therefore 
the AMR algorithm must advance these coarse grid cells using fluxes, which are an 
appropriate sum of fine grid fluxes on the shared cell faces. 
 
 
 
 
 
 
 
 
 

Figure 4-2: Multigrid W cycles (4 and 3 levels of refinement) 
 
Throughout this chapter, we reserve the term patch or sub-grid for a single logical 
collection of cells, and the term grid for a collection of such patches. Although this AMR 
patch approach tends to refine additional cells, it has several important advantages over the 
individual cell refinement or moving mesh strategies. It allows inter-cell communication to 
be maintained in a more straightforward manner and it is designed so that a small number 
of computational tasks can be organised in a highly structured fashion. In addition, the 
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numerical integration routines used to solve the equations on the adaptive grid are easily 
separated from the structure of the AMR algorithm. This greatly enhances code 
extendibility, maintenance and generality. 
 

4.6 Data Structure 
 
4.6.1 Overview 
 
Unlike traditional uniform approaches, where only fixed solution vectors and perhaps some 
additional workspace need to be stored, AMR data structures must satisfy several 
requirements for an efficient implementation. They must store information on intergrid 
conditions, solution vectors, and some intermediate results necessary for the finite 
difference scheme adopted (e.g., solution vector at the previous timesteps). They must 
contain information on the relationship between different patches at any given time as well 
as parameters that control time evolution of refinements and regridding criteria. Also, the 
data structures must allow for easy scheduling of operations on all grids in a way that is 
transparent for the user. Finally they should contain information on mapping of the data 
onto a distributed memory system [Berger & Colella, 1989], even though this last 
requirement is not taken into account in this research. 
 
To this end, we define a hierarchy of data structures, starting from a patch description, 
through a set of management functions defined on each individual patch to a tree or level 
structure of patches. Each data structure is defined in term of parameters that define the size 
and shape of the structure, and define their time evolution. The maximum number of levels 
and the total number of cells on the coarsest or base level are the only parameters, which 
need to be provided by the user, for the time being via a text based pre-processor. We are 
considering integrating in the future, a graphical user interface to make all input parameters 
easier. 
 
Before describing the patch and level object, which are the major elements of our data 
structure, and some management functions, we first explain the programming language that 
we have adopted for implementation purposes. 
 
4.6.2 Implementation Language (Fortran 90) 
 
As mentioned above, AMR systems must manage not only the solution vectors for a large 
dynamically changing collection of patches, but also the relationships between these 
patches, between the solution vectors and various other data items. In addition, maximal 
flexibility is achieved if the manner of describing the data items and relationships allows 
the data structure to be autonomous: that is, to manage itself, rather than relying on hard-
coded management functions. 
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This complex and subtle nature of the data structure [Berger & Oliger, 1984] has been one 
of the primary stumbling blocks to the popularity of block-structured AMR among 
computational scientists. The burdensome coding requirements of grid hierarchy data 
structures make the development of a general-purpose system in basic programming 
language like FORTRAN 77 unrealistic. The fact that Fortran 77 does not support, at least 
explicitly, dynamical memory management, has forced programmers, in the past, to heavily 
rely on the traditional linear memory model. This leads to unnecessarily lengthy programs 
that are difficult to read and maintain, even though some of the codes themselves were 
quite efficient.  
 
Even if a system is designed in a language that supports sophisticated data types, such as C, 
the enormous variety of structured simulation paradigms leads to a prohibitively high 
amount of design and implementation. So, to develop an efficient and modular code, we 
have opted for FORTRAN 90 and exploited its object-oriented features for the data 
structure management, and the numerical modules. This “new” Fortran not only simplifies 
the problem of handling dynamic objects with a much more sophisticated structure than 
simple Fortran arrays, it also allows for better organization of the code by encapsulating 
data structures and methods to manipulate them in Fortran 90 modules, as well as defining 
explicit interfaces to user routines.  
 
C++ is the other obvious choice for the data structure implementation, and it is also a 
popular alternative among AMR researchers [Pember et al., 1995; Neeman, 1996], but this 
language is not as efficient as Fortran for numerical integration routines, which are used to 
solve partial differential equations, and which constitute the core of our code. 
 
4.6.3 Patch & Level Description 
 
Almost all Berger types of data structure found in the literature are designed for 2D or 3D 
problems [Berger & Colella, 1989; Quirk, 1991; Pember et al., 1995]. Although there 
should be no big change for 1D problems, many features that appear only in higher 
dimensions can be simplified. Thus a patch object or data type is defined as a Fortran 90 
linked list object in the program, and it is characterised by: 
 

�� An identifier (integer number associated with each patch) 
�� The current level of the patch 
�� The number of cells in the patch 
�� The refinement flag 
�� The physical patch location (starting point in 1D grid layout) 
�� The solution data and buffer vectors for each cell in the patch 
�� The inlet and outlet interface fluxes. 
�� A pointer to the parent patch  
�� Two pointers to children patches (left & right child) 
�� Two pointers to neighbour patches (next or previous patch on the same level)  
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Figure 4-3: Example of grid organisation for adaptive computations. 
 
The AMR algorithm uses a tree or level structure (Figure 4-3) to discretize the flow 
domain. Similarly to the patch object, a level data type is defined as a double linked list 
object, and it is characterised by: 
 

�� An identifier 
�� The spatial level resolution or mesh size 
�� The integration time for all patches on the current level 
�� A pointer to the first located patch on the level 
�� Two pointers to neighbour levels (next or previous level on the same hierarchy)  

 
4.6.4 Data Structure Management 
 
Functions associated with the patch or level object consist of three basic operations: 
creation, deletion and update. These three operations can be split into sub-operations, but 
among them, they constitute the entire set of tasks required for the data structure 
management. These same operations are therefore performed either on the entire hierarchy 
or on a specific data item. For example, a control algorithm has access to each level or to a 
hierarchy as a whole, while a solver function is applied to each patch of the appropriate 
level. 
 
4.6.4.1 Management of Data Items 
 
Creation and deletion operate at several levels of complexity depending on the data item. 
For example, creation of a sub-grid is a four-step process. First, the sub-grid data type is 
allocated. Next its attributes (identifier, current level, number of cells…) are set. Then, the 

Level 1 
(2 patches) 

Level 2 
(2 patches) 

Level 3 
(1 patch) 
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solution and buffer vectors are allocated and initialised to null. Finally, the sub-grid is 
inserted in the grid hierarchy, and appropriate pointers are set to link others sub-grids in the 
hierarchy structure. 
 
Deletion of a data item operates similarly, but in a reverse order. Deletion does not include 
the initialisation step, but a transfer step from child to parent patch is executed, just before 
de-allocating the child patch. 
 
Finally, execution with respect to a data item includes initialisation, injection, projection, 
input, output and so on. The inter-changeability of these operations promotes flexibility and 
generality within the data management framework. 
 
4.6.4.2 Transfer operations 
 
Injection and projection are also called prolongation and restriction in the multigrid 
language. They are used to transfer solution vectors from parent to child patch and vice 
versa. A simple linear interpolation has been chosen for these operations in the present 
study, and can be described as follows: 
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Where Q is the solution vector, and the subscripts c and f correspond to coarse and fine 
patches or parent and child sub-grids. 
 
 

4.7 Automatic Grid Refinement Process  
 
The problem of designing an algorithm that automatically adapts a computational grid to an 
evolving flow solution is not an easy task. But once a correct data structure has been 
defined and implemented, the refinement process becomes not only less cumbersome but 
also more intuitive. It can therefore be sub-divided into a sequence of well-defined 
problems or procedures, which are relatively simple to design and implement. Moreover, 
the correct co-ordination of these individual procedures ensures robustness and integrity of 
the AMR algorithm. 
 
4.7.1 Fundamental Principles 
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Refinement covers coarse sub-domains with patches of higher resolution and it is done 
according to the following three fundamental principles: 
 

1. The ratio time step over mesh size: ��
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equal to 2 on all levels. This allows an easy synchronisation of the algorithm and 
ensures stability of the integration scheme on all patches. 
 

2. At the interface between two patches, either at the same level or at different levels, 
numerical fluxes are conserved. This is a necessary condition for maintaining 
accuracy and avoiding reflections [Berger, 1987]. 
 

3. A patch at level w can only be bordered by patches at levels: w - 1, w, w + 1. This is 
crucial to simplify the treatment of interfaces and is achieved by forcing grid 
refinement if necessary. This approach also controls accuracy as it smoothes 
regions of changing mesh size.  

 
In the present study, another principle - fine patches always have the same number of cells 
as their coarse parents - can be derived from the fact that a bisection technique was chosen 
as the regridding process. This makes data structures self-similar and facilitates processing.  
 
4.7.2 Elements of the Adaptation Process 
 
The refinement strategy is based on the sub-division of parent or coarse patches, and this 
process may be split loosely into two operations. First given a grid structure and flow 
solution we identify regions of large error and flag these regions for refinement. Then, a 
child patch is created and initialised in a finer level to cover these regions.  
 
The adaptation process given in this section has been rudimentary, but it should help the 
reader to maintain a sense of direction during the more detailed description of the 
individual elements that follows. 
 
4.7.2.1 Error Estimation & Flagging for Refinement 
 
In previous AMR work [Berger & Oliger, 1984; Berger & Colella, 1989; Quirk, 1991; 
Pember et al., 1995], a Richardson-type estimate of the global truncation error was used to 
identify cells for refinement. The goal was to guarantee a specified level of accuracy 
throughout a simulation with nearly minimal computational cost. Although there are several 
important advantages to this process, it is significantly complex to implement and more 
expensive than more simple gradient detection strategies.  
 
In the present study, we have chosen to start with a Lezeau & Thompson (1998) type of 
gradient detector, thus the precise flagging procedure can be described as follows: at all 
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levels, at all time steps, an average gradient is computed for each half of each patch k 
belonging to level l. 
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Where Nk is the number of cells in patch k and M is the dimension of the vector of 
conservative variables or the number of equations of the system solved. 
 
A half patch on level l is then flagged for refinement if its average gradient Grad is greater 
than or equal to the following threshold: 
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Where Lp is the total number of sub-grids or patches in level l and � is a parameter, which 
controls the sensitivity of refinement. The higher �, the more selective the refinement since 
tl will tends towards the L �–norm of the average grid gradients. In the current version of 
the code the value of � is set to 2 for all existing levels, meaning that an L2-norm of the 
gradient is used for selecting automatically regions to be refined.  
 
A further investigation of the effect of this error estimator may be worthwhile for future 
developments as first results using this average gradient indicate that it often produces 
larger refined regions than may be desired. 
 
4.7.2.2 Regridding 
 
Regridding creates new patches at a finer level to cover the selected area of refinement at 
the immediately coarser level. This process is repeatedly performed as the simulation 
evolves, resulting in an automatic adjustment of the patch configuration on all levels. Note 
that if the time corresponding to the data on a fine level matches that of the data on a 
coarser level, we must be at a synchronisation point. Then, regridding may be deferred to 
some coarse level if it is also appropriate to invoke this process on the coarser level at that 
time. 
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As already mentioned, the technique used to generate new patches on a fine level is called 
bisection. Thus a parent patch, which needs to be refined, is always split in two equal 
halves and replaced by children grids with half resolution (�xf = �xc/2). 

4.7.2.2.1 Temporal Refinement 
 
The AMR approach adopted here is unique among grid adaptation techniques, in that it 
employs temporal as well as spatial refinement. Other adaptive grid techniques advance all 
the grid cells with the same time step, which is often dictated by stability criteria of the 
finest cells. Temporal refinement allows the coarser grid levels to advance with much larger 
time steps than the fine levels. In order to impose the temporal refinement, the AMR 
algorithm uses the CFL criteria (2.18) calculated from the solutions of the coarse grids, 
even where fine level coverage exists. Updating the coarse grid cells require little 
computational effort relative to that of updating the finest grid cells.  
 
The AMR algorithm implemented here assumes that the temporal refinement is equal to the 
spatial refinement, and although there is no limitation on the maximum number of grid 
levels allowed, we recommend avoiding situations where the solution is needlessly 
integrated by too many small time steps levels (i.e. finest level > 7). For example, consider 
a 10 level grid structure in which the cell resolutions of the nine finer levels are increased 
by a factor of 2. The resulting time step of the finest grid level would be defined as 1/512th 
of the coarsest time step, and such a situation will result in an unnecessary increase in the 
integration costs and probably the numerical (diffusion) error associated with the solution.  
 
This temporal refinement strategy does not necessarily lead to the optimal timestep for the 
finer grid levels, and although we have not encountered any problem related to this 
strategy, it may be worth investigating in the future the alternative approach adopted by 
Boden (1997) in which the time step is determined for every grid level, from the maximum 
characteristic speed in its solution, immediately before it is integrated. This results in an 
unpredictable number of fine grid time steps in every coarse grid time step, however, 
Boden (1997) estimated that over a whole computation, the ratio of the number of fine to 
coarse time steps is approximately equal to the spatial refinement factor. 

4.7.2.2.2 Refinement Frequency 
 
To the reader of the adaptive grid literature, the philosophy, behind when or how often any 
adaptive grid structure should be updated, could be construed as an open issue. Several 
AMR algorithms, notably Berger & Colella (1989) and Bell et al. (1994), do not update the 
grid structure as often as possible. By far the most expensive part of any computation is the 
integration of the flow field solution. Any viable adaptive grid algorithm should spend only 
a tiny proportion of the overall computing time, generating the grid structure and 
transferring data within it.  
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By not changing the grid structure whenever possible, adaptive grid algorithms appear to 
increase efficiency, i.e. they spend less time adapting the grid structure compared with the 
integration of the grid solution. However, the finer grid levels need to extend sufficiently 
far beyond the immediate vicinity of the dynamic flow features requiring refinement, in 
order to ensure adequate coverage during the ensuing time steps. Hence, the longer a grid 
structure remains unchanged, the greater the proportion of the flow domain that must be 
covered by fine grid cells [Boden, 1997]. The increased number of cells results in an 
increased number of computationally expensive cell integrations.  
 
Therefore, maximum efficiency is achieved by adapting the grid structure when and 
wherever possible, thereby limiting the total amount of processing time spent integrating 
the solution, because the cost associated with the extra grid adaptation is negligible in 
comparison. Hence, the philosophy adopted is in agreement with Quirk (1991) and Boden 
(1997), in that the AMR algorithm presented here does update the grid structure whenever 
possible, i.e. every time a fine grid solution reaches the same time level as the underlying 
coarse grid. Figure 4-4 depicts a typical time evolution of a one-dimensional grid structure 
and the refinement frequency for four levels of integration. Note that, regridding at finer 
levels only occurs at appropriate step intervals on coarser grids. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-4: Integration Cycle and Refinement Frequency. Regridding at finer levels occurs 

at appropriate        step intervals on coarser grids. 
 

4.8 Boundary Conditions 
 
A crucial aspect of any integration algorithm is proper handling of the boundary conditions. 
Within AMR scheme, we face three different kinds of boundaries. One comes directly with 
the PDE system, and it describes external or physical boundaries of the entire 
computational domain. The two others are artefacts of the AMR technique, they are 
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imposed on fine patches whenever they are created in the interior domain, and can be 
described as fine-fine or fine-coarse boundary or interface. 
 
To distinguish between these three situations, a flag corresponding to each boundary type is 
used to tag the left and right boundary cells associated with each patch. The notion of ghost 
or dummy cells (Figure 4-5) is also used to facilitate the inter-patch communication. 
 
 
 
 
 
 
 
 
 

Figure 4-5: Example of ghost or dummy cells. 
 
4.8.1 External boundaries 
 
Physical boundary conditions are problem dependent and require no knowledge of the 
patch connectivity. Therefore, their implementations are not different from procedures that 
are often used by schemes employing just a single uniform patch or grid. 
 
4.8.2 Fine-Fine Boundaries 
 
 
    
 
 
 
 

Figure 4-6: Example of fine-fine boundary 
 
This type of boundary occurs when two patches share an edge on the same refinement level 
(Figure 4-6). It is easy to deal with because there is a one-to-one correspondence between 
dummy cells bordering each fine patch and cells contained in the adjacent patch. Thus, data 
in the dummy cells intersecting the neighbouring patch are simply copied from the 
appropriate cells located in the interior of that neighbouring patch. 
 
4.8.3 Fine-Coarse Boundaries 
 
When setting boundary conditions for fine patches and only coarse patch data are available, 
the adaptive mesh refinement scheme uses conservative interpolation to define the solution 
in a fine patch cell. The injection operator (4.2) is used to perform this process. 

Physical Boundaries

Ghost cellsGhost cells 
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4.9 Mass Conservation 
 
The final AMR issue discussed in this section is the mass conservation on adaptive meshes, 
and the algorithm developed here is only valid for conservative systems of equations. We 
have noted previously that coarse patches are integrated before fine patches. However, fine 
patches typically produce more accurate results. Therefore, when all levels have been 
advanced to the same time, the solution obtained on fine patches is used to improve data on 
coarser patches. This correction step is done in two different sub-steps called here 
projection down and refluxing. 
 
4.9.1 Projection down 
 
To advance a patch from time t to t + �t, the numerical explicit solver uses the following 
conservative expression for every coarse cell not overlain by fine cells. 
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where Q is the vector solution and F the numerical flux evaluated at time t. But for coarse 
cells that underlie fine cells, the solution is updated by projecting the overlying fine grid 
solutions. The interpolation operator (4.1) is used to perform this projection procedure. 
 
An important point here is that projection should occur after refluxing, rather than before, 
because the projected values reflect the most accurate solution available. If projection 
occurs before flux correction, then the optimal projected values may be corrected, which is 
obviously undesirable. If however, correction occurs first, then any corrected values 
covering a finer patch will be replaced with the projected values, while those on a true fine-
to-coarse interface will remain appropriately corrected. 
 
4.9.2 Refluxing 
 
The refluxing process enforces flux conservation at patch interfaces [Berger, 1987] and 
requires storing the inlet and outlet fluxes for each patch during the numerical time 
integration. This process is done for coarse cells that share a cell edge with a fine patch 
boundary, but do not actually underlie any fine level cells. Thus, for one-dimensional 
problems considered here, the different cases where flux correction is necessary can be 
arranged in two groups (Figure 4-7). The general procedure for refluxing can be found in 
the papers by Berger (1987) and Hornung & Trangenstein (1997). Thus, in what follows, 
we briefly explained the technique using the first case of Figure 4-7a.  
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Figure 4-7: Grid interface between fine/coarse patches. 
 
Suppose a coarse cell j shares its left cell face with a fine patch boundary. Let c
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If instead of using a coarse value, the fine flux were used, the update process (4.6) will be 
written as: 
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fine level from time t to t + �tc. 
 
By using equation (4.7) in (4.8), the following correction expression can be derived: 
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In the same way, the second case (Figure 4-7 b) correction can be expressed as: 
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Thus, the fine or flux correction in (4.9) or (4.10) uses the difference between the two net 
fluxes to adjust the updated coarse solution, and it is equivalent to repeating the integration 
of the coarse cell using the sum of the fine patch fluxes instead of the coarse patch flux. 
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4.10 Coordination of the Complete AMR Algorithm 
 
After defining the initial coarse grid structure and priming it with the solution data, the 
coordination of the AMR processes can be regarded as a recursive sequence of procedures, 
which operate on every grid level until the desired point in time is reached. Figure 4-8 
depicts a flowchart of this recursive sequence of procedures, which we briefly describe in 
the following paragraphs.  
 
The algorithm begins with a time step integration of the initial coarse grid (level 1) 
patch(es) that cover the entire computational domain. Then, an error estimation procedure 
identifies coarse cells where the solution is not resolved to a given error tolerance, and 
flagged them as left or right part of the coarse patch. At the next iteration or timestep,  these 
tagged parts of the coarse patch are then spatially refined (with a ratio of 2) to form the 
level 2 grid structure. As the simulation proceeds, this process is repeated until either the 
error tolerance is satisfied or a specified maximum level is reached. Hence, as the dynamics 
evolve in time the important features of the solution move through the computational 
domain in a way that cannot be predicted a priori. 
 
For the unsteady conservative 1D models developed here, the AMR algorithm uses an 
explicit high resolution method (FCT or TVD Lax-Friedrichs) to advance the solution on 
each grid patch. The stability requirement for this method is that a signal not be able to pass 
entirely through a finite difference cell in any given time-step. This requirement is enforced 
by restricting the time-step such that S*�t/�x < CFL < 1 where S is the speed of the fastest 
wave in the problem and CFL is the Courant number specified by the user.  
 
From this we can see that as we move from one level to the next finest with a constant 
refinement ratio of R = 2,  the time-steps taken on the finer grids must be reduced by a 
factor of R. Further, in order for the fine grids to be advanced to the same point in time as 
the coarse level we must advance them R times for each coarse grid advancement. The time 
stepping algorithm is recursive: The grids at level L are advanced with a time-step �t(L). 
The grids at level L+1 are advanced R times with time-step �t(L+1) = �t(L)/R. Finally, a 
synchronization step is performed between level L and L+1. 
 
The same integration module is used to advance both coarse and fine grids. The stencil for 
this integrator requires that a certain number of boundary values be supplied for each grid. 
The boundary values are supplied by either (1) copying from adjacent grids, (2) calling user 
supplied physical boundary condition functions or (3) interpolating from grids at a coarser 
level. When interpolating data from coarser grids, we obtain the data on the required sub-
patch by a recursive call to this fill algorithm.  
 
The synchronization step is used to ensure that the solutions on the coarse and fine levels 
remain consistent. It consists of a “refluxing” step followed by a “projection” also known 
as an “average-down” step. Since the numerical method discretely respects the conservation 
laws, it is necessary that the amount of the conserved quantities contained in a fine grid be 
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the same as that contained in the underlying coarse grid region. The “projection” step is 
implemented by averaging the fine grid data in a volume weighted fashion down to the 
coarse grid region covered by the fine grids (Section 4.9).  
 
A conservative scheme updates the solution by computing fluxes across the faces of each 
finite difference cell. The state of the solution in a cell at the new time is the state at the old 
time plus the net flux across each of its faces. The fluxes computed on the coarse grid are in 
general not equal to the cumulative fluxes over the same physical region on the fine grids. 
The “refluxing” step effectively replaces the coarse grid fluxes with the cumulative fine 
grid fluxes. The reflux step updates the coarse grid cells adjacent to but not covered by the 
fine grids with a correction term that represents the difference between the coarse grid and 
fine grid fluxes.  
 
The core of the AMR algorithm implemented is the region surrounded by a dotted line 
frame in Figure 4-8. This recursive driver procedure advances the grid solution on level L 
from time t to t + �t, and can be described as: 
 

ALGORITHM TO ADVANCE SOLUTION ON LEVEL L FROM TIME t TO t + �t. 
 
1. Advance solution on each patch of level L from time t to t + �t. 

(a) Set boundary conditions needed to integrate grid in one of the three ways: 
i. Use physical boundary conditions, if applicable 
ii. Otherwise, use data from level L patches, if available (fine/fine) 
iii. Otherwise, interpolate data in time on level L – 1 cells underlying the 

level L boundary cells (fine/coarse) 
(b) Integrate the solution on the grid from time t to t + �t using an explicit high-

resolution scheme (FCT or TVD Lax-Friedrichs). 
2. If level L is not finest existing then 

For J = 1, R 
Advance the solution on level L+1 from t + (J-1) �t/R to t + J �t/R 

3. Fix up conservation between level L and level L+1 at t + �t in two ways:  
(a) Reflux: 

In level L cells that share a cell edge with a fine grid interface but do not 
actually underlie level L+1 cells, replace the effect of the coarse grid flux at 
the shared cell edge with the effect of the fine grid fluxes. 

(b) Project the fine solution onto coarse grid cells: 
In level L cells that underlay level L+1 cells, replace the solution in the level L 
cell by average of the solution in the overlying level L+1 cells.  

4. If it is time to refine, then apply the error estimator procedure and flag the level L 
patches for regridding.  

 
As already mentioned, the sequence of operations at each time step �t forms a W-cycle as 
in the multigrid method because the time refinement factor R in step 2 is fixed to a constant 
value 2.  
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Figure 4-8: Flowchart that describes the adaptive mesh refinement algorithm. 
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4.11 EMAPS Implementation of AMR 
 
In this section, we present some of the algorithms or Fortran 90 functions that perform the 
standard operations mentioned in previous sections. The purpose is to provide the reader 
with some clarifications and insights of the algorithmic details and functions required by 
the AMR strategy that we have adopted. These algorithms were implemented in the 
EMAPS framework, and include:  
 

�� Control; 
�� Integration; 
�� Boundary Collection; 
�� Regridding; 
�� Error estimation; 
�� Flagging; 
�� Correction; 
�� Projection. 

 
However, EMAPS does not merely copy the existing AMR algorithms in the literature. 
Instead, it implements versions of them, which take full advantage of the expressive power 
of the tree-based data structure, and data management infrastructure that we have adopted, 
as well as our refinement and regridding strategies. Thus, despite the fact that the AMR 
strategy in EMAPS is based on the work of Berger and other researchers, these algorithms 
themselves constitute a significant contribution to the AMR canon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SUBROUTINE TRANSIENT(TIME, TIMEOUT) 
 
    IMPLICIT NONE 
    REAL(WP), INTENT(IN)    :: TIMEOUT 
    REAL(WP), INTENT(INOUT) :: TIME 
    REAL(WP)  :: DT                     !TIME STEP (LOCAL VARIABLE) 
 
    DO WHILE (TIME < TIMEOUT) 
 
       CALL COARSE_TIME_STEP(DT, TIME)  !COMPUTE THE COARSEST TIME STEP    
       CALL AMR(TIME, LVL_HANDLE)       !ADAPTIVE MESH REFINEMENT DRIVER   
       CALL UPDATE_ALL_BUFFER() 
            
       TIME = TIME + DT                 !UPDATE OR INCREMENT TIME 
       NIT2 = NIT2 + 1                  !UPDATE THE NUMBER OF ITERATIONS   
 
       CALL OUTPUT_DUMP_RESULT(TIME, NIT2) 
    ENDDO 
 
END SUBROUTINE TRANSIENT 
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Figure 4-9: EMAPS Unsteady or Transient Controller Algorithm. 



 
 
 

 

4.11.1 Control Algorithm 
 
The control algorithm in Figure 4-9 provides for EMAPS the time loop over the chosen 
number of root level integrations, performing two basic operations: the process of 
integration itself, and an output operation. Considering that the dotted frame region in 
Figure 4-8 is the integration process described by the function “AMR”, and that a separated 
EMAPS function performs the initialisation of the grid solution, then Figure 4-9 represents 
the Fortran 90 implementation of the overall code depicted in Figure 4-8. 
 
4.11.2 Integration 
 
Figure 4-10 describes the EMAPS implementation of the AMR recursive algorithm 
described in Section 4.10. The halting condition for the algorithm is that it has reached an 
empty level, at which point it returns without computing. Otherwise, the algorithm regrids 
if appropriate, and advances the input level solution through the function “INTEGRATE”, 
which applies the numerical solver for all patches at the current level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RECURSIVE SUBROUTINE AMR(TIME, LEVEL) 
     
    IMPLICIT NONE 
    REAL(WP),  INTENT(IN) :: TIME            !TIME OF INTEGRATION 
    TYPE(TLEVEL), POINTER :: LEVEL           !LEVEL OF INTEGRATION 
 
    !---LOCAL VARIABLES 
    INTEGER   :: I 
    REAL(WP)  :: DT                          !LEVEL TIME STEP 
                              
    IF (.NOT.ASSOCIATED(LEVEL)) RETURN 
    IF (.NOT.ASSOCIATED(LEVEL%FIRST_GRID)) RETURN 
 
    IF (TIME_TO_REGRID(LEVEL)) CALL REGRID() !REBUILD THE GRID HIERARCHY 
  
    CALL INTEGRATE(TIME, LEVEL)              !ADVANCE THE LEVEL SOLUTION 
    CALL INIT_CONSERVATIVE_REFLUX(LEVEL) 
 
    IF (LEVEL%ID < LVLMAX) THEN 
       DT=TAU*LEVEL%DX 
        
       DO I = 1, RF 
         CALL AMR(TIME+(I-1)*DT/RF, LEVEL%NEXT) 
       ENDDO 
  
       CALL CORRECT_COARSE_FLUXES(LEVEL%NEXT) 
       CALL PROJECT_FINE_SOLUTION(LEVEL%NEXT)        
       IF (TIME_TO_REFINE(LEVEL)) CALL SET_LEVEL_FLAGS(LEVEL)        
    ENDIF 
 
END SUBROUTINE AMR 
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Figure 4-10: EMAPS AMR Recursive Integration Routine 
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Then, a call to function “INIT_CONSERVATIVE_REFLUX” initialises the current level 
patches inlet and outlet fluxes for the mass conservation or refluxing process. Afterwards, 
the integrator performs 2 recursive calls to itself (RF = 2) on the immediately finer level, 
followed by the synchronisation step that includes the refluxing and projection operations 
described in Section 4.9. Finally, if it is time to refine, an error estimator is applied and 
appropriate patches are flagged for the regridding process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-11: Integration Routine for a Level. 
 
Figure 4-11 describes in a bit more detail the integration or evolution of the grid solution 
for one level. The algorithm begins by making a copy of grid solution vectors to the buffer 
vectors via the function “UPDATE_BUFFER”, and then it collects boundary and interface 
values. Next, it determines the time step interval for the current level, immediately followed 
by the application of one of the numerical solvers described in Chapter 2 for all the patches 
of the current level. After the integration has been completed, the “integrate” function 
finally increments or updates the time information for the level. 
 
4.11.3 Boundary Collection 
 
Function “SET_LEVEL_BOUNDARIES” in Figure 4-12 performs the boundary collection 
operation. As already mentioned in Section 4.8, the boundary and ghost values are supplied 
by three mechanisms, namely: 
 

1. Calling user supplied physical boundary conditions wrapped in function 
“EXTERNAL_BDRY” 

2. Copying from adjacent grid patches using function “FINE_FINE_BDRY” 
3. Interpolating from grids at a coarser level. This operation is performed via function 

“FINE_COARSE_BDRY” 
 

SUBROUTINE INTEGRATE(TIME,LEVEL) 
 
    IMPLICIT NONE 
    TYPE(TLEVEL), POINTER :: LEVEL 
    REAL(WP),  INTENT(IN) :: TIME 
     
    !---LOCAL VARIABLE  
    REAL(WP)   :: DT                         !TIME STEP  
 
    CALL UPDATE_BUFFER(LEVEL)                !NECESSARY FOR FINER SUBSTEPS 
    CALL SET_LEVEL_BOUNDARIES(TIME, LEVEL)     
       
    DT=TAU*LEVEL%DX 
    CALL APPLY_NUMERICAL_SCHEME(DT, LEVEL)   !ADVANCE THE VECTOR SOLUTION 
    CALL SET_LEVEL_TIME(TIME+DT, LEVEL) 
 
END SUBROUTINE INTEGRATE 



 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-12: Boundary Collection Routine 
 
In his Hierarchical AMR (HAMR) boundary collection algorithm, [Neeman, 1996] 
advocated calling the three functions mentioned above in the reverse order to the one we 
adopted here. He argued that in this way, the most accurate value replaces less accurate 
values: the values injected from the coarser level are replaced by values copied from 
elsewhere on the local level, and values on the exterior of the problem domain are 
extrapolated. 
 
In our algorithm, the order in which we call the boundary functions does not really matter, a 
flag index identifies the appropriate type of boundary and any of the three boundary 
functions implemented can be called interchangeably. 
 
4.11.4 Regridding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SUBROUTINE REGRID() 
 
    IMPLICIT NONE 
    TYPE(TLEVEL), POINTER :: LEVEL 
 
    CALL ENSURE_PROPER_MESH_RATIO()     !FORCE REFINEMENT (KEEP 2:1 RATIO)
     
    LEVEL=>LVL_HANDLE 
    DO WHILE(ASSOCIATED(LEVEL)) 
       CALL REFINE_LEVEL(LEVEL) 
       LEVEL=>LEVEL%NEXT 
    ENDDO 
 
    LEVEL=>GET_LEVEL(LVLMAX) 
    DO WHILE(ASSOCIATED(LEVEL)) 
       CALL CLEAN_LEVEL(LEVEL)          !DELETE UNUSED PATCHES 
       LEVEL=>LEVEL%PREVIOUS 
    ENDDO   
END SUBROUTINE REGRID 
SUBROUTINE SET_LEVEL_BOUNDARIES(TIME, LEVEL) 
 
    IMPLICIT NONE 
    REAL(WP),  INTENT(IN) :: TIME 
    TYPE(TLEVEL), POINTER :: LEVEL 
 
    IF (.NOT.ASSOCIATED(LEVEL)) THEN 
       CALL ABORT("MISSING LEVEL", "SET_LEVEL_BOUNDARIES") 
    ENDIF 
         
    CALL EXTERNAL_BDRY(TIME, LEVEL)     !SET INLET/OUTLET BOUNDARY CONDITION
    CALL FINE_FINE_BDRY(LEVEL)          !SET FINE/FINE DUMMY CELLS 
    CALL FINE_COARSE_BDRY(LEVEL)        !SET FINE/COARSE DUMMY CELLS 
 
END SUBROUTINE SET_LEVEL_BOUNDARIES 
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Figure 4-13: EMAPS Regridding Routine 
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Like most structured AMR schemes, the EMAPS regridding algorithm (Figure 4-13) 
replaces a set of grids with a new set that covers more properly the phenomena of interest. 
However, unlike other schemes, the process is not recursive in itself, allowing regridding to 
occur at finer levels during a coarse time step cycle. Instead, we restrict the rebuilding of 
the grid hierarchy to the coarsest level only i.e. at the beginning of each coarse time step 
iteration. Hence, we avoid the problems associated with sub-cycling the regridding process, 
notably during the refluxing or mass conservation step.  
 
The algorithm begins by ensuring that a refinement ratio of 2:1 is respected for all the 
patches flagged for refinement or deletion. If this is not the case, then the function 
“ENSURE_PROPER_MESH_RATIO” will flag extra patches for refinement or cancel the 
deletion flag for some patches. Next, if there are new grids to replace the old grids, then 
they are created using function “REFINE_LEVEL”, and their grid solution values are injected 
from their parents using an interpolation operation (4.2). 
 
Finally, if old patches need to be deleted, they are removed from the grid structure using the 
function “CLEAN_LEVEL”. It should be noted after the refinement and cleaning processes at 
each level, the boundary relationships between the fine patches, their siblings and their 
parents is re-evaluated or updated appropriately.  
 
 
4.11.5 Error Estimation 
 
In previous structured AMR schemes [Berger & Colella, 1989; Neeman, 1996] a 
Richardson extrapolation was used to estimate the truncation error estimation, and provided 
a selection criterion for cell or patch refinement. However, this method, while both intuitive 
and mathematically simple, is complicated in algorithmic implementation and cannot be 
generalized for an arbitrary numerical solver. Therefore, a gradient-based approach, based 
on the work of Lezeau & Thompson (1998) was adopted as error estimator. Its formulation 
was described in detail in Section 4.7.2.1 and Figure 4-14 provides the actual 
implementation of equations (4.3) and (4.4) that are used to compute the average gradient 
or error for each half of every patch of the input level. 
 
Once these average gradients are estimated using the function “ERROR_ESTIMATOR” of 
Figure 4-14, an extra function named “THRESHOLD” is used to provide the automatic 
selection criteria defined by formula (4.5). Because this thesis is not a full description of all 
the Fortran subroutines implemented in the framework EMAPS, the function “threshold” is 
not shown here, but can be found in the source file “adapt.f90” containing all the necessary 
mesh refinement functions.   
 
For the reader interested in the structure of the EMAPS framework, a brief description of 
the key modules and files of the code can be found in Appendix A.  
 



 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBROUTINE ERROR_ESTIMATOR(LEVEL) 
 
    IMPLICIT NONE 
    TYPE(TLEVEL), POINTER :: LEVEL 
 
    !---LOCAL VARIABLES 
    INTEGER       :: I, J, NCELL 
    REAL(WP)      :: NORM, GRAD, DX 
    REAL(WP),     POINTER :: U(:,:) 
    TYPE(TPATCH), POINTER :: CURRENT 
 
    IF (.NOT.ASSOCIATED(LEVEL)) THEN 
       CALL ABORT("INVALID LEVEL", "ERROR_ESTIMATOR") 
    ENDIF 
 
    CURRENT=>LEVEL%FIRST_GRID       
    DO WHILE(ASSOCIATED(CURRENT)) 
 
       DX = LEVEL%DX 
       U=>CURRENT%BUFFER 
       NCELL = CURRENT%NCELL  
 
       NORM=0.0_WP          
       DO I=1, NCELL/2                  !PATCH FIRST HALF (LEFT PART) 
          DO J=1, NEQ 
             IF (I == 1) THEN 
                GRAD=(U(I+1,J)-U(I,J))/DX 
             ELSE 
                GRAD=(U(I+1,J)-U(I-1,J))/DX 
             ENDIF 
 
             NORM = NORM + GRAD*GRAD 
          ENDDO 
       ENDDO 
       CURRENT%ERROR(1)=SQRT(NORM/(NEQ*NCELL/2)) 
 
       NORM=0.0_WP 
       DO I=NCELL/2+1, NCELL            !PATCH SECOND HALF (RIGHT PART) 
          DO J=1, NEQ 
             IF (I == NCELL) THEN 
                GRAD=(U(I,J)-U(I-1,J))/DX 
             ELSE 
                GRAD=(U(I+1,J)-U(I-1,J))/DX 
             ENDIF 
 
             NORM = NORM + GRAD*GRAD 
          ENDDO 
       ENDDO 
       CURRENT%ERROR(2)=SQRT(NORM/(NEQ*NCELL/2)) 
          
       CURRENT=>CURRENT%NEXT 
    ENDDO 
 
    ! -- CONFIRMS THAT THE ERROR ESTIMATION HAS BEEN DONE -- ! 
    IF (ASSOCIATED(LEVEL%FIRST_GRID)) LEVEL%ESTIMATE=.TRUE. 
 
END SUBROUTINE ERROR_ESTIMATOR 
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Figure 4-14: Gradient-Based Error Estimation Routine 



 
 
 

 

4.11.6 Flagging 
 
Figures 3.15 and 3.16 present the flagging algorithms for a level and a patch respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SUBROUTINE SET_LEVEL_FLAGS(LEVEL) 
 
    IMPLICIT NONE 
    TYPE(TLEVEL), POINTER :: LEVEL      !INPUT LEVEL 
 
    !---LOCAL VARIABLES       
    REAL(WP)              :: TOL 
    TYPE(TPATCH), POINTER :: CURRENT 
 
    IF (.NOT. ASSOCIATED(LEVEL)) RETURN 
      
    CALL SET_NOREFINE(LEVEL)            !RESET PATCH(ES) REFINEMENT FLAGS
    CALL SET_NOREMOVE(LEVEL)            !RESET PATCH(ES) REMOVAL FLAG 
 
    CALL ERROR_ESTIMATOR(LEVEL)         !COMPUTE TWO ERRORS PER PATCH 
    TOL = THRESHOLD(LEVEL)              !TOLERANCE FOR LEVEL REFINEMENT 
 
    CURRENT=>LEVEL%FIRST_GRID 
    DO WHILE(ASSOCIATED(CURRENT))    
       CALL SET_PATCH_FLAGS(CURRENT, TOL)        
       CURRENT=>CURRENT%NEXT 
    ENDDO 
 
END SUBROUTINE SET_LEVEL_FLAGS 
Figure 4-15: Flagging Routine for a Specific Level 
SUBROUTINE SET_PATCH_FLAGS(GRID, TOL) 
 
    IMPLICIT NONE 
    TYPE(TPATCH), POINTER :: GRID 
    REAL(WP),  INTENT(IN) :: TOL             !TOLERANCE FOR REFINEMENT 
 
    !---LOCAL VARIABLES       
    INTEGER               :: IPART 
    TYPE(TPATCH), POINTER :: CHILD 
 
    DO IPART=1,2 
       IF (GRID%ERROR(IPART) > TOL) THEN 
          GRID%REFINE(IPART) = .TRUE.        !MARK PATCH FOR REFINEMENT    
       ELSE                                  !CHECK FOR CHILDREN REMOVAL 
          IF (IPART == 1) CHILD=>GRID%LEFT_CHILD 
          IF (IPART == 2) CHILD=>GRID%RIGHT_CHILD 
 
          IF (ASSOCIATED(CHILD) .AND. (.NOT.GRID%REFINE(IPART))) THEN 
             CHILD%REMOVE = .TRUE.           !MARK PATCH FOR DELETION 
          ENDIF              
       ENDIF 
    ENDDO 
END SUBROUTINE SET_PATCH_FLAGS 
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Figure 4-16: Patch Flagging Routine 



 
 
 

 

The level flagging routine is fairly simple to understand; the algorithm starts by setting all 
the refinement and removal flags to “false” via the routines “SET_NOREFINE” and 
“SET_NOREMOVE”. Then, it computes the average gradient and the overall tolerance or 
selection criteria for the level. Finally, it flags all the patches in the level using the function 
“SET_PATCH_FLAGS”, which actually sets the left or right flags of the input patch for either 
refinement or deletion as well its children if necessary. 
 
4.11.7 Flux Correction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBROUTINE CORRECT_COARSE_FLUXES(LEVEL) 
    IMPLICIT NONE 
    TYPE(TLEVEL), POINTER :: LEVEL 
 
    !---LOCAL VAVRIABLES 
    TYPE(TPATCH), POINTER :: CURRENT 
    INTEGER               :: IC, NL, NR 
    INTEGER               :: NCHILD, NEPHEW 
 
    IF (.NOT.ASSOCIATED(LEVEL)) RETURN 
    IF (.NOT.ASSOCIATED(LEVEL%PREVIOUS)) RETURN 
     
    CURRENT=>LEVEL%PREVIOUS%FIRST_GRID 
    DO WHILE(ASSOCIATED(CURRENT)) 
        
       NCHILD = TYPEOF_CHILD(CURRENT) 
       NEPHEW = TYPEOF_NEPHEW(CURRENT) 
       CALL GET_INDEX(CURRENT, NCHILD, NL, NR) 
        
       IF (NCHILD == 1) THEN            !ONLY THE LEFT CHILD EXIST. 
          IC = NL                       !NL = NCELL/2 + 1 
          CURRENT%DATA(IC,:)=CURRENT%DATA(IC,:) - TAU*CURRENT%FIN(:)       
       ELSE IF (NCHILD == 2) THEN       !ONLY THE RIGHT CHILD EXIST. 
          IC = NR                       !NR = NCELL/2 
          CURRENT%DATA(IC,:)=CURRENT%DATA(IC,:) + TAU*CURRENT%FOUT(:) 
       ENDIF 
         
       IF (NEPHEW == 1) THEN            !ONLY THE LEFT NEPHEW EXIST. 
          IC = NL                       !NL = 1 
          CURRENT%DATA(IC,:)=CURRENT%DATA(IC,:) - TAU*CURRENT%FIN(:) 
            
       ELSE IF (NEPHEW == 2) THEN       !ONLY THE RIGHT NEPHEW EXIST. 
          IC = NR                       !NR = NCELL 
          CURRENT%DATA(IC,:)=CURRENT%DATA(IC,:) + TAU*CURRENT%FOUT(:) 
 
       ELSE IF (NEPHEW == 3) THEN       !BOTH LEFT & RIGHT NEPHEWS EXIST 
 
          CURRENT%DATA(NL,:)=CURRENT%DATA(NL,:) - TAU*CURRENT%FIN(:)       
          CURRENT%DATA(NR,:)=CURRENT%DATA(NR,:) + TAU*CURRENT%FOUT(:) 
       ENDIF 
         
       CURRENT=>CURRENT%NEXT 
    ENDDO 
 
END SUBROUTINE CORRECT COARSE FLUXES
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Figure 4-17: Flux Correction Routine 



 
 
 

 

Figure 4-17 depicts the flux correction function “CORRECT_COARSE_FLUXES” that is based 
on Section 4.9.2 equations. The algorithm is relatively simple, but it involves a variety of 
operations that demonstrate the importance of functional data attributes. 
 
The algorithm begins by identifying the type coarse-fine interface boundary that requires 
refluxing, as well as the boundary relationships between the fine input grid and its parent or 
“aunt” (previous or next patch to the parent one). Then, the correction values are updated or 
corrected appropriately following the description given in Section 4.9.2. 
 
It should be noted that for the algorithm to work properly, it requires an additional function 
“INIT_CONSERVATIVE_REFLUX”, which actually computes the amount of correction 
necessary for the flux data, or the difference between the coarse fluxes and their 
corresponding fine ones. 
 
4.11.8 Projection  
 
Projection from fine to coarse grids is the process of updating a coarser level, using more 
accurate values of the cells at the fine level to replace the covering cells on immediately 
coarser level. Figure 4-18 depicts the EMAPS implementation of the algorithm as described 
by the transfer equation (4.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBROUTINE INTERPOLATE_COARSE_GRID(GRID) 
 
    IMPLICIT NONE 
    TYPE(TPATCH), POINTER :: GRID 
    INTEGER       :: JCR, JF, JC       !LOCAL VARIABLES 
 
    IF (.NOT.ASSOCIATED(GRID)) THEN 
       CALL ABORT("MISSING GRID", "INTERPOLATE_COARSE_GRID") 
    ENDIF 
 
    IF (ASSOCIATED(GRID%LEFT_CHILD)) THEN 
       DO JC=1,GRID%NCELL/2 
          JF=2*JC 
          GRID%DATA(JC,:)=0.5_WP*(GRID%LEFT_CHILD%DATA(JF,:)+ & 
                                    GRID%LEFT_CHILD%DATA(JF-1,:)) 
       ENDDO 
    ENDIF 
 
    IF (ASSOCIATED(GRID%RIGHT_CHILD)) THEN 
       DO JCR=1,GRID%NCELL/2 
          JC=JCR+GRID%NCELL/2 
          JF=2*JCR 
          GRID%DATA(JC,:)=0.5_WP*(GRID%RIGHT_CHILD%DATA(JF,:)+ & 
                                    GRID%RIGHT_CHILD%DATA(JF-1,:)) 
       ENDDO 
    ENDIF 
     
END SUBROUTINE INTERPOLATE_COARSE_GRID 
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Figure 4-18: Projection Routine from Fine to Coarse Grid 
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4.12 Numerical Validation of AMR Scheme 
 
In previous sections, we have laid down the conceptual constructs and design of the AMR 
scheme that we have developed. We have also shown that the Fortran 90 implementation of 
its functional algorithms is both flexible and laborious and above all requires careful 
coordination.  
 
Therefore, we present in this section the AMR scheme with various numerical test cases, 
and show that the massive effort spent to complete this general-purpose structured mesh 
refinement scheme was worthwhile. 
  
4.12.1 Burgers test case 
 
The first non-linear example selected is based on the inviscid Burgers equation (2.20) 
presented in Chapter 2. This scalar equation is used here as a test bed since its exact 
solution is known for some specific conditions. For the test case investigated, the initial 
condition is a square discontinuity velocity defined in a 5m pipe as: 
 

u(x,0) = 1 if 0.5 < x <1.5 
          = 0 elsewhere 

 
This problem contains a complicated interaction of shock and rarefaction waves and it is a 
very hard test for mesh refinement algorithm because a large fraction of the computational 
domain is refined. Figure 4-19 shows good agreement with the analytical result at t = 1 s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-19: Comparison of exact solution and adaptive computation for 50 cells and 4 
levels of refinement. 
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4.12.2 IFP Test Case  
 
The second test case analyses a horizontal two-phase flow line of constant diameter and 
was studied in Section 3.8.1 of the third chapter for a uniform grid. As already mentioned, 
the mathematical model used is the HEM-3 described in the second chapter, and the full 
specifications of the problem are as follows: 
 

�� Pipeline: length = 10 km, diameter = 0.146 m 
�� Operating fluids: air and water (�G variable,��L = 1000kg/m3) 
�� Flow temperature: T = 5��C 
�� Outlet pressure: 10 bar 

 
The liquid mass flow rate is kept constant and equal to 20 kg/s. The gas mass flow is 
initially equal to 0.2 kg/s and between t = 1000s and t = 1010s, it is doubled to 0.4 kg/s. All 
numerical computations use the FCT explicit solver with a CFL value of 0.5. 
 
Flow Evolution 
 
Figures 4.20 and 4.21 present the evolution of the liquid hold-up and superficial velocity at 
different times. As expected the air expands under the influence of the pressure gradient, 
forcing a decrease in the liquid volume fraction since the two phases flow with the same 
velocity. These computations use adaptive gridding with one initial patch of 50 coarse cells 
and 4 levels of refinement. 

 
 

Figure 4-20: HEM-3 [IFP Case]. Time evolution of the liquid hold-up with adaptive grid 
(50 coarse cells and 4 levels of refinement) 
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Figure 4-21: HEM-3 [IFP Case]. Time evolution of the liquid superficial velocity with 
adaptive grid (50 coarse cells and 4 levels of refinement) 

 
The figures clearly show the robustness and effectiveness of the AMR algorithm as the 
mesh distribution along the pipe automatically evolves with the flow, with fine meshes 
concentrated near discontinuities where they are needed.  
 
It should be noted that the number of refinement levels in graphs 4.20 and 4.21 is the 
maximum number of levels input by the user of the AMR code. However, the initial coarse 
level in the code is indexed 1, and therefore the 4 levels of refinement indicated in the 
graphs actually correspond to 3 levels of effective refinement in the code. In this thesis, the 
number of refinement levels will always refer to the one input by the user.  
 
 
Distribution of Refinement Levels 
 
Figure 4-22 presents the distribution of refinement levels and the holdup profile at time = 
3600 seconds. The simulation for this graph was performed using and adaptive gridding 
with two initial patches of 24 coarse cells and 4 levels of refinement.  
 
The graph confirms the observations mentioned above, and clearly demonstrates the 
effective concentration of fine cells near the holdup discontinuity, while coarse cells are 
used far away from the discontinuity.  
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Figure 4-22: HEM-3 [IIFP Case]. Distribution of refinement levels and holdup profile at 
time = 3600 s.  

 
 
Comparison Uniform and Adaptive Gridding 
 
Figure 4-23 shows the time evolution of the liquid holdup with 50 uniform cells. We 
remark the poor quality of results compared to Figure 4-20. This fact is also observed in 
Figure 4-24, which compares the liquid holdup results obtained using the uniform and 
adaptive gridding simulations with one initial patch of 50 coarse cells. 
 
Figure 4-24 also compares the adaptive gridding simulation using 50 coarse cells and 4 
levels of refinement with the equivalent uniform grid (400 cells), and it can be seen that the 
two results are very similar. This finding make the AMR scheme very attractive, as a 
similar convergent solution can be achieved for a fractional computational time compared 
to the uniform grid code (see Table 4.1). 
 
It is however difficult to evaluate the error or difference between the two solutions, because 
the adaptive gridding code do not use a fixed number of cells like the uniform grid, and 
calculation of the error may only be possible in a tiny part of the holdup profile, near the 
discontinuity, where the fourth and final level of refinement is used by the adaptive 
gridding code, and the cell locations are identical to the ones used by the uniform grid code. 
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Figure 4-23: HEM-3 [IFP Case]. Time evolution of the liquid hold-up with uniform grid. 

 

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
qu

id
 h

ol
du

p

Pipe length (m)

IFP case, Uniform & Adaptive Gridding Comparison

Adaptive 50 cells (4 levels)
Uniform  50 cells
Uniform 400 cells

 
 
Figure 4-24: HEM-3 [IFP Case]. Comparison between uniform & adaptive grid at 3600 s. 

 



 
 
 

 
 

137 

 
4.12.3 Timings 
 
Table 4-1 shows the execution time recorded for the integration of the IFP test case after 
4500 seconds using a DEC Alpha computer. As we can see, the AMR method significantly 
accelerates the computation compared to uniform grid. 
 
 

Timings (s) Speed-up Levels of 
refinement Uniform 

(actual) 
Uniform 

(max-amr) 
Adaptive Uniform 

(actual) 
Uniform 

(max-amr) 
1 4.7  (50) 4.7 (50) - - - 
2 16.9 (100) 36.9 (150) 11.0 1.54 3.35 
3 64.8 (200) 195.7 (350) 27.0 2.40 7.25 
4 259.5 (400) 887.8 (750) 65.3 3.97 13.60 

5 1028.6 (800) 3779.9 (1550) 156.6 6.57 24.14 

 
Table 4-1: Running time for different grid types and levels 

 
In Table 4.1, the number in brackets in column 2 and 3 correspond to the total number of 
cells used by the uniform grid code. More precisely, the adaptive grid code uses 50 coarse 
cells, which are equivalent to 100 cells for two levels of refinement and a maximum of 150 
uniform cells can coexist in the AMR code.  Similarly, 3 levels of refinement are equivalent 
to 200 uniform cells (or a maximum of 350 uniform cells in the AMR code) while 5 levels 
of refinement are equivalent to 800 uniform cells.   
 
 

4.13 Conclusion 
 
The algorithm presented in this chapter uses a new automatic grid refinement algorithm to 
simulate time dependent problems. Although it is composed of many co-ordinated 
elements, two key features make it possible. An automatic procedure, which estimates the 
solution average error and selects the appropriate zones to be refined in the computational 
grid. The other important feature of this algorithm is the flexible data structure that actually 
supports its implementation. This has immediate impact on the practical utility of the 
approach since it influences the storage and computation overhead to manage the 
refinement strategy.  It also has a strong bearing on the actual complexity of the code. By 
using Fortran 90 as the implementation language, we contributed to a fully integrated AMR 
scheme and designed a data structure that provides the best balance between storage and 
computational cost without significantly increasing the code complexity. 
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We have validated our algorithm with several numerical examples and demonstrated that 
the AMR algorithm achieves the same accuracy for a fraction of the cost of a calculation on 
a conventional uniform grid. More precisely, we have shown that this algorithmic technique 
can save as much as an order of magnitude in computational time for two-phase flow 
problems. However, it should be noted that there are some areas where our mesh 
refinement scheme still needs research and improvement. Considering that the best initial 
grid generation procedure is still an important open question, the use of implicit finite 
difference methods with the EMAPS data structure needs to be developed further, as well 
as the validation of the scheme for non-conservative mathematical models.  
 
It is also worth mentioning that the design, implementation and testing of AMR in the 
EMAPS framework was a long and laborious process, the extent of which was not 
anticipated at the outset. During the overwhelming majority of this process, no aspect of the 
components had any significant value beyond its anticipated future role within the overall 
environment. Furthermore, AMR’s many functional layers are so completely integrated that 
it was impossible to employ it for anything useful prior to completion, and this facet of its 
development proved intensely frustrating. Therefore, we do hope that the conceptual 
constructs laid out in this chapter will provide an aid to designing, and help the reader in 
better understanding the structured AMR strategy that we have developed.  
 
In the end, we succeeded in implementing a robust and efficient AMR scheme for 
conservative one-dimensional models in the EMAPS framework, which proved itself in 
execution. However, this scheme is not valid for multi-dimensional problems and we do not 
recommend anyone to embark in the tedious operation of extending the scheme for this 
class of problems. Instead, we advocate using cross-language implementation for Fortran 
developers of numerical solvers, and opt for the general-purpose C++ implementation 
provided by Neeman (1996) in his fully detailed PhD thesis.  
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5 Chapter 5 - Stratified Flow Modelling 
 
 
 
 

5.1 Introduction 
 
This chapter deals with issues associated with the accurate modelling of stratified gas-liquid 
flow in horizontal pipes, in particular the correct description of the momentum transfer for 
each phase at the wall and between the two phases at the interface. The two main reasons, 
for looking at this specific flow pattern, are: 
 

�� Firstly, because it is the simplest interface configuration encountered in two-phase 
flows, and there is available and reliable experimental data for validating stratified 
flow patterns, and we believe that any attempt to model more complex features 
occurring in two-phase intermittent flows will be achieved with a better 
understanding and an accurate prediction of stratified flows. 

 
�� Secondly and more importantly, because it plays a major role in slug flow 

configuration, which is the one of the prime objectives of this study. Indeed, most 
slug units are composed of two regions, a dispersed bubble region (or the liquid 
slug) and a long bubble region, also known as the stratified film region. In this latter 
section, the stratified flow theory presented in this chapter is applied.  

 
Unfortunately, being the simplest flow pattern does not mean that stratified flow is easy to 
model, and there is still intensive ongoing research in two-phase stratified gas-liquid flow 
with the focus being the improvement of mathematical models to accurately predict key 
design parameters, such as the pressure drop of a pipeline system, and to understand two-
phase flow characteristics such as heat and mass transfer, or friction factors. 
 

5.2 Chapter Outline 
 
Figure 5-1 shows the configuration of stratified flow pattern that we attempt to predict 
using the incompressible two-fluid model PFM-2 presented in the first chapter of this 
thesis. As already mentioned, this model assumes: 
 

�� No heat transfer between the two phases. 
�� No mass transfer between the two phases. 
�� And that the two fluids are taken incompressible. 
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With those assumptions, the main uncertainties for this one-dimensional stratified flow 
model are the closure laws for wall and interfacial shear stresses. Therefore, a review and a 
validation study of these terms constitute the major part of this chapter and are covered in 
the next sections. 
 
 
 
 
 
 
 
 
 

Figure 5-1: Stratified flow in a horizontal pipe 
 

5.3 Characterization of the Interface 
 
A stratified flow pattern is characterized by the separation of the liquid and gas flows, with 
the liquid moving downstream along the bottom of the horizontal pipe and the gas flowing 
concurrently above it (Figure 5-1). At low gas velocity, the gas-liquid interface appears 
undisturbed or smooth. However, as the gas velocity is increased, waves appear on the 
interface and the flow pattern is referred to as stratified wavy.  
 

   
 

(a) Stratified smooth    (b) Stratified wavy 
 

Figure 5-2: Stratified flow patterns (from 
http://www.pe.utexas.edu/2phaseweb/flowhoriz.html, visited on 03/12/2003) 

 
Hence, the simplest classification of the stratified flow patterns is into two sub-regimes, 
stratified-smooth and stratified-wavy (Figure 5-2) as suggested by Baker (1954). However, 
several authors [Andreussi & Persen, 1987; Chen et al., 1997; and Espedal, 1998] have 
further subdivided the stratified-wavy flow into different categories or sub-regimes 
according to the various types of waves observed at the gas-liquid interface.  
 
The process of interfacial wave formation is not well understood and it is the ability of the 
interface to deform with the flow, which still makes modelling stratified flow a difficult 
endeavour. The structure of this deformable interface is very important for mathematical 
models, as it will dominate the drag between the phases. In 1D models, the drag at the gas-
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liquid interface is expressed in terms of an interfacial friction factor, which is considered as 
the most relevant parameter to predicting two-phase flow. Therefore, a large number of 
empirical relationships have been suggested for interfacial friction factor. 
 
For this study, we only consider two flow sub-regimes in the stratified region as suggested 
by Baker (1954), but the key modelling question of this work is to find which interface 
friction factor is better for each stratified flow regime, and if different correlations must be 
used for each pattern, when to switch from one to another. We will attempt to answer these 
two questions in Section 5.6. 
 

5.4 Literature Review – Steady State Parameters 
 
The pressure drop and the phase distribution content (holdup) are the two most important 
design parameters for petroleum engineers, and therefore many methods have been derived 
to predict them accurately. In this section we review some of these empirical methods for 
fully developed (steady-state) stratified flow.    
 
Though, our primary interest lies in predicting the behaviour of unsteady flows, an accurate 
estimate of these fully developed parameters is generally required in most two-fluid 
models, as initial conditions for transient simulations. It is therefore crucial that we evaluate 
properly these two key parameters for a rapid convergence of the mathematical models and 
numerical schemes described in previous chapters.  
 
5.4.1 Pressure Drop 
 
The overall two-phase pressure drop generally contains three components, namely, the 
frictional, gravitational and acceleration terms and it is given as:  
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However, for horizontal flow the gravitational or hydrostatic pressure drop is zero, and 
Ferguson & Spedding (1995) stated that when the total mass velocity GT is less than 2700 
kg / (m2 s), only the frictional term is of importance. As most prediction methods are 
concerned with this case, we only review here the frictional term of the overall pressure 
drop. 
 
Depending on the two-phase flow behaviour assumption, the methods available in the 
literature can be classified into two groups, namely the homogeneous flow models and 
separated flow models, and they are briefly summarized in the next two sub-sections. For a 
complete description of many of these models, we refer to the thesis by Pan (1996). 
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5.4.1.1 Correlations from the “Homogeneous Flow” Approach 
 
This simplified model is generally used to estimate the frictional pressure drop for 
dispersed flow regime (churn, bubbly) and sometimes for slug flow as well, but it is not 
recommended for stratified or annular flow regimes. It adopts an opposite approach to the 
separated flow model described below, and is based on the assumption that the two-phase 
flow can be treated as a hypothetical single-phase flow having some kind of average 
properties. 
 
Therefore, for a given gas and liquid mass fluxes (GG and GL), McAdams et al. (1942) 
modified the single-phase equation and proposed an easy way to calculate the two-phase 
frictional pressure drop; their expression is given by:  
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	      (5.2) 

   
where �H is the homogeneous density and fM is the single-phase friction factor based on the 
mixture fluid properties (density and viscosity). Any of the single-phase friction factor 
correlations presented in Section 5.5.1.1 can be used to evaluate fM, for example: 
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The mixture Reynolds number ReM is based on the mixture viscosity and it is defined as: 
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Hence, the main issue for the frictional pressure drop prediction with the homogeneous 
model (5.2) is in evaluating accurately the mixture density and viscosity. There is an 
agreement in the literature for the homogeneous mixture density, and its expression is 
usually given by: 
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which leads to: 
 
    � � LLGLH 1 ��������     (5.5b) 
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The terms xG and �L are respectively known as the (gas) quality and the non-slip (liquid) 
holdup and are defined as: 
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where JG and JL are respectively the gas and liquid superficial velocities. 
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Table 5-1: Correlations for the mixture viscosity 

 
As for the homogeneous mixture viscosity, its concept as well as its determination is less 
obvious, therefore, various expressions have been suggested in the literature and some of 
them are reported in Table 5-1. These numerous models often lead to a completely different 
estimate of the mixture viscosity for various operational conditions, and this fact is the 
main reason why the homogeneous flow model is less in favour as a predictive tool for the 
pressure drop calculation compared to the separated flow model described below. 
 
5.4.1.2 Correlations from the “Separated Flow” Approach 
  
This model can be used for any type of flow regime, and assumes that distinct parts of the 
flow cross-section can be assigned to the two phases, reflecting to a large extent what 
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occurs in stratified or annular flow regimes. It involves the use of a coefficient term also 
known as a two-phase multiplier and it is defined by: 
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That is, the two-phase frictional pressure gradient is calculated from a reference single-
phase frictional pressure gradient � �RdxdP  multiplied by the two-phase multiplier, the 
value of which is determined from empirical correlations. 
 
In equation (5.8) the two-phase multiplier is written as 2

R�  to denote that it corresponds to 
the reference single-phase flow denoted by the subscript R. For gas-liquid two-phase flow, 
there are four possible reference flows: 
 

1. whole flow liquid, denoted by subscripts LO 
2. whole flow gas denoted by subscripts GO 
3. only the liquid in the two-phase flow, denoted by subscript L 
4. only the gas in the two-phase flow, denoted by subscript G 

 
As pointed out by Levy (1999), there are two aspects of the notation that may lead to 
confusion and error. First, note that LO and GO do not denote “liquid only” and “gas only” 
reference flows, as might be expected. On the contrary, they denote flows in which the 
whole of the flow rate is liquid or gas. It may help to remember them as “liquid overall” 
and “gas overall”. The second point to note is that 2�  denotes the two-phase multiplier, and 
not its square root value � .  
 
As already mentioned, a very large number of separated pressure drop models are available, 
and it will be impractical and probably counter-productive to list them all here. In addition, 
many critical evaluations of the existing pressure drop prediction methods have been 
performed and we refer the reader to these references.  
 
However, from the early studies of Hughmark (1963) that compared four pressure drops 
against air-water test data, to the recent study of Ferguson & Spedding (1995) comparing 
70 pressure drop models using various test fluids, the numerous comparative studies 
[Weisman & Choe, 1976; Mandhane et al., 1977; Friedel, 1980; Beattie & Whalley, 1982; 
Gregory & Fogarasi, 1985; Cawkwell & Charles, 1985; Simpson et al., 1987; and Baker et 
al., 1988] reported in the literature do not really agree on the recommended frictional 
pressure drop model. 
 
Therefore, we only present here the models recommended recently by Corradini (1997) 
who noted that some correlations described in the literature performed better than other for 
certain flow conditions and pipe topographies, and to obtain an optimal model, he 
suggested combining three existing models as follows: 
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1. The Lockhart-Martinelli (1949) correlation for flow where the viscosity ratio 

1000GL ���  and the total flowrate s.m/kg100G 2
T �  

2. The Chisholm-Baroczy (1973) correlation for flow where 1000GL ���  and 
s.m/kg100G 2

T �  
3. The Friedel (1979) correlation for 1000GL ����  

 
These three models, which were also recently recommended by Haraburda & Chafin 
(2000), are detailed a bit more in the following paragraphs, plus an extra phenomenological 
model that we have adopted for practical applications. 
 
Lockhart & Martinelli (1949) introduced the concept of multiplier mentioned above by 
proposing a correlation for the frictional pressure drop using the liquid single-phase 
pressure gradient (R = L) as a reference in Equation (5.8), so that  
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However, the relationship between their two-phase multiplier 2

L� and the Martinelli 
parameter X2 defined by equation (5.11) was originally given in graphical form, but 
Chisholm (1967) accurately approximated this graphical relationship by a simple 
expression based on a tabular constant C which depends on whether the gas and liquid are 
laminar or turbulent. The proposed correlation is: 
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The coefficient C in relation (5.10) depends on whether the gas and liquid are laminar or 
turbulent (see Table 5-2). 
 

Gas Liquid C 
Laminar Laminar 5 
Laminar Turbulent 10 

Turbulent Laminar 12 
Turbulent Turbulent 20 

 
Table 5-2: Chisholm coefficient C for the Lockhart & Martinelli pressure drop 

 
Using the “liquid overall” flow (R = LO) as a reference, Baroczy (1966) also proposed a 
frictional pressure drop calculation in graphical form, which Hewitt (1982) recommended 
as the most widely used and advanced empirical correlation. This graphical relationship 
was curve-fitted by Chisholm (1973) with the formula: 
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which extends the range of the graphical relationship. Here, xG is the quality defined by 
Equation (5.6) and B is given by: 
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Finally, the Chisholm-Baroczy [Chisholm, 1973] pressure drop for two-phase flows is 
calculated by: 
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Based on a data bank of 25, 000 data points from the literature, Friedel (1979) also 
proposed a generalized correlation using the “liquid overall” two-phase multiplier as a 
reference similarly to relation (5.21). His multiplier can be expressed as: 
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where the coefficients C1, C2, C3, and the square mixture Froude number and the Weber 
number are respectively defined by: 
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The friction factors LOf  and GOf  should be calculated using equations (5.19)-(5.20) and 
finally the pressure drop should be calculated using equations (5.21), (5.22) and (5.18). 
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Muller-Steinhagen & Heck (1986) proposed a simple phenomenological frictional pressure 
drop correlation, which is applicable for all gas-liquid flow patterns. The model is 
essentially an empirical two-phase extrapolation between all liquid flow and all vapour 
flow such that is applicable for 1x0 G �� . Recently, Tribble & Muller-Steinhagen (2000) 
have shown that this method gave the best results from a comparison of competing methods 
against a database covering air-oil, air-water, steam-water and several refrigerants. This 
pressure gradient correlation is:  
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The factor G is given by: 
 
    � � Gxab2aG ���      (5.27) 
 
The variables a and b represent the frictional pressure drop gradients for all the flow liquid 
� �LOdxdP  and all the flow gas � �GOdxdP  obtained from equation (5.18). It is this simple 
correlation that has been implemented in the EMAPS code for initial condition purposes in 
the case where the two-phase pressure based models (HEM-3 or SPM-4) are selected for 
practical flow conditions including the stratified flow regime. 
 
 
5.4.2 Liquid Holdup 
 
As already mentioned, an estimate of the liquid holdup is often required as initial condition 
for two-phase flow simulations, and similarly to the pressure drop, many correlations have 
been proposed in the literature. They are generally flow regime-dependent and therefore not 
applicable to all flow situations. 
 
In the next paragraph, we only describe six empirical correlations, which were critically 
evaluated and recommended in review papers by Dukler et al. (1964), Mandhane et al. 
(1975), and Payne et al. (1979). All these correlations, although derived for general-purpose 
applications and for all flow patterns, do not always constitute an initial guess for the liquid 
holdup in the stratified flow case. Therefore, we also present the semi-theoretical 
correlation presented by Taitel & Dukler (1976) and which is generally selected as a default 
value for the initial liquid holdup in the EMAPS code. 
 
 
5.4.2.1 Empirical Correlations 
 
Lockhart & Martinelli (1949) presented an empirical liquid holdup correlation that was 
later recommended by Mandhane et al. (1975) for the annular flow regime only. This 
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correlation only depends upon of the dimensionless parameter X defined by Equation 
(5.11) as the ratio between the liquid and gas frictional pressure drops, and was given in 
graphical form. It was later fitted by Pan (1996) with the following formula: 
 

� � � �32
L Xln001085.0Xln012566.0Xln111327.0228255.0R ����  (5.28) 

 
Hughmark (1962) presented a generalized two-phase liquid holdup correlation using a 
graphical relationship between two parameters K and Z and claimed it to be applicable to 
horizontal as well as vertical upward flow. His implicit correlation can be expressed as: 
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where K is function of the parameter Z defined by: 
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The non-slip liquid holdup �L and the mixture Froude number FrM are defined by Equations 
(5.7) and (5.24) respectively and the mixture Reynolds number ReM is given by relation 
(5.4) where the mixture viscosity is a linear function of the calculated holdup, defined as: 
 
    LLGGM RR �����      (5.31) 
 
The relation between K and Z was given in tabular form by the author, but was later 
expressed in algebraic form by Pan (1996) as: 
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Guzhov et al. (1967) proposed a simple liquid holdup correlation that only depends upon 
two parameters: the no-slip liquid fraction �L and the mixture Froude number FrM. Payne et 
al. (1979) recommended this simple relation for stratified flow, and it is given as: 
 

� � � �� �MLL Fr2.2exp1181.01R ������    (5.33) 
 
where �L and FrM have already been defined in Equations (5.7) and (5.24). 
 
Rouhani & Axelsson (1969) derived a mean liquid holdup correlation based on the drift 
flux model of Zuber & Findlay (1965), and proposed the following relation:    
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where xG is the gas flow quality, �H the homogeneous mixture density defined by relation 
(5.5) and � is the gas-liquid surface tension. 
 
Premoli et al. (1970) proposed a two-phase flow correlation that was later recommended by 
Hewitt (1982) and Whalley (1987) as the best method available for calculating the average 
liquid holdup. Their relation is expressed as: 
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where xG is the flow quality, S the slip or velocity ratio defined as: 
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The superficial velocity ratio y is defined by LG JJy � , while the coefficients E1 and E2 
are given by: 
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The terms ReLO and WeLO represent the Reynolds and Weber numbers respectively, when 
all fluid is liquid, and they are defined using the pipe diameter D, the mass flux of the 
mixture and the liquid properties as: 
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Beggs & Brill (1973) developed a flow pattern-dependent liquid holdup correlation based 
on air-water data from two pipelines with diameter of 25 and 28 mm at a system pressure of 
2.4 to 6.55 bara. Various pipe inclinations ranging from –90° to 90° from horizontal were 
investigated and the correlation proposed was given as: 
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     0LL RR ��      (5.40) 
 
where the pipe inclination correction � is defined by: 
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The horizontal liquid holdup RL0 (� = 0) and the inclination correction factor C are flow 
regime dependent and are defined in Table 5-3. 
  
 

Horizontal 
flow pattern 
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C 

Downward flow  
C 

Segregated 0868.0
M

4846.0
L

Fr
98.0 �

 �
�

�
�
�

�

� 614.1
M

768.3
L

539.3
LV

Fr
N011.0

Ln  �
�

�
�
�

�

� 5056.0
M

3692.0
L

1244.0
LV

Fr
N7.4

Ln  

Intermittent 0173.0
M

5351.0
L

Fr
845.0 �

 �
�

�
�
�

� �
4473.0

LV

0978.0
M

305.0
L

N
Fr96.2
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Distributed 0609.0
M

5824.0
L

Fr
065.1 �

 0 Same as above 

 
Table 5-3: Correlations for calculating RL0 and C. [Beggs & Brill, 1973]  

 
The non-slip liquid holdup �L and the mixture Froude number FrM are given by Equations 
(5.7) and (5.24) respectively, while the liquid velocity number NLV is defined by: 
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To predict the flow patterns, Beggs & Brill (1973) simplified their transition map by 
considering only three types of flow patterns, and proposed the following criteria: 
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where the parameters L1 and L2 are given as a function of � �Llny ��  as follows: 
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 � �5332

2 y10635.0y179.0y609.1y602.4061.1expL �

������   (5.45) 
 
 
5.4.2.2 Taitel & Dukler Equilibrium Value 
 
Using a one-dimensional steady state separated flow model, Taitel & Duckler (1976) 
proposed the first analytical solution for the liquid holdup value. They combined separate 
momentum balances for the gas and liquid by eliminating the pressure gradient terms. 
Assuming that the liquid layer is of constant height, with a smooth gas-liquid interface, and 
that the interfacial shear term is equal to the gas-wall shear term, they derived a non-
dimensional form of this combined momentum balance as: 
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For given gas and liquid flowrates and fluid properties (density and viscosity), the 
Martinelli parameter X2 is constant and defined by relation (5.11), while the inclination 
parameter Y in Equation (5.46) is also constant and given by the following expression: 
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where the gas pressure gradient � �GdxdP  is computed using relation (5.12). Hence, the 

momentum balance (5.46) depends upon only one dimensionless variable � �Dhh~ LL � , 
where hL is the liquid film height and D the pipe diameter. The remaining unknowns in the 
equilibrium height relation are therefore defined as:  
 

� � � � � �
��

�
�
�

��

�
�
�

�
	



�
�



��������� �

21h~211h~21h~2cos25.0DAA~ LLL
12

LL  (5.48a) 

 
   4DAA~ 2

���       (5.48b) 

 

LG A~A~A~ ��        (5.48c) 
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   GLL S~DSS~ ����       (5.48e) 

 

   � �2LLLII 1h~21h~dA~dDSS~ �����    (5.48f) 

 

   � �LLLLL A~4A~A~JVV~ ����     (5.48g) 

 

   � �GGGLG A~4A~A~JVV~ ����     (5.48h) 

 

   ~h h DL L�        (5.48i) 

 

   ~ ~ ~D A SL L L� 4        (5.48j) 

 

   � �~ ~ ~ ~D A S SG G G I� �4       (5.48k) 

 
The equilibrium equation (5.46) coupled with relationships (5.48a-k) is an implicit function 
of the liquid height. Therefore, an iterative root finding scheme, such as Newton’s method, 
can be used to solve it and provide an accurate estimate not only for the stratified liquid 
height, but also for the equilibrium gas and liquid volume fractions and velocities. A simple 
Fortran 90 programme has been written to perform this task. 
 
 
5.4.3 Stability Criteria – Stratified to Slug Transition  
 
The transition from stratified to slug flow is a complex phenomenon that has been widely 
studied over the past thirty years. And besides the early empirical relations [Beggs & Brill, 
1973; Mandhane et al., 1974], three theoretical relations have been often used to predict the 
transition criterion. These include the inviscid Kelvin-Helmholtz (IKH) theory, the viscous 
long waves (VLW) also known as viscous Kelvin-Helmholtz (VKH) theory and the slug 
stability theory. 
 
However, early theoretical models [Kordyban & Ranov, 1970; Taitel & Dukler, 1976] 
considered the process leading to the transition to be solely linked to the Kelvin-Helmholtz 
instability [Milne-Thompson, 1968] which occurs when the suction effect due to pressure 
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variation over a wave overcomes the stabilising effect of gravity, enabling small interfacial 
disturbances to grow into waves that may be potentially large enough to bridge the pipe and 
form slugs. But nowadays, many researchers [Scott et al., 1990; Bendiksen & Espedal, 
1992; Woods & Hanratty, 1996] often used the stability of an existing slug to explain the 
transition from stratified flow.  
 
It is still not clear which theoretical method is best as predictive tool for the transition from 
stratified flow, and we refer the reader to paper by Mata et al. (2002) which compared 
different stability limit methods, and the thesis by Hale (2000) which reviewed the various 
models dealing with the growth of disturbances into large amplitude waves and potentially 
slug flow. But, as a guide for selecting a transition mechanism, we advocate the recent 
article by Hurlburt & Hanratty (2002) who combined the use of the three existing 
theoretical methods depending on the gas superficial velocity. However, in this thesis, we 
only describe the Taitel & Dukler (1976) transition model, because it is most widely used 
in the literature.    
 
Starting from a solitary wave of finite amplitude, Taitel & Duckler (1976) studied its 
growth on a smooth stratified layer in horizontal channel, and derived a stability criterion to 
pinpoint the transition between stratified and slug flow. Neglecting the wave motion, they 
wrote a balance equation between the pressure variation and the acceleration of the gas 
phase. This results in a condition of instability for a rectangular channel, which was further 
modified for circular geometries as: 
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The coefficient K = 1 corresponds to a slightly modified version of the inviscid Kelvin-
Helmholtz criteria given by relation (1.57). However, the authors realised that this IKH 
criteria over-predicted the transition limit, and recommended the following expression: 
 

    
D
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The Taitel & Dukler (1976) model (5.49)-(5.50) works reasonably well for horizontal pipes 
and its transition line is illustrated in Figure 5-3 for air-water flow at atmospheric 
conditions.  
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The coefficients fG, fL, and fI are defined as the Darcy or Fanning friction factor [Perry & 
Green, 1984] and Vr the relative or slip velocity between the gas and the liquid. 
 
A detailed presentation of different models for stratified flow can be found in the thesis by 
Espedal (1998) and Khor (1998). In what follows, we briefly describe some of those 
mentioned in Table 5-4. 
 
 
5.5.1 Wall Friction Factors 
 
In two-phase flow computations, it is common practice to model the fluids wall friction 
factors using single-phase pipe flow formulas. Therefore, we firstly present some useful 
formulas validated for single-phase pipe flow. 
 
 
5.5.1.1 Single-Phase Flow Correlations 
 
The oldest, simple and widely used formula for friction factors in single phase turbulent 
flow is the Blasius equation. This formula, which is only valid for smooth walls and for 
Reynolds number (Re) ranging between 2.5 �10-3 and 10-5, can be found in most fluid 
dynamics textbooks and is given by: 
 
   25.0Re0792.0f �

��       (5.53) 
 
But the most accurate and commonly accepted formulas for friction factors in turbulent 
pipe flow are the Prandtl or von Karman formula for smooth walls and the Nikuradse 
formula for fully rough pipes [Perry & Green, 1984]. Prandtl’s formula is given by:  
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while the Nikuradse formula for rough pipes is given by: 
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where f is the Darcy friction factor, D is the pipe inner diameter and � is the pipe roughness.  
 



 
 
 

 
 

159 

Colebrook (1939) combined the Prandtl formula (5.54) for smooth pipes and the Nikuradse 
formula (5.55) for rough pipes, and proposed an implicit formula for the wall friction 
factor, which is now universal in engineering, as it covers the full range of smooth and 
rough pipes. This formula is expressed as:  
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D715.3fRe
256.1log0.4

f
1

10
�    (5.56) 

 
Equation (5.56) agrees well with commercial pipe friction data in the transition region 
between hydraulically rough and smooth flow, and it also contains equations (5.54) and 
(5.5) as limiting cases when �/D � 0 and Re � � , respectively 
 
Friction factor tables based on Colebrook’s equation are widely used in the industry, 
however, the implicit nature the correlation makes it inconvenient for practical modelling 
applications and simulations, and hence several explicit approximations have been 
proposed in the literature. The earliest of those approximations is due to Moody (1947) and 
it was given as:  
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Since, the first expression proposed by Moody in 1947, a series of increasingly more 
accurate and complex explicit approximations have been published. Since this document is 
not a review report on single-phase wall friction factors, in what follows, we only mention 
two additional explicit approximations, and refer the interested reader to the review paper 
by Zigrang & Sylvester (1985) on explicit friction factor equations. 
    
Eck (1973) presented an explicit wall friction correlation, which is often used in two-phase 
flow modelling; this popular relation is expressed as: 
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But if looking for an expression, which is both simple and accurate, Espedal (1998) stated 
that the best choice is probably the approximation given by Haaland (1983).  
 

   211.1

10 D7.3Re
9.6log

07716.0f

�
�
�

�

�
�
�

�

�
�

�

	






�

�
�
�

	


�

�



�

�

�

    (5.59) 



 
 
 

 
 

160 

 
Haaland (1983) found that the explicit equation (5.59) is in good agreement with the 
Colebrook implicit equation (5.6) with less than � 1.5% difference in the range 4.103 � Re 
� 5.108 and 0 � �/D � 5.10-2.  
 
It should be noted that all the wall friction correlations mentioned above are valid for 
turbulent flow, but for fully developed laminar flow in a round tube, a simple formula 
derived by Hagen and Poiseuille [Perry & Green, 1984] is generally used for practical 
applications, and it is given as: 
 

   
Re
16f �        (5.60) 

 
 
5.5.1.2 Two-Phase Flow Correlations 
 
Gas and liquid two-phase friction terms are almost always calculated using correlations 
developed for smooth or rough wall single-phase pipe flow in which the pipe inner 
diameter is replaced by the appropriate fluid hydraulic diameter and the Reynolds number 
is calculated using the same hydraulic diameter. For completeness, these fluid parameters 
are defined as follows: 
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where AG and AL are the gas and liquid pipe cross section areas. SG, SL, and SI are the gas, 
liquid and interfacial wetted perimeters, and DhG and DhL are the hydraulic diameters for 
the gas and liquid, respectively. �G and �L are the gas and liquid densities, and �G and �L 
are the dynamic viscosities for the gas and liquid. 
 
However, new correlations have been derived from two-phase flow studies, and a slightly 
different expression of the Blasius equation (5.53) has been used in the works of Taitel & 
Dukler (1976) and Andreussi & Persen (1987). This expression is given by: 
 
   L,GkRe046.0f 2.0

kk ���
�     (5.63) 

 
Similarly to the original expression, this modified Blasius equation (5.63) is only valid for 
smooth pipes. Hence, to account for the effects of the pipe roughness, the wall friction 
factors are often evaluated by single-phase explicit formula (5.57), (5.58) or (5.59). 



 
 
 

 
 

161 

 
Kowalski (1987) demonstrated that measurements of gas friction fG were accurately 
predicted by the Blasius equation defined in relation (5.63), but the liquid wall friction 
factor did not follow the Blasius equation, but a correlation of the type: 
 
   � � 2c

LSL1L ReRcf �       (5.64) 
 
where c1 and c2 are correlated coefficients, RL is the liquid volume fraction, and ReLS is a 
Reynolds number based on the liquid superficial velocity and the pipe inner diameter. 
 
Based on his experimental data, Kowalski (1987) proposed to use the values c1 = 0.263, 
and c2 = -0.5. However, Hand (1991) found that these coefficients do not agree with his 
experimental data, so he suggested using c1 = 0.0262 and c2 = -0.139, while Srichai (1994) 
later proposed the values of 0.762 and –0.562 for c1 and c2 respectively. 
 
Many models have been proposed to calculate the gas or liquid wall friction factors, but for 
turbulent flow, most of the recent models seem to use the modified Blasius equation (5.13) 
for gases and the Kowalski type of equation (5.64) for liquids. In the laminar region, the 
Hagen-Poiseuille equation (5.60) is still preferred. 
 
 
5.5.2 Interfacial Friction Factor 
 
Many authors [Andritsos & Hanratty, 1987; Xiao & Shoham, 1990; Spedding & Hand, 
1997; Espedal, 1998] have shown that the relation assigned to the interfacial shear stress 
was of crucial importance in modelling two-phase stratified flow. They have discussed the 
various approaches and models, which have been used in the past to evaluate the interfacial 
shear stress. Some of those, which were reported to be useful, were implemented in the 
EMAPS code, and will be mentioned below. 
 
The simplest relation for interfacial friction factor is the one used by Taitel & Dukler 
(1976). They proposed to take the interfacial shear stress equal to the gas shear stress for 
smooth and wavy stratified flow. 
 
   GI ff �         (5.65) 
 
Based on results of different studies, the PLAC code [AEA technology, 1996] found that 
the correlation proposed by Sinai (1983) gives realistic values for interfacial friction factor 
in high pressure, large diameter pipelines. This friction factor is calculated as: 
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The interfacial friction factor (5.66) is limited to a maximum of 6 times the gas wall friction 
factor. Srichai (1994) adopted a similar approach in his study, and the friction factor that he 
developed is given in Table 5-4. But, contrary to Srichai (1994) interface friction relation, 
[Sinai, 1983] correlation was not implemented in EMAPS because it is defined implicitly 
and its related interface shear stress �I is not expressed in the generic way given by 
Equation (5.57).  
 
Andritsos & Hanratty (1987) investigated the behaviour of interfacial waves in stratified 
flow, while Andristsos et al. (1989) studied the effect of the liquid viscosity on these waves 
for horizontal pipelines of diameters from 2.52 cm to 95.25 cm. They proposed a novel 
correlation for interfacial friction factor fI, when the superficial gas velocity was larger than 
the critical velocity (JG = 5 m/s) necessary to initiate large amplitude roll waves. Their 
correlation is given as: 
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Spedding & Hand (1997) showed that the model predicted pressure loss satisfactorily in the 
stratified long and short roll wave and droplet regimes using the Taitel & Duckler (1976) 
correlation for gas and liquid friction factors. In their comparative study, evaluating the 
performance of several interfacial friction factors, Xiao & Shoham (1990) suggested using 
the model by Andritsos & Hanratty (1987) for pipes below 0.127 m (5 inches), and the one 
by Baker et al. (1988) for large diameter pipes. The Baker et al. (1988) model is not 
described here because the complexity of its formulation makes it less attractive for 
computer codes. 
 
Hart et al. (1989) investigated stratified flow with small liquid holdup (RL < 0.06). A 
complex interfacial relationship, presented in Table 5-4, was proposed which accounted for 
the distortion of the gas-liquid interface into a crescent-shaped film. Spedding & Hand 
(1997) have shown that excellent agreement existed between the Hart et al. (1989) model 
and experiments (< �15%), with successful prediction of the holdup and the pressure drop 
for the stratified, annular and the droplet type flow regimes. 
 
Espedal (1998) reported that the model by Andreussi & Persen (1987) gives reasonable 
predictions for RL> 0.1, while for lower values, it under-predicts the liquid holdup. This 
model, which depends on the dimensionless film height, hL/D, and the difference between a 
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modified gas Froude number, and its value at the onset of two-dimensional waves, leads to 
the following expression:  
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 (5.70) 

 
where the expression of the Froude number FrG is given in Table 5-4. 
 
The model proposed by Spedding & Hand (1997) predicts both the pressure drop and the 
liquid hold-up within �15%. This model also shows good agreement with the independent 
air-water data of Andritsos. It uses a volumetric fraction (	L)r which seems to be fluid 
dependent. This model is fully described in the following table as well as the Kowalski 
(1987) model for interface friction and which is not mentioned in the above discussion. 
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5.6 Validation of Friction Factor Correlations 
 
It is important to back up modelling work with experiments for two reasons. Firstly, it is 
not possible to describe stratified flow analytically, because of the complexity of the 
combined effects of the turbulence and the generation of interfacial waves, therefore 
experimental data are needed to validate numerical and mathematical models that are 
developed. Secondly, and more importantly, the mathematical models have to represent the 
physical nature of the two-phase system, and a major understanding of the physics of the 
system can only be achieved through experiments. 
 
In the previous sections, we have presented most of the recommended friction models, 
currently used in two-phase stratified flow. They have all been developed for steady flow 
and their applications to transient flows and the full range of stratified patterns (smooth & 
wavy) is still an open debate. 
 
In the next sections, we explain our choice of friction factors through an experimental test 
case. 
 
 
5.6.1 Shaha Test Case 
 
Shaha (1999) performed a series of test cases to study the interfacial structure of transient 
stratified flow. One of those tests was presented in a Transient Multiphase Flows (TMF) 
Meeting [Hewitt, 2002] and it has been selected in this study, because it highlighted the 
incapacity of the current commercial pipeline codes Olga, Plac, and Tacite to accurately 
predict this simple stratified transient flow case.  
 
The test case is characterized by an increase of the inlet gas flowrate after 30 seconds of an 
initial steady state, while keeping the liquid flowrate constant (Figure 5-4). The crucial 
point about this test is that, before the increase of the gas flowrate, the flow conditions are 
in the smooth interface region, while those after the increase, may be considered as being in 
the stratified wavy region. 
 
 
 
 
 
 
 
 
 

Figure 5-4: Shaha test case, variation of the gas and liquid superficial velocities. 
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5.6.2 Validation of the Wall Friction 
 
5.6.2.1 Stratified-Smooth Pattern 
 
Several authors [Andreussi & Persen, 1987; Kowalski, 1987] have reported that the 
experimental gas and liquid wall friction factor measurements were consistent and 
accurately predicted with the modified Blasius equation (5.63), or the original expression 
(5.53) for stratified-smooth flows.  
 
Thus, for smooth pipes or when the pipe roughness is not known, we advocate using 
expression (5.63) for turbulent flow and expression (5.60) for laminar flow. So the 
combined expression for the wall friction is given by: 
 

   �
�

�
�
�

�
� 2.0

kk
wk Re

046.0,
Re
16maxf      (5.71) 

 
where k is either the gas or liquid phase, and the Reynolds number Rek is defined by 
expression (5.62). 
 
It can be seen from equation (5.71) that there is no explicit use of critical Reynolds number 
for the transition from laminar to turbulent flow. The reason is that if the critical Reynolds 
number of roughly 2000 is used, as suggested by many investigators, then from the Fanning 
diagram [Perry & Green, 1984] or Figure 5-5, the friction factor obtained by the using the 
turbulent Blasius equation (5.63) is almost twice the value obtained by the laminar Hagen-
Poiseuille expression (5.60).  
 
This massive difference in the transitional flow can create a big jump in the solution for a 
tiny variation of the Reynolds number, and lead to numerical instabilities. To avoid that 
problem, some investigators [De Henau, 1995; Masella, 1998] have used a critical zone of 
2000 < Rek < 3000 and interpolated the friction from the laminar to the turbulent expression 
in this critical transition zone. We prefer using the maximum approach to smooth the 
friction expression, because it is a simple and fast numerical solution without lost of 
accuracy. Equation (5.71) means however that the transition occurs at a much lower critical 
value of the Reynolds number � � 1500046.016Re 4/5

c �� , but because the transition from 
laminar to turbulent is still not well defined, even in single phase flow, errors created by 
this approach are seen to be minimal. 
  
Equation (5.71) is only valid for smooth pipes, when the pipe roughness is considered, then 
we have to choose among the many explicit expressions available in the literature. To help 
us choose an appropriate correlation, we have reduced the list of explicit expressions to the 
three mentioned in Section 5.5.1.1, and plot their values for a range of Reynolds numbers 
with a pipe roughness of 4.6 10-5 m (see Figure 5-5), which the value used for the Shaha 
test case.  
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As can be seen from Figure 5-5, there is very little variation among the expressions in the 
Reynolds number range [2. 104, 1. 108], making it hard to choose among the various 
expressions. But, because those expressions are valid for smooth and rough pipes, the 
choice was decided when the roughness tends to zero, in that case, the Eck expression 
(5.58) and the Haaland expression (5.59) will create singularities in the solution when the 
Reynolds number tends to 15 and 6.9 respectively, and the maximum approach is no longer 
valid, so we decide to choose the earliest explicit expression, which is the Moody equation 
(5.57). 
 
Thus, for rough pipes in the stratified-smooth region, we advocate using the following wall 
friction expression: 
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where k refers to either the gas or liquid phase, � is the pipe roughness, Dhk is the phase or 
fluid hydraulic diameter given by expression (5.61) and Rek is the Reynolds number 
defined by expression (5.62). 
 

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

W
al

l F
ric

tio
n

Reynolds Number (Re)

Wall Friction Factor for Rough Pipes

Moody   (1947)
Eck     (1973)

Haaland (1981)

 
 

Figure 5-5: Variation of explicit single-phase wall friction for rough pipes with Reynolds 
number Re (Pipe roughness = 4.6 10-3 m). 
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5.6.2.2 Stratified-Wavy Pattern 
 
It is recognised that the gas wall friction can still be evaluated either by expression (5.71) or 
(5.72) in the stratified-wavy region, but it is no longer true for the liquid wall friction. 
Andreussi & Persen (1987) found that the smooth pipe equation (5.71) underestimated the 
liquid wall friction for wavy stratified flow patterns, with deviation between the data and 
the prediction increasing with increasing gas velocity. Their experimental results showed 
that, at the onset of interfacial waves, an increase in turbulent mixing in the stratified film 
creates a sharp increase in the liquid wall friction, which is not predicted by the stratified 
smooth expression (5.71). Those results were confirmed the same year by Kowalski (1987) 
who proposed a generic expression of the liquid wall friction, whose coefficients were later 
modified by various authors [Srichai, 1994; and Spedding & Hand, 1997]. 
 
To see which one of these expressions gives the best predictions, we compare the results for 
the liquid holdup using two different interface friction factors, the classic smooth 
expression (fi = fwg) used for stratified-smooth flow, and the expression by Andritsos & 
Hanratty (1987), which was reported by Xiao & Shoham (1990) to produce the best 
predictions.  
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Figure 5-6: PFM-2 [Shaha Case]. Liquid holdup variation with time for different liquid 
wall friction and the smooth interface expression (fi = fwg). 
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Figure 5-7: PFM-2 [Shaha Case]. Liquid holdup variation with time for different liquid 
wall friction and the [Andritsos & Hanratty, 1987] interface friction. 

 
 
The results are given respectively in Figure 5-6 for the smooth interface expression (5.65), 
and in Figure 5-7 for the Andritsos & Hanratty (1987) equation (5.69).  
 
When using the smooth interface expression (5.65), which is not appropriate for the 
stratified-wavy region, we can see that only the Moody liquid wall friction predicts with a 
20% margin the final steady state value of the liquid holdup. But when using the Andritsos 
& Hanratty (1987) equation (5.69), then the expressions by Kowalski (1987) and Hand 
(1991) accurately predict the liquid holdup value.  From Figure 5-7, it can be seen that the 
Moody wall friction now underestimates the liquid holdup value, and predicts a final 
holdup value of around 0.107, which more than 20% lower than the experimental value of 
0.137 (see Table 11.3). 
 
It can also be seen from Figures 4.6 and 4.7 that the Srichai (1994) expression 
overestimates the final steady state value of the liquid holdup. So we have decided to 
discard this expression, as well as the Moody expression. We, therefore, retain the 
expressions by Kowalski (1987) and Hand (1991) for the liquid wall friction. The final 
choice will be made after assessing and validating the interface friction factor, which is 
made in the following section. 
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5.6.3 Validation of the Interface Friction 
 
In the same way that the wall friction mainly depends on the pipe roughness for turbulent 
rough pipes, we may argue that the interfacial friction factor mainly depends on the 
interfacial wave characteristics such as the wave amplitude and the wavelength. 
Unfortunately, as was noted by Chen et al. (1997) very little work has been devoted to 
improve the understanding of interfacial wave phenomenon in gas-liquid stratified flow 
[Andritsos & Hanratty, 1987; Line & Lopez, 1995]. 
 
However, many steady state correlations have been suggested for modelling the interface 
friction factor. In this section we evaluate the proposed models for the transient test case of 
Shaha (see Section 5.4.1). 
 
In Figure 5-8, we plot the evolution of the liquid holdup for different interface friction 
factors, using the Moody based correlation (5.72) for the gas and liquid wall frictions. We 
can see that the simplest interface friction (fi = fwg), which is also embodied in the 
Andritsos & Hanratty (1987) expression, accurately predicts, with 2.2% error the initial 
steady value of the liquid holdup. The next accurate result for the initial holdup value is the 
correlation used by Tronconi (1990), which gives a holdup value of 0.146, therefore 
underestimates this value for about 19.8% compared to the experimental value of 0.182. all 
the other interface friction correlations underestimate the initial holdup value with more 
than 20% and should not be considered for stratified-smooth flow. 
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Figure 5-8: PFM-2 [Shaha Case]. Time evolution of the liquid holdup for different 
interface friction factors. 
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The same analysis as above should be considered for stratified-wavy flows using the 
Moody based relation (5.72) for the gas wall friction and either the Kowalski (1987) 
expression for the liquid wall friction or the Hand (1991) liquid wall friction factor. But 
instead, we compile the best-predicted values (with less than 10% error) for the final steady 
state value of the liquid holdup.  
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Figure 5-9: PFM-2 [Shaha Case]. Best predicted final holdup value, for various interface 
and liquid wall frictions, using the Moody expression (5.52) for the gas wall friction. 

 
For stratified-wavy flow, we have found that the interfacial friction correlations proposed 
by Kowalski (1987) and Hand (1991) did not perform well when using their respective 
liquid wall friction. But instead, as shown in Figure 5-9, the Kowalski (1987) liquid wall 
friction (5.64) works well with the Andritsos & Hanratty (1987) interface friction 
expression (5.69), while the best (exact) result for this test case is given by the combination 
of the Hand (1991) expression (5.64) for the liquid wall friction and the Tronconi (1990) 
linear expression (f i= 2fwg) for the interface friction. 
 
We believe that the reason why the Hand (1991) liquid wall and the Tronconi (1990) 
interface frictions predict the “exact” final steady state value of the liquid holdup is because 
the value of the superficial gas velocity is close to the transition to roll waves, and from the 
study of Andreussi & Persen (1987), the interface friction factor can be estimated to twice 
the value of the gas wall friction at those superficial gas velocities. So there is no 
guaranteeing that this combination of friction factors will work well for stratified-wavy 
flows at higher gas flowrates where the interface friction becomes more important.  
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Thus, we have decided to adopt the combination of models (5.64) and (5.69) proposed 
respectively by Kowalski (1987) and Andritsos & Hanratty (1987) for the liquid wall and 
interface friction factors. 
 
Andritsos & Hanratty (1987) stated that the transition to roll waves or stratified wavy flow 
roughly occurs at a superficial gas velocity of 5.0 m/s. They then used this transition value 
in their interfacial friction model, adding that it over predicted the friction factors in a range 
of superficial gas velocity from JG,T = 5.0 m/s to the actual critical gas velocity needed to 
generate large amplitude waves. Spedding & Hand (1997) later suggested that the transition 
to roll waves occurs at a higher superficial gas velocity of 6 m/s, so we propose to use the 
Andritsos & Hanratty (1987) expression with a modified transition value of JG,T =5.5 m/s 
for the gas superficial velocity, which is an average between the value given by Andritsos 
& Hanratty (1987) and the value given by Spedding & Hand (1997). 
 
Therefore the liquid wall fL and interface friction fI models that we suggested using for 
stratified smooth and wavy flows can be summarized as follows: 
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where fG is the gas wall friction factor, and it is defined by equation (5.72), RL is the liquid 
holdup, hL the liquid height, DhL the liquid hydraulic diameter, D the pipe inner diameter, 
ReL the liquid Reynolds number.  
 
 

5.7 Conclusion 
 
To formulate an accurate mathematical model for stratified flows with the assumptions 
mentioned in the introduction of this chapter, we need an accurate estimation of gas and 
liquid wall friction factors as well as the gas-liquid interfacial friction factor. Therefore, we 
first reviewed in this chapter the best available models in the literature for those terms, and 
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then studied the combined effect of the liquid wall friction and the interface friction, which 
are the most uncertain parameters in the modelling of stratified flows.   
 
The uncertainties come from the structure of the stratified interface, which can either be flat 
or with large amplitude waves at the interface. The existence of these two sub- patterns 
(smooth and wavy) of the stratified flow make most available models for wall friction and 
interface friction to be valid only for one stratified sub-pattern. 
 
To remedy to this problem, we proposed in this chapter a set of wall and interface friction 
models, which are valid for the full range of stratified flows (smooth and wavy). These 
models are defined by the Moody (1947) based equation (5.72) for the gas wall friction, the 
combined Moody (1947) and Kowalski (1987) based equation (5.73) for the liquid wall 
friction, and the modified Andritsos & Hanratty (1987) equation (5.74) for the interface 
friction factor. 
 
A simple transition value, based on the gas superficial velocity, has also been proposed, for 
the transition from stratified-smooth to stratified-wavy flows, and the new friction models 
(5.73) & (5.74) can be easily updated when a better value for the transition to roll waves 
become available.  
 
A good agreement of liquid holdup values between a selected experimental test (also called 
the Shaha case), which exhibits both stratified smooth and stratified wavy regions, and 
numerical predicted data with the new set of friction models is shown in Figure 5-10.   
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Figure 5-10: PFM-2 [Shaha Case]. Liquid holdup evolution, comparison between 
experimental and numerical for the proposed set of friction models. 
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6 Chapter 6 - Slug Flow Modelling 
 
 
 
 
 
 

6.1 Introduction 
 
Oil produced offshore is transported through pipelines as a complex mixture of gas, oil, 
water and sand. One common flow regime is known as slug flow, in which the liquid 
intermittently flows along the pipes in concentrated masses called slugs.  
 
This complex and multi-dimensional type of flow exists for the whole range of pipe 
inclinations and over a wide range of gas and liquid flowrates, and its inherently unsteady 
nature means that even when the gas and liquid flowrates are maintained at a steady value 
the component mass flowrates, phase velocities and pressure at any cross-section normal to 
the pipe axis exhibit large variations with respect to time.  
 
As a result, processes such as heat and mass transfer are unsteady, with substantial variation 
of the system temperature and concentration profiles occurring. Other potential 
consequences include increased erosion-corrosion of the pipe and the onset of damaging 
resonant vibrations within the pipeline system. Further downstream, the combination of 
flow-induced pressure fluctuations with an intermittent flow of gas and liquid may cause 
problems for control of separation equipment; necessitating large separation stage vessels 
called “slug catchers” to safely collect the slugs so that some of the inherent unsteadiness 
may be reduced. 
 
Pipeline systems must therefore be able to safely withstand the fluctuating nature of the 
slug flow, whilst accommodating pressure drops up to an order of magnitude larger than 
those encountered in stratified flow and hence much larger than those found in single-phase 
flow. The increased pressure drop may make a well economically unviable. Consequently, 
in order to produce the most effective designs, it is essential to obtain accurate predictions 
of system properties based on an understanding of the mechanisms responsible for slug 
flow. 
 
Unfortunately, despite five decades of intensive study of this complex flow, both 
experimentally and theoretically, a full understanding of its mechanisms is still not 
completed even though various approximate methods have been developed for calculating 
slug hydrodynamics. In the past, these have relied on correlation with experimental data, 
but more recently modelling has been used to simulate the flow behaviour. However, 
numerical calculation of some flow characteristics, such slug frequency or maximum slug 
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length, is still subjected to margins of error way beyond acceptable tolerance. In this 
project, we attempt to understand why the classic two-fluid model sometimes fails to 
represent this type of two-phase flow regime.  
 

6.2 Chapter Outline 
 
To achieve our objective, we start by explaining the mechanisms of slug flow formation 
following experimental observations. Then, we present a literature review of the key 
parameters for an accurate prediction of slug flow, followed by a brief description of the 
various approaches used in the literature to numerically model this complex flow regime.  
 
The chapter continues with the analysis of the numerical simulations of a slug flow test 
case, obtained using the validated stratified flow model described in the previous chapter. 
Finally, we conclude with some suggestions in order to improve the predictions of our 
incompressible code as well as the current commercial codes. 
 

6.3 Mechanisms of Slug Flow 
 
Following the experimental observations of Hale (1994) and Manolis (1995), the five steps 
leading to the formation of stable slugs in the WASP rig can be summarized as follows: 
 

1. Interface wave formation: 
Initially, gas and liquid flow co-currently into the pipeline, so that near the entrance 
point the gas flows above a moving stratified liquid layer. However, due to the shear 
force created at the wall, the liquid layer decelerates as it moves along the pipe and 
its level rises. Meanwhile, small disturbances on the stratified layer grow into rising 
waves due to the “suction” effect caused by the increased gas velocity over the 
liquid bumps. 

2. Wave growth & Pipe bridging event: 
As a result of the interphase energy transfer, one of these waves eventually grows to 
a sufficient size to momentarily bridge the pipe, blocking the flow of the gas, so that 
pressure builds up behind it, hence causing the blockage to be accelerated to the gas 
velocity.  

3. Slug growth 
This blockage appears to be accelerated uniformly across its cross-section, scooping 
up and accelerating all the slow moving liquid ahead of it, and so it begins to grow 
in volume to become a slug.  

4. gas entrainment:  
As this occurs, a mixing vortex (Figure 6-1) forms near the slug front due to the 
presentation of the slower moving film into the slug body. Simultaneously, gas may 
be entrained in the form of small bubbles, which are deformed by the combined 
effect of buoyancy forces and the turbulent shear forces caused by velocity 
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differences between the slug front and the liquid film. As a result, a dispersion of 
small bubbles is produced which may be transported through the body of the liquid 
slug. 

5. Stratified layer formation: 
Meanwhile, the liquid and the previously entrained gas are shed from the slug tail. 
The shed liquid decelerates to a velocity determined by the shear stresses at the wall 
and the interface and becomes a stratified layer. The shed gas mainly enters the 
elongated bubble. 

 
As long as the volumetric pick-up rate is larger than the shedding rate, the slug continues to 
grow. However eventually the pick-up rate may become equal to the shedding rate, so that 
the slug becomes fully developed and the slug length stabilises 
 
Subsequent slug formation may occur in a similar manner, except that this time the new 
slug picks-up the slow moving liquid shed from the tail of the slug in front. As a result the 
process of slug formation, growth and stabilisation may once again repeat. 
 

 
 

Figure 6-1: Image of mixing zone in the liquid slug (from 
http://www.cortest.com/multiphase.htm). 

 

6.4 Literature Review - Slug Flow Parameters 
 
6.4.1 Translational Velocity & Dynamics of Long Bubbles 
 
Gas-liquid slug flow is characterised by large elongated bubbles separated quasi-
periodically by liquid slugs that may contain small dispersed bubbles (Figure 6-1). As the 
elongated bubbles convey most of the gas, a complete model for slug flow requires 
information about these long bubbles and, in particular, their propagation or translational 

flow
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velocity (VT). Numerous researchers have therefore studied this key flow parameter 
theoretically and experimentally, and a considerable amount of slug motion data has been 
obtained for various flow conditions, fluid properties and pipe diameters and inclinations. 
 
It is now generally assumed that the translational velocity of elongated bubbles VT in a 
flowing liquid, which results from the complex influence of both buoyancy and mean 
motion of the liquid, is a superposition of the bubble propagation velocity in a stagnant 
liquid, i.e. the drift velocity VD, and a contribution due to the mixture gas and liquid 
velocity VM.  Nicklin et al. (1962) proposed the expression that is commonly used in the 
literature as follows:  
 
    DM0T VVCV ��      (6.1) 
 
The values of the coefficient C0 and the drift velocity VD strongly depend upon the pipe or 
tube inclination, and the current research on long bubble motion usually treats separately 
the vertical, horizontal and inclined cases. In what follows, we mainly describe the 
horizontal case values, and for a complete presentation of all pipe inclination cases, we 
refer to recent review papers [Taitel & Barnea, 1990b; Fabre & Liné, 1992; Dukler & 
Fabre, 1994; Bendiksen et al., 1996] on slug flow.  
 
6.4.1.1 Drift Velocity Coefficient 
 
Early studies on long bubble drift velocity were concentrated on vertical stagnant liquid 
[Davies & Taylor, 1950; Griffith & Wallis, 1961; Nicklin et al., 1962]. Looking at air 
bubbles confined inside circular tubes, one of the questions that puzzled researchers was 
summarised by Davies & Taylor (1950) as:  
 

“How fast will the air column rise in a vertical tube with a closed top when the 
bottom is opened? Or, alternatively, how fast will a vertical tube with a closed top 
empty itself when the bottom is opened?” 

 
To answer this question, Davies & Taylor (1950) performed a potential flow analysis 
around the nose of the elongated bubble and they obtained the following expression for the 
drift velocity: 
    gDCV 1D �       (6.2) 
  
A constant value of 0.328 for C1 was obtained theoretically using approximate relaxation 
methods. This value was later refined to 0.351 and validated using confirmed air/water 
experimental data [Nicklin et al., 1962]. 
 
The drift velocity of long bubbles moving in a liquid at rest depends primarily on the force 
that creates the drift, i.e. gravity. However other forces such as viscous or surface tension 
may have some secondary effects; therefore many authors have studied the influence of the 
physical properties of the operating fluids and the pipe inclination to the drift coefficient 
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C1. The dependency found is expressed through the general relationship given by Zukoski 
(1966) as:  
 
    � � Dĝ,Eo,NCV f1D ��     (6.3) 
 
where the gravitational acceleration g has been replaced for convenience by Lgĝ ���� , 
Nf is the dimensionless inverse viscosity defined by LL

2/3
f gDN ����� , � is the pipe 

inclination, and Eo is the Eotvös number, which is ratio between gravitational and surface 
tension forces, and expressed as: 
 

     
�

��
�

2gDEo       (6.4) 

 
In the absence of surface tension and viscosity, the rate of propagation of a large bubble in 
a horizontal pipe can also be calculated using the inviscid flow theory, and the analytical 
value of the drift coefficient C1, given by Benjamin (1968), is 0.542.  
 

 
Figure 6-2: Variation of the normalised drift velocity with surface tension parameter for 

pipe inclination � = 0º, 45º, 90º. (After Zukoski [1966]) 
 
For small diameter pipes, Weber (1981) showed that the surface tension is important, as its 
increase considerably decreases the drift velocity (Figure 6-2). Therefore, he correlated 
Zukoski (1966) data using the following relation: 
 

56.01 Eo
76.154.0C ��      (6.5) 

 

Legend: 
ud �VD 
r   � D/2 



 
 
 

 
 

188 

It should be noted that the concept of a horizontal drift velocity was long a subject of 
controversy in the 1960s and 70s; some authors claimed that the drift velocity is zero 
[Wallis, 1969; Gregory & Scott, 1969; Dukler & Hubbard, 1975] on the basis that gravity 
cannot act in the horizontal direction, but this contradicted the experimental results of 
Zukoski (1966) as well as the theory of Benjamin (1968). 
 
However, the recent studies of Nicholson et al. (1978), Ferré (1979), Weber (1981), 
Bendiksen (1984), Théron (1989), Manolis (1995), and Woods & Hanratty (1996) clearly 
show that a drift velocity does exist for the horizontal case due to hydrostatic pressure 
difference between the top and the bottom of the bubble nose, and it may even exceed the 
vertical case value. 
 
The work of Ferré (1979) was particularly helpful in clarifying the horizontal case 
controversy. Whilst studying large bubble motion in a 45 mm diameter air-water flow loop, 
he noted that they were two critical velocities or Froude numbers for which the drift 
velocity abruptly changed in value, and he proposed the following correlation:  
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1     (6.6) 

 
Ferré (1979) experiments confirmed the existence of a drift velocity at low and very high 
mixture velocities, but also showed that at intermediate mixture velocities, the drift velocity 
is zero. The mixture Froude number FrM in the above relation is given by the following 
expression: 
 

    
gD

JJ
gD

V
Fr LGM

M
�

��     (6.7) 

 
During his investigations of large bubbles in inclined tubes, Bendiksen (1984) put in 
evidence two different regimes of bubble motion, and therefore confirmed the existence of 
Ferré (1979) first transition criteria. However, using a liquid Froude number based on the 
superficial velocity � �gDJFr LL � , he suggested that this transition might occur at a 
critical value of 3.5. His relation was validated for all pipe inclinations and is given as: 
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Bendiksen (1984) suggested that the change in value at higher mixture velocities reflects 
the behaviour of the tip of the large bubble nose, which moves from a position near the top 
of the pipe to a point closer to the axial centreline of the pipe, as the inertia effect 
overcomes the buoyancy.   
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The drift velocity resulting from the above equation [Bendiksen, 1984] is discontinuous at 
the transitional Froude number, and that can lead to unstable solutions during numerical 
calculations.  To overcome this difficulty, Théron (1989) proposed a continuous relation for 
the drift coefficient that is also valid for all pipe inclinations. His relation was expressed as:  
 

   ����
�

�
�
�

�
	

�
� sin35.0cos8.05.0C1     (6.9) 

 
The pipe inclination � is given from the horizontal. To define the parameter �, Théron 
(1989) used the same critical Froude value as Bendiksen (1984), and the mixture Froude 
number given by relation (6.7) instead of liquid Froude number used by Bendiksen (1984). 
This parameter was expressed as:  
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It is still not clear what the value of the transitional Froude number is for the existence of a 
horizontal drift velocity, as various researchers have used different values. This critical 
value seems to be related to the slug flow sub-regimes, and understanding the transitions 
between these sub-regions is still ongoing research [Paglianti et al., 1996; Bertola, 2002]. 
 
Manolis (1995) studied the translational velocity of a slug tail for carefully controlled non-
aerated liquid slugs in a 78 mm diameter pipe using air/water and air/oil as test fluids. In his 
“push-out” experiments, gas was injected at a predetermined rate at the inlet of a pipe, 
which was initially full of liquid. This resulted in the growth of a long gas bubble that 
pushed out the liquid to the pipe outlet. The bubble front velocity, equivalent to the slug tail 
velocity, was measured for various mixture velocity conditions and the obtained data were 
correlated to give an expression similar to that of Bendiksen (1984):  
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The drift coefficient given by Manolis (1995) for low Froude numbers has been adjusted to 
make it dimensionally consistent with Zukoski (1966) equation (6.3). 
 
In their studies of slug initiation at high gas velocities, Woods & Hanratty (1996) also 
measured the bubble translational velocity in a 95 mm diameter pipe using air and water, 
and they obtained the following result: 
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This expression was given using the mixture velocity 3 m/s as the transitional velocity, but 
it is reported here using the mixture Froude number for consistency with other correlations. 
 
 
6.4.1.2 Mean Bubble Motion Coefficient 
 
The parameter C0 in the translational velocity equation (6.1) is a distribution coefficient 
related to the velocity profiles in dispersed systems. It may be closely approximated by the 
ratio of the maximum to the mean velocity in the liquid ahead of the bubble. From their 
experimental data, Nicklin et al. (1962) suggested a constant value of 1.2 for fully 
developed turbulent flow, but noticed the variation of this coefficient at low slug Reynolds 
numbers (< 8000).  From various expressions found in the literature, the parameter C0 can 
be expressed through the following general expression: 
 
    � ��� ,Re,FrCC SM00      (6.13) 
 
where � is the pipe inclination,  FrM is a Froude number given as gDVFr MM � , and ReS 
is the slug Reynolds number defined by:  
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Compared to vertical flows, the distribution coefficient C0 has been less studied 
theoretically for horizontal slug flows. To our knowledge, Dukler et al. (1985) reported the 
only analytical expression using a boundary layer analysis and a power law model. Their 
relation was given as: 
 

   � �� � 225.1
n2

1n1n2C 7n
20 ����
��

�
�     (6.15) 

 
where n = 7 corresponds to the 1/7th power law velocity profile for turbulent flow.  
 
The above expression is in agreement with the experimental value suggested by Nicklin et 
al. (1962). However, the exact value of C0 is still not clear for all flow conditions and 
reported experimental values spread considerably from 1.02 to 1.35 (Table 6-1). Hale 
(1994) attributed this to the fact that the plot of translational velocity VT versus the mixture 
velocity VM is not perfectly linear, but instead bends very slightly upwards [Bendiksen, 
1984]. As a result, investigators that have calculated a line of best fit to their experimental 
data, and then extrapolated to VM = 0 to obtain the drift velocity, are likely to provide one 
set of values whereas those that have first specified the drift velocity and then plotted the 
line of best fit originating from the point VM = 0, VT = VD will provide another. Further 
discrepancies may be caused by the fact that many of the earlier papers neglected the 
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contribution of the drift velocity [e.g. Hughmark, 1965; Dukler & Hubbard, 1975] and 
assumed that the relationship is given in the simpler form: 
 
   � � M0MT VCVK1V ���      (6.16) 
 
where K was defined as the rate of shedding to the rate of flow in the liquid slug. Assuming 
a fully established pipe flow in the front of the bubble nose, and a logarithmic velocity 
profile, Dukler & Hubbard (1975) proposed the following correlation for C0: 
 
   M0 Reln021.0022.1C ��      (6.17) 
 
where the mixture Reynolds number ReM ranges from 3.104 to 4.105 and is defined as: 
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The mixture density �M and viscosity �M were defined as linear average of fluids properties 
using the liquid slug holdup as the coefficient of proportionality. However, because of the 
uncertainty in defining the viscosity of a mixture, these mixture quantities are sometimes 
replaced by the liquid values in the literature, and the mixture Reynolds number is replaced 
by the slug Reynolds number given by relation (6.14). 
 
The experimental results of Ferré (1979) suggested that the discrepancies in the coefficient 
C0 might be due to the occurrence of a flow transition. As reported previously, he found 
two different critical Froude numbers at which the values of the drift velocity change, and 
proposed the following expression: 
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Similarly, whilst investigating the motion of single bubbles in pipes, Bendiksen (1984) 
noticed that there was a critical Froude number at which the values suddenly changed. As a 
result, he suggested that the following criteria should be used for all pipe inclinations: 
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Théron (1989) included the effect of the Froude number on the distribution coefficient C0, 
and presented a simple continuous correlation that is valid for all pipe inclinations. His 
relation can be written as: 
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0 sin13.023.03.1C      (6.21) 

 
where � is defined in the same way as in the drift coefficient and is given by relation (6.10). 
 
From his “push-out” experimental data, Manolis (1995) correlated the parameter C0 with 
the following expression: 
 

   
�
�
�

�

�
�

86.2Fr216.1
86.2Fr033.1

C
M

M
0      (6.22) 

 
King (1998) compared the experimental data of Manolis (1995) with the predictions of five 
other correlations from the literature and found that the best two relations are the one of 
Bendikson (1984) presented earlier, and the one of Manolis (1995) described above. 
 
Woods & Hanratty (1996) reported a similar expression to the one of Manolis (1995) and 
their correlation is given as: 
 

   
�
�
�

�

�
�

1.3Fr2.1
1.3Fr1.1

C
M

M
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Recently, Petalas & Aziz (1998) used the Stanford Multiphase Flow Database to account 
for the effect of the slug Reynolds number on the coefficient C0, and empirically derived 
the following correlation: 
 

   031.0
S

0 Re
sin12.064.1C ��

�       (6.24) 

 
where � is the pipe inclination and ReS is the liquid slug Reynolds number defined by 
Equation (6.15). The above relation is valid for all pipe inclinations. 
 
A summary of the mean motion coefficient C0 and the drift velocity coefficient C1 is 
presented in Table 6-1 
 

Translational Velocity 
 

 Reference D 
(mm) 

C0 
Benjamin (1968) - - 
Gregory & Scott 

(1969) 19 1.35

DĝCVCV ��
C1 
0.542   (Theory) 

 0.0 

1M0T
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Dukler & Hubbard 
(1975) 38 5

S
4

S

10.4Re10.3

Reln021.0022.1

��

�
 0.0 

Nicholson et al. 
(1978) 25, 51 1.196 (25 mm)  

1.128 (51 mm) 
0.538 (25 mm) 
0.396 (51 mm) 

Ferré (1979) 45 
�
�

�
�

�

�

��

�

28.8Fr02.1
28.8Fr26.23.1

26.2Fr1.1

M

M

M

�
�

�
�

�

�

��

�

28.8Fr02.1
28.8Fr26.23.1

26.2Fr1.1

M

M

M

Weber (1981) 5 - 178 - 56.0Eo
76.154.0 �  

Bendikson (1984) 50 
�
�
�

�

�

5.3Fr2.1
5.3Fr05.1

L

L  
�
�
�

�

�

5.3Fr0
5.3Fr54.0

L

L  

Dukler et al. (1985) - 225.1     (Theory) - 

Théron (1989) 53 
� �10

M 5.3Fr1
23.03.1

�

�  
� �10

M 5.3Fr1
8.05.0

�

��  

Manolis (1995) 78 
�
�
�

�

�

86.2Fr216.1
86.2Fr033.1

M

M  
�
�
�

�

�

86.2Fr0
86.2Fr477.0

M

M  

Woods & Hanratty 
(1996) 95 

�
�
�

�

�

1.3Fr2.1
1.3Fr1.1

M

M  
�
�
�

�

�

1.3Fr0
1.3Fr52.0

M

M  

Petalas & Aziz 
(1998) - 031.0

S
0 Re

64.1C �  
56.01 Eo

76.154.0C ��  

 
Table 6-1: Values of the translational velocity coefficients C0 & C1 for horizontal slug flow 

(� = 0) 
 
6.4.2 Slug Body Holdup 
 
The slug body holdup, i.e. the volume fraction of the liquid in the slug body, is also 
required in slug models as a closure relationship. The process in which gas bubbles are 
entrained in the slug body is very complex and few theoretical methods have been proposed 
for the prediction of the average liquid holdup RLS within the slug. Instead, graphical or 
empirical relations based on limited data sets are used, and they are reviewed in this 
section. It is worth mentioning that whenever it is possible, we re-write existing empirical 
correlations using dimensionless numbers. 
 
Gregory et al. (1978) measured the slug body holdup for air and light refined oil flow in 
horizontal pipe with diameters of 25.8 mm and 51.2 mm, and they proposed an empirical 
correlation that only depends upon the mixture velocity and it is given by: 
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    39.1
M

LS

66.8
V

1

1R

�
�

�
�
�

�
�

�      (6.25) 

 
This equation is widely used in the literature because of its simplicity even though it fails to 
account for the effect of the fluids physical properties. 
 
Using the same experimental data as Gregory et al. (1978), Malnes (1982) accounted for 
the gravitational and surface tension effects, and proposed an alternative correlation, which 
can be written as follows: 
 

    

��
�
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��
�

�
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�	

25.0
LM

LS

BoFr
831

11R     (6.26a) 

 
The mixture Froude number FrM in above relation is given by equation (6.7), while the 
liquid Bond number is defined as: 
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Ferschneider (1983) proposed a slug body correlation, based on experiments carried out at 
the Boussens flow loop in France, which is 120 m long and has a diameter of 152.4 mm. 
The data were obtained using natural gas and light hydrocarbon oil at high pressures 
between 10 and 50 bars. The reported correlation is: 
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   (6.27) 

 
where the Bond number Bo, which is the ration between gravitational and surface tension 
force, is defined as: 
 

     
�

��
�

2gDBo      (6.28) 

 
No information was given on the value of the coefficients A and �, but in later references 
[Théron (1989), Paglianti et al. (1993)] this correlation was written as follows:  
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22.02
M

LS

625
BorF̂

1
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�
�

�

�

�
�
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�
�

�     (6.29) 

 
thereby implying the values of 25 and 0.1 for A and � respectively. The modified mixture 
Froude number in the above expression is defined as: 
 

     
� �L

M
M gD

V
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���
�      (6.30) 

 
Barnea & Brauner (1985) proposed a method for predicting the liquid holdup in the slug 
body.  The method was based on the assumption that the gas holdup in the slug body is 
determined by a balance between breakage forces, acting on the bubbles due to turbulence, 
and coalescence forces resulting from the effect of gravity and surface tension. They related 
this concept to the slug/dispersed bubble flow transition, and derived a correlation that was 
expressed by Taitel & Barnea (1990b) as follows: 
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where fs is the Blasius friction factor based on the liquid slug Reynolds number 
� �LMLS DVRe ��� . If the original Blasius expression 25.0

Ss Re079.0f �

�  is used instead of 
the modified relation 2.0

Ss Re046.0f �

�  preferred by the Barnea & Brauner (1985), then their 
original relation can be reformulated using dimensionless numbers to give a simple 
expression as: 
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��   (6.32) 

 
The Bond Bo, slug Reynolds ReS, and the modified mixture Froude FrM numbers are 
respectively given by relations (6.28), (6.14), and (6.30). The above equation can be 
concisely written as:  
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The calculated value of RLS ranges from 1 to 0.48, where 0.48 is a limiting value associated 
with the maximum volumetric packing of the dispersed bubbles in the liquid slug. 



 
 
 

 
 

196 

 
Andreussi & Bendiksen (1989) investigated the effect of pipe diameter and inclination on 
the slug body void fraction using 48 mm and 89 mm diameter pipes and air/water as test 
fluids. By balancing the net loss rate of small bubbles at the slug tail to the net entrainment 
rate at the slug front, they developed two semi-empirical relations for the slug body holdup. 
Andreussi et al. (1993) later used the following relation in their slug model: 
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where the mixture Froude number FrM is given by relation (6.7) and the coefficients F0 and 
F1 by the following expressions: 
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with the critical diameter value D0 = 2.5 cm. 
 
Using air-water and air-light oil experimental data, Paglianti et al. (1993) compared the 
above correlation with the relations of Gregory et al. (1978), Malnes (1982), and 
Ferschneider (1983), and found that it provides the best prediction for the slug holdup. 
  
Marcano et al. (1998) tested sixty-two slug flow cases over varying combinations of gas 
and liquid flowrates in a horizontal flow loop of 78 mm diameter and 420 m long. Based on 
their experimental results, they formulated the following correlation for the slug body 
holdup: 

   2
MM

LS V0011.0V0179.0001.1
1R

��

�    (6.35) 

 
They compared this correlation with their experimental data and observed a relative error of 
8%. They applied this correlation and the correlation of Gregory et al. (1978) to a combined 
slug flow data set from the literature and found that their correlation was more accurate and 
43% better than that of Gregory et al. (1978).  
 
From an experimental database of numerous slug holdup data, Gomez et al. (2000) recently 
presented a correlation for upward inclined slug flow. The correlation was given by the 
following expression: 
 
   � �� � 57.10Re4810.245.0expR S

6
LS �������

�  (6.36) 
 
where � is the pipe inclination angle in radians and ReS is the slug Reynolds number 
defined by LMLS DVRe ��� . 
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Abdul-Majeed (2000) recently developed a new empirical equation for estimating the liquid 
slug holdup based on 316 data points for horizontal flow and 107 data points for slightly 
inclined flow.  His analysis of the experimental data, taken over a wide range of 
parameters, indicated that the slug holdup is only affected slightly by the pipe diameter and 
the surface tension, but is strongly influenced by the fluids dynamic viscosity. Therefore, he 
proposed the following correlation: 
 
   � �ACV009.1R MLS ��      (6.37a) 
 
where the coefficient C is given by: 
 

   
L

G3377.1006.0C
�

�
��      (6.37b) 

 
The parameter A was included to account for the effect of pipe inclination and it is 
expressed as: 
 

   
� ��
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����
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0ifsin1
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A      (6.37c) 

 
Abdul-Majeed (2000) compared his correlation with the experimental data and found that 
all the predicted values agree to within 10% of the measured data.  
 
 
6.4.2.1 Effect of Viscosity 
 
Nadler & Mewes (1995) carried out experiments at 5 bars to study the effect of the liquid 
viscosity on the phase distribution in horizontal air-liquid slug flow. The liquids used for 
the experiments were water and oil, and their investigation showed that the increase in 
liquid viscosity results in increasing liquid holdup in the slug body. Unfortunately, they did 
not derive a practical empirical correlation, and although, they indicated that trends from 
their study are only for a limited range of the tested liquid viscosities, it appears that the 
recent correlation (6.37) from Abdul-Majeed (2000) agrees with their observations. 
 
 
6.4.2.2 Effect of Pressure 
 
Manolis (1995) measured the average slug body holdup in air-water and air-oil systems. 
For both flows, he observed that increasing the air superficial velocity led to a decrease in 
the average slug body holdup for a constant liquid superficial velocity. In addition, he also 
showed that increasing the system pressure led to a decrease in the average slug body 
holdup. This pressure effect could be significant in the petroleum industry, where pipelines 
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sometimes operate at high pressure, unfortunately, he did not derive a practical correlation 
to account for this effect, and it cannot be included in existing slug models.    
 

Model D (mm) Fluids Slug Body Holdup 

Gregory et al. 
(1978) 25, 51 Air/light oil 39.1

M
LS

66.8
V

1

1R

�
�

�
�
�

�
�

�  

Malnes (1982) 25, 51 Air/light oil 
��
�

�
��
�

�
�

�	

25.0
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BoFr
831

11R  

Ferschneider (1983) 152 Air/light oil 
22.02

M
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625
BorF̂

1

1R

�
�

�

�

�
�

�

�
�

�  

Barnea & Brauner 
(1985) - - 
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��

Andreussi & 
Bendiksen (1989) 48, 89 Air/water 

1M

0M
LS FFr

FFr
1R

�

�

��  

Marcano et al. 
(1998) 78 Air/kerosene 2

MM
LS V0011.0V0179.0001.1

1R
��

�

Gomez et al. (2000) 51 to 203
Air/water 

Air/oil 
Freon/water 

� �� �S
6

LS Re4810.245.0expR �����

Abdul-Majeed 
(2000) 25 to 203

Air/water 
Air/light oil 
Air/kerosene 
Freon/water 

Nitrogen/diesel 

� �ACV009.1R MLS ��  

L

G3377.1006.0C
�

�
��  

� ��
�
�

����

��
�

0ifsin1
0if1

A  

 
Table 6-2: Summary of slug body liquid holdup correlations 

 
 
6.4.3 Slug Frequency 
 
Gregory & Scott (1969) defined the slug frequency s�  as the average number of slug units 
passing a given point in the system over a unit of time. And despite many slug frequency 
data reported in the literature, it is still one of the least reliably modelled parameters. This is 
due to the statistical nature of the slug flow pattern and the frequency parameter reflects the 
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intermittency of the flow. However due to its inclusion as a closure relation in many slug 
flow models, it is important to accurately predict this parameter.  
 
The slug frequency varies depending on the nature of the flow, whether it is developing or 
fully developed. Thus two types of models appear in the literature: there are a few 
phenomenological models that give the slug frequencies obtained near the pipe entrance 
and many empirical correlations based on data collected at downstream pipe locations 
where the slug flow is known to be fully developed. 
 
 
6.4.3.1 Empirical Models 
 
Gregory & Scott (1969) proposed one of the first slug frequency correlations based on 
experimental data for carbon dioxide-water flow in a horizontal pipe with a diameter of 19 
mm. Their expression was given as: 
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Greskovich & Shrier (1972) re-arranged this expression using the Froude number to obtain 
the following relationship: 
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where 	L is the no-slip liquid holdup and FrM is the Froude number based on the mixture 
velocity. But, based on data collected from a 45 mm line, they observed that the effect of 
diameter is not properly taken into account by this expression. Therefore, they 
recommended using their graphical correlation for cases involving large diameters. 
 
Using air-water flow in a 42 mm diameter pipe, Heywood & Richardson (1979) determined 
the Power Spectral Density (PSD) function of the instantaneous liquid holdup measured by 
a gamma densitometer. They estimated the mean slug frequency by taking the frequency at 
which the maximum power value was obtained from the PSD function, and proposed an 
expression similar to the one of Gregory & Scott (1969); it is given as: 
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Utilising a larger database of slug flow characteristics in both low-pressure test rigs and 
field production flowlines, Hill & Wood (1990) suggested that low frequency slugs in large 
diameter pipes may be better correlated by: 
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    � �LER68.2M
s 10

D3600
V275.0��     (6.41) 

 
where the equilibrium stratified liquid holdup RLE is calculated using the Taitel & Dukler 
(1976) method. They included the slip velocity into this initial correlation, and proposed a 
revised and improved slug frequency relation expressed as: 
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where VGE and VLE are respectively the gas and liquid velocities and are calculated within 
the method used to obtain the equilibrium stratified liquid holdup. The Hill & Wood (1990) 
correlations were given using the inverse of an hour unit, but they are expressed in this 
thesis in (Hz) for the convenience of consistency. 
 
Tronconi (1990) studied the formation of slugs from their precursor waves and suggested 
that the slug frequency is inversely proportional to the period of these precursor waves. 
Based on the work of Dukler et al. (1985) on the coalescence of unstable slugs, he assumed 
that only half of the waves develop into stable slugs and using the concept of the most 
dangerous waves proposed by Mishima & Ishii (1980) and a non-linear analysis of the 
inviscid two-dimensional flow in a rectangular channel, he derived a semi-theoretical slug 
frequency model for horizontal flow that may be given as:  
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where GEV  and GEh  are the equilibrium gas velocity and height obtained by using the 
Taitel & Dukler (1976) type of momentum balance. 
 
Stapelberg & Mewes (1994) derived a slug frequency correlation by curve-fitting the data 
of Heywood & Richardson (1979), and proposed the following expression: 
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This correlation predicts no dependence of the slug frequency on the pipe inclination angle, 
but Zabaras (1999) found it to give good agreement with air-water slug frequency data 
measured in an inclined flow loop of 101 mm diameter. 
 
Manolis (1995) studied the effect of pressure on the slug frequency. He conducted an 
exhaustive set of experiments on a 78 mm diameter pipe at pressure up to 14.5 bars and 
reported the inadequacy of existing slug frequency models in predicting his data. Therefore, 
he developed a new slug frequency correlation based on six dimensionless numbers.  
 
   � �fGLs N,Eo,rF̂,Fr,Z,Xf��      (6.45) 
 
A close look at the model reveals that one dimensionless number appears to be redundant; 
therefore, the Manolis (1995) correlation is described below with only five dimensionless 
numbers: 
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where the exponent n  is a function of the viscosity number and is given by: 
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The relation (6.4) defines the Eotvös number as � ����� 2gDEo , while the viscosity 
number Nf is given by the following expression: 
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The liquid Froude number LFr and the modified gas Froude number GrF̂ are defined as: 
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The parameter ZL in relation (6.46a) is a combination of two dimensionless numbers X and 
Z used by Manolis (1995) and it is defined as the ratio of the liquid inertia to the liquid 
pressure drop. It is given by:  
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The liquid Reynolds number � �LLLL DJRe ���  is based on the liquid superficial velocity. 
Cf and m are the friction factor constant coefficient and exponent and they depend on the 
nature of the flow, whether it is turbulent or laminar (Cf  = 0.046, m = 0.2 if ReL > 2000, 
otherwise Cf  = 16 and m = 1). 
 
Manolis (1995) compared his correlation with published slug frequency data from the 
literature as well as those obtained from the WASP facility at Imperial College London and 
concluded that his correlation predicted all the experimental data reasonably well. 
 
 

Model D (mm) Fluids Slug Frequency (Hz) 

Gregory & Scott 
(1969) 19 CO2-water 
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Table 6-3: Summary of fully developed slug frequency models 
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Recently, Zabaras (1999) reviewed six empirical and two mechanistic slug frequency 
correlations for horizontal and inclined flows. He found poor prediction results for inclined 
slug flow, which is not surprising as none of the models studied was based on inclined pipe 
data. Therefore, he proposed a correction factor to the relation of Gregory & Scott (1989) 
which accounted for the pipe inclination effect. The revised correlation is given by: 
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where the correction factor � is defined as 
 
   � ����� 25.0sin75.2836.0      (6.47b) 
 
A summary of all the slug frequency models mentioned above is given in Table 6-3. 
 
6.4.3.2 Phenomenological Models 
 
Taitel & Dukler (1977) considered the slug formation to be an entrance phenomenon and 
suggested that the slug frequency is given by the inverse of the time taken for the film to 
rebuild its level and form a slug. They then solved one-dimensional mass and momentum 
relations using the shallow channel approximation to calculate the characteristic time for 
this process. Comparison of the predictions of their model with the data of Dukler & 
Hubbard (1975) showed good agreement, but the results were less satisfactory when 
compared with data from Gregory & Scott (1969) and Vermeuleun & Ryan (1971). The 
model predicts an increase of frequency with increasing liquid superficial velocity at 
constant gas superficial velocity. It also predicts a minimum in the plot of slug frequency 
versus gas velocity at constant liquid superficial velocity. However, as pointed out by Hale 
& Hewitt (1999), a general validation of this model is still lacking. 
 
Hale & Hewitt (1999) reviewed in detail the Taitel & Dukler (1977) frequency model and 
highlighted its limitations. To overcome the deficiencies, they proposed a non-correlational 
approach for predicting the slug frequency in which the processes of slug initiation, growth 
and decay were taken into account. The resulting model is therefore based on the physics of 
the flow, and appears to be in very good agreement with experiments. However, its 
implementation details seem complicated and difficult to include in current legacy codes. 
 
6.4.4 Slug Length 
 
The liquid slug length (Ls) is an important design parameter for hydrocarbon pipelines, 
particularly for sizing downstream separation facilities such as slug catchers. It is closely 
related to the slug frequency, but appears to be preferred in most slug flow models. In what 
follows, a brief review of the most common correlations for slug length in the literature is 
presented. 
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Dukler & Hubbard (1975) and later Dukler et al. (1985) found that the minimum stable slug 
length increases with the slug Reynolds number, and from experiments on a 38 mm 
horizontal pipe, they observed that the slug lengths are approximately 12-30D and appear to 
be relatively insensitive to the gas and liquid flowrates. Other researchers have confirmed 
the same observations as indicated in Table 6-4. Hence constant values are generally used 
for the mean slug length in slug flow models. 
 
 

Reference D (mm) Fluids Mean slug length 
Dukler & Hubbard 

(1975) 38 Air/water 12-30D 

Nicholson et al. 
(1978) 25, 51 Air/light oil ~30D 

Gregory et al. 
(1978) 25, 51 Air/light oil 

~30D 
(N.B. some slugs 
reached 375D) 

Barnea & Brauner 
(1985) Theory Theory 32D 

Andreussi et al. 
(1988) 50 Air/water 22D 

Nydal et al. (1992) 53, 90 Air/water 15-20D (53 mm pipe) 
12-16D (90 mm pipe) 

Manolis (1995) 78 Air/water 
Air/oil 10-25D 

 
Table 6-4: Mean slug lengths in horizontal pipes 

 
Although these constant values provide reasonable estimates in pipes of small diameter (25 
to 90 mm), they greatly under-predict typical values encountered in large diameter pipes 
(400 to 600 mm). For example in oil pipelines, Scott et al. (1986) observed that slugs are 
typically 300D long. In absence of any theory to predict this value satisfactorily, some 
logarithmic expressions have been suggested and they are reported below. 
 
Based on field data obtained from the Prudhoe Bay oil field in Alaska, Brill et al. (1981) 
included the effect of the pipe diameter and mixture velocity in the mean slug length and 
proposed the following correlation: 
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Norris (1982) modified the above expression using further data from the Prudhoe Bay field, 
and produced the following expression: 
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Scott et al. (1986) attempted an improvement of the above correlation by accounting for 
two slug growth mechanisms, namely liquid pickup at the slug front and gas expansion 
within the slug body. They suggested that the mean slug length should be given by the 
following empirical equation: 
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Gordon & Fairhust (1987) advocated the use of Norris (1982) expression after analysing 
field data from 0.3 to 0.6 m diameter pipes. 
 
The above logarithmic expressions over-predict the slug length for small diameter pipes as 
observed by Manolis (1995), and to the author’s knowledge, there is no simple empirical 
expression for mean slug length over a wide range of pipe diameters in the literature. 
However, slug flow is chaotic in nature, and the slug length should be characterized 
statistically. To this end, some researchers have attempted to evaluate the mean slug length 
using probability density functions. King (1998) reviewed these statistical correlations in 
his thesis. 
 
 

6.5 Slug Modelling Approaches 
 
As mentioned previously, the most distinctive feature of slug flow is its intermittent nature. 
Therefore, any attempt to model the flow by a standard time averaging procedure would be 
extremely restrictive. Instead, a much more detailed analysis is required which take account 
of the inherent intermittency and distinguishes between the liquid slug region, possibly 
containing dispersed gas bubbles, and the large gas bubble region that follows.  
 
This means that the phenomenological model of slug flow must, in effect, use 
characteristics from both the dispersed and the stratified flow models while still accounting 
for the exchange of fluid between each region. We briefly present in what follows, the three 
different approaches that were found in the literature and which attempt to describe the 
main aspects of this extremely complex flow. 
 
6.5.1 “Steady” state models 
 
The easiest and therefore the most popular, approach is to reduce the intermittency to 
periodicity and to assume fully-developed flow so that the complex structure can be 
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simplified to an “equivalent cell unit” consisting of a liquid slug and a long bubble. The 
balance equations can be written in a frame of reference with the unit cell so that the flow 
appears steady with mass and momentum conserved across the boundary between the liquid 
slug and the long gas bubble region. 
 
Following the approach of [Taitel & Barnea, 1990a, 1990b], the “equivalent slug unit” is 
shown below in Figure 6-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-3: The “equivalent slug unit” 
 
 
The unit consists of a slug region of length LS and a film region of length LF. The liquid 
slug region may be aerated with dispersed gas bubbles but it is still sufficient to bridge the 
pipe so that it cannot be penetrated by gas. The liquid holdup of this region is denoted RLS. 
The average liquid velocity in the liquid slug is VLS; it is also the average axial velocity of 
the dispersed bubbles in this region. These two velocities are not necessarily the same, but 
are generally considered to be equal in the case of horizontal flow. 
 
The film region contains a liquid film and an elongated or Taylor gas bubble. For the case 
of horizontal and inclined pipes, the bubble is in the upper part of the pipe. It moves 
downstream at a translational velocity VT. The liquid velocity in the film region is VLF, and 
the gas velocity is VGF. However, the gas and liquid velocities in the film are not axially 
homogeneous; instead they vary along the pipe due to the changing film thickness, hF. 
 
In a Lagrangian framework, by moving the system at the translational velocity of the 
elongated bubble VT, the slug unit appears to be stationary. This enables the “steady state” 
mass and momentum balances to be obtained. Combined with several empirical 
relationships, the momentum balances obtained enable the hydrodynamics of the liquid film 
in the elongated bubble region to be modelled and lead to the prediction of the liquid 
holdup profile and an average pressure drop over the full slug unit. 
 
Since the first horizontal “slug unit” model proposed by Dukler & Hubbard (1975), a lot of 
conceptual variations of the slug unit approach have been suggested, and can be found in a 
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review by Hale (1994). Here we only mention the “equivalent slug unit” proposed by Taitel 
& Barnea (1990b) as it was used to calculate the initial holdup profile for the slug flow 
simulations used in this study.    
 
 
6.5.1.1 The Taitel & Barnea model (1990b) 
 
Taitel & Barnea (1990b) have presented the most comprehensive study of the “steady state 
equivalent slug unit”. In their analysis three distinct cases were presented, providing 
increasingly more complex descriptions of the film region. In the simplest case, which we 
implemented, a constant film thickness is assumed and therefore, the film momentum 
balance is given by the following simplified equation: 
 

� � 0sing
A
1

A
1S

A
S

A
S

GL
GF

ii
G

GG

F

FF �����
�

�
��
�

	
��� 
���

��
  (6.51) 

 
where �F and �G are the liquid and the gas wall shear stress in the film or elongated bubble 
region; they are defined in the previous chapter by equation (5.51). The terms SF, SG, and Si 
are the liquid, the gas and the interfacial wetted perimeters in the film region, and are 
defined below. AF and AG are the liquid and gas cross-sections, �L and �G are the liquid and 
gas density and � is the pipe inclination. 
 
Thus, for a given pipe geometry of known diameter and inclination, known gas and liquid 
physical properties, and specified gas and liquid flowrates, the following procedure is 
employed to calculate the liquid film profile: 
 

1. VLS is calculated assuming that it is equal to the mixture velocity, 
LGMLS JJVV ���  where JG and JL are respectively the input gas and liquid 

superficial velocities. 
 

2. The auxiliary variables VT and RLS are calculated respectively by the empirical 
relations of Bendiksen (1984) and Gregory et al. (1978). Those two expressions are 
presented in Section 6.4 and repeated here as follows: 
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where D is the pipe diameter, and VM the mixture velocity calculated during the 
first step of this procedure. 
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3. An estimate of the film height, hF is specified. AF, AG, SF, SG, Si and RLF are then 

obtained using the following relations for stratified flow: 
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4. VLF and VGF are calculated using the following mass balance equations over the 

film zone: 
 
� � � � LSLSTLFLFT RVVRVV ���       (6.60) 
 

� �LFGFLFLFM R1VRVV ���        (6.61) 
 

5. The friction factors fF, fG and fi are evaluated using Equations (5.71) and (5.65). The 
shear stresses �F, �G and �i are calculated using Equations (5.51) and (5.52), but with 
VGF and VLF, determined in the previous step, as the gas and liquid velocities. 

 
6. All required variables can now be estimated and so the estimate of hF can be 

checked and a new estimate is obtained. Steps (3) - (5) are repeated until 
convergence of equation (6.51) is satisfied. 

 
A simple Fortran 90 programme has been written to evaluate the steady state liquid film 
holdup, using the procedure described above. This simplified model also enables the 
calculation of the pressure drop over the full slug unit, assuming an empirical correlation 
for the slug length LS, but because this value is not required in this study, its expression was 
not presented. 
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Steady models as described above give an estimate of averaged flow values, and those 
values can be used as initial conditions for two-fluid transient models. However, knowledge 
of those averaged values alone may be inadequate due to the lack of information about the 
longitudinal distribution of the flow, which is sometimes essential. Slug catchers, which 
should remove slugs from pipelines, are for example designed on the basis of the maximum 
slug length value and not the average value. So we did not pursue this approach further. 
 
 
6.5.2 Slug-tracking models 
 
Slug-tracking techniques provide an alternative way of modelling slug flow. They are 
distinguished from “unit cell” models (discussed in the previous section) in that they 
consider each slug individually, and model the propagation of a number of discrete slugs 
along a pipeline. This technique has a significant advantage over the unit cell approach as 
the slug length distribution arising from a particular pipeline configuration may be obtained 
without recourse to statistical correlations. Slug tracking schemes have received 
considerable interest in recent years. However, they are computationally intensive since a 
pipeline may contain hundreds of slugs, each of which requires a unique solution to the 
modelling equations at each time step during a transient simulation. As a result, highly 
simplified physical models have been implemented in the published slug tracking schemes. 
A review of those schemes can be found in the recent work by Manfield (2000) and it is not 
repeated here. 
 
Although some underlying assumptions made in the simplified slug-tracking models are 
questionable, the advantages of these schemes are that if they are implemented properly, 
they can result in a great increase in computing efficiency compared to two-fluid models, 
and more importantly, complex three-dimensional effects (such as the effect of velocity 
distribution within the slug and the effect of slug length on slug tail velocity) can be easily 
included the scheme, allowing correct description of the local and global flow. It is worth 
noting that in the next phase of the TMF programme [Hewitt, 2002], the accuracy, 
robustness, and efficiency of these schemes will be thoroughly investigated. 
 
Slug-tracking models may generate statistical data about slug flow at a particular set of 
conditions, giving for example the mean and maximum values of key variables, such as the 
slug length or frequency, which are likely to be encountered in a real production line, but 
their implementation appears very tedious and follows a Lagrangian approach, therefore 
these schemes will not be pursued in our Eulerian framework.  
 
 
6.5.3 Slug capturing using the two-fluid model 
 
Commercial pipeline transient codes OLGA, PLAC, and to some extent TACITE are all 
based on two-fluid models, and this approach appears to be the natural way of modelling 
slug flow, because mechanisms such as interfacial wave formation are naturally embodied 
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in the model. In addition, it does not rely on empirical closure laws to describe the flow, 
apart from the appropriate wall and interfacial friction factors, but this is also true for the 
steady state and the slug-tracking approaches. 
 
However, despite seeming attractive, very few studies have been done using this approach. 
To our knowledge, only recent works by Issa & Woodburn (1998) and Bonizzi et al. (2001) 
have shown that the two-fluid model is capable of capturing many of the principal features 
of slug flows, including interfacial wave formation, development and propagation. 
 
One possible reason for this lack of two-fluid slug flow studies comes from the fact that 
some researchers [Hewitt, 2002; Manfield, 2000] believe that the phenomena involved in 
slug flow are inherently multi-dimensional and can not be represented in detail in a one-
dimensional two-fluid framework without recourse to additional closure relationships. We 
do not entirely share this belief, and complex mechanisms such as gas entrainment, which 
are not naturally included in a classic two-fluid model, have been recently modelled by an 
additional transport equation for the dispersed gas bubbles [Bonizzi et al., 2001].  
 
The more logical explanation comes from the fact that to achieve their results, Issa & 
Woodburn (1998) and Bonizzi et al. (2001) have used very small mesh sizes, which are 
several orders of magnitude below those commonly used in the commercial simulators. Issa 
& Woodburn (1998) showed that the computation becomes relatively insensitive to the 
node size when this falls below about 225 mm (roughly a third of their pipe diameter). This 
large number of nodes required seems impracticable in the context of an industrial scale 
pipeline, however the continuing increase in computing power may eventually overcome 
this aspect. Furthermore, although not investigated in this chapter, we will expect the 
adaptive gridding techniques developed in Chapter 4, to considerably reduce the number of 
coarse nodes, and improve the efficiency of the numerical solution.  
 
Issa & Woodburn (1998) and Bonizzi et al. (2001) use a two-fluid model with a 
compressible gas phase, and Taitel & Barnea (1998) have recently studied the effect of gas 
compressibility on a slug-tracking model, and their results showed that the inclusion of the 
gas compressibility caused an increase in the slug unit length, but had a minor effect on the 
growth of the slug body as the slug moved downstream, so we expect our incompressible 
two-fluid model to represent most of the mechanisms of slug flow described in Section 6.3. 
 
 

6.6 Validation of the Two-Fluid Model 
 
In this section we study the validity of the incompressible two-fluid model (PFM-2), 
presented in Chapter 2, for a slug flow test called Case 24. The Blasius correlation (5.71) is 
used for the gas and liquid wall friction factors, and the stratified-smooth relation of Taitel 
& Dukler (1976) for the interfacial friction factor, hence the notation BBT in Figure 6.4, for 
which B and T stand for Blasius and Taitel respectively.  
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6.6.1 Case 24 
 
This benchmark case was first proposed by Hale & Hewitt (1999) as part of the TMF 
programme, and from the neutral stability curve plotted in Figure 6-4, it can be seen that 
Case 24 is within the slug flow region, more precisely it is on the inviscid Kelvin-
Helmholtz line for transition from stratified to slug flow, which is also the limit of well-
posedness of our two-fluid model [Louaked et al., 2003].  
  

 
 

Figure 6-4: Viscous & Inviscid Kelvin Helmholtz transitions from stratified to slug flow. 
 
 
Experimental measurements using the gas and liquid flow conditions for this particular case 
have recently been collected as part of the TMF programme [Hewitt, 2002], and they will 
provide useful data for future comparison. 
 
 
6.6.2 Simulation parameters 
 
The fluids used for the simulation are air and water at atmospheric conditions. As can be 
seen from Figure 6-4, the gas superficial velocity is 6.532 m/s, while the liquid superficial 
velocity is 0.532 m/s. A horizontal pipe of 100m in length and with diameter of 0.078 m is 
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used. The Rusanov scheme (3.11) is used with a CFL value of 0.1 for all the computations 
presented here while the mesh size value is generally taken as 0.1 m. 
 
�� Initial condition 
 
A step initial liquid holdup was used as initial condition (Figure 6-5). The initial upstream 
film profile is the stratified equilibrium liquid level, which is calculated from the steady 
state momentum balance equation (6.51), with the gas and liquid velocities obtained from 
the input superficial velocities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-5: Initial Condition 
 
The initial downstream film profile is obtained by using the Taitel & Barnea (1990b) steady 
state procedure described in Section 6.5.1.1. 
 
�� Boundary condition 
 
The inlet holdup is fixed to the stratified equilibrium value (initial upstream value), and an 
open outlet boundary approximation is used. 
 
 
6.6.3 Simulation results 
 
The results are presented here according to the slug flow mechanisms described in Section 
6.3. 
 
6.6.3.1 Slug wave initiation 
 
As can be seen from Figure 6-6, unstable interfacial waves are formed from the first 
iteration and propagate downstream while growing. 
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Figure 6-6: Interface wave formation 
 
 
6.6.3.2 Wave growth & Pipe bridging event 
 
Figure 6-7 presents snapshots of the simulation at different times, showing how the initially 
formed interfacial wave grows to bridge the pipe and form the slug precursor. A cut-off 
value of 0.99 is directly imposed in the code if the liquid holdup is greater than or equal to 
this value. 
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Figure 6-7: Snapshots of wave growth and pipe bridging event. 
 
 
6.6.3.3 Stratified layer formation, Slug Growth & Propagation 
 
Figure 6-8 clearly shows a liquid slug zone followed by a stratified film layer. It also shows 
the mechanisms of “stable slug” propagation, as well as the initiation of new slugs on the 
sloping interface formed after the departure of the previous slug precursor. The values of 
Tbk and Xbk in the graphs indicate the time and location at which the wave index-linked “k” 
bridges the pipe 
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Figure 6-8: Stratified layer formation, Slug Growth & Propagation 
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6.6.4 Effect of Initial Film Level 
 
The effect of the initial downstream liquid level has been evaluated in this section. Figure 
6-9 shows the result of the simulation after 24 seconds for the first slug body length LS1, 
which is twice the value obtained by the steady state procedure described in Section 6.5.1.1. 
Although the elongated bubble length remains comparable to the initial value, we can see 
from the Figure 6-10 that the slug precursor length has doubled and that the stratified film 
layer appears wavier compared to the original shape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-9: Effect of a higher initial downstream liquid level 
 
We have found that there is a critical initial downstream level (film holdup) for which 
interface waves will grow to form a slug, illustrating the importance of the initial conditions 
(Figure 6-10). An investigation of this critical liquid level is still under way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-10: Effect of a lower initial downstream liquid level 
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6.6.5 Mesh Refinement 
 
Because Case 24 is at the IKH transition from stratified to slug, which is also the limit of 
validity of the incompressible two-fluid model used, it was crucial to study the effect of the 
mesh size on the numerical results. From Figure 6-11, one can clearly see the major 
difference between two mesh sizes (one diameter or eight diameters) appears in the slug 
frequency, illustrated in the figure by the elongated bubble length LB, which is 10 times 
larger when using the coarse mesh. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-11: Effect of the mesh size 
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Figure 6-12 and Table 6-5 confirm these results by showing a strong dependency of the 
slug frequency on the mesh size for different liquid friction factors. 
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Figure 6-12: Variation of Slug Frequency with Mesh Size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6-5: Slug characteristics for mesh size �x = Diameter 
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6.7 Conclusion 
 
 
 
 
 
 
Numerical results reported in this chapter showed that the incompressible two-fluid model 
is unable to simulate most of the features of this complex flow regime for the test case 
selected. Mechanisms such as the interfacial wave formation, the pipe bridging event, the 
slug growth and propagation can be qualitatively observed, but flow characteristics such the 
slug length, frequency and velocity are not accurately determined.  
 
Phenomena such as the entrainment of dispersed gas bubbles in the liquid slug are not 
predicted, which is expected as no mechanism was introduced in the basic equations to 
account for these turbulent effects. In addition, a team of researchers [Bonizzi et al., 2002] 
in the Imperial College London is currently investigating this important three-dimensional 
effect in slug flow, while another team in the same university [Hale & Hewitt, 1999] is 
studying in detail the slug initiation process, another mechanism that is not properly 
predicted by the existing one-dimensional two-fluid models.  
 
The slug flow study has clearly shown that the numerical results are not reliable for cases 
on and probably above the Inviscid Kelvin Helmholtz (IKH) transition from stratified to 
slug flow, because they become very sensitive to the mesh size, which is characteristic of 
ill-posed initial-value problems. It worth nothing that the incompressible two-fluid model is 
no longer hyperbolic for this type of problems, and although the model was not investigated 
for cases below the IKH transition criteria, it is the understanding of the author that if the 
slug flow regime is observed, the numerical results will be more stable and reliable below a 
critical mesh size [Bonizzi et al., 2002]. In this case, the incompressible model will be very 
attractive compared to the compressible model (SPM-4), because the numerical time step is 
not limited by the acoustic wave speed, providing a solution generally hundred times faster 
than the compressible model.  
 
It should be mentioned that all the simulations presented in this chapter were done using 
fixed boundary conditions, however, some recent work by Bonizzi et al. (2002) suggested 
that taking into account the time varying aspect of the inlet and outlet boundaries, may 
stabilize the flow for cases above the IKH criteria, and make the numerical solution 
insensitive for small mesh sizes. This last point requires further investigation, as it appears 
a bit controversial, because it seems to contradict the expected behaviour of ill-posed 
initial-value problems.  
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7 Chapter 7 – Conclusions and Future 
Work 

 
 
 
 
 
 
 
The oil and natural gas production industry has an ongoing need to improve the 
understanding of transient multiphase flows. Such flows occur widely in hydrocarbon 
recovery and the industry needs to operate flow systems with more than one material to 
achieve optimum economy whilst ensuring safety and protecting the environment. 
Therefore, a good knowledge of the time varying flow characteristics, such as the fluid 
phase content or velocity, is very important to properly design flow lines, fluid treating and 
other separation facilities. In the first chapter, the specific goals of the present work were 
stated, and the progress made against these objectives as well as suggestions for future 
research are summarised in this chapter 
 
 

7.1 Conclusions 
 
After reviewing the modelling approaches existing in the literature in the second chapter, 
we presented and studied in detail the mathematical properties of three specific transient 
gas-liquid models, which were later implemented in a unique framework. These three 
models are the HEM-3 (Homogeneous Equilibrium Model) based on the homogeneous or 
“fully mixed” approach, and two other models based on the “two-fluid” approach. The first 
one assumes that both phase are incompressible, and is known as the PFM-2 (Pressure-Free 
Model), while the other one assumes the gas phase as a compressible fluid and is referred 
here as the SPM-4 (Single Pressure Model).  
 
For numerical purposes and a better understanding of the main characteristics of these three 
models, we have performed their stability analysis, more specifically, we have analysed 
their hyperbolicity condition. Hence, we have shown that the homogeneous equilibrium 
model is always hyperbolic, and that the two-fluid incompressible model is hyperbolic for 
flow conditions below the inviscid Kelvin Helmholtz (IKH) condition (2.57).  We have also 
shown that the four approximate eigenvalues of SPM-4 model are always real. However, it 
should be noted that these approximate eigenvalues are only valid for the small parameter 

%5�� , or more specifically, the relative flow velocity Vr should be less than 15 m/s if gas 
speed of sound is 300 m/s.  
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It is worth noting that the HEM-3 model was developed solely for testing and validating 
numerical schemes because while being simplistic, it contains most of the important 
features encountered in two-phase flow modelling. On the other hand, the incompressible 
two-fluid model PFM-2 is primarily used to assess the practical stratified and slug flow 
applications presented in this work. This model is only limited to flowing fluids with 
constant properties, therefore, a third model SPM-4 was proposed as an improvement of the 
later model because it takes into consideration the gas phase compressibility, allowing a 
true representation of the flow movement for cases such as slug flows when the change in 
volume of the gas becomes important due to compressibility effect.  
 
Because of the complexity of multifluid models, i.e. the lack of hyperbolicity over the 
whole range of flowrates and the presence of non-conservative terms, the resolution 
techniques for these models remain an active field of research. Therefore, the third chapter 
of this thesis presents the explicit finite volume approach that we have adopted for solving 
our two-phase flow models, and described in detail the numerical schemes that we have 
implemented and investigated, during the course of this work. Various simulations and 
validation cases on uniform grids are presented, and these show that the high-resolution 
schemes developed here are robust, efficient and are able to capture strong discontinuities 
in the flow with a high accuracy. As suggestions for future work, we advocate using the 
modified flux corrected transport (FCT) scheme developed here for conservative models 
such as the HEM-3 or PFM-2, and a combination of two explicit schemes (TVD Lax 
Friedrichs and 2nd order MinMod) for the single pressure model SPM-4. 
 
Pipelines are extremely long in general and may require a large number of uniform grid 
cells in order to capture the finest possible feature of interest in the model. Therefore, in 
order to improve the efficiency and also the accuracy of the numerical models mentioned 
earlier, we describe in the fourth chapter the most consuming task of this research: an 
adaptive mesh refinement (AMR) technique, which provides the best means of achieving 
true multiscale capability in contemporary physical simulations. 
 
The AMR strategy developed here is a combination of many elements from numerous 
researchers in the literature, but the underlying principle follows Berger & Oliger (1984) 
block-structured approach. The algorithm is validated with several numerical examples that 
showed that the AMR technique is robust and can achieve a similar level of accuracy for a 
fraction of cost of a calculation on a conventional uniform grid. More precisely, we have 
shown that this algorithmic technique can save as much as an order of magnitude in 
computational time for two-phase flow problems.  
 
In the fifth chapter of this thesis, we present the first practical application for transient gas-
liquid flow in pipelines. We studied the stratified flow pattern through a sudden increase of 
the gas flowrate and proposed a new combination of existing correlations for wall and 
interfacial friction factors valid for the full range of stratified flows (smooth and wavy). 
These models are defined by the Moody (1947) based equation (5.72) for the gas wall 
friction, the combined Moody (1947) and Kowalski (1987) based equation (5.73) for the 
liquid wall friction, and the modified Andritsos & Hanratty (1987) equation (5.74) for the 
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interface friction factor. The application of these simple correlations for the case presented 
shows prediction with less than 5% error compared to the experimental measurements.  
 
Slug flow is an extreme case of time varying phenomena occurring in gas-liquid pipelines 
with continuous liquid and gas zones passing alternatively along the system. Therefore, the 
objective of our second application was to better understand this flow pattern by simulating 
a hydrodynamic slug flow case with the incompressible model developed here. The results 
presented in the penultimate chapter of this thesis, showed that the incompressible two-
fluid model (PFM-2) is not able to accurately predict most of the features of this complex 
flow regime. Mechanisms such as the interfacial wave formation, the pipe bridging event, 
the slug growth and propagation can be predicted qualitatively observed, but critical flow 
characteristics such the slug length, frequency and velocity are not accurately determined.  
 
Phenomena such as the entrainment of dispersed gas bubbles in the liquid slug are not 
however observed, which is expected as no mechanism was introduced in the basic 
equations to account for these turbulent effects. In addition, a team of researchers [Bonizzi 
et al., 2002] in the Imperial College London is currently investigating this important three-
dimensional effect in slug flow, while another team in the same university [Hale & Hewitt, 
1999] is studying in detail the slug initiation process, another mechanism that is not 
properly predicted by the existing one-dimensional two-fluid models.  
 
The slug flow study has clearly shown that the numerical results are not reliable for cases 
on and probably above the Inviscid Kelvin Helmholtz (IKH) transition from stratified to 
slug flow, because they become very sensitive to the mesh size, which is characteristic of 
ill-posed initial-value problems. It worth nothing that the incompressible two-fluid model is 
no longer hyperbolic for this type of problems, and although the model was not investigated 
for cases below the IKH transition criteria, it is the understanding of the author that if the 
slug flow regime is observed, the numerical results will be more stable and reliable below a 
critical mesh size [Bonizzi et al., 2002]. In this case, the incompressible model will be very 
attractive compared to the compressible model (SPM-4), because the numerical time step is 
not limited by the acoustic wave speed, providing a solution generally hundred times faster 
than the compressible model. 
  
All the modelling development and programming works mentioned above have led to the 
design of EMAPS (Eulerian Multiphase Adaptive Pipeline Solver), a unified and modular 
framework for one-dimensional multifluid models, which contains advanced numerical 
methods, and provides an easy way to add or modify appropriate physical correlations for 
the implemented mathematical models. The implementation of this framework is based on 
a robust adaptive mesh refinement (AMR) technique. The performance of this technique 
depends on the problem solved, but its automatic gradient-based error control mechanism 
highly improves the accuracy of the results and its local space and time adaptation strategy 
can increase the computational speed by an order of magnitude compared to uniform grids. 
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7.2 Suggestions for Future Work 
 
Improving mathematical models and numerical methods for two-phase flows will remain 
an active research area for many years to come. And although we proposed two two-fluid 
models for gas-liquid flows, most of our reported simulations were performed using the 
incompressible model PFM-2, hence, further validation work is required for the single 
pressure model SPM-4.  Furthermore, the reader should be warned against a confusion 
sometimes found in the literature, which suggests that this compressible two-fluid model is 
always hyperbolic. Though the approximate eigenvalues are always real, as shown in 
Chapter 2, the analytical values of the true eigenvalues can be complex, and a numerical 
evaluation of these analytical values reveals that the condition of hyperbolicity or limit of 
validity of the SPM-4 model is similar to the two-fluid incompressible model PFM-2 i.e. 
critical flow above the same IKH condition (2.57). 
 
It will be therefore useful for future researchers to derive more complete models, which are 
applicable for the whole range of flowrates and for which change in flow patterns do not 
mean a complete change in the mathematical structure of the set of equations, and if that 
approach is not feasible for all the flow patterns, we will need to derive transition 
mechanisms, which allow us to switch from one model to another without losing accuracy. 
 
During the course of this project, we have generated good information about gas-liquid 
stratified flow. There is also a very good understanding of the interfacial behaviour in the 
literature, including formation and types of travelling waves. A significant shortcoming of 
the present study was is emphasis on air-water data at low pressure. Additional tests at 
different pressures and with other fluids will help to further validate the empirical 
correlations for wall and interface friction factors proposed here for our transient two-fluid 
model. 
 
Though not mentioned here, considerable basic work has been undertaken in the literature 
in measuring stratified flow wave, frequency, amplitude, transitions, and propagation 
velocity. It has not found its way into computer system codes because it is probably 
difficult, if not impossible, to incorporate it in present two-fluid models. We therefore 
advise future researchers to include these crucial effects in subsequent models, and 
hopefully, we will be able to predict accurately the onset of slugging in physical models 
and advance our understanding of slug flow. 
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8 Appendix-A  (EMAPS) 
 
 
 

8.1 Introduction 
 
The Eulerian Multiphase Adaptive Pipeline Solver (EMAPS) is the computational 
framework in which all the results presented in this thesis were simulated. It is a general-
purpose one-dimensional fluid flow code that is capable of simulating single-phase, two-
phase or three-phase flow problems encountered in the oil and gas industry. The general 
vector-matrix form of the set of partial differential equations (PDEs) solved by the 
numerical schemes implemented in EMAPS is given in Appendix C, with three specific 
two-phase flow models.  
 
The purpose of this appendix is not to describe all the modules implemented in the code but 
to give the reader a brief overview of the code main components; therefore we present in 
the next sections the general architecture of the code, and some of its main elements. 
 
 

8.2 EMAPS Architecture 
 
EMAPS is designed as a flexible collection of modules, and its complete structure involves 
three main parts: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-1: Architecture of EMAPS 
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1. The pre-processor for input text files (Pre-EMAPS) 
2. The actual solver or processor (EMAPS) 
3. The post-processor for analysing results of the simulation (Post-EMAPS) 

 
The Figure A-1 shows a schematic diagram of the interaction between the three-parts. 
 
 

8.3 The Pre-Processor 
 
In its current version [Omgba-Essama & Hanich, 2002], the code requires five input and 
control data files to start a simulation. These input files are labelled: 
 

1. Pipe.txt (for the pipe topography: length, diameter, inclination & mesh size,) 
2. Fluids.txt (for the physical properties of the fluids) 
3. Control.txt (time step information, numerical schemes…) 
4. Problem.txt (test case name, initial & boundary condition data) 
5. Model.txt (mathematical model, phase friction, interfacial pressure,) 

 
The five input files are generated either using a text-based pre-processor written in Fortran 
90, or a graphical user interface (Vassilas, 2002) written in Java. A detailed description, of 
all the appropriate data in each of the above files, is given in the code user manual [Omgba-
Essama & Hanich, 2002], and it is not repeated here. 
 
 

8.4 The Processor 
 
The processor read the input files generated by the pre-processor, via the module setting 
(file setting.f90). This module contains, therefore, many functions that check and read the 
control data, and initialises all the internal variables, which are necessary for successful 
start of a simulation. 
 
The module simulator (simulator.f90) actually contains steady and transient solvers, which 
make use of the adaptive mesh refinement techniques decribed in Chapter 4. The processor 
runs the solver selected by the user, using th appropriate numerical schemes and write the 
solution vector in various output files described in the code user manual.  
 
As already mentioned, the code is composed of many modules, which make it programmer-
friendly and also facilate its maintenance. The mjor modules that are present in the code are 
given in Figure A-2.  
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Figure 8-2: Main EMAPS Modules 

 
In addition to these major modules, many accessory modules were implemented such the 
error handling module (error.f90) or the file operations module (io_files.f90). All these files 
will be fully described in the code technical manual, which we are currently writing. 
 
The EMAPS files are identical for all the mathematical models simulated, except for the 
file or module implementing the vector-matrix formulation of the model (Appendix C). 
Hence, to run the code a specific executable must be created fore each of the mathematical 
models that the user is investigating.  
 
 

8.5 The Post-Processor 
 
In the current vesrion of the code, there is no real post-processor, which can automatically 
plot variables selected by the user, therefore to process the output files generated by the 
simulator and plot the required variables, we manually use a freeware called GNUPLOT. 

AMR Module
(adapt.f90: 
Adaptive Mesh 
Refinement + 
Error Control 
functions) 

Numerical Modules
1. method1.f90: 

(fluxes functions) 
2. nc_rhs.f90: (non-

conservative r.h.s)  

Pipe Data 
Module 

(pipe.f90: 
Topography) 

Grid Data 
Structure Module

(grid.f90: Linked  List
based structure + grid
management functions)

Problem & Model (PFM-2, HEM-3, SPM-4…) 
 

Boundary Conditions 
Module 

(Inlet & Outlet) 

Problem Module
(Mathematical model: 
sources & fluxes terms)

Initial Condition 
Module 

(Initialise all cells) 

Thermodynamics 
Module 

(thermo.f90: PVT
tables + EOS functions) 

Friction factors 
Module 

(friction.f90) 
 

Heat transfer 
Module 

(heat.f90) 
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9 Appendix-B  (PFM-2) 
 
 
 
 

9.1 Non-Conservative Formulation 
 
Consider incompressible, gravitationally separated, two-phase flow of gas and liquid in a 
circular pipe of diameter D, inclined at an angle � to the horizontal, as shown in Figure B-1. 
If the flow properties are averaged over the pipe cross-section then the one-dimensional 
mass and momentum balance equations [Watson, 1990] for each fluid are: 
 
	� Conservation of gas mass: 
 

0
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t
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��       (B.1) 

 
	� Conservation of gas momentum: 
 

GGIIGG

L
GG

I
G

2
GGGGGG

SSsingA
x

hcosgA
x
PA

x
VA

t
VA

�������

�

�
���

�

�
��

�

��
�

�

��

  (B.2) 

 
	� Conservation of liquid mass: 
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	� Conservation of liquid momentum: 
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The pairs (�G, �L), (VG, VL) and  (AG, AL) are respectively the gas and liquid densities, 
velocities and cross-sectional areas. PI is the interface pressure, and hL is the liquid height, 
which is related to the pipe diameter and the fluids cross-section (see Section B.4). 
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SG and SL are the gas and liquid wetted perimeters, while SI is the interfacial chord and 
their expressions are given in Section B.4. The interfacial drag force �I, and the gas and 
liquid wall shear stresses, �G and �L are defined as:  
 

   2
GGGG Vf

2
1

���   2
LLLL Vf

2
1

���   (B.5) 

 

    LGLGGII VV)VV(f
2
1

�����    (B.6) 

 
Various correlations for the wall friction factors fG and fL, and the interface friction fI in 
Equations (B.5) and (B.6) are reviewed in Chapter 4.  
 
 
 
 
 
 
 
 
 
 
 

Figure 9-1: Cross-section and side views of a stratified flow in a circular pipe 
 
 
 

9.2 Conservative Formulation 
 
The set of partial differential equations [PDEs] (B.1) - (B.4) above is not in conservative 
form, and therefore not suitable for most finite difference numerical schemes for 
conservative hyperbolic systems. So instead of using this set for numerical purposes, we 
use the following set of equations, which were derived by Watson (1990) as follows:  
 
	� A total mass conservation is obtained by adding together (B.1) and (B.3) giving:  
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	� A global momentum equation is obtained by combining (B.2) and (B.4) so as to 

eliminate the interfacial pressure pI : 
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To solve the primitive variables (AG, AL, VG, VL), the two evolution equations (B.7) and 
(B.8) must be supplemented by two more relationships or closure relations. The first one is 
obtained from the two original mass conservation equations (B.1) and (B.3). Since the two 
fluids are assumed incompressible, by eliminating the fluid density in the mass 
conservation equations (B.1) and (B.3), they can be added to give the following relation: 
 

  � � .0VAVA
x GGLL ��
�

�       (B.9) 

 
Hence we obtain the algebraic constraint C(t), which is a known function of time dependent 
on the inlet boundary flow parameters. 
 
  � �inletGGLLGGLL VAVA)t(CVAVA ����     (B.10) 
 
The other condition is obtained from the geometric constraint that the areas occupied by the 
liquid and gas phases must fill the pipe, so that 
 
  AAA GL ��         (B.11) 
 
Therefore we have reduced the original four partial differential equations (B.1) - (B.4) to 
just two PDEs (B.7) and (B.8), and two algebraic equations (B.10) and (B.11). It is this 
latter system of equations that was labelled PFM-2 (for Pressure-Free Model) in Chapter 2 
of this thesis.  
 
 

9.3 Primitive Formulation 
 
Selecting the vector � �T

GL V,AP �  as the primitive variables for the two PDEs (B.7) and 
(B.8), we can rewrite the total mass conservation equation (B.7) in the following form: 
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Using the same primitive vector, we can transform the global momentum equation (B.8) in 
the following way: 
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The liquid velocity is given by � � LGGL AVA)t(CV �� , which means that its derivatives 
to time and space are given by the following expressions: 
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For steady state problem, C(t) is not varying with time, which means that: 
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where z is either the time variable t or the space variable x. 
 
By using the relation (B.17) in Equation (B.15), we obtain the following momentum 
conservation equation: 
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where 
L

L
L dh

dA
A �� . Hence, if we define the relative velocity LGr VVV ��  and the density 

difference GL ������ , we can recast the system of two equations (B.13) and (B.18) in 
the following primitive formulation: 
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where the matrices MA and MB are given by: 
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9.4 Geometrical Relations 
 

4
DA

2
�

�   Pipe cross-section 

LL ARA �   Liquid cross-section 

GG ARA �   Gas cross-section 
 

1RR LG ��  RG and RL are the gas and liquid volume fraction, (RL is also known 
as the holdup, while RG is also known as the void fraction). 

 
The geometric relation between the liquid holdup RL and the liquid height hL for a circular 
cross-sectional pipe is: 
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Knowing the liquid height hL and the pipe diameter D, and assuming a flat gas-liquid 
interface, the wetted perimeters are given by the following relations [Taitel & Barnea, 
1990b]: 
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10 Appendix-C   
 
 
 
 

10.1 Vector-Matrix Formulation 
 
For a successful implementation of a mathematical model in the EMAPS code, the model 
has to be written in the following vector-matrix formulation:  
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where Q is a vector of unknowns, generally the conservative variables, F is a physical flux 
vector, H is a matrix containing non-conservative terms existing in the model, and S is a 
vector of  algebraic source terms. 
 
Hence, the three specific two-phase flow models described in Chapter 2, are explicitly re-
written in the following sections. 
 
 

10.2 HEM-3 (Homogeneous Equilibrium Model) 
 
This hyperbolic model is fully conservative, hence the matrix H is null, and from equations 
(2.32), (2.33), and (2.34), the vectors Q, F, and S are given as: 
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10.3 PFM-2 (Pressure-Free Model) 
 
This incompressible two-fluid model is also fully conservative, therefore the matrix H is set 
to zero (C.3), and from relations (2.37) and (2.38), the vectors Q, F and S are given as:  
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10.4 SPM-4 (Single Pressure Model) 
 
This two-fluid model contains non-conservative terms; hence to obtain the vector-matrix 
formulation, we transform the momentum expression (2.42) as:  
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And considering that the liquid phase is incompressible, the equation (C.5) can be further 
transformed as: 
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Hence, from relations (2.41) and (C.6), the vectors Q, F and S, and the matrix H are 
respectively given as: 
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From relation (C.7b), it appears that the non-conservative terms matrix H can be reduce 
into a vector, but EMAPS contains other mathematical models, such as three-phase flow 
ones, which require a matrix formulation for the non-conservative terms, and that is why a 
matrix form of these terms was selected as a default one. 
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11 Appendix-D  (Extra Tables) 
 
 
 
 
 
 
 
 

11.1 Dimensionless Numbers 
 
 

Name Symbol Definition Significance 
Atwood At � � � ���������  Density difference/Density sum 
Bond Bo � � ����� 2gL  Gravitational force/Surface tension 
Drag Coefficient CD � � 2VgL ������ Drag force/Inertial force 
Eotvös Eo � � ����� 2gL  Gravitational force/Surface tension 
Fourier Fo 2

pLCt.k �  Current time/Steady state time 

Froude Fr gLV2  Kinetic energy/Gravitational energy 
Mach M, Ma sCV  Magnitude of compressibility effects 
Reynolds Re ��LV  Inertial forces/Viscous forces 
Weber We �� 2LV  Inertial forces/Surface tension forces 
Legend  Unit 
Cp Specific heat capacity at constant pressure [J/(kg.K)] 
Cs Speed of sound [m/s] 
g Gravitational constant [m/s2] 
k Thermal conductivity [W/(m.K)] 
L Scale length, radius [m] 
t Time [s] 
V Characteristic flow velocity [m/s] 
� Viscosity coefficient [kg/(m.s)] 
����' Mass density [kg/m3] 
� Surface tension coefficient [N/m] 

 
Table 11-1: Dimensionless Numbers 
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11.2 Shaha Case: Comparative Tables 
 
 
This section contains extra tables associated with the Shaha case figures in Chapter 5.  
 
 
Liquid Wall Friction Effect 

�� Fi = Fwg (Taitel & Dukler, 1976), Fwg = Moody (1947) 
 

Numerical Holdup Value
(Fully Developed Flow) 

Experimental Holdup 
Value (RL

exp) 100
R

RR
Error exp

L

num
L

exp
L

�

�

�

Liquid Wall
Friction 

Correlations
Upstream Downstream Upstream Downstream Upstream Downstream

Moody 
(1947) 0.178 0.149 0.182 0.137 2.2 8.8 

Kowalski 
(1987) 0.198 0.172 0.182 0.137 8.8 25.5 

Hand 
(1990) 0.195 0.166 0.182 0.137 7.1 21.2 

Srichai 
(1994) 0.241 0.211 0.182 0.137 32.4 54.0 

 
Table 11-2: Numerical and Experimental results for � Figure 5.6 

 
 

�� Fi = Andritsos (1987), Fwg = Moody (1947)  
 

Numerical Holdup Value
(Fully Developed Flow) 

Experimental Holdup 
Value (RL

exp) 100
R

RR
Error exp

L

num
L

exp
L

�

�

�

Liquid Wall
Friction 

Correlations
Upstream Downstream Upstream Downstream Upstream Downstream

Moody 
(1947) 0.178 0.107 0.182 0.137 2.2 21.9 

Kowalski 
(1987) 0.198 0.131 0.182 0.137 8.8 4.4 

Hand 
(1990) 0.195 0.122 0.182 0.137 7.1 10.9 

Srichai 
(1994) 0.241 0.162 0.182 0.137 32.4 18.2 

 
Table 11-3: Numerical and Experimental results for � Figure 5.7 
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Gas-Liquid Interface Friction Effect (Fwg = Moody, Fwl= Moody) 
 

Numerical Holdup Value
(Fully Developed Flow) 

Experimental Holdup 
Value (RL

exp) 100
R

RR
Error exp

L

num
L

exp
L

�

�

�

Interface 
Friction 

Correlations
Upstream Downstream Upstream Downstream Upstream Downstream

Cohen & H.
(1968) 0.139 0.112 0.182 0.137 23.6 18.2 

Taitel & D. 
(1976) 0.178 0.149 0.182 0.137 2.2 8.8 

Kowaski 
(1987) 0.119 0.084 0.182 0.137 34.6 38.7 

Andritsos  
(1987) 0.178 0.107 0.182 0.137 2.2 21.9 

Hart et al. 
(1989) 0.098 0.083 0.182 0.137 46.2 39.4 

Tronconi 
(1990) 0.146 0.120 0.182 0.137 19.8 12.4 

Hand 
(1990) 0127 0.099 0.182 0.137 30.2 27.7 

 
Table 11-4: Numerical and Experimental results for � Figure 5.8 

 
 
Best Combinations Of Interface Friction & Liquid Wall Friction (Fwg = Moody/Blasius) 
 

Numerical Holdup Value
(Fully Developed Flow) 

Experimental Holdup 
Value (RL

exp) 100
R

RR
Error exp

L

num
L

exp
L

�

�

�

(Fwl, Fi) 
Friction 

Correlations
Upstream Downstream Upstream Downstream Upstream Downstream

Kowalski / 
Tronconi 0.169 0.145 0.182 0.137 7.1 5.8 

Hand / 
Tronconi  0.163 0.137 0.182 0.137 10.4 0.0 

Moody / 
Andritsos2 0.178 0.132 0.182 0.137 2.2 3.6 

(*) Blasius /
Andreussi  0.175 0.146 0.182 0.137 3.8 6.6 

Kowalski / 
Andritsos 0.198 0.131 0.182 0.137 8.8 4.4 

 
Table 11-5: Numerical and Experimental results for � Figure 5.9 
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12 Nomenclature 
 
 
 
Symbol Definition       Unit 
Roman 
A  Cross-sectional area of the pipe (A = AG + AL = �D2/4) [m2] 
AG  Cross-sectional area of the gas phase    [m2] 
AL  Cross-sectional area of the liquid phase   [m2] 
Bfk  Body or gravity force of the k-phase (Bfk = -�kRkgsin�) [Pa/m] 
BfL  Liquid body or gravity force     [Pa/m] 
Bo  Bond number (Bo = gD2

	�/�)    - 
BoL  Liquid Bond number (BoL = gD2

�L/�)   - 
CD  Drag coefficient      - 
CG  Gas speed of sound      [m/s] 
CM  Homogenous or mixture speed of sound   [m/s] 
C0  Translational velocity coefficient    - 
C1  Drift velocity coefficient     - 
C1, C2, C3 Dimensionless coefficients for the Friedel correlation - 
c  concentration term      -  

0
vmvm c,c  Virtual mass coefficients     - 

D  Pipe diameter       [m] 
DB  Bubble diameter      [m] 
Dhk  Hydraulic diameter of the k-phase    [m] 
DG, DhG Gas hydraulic diameter     [m] 
DL, DhL Liquid hydraulic diameter     [m] 
dP/dx  Pressure gradient      [Pa/m] 
Eo  Eotvos number      - 
F  Vector of the physical flux terms 
F̂   Vector of the numerical flux terms 
Frk  Froude number of the k-phase � �gDJFr kk �   - 
FrG  Gas Froude number      - 
FrL  Liquid Froude number     - 
FrM  Mixture Froude number � �gDVFr MM �    - 

MrF   Square of the mixture Froude number � �gDVrF 2
MM �  - 

MrF̂   Modified mixture Froude number    - 
f  Wall friction factor for single-phase flow   - 
fI  Interfacial friction factor     - 
fk  Wall friction factor of the k-phase    - 
fw, fM  Wall friction factor of the gas-liquid mixture   - 
Gk  Mass velocity of k-phase (Gk = �k . Jk)   [kg/(m2s)] 
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GG  Mass velocity of gas-phase     [kg/(m2s)] 
GL  Mass velocity of liquid-phase     [kg/(m2s)] 
GT  Total mass velocity (GT = GG + GL)    [kg/(m2s)] 
H  Matrix of non-conservative terms 
hL  Liquid height       [m] 
g  Gravitational acceleration constant    [m/s2] 
Grad  Average gradient for half of a patch (left or right) 
J  Jacobian of the flux vector F � �QFJ ���  
JG  Gas superficial velocity  (JG = VG.RG)   [m/s] 
JL  Liquid superficial velocity (JL = VL.RL)    [m/s] 
LB  Length of the Taylor bubble     [m] 
LS  Length of the slug body     [m] 
M  Total number of cells or nodes     - 
MA, MB Matrices for system of equations  
M1, M2  Matrices used for computation of eigenvalues 

kiM   Average particle drag of the k-phase    [Pa/m] 
Mki  Interfacial stress force of the k-phase    [Pa/m] 
Mkw  Wall stress force of the k-phase    [Pa/m] 
Nf  Viscosity number      - 
P(x,
)  Polynomial function of x(
) and small parameter 
 
Pk(x)  Polynomial function of the k-index (k = 0, 1 or 2)  
Pk  Pressure of the k-phase     [Pa] 
PI, P  Interfacial common pressure     [Pa] 
Pc  Pressure correction term of the liquid phase (Pc = PL–PLi) [Pa] 
Pki  Interfacial pressure of the k-phase    [Pa] 
PG  Pressure of the gas phase     [Pa] 
PGi  Interfacial pressure of the gas phase    [Pa] 
PL  Pressure of the liquid phase     [Pa] 
PLi  Interfacial pressure of the liquid phase   [Pa] 
Q  Vector of conservative variables 
Q   Intermediate vector solution 
rB  Radius of small bubbles     [m] 
Rd  Volume fraction of the discontinuous phase   - 
Rk  Volume fraction or holdup of the k-phase   - 
RG  Volume fraction or holdup of the gas phase   - 
RL  Volume fraction or holdup of the liquid phase  - 
RLE  Equilibrium liquid holdup     - 
RLS  Liquid slug holdup      - 
Rek  Reynolds number of the k-phase    - 
ReG  Reynolds number of the gas-phase    - 
ReL  Reynolds number of the liquid-phase    - 
ReM  Reynolds number of the gas-liquid mixture   - 
ReS  Reynolds number of the liquid slug region   - 
S  Vector of source terms 
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Si  Interfacial wetted perimeter     [m] 
Sk  Wall wetted perimeter of the k-phase    [m] 
t  Time variable       [s] 
T  Flow temperature      [Kelvin] 
Tbk  Time at which the wave “k” bridges the pipe   [s]     
Tw  Wall shear force of the gas-liquid mixture   [Pa/m] 
TGw  Wall shear force of the gas phase    [Pa/m] 
TLw  Wall shear force of the liquid phase    [Pa/m] 
TI  Interfacial shear force      [Pa/m] 
Vk  Velocity of the k-phase     [m/s] 
Vki  Interfacial velocity of the k-phase    [m/s] 
VD  Drift velocity       [m/s] 
VG  Gas phase velocity      [m/s] 
VL  Liquid phase velocity      [m/s] 
VM  Mixture velocity (VM = JG + JL)    [m/s] 
Vr  Relative velocity (Vr = VG - VL)    [m/s] 

rV   Average local relative velocity � �rr VV �    [m/s] 
VT  Translational velocity      [m/s] 
WeM  Mixture Weber number     - 
X2  Martinelli parameter � � � �� �GL

2 dxdPdxdPX �   - 
Xbk  Location of the wave “k” when it bridges the pipe  [m] 
x  Space variable       [m] 
xG  Gas quality       - 
x(
), y(
) First order root approximations of the polynomial P(z, 
) 
y  Unknown or variable of a quadratic equation 
y+, y-  Single roots of a quadratic equation 
Z2  Chisholm parameter � � � �� �LOGO

2 dxdPdxdPZ �   - 
z  Unknown or variable of a quadratic equation 
z1, z2  Single roots of a dimensionless quadratic equation  - 
z1,4, z2,3 Double roots of a dimensionless quadratic equation  - 
 
 
 
 
 
Greek 
�  Thermal diffusivity      - 
�  Pipe inclination      [rad] 
�  Density ratio coefficient     - 

  Density coefficient used for pressure correction terms [kg/m3] 

QLR  Spatial difference of two vectors  (
QLR = QR – QL) 

jQ�   Difference of vectors with a limiter function 
	Pki  Pressure correction term of the k-phase (	Pki = Pk – Pki) [Pa] 
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	PGi  Pressure correction term of the gas phase   [Pa] 
	�  Density difference (	� = �L – �G)    [kg/m3] 
	

S  Discriminant for a stratified flow correction 
	

D  Discriminant for a dispersed flow correction 
	t  Time step       [s] 
	x  Mesh size       [m] 
�  Pipe roughness      [m] 
�

2  Two-phase multiplier      - 
�  Angle subtended by the liquid wetted perimeter (Ch. 1) [rad] 
  Norm exponent parameter (Chapter 2)   -  
�k  Mass transfer of the k-phase     [kg/(m3s)]�
�  Coefficient used for virtual mass force term   - 
�
~   Dimensionless characteristic value or eigenvalue   - 
�  Characteristic value or eigenvalue     [m/s] 
�k  kth characteristic value or eigenvalue (k = 1, 2, 3, …) [m/s] 
�max  Maximum of the absolute value of eigenvalues  [m/s] 
�L  Non-slip liquid holdup � �� �GLLL JJJ ���    - 

  Small parameter for perturbation analysis (
 = Vr/CG) - 
�k  Density of the k-phase     [kg/m3] 
�G  Density of the gas phase     [kg/m3] 
�L  Density of the liquid phase     [kg/m3] 
�H  Homogeneous mixture density (�H = (1-�L)�G + �L�L) [kg/m3] 
�M  Density of the gas-liquid mixture (�M = RG�G + RL�L) [kg/m3] 
�G  Viscosity of the gas phase     [kg/(m.s)] 
�L  Viscosity of the liquid phase     [kg/(m.s)] 
��  Viscosity of the gas-liquid mixture    [kg/(m.s)] 
�  Anti-diffusion coefficient     - 
�  Diffusion coefficient      - 
�  Surface tension      [N/m] 
�  ratio timestep/mesh size (� = 	t/	x)    [m/s] 
�Gi, �I  Gas interfacial shear stress     [N/m2] 
�ki  Interfacial shear stress of the k-phase    [N/m2] 
�k  Wall shear stress or viscous stress of the k-phase  [N/m2] 

Re
k�   Reynolds or turbulent viscous stress of the k-phase  [N/m2] 

����0  Coefficients used for pressure correction terms  - 
�  Vector of unknowns or flow variables 
�

�  Transpose of the unknowns or flow variables vector 
�s  Slug frequency      - 
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Superscripts 
B  Basset 
C  Collision 
CB  Chisholm & Baroczy pressure drop correlation 
D  Drag, Dispersed 
FCT  Flux Corrected Transport numerical scheme 
Force  First Order Centred numerical scheme 
L  Lift (Chapter 1) 
  Left State (Chapter 2) 
LF  Lax-Friedrichs numerical scheme 
LM  Lockhart & Martinelli pressure drop correlation 
LR  Symmetric average of Left and Right states 
R  Right state 
RI  Richtmyer scheme 
RUS  Rusanov scheme 
TVDLF Total Variation Diminishing (TVD) Lax-Friedrichs scheme 
TD  Taitel & Dukler 
V  Virtual mass 
S  Stratified 
′  First derivative 
n  Current time step 
n+1  Next time step 
c  coarse patch / level 
f  fine patch / level 
d  diffuse 
ad  anti-diffuse 
cad  correct anti-diffuse 
sep  separated flow 
 
 
 
 
 
Subscripts 
G  Gas phase 
H  Homogenous gas-liquid 
L  Liquid phase 
M  Mixture gas-liquid 
R  Reference 
GO  Gas Overall 
LO  Liquid Overall 
c  coarse patch / level 
f  fine patch / level 
w  wall 
j  Cell centre index 
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j+1/2, j-1/2 Cell border indexes 
norm  normal atmospheric conditions 
left  left half part of a patch (collection of cells) 
right  right half part of a patch 
fric  friction term 
grav  gravity term 
acc  acceleration term 
x  axial coordinate 
< >  Area-average 
 
 
Acronyms 
AMR  Adaptive Mesh Refinement 
BBT  Blasius (gas) Blasius (liquid) Taitel & Dukler (interface) friction factors 
CFD  Computational Fluid Dynamics 
CFL  Courant-Friedrichs-Levy number 
DFM  Drift-Flux Model 
EMAPS Eulerian Multiphase Adaptive Pipeline Solver 
FCT  Flux Corrected Transport (numerical scheme) 
Force  First Order Centred (numerical scheme) 
HEM  Homogeneous Equilibrium Model 
IKH  Inviscid Kelvin-Helmholtz 
IMF  Implicit Multi-Field algorithm 
IPSA  Inter-Phase Slip Algorithm 
LOCA  Loss Of Coolant Accident 
MUSCL Monotonic Upstream Scheme for Conservation Laws 
NCT  Non-Conservative Terms 
NFT  Numerical Flux Terms 
PDE  Partial Differential Equation 
PeTra  Petroleum Transportation 
PFM  Pressure-Free Model 
PLAC  PipeLine Analysis Code 
ProFes  Produced Fluid Engineering Software 
PSD  Power Spectral Density 
PWR  Pressurized Water Reactor 
SETS  Stability Enhancing Two-Step (numerical scheme) 
SPM  Single Pressure Model 
TFM  Two-Fluid Model 
TMF  Transient Multiphase Flow 
TPM  Two-Pressure Model 
TRAC  Transient Reactor Analysis Code 
TVD  Total Variation Diminishing 
VKH  Viscous Kelvin-Helmholtz 
VLW  Very Long Waves 
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