24 research outputs found

    Blind Search for Optimal Wiener Equalizers Using an Artificial Immune Network Model

    Get PDF
    This work proposes a framework to determine the optimal Wiener equalizer by using an artificial immune network model together with the constant modulus (CM) cost function. This study was primarily motivated by recent theoretical results concerning the CM criterion and its relation to the Wiener approach. The proposed immune-based technique was tested under different channel models and filter orders, and benchmarked against a procedure using a genetic algorithm with niching. The results demonstrated that the proposed strategy has a clear superiority when compared with the more traditional technique. The proposed algorithm presents interesting features from the perspective of multimodal search, being capable of determining the optimal Wiener equalizer in most runs for all tested channels

    Blind search for optimal Wiener equalizers using an artificial immune network model

    Get PDF
    This work proposes a framework to determine the optimal Wiener equalizer by using an artificial immune network model together with the constant modulus (CM) cost function. This study was primarily motivated by recent theoretical results concerning the CM criterion and its relation to the Wiener approach. The proposed immune-based technique was tested under different channel models and filter orders, and benchmarked against a procedure using a genetic algorithm with niching. The results demonstrated that the proposed strategy has a clear superiority when compared with the more traditional technique. The proposed algorithm presents interesting features from the perspective of multimodal search, being capable of determining the optimal Wiener equalizer in most runs for all tested channels.2003874074

    Ballistocardiography : physically-based modeling to bridge physiology and technology

    Get PDF
    The ballistocardiogram (BCG) captures the motion of the center of mass (CoM) of the human body resulting from the blood motion within the circulatory system. The BCG signal reflects the status of the cardiovascular system as a whole and, for this reason, it offers a more holistic evaluation of cardiovascular performance than traditional markers, such as electrocardiography or echocardiography. In addition, the acquisition of BCG signals is not invasive, can be performed with several devices -such as accelerometers, chairs, hydraulic system- and does not require body contact. However, the utilization of the BCG as a clinical diagnosis tool and monitoring method is currently hindered by the absence of standardized methods to link the motion of the CoM of the human body, which constitutes the physiological BCG (pBCG), with the BCG signal acquired with sensing devices, which constitute the measured BCG (mBCG). To address this issue, in the first part of the present work we provide a formal definition of pBCG and mBCG, which will be then utilized to (i) define the physical connection between the mBCG obtained with two sensing devices, i.e. the suspended bed and the load cell system, and the pBCG signal and (ii) reconstruct the individual CoM motion. In the second part of the thesis, we focus on the synergistic combination between the physiology behind the BCG signal and the physics of the sensing devices, which may lead to novel clinical applications. In particular, we propose a cuff-less method for absolute pulse pressure assessment via the synergistic integration of two components, namely (i) theoretical simulations of cardiovascular physiology by means of a mathematical closed-loop model of the cardiovascular system, and (ii) synchronous ECG, SCG and BCG data acquired in our laboratory. Then, we present an evolutionary algorithm aimed at individualizing the closed-loop model of the cardiovascular system, with which we will also provide an estimate of the arterial pressure. Finally, in the last part of the thesis, we draw the conclusion of this study, showing how the integration of the mathematical modeling alongside with clinical studies can improve the understanding of the BCG signal and actively contributing to the development of new clinical monitoring solution.Includes bibliographical references (pages 80-84)

    Artificial Evolution by Viability Rather Than Competition

    Get PDF
    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design

    Evolution of Homing Navigation in a Real Mobile Robot

    Get PDF
    In this paper we describe the evolution of a discrete-time recurrent neural network to control a real mobile robot. In all our experiments the evolutionary procedure is carried out entirely on the physical robot without human intervention. We show that the autonomous development of a set of behaviors for locating a battery charger and periodically returning to it can be achieved by lifting constraints in the design of the robot/environment interactions that were employed in a preliminary experiment. The emergent homing behavior is based on the autonomous development of an internal neural topographic map (which is not pre-designed) that allows the robot to choose the appropriate trajectory as function of location and remaining energy

    Evolutionary algorithms in artificial intelligence: a comparative study through applications

    Get PDF
    For many years research in artificial intelligence followed a symbolic paradigm which required a level of knowledge described in terms of rules. More recently subsymbolic approaches have been adopted as a suitable means for studying many problems. There are many search mechanisms which can be used to manipulate subsymbolic components, and in recent years general search methods based on models of natural evolution have become increasingly popular. This thesis examines a hybrid symbolic/subsymbolic approach and the application of evolutionary algorithms to a problem from each of the fields of shape representation (finding an iterated function system for an arbitrary shape), natural language dialogue (tuning parameters so that a particular behaviour can be achieved) and speech recognition (selecting the penalties used by a dynamic programming algorithm in creating a word lattice). These problems were selected on the basis that each should have a fundamentally different interactions at the subsymbolic level. Results demonstrate that for the experiments conducted the evolutionary algorithms performed well in most cases. However, the type of subsymbolic interaction that may occur influences the relative performance of evolutionary algorithms which emphasise either top-down (evolutionary programming - EP) or bottom-up (genetic algorithm - GA) means of solution discovery. For the shape representation problem EP is seen to perform significantly better than a GA, and reasons for this disparity are discussed. Furthermore, EP appears to offer a powerful means of finding solutions to this problem, and so the background and details of the problem are discussed at length. Some novel constraints on the problem's search space are also presented which could be used in related work. For the dialogue and speech recognition problems a GA and EP produce good results with EP performing slightly better. Results achieved with EP have been used to improve the performance of a speech recognition system
    corecore