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This work proposes a framework to determine the optimal Wiener equalizer by using an artificial immune network model together
with the constant modulus (CM) cost function. This study was primarily motivated by recent theoretical results concerning the
CM criterion and its relation to the Wiener approach. The proposed immune-based technique was tested under different channel
models and filter orders, and benchmarked against a procedure using a genetic algorithm with niching. The results demonstrated
that the proposed strategy has a clear superiority when compared with the more traditional technique. The proposed algorithm
presents interesting features from the perspective of multimodal search, being capable of determining the optimal Wiener equalizer
in most runs for all tested channels.
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immune network model.

1. INTRODUCTION

The constant modulus (CM) criterion [1, 2, 3] is a broadly
studied blind equalization technique. The last 20 years have
seen the proposal of many relevant works scrutinizing the ba-
sis of the CM criterion and its relation to other criteria.

These works pointed out two aspects that deserve to be
highlighted [3, 4]:

(1) the CM cost function is multimodal;

(2) there is an intimate relationship between CM minima
and some Wiener optima.

In particular, the literature indicates a one-to-one rela-
tionship between the best Wiener solutions and the minima
of the CM criterion.

From these considerations, it is possible to make a strong
claim: if one can determine the CM global minima, then the
best possible Wiener receiver can also be evaluated.
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This suggestion opens an exciting perspective: the possi-
bility of obtaining the best equalizer (in the mean square error
sense) without a desired signal, that is, by using a blind or un-
supervised search strategy. To achieve this goal, it is necessary
to propose a method capable of locating, over a set of lo-
cal minima, the best CM minimum in most of the runs per-
formed by the algorithm. Evolutionary algorithms (EAs) are
particularly suitable to determine the optimal Wiener equal-
izer because they present a high capability of performing
an exploratory search when a priori knowledge is not avail-
able.

This paper proposes to apply the optimization version
of an artificial immune network model, named opt-aiNet
[5], to the problem of determining the optimal Wiener
solution. By combining the CM criterion with the opt-
aiNet algorithm, this paper introduces a novel framework
(CM + opt-aiNet) to obtain the optimal receiver.

Different channel models and filter orders were used to
evaluate the potential for finding the global Wiener mini-
mum. In some cases, the proposed strategy was compared
with an approach based on genetic algorithms with niching
[6], which proved to be a valuable tool to solve this problem,
and thus benchmark the proposed technique. In all cases,
the obtained results validated the framework, demonstrating
that it is possible to find the optimal equalizer for a given
channel by using a powerful blind search technique.

The paper is organized as follows. Section 2 presents
some theoretical considerations on the equivalence between
the CM minima and Wiener solutions, a cornerstone of this
work. Section 3 introduces the immunologically inspired al-
gorithm, named opt-aiNet, and places it in the context of
other search techniques, with particular emphasis on EAs.
Section 4 presents the simulation results and discusses the
performance of the algorithm by comparing it with a genetic
algorithm with niching. The final remarks and future trends
are presented in Section 5.

2. ADAPTIVE CRITERIA: THEORETICAL BASIS

The main goal of communications engineering is to pro-
vide adequate message interchange, through a certain chan-
nel, between a transmitter and a receiver. Nevertheless, the
channels introduce distortion in the transmitted message,
what usually leads to severe degradation. A device named
equalizer filters the received signal in order to recover the
desired information. Figure 1 depicts the schematic channel
and equalizer representation in a communication system, to-
gether with their respective input and output signals.

From Figure 1, it can be inferred that the main goal of the
equalizer is to obtain an output signal as similar as possible
to the transmitted signal, except for a gain K and a delay d,
that is,

y(n) = K · s(n− d), (1)

which is the well-known zero-forcing (ZF) condition.
In most applications, the equalizer is implemented using

a finite impulse response (FIR) filter, which is a mathemati-

s(n)
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x(n)
Equalizer
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Figure 1: Elements of a communication system.

cally simple and inherently stable structure. Its input-output
relationship is given by

y(n) = wT · x(n), (2)

where w is the equalizer coefficient vector of length L and
x(n) = [x(n)x(n− 1) · · · x(n− L + 1)]T is the input vector.

Consequently, the central problem is to adjust the vector
w in order to obtain a good equalization condition, that is,
a condition as close as possible to the ZF (1). If it is possible
to count on a priori knowledge of the channel impulse re-
sponse, the task becomes purely mathematical. When this is
not the case, it is necessary to determine a suitable optimiza-
tion criterion.

When information about the transmitted signal is, at
least for some time, at hand, it is possible to make use of the
Wiener criterion, based on the following mean square error
(MSE) cost function:

JW = E
{[
s(n− d)− y(n)

]2
}
, (3)

where d is the previously defined equalization delay. If this
delay is known a priori, JW has a single minimum, named
the Wiener solution. As a rule, each Wiener solution possesses
a distinct MSE. This accounts for an important assertion: if
the equalization delay is a free parameter of (3), then JW has
several minima (multiple local optima). Among these many
optima, there is, usually, a single optimal Wiener solution, as-
sociated with an optimal delay.

As can be deduced from the comparison between (1) and
(3), the Wiener criterion is strongly related to the ZF condi-
tion. Hence, the determination of the optimal Wiener solu-
tion is very important and has a great practical appeal. How-
ever, there are two main difficulties: the use of samples of the
transmitted signal and the choice of d.

The drawback associated with the dependence on a “pilot
signal” was the main motivation behind the proposal of blind
techniques, that is, criteria which do not make use of samples
of s(n). Among these, the CM criterion has received special
attention in the last twenty years. Its cost function is given by

JCM = E
{[

R2 −
∣∣y(n)

∣∣2
]2}

, (4)

where

R2 =
E
[∣∣s(n)

∣∣4
]

E
[∣∣s(n)

∣∣2
] . (5)

The cost function presented in (4) has multiple minima,
except in some trivial cases. Recent works [3, 4] have pointed
in the direction of an intimate relationship between these
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minima and some Wiener solutions (the best ones). This is
the core of the CM part of the framework proposed here.

2.1. Relationship between CM minima
and Wiener optima

The rationale of this work is to find an optimal method for
the design of blind equalizers. Since the notion of optimality
can be related to the concept of supervised adaptive filtering,
it is important to discuss the relationship between Wiener
and CM minima. This discussion relies on the following as-
sumptions.

Assume that the best Wiener solutions are close to the
best CM minima so that each minimum of the former class
can be achieved from a minimum of the latter class through
a simple steepest descent algorithm (that will be further de-
scribed). Therefore, to find the CM global optimum is equiv-
alent to determining the optimal Wiener solution. We will al-
ways assume that there is at least one good Wiener solution,
that is, one that provides perfect recovery in the absence of
noise. Such assumption is not reasonable only in a few par-
ticular cases (e.g., when there is a channel zero at ±1).

The main result of this claim is that it becomes feasible
to determine the best possible equalizer without supervision,
that is, by using a blind search strategy.

The key to accomplish such a demanding task on the CM
cost function is to use strategies capable of performing not
only global search but also multimodal search, such as EAs
with niching and the immunologically inspired technique to
be discussed in the next section.

Therefore, it is important to choose a method capable of
providing a good balance between exploration and exploita-
tion of the search space. This balance allows for the algorithm
to exploit specific portions of the search space without com-
promising its global search potentialities. These features were
found in EAs with niching and a technique inspired by some
theories of how the human immune system works.

The last step of the framework is to refine the CM solu-
tion through the decision-directed (DD) algorithm in order
to compensate for the inherent difference between this and
the Wiener solution. The iterative expression of the DD algo-
rithm is

w(n + 1) = w(n) + µ · {dec
[
y(n)

]− y(n)
}

x(n), (6)

where dec[y(n)] is simply the slicer output.
In a previous work, the same task has been performed

using a genetic algorithm with niching, and good results were
reported [6], which will serve as a basis for comparison in
Section 4.

3. IMMUNOLOGY, ARTIFICIAL IMMUNE SYSTEMS,
AND AN IMMUNE NETWORK MODEL

Together with many other bodily systems, such as the ner-
vous and the endocrine systems, the immune system plays a
major role in maintaining life. Its primary functions are to
defend the body against foreign invaders (e.g., viruses, bac-
teria, funguses, etc.) and to eliminate the malfunctioning self
cells and debris.

The interest in studying and understanding the immune
system gave rise to immunology, a science with approxi-
mately 200 years of age. More recently, however, computer
scientists and engineers have found several interesting theo-
ries concerning the immune system and its functioning that
could be very helpful in the development of artificial systems
and computational tools capable of solving complex prob-
lems. The new field of research that emerged from this in-
terdisciplinary research on immunology, computer science,
engineering, and others, is named artificial immune systems
[7].

3.1. The clonal selection and the immune
network theories

Among the many theories used to explain how the immune
system works, two were explored in the development of the
algorithm used in this paper: (1) the clonal selection theory
[8] and (2) the immune network theory [9].

According to the clonal selection theory, when a disease-
causing agent, named pathogen, enters the organism, a num-
ber of immune cells capable of recognizing this pathogen are
stimulated and start replicating themselves. The number of
copies each cell generates is directly proportional to the qual-
ity of the recognition of the pathogen, that is, the better a cell
recognizes a pathogen, the more copies of itself will be gen-
erated. During this self-replicating process, a mutation event
with high rates also occurs such that the progenies of a single
cell are slight variations of the parent cell. This mutational
process of the immune cells has the remarkable feature of
being inversely proportional to the quality of the pathogenic
recognition; the higher the quality of the recognition, the
smaller the mutation rate, and vice versa.

The clonal selection theory, briefly described above, is
broadly used to explain how the immune system defends the
body against pathogens. With a revolutionary view of the im-
mune system, Jerne [9] proposed a novel theory to explain,
among many other things, how the immune system reacts
against itself. Jerne suggested that the immune cells are natu-
rally capable of recognizing each other, and the immune sys-
tem thus presents a dynamic behavior even in the absence
of pathogens. When an immune cell recognizes another im-
mune cell, it is stimulated and the recognized cell is sup-
pressed. In the original network theory, the results of stim-
ulation and suppression were not clearly defined. Therefore,
different immune network models present distinct ways of
accounting for network stimulation and suppression.

The discussion to be presented in Section 3.2 is restricted
to the specific artificial immune network model used in this
work, which combines clonal selection with the immune net-
work theory.

3.2. An artificial immune network model to perform
multimodal search

In [10], de Castro and Von Zuben proposed an artificial im-
mune network model, named aiNet, inspired by the clonal
selection and network theories of the immune system. This
algorithm is demonstrated to be suitable to perform data
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compression and clustering with the aid of some statistical
and graph theoretical strategies.

The aiNet adaptation procedure was further improved
in [5], and transformed into an algorithm to perform
multimodal search, named opt-aiNet. Several features of opt-
aiNet can be highlighted. (1) It is a population-based search
technique, in which each individual of the population is a
real-valued vector represented according to the problem do-
main. (2) The size of the population, that is, the number of
individuals in the population, is dynamically adjusted. (3) It
is capable of locating multiple optima by making a balance
between exploitation (through a local search technique based
on clonal selection and expansion) and exploration (through
a dynamic diversity maintenance mechanism).

In a simplified form, the opt-aiNet algorithm can be
summarized with the procedure below.

(1) Initialization. Randomly initialize a population with a
small number of individuals.

(2) While stopping criterion is not met, do the following.
(2.1) Fitness evaluation. Determine the fitness (good-

ness or quality) of each individual of the popu-
lation and normalize the vector of fitness.

(2.2) Replication. Generate a number of copies
(offsprings) of each individual.

(2.3) Mutation. Mutate each of these copies inversely
proportionally to the fitness of its parent cell, but
keep the parent cell. The mutation

c′ = c + αN(0, 1),

α = 1
β

exp(− f ∗)
(7)

follows, where c′ is a mutated individual c,
N(0, 1) is a Gaussian random variable of zero
mean and standard deviation σ = 1, β is a pa-
rameter that controls the decay of an inverse ex-
ponential function, and f ∗ is the fitness of an in-
dividual normalized in the interval [0, 1]. A mu-
tation is only accepted if the mutated individual
c′ is within its range of domain.

(2.4) Fitness evaluation. Determine the fitness of all
new (mutated) individuals of the population.

(2.5) Selection. For each clone—group formed by the
parent individual and its mutated offspring—
select the individual with highest fitness and cal-
culate the average fitness of the selected popula-
tion.

(2.6) Local convergence. If the average fitness of the
population is not significantly different from the
one at the previous iteration, then continue, else
return to step (2.1).

(2.7) Network interactions. Determine the affinity (de-
gree of similarity measured via the Euclidean
distance) of all individuals of the population.
Suppress (eliminate) all but the highest fitness
of those individuals whose affinities are less than
a suppression threshold σs and determine the

number of network individuals, named memory
cells, after suppression.

(2.8) Diversity introduction. Introduce a percentage
d% of randomly generated individuals and re-
turn to step (2).

(3) EndWhile.

The original stopping criterion proposed for the algo-
rithm is based on the number of memory cells. After the
network interactions (step (2.7)), a certain number of indi-
viduals remain. If this number does not vary from one it-
eration to the other, then the network is said to have a stable
population size. In such condition, the remaining individuals
are all memory cells corresponding to local optima solutions.
However, in accordance with the classical modus operandi in
adaptive equalization, a maximum number of iterations was
adopted as the stopping criterion.

For a more computational description of the im-
mune algorithm presented, the reader is invited to visit the
website http://www.cs.ukc.ac.uk/people/staff/jt6/aisbook/ais-
implementations.htm, from where the original Matlab code
for the opt-aiNet and many other immune algorithms can
be downloaded.

3.3. How opt-aiNet works?

The behavior of the opt-aiNet adaptation procedure can be
simply explained. In steps (2.1) to (2.5), a local search is
being performed based on the clonal selection theory. At
each iteration, a population of individuals is locally opti-
mized through reproduction, affinity proportional mutation,
and selection (exploitation of the search space). The fact
that no parent individual has a selective advantage over the
others contributes to the multimodal search of the algo-
rithm.

Steps (2.6) to (2.8) check for the convergence of the local
search procedure, eliminate redundant individuals, and in-
troduce diversity in the population. When the initial popula-
tion reaches a stable state (determined by the stabilization of
its average fitness), the cells interact with each other in a net-
work form, that is, the Euclidean distance between each pair
of individuals is determined, and some of the similar cells
are eliminated to avoid redundancy. In addition, a number
of randomly generated individuals are added to the current
population, allowing for a broader exploration of the search
space, and the process of local optimization restarts in step
(2.1).

To illustrate the behavior of the opt-aiNet algorithm, as-
sume the simple bidimensional function

f (x, y) = x sin(4πx)− y sin(4πy + π) + 1 (8)

to be maximized.
Figure 2a depicts f (x, y) and an initial population of 13

individuals after the local search part of the algorithm was
completed for the first time (steps (2.1) to (2.6)). Note that
all the remaining 13 individuals are positioned in peaks of the
function. Figure 2b depicts the function to be optimized after
the convergence of the algorithm. In this case, nearly all peaks

http://www.cs.ukc.ac.uk/people/staff/jt6/aisbook/ais-implementations.htm
http://www.cs.ukc.ac.uk/people/staff/jt6/aisbook/ais-implementations.htm
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Figure 2: Illustrative performance of the opt-aiNet algorithm when
applied to the function described in (8).

of the function were determined, including the four global
optima and all local optima of very low values in comparison
with the highest peaks.

3.4. Opt-aiNet and other search techniques

The algorithm described in this paper is most often charac-
terized as an immune algorithm since it is inspired in the
immune system. Nevertheless, the similarities between some
immune and EAs are striking and deserve remarks.

EAs can be defined as search and optimization strategies
with their origins and inspiration in the biological processes
of evolution [11]. For an algorithm to be characterized as
evolutionary, it has to present a population of individuals
that are subjected to reproduction, genetic variation, and se-
lection. Therefore, most EAs are comprised of the following
main steps: (1) reproduction with inheritance, (2) selection,
and (3) genetic variation [12].

If one looks into the clonal selection theory of the im-
mune system, briefly reviewed in Section 3.1 and used as a

part of the opt-aiNet algorithm, it is clear that the main steps
of an EA (reproduction, selection, and variation) are embod-
ied in the clonal selection procedure. Steps (2.1) to (2.3) of the
opt-aiNet algorithm correspond to the clonal selection prin-
ciple of the immune system. These can be likened to a ge-
netic algorithm [13] with no crossover and elitist selection,
or to the evolution strategies originally proposed by Schwefel
[14].

However, it is important to remark that a number of dif-
ferences exist among them, in addition to their sources of
inspiration. For instance, in opt-aiNet, no coding of the in-
dividuals is performed, as in the case of genetic algorithms,
the mutation rate of each individual is inversely propor-
tional to fitness (an original approach inspired by some im-
mune mechanisms), and a deterministic and elitist selection
scheme is adopted.

Another remarkable difference between the opt-aiNet
and any EA is the presence of direct interactions (con-
nections) between the network individuals (cells). In opt-
aiNet, as individuals are connected with each other in a
network-like structure, a dynamic control of the popula-
tion size can be performed. We are not going much further
into specific differences between these algorithms, but the
interested reader is invited to refer to [5, 15] for additional
discussions.

Since all the evolutionary steps are embodied in the
adaptive procedure of opt-aiNet, it is possible to consider
EAs to be particular cases of opt-aiNet. Taking into account
an opposite viewpoint, it is possible to claim that the opt-
aiNet algorithm is nothing but a new type of evolution-
ary approach inspired by the immune system, for it con-
tains the main steps of reproduction, variation, and selec-
tion, which an algorithm needs to be characterized as evo-
lutionary. Regardless of which algorithm can be viewed as
a particular case of the other, it is important to note that
both are adaptive systems suitable for exploratory search.
There is a main difference in performance, however, once
the opt-aiNet is intrinsically suitable for performing multi-
modal search, while EAs require modifications to tackle such
problems.

Empirical comparisons could also be performed between
the opt-aiNet algorithm and other search procedures, such
as simulated annealing [16] and particle swarm optimiza-
tion techniques [17]. However, as the nature of the opti-
mal Wiener equalizer problem requires an algorithm capa-
ble of efficiently locating multiple solutions to the problem,
the performances of these algorithms are supposed not to
be competitive with the ones presented by EAs with nich-
ing and the opt-aiNet algorithm. However, empirical inves-
tigation must still be undertaken in order to validate this
claim.

4. SIMULATION RESULTS

In order to evaluate the performance of the opt-aiNet al-
gorithm when applied to search for the optimal Wiener
equalizers, three different channels (C1, C2, and C3) were
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Table 1: Simulation parameters.

Parameter Value
Initial population 5
Suppression threshold (σs) 0.35
Number of offsprings per cell 10
β (equation (7)) 50
Maximum number of iterations 1000
Number of runs 100

Table 2: Results of C1 and 8-coefficient equalizer.

Solution MSE Freq. (GA + niching) Freq. (opt-aiNet)
Wopt 0.1293 48% 82%
W2 0.1397 22% 17%
W3 0.1445 12% 1%
W4 0.1533 10% —
W5 0.1890 4% —
W6 0.1951 4% —

considered. Their transfer functions are as follows:

HC1 = 1 + 0.4z−1 + 0.9z−2 + 1.4z−3,

HC2 = 1 + 1.2z−1 − 0.3z−2 + 0.8z−3,

HC3 = 1 + 0.6z−1 − 0.7z−2 + 2.5z−3.

(9)

C1 and C2 are nonminimum phase channels and C3 has
maximum phase. The equalizer, as mentioned in Section 2, is
always an FIR filter with L coefficients. We estimate the CM
cost function through time averaging and use the mapping

JFIT = 1
1 + JCM

(10)

to generate the fitness. The basic idea behind this conversion
is to transform minima into maxima.

We used the immune network model, as discussed in
Section 3.2, to obtain the CM global minimum for these chan-
nels. The best individual was refined by the aforementioned
DD algorithm (6) and compared with the Wiener solutions.
This procedure allows a direct verification of the potential-
ities of the proposed method. The results are presented in
terms of convergence rates to different minima, which favors
a straightforward performance analysis.

The default values for the parameters used to run the opt-
aiNet algorithm are presented in Table 1.

The first test was performed with channel C1 and an 8-
coefficient equalizer. The results are summarized in Table 2,
together with the equivalent outcome produced by the GA
benchmark [6]. In all tables, Wopt, W2, W3, and so forth
stand for the various Wiener minima (ranked according to
their MSE).

The results demonstrate that the immune network was
able to find the global optimum in most cases, thus surpass-
ing the GA by a great margin. It is also relevant to observe
that when global convergence did not occur, the rule was to

Table 3: Results of C2 and 7-coefficient equalizer.

Solution MSE Freq. (GA + niching) Freq. (opt-aiNet)
Wopt 0.0312 48% 100%
W2 0.0458 40% —
W3 0.0917 8% —
W4 0.0918 2% —
W5 0.1022 2% —

Table 4: Results of C3 and 12-coefficient equalizer.

Solution Residual MSE Freq. (opt-aiNet)
Wopt 0.0071 66%
W2 0.0075 32%
W3 0.0104 2%

Table 5: Results of C3 and 12-coefficient equalizer.

Solution Residual MSE Freq. (opt-aiNet)
Wopt 0.0071 84%
W1 0.0075 16%

pick W2, contrarily to what the benchmark outcome reveals.
The second test was carried out with channel C2 and a

7-coefficient equalizer. The results are presented in Table 3,
together with the GA performance.

In this case, the results are even more impressive; the im-
mune network was capable of determining the best mini-
mum in all runs. Again, the proposal led to results far su-
perior to those achieved by the GA.

Finally, channel C3 and a 12-coefficient equalizer were
considered. We chose this equalizer length to increase the size
of the search space, thus increasing the problem difficulty.
There is no available benchmark in this case. Table 4 presents
the results for the opt-aiNet algorithm.

The global convergence rate is lower than that of the pre-
vious test cases. However, simulation performances such as
the one illustrated in Section 3, and previous experience with
machine-learning techniques, encouraged us to try to im-
prove the performance of the algorithm by varying some of
its adaptation parameters. Based upon the discussion pre-
sented in [5, 10], concerning the importance of each param-
eter, beta was changed to β = 100. This choice would lead to
a more precise local search, that is, capability of dealing with
the MSE similarity between Wopt and W2. Table 5 depicts the
results.

By simply fine-tuning the local search of opt-aiNet, a
greater improvement in its performance could be observed.
The method once more proved itself capable of achieving op-
timal performance in the vast majority of trials.

The results presented so far are good indicators of the
opt-aiNet potentiality to locate the global optima solutions.
However, it is known that this algorithm is capable of deter-
mining most local optima solutions of a given problem, as
illustrated in Figure 2b. To study how the multimodal search
of opt-aiNet works on problems C1 to C3, assume, without
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Table 6: Individuals of the population and associated Wiener re-
ceivers.

Individuals of the population Close to
[0.1740 −0.1297 −0.0852 −0.1882 Wopt
0.4516 0.1137 −0.1007 0.0860]

[−0.1805 0.1303 0.0967 0.1862 Wopt−0.4559 −0.1021 0.0949 − 0.0781]
[0.1113 −0.0377 0.0297 −0.2622

W2
0.2195 0.0414 0.2687 −0.5315]

[−0.1041 0.0394 −0.0205 0.2460
W2−0.2160 −0.0475 −0.2449 0.5218]

[−0.0094 0.2060 −0.1512 −0.0991
W3−0.2261 0.4798 0.1023 −0.0547]

[0.0045 −0.2133 0.1477 0.1002
W3

0.2389 −0.4794 −0.1108 0.0527]
[0.0025 0.0025 −0.2134 0.1518

W4
0.0773 0.2414 −0.4720 −0.0815]

[−0.0019 0.0036 0.2117 −0.1416
W4−0.0747 −0.2416 0.4692 0.0835]

[−0.0795 −0.0877 −0.1181 0.3541
W6

0.1515 −0.1279 0.1087 − 0.0761]
[0.0824 0.0959 0.1175 −0.3742

W6−0.1458 0.1282 −0.1022 0.0508]
[−0.1197 −0.1265 0.3463 0.1777

W5−0.1494 0.1260 −0.1174 0.0538]
[0.1355 0.1127 −0.3420 −0.1769

W5
0.1485 −0.1198 0.1248 − 0.0601]

[−0.1768 0.3269 0.1402 − 0.0967
W7

0.1024 −0.1249 0.0497 0.0252]

loss of generality, the particular case of channel C1. The first
column of Table 6 presents some of the individuals of a typ-
ical run of opt-aiNet when applied to C1. In the vicinity
of each individual, we find an associated Wiener solution,
presented in column 2 of Table 6 (eventual sign discrepan-
cies are inevitable in blind equalization). A close inspection
reveals seven different Wiener optima, including the global
minimum. This property of diversity maintenance confirms
the capability of multimodal exploration, inherent to the im-
mune network approach.

5. DISCUSSION AND FUTURE TRENDS

This work started claiming that there is a strong relation-
ship between the CM global optima and some of the Wiener
solutions so that such solutions can be attained by refin-
ing the CM minima using a simple DD technique. On the
other hand, the CM global optimum can be easily reached by
means of a blind search procedure, such as an EA. Therefore,
the combination of the CM criterion with an efficient global
search procedure gives rise to a framework to design optimal
Wiener filters. This is the core of our proposal.

Our approach uses an immune-based algorithm, named
opt-aiNet, to optimize the parameters of the equalizer, and
benchmarks its performance against those obtained by us-
ing a genetic algorithm with niching. Different channels and

filters were used for evaluation and comparison. The results
were much favorable to the opt-aiNet algorithm, which can
also be understood as an evolutionary search technique in-
spired by the immune system.

These investigations support the establishment of CM-
based evolutionary search as a strong paradigm for optimal
blind equalization.

A natural extension of this work is the testing of the
opt-aiNet algorithm with its automatic stopping criterion so
that the amount of user-defined parameters of the algorithm
[10, 15] could be reduced. Further studies also involve the
use of the opt-aiNet in the context of nonlinear equalization,
prediction, and identification.
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