
Artificial Evolution by Viability Rather than Competition
Andrea Maesani, Pradeep Ruben Fernando, Dario Floreano*

Laboratory of Intelligent Systems (LIS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract

Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for
which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal
solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the
formulation of an effective performance measure describing these requirements, also known as fitness function, represents
a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly
varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective
reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity
within the evolving population and premature convergence of the algorithm, hindering the discovery of many different
solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a
composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the
proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are
defined on the problem objectives and constraints. Experimental results show that the proposed method maintains
higher diversity in the evolving population and generates more unique solutions when compared to classical competition-
based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can
significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science
and engineering, ranging from protein structure prediction to aircraft wing design.

Citation: Maesani A, Fernando PR, Floreano D (2014) Artificial Evolution by Viability Rather than Competition. PLoS ONE 9(1): e86831. doi:10.1371/
journal.pone.0086831

Editor: Josh Bongard, University of Vermont, United States of America

Received June 24, 2013; Accepted October 18, 2013; Published January 29, 2014

Copyright: � 2014 Maesani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been supported by the Swiss National Science Foundation, grant number 200021_127143. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dario.floreano@epfl.ch

Introduction

Evolutionary algorithms are heuristic optimization methods

inspired by natural evolution [1–4]. They operate by selecting,

reproducing, and mutating the genotypes of individuals with

higher performance in a population where each individual is a

candidate solution to the problem. A fitness function is used to

score individuals according to how well they perform on the

problem objectives, and a selection operator allocates higher

number of copies with random mutations to individuals with

higher fitness. This process of fitness-based selection models

natural competition between organisms of a population for

contributing offspring to the next generation. The generational

cycle of fitness assessment, selective reproduction of individuals

with higher fitness, and random mutations is repeated until a

satisfactory solution to the problem is found. The simplicity,

effectiveness, and wide applicability of evolutionary algorithms

have contributed to their adoption in a very large number of

problem domains, from computer science to engineering, all the

way to pharmacology [5,6]. Moreover, evolutionary algorithms

are widely used to investigate biological questions by conducting

in-silico experiments [7–10].

Evolutionary algorithms are typically employed to discover

optimal solutions with respect to one or multiple objectives (single-

or multi-objective optimization), that may be subject to constraints

(constrained optimization). However, for many real-world prob-

lems the objectives or constraints cannot be easily formalized, are

computationally too expensive to evaluate and are therefore not

used in the search, or can only be approximated [11] (e.g., in

evolutionary synthesis of molecular structures [12]). Thus, as the

information to discover the real optimal solutions can be missing

from the computational problem formulation, one may be

interested in finding the largest number of different solutions that

satisfy acceptable problem requirements, heuristically choosing the

preferred solution(s) once the search process is completed.

In the general case where these requirements are expressed on

all the objectives, the problem being solved can be formulated as

constraint satisfaction problem. As formulated in [13], a constraint

satisfaction problem is a pair SS,VT, where S~D1| . . . |Dn is

the search space, Di is the allowed set of values for the decision

variable i, i~1, . . . ,n, and V : S?f0,1g. A solution to a

constraint satisfaction problem is an s[S with V(s)~1. Note that

here we are interested in obtaining the largest number of unique

solutions to the constraint satisfaction problem. Formally, we want

to maximize the cardinality of the set U(M), where U is a function

that removes duplicates from the set of solutions M obtained using

a search method, Vm[M (V(m)~1). Although several determin-

istic methods exist to solve constraint satisfaction problems [14],

they are usually designed with strong assumptions on the search

space or constraints, e.g. only for linear constraints, or for solving

specific problems, for example scheduling. As evolutionary

algorithms are naturally apt to operate on non-linear objectives

and constraints and maintain a population of solutions they are

more suited for the specific problem tackled here, i.e. discovering

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e86831

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148000434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

not a single but multiple solutions to the constraint satisfaction

problem.

Solving constraint satisfaction problems with evolutionary

algorithms requires introducing a fitness function into the problem

definition [13]. However, when using traditional evolutionary

algorithms, the formulation of a suitable fitness function represents

a major difficulty [15–17]. For example, when more than one

objective must be simultaneously maximized or minimized or

solutions must satisfy multiple constraints, the combination and

weighting of multiple objectives and constraints into a single fitness

function is challenging. Several multi-objective evolutionary

algorithms, that do not require the aggregation of objectives into

a single fitness function, have been proposed [18,19], as well as

techniques to handle problem constraints [20,21]. However, little

research has been devoted to methods capable of handling both

objectives and constraints at the same time [22].

A difficulty of evolutionary algorithms that hinders the discovery

of several unique solutions stems from the gradual loss of diversity

caused by the repeated application of competition-based repro-

duction of the fittest individuals, which can lead to premature

convergence of the evolving population to a sub-optimal solution

[23,24]. Furthermore, in multi-modal problems, where there are

multiple global or local optima, possibly distributed over the

solution space, evolutionary algorithms tend to converge to only

one set of solutions (i.e. one global or local optimum) as population

diversity decreases. Although several techniques have been

proposed to delay or reduce premature convergence (see [25–

27] for a review of existing methods), loss of population diversity is

intrinsic to the majority of evolutionary algorithms and is

influenced by the selection method employed. It has been recently

mathematically proven that an optimal selection procedure for

evolutionary algorithms consists of adaptively choosing a threshold

on the fitness value so that all individuals with above-threshold

values are selected for reproduction [28,29]. However, the authors

do not propose a method for automatic choice of suitable fitness

thresholds.

Here we describe an alternative abstraction of artificial

evolution, called Viability Evolution (ViE), which builds on

thresholded fitness [28,29] in the context of viability theory from

dynamical systems theory [30], natural evolution [31–33] and

behavior [34], to address the issue of fitness composition and

premature convergence, potentially obtaining a larger number of

unique solutions at completion of evolutionary process. An

organism is called ‘‘viable’’ if it satisfies all the conditions defined

on a set of critical physiological parameters, such as temperature

range and energy levels, which define the viability boundaries of

the organism [30,31]. Similarly in ViE, individuals are deemed

viable if they satisfy conditions defined by limiting boundaries on

the problem, such as the range of allowed operating voltages of an

electronic circuit or the feasible thickness values of a wing profile.

As in the constraint adaptation approach [35], boundaries are

initially set to enclose all individuals of the initial, randomly-

generated population and are modified at discrete time steps.

Individuals that fall outside the viability boundaries, either by

means of mutations or by means of boundary modifications, are

eliminated from the population. In this context, the viability

boundaries can be seen as the threshold values of the fitness in the

theoretical approach mentioned above [28,29]. Boundaries are

modified so that at least a user-defined fraction of the population is

eliminated, and are maintained unchanged until the population

grows back to at least the size before elimination. Thus, a variable

population size is an inherent property of Viability Evolution.

Since the population size can increase only by producing viable

offspring, it can remain smaller than the initial size for many

iterations after each viability elimination operation (for a more

detailed discussion of viability theory in artificial evolution, see

[36]).

Here we show that Viability Evolution maintains a higher level

of diversity, leading to the discovery of a larger number of

alternative solutions than found by traditional evolutionary

algorithms without the definition of a compositional fitness

function.

Viability Evolution Algorithm

The Viability Evolution algorithm consists of defining viability

boundaries, creating an initial population, and repetitively

applying reproduction, elimination, and boundary updates until

the boundaries meet the desired values (Figure 1). Viability

boundaries are expressed as inequalities on the problem objectives

and define the characteristics of the desired solutions.

To clarify the workings of Viability Evolution, let us consider the

example of finding the electronic design of a low-pass filter that

meets desired values for the gain-bandwidth product (GBW), the

pass band flatness (PBF) and the stop band attenuation (SBA). These

three parameters represent the viability conditions for the survival of

the circuits. For each viability condition c a lower bound Lc and an

upper bound Uc are defined (Fig. 2). A circuit x is deemed

viable only if all its viability boundaries are satisfied, that is

LGBW ƒGBW (x)ƒUGBW , LPBFƒPBF(x)ƒUPBF , LSBAƒ

SBA(x)ƒUSBA. Because the initial population is randomly

generated, it is extremely unlikely that any individual can satisfy

all the viability conditions. Therefore, the lower and upper bounds

of the viability conditions are initially set to encompass all

individuals, and are gradually modified during evolution to

approximate the desired values.

At each subsequent iteration of the algorithm, each individual

can reproduce by adding a mutated copy to the population (the

parent remains in the population). In order to give each unique

individual in the population equal chance of being reproduced, we

have to account for the possibility of clones, resulting for example

from individuals that remain viable for a long time and produce

lots of copies. To achieve this, the algorithm keeps track of the

descendants of the initial population by assigning a different family

identifier to every individual in the initial population (note that

only mutations are used in reproduction). The reproduction

probability of each individual takes into account the size of its

family. This is done by first selecting a family of individuals

inversely proportionally to its size from the current population and

then randomly selecting an individual within that family (Figure

S8). Once an individual has generated an offspring, its family

identifier is assigned to the offspring and the family size is

increased by one unit.

After the reproduction phase, individuals that fall outside the

current viability boundaries are eliminated and the size of the

families of these individuals is reduced accordingly. The two events

that may lead to elimination of an individual are mutations and

modifications of the viability boundaries. All the viability

boundaries are modified simultaneously (Figure 3 and pseudo-

code in Figure S9) so that at least a fraction of individuals (defined

by the user) is discarded from the population. After each boundary

update, boundaries are not modified until the population

generates a number of viable individuals equal to at least the

number of eliminated individuals. As soon as this condition is

satisfied, the viability boundaries are updated again and this

process is repeated until they reach the target values.

Once the boundaries are converged to the desired values, the

algorithm returns the final population of solutions to the user. Note

Viability Evolution

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86831

that all these solutions satisfy the user-defined criteria of success.

Therefore, the user may choose any one of them or use additional

criteria after inspection of the genotypes of the solutions.

Results

We compared Viability Evolution on single-objective, multi-

objective and constrained problems with two traditional, compe-

tition-based, evolutionary algorithms: a genetic algorithm with

steady-state replacement [37], which will be denoted as SSGA in

the rest of the paper, and the Elitist Non-dominated Sorting

Genetic Algorithm (NSGA-II) [38].

Among the numerous evolutionary algorithms described in the

literature, SSGA is the most similar to the ViE algorithm. Both

SSGA and ViE follow the same cycle of parent selection, offspring

generation, and selection of individuals for the next generation.

Both use the same mutation operators to produce exactly one

offspring per generation or iteration. SSGA and ViE differ in the

mechanisms used to select the parent individuals for reproduction

and the surviving individuals for the next generation. While SSGA

uses the fitness-based rank of individuals for both operations, ViE

allows all viable individuals to survive and reproduce. For multi-

objective problems ViE was also compared against NSGA-II.

NSGA-II is a widely used evolutionary algorithms for multi-

objective optimization and uses sophisticated techniques to rank

individuals and explicitly promote the maintenance of high

diversity in the evolving population. All the three algorithms do

not use crossover to simplify the analysis of the results.

ViE and SSGA were compared on ten, single-objective

optimization problems [39–42] (shown in Figure S1, their

mathematical formulations can be found in Table S1). We

decided to assess the performance of the algorithms on uncon-

strained single-objective problems to compare their ability to

discover more diverse solutions in the simplest scenario as possible.

In single-objective problems, the goal is to find the highest number

of solutions with the best objective score or with a score that

satisfies the user requirements. We compared genetic diversity and

number of unique solutions discovered by the two algorithms. The

number of unique solutions was measured as the number of

unique individuals found within target areas defined on the

benchmark functions. These target areas were specified by

thresholding the objective functions (Figure 4A). All solutions with

an objective value higher than the threshold were considered lying

in a target area. The threshold value was defined so that the

number of discoverable unique solutions was equal to the constant

population size in SSGA and NSGA-II in order to ensure that ViE

did not take advantage of its variable population size by simply

increasing the number of viable solutions. To make the

comparison fair, in SSGA we assigned the objective threshold

value to all solutions within the target areas (Figure 4B) so that

each had the same chance of being selected for reproduction, thus

preventing the algorithm from further reducing diversity by

selective reproduction of above-threshold solutions.

In some cases, the resulting target areas were disjoint (multiple

global optima) and far away from each other (see Table S2 for the

characterization of the different single-objective functions and the

threshold values used), which represented some of the most

interesting problems for the comparison of the two algorithms

because their fitness landscapes contain very different target

solutions (i.e., lying in the different target areas). For such

problems, we compared the ability of the algorithms to thoroughly

explore the solution space and find as many disjoint target areas as

Figure 1. The Viability Evolution (ViE) algorithm. The population under evolution is shown in a two-dimensional objective space, defined by
the f1 and f2 objective functions in this example. (A) Individuals of the initial population M(0) (black circles) are randomly generated. The region
enclosed by the target viability boundaries (gray stripes) is extremely unlikely to contain any of the randomly generated individuals in the initial
population. (B) The initial viability boundaries V (0) are set by the algorithm in terms of inequalities on the objectives to encompass all individuals in
the initial population. (C) Viability boundaries are modified to approach the target boundaries VTARGET ; as a result, a fraction of the population
becomes non-viable (gray shaded circles) and is marked for elimination. The way in which the boundaries are modified depends on the specific
viability boundary update procedure implemented by the user. See Figure 2 for further details on the update mechanism used in this paper. (D) All
viable individuals are allowed to reproduce by making one mutated copy at each iteration of the algorithm. Mutated copies that fall within the
viability boundaries are allowed to stay along with the parent. Mutated copies that fall outside the viability boundaries are marked for elimination. (E)
Non viable individuals are eliminated from the population. (F) The process described in (C–E) is repeated for many iterations until the viability
boundaries reach the target values or the maximum number of evaluations t is exhausted. (G) The algorithmic description of Viability Evolution.
Pseudo-code for the relaxBoundaries and updateBoundaries procedures is shown in Figure S8 and S9.
doi:10.1371/journal.pone.0086831.g001

Viability Evolution

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86831

possible, while also considering the number of evaluations taken by

each algorithm to find the target areas. The ten, single-objective

problems included two functions with no local optima and single

target area (Sphere and DoubleSum), three multi-modal functions

with single target area (Rastrigin, Ackley, Langerman), and five

multi-modal functions with disjoint target areas (FletcherPowell,

Griewangk, Shubert, Vincent, Hump).

For multi-objective optimization, ViE, SSGA and NSGA-II

were compared on three mathematical multi-objective problems

(described in Tables S3 and S4), each composed of three

objectives, obtained using a standard problem generator called

DTLZ [43]. Moreover, the algorithms were compared on an

electronic circuit design problem (Figure S5). The fitness capping

method described above was also applied to NSGA-II.

Both SSGA and NSGA-II algorithms were terminated when the

fitness values of all the individuals in the population reached the

best achievable fitness. For ViE, which does not use a fitness

function, this corresponds to terminating the algorithm when the

viability boundaries reach the target boundary values. By limiting

our experiments to two and three dimensional problems over finite

solution spaces (bitstring encoding), we can enumerate the entire

solution space and hence, precisely count the number of solutions

in the target regions, which allows a precise comparison of the

three evolutionary algorithms.

Single-objective benchmarks
ViE is able to maintain higher genetic diversity (based on

Hamming distance between individuals as defined in [44]) than

SSGA on all single-objective benchmark problems (Figure 5).

Genetic diversity is significantly higher (Pv0:001, Wilcoxon rank

sum test) over the entire evolutionary time, except for the initial

iterations of the algorithms where diversity is comparable in both

algorithms due to the random initialization of their populations.

Higher genetic diversity in ViE results in a significantly higher

Figure 2. Example of viability boundaries definition for a filter
design problem. A candidate filter design being optimized with
Viability Evolution must satisfy certain requirements defined by the user
as viability boundaries. Here, the filter gain-bandwidth product (GBW,
computed at the cutoff frequency fCUT{OFF) must satisfy the viability
boundary LGBW ƒGBW (x)vUGBW . The stop-band attenuation (SBA)
of the filter is also constrained by the viability boundary
LSBAƒSBA(x)vUSBA. Finally, a filter must also satisfy a requirement
on the pass-band flatness (PBF), i.e. the deviation of amplitude gain
from the gain at cut-off frequency, such that LPBF ƒPBF(x)vUPBF .
The response for two different filters is depicted in figure. The first filter
(solid line) is viable as it satisfies all viability boundaries, while the
second filter (dashed line response) is non-viable, as it violates the
viability boundaries expressed on pass-band flatness.
doi:10.1371/journal.pone.0086831.g002

Figure 3. Boundary update mechanism in the Viability
Evolution (ViE) algorithm. (A) Let us assume, without loss of
generality, that the problem to be solved is defined by two objectives,
f1 and f2. The target regions of the given problem are defined by the
target viability boundaries - [Li , Ui] for each objective function fi

respectively. Thus, the goal is to find solutions which have values
between Li and Ui for each objective function fi respectively. (B)
Individuals of the initial population are randomly generated. Each
individual is represented using a circle on the axis of each objective
function. The position of a circle on the axis of an objective function fi

indicates the value of the corresponding individual for that particular
objective. In this example, each individual is represented using 2 circles
- one on each axis of the two objective functions. (C) The initial viability
boundaries are set for each objective fi by identifying the extreme
values [‘i , ui] on either side of the corresponding target viability
boundaries [Li , Ui]. The initial viability boundaries thus encompass all
individuals in the initial population. (D) The viability boundaries are
then tightened such that at least a minimum fraction k of individuals
become non-viable. To illustrate this clearly, the intervals - [‘i , Li], and
[ui , Ui] are both rescaled to [0, 1] here. The new values for the viability
boundaries [‘’i , u’i] (shown as dotted lines) for each objective function fi

are computed such that at least a minimum fraction k of individuals in
the population become non-viable (shown as light gray circles). (E) Non
viable individuals are eliminated from the population. The population
continues to evolve with the new viability boundaries until the next
boundary update. Pseudo-code for the boundary update procedure
illustrated in figure is shown in Figure S9.
doi:10.1371/journal.pone.0086831.g003

Viability Evolution

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86831

number of unique target solutions in the population at the final

iteration than in SSGA in all benchmark problems except Ackley

where ViE display similar performance to SSGA (Wilcoxon rank

sum test, Rastrigin and Shubert: Pv0:05; Vincent: Pv0:01;

Ackley: Pw0:05, all remaining benchmark functions: Pv0:001),

as shown in Figure 6A. This holds also for different values of

mutation rates (see Figure S2 for genetic diversity, and Figure S3

for number of unique solutions). However, the better results

achieved in terms of number of solutions discovered come at the

cost of a longer evolutionary process for ViE in terms of number of

evaluations before completion (1:42+0:22 SD times longer than

SSGA; see Figure 7 for non-aggregated results).

The higher diversity maintained throughout evolution enables

ViE to be more effective on multi-modal problems with respect to

SSGA by escaping regions of the fitness landscape with local

optima and eventually discovering regions with global optima. ViE

always outperforms SSGA in terms of successful repetitions of the

algorithm (Figure 8), defined as those repetitions where the

algorithm discovers at least one target solution. SSGA prematurely

converges and is not able to discover any target solution in many

repetitions even though a low selection pressure was employed in

these experiments (tournament selection with tournament size 2).

The ability of ViE and SSGA to discover solutions in

disconnected target areas within a single repetition of the

algorithm was investigated on benchmark problems that feature

a high number of disjoint target areas (w10, Griewangk, Shubert,

Vincent, Hump). Furthermore, both algorithms were tested with

different initial population sizes (M~100,250,500,750,1000
individuals) in order to assess if the algorithms could benefit from

a larger, and potentially more diverse, initial population. ViE

discovered more disconnected target areas than SSGA on all the

benchmark problems and for all initial population sizes (Pv0:001,

Wilcoxon rank sum test; Hump: Pv0:01; Figure 9).

Additionally, the efficiency of the two algorithms were

compared as the average number of evaluations (individuals)

necessary to find a single target area. ViE displayed significantly

higher efficiency for all the tested initial population sizes (Wilcoxon

rank-sum test, Pv0:001; Figure 10).

Multi-objective benchmarks and filter design problem
We compared ViE against the multi-objective optimization

algorithm NSGA-II, which includes specific operators to maintain

diversity in the evolving population. For sake of coherence with the

results reported above, we also compared ViE and NSGA-II with

SSGA endowed with a popular multi-objective technique, called

weighted-sum approach [45], for combining multiple objective

values into a single value. The three algorithms were assessed by

counting the number of unique solutions that met the specified

target performance for three mathematical functions and for an

electronic circuit design. ViE performed better than SSGA on all

the multi-objective problems (Figure 6B; Wilcoxon rank sum test,

Pv0:001 for DTLZ benchmarks, and Pv0:01 for the circuit

evolution experiment). ViE performed better than NSGA-II on all

mathematical problems (Wilcoxon rank sum test, Pv0:001,

except for DTLZ1 where Pw0:05) and performed as well as

NSGA-II on the electronic circuit design (Wilcoxon rank sum test,

Pw0:05).

Discussion

In nature reproductive success depends on several factors that

influence the probability of survival and reproduction of individ-

uals. Two primary factors, as pointed out by Darwin([46], p. 116),

are the competition among individuals for scarce resources

(selection of the fittest) and the ability of individuals to withstand

current environmental conditions (elimination of the non-viable).

Traditional evolutionary algorithms are inspired by competition-

based reproductive success by ranking individuals according to

their fitness and selecting only the best for reproduction. The

concept of elimination is seldom considered in Evolutionary

Computation [47–49], and when it is, individuals are selected for

elimination according to their fitness score, thus falling into the

competitive scenario of reproductive success. Viability Evolution,

instead, models reproductive success as the ability of individuals to

withstand current environmental conditions and eliminates

individuals that are not viable due to the effect of random

mutations or changing environmental conditions (viability bound-

aries). The use of boundaries had been previously advocated to

constrain evolutionary search in specific regions of the search

space [35], but boundary update was based on competition among

individuals rather than elimination. Viability boundaries can be

seen as a set of binary fitness functions with adaptive thresholds

[50], and in this perspective, here we provide a self adaptive

procedure for threshold selection. It had also been suggested [51]

that giving equal chance of reproduction to individuals satisfying a

minimal fitness level could result in higher variability of the

evolved solutions, but no practical algorithm was proposed. A

threshold defining the survival of individuals was used in [52], but

the threshold was always fixed to a constant value. This method

was later extended [53], by progressively modifying the threshold.

However, in both cases, the search was driven mainly by an

objective promoting novelty of the solutions and the threshold was

defined on a single objective. ViE does not use measures of novelty

and drives the search by modifying viability boundaries on all

problem objectives or constraints.

Viability Evolution can be used both for problem solving by

defining target viability boundaries and for open-ended evolution

by identifying viability boundaries that model the interactions

between the evolving individuals and their environment (as in

digital evolutionary ecosystems such as Tierra [54] and Avida

[55,56]). Novel environmental conditions could be easily intro-

duced by adding or deleting viability boundaries at any time

during the process of artificial evolution.

Even though the elimination step of the Viability Evolution

algorithm resembles at first sight existing survivor selection

methods employed in genetic algorithms (Culling Method [48],

Figure 4. Thresholding of the fitness landscapes for single-
objective problems. (A) A threshold on the fitness function of single-
objective functions identifies one or more (possibly disjoint) target
areas, depicted as gray regions. (B) In order to prevent competition-
based algorithms from reducing diversity after reaching the target
regions thus enabling a fair comparison to ViE, the fitness landscape is
reshaped such that the same fitness value is assigned to any solution
lying above threshold so that they all have the same probability of
being selected for reproduction.
doi:10.1371/journal.pone.0086831.g004

Viability Evolution

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86831

Truncation Selection [57], Extinctive Selection [2]) the resulting

evolutionary dynamics of ViE are different (see Figure S4 for a

practical example comparing SSGA with Truncation Selection to

ViE) and are due to the interplay of eliminations, varying size

populations, changing viability boundaries and the family mech-

anism. Using the insights obtained from the operational principles

of Viability Evolution, one might construct a competition-based

genetic algorithm with adaptive parameters (population size,

fitness scaling, adaptive selection, etc.) to realize the properties of

Viability Evolution and obtain similar performance. However, we

believe that ViE’s operational principle of ‘‘elimination of the non-

viable’’ under changing viability conditions supplies the simplest

model for an EA to achieve a performance as good as shown here.

Figure 5. Genetic diversity maintained by SSGA and ViE. Average population genetic diversity (and confidence intervals) maintained during
evolution for the 50 repetitions of each experiment.
doi:10.1371/journal.pone.0086831.g005

Viability Evolution

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86831

To illustrate the advantages of the novel operational principle,

we compared ViE to a canonical competition-based Evolutionary

Algorithm, namely SSGA, without any state-of-the-art explicit

diversity preservation techniques such as niching, maintenance of

sub-populations, etc. One may argue that SSGA has not been

designed for the specific problem domain considered here (i.e.,

maximize the number of unique solutions discovered at comple-

tion of the evolutionary process). Diversity preservation techniques

might help SSGA achieve a higher number of unique final

solutions. Thus, we compared Viability Evolution against SSGA

endowed with a well-known diversity preservation technique,

namely fitness sharing [58]. Viability Evolution can discover more

unique solution than SSGA with fitness sharing in all benchmark

problems (Pv0:001; Shubert: Pv0:05, Wilcoxon rank sum test,

Figure S6) except for Rastrigin, where results are not significantly

different. Also, we tested viability Evolution against another

technique which adds an explicit objective to foster diversity. The

multi-objective method NSGA-II was modified to optimize two

objectives: minimize the distance to the target areas, and maximize

the diversity of the current population. This second objective was

computed for each individual as the average Hamming distance

between the individual and the other individuals in the population.

Viability Evolution can discover a higher number of unique target

solutions than NSGA-II with a diversity objective on all the

benchmark problems (Pv0:001, Wilcoxon rank sum test, Figure

S7). It is possible that the application of fitness sharing in a steady

state algorithm and the addition of an explicit objective for

preserving diversity in NSGA-II may interfere with the search

process. When using diversity preservation methods, one should

consider that instrumenting an evolutionary method with such

techniques usually requires the definition of additional parameters

Figure 6. Number of unique target solutions discovered by
SSGA and ViE. A) single-objective and B) multi-objective problems.
Each boxplot shows results for 50 repetitions of the algorithms on each
function (�Pv0:05,��Pv0:01,���Pv0:001, otherwise Pw0:05, Wil-
coxon rank-sum test; N.S. not significant).
doi:10.1371/journal.pone.0086831.g006

Figure 7. Number of iterations before completion of the
evolutionary process for SSGA and ViE. Each box plot presents
the results for 50 repetitions of the experiments on a different single-
objective benchmark problem, as indicated by the titles above the
boxes (�Pv0:05,��Pv0:01,���Pv0:001, otherwise Pw0:05, Wilcoxon
rank-sum test; N.S. not significant). The maximum value of the ViE
Rastrigin boxplot (not representable otherwise) is 5478.
doi:10.1371/journal.pone.0086831.g007

Figure 8. Number of successful repetitions for SSGA and ViE.
Results for SSGA and ViE on single-objective, multi-modal problems out
of a total of 50 repetitions.
doi:10.1371/journal.pone.0086831.g008

Viability Evolution

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e86831

(for example a niching radius [59], or a niche capacity [60]), which

are difficult to identify because the fitness landscape is unknown,

or depends on measures of diversity in genotypic or phenotypic

space [59–63], or requires keeping an archive of diverse solutions

[61,63]. Viability Evolution does not require the definition of

additional niching parameters, diversity measures or the mainte-

nance of an additional archive of solutions. Nonetheless, these

explicit diversity preservation techniques are also applicable to

ViE, and could possibly increase its performance too.

The family mechanism employed by ViE to prevent the

dominance of clonal individuals may contribute to diversity

preservation. To disambiguate the contribution given by the

family mechanism we performed additional control experiments

where we compared the number of unique target solutions

discovered by SSGA, ViE, SSGA equipped with the family

mechanism (SSGA-F) and Viability Evolution without the family

mechanism (ViE-noF) on single-objective (Figure S10A) and multi-

objective problems (Figure S10B). Both SSGA-F and ViE

equipped with the family mechanism obtain equal or better

performance than their versions without it (ViE-noF and SSGA).

However, ViE can discover more unique target solutions than

SSGA-F in four benchmark problems (Langerman and Fletch-

erPowell: Pv0:05; Hump and DTLZ2: Pv0:01, Wilcoxon rank

sum test, Figure S10), and display performance similar to SSGA-F

in the other benchmark problems. Also, ViE without family

mechanism can discover more unique target solutions than SSGA

on four benchmarks (FletcherPowell and DTLZ2: Pv0:001;

Griewangk: Pv0:01; Rastrigin: Pv0:05, Wilcoxon rank sum test,

Figure S10), and displays performance similar to SSGA in the

other benchmark problems.

Although the dimensions of the problems in this study were kept

small to make clear conclusions about the effectiveness of the EAs,

the SSGA already fails to find target solutions in many runs (see

Figure 8). Even though the scalability of the proposed approach to

problems of higher dimensionality remains to be investigated, it

must be considered that we presented here one of the possible

procedures to update the boundaries (indeed a very simple one, to

ease the comparison with respect to existing algorithms). The

boundary update procedure presented here modifies all the

boundaries together. This however is not a necessity as some

boundaries may be harder to satisfy than others and may benefit

from a differential update speed of each boundary. For example,

each boundary update could be made proportional to the ratio of

viable/unviable individuals for the corresponding objectives. In

the future, more sophisticated procedures might be introduced,

taking into account multiple factors to define which and by how

much a viability boundary should be tightened (or relaxed),

possibly enhancing the performance of ViE to address large-scale

optimization problems.

Viability Evolution principles are applicable to several evolu-

tionary algorithms. For example, the application of viability

principles to CMA-ES [64], a state-of-the-art evolutionary

method, beside providing an alternative method of handling

multiple-objectives [65] or constraints [66], could also be an

effective method for dynamically tuning the parent/offspring ratio

(m=l sampled individuals), and simplifying the offspring population

resampling by giving equal weight to all viable individuals.

Conclusion

Beside the better results in terms of number of unique solutions

discovered by ViE on multi-modal and multi-objective problems

(with the exception of the Ackley function and the electronic

circuit design where ViE and NSGA-II reported the same

performance), in Viability Evolution it is not necessary to

aggregate multiple objectives or constraints into a single fitness

function. Considering the well-known difficulty of designing fitness

functions for multi-objective problems, this is a significant

Figure 9. Number of disconnected target areas discovered by
SSGA and Viability Evolution. Each box plot presents the results for
different initial population sizes over 50 repetitions of the experiments
(�Pv0:05,��Pv0:01,���Pv0:001, otherwise Pw0:05, Wilcoxon rank-
sum test; N.S. not significant). Viability Evolution can discover
significantly more number of target areas for every initial population
size (Pv0:001, except Hump where Pv0:01 for population size 500
and Pv0:05 for population size 1000, Wilcoxon rank sum test) than
SSGA.
doi:10.1371/journal.pone.0086831.g009

Figure 10. Efficiency of SSGA and Viability Evolution. Efficiency
is measured as number of evaluations used per target area discovered
over 50 repetitions of the experiment (�Pv0:05,��Pv0:01,���Pv0:001,
otherwise Pw0:05, Wilcoxon rank-sum test; N.S. not significant). A
repetition of the evolutionary experiment lasts a higher number of
evaluations in Viability Evolution. However, Viability Evolution is able to
discover more target areas per repetition than SSGA. Its efficiency is
significantly better than SSGA (Pv0:001, Wilcoxon rank sum test). To
enhance readability of the box plots, we removed two outlier data
points: Griewangk SSGA (500), Value 8676 and Griewangk SSGA (750),
Value 12984. The computation of efficiency was performed only on
Griewangk and Shubert, since the target areas in these benchmarks are
regularly distributed in the search space and therefore have the same
probability of being discovered.
doi:10.1371/journal.pone.0086831.g010

Viability Evolution

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e86831

advantage even when ViE performs as well as other traditional

evolutionary algorithms that require the formulation of an

aggregated fitness function. When compared to multi-objective

methods that do not aggregate fitness, ViE offers a different

approach, which may even be applicable to those methods.

Incidentally, the definition of viability boundaries in ViE is similar

to the engineering practice of designing artefacts that meet desired

operating ranges, such as temperature, voltage, frequency output,

etc., which can be found in the specification list of any electronic

or mechanical product on the market.

Although the main focus of this work is to show that artificial

evolution can be performed with the sole use of viability based

eliminations, ViE is compatible with the competition-based

approaches and could be extended to encompass forms of

competition-driven reproduction by introducing higher reproduc-

tion rates of viable individuals whose fitness could be computed

while keeping unchanged all other aspects of the algorithm. A

suitable combination of viability-based elimination and competi-

tion-based reproduction would allow a user to preferentially select

for individuals with specific features within a diverse population of

viable individuals and would provide a comprehensive evolution-

ary framework that models both competition and viability in

natural evolution.

Materials and Methods

Each evolutionary algorithm was assessed N times (N~50) on

each benchmark problem. For each repetition i of an algorithm,

the random number generator used by the probabilistic functions

(i.e., generation of the initial population, reproduction, and

mutation) was initialized using seeds ri, ri[R~fr1,r2, . . . ,rNg,
where R was a set of N random numbers generated by software

available at http://www.random.org/integer-sets/. The initial

population size M was set to 100 for the single-objective

benchmarks and to 300 for the electronic circuit design problem

and the 3-objective benchmark problems, unless otherwise stated

in the Experimental Results section. For each repetition, we

allowed each algorithm to evaluate at most T individuals

(T~10000), if the termination criteria were not reached earlier.

The genotype of the individuals was a binary string encoding 2

parameters for single-objective problems and for the electronic

circuit problem, and 3 parameters for the multi-objective

problems. Each parameter was encoded by 12 bits for single-

objective problems, 10 bits for the electronic circuit problem, and

8 bits for multi-objective problems. Mutation consisted of flipping

each bit of the genotype with probability 1
l

where l was the

genotype length. In SSGA, selective reproduction was performed

by means of tournament selection (size k~2, which corresponds to

the lowest possible selection pressure). NSGA-II also employs

tournament selection (size k~2) with the crowded comparison

operator as proposed in [38]. Crossover was disabled in all the

evolutionary algorithms. SSGA, and ViE generated 1 offspring per

iteration while NSGA-II uses its default generational offspring

generation and replacement policies. In the Viability Evolution

algorithm, the fraction of killed individuals at every constraint

update was set to 5% of the population size. The computer code,

and all the software needed to reproduce the results presented in

this paper can be found at http://lis.epfl.ch/VIE.

We used the NSGA-II multi-objective optimizer with con-

straints for the multi-objective experiments (available at http://

www.iitk.ac.in/kangal/codes.shtml). The constraints were set to

the target viability boundaries values. This ensures that the

NSGA-II algorithm will attempt to maintain high diversity as well

to reduce constraint violations, and correctly assign maximum

preference to the solutions within the target area of the search

space.

Supporting Information

Figure S1 Fitness landscapes for single-objective prob-
lems. The single-objective functions include uni-modal, multi-

modal and non-separable functions (Table S1). We defined fitness-

capping thresholds on the landscapes to obtain a number of

disconnected areas containing solutions at the same fitness level

(Table S2). The Griewangk landscape, globally similar to Sphere,

contains a large number of local minima that are indistinguishable

in this figure.

(TIF)

Figure S2 Genetic diversity of unique target solutions
discovered by SSGA and ViE on single-objective prob-
lems, varying the mutation rate up to 10 times its
original value. Mutation, in the original configuration (16),

consisted of flipping each bit of the genotype with probability 1
l

where l is the genome length. Each plot shows results for 25

repetitions of the experiments on each function. In general, genetic

diversity increases with mutation rates. However, high genetic

diversity obtained using high mutation rate does not always result

into a higher number of discovered target solutions (Figure S3).

(EPS)

Figure S3 Number of unique target solutions discov-
ered by SSGA and ViE on single-objective problems,
varying the mutation rate up to 10 times its original
value. Each plot shows results for 25 repetitions of the

experiments on each function. Mutation, in the original config-

uration (16), consisted of flipping each bit of the genotype with

probability 1
l

where l is the genotype length.

(EPS)

Figure S4 Average population genetic diversity (and
confidence intervals) maintained by SSGA (with trunca-
tion selection) and Viability Evolution over 50 repeti-
tions of the experiments. Even though at first sight the update

method used in ViE to tighten the viability boundaries may seem

similar to SSGA with truncation selection (using an unusually high

level of selection of 95% of the population), the evolutionary

dynamics of these two algorithms are remarkably different.

(TIF)

Figure S5 The filter design problem. (A) A low-pass filter

was evolved using the circuit topology derived from [67] (depicted

in figure). This circuit topology allows the filter functionality to be

modified using two bias current inputs (Bias-1 and Bias-2). The

filter functionality is specified using constraints on three frequency

response characteristics, namely gain-bandwidth product, pass

band flatness and stop band attenuation. Hence, a solution to this

problem is a pair of bias current values and the goal of an

evolutionary algorithm is to find values for these two bias currents,

assuming the fixed topology filter circuit, such that the specified

low pass filter functionality is obtained. The three constraints on

the frequency response characteristics of the filter are set such that

there are approximately 300 (296, due to the quantization

resolution introduced by the fixed bitstring encoding on possible

values) bias current pair values that satisfy all three constraints.

The performance of each candidate solution is obtained from

simulations of the filter circuit using the SPICE circuit simulator.

The SPICE models for the operational trans-conductance

amplifiers (OTAs) used to build the filter circuit are available

from http://www.ti.com/product/LM13700. (B) A typical fre-

Viability Evolution

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86831

quency response of a low pass filter. The desired cutoff frequency f

and output amplitude G are shown. The maximum deviation from

G is defined by specifying a lower bound L and upper bound U.

Finally, S represents the desired value for the maximum amplitude

of any stop band ripple.

(EPS)

Figure S6 Number of unique target solutions discov-
ered by SSGA-FS and ViE on single-objective problems.
Each plot shows results for 50 repetitions of the experiments on

each function (�Pv0:05,��Pv0:01,���Pv0:001, otherwise

Pw0:05, Wilcoxon rank-sum test; N.S. not significant). As SSGA

was originally designed to discover optimal solutions and not to

maximize the number of unique solutions discovered at the final

generation, we equipped it with a traditional diversity preservation

mechanism, fitness sharing [58], obtaining a modified version of

SSGA named SSGA-FS. We set the niche-radius parameter s as

suggested in [59]. Niche-radius values for each benchmark

problems are reported in Table S5. The niche-radius is computed

using s~

ffiPp

k~1
(xk,max{xk,min)

p

2
ffiffi
qp
p , where p is the number of

parameters, xk,min and xk,max are the decision space boundaries

of each parameter and q is the number of peaks (in our case

disconnected target areas) in the fitness landscape. ViE can

discover more unique solution than SSGA-FS in all benchmarks

(Pv0:001; Shubert: Pv0:01, Wilcoxon rank sum test) except for

Rastrigin, where results are not significantly different.

(EPS)

Figure S7 Number of unique target solutions discov-
ered by NSGA-II with a diversity objective (NSGA-II-D)
and ViE on single-objective problems. Each plot shows

results for 50 repetitions of the experiments on each function

(�Pv0:05,��Pv0:01,���Pv0:001, otherwise Pw0:05, Wilcoxon

rank-sum test; N.S. not significant). NSGA-II optimizes two

objectives: 1) minimize the distance to the target area and 2)

maximize the genetic diversity of each individual with respect to

the current population, computed as average Hamming distance.

ViE can discover a higher number of unique target solutions than

NSGA-II-D on all the benchmark problems (Pv0:001, Wilcoxon

rank sum test).

(EPS)

Figure S8 Pseudo-code for reproducing an individual in
Viability Evolution.
(EPS)

Figure S9 Pseudo-code for the boundary update rule
implemented of the Viability Evolution algorithm in this
paper.
(EPS)

Figure S10 Number of unique target solutions discov-
ered by SSGA, ViE, SSGA equipped with the family
mechanism (SSGA-F) and Viability Evolution without the
family mechanism (ViE-noF) on single- and multi-
objective problems. Each plot shows results for 50 repetitions

of the experiments on each function (�Pv0:05,��Pv0:01,���

Pv0:001, otherwise Pw0:05, Wilcoxon rank-sum test; N.S. not

significant). A) Single-objective problems results. ViE can discover

more unique target solutions than SSGA-F in three benchmark

problems (Langerman and FletcherPowell: Pv0:05; Hump:

Pv0:01, Wilcoxon rank sum test), displaying similar performance

in the other benchmark problems. ViE-noF can discover more

unique target solutions than SSGA on three benchmarks

(FletcherPowell: Pv0:001; Griewangk: Pv0:01; Rastrigin:

Pv0:05, Wilcoxon rank sum test), displaying similar performance

in the other benchmark problems. B) Multi-objective problems

results. The contribution of the family mechanism always increases

the performance of both SSGA and ViE respect to their versions

without family mechanism (Pv0:001, except when comparing

ViE and ViE-noF in DTLZ1: Pv0:01, Wilcoxon rank sum test).

Moreover, in the DTLZ2 problem, Viability Evolution can obtain

better performance than SSGA both when comparing SSGA

against ViE-noF (Pv0:001, Wilcoxon rank sum test) and SSGA-F

against ViE (Pv0:01, Wilcoxon rank sum test).

(EPS)

Table S1 Standard benchmark functions used to gen-
erate the single-objective fitness landscapes. The aij , bij

and ci coefficients defined in the Fletcher-Powell and Langerman

functions are the same used in [39]. The Hump function was

randomly generated using the multimodal test generator presented

in [68]. In the table we report the D-dimensional problem

formulation (if available) or a 2-dimensional formulation. Further-

more, we denote if the functions employed are multi-modal (M)

and/or separable (S), and their original reference (R).

(PDF)

Table S2 Characteristics of the fitness landscapes
generated for the different single-objective experiments.
In this table, we report the benchmark function used to generate

the landscape, the number of disconnected target areas (T) and the

threshold applied on the original function to discriminate the

target areas (A). Additionally, we classify these problems into three

main categories: uni-modal with single target areas (a), multi-

modal with single (b) or multiple (c) target areas, and indicate in

the table which group each problem belongs to. The sum of the

number of unique solutions over all the target areas of each

problem is 100, except for Ackley (97).

(PDF)

Table S3 The multi-objective DTLZ problem defini-
tions. The DTLZ problems, as originally introduced in [43], have

been specifically designed for multi-objective EA and allow to

control the difficulty of converging to the Pareto-optimal front.

Specifically, these three problems pose different difficulties to the

optimization algorithms. The DTLZ1 test problem requires the

optimizer to find solutions on linearly distributed Pareto fronts,

while the DTLZ2 and DTLZ4 test problems contain solutions

distributed on spherical Pareto fronts. The DTLZ4 test problem

has an additional problem difficulty as each front in the solution

space contains an uneven distribution of solutions. Using ViE on

multi-objective problems is simple because the experimenter does

not have to combine the different objectives into a single fitness

function, but can directly define the target set in terms of

constraints on the different objectives (see Table S4 for the

definition of the target viability sets).

(PDF)

Table S4 The target viability boundaries for the multi-
objective benchmark problems. The target boundaries for

the DTLZ and the filter design problems are described by

constraints on the problem objectives. This table shows the target

viability boundaries A and the number of target solutions M for

each problem.

(PDF)

Table S5 Niche-radius values for SSGA with fitness
sharing in single-objective benchmarks. The values are

derived from the formula suggested in [59].

(PDF)

Viability Evolution

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86831

Text S1 Additional experiments performed on Viability
Evolution.
(PDF)

Acknowledgments

The authors would like to thank Inman Harvey, Laurent Keller, Steffen

Wischmann, Ilya Loshchilov, Pavan Ramdya, Daniel Marbach, Jürg

Germann, Michal Dobrzynski and the two anonymous reviewers for

precious advice and useful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: AM PRF DF. Performed the

experiments: AM PRF. Analyzed the data: AM PRF DF. Wrote the paper:

AM PRF DF.

References

1. Fogel DB (1995) Evolutionary computation: toward a new philosophy of

machine intelligence. Piscataway, NJ: IEEE Press.

2. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. New York: Oxford

University Press.

3. Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE
Trans Neural Netw 5: 3–14.

4. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine

learning. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

5. Foster JA (2001) Evolutionary computation. Nat Rev Genet 2: 428–36.

6. Eiben A, Schoenauer M (2002) Evolutionary computing. Information Processing
Letters 82: 1–6.

7. Lenski RE, Ofria C, Pennock R, Adami C (2003) Evolutionary origin of complex

features. Nature 423: 139–144.

8. Clune J, Misevic D, Ofria C, Lenski RE, Elena SF, et al. (2008) Natural selection

fails to optimize mutation rates for long-term adaptation on rugged fitness
landscapes. PLoS Comput Biol 4: e1000187.

9. Wischmann S, Floreano D, Keller L (2012) Historical contingency affects

signaling strategies and competitive abilities in evolving populations of simulated
robots. Proc Natl Acad Sci USA 109: 864–868.

10. Bongard J (2011) Morphological change in machines accelerates the evolution of

robust behavior. Proc Natl Acad Sci USA 108: 1234–1239.

11. Jin Y, Branke J (2005) Evolutionary Optimization in Uncertain Environments -

A Survey. IEEE Transactions on Evolutionary Computation 9: 303–317.

12. Degiacomi MT, Dal Peraro M (2013) Macromolecular symmetric assembly
prediction using swarm intelligence dynamic modeling. Structure 21: 1097–

1106.

13. Eiben AE, Ruttkay Z (1997) Constraint satisfaction problems. In: Back T, Fogel
DB, Michalewicz Z, editors, Handbook of Evolutionary Computation. Bristol,

UK: IOP Publishing Ltd.

14. Kumar V (1992) Algorithms for constraint-satisfaction problems: A survey. AI
magazine 13: 32.

15. Kallel L, Naudts B, Reeves CR (2001) Properties of fitness functions and search

landscapes. In: Theoretical aspects of evolutionary computing, London, UK:

Springer-Verlag. pp. 175–206.

16. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering and System Safety 91: 992–1007.

17. Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories,

methods, and technologies. Cambridge, MA: MIT Press.

18. Coello Coello CA (2006) Evolutionary multi-objective optimization: a historical
view of the field. Computational Intelligence Magazine, IEEE 1: 28–36.

19. Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for

solving multiobjective problems. Springer.

20. Coello C, Carlos A (2002) Theoretical and numerical constraint-handling

techniques used with evolutionary algorithms: a survey of the state of the art.
Computer methods in applied mechanics and engineering 191: 1245–1287.

21. Mezura-Montes E, Coello Coello CA (2011) Constraint-handling in nature-

inspired numerical optimization: past, present and future. Swarm and
Evolutionary Computation 1: 173–194.

22. Woldesenbet Y, Yen G, Tessema B (2009) Constraint handling in multiobjective

evolutionary optimization. Evolutionary Computation, IEEE Transactions on
13: 514–525.

23. Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Berlin:

Springer.

24. Mattiussi C, Waibel M, Floreano D (2004) Measures of diversity for populations

and distances between individuals with highly reorganizable genomes. Evol
Comput 12: 495–515.

25. Park T, Ryu KR (2010) A dual-population genetic algorithm for adaptive

diversity control. IEEE Transactions on Evolutionary Computation 14: 865–
884.

26. Adra S, Fleming PJ (2011) Diversity management in evolutionary many-

objective optimization. IEEE Transactions on Evolutionary Computation 15:

183–195.

27. Ginley BM, Maher J, Riordan CO, Morgan F (2011) Maintaining Healthy
Population Diversity using Adaptive Crossover, Mutation and Selection. IEEE

Transactions on Evolutionary Computation 15: 692–714.

28. Lässig J, Hoffmann KH (2009) Threshold-selecting strategy for best possible
ground state detection with genetic algorithms. Phys Rev E Stat Nonlin Soft

Matter Phys 79: 046702.

29. Lässig J, Hoffmann KH, Enachescu M (2008) Threshold selecting: best possible
probability distribution for crossover selection in genetic algorithms. In:

Proceedings of the 2008 GECCO conference companion on Genetic and

evolutionary computation. New York, NY, USA: ACM, GECCO ’08, pp. 2181–

2186. doi:10.1145/1388969.1389044

30. Aubin J (1991) Viability theory. Birkhauser Boston Inc.

31. Cannon W (1932) The wisdom of the body. WW Norton & Co.

32. Ashby WR (1956) An introduction to cybernetics. New York,J. Wiley,, 316 pp.

33. Ashby W (1960) Design for a brain. Wiley.

34. Beer RD (1997) The dynamics of adaptive behavior: A research program.

Robotics and Autonomous Systems 20: 257–289.

35. Storn R (1999) System design by constraint adaptation and differential
evolution. IEEE Transactions on Evolutionary Computation 3: 22–34.

36. Mattiussi C, Floreano D (2003) Viability evolution: elimination and extinction in

evolutionary computation. (Technical Report, EPFL) EPFL-REPORT-177577,
http://infoscience.epfl.ch/record/177577.

37. Whitley D (1989) The genitor algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best. In: Schaffer JD, editor, Proceedings of the

third international conference on genetic algorithms, George Mason University.
pp. 116–121.

38. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation 6: 182–197.

39. Eiben A, Bäck T (1997) Empirical investigation of multiparent recombination

operators in evolution strategies. Evol Comput 5: 347–365.

40. Li JP, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic
algorithm for multimodal function optimization. Evol Comput 10: 207–34.

41. Singh G, Deb K (2006) Comparison of multi-modal optimization algorithms

based on evolutionary algorithms. In: Keijzer M, Cattolico M, Arnold D,
Babovic V, Blum C, et al., editors, GECCO 2006: Proceedings of the 8th annual

conference on Genetic and evolutionary computation, ACM Press. pp. 1305–
1312.

42. Shir OM, Thomas B (2006) Niche radius adaptation in the cma-es niching

algorithm. In: Schaefer R, Cotta C, Kolodziej J, Rudolph G, editors, Parallel

Problem Solving from Nature - PPSN XI, Springer, volume 4193. pp. 141–152.

43. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective
optimization test problems. In: Proceedings of the 2002 Congress on

Evolutionary Computation, IEEE Press. pp. 825–830.

44. Wineberg M, Oppacher F (2003) The underlying similarity of diversity measures
used in evolutionary computation. In: Proceedings of the 2003 international

conference on Genetic and evolutionary computation. Springer-Verlag, pp.
1493–1504.

45. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John

Wiley and Sons.

46. Darwin C (1859) On the origin of species by means of natural selection. Murray,
London.

47. Atmar W (1994) Notes on the simulation of evolution. IEEE Trans Neural Netw

5: 130–147.

48. Baum EB, Boneh D, Garrett C (2001) Where genetic algorithms excel. Evol
Comput 9: 93–124.

49. Marı́n J, Solé R (1999) Macroevolutionary algorithms: A new optimization

method on fitness landscapes. IEEE Transactions on Evolutionary Computation

3: 272–286.

50. Lässig J, Hoffmann K (2009) Threshold-selecting strategy for best possible

ground state detection with genetic algorithms. Physical Review E 79: 046702.

51. Juric M (1994) An anti-adaptationist approach to genetic algorithms. In: IEEE

World Congress on Computational Intelligence. IEEE, pp. 619–623.

52. Lehman J, Stanley KO (2010) Revising the evolutionary computation

abstraction: Minimal criteria novelty search. In: Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2010). ACM.

53. Gomes J, Urbano P, Christensen AL (2012) Progressive minimal criteria novelty
search. In: Advances in Artificial Intelligence-IBERAMIA 2012, Springer. pp.

281–290.

54. Ray T (1991) Evolution and optimization of digital organisms. In: R . BK,
Derohanes E, H . Brown I, editors, Scientific Excellence in Supercomputing:

The IBM 1990 Contest Prize Papers, The Baldwin Press. pp. 489–531.

55. Adami C (2006) Digital genetics: unravelling the genetic basis of evolution. Nat
Rev Genet 7: 109–118.

56. Ofria C, Wilke CO (2004) Avida: a software platform for research in

computational evolutionary biology. Artif Life 10: 191–229.

57. Mühlenbein H, Schlierkamp-Voosen D (1993) The science of breeding and its
application to the breeder genetic algorithm. Evol Comput 1: 335–360.

Viability Evolution

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e86831

58. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for

multimodal function optimization. In: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic algorithms and their application.

59. Deb K, Goldberg DE (1989) An investigation of niche and species formation in

genetic function optimization. In: Proceedings of the 3rd International
Conference on Genetic Algorithms.

60. Petrowski A (1996) A clearing procedure as a niching method for genetic
algorithms. In: Proceedings of the 1996 IEEE International Conference on

Evolutionary Computation.

61. Lehman J, Stanley KO (2008) Exploiting open-endedness to solve problems
through the search for novelty. In: ALIFE. pp. 329–336.

62. Toffolo A, Benini E (2003) Genetic diversity as an objective in multi-objective
evolutionary algorithms. Evol Comput 11: 151–167.

63. Lehman J, Stanley KO (2011) Evolving a diversity of virtual creatures through
novelty search and local competition. In: Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2011). ACM.

64. Hansen N, Muller S, Koumoutsakos P (2003) Reducing the time complexity of

the derandomized evolution strategy with covariance matrix adaptation (CMA-

ES). Evolutionary Computation 11: 1–18.

65. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-

objective optimization. Evol Comput 15: 1–28.

66. Arnold DV, Hansen N (2012) A (1+ 1)-cma-es for constrained optimisation. In:

Proceedings of the fourteenth international conference on Genetic and

evolutionary computation conference. ACM, pp. 297–304.

67. Geiger R, Sanchez-Sinencio E (1985) Active Filter Design using Operational

Transconductance Amplifiers: A Tutorial, IEEE Circuits and Devices Magazine,

volume 1. pp. 20–32.

68. Rönkkönen J, Li X, Kyrki V, Lampinen J (2008) A Generator for Multimodal

Test Functions with Multiple Global Optima. In: Simulated Evolution and

Learning. Springer-Verlag, volume 3, pp. 239–248.

Viability Evolution

PLOS ONE | www.plosone.org 12 January 2014 | Volume 9 | Issue 1 | e86831

