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Abstract| In this paper we describe the evolution of a
discrete-time recurrent neural network to control a real mo-
bile robot. In all our experiments the evolutionary proce-
dure is carried out entirely on the physical robot without
human intervention. We show that the autonomous devel-
opment of a set of behaviors for locating a battery charger
and periodically returning to it can be achieved by lifting
constraints in the design of the robot/environment interac-
tions that were employed in a preliminary experiment. The
emergent homing behavior is based on the autonomous de-
velopment of an internal neural topographic map (which is
not pre-designed) that allows the robot to choose the ap-
propriate trajectory as function of location and remaining
energy.

Keywords| Autonomous Robots, Genetic Algorithms,
Neural Networks.

I. Introduction

A
UTONOMOUS biological agents are characterized by
robust and reliable self-adaptation to the character-

istics of the environment without external supervision or
control [1]. This adaptation process takes place while the
agent operates in its own environment [2]. In several real
world situations it would be desirable to employ robots
that have some of the features of autonomous systems, i.e.
that are capable of developing new behaviors or adapting
existing strategies according to the {often unpredictable{
characteristics of real environments.
As a reaction to the partial failure of the classical AI

approach to develop robust control systems for robots that
need to operate autonomously in real world situations [3],
a novel approach, termed behavior-based robotics [4], [5],
[6], has recently emerged. Whereas classic AI is more con-
cerned with a high level de�nition of the environment and
of the knowledge required by the system, behavior-based
robotics stresses the importance of continuous interaction
between the robot and its own environment for the dy-
namic development of the control system and for the as-
sessment of its performance [5]. It also puts emphasis on
the autonomy of the system which should be completely
self-contained and which should �nd the most appropri-
ate solutions to satisfy simultaneously several {sometimes
conicting{ goals.
Within this latter approach, a number of researchers

have successfully employed an evolutionary procedure [7],
[8] to develop the control system of simulated robots [9],
[10], [11], [12], [6], [13]. The rich variety of structures
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that have been put under evolution (feed-forward neural
networks [9], dynamic recurrent neurons [11], [14], clas-
si�er systems [6], and Lisp code [10], [13]) and the large
number of evolved behaviors (locating food sources, wall-
following, obstacle avoidance, chemotaxis and tropotaxis,
corridor following, light orientation, box pushing, gait con-
trol, etc.) have empirically demonstrated the power and
generality of the evolutionary methodology. However, we
think that computer simulations of robots can hardly cap-
ture the complexity of the interaction between a real robot
and a physical environment where mechanical and physi-
cal laws (such as wearing of the components, changing light
conditions, friction, etc.), non-white noise at all levels, and
various types of malfunctioning play a major role (see also
[2], [15]). Thus, although one may obtain comparable re-
sults in simpli�ed environments and well de�ned tasks [16],
it has not yet been shown that the same holds for more
complex situations.
In this paper we describe the evolution of a discrete-time

recurrent neural network to control a real mobile robot. In
all our experiments the evolutionary procedure is carried
out entirely on the physical robot without human inter-
vention. Traditional experiments employing genetic algo-
rithms and neural networks have been concerned with �nd-
ing the network parameters yielding optimal behaviors for
carefully pre-de�ned tasks. The main goal of our research
is to show that more complex behaviors can emerge by re-
ducing the constraints imposed by the �tness function and
by increasing the a�ordances of the environment (charac-
teristics of the world that can be exploited by the agent for
its own survival) [17]. Here, the choice of more ecological

settings favours the autonomous development of a homing
behavior for battery recharge that is not directly speci�ed
in the �tness function.
We will describe two experiments. In the �rst exper-

iment (serving as a test of the methodology and as a
benchmark) we explicitly evolve the ability to navigate
in a corridor with several sharp convex and concave cor-
ners. Although the �tness function is precisely engineered
to perform straight motion and avoid obstacles, the evolved
robots display a number of interesting solutions that have
not been pre-designed. In the second experiment we pro-
vide the robot with a simulated battery (the battery is sim-
ulated for the purpose of saving time, as it will be shown
later), we introduce in the environment a battery charger
and a light source, and we greatly simplify the �tness func-
tion employed in the previous experiment. Although the
�tness function does not specify the location of the battery
station or the fact that the robot should reach it, the robot
learns to �nd and to periodically return to it while keeps
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Fig. 1. Khepera, the miniature mobile robot. The ruler is in cen-
timeters.

moving and avoiding the walls. The resulting behaviors
and the evolved neural mechanisms are studied in detail
by analyzing the neural activity while the robot is tested
in a number of situations.

II. General Method

A. The robot

The Khepera robot employed in our experiments is cir-
cular, compact, and robust (Figure 1). Khepera is a minia-
ture robot: it has a diameter of 55 mm, it is 30 mm high,
and its weight is 70 g. The robot is supported by two wheels
and two small Teon balls placed under its platform. The
wheels are controlled by two DC motors with an incremen-
tal encoder (12 pulses per mm of robot advancement) and
can rotate in both directions. The geometrical shape and
the motor layout of Khepera provide for easier negotiation
of corners and obstacles when its control system is still im-
mature. Its small size and good mechanical design provide
intrinsic robustness. In its basic version it is provided with
eight infrared proximity sensors placed around its body (six
on one side and two on the opposite one) which are based
on emission and reception of infrared light. Each recep-
tor can measure both the ambient infrared light (which in
normal conditions is a rough measure of the local ambi-
ent light intensity) and the reected infrared light emitted
by the robot itself (for objects closer than 4-5 cm in our
experiments). These measures do not have linear charac-
teristics, are not �ltered by correction mechanisms, and
depend on a number of external factors, such as the sur-
face properties of objects and the illumination conditions.
Several new single sensors and complete modules (such as
a stereo-vision module and a gripper module) can be easily
added, thanks to the hardware and software modularity of
the system [18].

B. Experimental setup

The analysis of the emergent behavior plays an impor-
tant role in autonomous robotics. It is thus necessary to
develop new tools and methodologies to study the robot be-
havior [19], [20]. The setup employed here reects our con-
cern to study and understand the solutions provided by the
evolutionary procedure. In our experiments the robot was
attached to a Sun SPARCstation via a serial line by means
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Fig. 2. Working setup.

of an aerial cable and specially designed rotating contacts
(Figure 2). All low-level processes {such as sensor reading,
motor control, and other monitoring processes{ were per-
formed by the on-board micro-controller, while other pro-
cesses (neural network activation and genetic operators)
were managed by the Sun CPU. This procedure should not
be considered as a limitation of the autonomy of the sys-
tem. Here the cable is a useful device that allows us to
keep full track of the robot behavior and development by
exploiting the data-storage capabilities of the workstation
and all the special software for on-line behavior monitoring
and analysis1. The cable was also used to supply electri-
cal power, a useful option for experiments in evolutionary
robotics where the robot may spend a long time display-
ing non-e�cient behaviors. This con�guration allowed a
complete and precise analysis of the robot trajectories and
of the functioning of its neural control system. An exter-
nal positioning laser device was employed for post-training
analysis of the evolved control systems: the robot was pro-
vided with an additional \helmet" for capturing the light
signal emitted by the laser device and computing its own
absolute position (Figure 3). This computation was carried
out by a separate processor placed on the helmet. This in-
formation was then passed to the workstation where special
software was used for automatic on-line analysis and dis-
play of the trajectories along with the sensors and motors
states, and the neural network internal variables. The hel-
met, which could be easily added and removed, did not
a�ect the robot motion and sensor activation. Such tools
allowed us to perform neuroethological observations of the
robot during normal operating conditions by relating the
behavior displayed with the internal activity of the neural
network.

C. The evolutionary procedure and the neuron model

The evolutionary procedure employed in the experiments
consisted in applying a simple genetic algorithm [8] to the
synaptic weight values (including the neuron thresholds)
of the neural network that controlled the robot. Given

1The whole algorithm, including the genetic algorithm and the neu-
ral network representations, could be easily downloaded into the on-
board controller, but this is not necessary for situations other than
public demonstration.
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Fig. 3. A close view of the robot with the \helmet" for capturing
laser signals and the laser device on the background.

the small size of the networks used and the �xed architec-
ture, the synaptic weight values were individually coded
as oating point numbers on the chromosome. Each chro-
mosome in the population had the same constant length
corresponding to the number of synaptic connections and
neuron thresholds in the network. An initial population of
individuals was created by assigning to each gene in the
chromosomes a new value drawn from a uniform random
distribution of continuous numbers within a small positive
and negative range (see Appendix for all the numerical de-
tails of the experiments).

Each individual, in turn, was decoded into the corre-
sponding neural network, the input units were attached to
the sensors of the robot and the output unit activations
were directly used to set the velocity of the wheels. The
robot was left free to move as a result of the activity gen-
erated by the neural network while its performance was
recorded and accumulated according to a pre-designed �t-
ness function. Each robot could move for a limited number
of actions, each lasting a few hundred milliseconds. There
was no synaptic change during the life of each individual.
Between each individual and the next, a random velocity
was applied to each wheel of the robot for 5 seconds in
order to avoid artifactual inuences between successive in-
dividuals in the same population and attempt to provide
{on average{ similar starting conditions for all individuals.

When all the individuals in the population had been
tested, three genetic operators {selective reproduction,
crossover, and mutation{ were applied to create a com-
pletely new population of the same size. Selective repro-
duction consisted of a linear scaling of the �tness values [21]
followed by a probabilistic allocation of a number of o�-
spring proportional to the �tness value of each individual.
All o�spring, simple copies of their parents, were then ran-
domly paired and a random single-point crossover was per-
formed with a given probability. Each value of the newly
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Fig. 4. Environment of the experiment on navigation and obstacle
avoidance.

obtained strings was then mutated with a given probabil-
ity by adding a small random value within a negative and
positive mutation range (\biased mutation" [22]).
The neuron model is simply described by a linear sum

of the incoming weighted inputs (the threshold is taken as
the contribution of an additional weighted input coming
from a neuron which is always active) �ltered through a
sigmoid squashing function. The synaptic connections can
take positive or negative unbounded values. In both ex-
periments the neuron activation is updated approximately
every 350 ms. The input units receive the activation values
of the sensors and compress them in the continuous range
0-1. The number of input units varies between the two ex-
periments, according to the number of sensors employed.
Two output units are employed in both experiments. The
activation of each output unit is used to set the velocity of
the corresponding wheel within a continuous range where
0.0 is maximum speed in one direction, 0.5 corresponds to
absence of motion, and 1.0 is maximum speed in the other
direction.

III. Navigation and obstacle avoidance

This �rst experiment was aimed at explicitly evolving
the ability to perform straight navigation while avoiding
the obstacles encountered in the environment. The �t-
ness function employed was very precisely engineered to
achieve this type of behavior. Nevertheless, the evolved
control systems displayed a number of interesting solutions
that were indirectly instrumental to providing better per-
formance (see [23] for a detailed discussion of the results).

A. The experiment

The robot was put in an environment consisting of a
sort of circular corridor whose external size was approx.
80x50 cm large (Figure 4). The walls were made of light-
blue polystyrene and the oor was made of a gray thick
paper. The robot could sense the walls with the IR prox-
imity sensors. Since the corridors were rather narrow (8-12
cm), some sensors were slightly active most of the time.
The environment was within a portable box positioned in
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Fig. 5. Population average �tness and best individual �tness at each
generation. Values are averaged over three runs (bars represent
standard errors).

a room always illuminated from above by a 60-watt light
bulb. The �tness criterion � was described as a function
of three variables, directly measured on the robot at each
time step, as follows,

� = V

�
1�

p
�v

�
(1� i) (1)

0 � V � 1

0 � �v � 1

0 � i � 1

where V is a measure of the average rotation speed of
the two wheels, �v is the absolute value of the algebraic
di�erence between the signed speed values of the wheels
(positive is one direction, negative the other) and i is the
activation value of the proximity sensor with the highest
activity. The �tness values are accumulated during the life
of the agent and then divided by the number of steps. The
function � has three components: the �rst one is maxi-
mized by speed, the second by straight direction, and the
third by obstacle avoidance. Since the robot has a circular
shape and the wheels can rotate in both directions, this
function has a symmetric surface with two equal maxima,
each corresponding to one direction of motion.
The neural network architecture was �xed and consisted

of a single layer of synaptic weights from eight input units
(each connected to one of the IR proximity sensors placed
around the body of the robot) to two output units (directly
connected to the motors) with discrete-time recurrent con-
nections only within the output layer. Numerical details of
the genetic runs are given in the Appendix.

B. Results

Khepera learned to navigate and avoid obstacles in less
than 100 generations (Figure 5), each generation taking
approximately 40 minutes. However, around the 50th gen-
eration the best individuals already exhibited a near to op-
timal behavior. Their navigation was extremely smooth,
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Fig. 6. The trajectory performed by one of the evolved robots. Seg-
ments represent successive displacements of the axis connecting
the two wheels. The direction of motion is anti-clockwise.

they never bumped into walls and corners, and succeeded
in maintaining a straight trajectory when possible. They
could perform complete laps of the corridor without turning
on themselves (Figure 6). These results are highly reliable
and have been replicated in many runs of the experiment.
Early during evolution the individuals evolved a frontal di-
rection of motion, corresponding to the side where more
sensors are available. Those individuals that moved in the
other direction were very likely to get stuck in a convex
corner without being able to detect it (because of the poor
information provided by the two sensors) and, hence, soon
disappeared from the population (see [14] for a similar ex-
ample of evolutionary adaptation of the control system to
the visual con�guration of a simulated agent). When com-
pared to the performance of a simple Braitenberg vehicle
[24] (type 3c modi�ed and implemented on Khepera to per-
form obstacle avoidance), our evolved robot displayed a
better global performance, especially when facing concave
corners. In fact, unlike the feedforward and internal sym-
metric structure of the Braitenberg vehicle which cannot
drive the robot away from symmetric frontal obstacles, the
evolved settings of the recurrent connections are such that
our robot never became trapped [23]. The best robots also
displayed a self-regulation of the cruising speed (approx-
imately three quarters of the maximum available speed)
that depended upon the characteristics of the environment,
the response properties of the sensors, and the refreshing
rate of the neurons.

IV. Battery recharge

The goal of this new experiment was to test the hypoth-
esis that, when employing an evolutionary procedure, more
complex behaviors do not necessarily have to be speci�ed
in the objective �tness function, but rather emerge from a
mere change of the physical characteristics of the robot and
of the environment described in the previous experiment.
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Fig. 7. The environment of the experiment on battery recharge. The
light tower is positioned in the far corner over the recharging area
which is painted black. There are no other light sources in the
room.

More precisely, we were interested in observing whether
the robot discovered the presence of a place where it could
recharge its (simulated) batteries and modify its global be-
havior by using an even simpler version of the �tness func-
tion employed in the previous experiment.

A. The experiment

The environment employed for the evolutionary train-
ing consisted of a 40x45 cm arena delimited by walls of
light-blue polystyrene and the oor was made of thick gray
paper (Figure 7) as in the previous experiment. A 25 cm
high tower equipped with 15 small DC lamps oriented to-
ward the arena was placed in one corner. The room did not
have other light sources. Under the light tower, a circular
portion of the oor at the corner was painted black. The
painted sector, that represented the recharging area, had a
radius of approximately 8 cm and was intended to simulate
the platformof a prototype of battery charger currently un-
der construction. When the robot happened to be over the
black area, its simulated battery became instantaneously
recharged2.
Khepera was equipped with its basic set of eight infrared

sensors (proximity sensors) whose activation is inversely
proportional to the distance from an object. Two sensors,
each on one side of the body, were also enabled for mea-
suring ambient light. Additionally, another ambient light
sensor was placed under the robot platform, pointing down-
ward, and its signal was thresholded so that it was always
active, except when over the black painted area in the cor-

2The real battery charger grabs Khepera when it perceives it by
means of a simple sensor placed on the black platform; the neural
network is automatically disconnected, and the robot built-in battery
is charged; then, the neural network is attached again to the sensors
and motors, and the robot is left free to move.
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Fig. 8. Sensory-motor layout.
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Fig. 9. The neural network. The input layer consists of twelve recep-
tors, each clamped to one sensor (8 for infrared emitted light, 2
for ambient light, 1 for oor brightness, and 1 for battery charge)
and fully connected to �ve hidden units. A set of recurrent con-
nections [25] are added to the hidden units. The hidden units are
fully connected to two motor neurons, each controlling the speed
of rotation of the corresponding wheel.

ner (Figure 8). The robot was provided with a simulated
battery characterized by a fast linear discharge rate (max
duration: approx. 20 seconds), and with a simulated sen-
sor giving information about the battery status. The rea-
son why we simulated the battery and the battery charger,
rather than using the hardware available, is time. Con-
sidering that the built-in battery lasts about 40 minutes
and it requires further 30 minutes for a full recharge, a
complete evolutionary run with the same parameters used
here would have taken something like 6 years, whereas our
experiment lasted only 10 days.

The neural network controlling the robot was a multi-
layer perceptron of continuous sigmoid units (Figure 9).
The hidden layer consisted of 5 units with recurrent con-
nections [25]; we did not attempt to optimize the num-
ber of units required and the connectivity pattern. Each
robot started its life with a fully charged battery which
was discharged by a �xed amount at each time step: a
fully charged battery allowed a robot to move for 50 time
steps. If the robot happened to pass over the black area
the battery was instantaneously recharged and, thus, its
life prolonged. An upper limit of 150 steps was allowed



for each individual, in order to eventually terminate the
life of robots that remained on the recharging area or that
regularly passed over it.
Each individual was evaluated during its life according

to the following �tness function �,

� = V (1� i); 0 � V � 1; 0 � i � 1 (2)

where V is a measure of the average rotation speed of the
two wheels and i is the activation value of the proximity
sensor with the highest activity. The function � has two
components: the �rst one is maximized by speed and the
second by obstacle avoidance. It must be noticed that �
is a simpler version of the �tness employed in the previous
experiment because the component responsible for straight
motion has been removed: thus a robot could achieve a
reasonable performance even by simply spinning in a place
far from the walls. The �tness value was computed and ac-
cumulated at each step, except when the robot was on the
black area (although later observations showed that the �t-
ness function itself yielded values extremely close to 0 when
the robot was on the black area3). The accumulated �tness
value of each individual (which depended both on the per-
formance of the robot and on the length of its life) was then
divided by the maximumnumber of steps (150) and stored
away for the genetic operators. It should be noted that lo-
cating and passing over the recharging area is not treated
as one of the main goals that the robot should achieve, but
only as a possible behavioral strategy that could emerge to
exploit the characteristics of the robot and of the environ-
ment. A di�erent strategy could be {as mentioned above{
moving in circles at maximum speed in the centre of the
arena.

B. Results

We left Khepera in a dark room lit only by the small
light-tower, and monitored its evolution on our worksta-
tion for the next 10 days (each generation, initially lasting
approx. 45 minutes, took increasingly longer time as the
individuals started to locate the recharging area). From
time to time we went into the room to replace some of
the small light bulbs (when we realized that they were
blown), but we never stopped evolution. Both the popu-
lation average-�tness and the �tness of the best individual
steadily increased along the corrsponding 240 generations
(Figure 10).
The increasing number of actions performed by the best

individuals at each generation (Figure 11) suggests that
the robot gradually learned to pass over the recharging
zone. The combined data of the best �tness values and
of the corresponding life durations showed that, mainly in
the last 90 generations, the individuals increased their own
life duration and spent a shorter period of time over the
recharging area (recall that no �tness value is given while
the robot is over it). However, since from these data we
could not draw more precise conclusions, we analyzed in

3Indeed most of the time 0.0: due to the small size of the area and
to the vicinity of the walls, both components are very close to zero.
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Fig. 10. Average population �tness (continuous line) and �tness of
the best individual (dotted line) at each generation. Theoretical
values of 1 could not be practically reached; empirical calcula-
tions based upon the maximum feasible speed and the charac-
teristics of the environment give a maximum achievable �tness
of 0.7.
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Fig. 11. Number of actions during life for the best individual at each
generation. 50 actions (approximately 20 seconds) represent the
minimum life length because each individual starts with a full
battery. If an individual performs more than 150 actions, its life
is automatically truncated and the next agent is evaluated.

detail the behavior and the neural-network functioning of
the best individual of the last generation.

C. Neuro-ethological analysis

We resorted to a method of analysis employed by ethol-
ogists and neurophysiologists by testing the robot behav-
ior in a number of situations while recording all its inter-
nal (battery charge and neuron activations) and external
(positions, sensor activations, motor activations) variables.
For this purpose, Khepera was �tted with the \helmet" for
absolute position measurement (Figure 3). We synchro-
nized the measuring device on the helmet with the neural
network activation dynamics (one measure every 380 ms),
loaded the best neural network of the last generation, and
performed a number of tests.
In the �rst test the robot was placed in the recharging
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Fig. 12. Battery level (continuous line) and motor activities (dotted
lines) during the life of the best individual of the last generation.
The robot starts on the recharging area facing the light. Motor
activity 0.5 means stasis, activity 0 corresponds to backward
max. speed, activity 1 to forward max. speed. Spikes in only
one motor activity indicate fast turning in place. Most of the
time the robot moves backward at nearly max. speed.
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Fig. 13. Map of success/failures to reach the recharging area for
each starting location and direction. Each sector in the circles
indicates a di�erent initial orientation; the circles correspond to
the robot circumference. Black sectors correspond to starting
orientations/locations from where the robot missed the recharg-
ing area after a full path (most of the misses were within a few
millimeters, the largest was 3 cm).

area and left free to move while we recorded its battery level
and motor activities (Figure 12). The robot rapidly moves
out of the recharging area where it returns only when its
battery level is about 0.1 (that means about less than two
seconds before a complete discharge, or approx. 5 steps).
The robot is always extremely precise in timing its return
to the recharging area, as it can be seen by the regularity
of the peaks in the line corresponding to the battery level.
Also, the period of time spent over the recharging area is
reduced to a minimumnecessary to turn on itself and move
out, as documented by the sharp increment of activity dif-
ference between the two motors in correspondence of the
full charge level. The robot displays a preferential direc-
tion of motion (see Figure 12), although the sharpest turns
in correspondence of the walls are performed by full accel-
eration of one wheel and full inversion of the other (thus
turning in place). Most of the time the robot goes at nearly
full speed along a slightly bended trajectory, and it always
turns to the right when a wall is encountered.

Once the robot has found the recharging zone, without
regard to the starting position in the arena, it always man-
ages to return to it a very large number of times, without
necessarily performing always the same trajectories. How-
ever, the robot did not �nd the recharging zone in the �rst
place from a few starting positions and orientations in the
arena (Figure 13). Nevertheless, it should be noted that
the robot could indeed reach the recharging area from these
locations if it was already moving: in fact, due to the re-
current connections on the hidden nodes, the same sensory
informationmay yield di�erent actions depending upon the
previous history of the agent.

In another series of tests we positioned the robot at var-
ious locations and left it free to move while we recorded its
position and the corresponding activations of the hidden
nodes (Figure 14) every 380 ms. Hidden nodes were la-
belled as v h0, v h1, v h2, v h3, and v h4. These measures
revealed a non-stereotypical behavior and very complex in-
ternal processing. Most of the time the robot performed
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Fig. 14. Visualization of the hidden node activations while the robot
moves in normal conditions. Darker squares mean higher node
activation. The robot starts in the lower portion of the arena.
The bottom-rightwindow plots only the trajectory. The recharg-
ing area is visible in the top left corner.

long nearly-straight trajectories across the arena until it
arrived very close to a wall, where it performed a sharp
turn. Although the trajectories were very di�erent even
when the robot started from the same location because of
noise in the sensors, friction against the oor and some-
times against the walls, and internal recurrent states, it
generally performed 3 or 4 turns before moving toward the
recharging area. In order to understand the strategies em-
ployed for homing, we performed an analogous test with
the light tower switched o� (Figure 15).

By comparing the behaviors in the two conditions (light
on and light o�), it becomes apparent that in both cases
the robot relies on a set of semi-automatic procedures to
perform the turns at the walls and the semi-linear trajecto-
ries (although they are more curved when the light is o�).
However, when the battery reaches a critical level, a some-
how di�erent behavioral strategy takes control which tries
to correct the trajectory in order to reach the recharging
area by using the information in the light gradient. When
the light is o�, this behavioral switch is documented by the
beginning of the circular path in the middle of the arena in
the likely attempt to �nd a light source during the last 18
steps. These tests indicate that the robot starts planning
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Fig. 15. Visualization of the hidden node activations while the robot
moves when the light tower is switched o�. The robot starts
approximately in the center of the arena and ends up in circular
trajectory during the last 18 steps.

the trajectory that will lead it to the recharging zone when
the battery level is about one third of full charge, that is
before the last turn against one of the walls in normal op-
erating conditions.
A con�rmation of this hypothesis comes from the analy-

sis of the states of the hidden nodes. Although their func-
tioning is distributed and highly dependent on their pre-
vious states (in tests where all the recurrent connections
were cut o� the robot could not even navigate properly), it
is possible to detect a certain degree of specialization. In
particular, the node labelled v h4 seems to be responsible
for battery check and path planning in the last steps. In all
our \live-tests" it always kept a constant low level of activa-
tion (except for the two steps after the turns), but when the
battery reached the critical level it progressively raised its
activation state until the robot reached the recharging area.
Hidden nodes v h0 and v h2 were nearly always highly ac-
tive, except when approaching a wall: they are very likely
to account for the automatic behavior of straight naviga-
tion and obstacle avoidance. Finally, hidden nodes v h1
and v h3 may contribute to path planning: the temporary
change in activity of node v h1 after a turn suggests that
it partially controls the trajectory, while the slight rise in
activity of node v h3 when the battery is low is synergic

repul.attract.eps
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Fig. 16. Trajectories with full battery (left) and low battery (right).
Four di�erent paths are shown for each condition. Both the tra-
jectories and the environment contours have been plotted using
the laser positioning device.

with the activity of node v h4.

To de�nitely ascertain the choice of di�erent behavior
strategies depending upon the battery charge level, we per-
formed another test where we compared the trajectories
of the robot with a fully charged battery (level 1.0) and a
nearly-exhausted battery (level 0.12, i.e. max. 6 steps left).
In both conditions the robot was positioned at four dif-
ferent locations equi-distant from the recharging area and
regularly spaced. As clearly shown in Figure 16, the robot
accurately avoided the recharging area when the battery
was charged and it moved straight toward it when the bat-
tery was low.

In order to better understand the functioning of the sys-
tem, we clamped the signal coming from the recurrent con-
nections to the average node activity and we measured a
single activation of each hidden unit while the robot was
placed at several regularly-spaced positions in the arena.
The single \shots" for every location were taken in four
di�erent conditions: low battery and facing light, low bat-
tery and facing direction opposite to light, full battery and
facing light, and full battery and facing direction opposite
to light4. These measures can be displayed as four maps {
each for one of the measuring conditions{ of the environ-
ment with the corresponding activity level of a single hid-
den unit. The resulting activity maps of node v h4 (Fig-
ure 17) display remarkable topographical representations
of the environment that are also head-direction speci�c be-
cause the major change in shape corresponds to the change
in the facing direction. Similar activations map neighbour-
ing locations in the environment. The organization of the
resulting map is regularly oriented toward the recharging
area when the robot faces the corner opposite to the light
tower, but it displays a completely di�erent pattern when
the robot faces the light tower. Although the geometrical
organization in the former situation is more regular, in the
latter situation (when the robot faces the light) one can
still recognize the recharging area and a sort of gate before
it (the entrance of the virtual gate actually corresponds to

4The facing direction corresponded to the direction of motion of
the evolved robot.



h4.eps

87 � 85 mm

Facing light Facing opposite corner

low 
battery

full 
battery

Fig. 17. Contour map of the activation levels of node v h4 for di�er-
ent conditionswhile the robot was positionedat various locations
in the environment. The recharging area is located at the top
left corner of each map. See text for explanation.

the robot preferred approaching direction). Also the other
neurons display a topological organization (but not so pre-
cise), except for node v h0. Most of them are not head-
direction speci�c (although node v h3 displays an activity
pattern close to that of node v h4).

V. Discussion

Genetic algorithms can be successfully used to develop
the control system of a real mobile robot. We have con-
trasted two methods of developing behaviors in two sep-
arate experiments. The �rst method {used in the �rst
experiment{ consists in a detailed speci�cation of the �t-
ness function that is tailored for a precise task. Although
this choice may provide interesting and successful results,
the behavior of the evolved agent depends upon the choice
of the experimenter. In this sense, there is not much dif-
ference between the tuning of the objective function in a
supervised neural algorithm and the engineering of the �t-
ness function in the genetic algorithm. In this case, the de-
sign of the �tness function even for a simple task requires
some e�ort and empirical trials because it is not possible
to identify and specify in advance the desired actions of
an autonomous agent [11], [15]. Additionally, the evolved
agent can hardly be said to be autonomous because its be-
havior is dictated by the experimenter [2]. An alternative
method is to consider the �tness measure not as a detailed
and complex function to be optimized in order to achieve a
desired behavior, but rather as a general survival criterion
that is automatically translated into a set of speci�c con-
straints by the characteristics of the interactions between
the organism and the environment. If one follows this ap-

proach, the adaptation process yields ecologically-grounded
behavior (i.e., necessary for survival), rather than a mere
task . The second and main experiment described here has
been conceived within this latter framework. We have lifted
one main constraint from the �tness function and we have
allowed a richer interaction between the robot and the en-
vironment. Straight navigation, location of the battery
charger, and timely homing are sub-goals created by the
agent itself in order to maximize a more general and indi-
rectly related �tness function. The spirit of our approach
consists in making arti�cial evolution closer to natural evo-
lution: Darwinian evolution is not an optimization algo-

rithm, it has no sense of predetermined goal-directedness,
but is rather a dynamic process governed by the principle
of the survival of the individual [26]. To this extent, our
methodology goes along the lines of those who think that
the �tness function is not a global and precisely de�ned
criterion, but is rather a characteristic of the individual
and of the environment where it lives [27], [28], [29] and,
hence, it may also change with time [30]. Although we
have still maintained a vague global performance criterion
and we have not taken into consideration the important
inuence of sociogenetic and ontogenetic learning [26], our
results are the �rst showing that these principles can be
applied to robot learning in order to obtain more complex
and meaningful behaviors. Following on this principle, it
would be interesting to try the same experiment by elim-
inating the �tness function and simply reproducing those
individuals that live longer.

The behavior of the evolved agent relies on a topologi-
cal neural representation of the world that was gradually
built through a process of interaction with the environ-
ment. The few failures in reaching the recharging area from
some starting locations (Figure 13) thus might be due to a
sub-optimal or not fully formed map (when we stopped the
evolutionary process, the �tness measure was still increas-
ing, as shown in Figure 10). The functioning of node v h4
(Figure 17) vaguely resembles the classic �ndings about
the organization of the rat hippocampus, where most of
the cells are \place cells", i.e. they �re only when the rat
is in a particular portion of its environment [31]. Given the
constraints of our neural model (few nodes, continuous ac-
tivation, discrete dynamics, and homogeneous properties),
the similarity between the rat hyppocampus and the con-
trol system of the robot is only functional : whereas the
rat \knows" its own location by the �ring of some speci�c
place-cells, the evolved agent represents this information
in terms of speci�c activation levels. With regard to the
head-direction activity of node v h4, agreement (in func-
tional terms) is found with recent �ndings about the exis-
tence of few \head-direction" cells (whose �ring modality
depends upon the direction of the rat's head) in regions
neighbouring the rat hippocampus [32]. All this amounts
to saying that the behavior of the evolved robot cannot be
purely explained by a stimulus-reaction paradigm because
it is mediated by the autonomous development of an in-
ternal representation of the environment which reects the
goals de�ned by the robot itself (a similar conclusion was



reached nearly 50 years ago in psychology [33] and formed
the basis for a large conceptual revolution).
A rather interesting result comes from the dual role

played by node v h4 as an orienteering device and as a
controller of battery charge. The latter role is masked dur-
ing the \single-shot" measures used for the map plot of
Figure 17 where, to make things even more complicated,
the activation levels are very similar in the two battery
conditions (low battery and full battery). Node v h4 is
nevertheless responsible for monitoring the battery level,
but this feature is revealed only during the free running
of the robot (Figure 14 and Figure 15)5. On the other
hand, the orienteering function is not apparently revealed
when the measures are taken during a free run: in this
case the underlying representation of the environment is
masked by the pattern of temporal activity sustained by
the continuous (approximated by discrete dynamics) ow
of information from the recurrent connections that is used
to monitor the battery charge. Such a dual and concurrent
processing modality has been hypothesized for biological
neurons [34] too, but it can be hardly analyzed in living
organisms because of technical di�culties. However, it can
be displayed and thus analyzed in arti�cial neural network
models which have recurrent (discrete or continuous) dy-
namics. It remains to be seen whether this feature emerges
only when the neural network is embedded in a sensori-
motor agent and the learning is not controlled by gradient
descent techniques, or whether it is a more general compu-
tational strategy of these types of networks.
We have succeeded at replicating the results of the sec-

ond experiment with di�erent initial synaptic weight values
(the adaptation process was much faster reaching compa-
rable performances in 150 generations), but we succeeded
only partially when we introduced obstacles in the environ-
ment. When we introduced obstacles (small circular shapes
of the same material as the walls) from the beginning of
the evolutionary run, the robot did not learn to reach reg-
ularly the recharging area. In order to make the �tness
surface smoother, we adopted a more gradual approach by
introducing obstacles only after that the robot learned to
locate the recharging area (see [35] and [36] for a simi-
lar procedure). The resulting behavior was not completely
satisfactory, although the robot displayed some degree of
adaptation to the new environment (this experiment lasted
almost 1,000 hours): the best individuals could reach the
recharging area only from a very few starting positions.
This limitation poses a serious question on how well our
simple method would scale to harsher environments. Our
opinion is that allowing the agent to learn during its life
(for example with a local reinforcement learning algorithm)
would help to circumvent these di�culties. If an agent
displays adaptation capabilities during its life, the evolu-
tionary process becomes more powerful and robust because

5We tried to combine the two measuring procedures by disconnect-
ing the motor neurons from the wheels and recording the node acti-
vations for a few seconds at all location in the environment. In this
situation all the neurons started to display an asynchronousand cyclic
pattern of activity that was completely uncorrelated with any exter-
nal and internal parameter (position, orientation, battery status).

the selection procedure can evaluate a large set of values
for each string (due to the oscillations of performance on
the �tness surface caused by synaptic change), rather than
a single value [37] as in our case. Some experimental re-
sults on the evolution of simulated learning agents have
shown both a speed-up in the convergence time [38] and
the ability to deal with a very complex environment [39].
Our current work is focusing on this approach.
An alternative solution to the scalability problems out-

lined above and to the reduction of the evolution time could
be provided by a more e�cient genetic encoding that would
use more compact or suitable representations which cap-
ture the essential features of a neural network model. Sev-
eral methods [40], [41], [42], [43], [44], [45] have been pro-
posed and shown to yield better and faster solutions than
traditional encoding methods on simple tasks, but only
a few [46], [36] have been applied to autonomous agents.
Although these methods can evolve modular architectures
that are suited to the requirements of the task, it is still
premature to assess the superiority of one approach over
the other for the evolution of real robots.

VI. Related work

There is a large literature on the application of evolution-
ary techniques to the design and training of neural net-
works (see [47] for a speci�c bibliography, [48], [49], [50]
for a description of the various approaches employed, and
the 1993 special issue on Evolutionary Computation of the
IEEE Transactions on Neural Networks for an outline of
more recent results). Only a small subset of this corpus of
research focuses on the development of autonomous agents
and the results are mostly based on computer simulations,
rather than on real robots. Nevertheless, the research re-
ported here is based and variously related to some of these
contributions, which we briey mention below.
Cli� [51] provides a theoretical background for the study

of simulated organisms situated in closed environment and
de�nes Computational Neuroethology as the attempt to re-
late behavior with the activity of neural mechanisms using
the methodology of computational neuroscience (a similar
approach is described also in [52]). On similar lines is the
work by Parisi, Cecconi and Nol� [9] who also stress the
importance for an evolving organism to learn to predict the
sensory consequences of its own actions in order to develop
an internal world model. Beer and Gallagher [11] use a
genetic algorithm to develop a set of chemotactic behav-
iors for a simulated agent with a circular and symmetric
structure (geometrically similar to the robot employed in
our experiments) and to control locomotion of a six-legged
agent. In their work they evolve the synaptic weights of
continuous-time recurrent neural networks. Several explo-
rations in this direction have been described by Cli�, Hus-
bands, and Harvey in a number of papers. Their major
claim is that arti�cial evolution represents an alternative
and more fruitful approach (contrasted to design by hand)
to developing the control systems of autonomous mobile
robots [12]. In their view the evolutionary method should
be incremental [53] and operate on recurrent real-time neu-



ral networks [54]. They suggest that some sort of visual
processing is necessary for evolving non-trivial behaviors,
but also say that careful simulations of the robot and of the
robot/environment interactions can be necessary because
of time constraints. Developing on these lines, they present
results of several evolved behaviors for a simulated robot
with a very simple visual system [55], [56], [57], [14]. Flore-
ano [35] has studied the evolution of a simulated agent who
developed the ability to reach a nest where it could eat the
food found in the external environment. Since the �tness
function was simply the number of food objects eaten, the
location of the nest and the ability to periodically visit it
was an indirect achievement, in analogy with what found in
the experiments on battery recharge reported here. Sim-
ilarly, reaching for a hidden location by means of visual
landmarks has been reported by Treves, Miglino and Parisi
[58] in evolved simulated agents. Their analysis of the re-
sulting neural activity (in simple feed-forward architecture)
reveals a functional analogy with the neural mechanisms
employed by rats to navigate and resembles the topologi-
cal patterns of activity described here (Figure 17).

Neural networks are not the only structure that have
been used to evolve simulated autonomous agents. The
evolution of programs (whose composition is similar to the
symbolic expressions found in Lisp), also termed Genetic

Programming by its inventor Koza [10], has been success-
fully employed {among other examples{ to recreate the
patterns of locomotion of a lizard [59], to evolve coordi-
nate group motion of visually guided agents [60] and to de-
velop corridor-following behaviors [13]. Dorigo and Schnepf
[6] have developed a parallel robot controller (ALECSYS)
based on a classi�er system evolved by means of a genetic
algorithm that can coordinate several di�erent behaviors of
a simulated agent. The design and the evaluation of their
system is strongly based on ethological considerations.

The results obtained by evolving simulated agents may
have little in common with the evolution of real robots
[61]. Although for simple environments and simple tasks
(obstacle avoidance and light following) the control sys-
tem evolved in a computer simulation may be directly
transferred into a real robot [62], [63], [16], [46], [20], this
method is not guaranteed to work in more complex do-
mains. The di�culty of making faithful simulations of com-
plex visually-guided robots, has led a group of researchers
to apply the evolutionary procedure directly on a real robot
[64]. Harvey, Husbands, and Cli� have evolved target-
approaching and object-following behaviors on a real robot
with a circular body and a rotating camera suspended from
a gantry-frame which allows 2-dimensional motion on the
surface of the environment [36]. The evolution of the mor-
phology of the visual system along with the structure of
the neural network has resulted in smart and economical,
but e�cient, solutions. However, the development of in-
creasingly more complex behaviors was achieved by using
speci�cally-engineered �tness functions and by resorting to
an incremental approach.

Our approach is also related to two researches reported
in this special issue which employ evolutionary training of

neural controllers, although both resort to a simulation for
the training phase. Baluja shows that genetic algorithms
can provide strategies to control an autonomous land ve-
hicle (ALVINN) that are comparable to those found by a
supervised learning algorithm [65]. The main di�erence
from our work is that Baluja knows exactly what are the
appropriate actions that the vehicle should take in the situ-
ations employed for training and can exploit this knowledge
to assess the performance of the neural networks. Meeden
compares the behavioral strategies developed by a rein-
forcement learning algorithm and a genetic algorithm for
a robot that must either seek or avoid a light source while
avoiding obstacles [66]. Her research is close to ours be-
cause she employs the same type of neural network (with
the same number of hidden units) and genetic encoding, a
similar evolutionary procedure, and a similar environment,
but it di�ers in that the goals of the robot are explicitly
included and weighted in the �tness function (as in our
benchmark experiment). Given the complementary solu-
tions found by the reinforcement learning and the evolu-
tionary procedure, she supports our conclusions suggesting
that a method that combines ontogenetic and phylogenetic
learning seems to be more promising than either technique
in isolation.

VII. Summary

We have described the application of an evolutionary
procedure to a real mobile robot in two di�erent settings.
In the �rst experiment the environment and the robot shell
[20] were very simple, and the �tness function was very
detailed and aimed at developing a speci�c behavior, i.e.
straight navigation and obstacle avoidance. The results dis-
played the evolution of e�cient strategies which partially
relied on the autonomous development of a frontal direc-
tion of motion and of the most appropriate cruising speed.
In the second experiment we lifted several constraints by
increasing the complexity of the environment (adding an
oriented light source and a simulated recharge station) and
of the robot shell (adding more sensors and a simulated bat-
tery), and decreasing the complexity of the �tness function.
These modi�cations allowed a larger number of degrees of
freedom in the interactions between the robot and its en-
vironment. Since the �tness values were summed during
the life of the individual (as in the previous experiment),
the introduction of variable life length gave an evolutionary
advantage to those individuals who autonomously discov-
ered the location of the recharge station and learned how to
use it. The evolved behaviors displayed characteristics of
self-su�ciency because the robot could keep itself \alive"
by periodically charging its own simulated battery. As in
the case of animals, this behavior relied on two important
stages: the monitoring of the \physiological" variable (the
level of the battery charge), and the calibration of the mon-
itored message (i.e. the decision about when to initiate the
sequence of actions needed for reaching the recharging area)
[1].
The experiments showed that it is possible to perform

behavior engineering [20] of intelligent agents without re-



sorting to the abstract design of their cognitive abilities
and arti�cially restricting its range of actions. The results
stressed the importance of situation assessment in adaptive
agents [19] for the autonomous development of intelligent
behaviors and interesting computational strategies.

Appendix

Navigation Homing
Population size 80 100
Number of generations 100 240
Chromosome length 20 102
Crossover probability 0.1 0.1
Mutation probability 0.2 0.2
Mutation range �0:5 �0:5
Initial weight range �0:5 �0:5
Final weight range Not bound Not bound
Life length (actions) 80 �xed 150 max
Action duration 330 ms 380 ms
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