1,830 research outputs found

    Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Get PDF
    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region

    Analysis and design of a wide dynamic range pulse-frequency modulation CMOS image sensor

    Get PDF
    Complementary Metal-Oxide Semiconductor (CMOS) image sensor is the dominant electronic imaging device in many application fields, including the mobile or portable devices, teleconference cameras, surveillance and medical imaging sensors. Wide dynamic range (WDR) imaging is of interest particular, demonstrating a large-contrast imaging range of the sensor. As of today, different approaches have been presented to provide solutions for this purpose, but there exists various trade-offs among these designs, which limit the number of applications. A pulse-frequency modulation (PFM) pixel offers the possibility to outperform existing designs in WDR imaging applications, however issues such as uniformity and cost have to be carefully handled to make it practical for different purposes. In addition, a complete evaluation of the sensor performance has to be executed prior to fabrication in silicon technology. A thorough investigation of WDR image sensor based on the PFM pixel is performed in this thesis. Starting with the analysis, modeling, and measurements of a PFM pixel, the details of every particular circuit operation are presented. The causes of dynamic range (DR) limitations and signal nonlinearity are identified, and noise measurement is also performed, to guide future design strategies. We present the design of an innovative double-delta compensating (DDC) technique which increases the sensor uniformity as well as DR. This technique achieves performance optimization of the PFM pixel with a minimal cost an improved linearity, and is carefully simulated to demonstrate its feasibility. A quad-sampling technique is also presented with the cooperation of pixel and column circuits to generate a WDR image sensor with a reduced cost for the pixel. This method, which is verified through the field-programmable gate array (FPGA) implementation, saves considerable area in the pixel and employs the maximal DR that a PFM pixel provides. A complete WDR image sensor structure is proposed to evaluate the performance and feasibility of fabrication in silicon technology. The plans of future work and possible improvements are also presented

    Polarization Imaging Sensors in Advanced Feature CMOS Technologies

    Get PDF
    The scaling of CMOS technology, as predicted by Moore\u27s law, has allowed for realization of high resolution imaging sensors and for the emergence of multi-mega-pixel imagers. Designing imaging sensors in advanced feature technologies poses many challenges especially since transistor models do not accurately portray their performance in these technologies. Furthermore, transistors fabricated in advanced feature technologies operate in a non-conventional mode known as velocity saturation. Traditionally, analog designers have been discouraged from designing circuits in this mode of operation due to the low gain properties in single transistor amplifiers. Nevertheless, velocity saturation will become even more prominent mode of operation as transistors continue to shrink and warrants careful design of circuits that can exploit this mode of operation. In this research endeavor, I have utilized velocity saturation mode of operation in order to realize low noise imaging sensors. These imaging sensors incorporate low noise analog circuits at the focal plane in order to improve the signal to noise ratio and are fabricated in 0.18 micron technology. Furthermore, I have explored nanofabrication techniques for realizing metallic nanowires acting as polarization filters. These nanoscopic metallic wires are deposited on the surface of the CMOS imaging sensor in order to add polarization sensitivity to the CMOS imaging sensor. This hybrid sensor will serve as a test bed for exploring the next generation of low noise and highly sensitive polarization imaging sensors

    Design and Implementation of an Integrated Biosensor Platform for Lab-on-a-Chip Diabetic Care Systems

    Get PDF
    Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term implantation of the sensor system. Glucose sensors combined with sensor readout, insulin bolus control algorithm, and insulin infusion devices can function as an artificial pancreas. However, challenges remain in integrated glucose sensing which include degradation of electrode sensitivity at the microscale, integration of the electrodes with low power low noise readout electronics, and correlation of fluctuations in glucose levels with other physiological data. This work develops 1) a low power and compact glucose monitoring system and 2) a low power single chip solution for real time physiological feedback in an artificial pancreas system. First, glucose sensor sensitivity and robustness is improved using robust vertically aligned carbon nanofiber (VACNF) microelectrodes. Electrode architectures have been optimized, modeled and verified with physiologically relevant glucose levels. Second, novel potentiostat topologies based on a difference-differential common gate input pair transimpedance amplifier and low-power voltage controlled oscillators have been proposed, mathematically modeled and implemented in a 0.18μm [micrometer] complementary metal oxide semiconductor (CMOS) process. Potentiostat circuits are widely used as the readout electronics in enzymatic electrochemical sensors. The integrated potentiostat with VACNF microelectrodes achieves competitive performance at low power and requires reduced chip space. Third, a low power instrumentation solution consisting of a programmable charge amplifier, an analog feature extractor and a control algorithm has been proposed and implemented to enable continuous physiological data extraction of bowel sounds using a single chip. Abdominal sounds can aid correlation of meal events to glucose levels. The developed integrated sensing systems represent a significant advancement in artificial pancreas systems

    INTEGRATED SINGLE-PHOTON SENSING AND PROCESSING PLATFORM IN STANDARD CMOS

    Get PDF
    Practical implementation of large SPAD-based sensor arrays in the standard CMOS process has been fraught with challenges due to the many performance trade-offs existing at both the device and the system level [1]. At the device level the performance challenge stems from the suboptimal optical characteristics associated with the standard CMOS fabrication process. The challenge at the system level is the development of monolithic readout architecture capable of supporting the large volume of dynamic traffic, associated with multiple single-photon pixels, without limiting the dynamic range and throughput of the sensor. Due to trade-offs in both functionality and performance, no general solution currently exists for an integrated single-photon sensor in standard CMOS single photon sensing and multi-photon resolution. The research described herein is directed towards the development of a versatile high performance integrated SPAD sensor in the standard CMOS process. Towards this purpose a SPAD device with elongated junction geometry and a perimeter field gate that features a large detection area and a highly reduced dark noise has been presented and characterized. Additionally, a novel front-end system for optimizing the dynamic range and after-pulsing noise of the pixel has been developed. The pixel is also equipped with an output interface with an adjustable pulse width response. In order to further enhance the effective dynamic range of the pixel a theoretical model for accurate dead time related loss compensation has been developed and verified. This thesis also introduces a new paradigm for electrical generation and encoding of the SPAD array response that supports fully digital operation at the pixel level while enabling dynamic discrete time amplitude encoding of the array response. Thus offering a first ever system solution to simultaneously exploit both the dynamic nature and the digital profile of the SPAD response. The array interface, comprising of multiple digital inputs capacitively coupled onto a shared quasi-floating sense node, in conjunction with the integrated digital decoding and readout electronics represents the first ever solid state single-photon sensor capable of both photon counting and photon number resolution. The viability of the readout architecture is demonstrated through simulations and preliminary proof of concept measurements

    Integrated Electronics for Wireless Imaging Microsystems with CMUT Arrays

    Get PDF
    Integration of transducer arrays with interface electronics in the form of single-chip CMUT-on-CMOS has emerged into the field of medical ultrasound imaging and is transforming this field. It has already been used in several commercial products such as handheld full-body imagers and it is being implemented by commercial and academic groups for Intravascular Ultrasound and Intracardiac Echocardiography. However, large attenuation of ultrasonic waves transmitted through the skull has prevented ultrasound imaging of the brain. This research is a prime step toward implantable wireless microsystems that use ultrasound to image the brain by bypassing the skull. These microsystems offer autonomous scanning (beam steering and focusing) of the brain and transferring data out of the brain for further processing and image reconstruction. The objective of the presented research is to develop building blocks of an integrated electronics architecture for CMUT based wireless ultrasound imaging systems while providing a fundamental study on interfacing CMUT arrays with their associated integrated electronics in terms of electrical power transfer and acoustic reflection which would potentially lead to more efficient and high-performance systems. A fully wireless architecture for ultrasound imaging is demonstrated for the first time. An on-chip programmable transmit (TX) beamformer enables phased array focusing and steering of ultrasound waves in the transmit mode while its on-chip bandpass noise shaping digitizer followed by an ultra-wideband (UWB) uplink transmitter minimizes the effect of path loss on the transmitted image data out of the brain. A single-chip application-specific integrated circuit (ASIC) is de- signed to realize the wireless architecture and interface with array elements, each of which includes a transceiver (TRX) front-end with a high-voltage (HV) pulser, a high-voltage T/R switch, and a low-noise amplifier (LNA). Novel design techniques are implemented in the system to enhance the performance of its building blocks. Apart from imaging capability, the implantable wireless microsystems can include a pressure sensing readout to measure intracranial pressure. To do so, a power-efficient readout for pressure sensing is presented. It uses pseudo-pseudo differential readout topology to cut down the static power consumption of the sensor for further power savings in wireless microsystems. In addition, the effect of matching and electrical termination on CMUT array elements is explored leading to new interface structures to improve bandwidth and sensitivity of CMUT arrays in different operation regions. Comprehensive analysis, modeling, and simulation methodologies are presented for further investigation.Ph.D

    Application of image sensors to detect and locate electrical discharges: a review

    Get PDF
    Today, there are many attempts to introduce the Internet of Things (IoT) in high-voltage systems, where partial discharges are a focus of concern since they degrade the insulation. The idea is to detect such discharges at a very early stage so that corrective actions can be taken before major damage is produced. Electronic image sensors are traditionally based on charge-coupled devices (CCDs) and, next, on complementary metal oxide semiconductor (CMOS) devices. This paper performs a review and analysis of state-of-the-art image sensors for detecting, locating, and quantifying partial discharges in insulation systems and, in particular, corona discharges since it is an area with an important potential for expansion due to the important consequences of discharges and the complexity of their detection. The paper also discusses the recent progress, as well as the research needs and the challenges to be faced, in applying image sensors in this area. Although many of the cited research works focused on high-voltage applications, partial discharges can also occur in medium- and low-voltage applications. Thus, the potential applications that could potentially benefit from the introduction of image sensors to detect electrical discharges include power substations, buried power cables, overhead power lines, and automotive applications, among others.This research was funded by the Ministerio de Ciencia e Innovación de España (grant number PID2020-114240RB-I00) and by the Generalitat de Catalunya (grant number 2017 SGR 967).Peer ReviewedPostprint (author's final draft

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido à mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rápidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita à qualidade de imagem. Para além do vasto conjunto de aplicações que requerem sensores de imagem, o próximo salto tecnológico no ramo dos sensores de imagem é o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips é relativamente recente e é uma tecnologia inovadora no campo dos sensores de imagem, permitindo vários planos de silício com diferentes funções poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de píxeis. Além disso, num sensor de imagem de planos de silício empilhados, os circuitos de leitura estão posicionados debaixo da matriz de píxeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruído e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho é o de desenhar circuitos de leitura de coluna de muito baixo ruído, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura são de baixo ruído, rapidez e pouca área utilizada, de forma a obter-se o melhor rácio. Uma breve revisão histórica dos sensores de imagem CMOS é apresentada, seguida da motivação, dos objetivos e das contribuições feitas. Os fundamentos dos sensores de imagem CMOS são também abordados para expor as suas características, os blocos essenciais, os tipos de operação, assim como as suas características físicas e suas métricas de avaliação. No seguimento disto, especial atenção é dada à teoria subjacente ao ruído inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possíveis aspetos que dificultem atingir a tão desejada performance de muito baixo ruído. Por fim, os resultados experimentais do sensor desenvolvido são apresentados junto com possíveis conjeturas e respetivas conclusões, terminando o documento com o assunto de empilhamento vertical de camadas de silício, junto com o possível trabalho futuro

    Wide-Dynamic Range Image Sensor Prototype Based On Digital Readout Integrated Circuit

    Get PDF
    Emerging infrared and visible imaging applications require higher sensitivity, larger pixel array, larger contrast ratio (dynamic range), very low power consumption and faster data readout rate operations all at the same time. Some of these applications are camera surveillance used both in day/night (very bright and dark conditions), medical diagnostics, weather forecasting, and aerial search & rescue operations etc. The digital-pixel focal plane array (DFPA) implemented in this thesis has the capabilities to capture a wide dynamic range of more than 120dB in a single global shutter without saturating the pixels at a huge frame rate of more than 500Hz. An adaptive Integration Window technique has been developed which ensures that we are able to measure such a huge dynamic range using a counter of only 10 bits (this helps us lower the power consumption of the design). This proposed image sensor has been designed, fabricated and tested in 65nm CMOS technology. It has 16 x 16-pixel array with 16 x 9 pixels with an inbuilt Silicon APD for optical testing and 16 x 7 dummy pixels for electrical testing. Our design proposes an off-chip digital calibration technique to cut down the burden on the analog circuitry. The sensor design achieved more than 128dB+ of dynamic range with a DNL/INL of 0.65/1.65 respectively with a power consumption of only 0.58 uW/pixel. The digital calibration scheme successfully cuts down the pixel-pixel variation standard deviations by a factor of 4. The proposed image sensor design should be able to address most of the short-comings of conventional FPAs and provides a one-shot solution to the design of high performance CMOS image sensors

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware
    corecore