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Preface to ”Integrated Circuits and Systems for Smart

Sensory Applications”

Connected intelligent sensing reshapes our society by empowering people with increasing new

forms of mutual interactions. As integration technologies keep their scaling roadmap, the horizon

of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in some

cases, even self-powered smart devices with high-connectivity capabilities. CMOS integrated circuits

technology is the best candidate to supply the required intelligence and to pioneer these emerging

sensory systems. As a result, new challenges are arising around the design of these integrated circuits

and systems for sensory applications in terms of low-power edge computing, power management

strategies, low-range wireless communications, and integration with sensing devices. In this Special

Issue, recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory

applications are presented via the following five emerging topics:

I. Dedicated short-range communications transceivers for radio communications in intelligent

transportation systems [1,6];

II. Digital smart sensors featuring digital compensations [2], re-programmable fuse trimming [5]

and all-digital implementation for ultra-low power operation [10];

III. Implantable neural interfaces, including a review on closed-loop implantable electronics for

epilepsy control [3] and an AC-coupled neural amplifier design with improved linearity [7];

IV. Power Management Strategies in wireless sensor nodes, both from the hardware [4] and the

software [8] perspectives;

V. Neuromorphic hardware systems for image recognition [9].

Dedicated short-range communications (DSRC) services designate one-way or two-way
wireless communication for automotive use involving vehicle-to-vehicle and vehicle-to-infrastructure 
communications. In 2020, The United States Federal Communications Commission (FCC) allocated 
the 5.895-5.925 GHz band for Intelligent Transportation System (ITS) services. Equipment in the 
DSRC Service comprises On-Board Units (OBUs) and Roadside Units (RSUs). An OBU is a transceiver 
(which is normally battery operated) fitted inside the vehicle. In such scenarios, a high-speed reliable 
radio link need to be established under power-constrained requirements. Ali et al. [1] presents a 
new wake-up receiver (WuRx) to support he main RF receiver of the OBU by providing wake-up 
detection to exit the OBU hibernation state. The proposed ASIC features an intelligent digital 
controller (IDC) for improving WuRx reliability and for replacing complex and power-hungry analog 
blocks such as band-pass filters and frequency detectors. The IDC implements a number of smart 
power-management techniques such as: (i) self-hibernation of the IDC and range communication 
(RC) oscillator; (ii) digital hysteresis for accommodating wake-up signal frequency variation and 
enhancing WuRx accuracy; (iii) a watch-dog timer for IDC self-recovery to avoid uncertain 
conditions during poor and false wake-up; (iv) configurable wake-up signal cycles before enabling 
a power-hungry RF transceiver. The IDC prototype in 130 nm CMOS technology occupies a modest 
silicon area (94 × 82 µm2). The resulting WuRx shows comparable sensitivity (−46 dBm) with the 

state-of-the-art, while outperforming it in terms of power consumption (2.48 µW), thus 
demonstrating the effectiveness of the proposed IDC. DSRC transceivers also comprise analog-to-

digital converters
ix



(ADC) to allow the transceiver to communicate with the digital base-band electronics, with speed and 
resolution requirements of few tens of MS/s and 10 bits, respectively. To meet these requirements, 
Shehzad at al. [6] proposed a 12 bit 20 MS/s successive approximation register (SAR) ADC fabricated 
in 65 nm CMOS with an active area of 0.14 mm2, performing a SNDR of 65.44 dB while consuming 
only 472.2 µW with 1 V power supply. Low-power operation has been achieved employing various 
circuital techniques such as specific capacitor-switching strategy, asynchronous control logic, and 
custom modification of the dynamic-latch comparator.

Digital smart sensors are at the heart of IoT development, ranging from consumer gadgets, 
sensor networks, and image sensors to biomedical instruments, thanks to their digital-ready output 
and their added functionalities over classical analog-domain transducers, with almost zero impact 
on the device cost. Such added functionalities comprise sensor compensation, trimming and/or 
full-digital CMOS implementation for rapid IP embedding on complex system on chips (SoC). Ali et 
al. [2] propose polynomial-based adaptive digital temperature compensation for piezoresistive-type 
(PRT) pressure sensors. Such sensors have gained attention in a variety of applications due to their 
simplicity, low cost, miniature size, and ruggedness; however, their electrical behavior is temperature 
dependent and highly nonlinear. To avoid severe impairment of measurement accuracy, the authors 
propose an ASIC fabricated in 180 nm CMOS technology, delivering compensation accuracy within
±0.068% of full scale when temperature varies from −40 to +150 °C. On the other hand, low-cost 

and low-power temperature sensors, often targeting challenging requirements in terms of accuracy, 
precision, and linearity, are ubiquitously demanded. When cost per unit is considered, higher 
accuracy for a thermal sensor is based on a trade-off between the production costs for calibration and 
the required precision. Vasile et al. [5] show a trimmed digital sensor with a +1.5/−1.0 °C inaccuracy 
in the temperature range of −20 to +125 °C using a 180-nm CMOS EEPROM process by one-point 

calibration. Finally, Cicalini et al [10] show the implementation of an innovative, all-digital 180 nm 
CMOS capacitive-to-digital converter adequate for medium-low resolution body sweat-flow rate in 
wearable applications. They demonstrate the operation of 10.3 effective-number-of-bits resolution 
readout interface at 0.9 V-supply for a 0–250 pF input capacitance featuring ≥ 1.884 nJ/conversion, 

excellent linearity and robustness against process/temperature corners, while using only 0.0192 mm2 

of silicon area.

Implantable neural interfaces concern multi-electrode systems routinely designed as 
Application Specific Integrated Circuits (ASIC), which comprise hundreds or thousands of recording 
amplifiers on a single chip. To this aim, the signal recording chain must be very carefully designed 
so as to operate in low power and low latency, while enhancing the probability of correct event 
detection. High-fidelity recording of neuronal signals, comprising the action potentials (AP) range 
(300 Hz–10 kHz) and the local field potential (LFP) (1–300 Hz) range, requires strict noise (>10 
µVRMS) and a total harmonic distortion (THD) (>2%) specifications, when dealing with signals up to 
10 mVpp. Minimization of the dissipated power and silicon area is also critical for the design of 
neuronal interfaces with a very large number of recording channels. The large DC voltage at the 
input of the amplifier results from electrochemical interactions between the electrode and the tissue. 
The recording circuit must cut off this DC electrode voltage with high-pass filter (i.e., AC coupling) 
with a lower cutoff frequency, typically in the order of 1 Hz, and amplify the remaining AC signals 
with a gain in the order of 40 dB. Ranjandish and Schmid [3] report the latest advances in closed-loop 
implantable electronics for epilepsy control, focusing on both implantable and external commercial 
systems and pointing out the following research challenges: (i) size and weight; (ii)

x



power consumption and temperature elevation; (iii) battery powering and rechargeability; (iv) the 
biocompatibility of the package and enclosure; (v) data compression and storage. Trzpil-Jurgielewicz 
[7] propose a linearity-enhancing circuital technique for AC-coupled neural amplifiers to remove the 
electrode DC voltage. A prototype preamplifier fabricated in 180 nm CMOS technology shows THD 
values are below 1.17% for signal frequencies 1 Hz–10 kHz and signal amplitudes up to 10 mV peak 
to peak. While using only 0.0046 mm2 of silicon area, the prototype has an input-referred noise of 8.3 
µVRMS in the 1 Hz–10 kHz range, while consuming 7.2 µW per channel.

Power Management Strategies in wireless sensor nodes (WSN) involves both hardware and 
software techniques. Smart sensor nodes perform a set of tasks, often corresponding to different 
load states. The predictable transition schedule allows the software to proactively reconfigure the 
voltage converter to supply required amount of current for various load conditions. Under varying 
load conditions, however, a large Switched Capacitor (SC) converter often provides poor efficiency at 
smaller loads. An output voltage ripple is often alleviated by having a large output capacitor and/or 
high switching frequency, which represents another challenge faced by modern SC converters. Arslan 
et al. [4] propose a voltage converter whose switching frequency and output voltage are proactively 
adjusted to maintain high conversion efficiency based on the schedules of load current demanded by 
the target load. Multiphase operation is also implemented to provide low-output ripple. The ASIC 
prototype, fabricated in 130 nm CMOS technology, supports a load current range between 10 µA and 
10 mA for switching frequencies ranging from 100 kHz to 200 MHz, while providing an efficiency 
of above 80%. The area of the converter is 0.59 mm2, operating a 1.5-V supply; it delivers a tunable 
output voltage between 0.4 and 1.1 V with maximum ripple of 56 mV. Apart from transistor-level 
power optimization, software control over the operating states of WSN is important for overall 
power saving of the battery-constrained system. You et al. [8] proposes a novel power management 
method (PMM) that leads to less energy consumption in an idle state than conventional PMMs. 
While conventional PMMs rely on operation between Sleep, Idle, and Run modes, the proposed 
approach splits the Sleep mode into three different modes: Deep-Sleep and Semi-Idle Sensor and 
Semi-Idle WuRx. The proposed PMM strategy has been tested on a gas-sensing WSN using the 
commercial Mica2 platform and compared to conventional PMM. The proposed approach offers 
power savings between 2 and 74.2% depending on event rate, thus demonstrating its effectiveness 
in low-event-probability WSNs.

Neuromorphic hardware systems differ from classical von Neumann processor architectures 
since they are naturally configured for parallel information processing. Mimicking the vastly and 
densely connected neurons of the human brain, neuromorphic architectures encode information 
in sequences of action potentials called spike trains, theoretically promising a breakthrough in 
energy efficiency for signal processing. In this sense, specific and power-optimized hardware 
implementation of such neural networks is a hot topic in this research area. Asghar et al. [9] 
present an CMOS implementation of a Spiking Neural Network (SNN) for real-time 9 × 9  pixel input 
image for pattern recognition. Fabricated using 180 nm CMOS process, the proposed chip achieves a 
classification accuracy of 94.66% for the MNIST dataset while occupying 3.6 mm2 chip core area and 
presenting an average power consumption of 1.06 mW.

Francesc Serra-Graells, Michele Dei, Kyoungrok Cho

Editors
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Abstract: In this article, a highly reliable radio frequency (RF) wake-up receiver (WuRx) is presented
for electronic toll collection (ETC) applications. An intelligent digital controller (IDC) is proposed
as the final stage for improving WuRx reliability and replacing complex analog blocks. With IDC,
high reliability and accuracy are achieved by sensing and ensuring the successive, configurable
number of wake-up signal cycles before enabling power-hungry RF transceiver. The IDC and range
communication (RC) oscillator current consumption is reduced by a presented self-hibernation
technique during the non-wake-up period. For accommodating wake-up signal frequency variation
and enhancing WuRx accuracy, a digital hysteresis is incorporated. To avoid uncertain conditions
during poor and false wake-up, a watch-dog timer for IDC self-recovery is integrated. During
wake-up, the digital controller consumes 34.62 nW power and draws 38.47 nA current from a 0.9 V
supply. In self-hibernation mode, its current reduces to 9.7 nA. It is fully synthesizable and needs
809 gates for its implementation in a 130 nm CMOS process with a 94 × 82 μm2 area. The WuRx
measured power consumption is 2.48 μW, has −46 dBm sensitivity, and a 0.484 mm2 chip area.

Keywords: wake-up receiver; digital controller; reliability; electronic toll collection (ETC) system;
dedicated short range communication (DSRC)

1. Introduction

Recently, the radio frequency (RF) wake-up receiver has become an attractive research area
for battery-operated transceivers in a variety of applications such as electronic toll collection (ETC)
systems, wireless sensor networks (WSNs), wireless body area networks (WBANs), internet-of-things
(IoTs), and wearable devices [1–4]. Nowadays, the ETC system (ETCS) is rapidly being adopted as
an intelligent transportation solution in automotive vehicles. It uses a 5.8-GHz dedicated short range
communication (DSRC) for a high speed radio link between a road side equipment (RSE) fixed at the toll
gate and on-board unit (OBU) fitted inside the vehicle [1,5–7], as shown in Figure 1. Without stopping
the vehicles, the toll is paid automatically and it saves time and eliminates traffic congestion on the
roads. In ETCS, a wake-up receiver (WuRx) is an auxiliary RF receiver, additionally to the main RF
transceiver, as shown in Figure 2, and is mandated due to the battery powered OBU. The WuRx is a pure
asynchronous communication scheme and it maximizes data transceiver sleep time. This not only
reduces OBU energy dissipation but also diminishes network latency. Figure 3 shows the asynchronous
communication between RSE and OBU with WuRx. The reliability, false wake-up, power dissipation,
and sensitivity are key considerations in WuRx design. In WuRx, designed with low power dissipation

Sensors 2020, 20, 4012; doi:10.3390/s20144012 www.mdpi.com/journal/sensors1
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and good sensitivity, false and poor wake-up turns on main transmitter and receiver modules,
which reduces battery life and degrades the overall WuRx performance. The numerous WuRx circuits
have been investigated in literature to optimize power consumption, maximize sensitivity, and improve
reliability [8–11]. The various WuRx architectures are summarized in Figure 4. Based on the type
of the power source, the WuRx is categorized in active and passive wake-up circuits. The active
WuRx circuits are powered from a battery fitted on an OBU to monitor a possible wake-up signal.
The energy for the wake-up circuit is harvested from the incident RF signal in passive receivers.
Mostly, the active circuits adopt either RF envelope detector (RFED) structures [1,12,13], shown in
Figure 4a,b, or frequency conversion architectures [14,15], depicted in Figure 4c. The frequency
conversion based wake-up receivers offer higher sensitivity due to RF amplification before RF envelope
detection [16], or local oscillator (LO) generation for down-conversion before amplification and
envelope detection at intermediate frequency (IF) [14]. These circuits dissipate more power and occupy
a larger area due to a power hungry phase-locked loop (PLL) and automatic channel scanning circuits
for two channel receptions [15]. The majority of wake-up circuits are implemented with RFED because
of its low power consumption using Schottky diodes [12,13] or metal–oxide–semiconductor field-effect
transistor (MOSFET) operating in the weak-inversion region. The WuRx structure shown in Figure 4a
uses an analog to digital converter (ADC) after a programmable gain amplifier (PGA) which occupies
more area and increases power consumption. The WuRx shown in Figure 4b uses an analog band pass
filter (BPF) at the output interface which requires more chip area. Figure 4c shows an envelope detector
based WuRx structure with a front end amplifier and bulk acoustic wave (BAV) input network [17,18].
The WuRx in [19] also incorporates ADC at the output; however, in order to achieve better sensitivity
and to reduce receiver noise, it incorporates a low noise amplifier (LNA) before an envelope detector
and uses a double sampling technique. It offers better sensitivity at the cost of increased power
consumption and larger chip area for WuRx. The passive WuRx structure [20] incorporates radio
frequency to direct current (RF-DC) converter for harvesting energy from incident RF signals as shown
in Figure 4d. For this purpose, an RF-DC converter [21,22] is employed to produce the envelope of
the on–off keying (OOK) wake-up message signal, and at the same time, it efficiently converts the RF
carrier to a DC voltage in order to supply the comparator and the other WuRx circuits. Although this
architecture is power efficient, it exhibits low sensitivity. Furthermore, the deficiency of false and poor
wake-up filtering is vulnerable.

RSE Toll Gate

OBU

Vehical

5.8 GHz DSRC 
radio link

 
Figure 1. The dedicated short range communication (DSRC) system overview with road side equipment
(RSE) fitted at toll gate, battery operated on-board unit (OBU) fixed inside the vehicle, and a 5.8 GHz
DSRC radio link as communication channel.
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Figure 2. The DSRC OBU system level block diagram.
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Figure 3. The road side equipment (RSE) and OBU pure asynchronous communication with the RF
wake-up receiver (WuRx).
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MN RF-DC

VREF

COMP
WK_DT+

-

VDD

CIN

REF

(d) 

Figure 4. The previous wake-up receiver architecture: (a) RF envelope detector (RFED) based with
analog to digital converter (ADC); (b) RFED based with band pass filter (BPF); (c) frequency conversion
with LO; (d) passive circuit with RF-DC.

The wake-up signal is categorized as a single wake-up tone of a bit sequence [23]. The bit sequence
signal, also called identity-based wake-up, is widely used in WSN and WBAN for addressing a particular
destination sensor node for unicasting. For broadcasting, single wake-up tone is adopted [23]. The DSRC
wake-up signal is a 14 kHz OOK single tone signal of 15–17 cycles which is modulated with a 5.8 GHz
carrier frequency [9].

The precise sensitivity control is essential for ETCS wake-up circuits [1]. Neither a very low nor
very high sensitivity is intended. The available communication time will be insufficient when WuRx
sensitivity is lower than a minimum level. Similarly, if WuRx has very high sensitivity, it will turn
on OBU and start communication even if vehicle is far away from a RSE and toll area. Moreover,
very high sensitivity will result in communication failure and interrupts other OBU devices on the road.
Therefore, WuRx sensitivity must be in a range, robust, insensitive to process, voltage, and temperature
(PVT) variations [11].

The key characteristic of WuRx is to detect and ensure the presence of wake-up request in the
received RF signal and decide whether to turn on the power hungry transceiver on OBU. In most
previous studies, the WuRx circuits only identify the signal amplitude which is inadequate in ETC
systems. If false and poor wake-up signals are not identified and filtered out in the WuRx circuit,
these signals turn on power hungry main RF transceiver modules and the battery performance is
degraded. In the past, numerous WuRx architectures have been investigated for improving the
sensitivity and reducing the power consumption. However, false and poor wake-up problems have
been left unaddressed. This paper presents a RFED based highly reliable WuRx. An intelligent digital
controller (IDC) is proposed to ensure the WuRx reliability and accuracy by identifying and rejecting
unwanted, false, and poor wake-up signals. It also replaces complex blocks such as ADC and BPF
after amplifier and comparator [8–10,24] and reduces current consumption and area. Due to its digital
nature, it is fully synthesizable, immune to noise and PVT variations [25], offers system flexibility,
a wide dynamic range for wake-up and oscillator frequencies, and is adaptive to technology scaling.

The rest of the paper is organized as follows: Section 2 presents a proposed WuRx architecture
overview. The detailed design of the proposed digital controller is described in Section 3. The tunable
range communication (RC) oscillator is presented in Section 4. The RF front end and baseband analog
processing is included in Section 5. Section 6 describes the experimental results. Lastly, the paper is
concluded in Section 7.

2. Proposed Wake-Up Receiver Architecture

Figure 5 shows the proposed 5.8-GHz RF WuRx in which IDC is integrated to ensure its reliability
and accuracy. An antenna receives the incoming RF signal and sends it to an off-chip pi-matching
network. The matching network is an essential passive circuit to transfer the maximum RF signal
power to the receiver circuit. The pi-matching network matches the antenna equivalent impedance
with the input impedance of the proposed WuRx and ensures the maximum power transfer from the
antenna to the WuRx circuit. Unlike [8,24], the chip internal matching network in addition to off-chip
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pi-matching receives a RF wake-up signal, boosts voltage, and improves sensitivity and |S11|. The high
gain RF envelope detector recovers the baseband wake-up signal and improves signal-to-noise ratio
(SNR) without additional current consumption. The RFED is a critical circuit and it interfaces WuRx
with the antenna, down-converts the amplitude of the modulated RF 5.8 GHz signal, and generates
a 14 kHz baseband wake-up signal. The PGA provides flexibility to improve gain and amplify the
baseband signal significantly. The main control unit (MCU) enables/disables and configures different
programmable parameters of RFED, baseband analog (BBA), comparator (COMP), and IDC. It can
either be an on/off chip modem, externally controllable registers, or an external microcontroller.
The comparator (COMP) generates digital output for IDC processing. An ultra-low power range
communication (RC) oscillator (OSC) with a dynamic tuning range generates a configurable clock
for the IDC block. The digital controller is proposed for ensuring WuRx reliability and accuracy by
identifying and filtering non-wake-up signals. It is a fully synthesizable block, consumes very low
power, and needs a very small chip area. The digital controller also replaces complex power consuming
and large area interface blocks, such as ADC, BPF.
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Figure 5. Proposed RF wake-up receiver architecture.

3. Multi-Mode, Configurable Intelligent Digital Controller (IDC)

In the DSRC WuRx design, other than high sensitivity and low power consumption, the false
and poor wake-up signals identification is very crucial in order to extend OBU battery lifetime.
This is achieved by filtering non-wake-up and noise signals and prohibiting turning on main power
hungry RF transceiver. For this purpose, a novel, multi-mode, and configurable intelligent digital
controller is proposed for ensuring WuRx reliability and accuracy. This controller is also a low power,
small area digital replacement of complex, high power analog blocks such as ADC and a band pass
filter. Different parameters of wake-up, self-hibernation, digital hysteresis, wake-on, watch-dog timer,
and self-test are fully configurable, which make the controller architecture very flexible and adaptive.
The simplified architecture of a WuRx digital controller is illustrated in Figure 6 and the timing diagram
is elaborated in Figure 7 for DSRC applications. The signal selection multiplexer (SSM) selects either
a baseband wake-up signal, WU_SIG, from the comparator output in normal operation or self-test
signal st_sig, generated from self-test pattern generator (STPG) during test mode. The signal positive
edge generator (SPEG) detects rising transitions in the final selected signal wusig and generates a pulse
signal wu_pe. The finite state machine controller (FSMC) is the key building block of IDC which is
designed as control unit and data path. It mainly senses, ensures, and generates the wake-up interrupt
and filters unwanted signals. It controls other blocks such as the adaptive frequency measurement
unit (AFMU), configurable watch-dog timer (CWDT), and wake-on generator (WOG). When enabled
by FSMC (fm_en = 1), the AFMU measures the frequency of the wake-up signal and determines
by generating signal fm_det if the input signal value is either within the configured range or not.
It also ensures the valid successive number of configured (WU_N) wake-up signal cycles. The CWDT,
when enabled by signal wdt_en from FSMC, starts a timer. The timer duration is configurable from the
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WDTN parameter. It enhances IDC reliability and helps to avoid any halt situation during frequency
measuring and signal ensuring states. If there is any abnormal situation, CWDT resets FSMC to
its initial state when the configured timer expires. The WOG implements a pseudo-synchronous
interrupt generation. When it is enabled, the wake-on interrupt WO_INT is generated instead of the
wake-up interrupt. The STPG enhances WuRx reliability by verifying IDC operation in self-test mode.
When enabled (st_en = 1), it is capable of generating a variety of valid and invalid signals with different
frequencies and number of cycles. The output multiplexer (OM) outputs WU_INT by selecting either
internally generated interrupt signal int_r or external manually control interrupt WU_EXT. The control
decoder (CDEC) decodes interrupt int_ctrl, mode mode_ctrl, and monitor monitor_ctrl control signals
from the external CTRL input.
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Figure 7. RF wake-up and wake-on interrupt timing diagram.

3.1. Self-Hibernation for Low Power Consumption

A self-hibernation methodology with dynamic frequency and voltage scaling is introduced for
reducing the IDC and oscillator power consumption during the non-wake-up interval. The average
power consumption PAV in the CMOS circuit is the sum of dynamic PDYN, short circuit PSHORT, leakage
PLEAKAGE, and static PSTATIC power consumptions [26] as explained in (1) as follows:

PAV = PDYN + PSHORT + PLEAKAGE + PSTATIC. (1)

In CMOS circuits, PDYN is the dominant power consumption component. It is the linear function
of operating frequency f and the quadratic function of the supply voltage VDD of the circuit as given in
(2) as follows:
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PDYN = KC f V2
DD, (2)

where K is switching activity factor, C is loading capacitance, and VDD is supply voltage [26].
From Equation (2) it becomes obvious that if the switching frequency reduces, the power

consumption of the CMOS circuit is reduced significantly. Furthermore, if the supply voltage is
minimized, the dynamic power is reduced. The OSC frequency is configurable from IDC. The IDC
programs the OSC at a relatively higher frequency, fWU, and performs WuRx signal identification
during the active interval. After the wake-up interval, it operates at a relatively very low frequency, fSH,
during the sleep period after configuring the OSC for the slowest frequency. Since the communication
between RSE and OBU is only for a very short duration and the OBU is in sleep mode for most of the
time, the self-hibernation proves its significant impact for reducing WuRx power consumption and
extending battery lifetime. The supply voltage is also reduced from 1.2 V to 0.9 V to save battery power.

3.2. Built-In Self-Test for IDC Reliability

For ensuring IDC reliability and accuracy, a built-in self-test technique is integrated. It verifies the
IDC full operation and functional accuracy without the presence of an external RF wake-up signal.
In the presented self-test scheme, a configurable self-test pattern generator module generates a variety
of configurable wide range valid wake-up signals with a frequency described as follows in Equation (3):

fST =
NST
fWU

, (3)

where fST is test wake-up signal st_sig frequency, which is programmable from the NST parameter.
It is also capable of generating non-wake-up, false and poor wake-up, and noise signals during test
mode and guarantees IDC functional accuracy and enhances overall WuRx reliability.

3.3. Configurable Modes

In the proposed IDC structure, two fully configurable modes are explored for WuRx. The wake-up
mode (WUM) is for purely asynchronous wake-up signal detection from RSE with reduced latency.
It processes the baseband recovered signal from the envelope detector after the comparator for
identifying the wake-up signal. On the other hand, the wake-on mode (WOM) is an auxiliary
pseudo-synchronous mode. When it is enabled, it turns on the main receiver for a very small
configurable time interval, listens to any possible request from RSE, and keeps off for a relatively long
duration. The mode control signal wake-up/-on (WUO) chooses the current selected mode. When WUO
is low, a wake-up mode is enabled, which is the default mode. For enabling WOM, the WUO is
configured as high.

3.3.1. Wake-Up Mode

The FSMC is key building block of IDC, and its flow chart is elaborated in Figure 8. The wake-up
mode with self-hibernation, digital hysteresis, and wake-up interrupt (WU-I) is the default flow
in the wake-up period for ensuring WuRx reliability and accuracy. On power up, FSMC is in
a wake-up self-hibernation (WUSH) state. The proposed self-hibernation technique reduces the power
consumption of IDC and OSC significantly in the non-wake-up interval by configuring OSC to its
lowest self-hibernation frequency, fSH. The dynamic power of a circuit is directly proportional to its
operating frequency, as shown in (2). If the frequency reduces, the power consumption also reduces.
When IDC detects high assertion on the wusig signal during self-hibernation, it configures OSC to its
normal wake-up frequency, fWU, and waits for OSC settling in the WUSH state. The fWU is a much
higher frequency than fSH for achieving higher wake-up signal measuring accuracy. The controller
starts sensing a wake-up signal in the wake-up signal sense (WUSS) state. The SPEG detects wusig
every rising edge and generates a wu_pe pulse signal which is sensed in the WUSS state. The controller
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enables CWDT by asserting a high wdt_en signal. The CWDT provides a self-recovery mechanism
for FSMC and it is enabled to avoid uncertain situations and improve IDC reliability. If WU_SIG is
a noise pulse or glitch, it is identified and filtered out at this stage and FSMC moves back to WUSH for
self-hibernation. After the sensing stage, the controller clears CWDT by asserting a high wdt_clr signal
for one clock cycle and moves to next state. The IDC verifies the WU_SIG signal in the wake-up signal
assurance (WUSA) state. The AFMU evaluates WU_SIG each cycle and confirms if its frequency fSIG is
in a configured range. The integrated configurable digital hysteresis technique accomplishes this task
and accommodates wake-up frequency variations to improve reliability. The WU_SIG is a valid signal
if its frequency fulfills the following condition described in (4) as follows:

fMOD.MIN ≥ fSIG ≤ fMOD.MAX, (4)

where fMOD.MIN and fMOD.MAX are the lower and upper limits of the valid WuRx signal modulation
frequencies. These limits are configurable by parameters NNFX and NXFN, respectively, and are described
as follows in (5):

fMOD.MIN =
fWU

NXFM
, (5a)

fMOD.MAX =
fWU

NNFX
. (5b)

The configurable successive number of wake-up signal cycles, WUN, in the allowed frequency
bandwidth are ensured in the WUSA state. If the WU_SIG WuRx signal frequency is not in the allowed
range as described in (4) or the signal cycles are less than WUN, then it means the signal is not
a valid wake-up signal and a main transceiver must remain off to save power. The false and poor
wake-up signals are identified and filtered out in the WUSA state by AFMU and CWDT successfully.
If a non-wake-up signal is identified in this state, the controller moves back to a self-hibernation
state. After sensing and assurance, the wake-up interrupt WU_INT is initiated for configurable THOLD
duration in the wake-up interrupt generation (WUIG) state. The interrupt hold duration is defined as
follows in (6):

THOLD =
NHOLD

fWU
, (6)

where NHOLD is the configurable parameter for defining wake-up interrupt hold duration. After the
interrupt generation, FSMC remains silent for the TSILENT interval in the wake-up silent (WUS) state
and moves back to the WUSH state. The WUS state prohibits the WuRx to detect the current wake-up
signal again if WUN and THOLD parameters are configured to smaller values. The silent interval is
programmable from parameter NSILENT according to (7) as follows:

TSILENT =
NSILENT

fWU
. (7)

If wake-up monitoring (WU-M) is enabled by signal monitor_ctrl, then the FSMC moves to the
wake-up interrupt enable (WUIE) state after confirming WUN wake-up signal cycles in the WUSA
state. It asserts WU_INT high and moves to the wake-up monitoring (WUSM) state. The controller
continuously evaluates WU_SIG for the presence of a valid wake-up signal and it additionally provides
WU_INT for the entire duration of the wake-up signal instead of THOLD. It gives more space to
MCU to detect interrupt and trigger an acknowledge signal to RSE at the end of the wake-up signal.
The proposed WUM guarantees to pass only a valid wake-up signal and it definitely identifies and
filters out all non-wake-up signals. It ensures the accuracy and reliability of WuRx. The IDC turns on
a main heavy powered transceiver at OBU only with a valid wake-up request from RSE.
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Figure 8. WuRx intelligent digital controller (IDC) finite state machine controller (FSMC) flow diagram.

3.3.2. Wake-On Mode

The pseudo-synchronous wake-on mode (WOM) enhances overall reliability of transceiver in
case of an issue in the main WuRx path. When WOM is enabled, the IDC configures OSC to desire
frequency fWO based on configured parameters in the wake-on oscillator configuration (WOOC) state,
as shown in Figure 8. The wake-on interrupt TWOI and wake-on sleep TWOS intervals are computed
according to (8) and (9), respectively, as follows:

TWOI =
NWOI
fWO

, (8)

TWOS =
NWOS

fWO
. (9)

After frequency configuration and OSC settling, the controller moves to a wake-on interrupt
(WOI) state. In this state, WO_INT is asserted high for the TWOI duration and MCU turns on the main
receiver for intercepting any communication request from RSE. After the TWOI interval, FSMC jumps
to a wake-on sleep (WOS) state. The WO_INT is asserted low and MCU turns off the main receiver for
the programmed TWOS duration. After a sleep interval, the controller moves back to the WOI state and
periodically generates configurable wake-on interrupt WO_INT for receiver.
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4. Ultra-Low Power Configurable RC Oscillator

In the proposed WuRx, an ultra-low power configurable RC oscillator is integrated, which is
the clock source for IDC. The RC oscillator structure is adopted rather than the crystal oscillator
due to its low cost, less power consumption, fast start-up interval, and easy on-chip integration [27].
The fabricated oscillator has a wide controllable tuning range, fCLK.MIN~fCLK.MAX, and IDC configures it
for different frequencies in wake-up, self-hibernation, and wake-on mode by controlling its capacitance
values. For ultra-low power applications, the circuits are preferred to be operated in a weak inversion
region, also known as the sub-threshold region [28,29]. Therefore, the oscillator is designed to operate
in a sub-threshold region. Figure 9 shows the ultra-low power RC oscillator [27]. The configurability
for various frequencies is achieved by altering resistance R and capacitance C values from IDC.
This oscillator is composed of current reference, start-up, capacitor charge/discharge sensing circuits,
and a frequency generation part. The current source or sink circuit is preferable to function in a weak
inversion region for low power operation. The MOS transistor is operating in a sub-threshold region
when the drain current ID flows and the gate to source voltage VGS is less than the threshold voltage
VTH. The diffusion current between source and drain mainly contributes to this current. The start-up
circuit prohibits self-biased circuits to work at a zero biasing point. To enhance current sink or source
output resistance, the current mirrors in a cascade structure are used. This generated current is mirrored
by the current mirror and fed to capacitor, hysteresis controller M1, and current-starved invertors for
clock generation. The drain current I charges the capacitor C, and when VC becomes equal to hysteresis
controlling transistor M1 VTH value, the M1 turns on. For clock frequency generator circuit, the voltage
VC across capacitor C linearly increases with the increase in current I when constant current flows into
the capacitor, as described in (10) as follows:

ΔVC =
IΔt
C

. (10)
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Figure 9. Ultra-low power configurable range communication (RC) oscillator.

The transistor M1 logical VTH also controls capacitor voltage. Hence, the capacitor C charging and
discharging duration is controlled by current I and transistor M1, and a triangular voltage waveform is
generated for the capacitor. From (10), single charging or discharging cycle time Δt is given in (11):

Δt =
CΔV

I
. (11)

The current mirror builds a constant current source as a current generator part. The voltage VR is
always stabilized by the feedback path. Hence, according to Ohm’s law, the resistance R decides the
amount of current. Thus, from (11), the generated clock period TCLK is described in (12) as follows:
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TCLK = 2RC
ΔVC
VR

. (12)

The RC oscillator output frequency fCLK is given in (13) as follows:

fCLK =
1

TCLK
=

1
2RC
· VR

ΔVC
. (13)

The capacitance C is designed as unit weighted capacitor bank, and IDC configures this
capacitor back at different values for generating frequencies fWU, fSH, and fWO for the wake-up
mode, self-hibernation, and wake-on mode, respectively.

5. RF Front End and Baseband Processing

The RF front end in the proposed WuRx is composed of a high sensitivity RF envelope detector with
an embedded internal matching network. The RFED-based approach is most common for designing
a WuRx circuit for its low current consumption. With this scheme, the requirement of a LO generation
for frequency down-conversion and RF amplification is also eliminated at the cost of reduced sensitivity.
The internal matching improves sensitivity of the circuit. The RFED is the key building block in the
WuRx circuit for interfacing with an antenna through a matching network and generating a baseband
output signal by down-converting the input amplitude-modulated RF signal. Figure 10 illustrates the
proposed RF envelope detector circuit with internal matching network [18,30]. The circuit is mainly
composed of nonlinear transistor element M1, input signal DC blocking capacitor Cac, self-biasing
feedback resistor Rf, impedance matching network with gate inductor Lg, and excess capacitor Cex.
The impedance matching network provides passive voltage amplification. With large self-biasing
resistance, when RF input signal is not present, the M1 gate to source voltage Vgs is closed to transistor
threshold voltage VTH with a very negligible biasing current. In this way, the limited sensitivity issue
due to VTH loss is compensated. The Rf is designed with a pseudo-resistor for large resistance with
minimized parasitic capacitance and a small area. It perfectly isolates output voltage V0 from RF
input signal VRF and prevents envelope detector loading. When VRF is applied, the drain current I1

exponentially increases while the biasing current supplied from M2 is almost constant.
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Figure 10. RF envelope detector with internal matching and self-biasing feedback resistor.

The capacitor CO discharges and this discharge current decreases VO until I1 and I2 become almost
equal. This generates a 180◦ phase shift between VRF and VO. The convergence gain GC, defined as
the ratio of output baseband signal voltage amplitude to the RF input signal voltage amplitude,
is evaluated as follows in (14):
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GC =
1
4

Q2I1

(nUT)
2 r0, (14)

where Q is quality factor of the matching network, n is sub-threshold slope factor, UT is thermal voltage,
and r0 is intrinsic output impedance.

The baseband signal VBB produced by the RF envelope detector is subsequently processed for
enhancing amplitude by a programmable gain baseband amplifier and a comparator before it is fed to
IDC for digital processing for generating an interrupt signal. Figure 11 shows the PGA circuit that is
a baseband amplification stage. It has high input impedance and its gain is configurable from external
MCU. It provides flexibility for improving gain and amplifies the baseband signal VBB significantly.
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Figure 11. Programmable gain amplifier.

The hysteresis comparator, shown in Figure 12, is the final stage of baseband processing to generate
a digital signal for IDC processing. It is composed of a positive feedback circuit with an amplifier, AMP.
A two stage amplifier with output inverter [31] is used as a low power CMOS amplifier. With feedback
resistor R2, hysteresis upper and lower threshold values are configured for eliminating multiple
transitions caused by noise. The three stage amplifier is composed of a differential amplifier, common
source amplifier, and an output inverter. The analog differential input signals IN− and IN+ are applied
at differential pair M1 and M2. The differential pair transistor width is increased to reduce input offset
voltage and increase gain. To minimize the propagation delay and reduce common source transistor
M7 gate parasitic capacitance, the M7 is designed with a small size. The final inverter stage also
enhances gain and improves the comparator slew rate. The final digital wake-up comparator output
signal WU_SIG is fed to IDC for digital processing. The RF front end and analog baseband processing
processes all signals and it does not filter or remove any non-wake-up signal. The IDC differentiates
between actual wake-up signals and unwanted signals.
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Figure 12. Hysteresis comparator with positive feedback and amplifier.
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6. Experimental Results

The presented WuRx is integrated in a DSRC transceiver for ETCS applications. It is fabricated
with a 130 nm CMOS process. Figure 13 shows the microphotograph of WuRx and magnified IDC
layout. The WuRx occupied chip area is 532 × 910 μm2 of which IDC takes only 94 × 82 μm2. The WuRx
is measured extensively to ensure its reliability and accuracy. The experimental lab environment
is captured in Figure 14a and the measurement board with the fabricated DSRC transceiver chip is
depicted in Figure 14b. The board is powered up from the Agilent® DC Power Supply with 5 V and
the on-chip low dropout regulator (LDO) generates 0.9 V for the WuRx circuit, which is measured
at the output pin with a digital multi-meter (DMM). The lower supply voltage is used to minimize
the power consumption and all blocks, and correct operation is verified at a supply voltage of 0.9 V.
The OOK baseband wake-up signal is generated from the Tektronix® AFG3101 Function Generator
and modulated at 5.8 GHz with the Agilent® E4438C Signal Generator. This modulated RF signal is
fed at a RF_IN SMA input connector on the board and after passing through external pi-matching
network, package pin, and die PAD, it enters the WuRx circuit. The comparator output WU_SIG and
wake-up interrupt WK_INT are plotted on a Tektronix® DSA71254C Digital Serial Analyzer. Different
parameters and configurations are programmed through SPI and the graphical user interface (GUI)
running on computer.
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82 μm 
IDCCOMP

OSCWuRx Area  = 532 x 910 μm² 

MN PGA

R
FE

D
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Figure 13. WuRx chip microphotograph and magnified IDC layout.
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Figure 14. WuRx measurement: (a) experimental lab setup; (b) measurement board with chip.

The IDC performance is summarized in Table 1. The proposed digital controller is fully
synthesizable. With an area of 0.007 mm2 and a 34.62 nW power consumption, it not only ensures
WuRx reliability and accuracy but also replaces complex and power hungry analog blocks such as BPF
and ADC. The configurability, operating modes, digital hysteresis, and self-hibernation features prove
its sublimity. The power consumption with and without self-hibernation for IDC and OSC and its
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effect on overall WuRx power performance is summarized in Table 2. Since the DSRC communication
between RSE and OBU lasts for a very short interval and the OBU is in sleep mode most of the
time, self-hibernation by voltage and frequency scaling has a significant positive impact on battery
performance. The performance comparison of the proposed WuRx with the existing designs is listed in
Table 3. The wake-up circuits in [8,24] integrate the complex BPF and [9] use the frequency detector (FD)
circuit as its interface output stage without ensuring reliability and filtering of non-wake-up signals.
The proposed WuRx architecture incorporates a fully synthesizable intelligent controller, which is
not only area and power efficient but it also ensures unwanted signals filtering, guarantees WuRx
reliability, and improves battery performance. The measurement results report an almost identical
sensitivity of −46 dBm and a power consumption of only 2.48 μW.

Table 1. IDC performance summary.

Parameter Value

CMOS process 130 nm
Occupied area 0.0077 mm2

Gate count 809
Supply voltage 0.9 V

Current consumption 1 38.47/9.7 nA
Power consumption 1 34.62/8.73 nW
Wake-up frequency 1–140 kHz

Configurable architecture Yes
Reliability and accuracy Digital hysteresis, BIST, WDT

Operating Modes WUM (WU-I, WU-M), WOM
1 Without and with self-hibernation.

Table 2. Power consumption summary with and without self-hibernation.

Block
Without Self-Hibernation With Self-Hibernation

Current Power Current Power

Intelligent digital controller 38.47 nA 34.62 nW 9.7 nA 8.73 nW
RC oscillator 214 nA 192.6 nA 107 nA 96.3 nW
Total WuRx 2.75 μA 2.48 μW 2.62 μA 2.36 μW

Table 3. WuRx performance comparison.

Parameter [8] [9] [24] This Work

CMOS process (nm) 130 180 130 130
Wake-up frequency (kHz) 14 7~42 14 1–140 1

Operating frequency (GHz) 5.8 5.8 5.8 5.8
Sensitivity (dBm) −44 −47 −45 −46

Power consumption (μW) 36 3.8 45 2.48 *
Chip area (mm2) - - - 0.484

Interface BPF FD BPF IDC
1 Configurable for any specific range. * Without self-hibernation.

The WuRx accuracy and reliability is verified by applying various RF-modulated valid and
invalid signals with different amplitudes and frequencies at the RF_IN input. When the input signal
is valid, meaning its amplitude is greater than the sensitivity and its frequency is in a configured
hysteresis range, the WuRx gives out confirmed wake-up interrupt signal. In the measurement results
in Figure 15a, initially random, invalid OOK sequence, modulated at 5.8 GHz, with a sensitivity of
−46 dBm is applied at the RF_IN input. The baseband signal is successfully recovered by RFED and the
digital WU_SIG from COMP is fed to IDC. As it is clear from the results, the IDC identifies this invalid
sequence and does not generate a confirmation signal. Later, the valid wake-up signal is ensured and
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verified by IDC. If IDC is not used at the comparator output, then WuRx reliability degrades as the
main power hungry receiver is turned on, even with a non-wake-up signal. The consecutive burst of
valid wake-up signals, as shown in Figure 15b, with exactly 14 clock cycles at 14 kHz is applied for
proving proposed WuRx robustness, accuracy, and reliability. For each time, WU_INT is generated for
approximately 1 ms after confirming five clock cycles (WUN = 5) and IDC returns to its ideal state for
the next wake-up signal sensing.

RF_IN

WU_SIG

WU_INT

RF_IN

WU_SIG

WU_INT

Invalid 
Signal

Valid 
Signal

1 2 3 4 5

WUN = 5

TMOD = 1/14 k

FMOD = 14 kHz

1 ms

WUM/WU-M 
Mode

WUM/WU-I 
Mode

FMOD = 14 kHz14 Cycles

1 ms 1 ms 1 ms

WUN = 5

THOLD THOLD THOLD THOLD

(a)

(b)

(b)

Figure 15. WuRx measurement result: (a) initially, invalid random sequence and then valid wake-up
signal; (b) wake-up valid signal burst for robustness testing.

Figure 16 shows different WUM measurement results for various scenarios. In this measurement,
WUN is set to 5 and digital hysteresis, watch-dog timer, and THOLD are configured to 11~18 kHz,
142.8 μs, and 1 ms, respectively. The OSC is configured for wake-up and self-hibernation frequencies
of 140 kHz and 14 kHz, respectively. Figure 16a,b show WUM with WU-I and WU-M configurations,
respectively, in which the WU_SIG frequency is 14 kHz. The WU_INT is generated after sensing and
confirming five successive WU_SIG clock cycles. In normal WUM, IDC and OSC current consumption
from a 0.9 V supply is 38.47 nA and 214 nA, which reduces to 9.7 nA and 107 nA in self-hibernation,
respectively. The self-test is measured in Figure 16c in which the st_sig signal of 14 kHz is generated
by STPG.

Figure 17 summarizes WuRx measurement results with false, poor, invalid signals. Figure 17a,b
shows results when the WU_SIG frequency is out of the configured hysteresis range (11 kHz~18 kHz
in this case) and identifies false wake-up signals. Poor and false wake-up and noise signals are also
perfectly identified and WU_INT is not generated. The signal with a valid frequency but insufficient
number of cycles (less than WUN = 5) is identified and filtered accurately by IDC, as shown in Figure 17c.
Similarly, noise pulses and glitches in the RF signal are converted to a baseband digital signal and
sensed and removed by IDC without generating interrupt and prohibits turning on the power hungry
main receiver. If IDC is not integrated, then all these invalid signals are identified as wake-up signals,
and as a consequence, power on transceiver falsely and degrading battery performance.

The WOM measurement result is depicted in Figure 18 in which TWOI and TWOS intervals are set
for 65 ms and 0.65 s by configuring NWOI = 91 and NWOS = 91,000 according to (8) and (9), respectively.

The measured tuning range of OSC is captured in Figure 19. The OSC capacitor C is implemented
as binary weighted capacitor bank which is controlled from an 8-bit OSC_CTRL signal from IDC.
The measured fCLK.MIN and fCLK.MAX frequencies are 12.16 kHz and 362.37 kHz when OSC_CTRL values
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are all high and all low, respectively, with a total frequency range ΔfCLK of 350.21 kHz. The spectrum
also shows the WUM frequency which is configured as approximately 140 kHz. In self-hibernation
mode, the OSC frequency fSH is configured to about 14 kHz. The WOM clock frequency depends on
the configured parameters for TWOI and TWOS intervals. At fWU of 140 kHz, it draws 214 nA current
from 0.9 V supply which is reduced to almost half in self-hibernation mode.

WU_SIG

WU_INT

DONE

WUM/WU-M 
Mode

WU_SIG

WU_INT

DONE

WUM/WU-I 
Mode

FMOD = 14 kHz

THOLD = 1 ms

FMOD = 14 kHz

THOLD = 1 ms

WU_SIG

WU_INT

DONE

(a)

(b)

(c)  
Figure 16. WuRx measurement results for different IDC wake-up modes with valid signals: (a) wake-up
interrupt (WU-I); (b) wake-up monitoring (WU-M); (c) self-test with WU-I mode.

WU_SIG
WU_INT

WU_SIG
WU_INT

WU_SIG

WU_INT

WU_SIG
WU_INT

FMOD = 9 kHz < FMOD.MIN (11 kHz)

FMOD = 20 kHz > FMOD.MAX (18 kHz)

FMOD = 14 kHz WU_SIG
WU_INT

DONE

DONE
noise pulse

(a)

(b)

(c)

(d)  
Figure 17. WuRx measurement results for invalid signals and IDC identification and filtering: (a) invalid
wake-up signal with modulation frequency of 9 KHz, which is less than the minimum hysteresis
configured limit of 11 kHz; (b) invalid wake-up signal with modulation frequency of 20 KHz, which is
greater than the maximum hysteresis configured limit of 18 kHz; (c) poor wake-up signal with valid
modulation frequency but less number of cycles than the configured value of 5; (d) invalid signal of
noise pulse.
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TWOS = 0.65 s WO_INT

TWOI = 65 ms 

CLK
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NWOI = 91
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CLK
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(b)
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Figure 18. Wake-on mode measurement result: (a) Wake-on sleep of 0.65 s duration when NWOS is
configured with value of 91,000; (b) wake-on interrupt of 65 ms when NWOI is configured as 91.

Start: 10.0 kHz
Stop: 370.0 kHz

fCLK.MIN 

12.16 kHz
fWU 

140.03 kHz
fCLK.MAX 

362.37 kHz

fCLK 

350.21 kHz

 
Figure 19. Oscillator (OSC) frequency range and measurement result.

Figure 20 shows the measured reflection co-efficient, |S11|, for the proposed WuRx. The measured
value of |S11| at 5.8 GHz is about−25.622 dB, which shows the excellent matching. Moreover, |S11| values
at 5.75 GHz and 5.85 GHz are −17.138 dB and −12.876 dB, respectively.

Figure 21 summarizes the detailed IDC post place and route (P&R) simulation results using the
NC-Verilog® tool. The wake-up interrupt mode simulation result is shown in Figure 21a in which
WU_SIG with different frequencies is applied. It is clear from the simulation results that when
the wake-up signal is either less or greater than the configured hysteresis range (11 kHz~18 kHz),
it is identified and filtered out without generating interrupt at WU_INT. The self-test simulation with
one of the configurations is shown in Figure 21b. The STPG generates a variety of valid and invalid
signals for ensuring the functional accuracy of IDC. Instead of a baseband digital WU_SIG signal,
the test wake-up signal st_sig is generated internally by STPG. The IDC accurately generates interrupt
WU_INT after identifying and verifying the signal, as shown in Figure 21b. The self-test enhances
the reliability of IDC itself. The WOM simulation is depicted in Figure 21c in which TWOI and TWOS
intervals are set for 20.8 ms and 0.65 s by configuring NWOI = 2912 and NWOS = 91,000 according to (8)
and (9), respectively.
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Figure 20. RF external on board impedance matching measurement result.
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Figure 21. The IDC post place and route (P&R) simulation result: (a) WU/WU-I with different wake-up
frequencies; (b) self-test with WU_I; (c) wake-on mode with interrupt and sleep durations of 20.8 ms
and 0.65 s.
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7. Conclusions

A highly reliable RF WuRx is presented for ETC systems in this article. For improving WuRx
reliability and enhancing battery performance, the IDC is proposed as final stage. The IDC also
acts as filter and replaces complex and power demanding analog blocks such as BPF, ADC, and FD.
With the proposed configurable digital controller, high reliability and accuracy are achieved by sensing
and ensuring a successive, configurable number of wake-up signal cycles before enabling power
hungry RF transceiver. The presented self-hibernation technique reduces IDC and RC oscillator
current consumption during the non-wake-up period and improves battery life. The digital hysteresis
accommodates wake-up signal frequency variation and enhances WuRx accuracy. To avoid uncertain
conditions during poor and false wake-up, a watch-dog timer for IDC self-recovery is integrated.
During wake-up, the digital controller requires 34.62 nW power. In self-hibernation mode, its current
reduces from 38.47 nA to 9.7 nA. It is fully synthesizable and needs 809 gates for its implementation
in a 130 nm CMOS process with an area of 94 × 82 μm2. The WuRx measured power consumption
is 2.48 μW, has −46 dBm sensitivity, and a 0.484 mm2 chip area. The extensive measurement and
verification make the proposed WuRx an ideal solution for a highly reliable DSRC wake-up circuit.

Author Contributions: K.-Y.L. guided and directed the authors for this research. I.A. proposed, designed,
simulated, and implemented the overall architecture and wrote the paper. M.A., M.R.U.R., D.K., and H.Y.
contributed to the synthesis and place and route (P & R) simulation. They also contributed to the design of the top
layout of the chip. S.J.K. helped writing the paper, designing the testing board, and during the measurements.
Y.P. and S.-S.Y. gave advice about implementation issues and reviewed the paper before submission. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIP) (2014R1A5A1011478).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kwon, K.; Choi, J.; Choi, J.; Hwang, Y.; Lee, K.; Ko, J. A 5.8 GHz integrated CMOS dedicated short
range communication transceiver for the Korea/Japan electronic toll collection system. IEEE Trans. Microw.
Theory Tech. 2010, 58, 2751–2763. [CrossRef]

2. Moazzeni, S.; Sawanm, M.; Cowan, G.E.R. An Ultra-Low-Power Energy-Efficient Dual-Mode Wake-Up
Receiver. IEEE Trans. Circuits Syst. I Reg. Pap. 2015, 62, 517–526. [CrossRef]

3. Polonelli, T.; Huy, T.L.; Lizzi, L.; Ferrero, F.; Magno, M. A wake-up receiver with ad-hoc antenna co-design
for wearable applications. In Proceedings of the IEEE Sensors Applications Symposium, Catania, Italy, 20–22
April 2016.

4. Blanckenstein, J.; Klaue, J.; Karl, H. A Survey of Low-Power Transceivers and Their Applications. IEEE Circuits
Syst. Mag. 2015, 15, 6–17. [CrossRef]

5. Research Institute of Highway Ministry. Electronic Toll Collection-Dedicated Short Range Communication-Part 1:
Physical Layer; China Nat. Standard GB/T 20851.1-2007; Research Institute of Highway Ministry: Beijing,
China, 2007.

6. Liu, H.; Qu, X.; Cao, L.; Liu, R.; Zhang, Y.; Zhang, M.; Li, X.; Wang, W.; Lu, C. A 5.8 GHz DSRC digitally
controlled CMOS RF-SoC transceiver for China ETC. In Proceedings of the IEEE Asia and South Pacific
Design Automation Conference, Jeju, Korea, 22–25 January 2018.

7. Sasho, N.; Minami, K.; Fujita, H.; Takahashi, T.; Iimura, K.; Abe, M.; Yasuda, A. Single-chip 5.8 GHz
DSRC transceiver with dual-mode of ASK and Pi/4-QPSK. In Proceedings of the IEEE Radio and Wireless
Symposium, Orlando, FL, USA, 22–24 January 2008.

8. Choi, J.; Lee, I.Y.; Lee, K.; Yun, S.O.; Kim, J.; Ko, J.; Yoon, G.; Lee, S.G. A 5.8-GHz DSRC transceiver with a
10-μA interference-aware wake-up receiver for the Chinese ETCS. IEEE Trans. Microw. Theory Tech. 2014, 62,
3146–3160. [CrossRef]

9. Zhu, W.; Zhang, D.; Gao, T.; Liu, F.; Yang, H. A 2.1 μA wake-up circuit for Chinese ETC system. J. Electron.
China 2013, 30, 308–312.

19



Sensors 2020, 20, 4012

10. Rekhi, A.; Arbabian, A. A 14.5 mm2 8 nW −59.7 dBm-sensitivity ultrasonic wake-up receiver for power-,
area-, and interference-constrained applications. In Proceedings of the IEEE International Solid-State Circuits
Conference, San Francisco, CA, USA, 11–15 February 2018.

11. Masuda, T.; Ohhata, K.; Shiramizu, N.; Hanazawa, S.; Kudoh, M.; Tanba, Y.; Takeuchi, Y.; Shimamoto, H.;
Nagashima, T.; Washio, K. Single-chip 5.8 GHz ETC transceiver IC with PLL and demodulation circuits using
SiGe HBT/CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco,
CA, USA, 7–11 February 2002.

12. Marinkovic, S.J.; Popovici, E.M. Nano-power wireless wake-up receiver with serial peripheral interface.
IEEE J. Sel. Areas Commun. 2011, 29, 1641–1647. [CrossRef]

13. Kolinko, P.; Larson, L.E. Passive RF receiver design for wireless sensor networks. In Proceedings of the
IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007.

14. Pletcher, N.M.; Gambini, S.; Rabaey, J. A52 μW wake-up receiver with −72 dBm sensitivity using
an uncertain-IF architecture. IEEE J. Solid State Circuits 2009, 44, 269–280. [CrossRef]

15. Shin, S.; Yun, S.; Cho, S.; Kim, J.; Kang, M.; Oh, W.; Kang, S.M. 0.18 μm CMOS integrated chipset for 5.8GHz
DSRC systems with +10 dBm output power. In Proceedings of the IEEE International Symposium on Circuits
and Systems, Seattle, WA, USA, 18–21 March 2008.

16. Drago, S.; Leenaerts, D.M.W.; Sebastiano, F.; Breems, L.J.; Makinwa, K.A.A.; Nauta, B. A 2.4 GHz 830 pJ/bit
duty-cycled wake-up receiver with −82 dBm sensitivity for crystal-less wireless sensor nodes. In Proceedings
of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 7–11 February 2010.

17. Pletcher, N.; Gambini, S.; Rabaey, J. A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless
sensor nodes. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19
September 2007.

18. Cheng, K.; Liu, X.; Je, M. A 2.4/5.8 GHz 10 μW wake-up receiver with −65/−50 dBm sensitivity using direct
active rf detection. In Proceedings of the IEEE Asian Solid State Circuits Conference, Kobe, Japan, 12–14
November 2012.

19. Huang, X.; Rampu, S.; Wang, X.; Dolmans, G.; Groot, H.D. A 2.4 GHz/915 MHz 51μW wake-up receiver with
offset and noise suppression. In Proceedings of the IEEE International Solid-State Circuits Conference, San
Francisco, CA, USA, 7–11 February 2010.

20. Kamalinejad, P.; Keikhosravy, K.; Magno, M.; Mirabbasi, S.; Leung, V.C.M.; Benini, L. A high-sensitivity
fully passive wake-up radio front-end for wireless sensor nodes. In Proceedings of the IEEE International
Conference on Consumer Electronics, Las Vegas, NV, USA, 10–13 January 2014.

21. Khan, D.; Oh, S.J.; Shehzad, K.; Basim, M.; Verma, D.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.Y.
An Efficient Reconfigurable RF-DC Converter with Wide Input Power Range for RF Energy Harvesting.
IEEE Access 2020, 8, 79310–79318. [CrossRef]

22. Khan, D.; Oh, S.J.; Shehzad, K.; Verma, D.; Khan, Z.H.N.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.Y.
A CMOS RF Energy Harvester With 47% Peak Efficiency Using Internal Threshold Voltage Compensation.
IEEE Microw. Wireless Compon. Lett. 2019, 29, 415–417. [CrossRef]

23. Demirkol, I.; Ersoy, C.; Onur, E. Wake-up receivers for wireless sensor networks: Benefits and challenges.
IEEE Trans. Wireless Commun. 2009, 16, 88–96. [CrossRef]

24. Choi, J.; Lee, K.; Yun, S.; Lee, S.; Ko, J. An interference-aware 5.8 GHz wake-up radio for ETCS. In Proceedings
of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012.

25. Ali, I.; Rikhan, B.S.; Kim, D.-G.; Lee, D.-S.; Rehman, M.R.U.; Abbasizadeh, H.; Asif, M.; Lee, M.; Hwang, K.C.;
Yang, Y.; et al. Design of a Low-Power, Small-Area AEC-Q100-Compliant SENT Transmitter in Signal
Conditioning IC for Automotive Pressure and Temperature Complex Sensors in 180 Nm CMOS Technology.
Sensors 2018, 18, 1555. [CrossRef] [PubMed]

26. Chabini, N.; Chabini, I.; Aboulhamid, E.M.; Savaria, Y. Methods for minimizing dynamic power consumption
in synchronous designs with multiple supply voltages. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2003, 22, 346–351. [CrossRef]

27. Joonhyung, L.; Kwangmook, L.; Koonsik, C. Ultra low power RC oscillator for system wake-up using highly
precise auto-calibration technique. In Proceedings of the IEEE European Solid-State Circuits Conference
ESSCIRC, Seville, Spain, 14–16 September 2010.

20



Sensors 2020, 20, 4012

28. Ali, I.; Abbasizadeh, H.; Rehman, M.R.U.; Asif, M.; Oh, S.J.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y.
An Ultra-Low Power, Adaptive All-Digital Frequency-Locked Loop with Gain Estimation and Constant
Current DCO. IEEE Access 2020, 8, 97215–97230. [CrossRef]

29. Abbasizadeh, H.; Ali, I.; Rikan, B.S.; Lee, D.S.; Pu, Y.G.; Yoo, S.S.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y.
260-μW DCO with Constant Current over PVT Variations Using FLL and Adjustable LDO. IEEE Trans.
Circuits Syst. II Exp. Briefs 2018, 65, 739–743. [CrossRef]

30. Cheng, K.; Chen, S. An Ultralow-Power Wake-Up Receiver Based on Direct Active RF Detection. IEEE Trans.
Circuits Syst. I Reg. Pap. 2017, 64, 1661–1672. [CrossRef]

31. Furth, P.M.; Tsen, Y.C.; Kulkarni, V.B.; Raju, T.K.P.H. On the design of low-power CMOS comparators with
programmable hysteresis. In Proceedings of the IEEE International Midwest Symposium on Circuits and
Systems, Seattle, WA, USA, 1–4 August 2010.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

21





sensors

Article

A Highly Accurate, Polynomial-Based Digital
Temperature Compensation for Piezoresistive
Pressure Sensor in 180 nm CMOS Technology

Imran Ali, Muhammad Asif, Khuram Shehzad, Muhammad Riaz Ur Rehman, Dong Gyu Kim,

Behnam Samadpoor Rikan, YoungGun Pu, Sang Sun Yoo and Kang-Yoon Lee *

College of Information and Communication Engineering, Sungkyunkwan University (SKKU),
Suwon 16419, Korea; imran.ali@skku.edu (I.A.); m.asif@skku.edu (M.A.); khuram1698@skku.edu (K.S.);
riaz@skku.edu (M.R.U.R.); rlarlarbrb@skku.edu (D.G.K.); behnam@skku.edu (B.S.R.); hara1015@skku.edu (Y.P.);
rapter@kaist.ac.kr (S.S.Y.)
* Correspondence: klee@skku.edu; Tel.: +82-31-299-4954

Received: 14 August 2020; Accepted: 11 September 2020; Published: 14 September 2020

Abstract: Recently, piezoresistive-type (PRT) pressure sensors have been gaining attention in variety
of applications due to their simplicity, low cost, miniature size and ruggedness. The electrical
behavior of a pressure sensor is highly dependent on the temperature gradient which seriously
degrades its reliability and reduces measurement accuracy. In this paper, polynomial-based
adaptive digital temperature compensation is presented for automotive piezoresistive pressure
sensor applications. The non-linear temperature dependency of a pressure sensor is accurately
compensated for by incorporating opposite characteristics of the pressure sensor as a function of
temperature. The compensation polynomial is fully implemented in a digital system and a scaling
technique is introduced to enhance its accuracy. The resource sharing technique is adopted for
minimizing controller area and power consumption. The negative temperature coefficient (NTC)
instead of proportional to absolute temperature (PTAT) or complementary to absolute temperature
(CTAT) is used as the temperature-sensing element since it offers the best temperature characteristics
for grade 0 ambient temperature operating range according to the automotive electronics council
(AEC) test qualification ACE-Q100. The shared structure approach uses an existing analog signal
conditioning path, composed of a programmable gain amplifier (PGA) and an analog-to-digital
converter (ADC). For improving the accuracy over wide range of temperature, a high-resolution
sigma-delta ADC is integrated. The measured temperature compensation accuracy is within ±0.068%
with full scale when temperature varies from −40 ◦C to 150 ◦C according to ACE-Q100. It takes
37 μs to compute the temperature compensation with a clock frequency of 10 MHz. The proposed
technique is integrated in an automotive pressure sensor signal conditioning chip using a 180 nm
complementary metal–oxide–semiconductor (CMOS) process.

Keywords: temperature compensation; digital controller; piezoresistive; pressure sensor; negative
temperature coefficient; ACE-Q100; CMOS

1. Introduction

Presently, research on pressure sensors and transducers has been gaining significant attention.
These sensors are being adapted widely in variety of applications such as the automotive industry,
biomedical systems, petrochemicals, energy and electric power systems, aerospace, process control and
humidity sensing systems [1–4]. The silicon piezoresistive-type (PRT) pressure sensor is widely used
due to its simplicity, low cost, small size and robustness. In diverse harsh environment applications,
the temperature increases up to 150 ◦C and consistency in sensor accuracy and performance are
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expected. For automotive applications, according to AEC-Q100 grade 0, the ambient temperature
range is −40 ◦C to 150 ◦C [5]. The PRT sensor exhibits non-linear temperature dependency and its
output voltage is influenced by temperature significantly. This complex temperature-dependent nature
adversely affects the accuracy, reliability, precision and performance of piezoresistive sensors. The PRT
sensor input-out and temperature dependent characteristics are elaborated in Figure 1 [6,7]. Other than
non-linear behavior, gain and offset errors, depicted in Figure 1a, the PRT sensor output is highly
dependent on temperature. At constant input pressure, the PRT sensor output voltage has complex
relationship under dynamic temperature environment as shown in Figure 1b. Therefore, real time
temperature compensation is mandatory for accurate and reliable measurement results of a sensor.
In the harsh automotive environment, the temperature dependent pressure sensor variation must be
encountered for accurate and reliable operation. The main drawback of current piezoresistive pressure
sensors is the drop of output voltage with increase in the operating temperature which severely reduces
the measurement accuracy. With the rise in temperature, the crystalline silicon electrical resistance
increases and its piezoresistive coefficient decreases. The PRT sensor temperature sensitivity consists
of temperature coefficient sensitivity (TCS) and temperature coefficient offset (TCO) [8]. The negative
temperature coefficient of the piezoresistive coefficient is the main cause of TCS. The residual stress on
packaging or membrane effects and mismatch values of resistors affects TCO. In the past, different
techniques have been introduced to compensate for temperature variations in pressure sensors. Passive
and active efforts were made to overcome undesired temperature effect on pressure output. In passive
methods, additional resistors are utilized for temperature compensation in half bridge or full bridge
arrangements within the sensor instead of signal conditioning circuit. Typically, the TCS and TCO
are canceled by utilizing temperature-dependent series and trimmed parallel resistors. In active
temperature compensation methodologies, additional temperature sensor is incorporated inside sensor
chip. The TCS and TCO are compensated for by additional value from temperature sensor [8]. Based on
the implementation method, these are categorized into hardware, software and hybrid approaches [9].
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Figure 1. Piezoresistive-type (PRT) sensor transfer characteristics: (a) PRT input-output characteristics;
(b) temperature-dependent pressure transfer curves at different constant pressures.

The passive compensation techniques were also adopted to eliminate pressure sensor output
voltage drop with the increase in temperature [8,10,11]. For a piezoresistive pressure sensor, a built-in
passive temperature compensation technique is introduced in [9]. An extra polysilicon resistor with
negative temperature coefficient of resistivity (TCR) is employed inside a sensor-fabricated patch
instead of the calibration process. In [11], a similar passive resistor temperature compensation
method is presented in which the system parameters are manipulated by using differential equations.
These passive techniques reduce TCS but TCO is not eliminated.

In the literature, several active methods using temperature element such as proportional to absolute
temperature (PTAT), an analog-to-digital converter (ADC) and lookup tables are proposed [7,12,13].
A signal-conditioning integrated circuit (IC) is presented for piezoresistive pressure sensor in [7,13] in

24



Sensors 2020, 20, 5256

which temperature compensation incorporates on-chip PTAT used as the temperature element. The flash
ADC converts the temperature analog signal to digital which is then used to pick a compensation
factor from a look-up table. A similar approach is adopted in analog front end IC for an automotive
capacitive pressure sensor [12]. A band gap reference (BGR) is used as temperature-sensing element
and lookup approach is introduced for compensating temperature effect in pressure value. Such
approaches are not accurate due to low-resolution ADC and the lookup table inside IC is integrated
based on simulation results which causes errors due to PVT variation after fabrication.

Several software-based techniques using either conventional mathematical computation or artificial
neural network (ANN) algorithms have been investigated to compensate for temperature effect on
pressure sensor accuracy [14–18]. In [14], machine learning part is implemented on LabVIEW® system
for algorithm training and compensation part is designed on a microcontroller for a piezoresistive
pressure sensor. The algorithm is trained first on the software system and then trained parameters are
loaded into the microcontroller for real-time temperature compensation. However, the temperature
compensation is valid only for the temperature range of −40 ◦C to 85 ◦C. Two techniques for capacitor
pressure sensor modeling are reported in [15,16] which are based on a functional link ANN and back
propagation neural network, respectively. These modeling based temperature compensation exhibits
better accuracy of 1% FS only in a temperature range of −20 ◦C to 70 ◦C. An intelligent scheme using
back propagation is proposed in [16] which achieves approximately 98% error reduction when applied
to pressure ranges from 0 bar to 1 bar and temperature ranges from 25 ◦C to 80 ◦C. A feed-forward neural
network is implemented on the CMOS analog application specific integrated circuit (ASIC) [17] for
temperature compensation of a piezoresistive pressure sensor. With the presented technique, the error
was reduced to 0.1% for compensated sensor in the temperature range of 0 ◦C to 70 ◦C. However,
ANN-based proposed approaches are complex, requiring machine learning systems with large data
set and exhibits low accuracy. Due to large computation and memory size, these methodologies
are not appropriate for on-chip integration. These approaches do not clarify in neural networks
the configuration and performance. A hybrid approach consisting of hardware and software for
temperature compensation in pressure sensors is reported in [18]. It used a small processor as
hardware compensation and a cubic B-spline based curve fitting algorithm in software. It is an off-chip
compensation which results in an increased complexity. It is also unstable for batch compensation.

In this paper, a polynomial-based highly accurate temperature compensation technique is
introduced. The compensation polynomial of a PRT pressure senor is proposed which is implemented in
fully digital fashion. The negative temperature coefficient (NTC) sensor is used as a temperature-sensing
element and high-resolution sigma-delta ADC (SD-ADC) is integrated. The NTC sensor, connected in
Wheatstone bridge configuration has very high sensitivity of −3% to −6% per ◦C and it demonstrates
comparatively very steep resistance-temperature slope and typically suitable for −55 ◦C to 200 ◦C
temperature range. For automotive applications, according to AEC-Q100 grade 0, as shown in Table 1,
it exhibits high accuracy for the ambient temperature range of −40 ◦C to 150 ◦C.

Table 1. AEC-Q100 compliant operating temperature grades.

Grade Ambient Operating Temperature Range

Grade 0 −40 ◦C to +150 ◦C
Grade 1 −40 ◦C to +125 ◦C
Grade 2 −40 ◦C to +105 ◦C
Grade 3 −40 ◦C to +85 ◦C
Grade 4 0 ◦C to +70 ◦C

The rest of the paper is organized as follows: Section 2 presents architecture of pressure and
temperature sensor interface chip top architecture. The detailed design of the proposed temperature
compensation technique is described in Section 3. The temperature compensation digital controller is
discussed in Section 4. The SD-ADC design is included in Section 5. Section 6 describes a programmable
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gain amplifier (PGA) design. Section 7 describes the experimental results and analysis. Lastly, the paper
is concluded in Section 8.

2. Proposed Pressure Sensor Interface Architecture with Temperature Compensation

Typical signal conditioning integrated circuits nowadays usually perform analog and digital
processing for improving automotive PRT sensor linearity, offset and gain errors [7,19]. Figure 2
shows the block diagram for a proposed PRT sensor interface IC with the presented polynomial-based
digital temperature compensation. For automotive PRT pressure sensor, the highly reliable and
accurate digital temperature compensation is composed of an off-chip NTC sensor, analog multiplexer
(MUX), PGA, SD-ADC and polynomial-based configurable digital temperature-compensation controller
(TCC). The proposed design may be integrated in any pressure sensor exhibiting this architecture
with additional NTC sensor, MUX and TCC. The shared structure is introduced for pressure and
temperature information processing. The main controller (MC) selects one of the sensor path for
taking current pressure or temperature information from MUX. The sensor signal is amplified by
PGA for increasing its range to a proper voltage level. The amplified signal is then fed to SD-ADC
for digital conversion. In the proposed architecture, PGA and SD-ADC are shared for both PRT and
NTC sensors and thus reduce cost and power consumption significantly. The pressure processing
for non-linearities is performed in a pressure processing unit (PPU) while the real-time temperature
compensation is achieved in the proposed polynomial-based TCC. The final pressure code with
temperature compensation is delivered to an electronic control unit (ECU) interface (EI). The EI is
either a digital to analog (DAC) converter with driving buffer amplifier (DA) [7] or it is a digital
serial interface such as single edge nibble transmission (SENT) [19]. In the proposed pressure sensor
interface chip, SENT is incorporated for its interface with the ECU and the final output signal SOUT is
an asynchronous digital signal. Since, the pressure and temperature signals have very low frequencies
of a few kHz, therefore, a low speed, high resolution SD-ADC is used for precise digitization of analog
signals. The digital processing is more robust and reliable compared to analog processing [20,21]. Also,
digital compensation processing is much easier and simpler than in analog techniques. Therefore,
the digital temperature compensation and processing approach is adapted in the proposed system.
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Figure 2. Automotive PRT pressure and temperature sensors signal interface integrated circuit (IC)
with proposed polynomial based digital temperature compensation.

3. Proposed Temperature Compensation

The main drawback of current piezoresistive pressure sensors is the drop of output voltage with
the increase in the operating temperature which severely reduces the measurement accuracy. Ensuring
the accurate operation of the sensor with temperature variation is critical to satisfy the temperature
characteristics of the AEC-Q100 [5]. A novel polynomial-based technique is introduced in a digital way
to compensate temperature variations. The concept of temperature-dependent PRT characteristics and
its compensation polynomial is depicted in Figure 3. The output voltage of the pressure sensor is not a
linear function of temperature and the input-output of a pressure sensor have a complex polynomial
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relationship. Thus the opposite of the polynomial is an ideal solution to compensate temperature
variation accurately with zero error for the full range of temperature.
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Figure 3. Concept of pressure and its compensation polynomials.

The NTC thermistor is connected in a Wheatstone bridge configuration to detect output voltage
variation ΔVNTC as a function of temperature. The NTC gauge factor calibration keeps the NTC output
voltage to a certain range. When the NTC sensor is connected to PGA through MUX, after gain,
and offset calibration of PGA for NTC sensor signal, the temperature information is converted to digital
by a 14-bit SD-ADC. The TCC is a finite state machine (FSM) based configurable digital controller which
integrates compensation polynomial characteristics of pressure sensor as function of temperature.
Based on the characteristics of a PRT sensor, the coefficients of compensation polynomial may be very
small with fractional parts. The scaling technique is introduced to eliminate errors due to fractional
part which results in more accurate temperature compensation.

Figure 4 shows the flowchart for preparing temperature compensation parameters. The different
parameters like the NTC sensor gauge factor, PGA gain and offset for NTC sensor, and compensation
polynomial coefficients are computed before starting temperature compensation. The proposed
temperature compensation parameters are achieved with the following steps:
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Calibrate NTC gauge factor value GFNTC

Start

Apply TMIN and calibrate PGA offset OFNTC values
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Memory   
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Memory   

End  

Figure 4. Temperature compensation parameter preparation flow chart.

1 The MC selects the NTC sensor path from MUX and applies default values from memory for the
gauge factor GFNTC, PGA offset OFNTC and gain GNTC for NTC sensor.

2 The NTC gauge factor is set to its central value and the PGA offset and gain is determined
automatically by the MC for the NTC sensor. For offset cancelation, the minimum temperature is
applied and the PGA is tuned to make ADC output nearest to zero. Then the highest temperature
is applied and PGA gain is tuned to get the highest possible value of ADC output.

3 To find out the temperature compensation parameters, fixed pressure is applied at the PRT sensor
input. The temperature of chip is changed from minimum TMIN to maximum TMAX. Due to
non-linear temperature-dependent PRT characteristics, the sensor output voltages decreases
when temperature is swept from TMIN to TMAX with even fix pressure at its input. Three values of
the pressure code from ADC output in digital format are achieved when the temperature values
are −40 ◦C (minimum), 25 ◦C (mid) and 150 ◦C (maximum), respectively. These values give the
three points P1, P2 and P3 for the complex temperature-dependent pressure characteristics of PRT
sensor as shown in Figure 4. The second-degree polynomial representing this relationship is give
as in Equation (1):

PT = aT2 + bT + c (1)

where a, b and c are the coefficients of polynomial, T is temperature and PT is the
temperature-dependent pressure value. This polynomial is valid if temperature is swept
at different constant input pressure.

4 Compensation characteristic is computed from the temperature-dependent pressure characteristics
with three polynomial points ‘P1,‘P2 and ‘P3 and is given in Equation (2) as follows:
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PT = AT2 + BT + C (2)

5 Since the coefficients A, B and C may have very small values depending on the curve shape for
different sensors, so for digital implement with enhanced accuracy of the polynomial, the scaling
technique is introduced. Both sides of the equation are multiplied by a suitable number 2SF so
that the smallest coefficient has significant integer value, where SF is scaling factor.

2SF.P(T) = 2SF.(AT2 + BT + C) (3)

PS = 2SFAT2 + 2SFBT + 2SFC (4)

PS = AST2 + BST + CS (5)

The final compensation of the polynomial in Equation (5) is designed and implemented in TCC.
During normal operation after temperature compensation and pressure calibration, the compensating
value is determined by downscaling the result of Equation (5) by the same factor of 2SF as follows
in Equation (6):

P =
PS

2SF (6)

Since, in downscaling step, the division is involved. The scaling value is selected in the form
of the power of 2. This technique eliminates the necessity for a binary divider and downscaling is
accomplished by hardware friendly right shift operation.

6 The memory is programmed with compensated parameters of gauge facture GFNTC, PGA offset
OFNTC, PGA gain GNTC and compensation polynomial coefficients AS, BS, C and scaling factor
SF. After reset, these parameters are automatically loaded from memory and are used during
temperature compensation.

During normal operation, when the IC is reset or powered on, the polynomial and
temperature-compensation parameters are loaded from memory to TCC and MC. Since, the NTC and
PRT share the same PGA and SD-ADC, therefore at a time one path is selected by MC. The temperature
change rate is not so high and the temperature path selection is less frequent compared to pressure
sensing duration and most of the time, the PRT path is selected. The final temperature-compensated
pressure code PCMP is given as follows in Equation (7):

PCMP = PCODE ± ΔP (7)

where, PCODE is uncompensated pressure code after PPU processing and ΔP is pressure variation due
to temperature which is compensated for by the proposed design. During normal chip operation, if
some pressure having digital code of PX at temperature TX is applied then it means due to temperature
variation the sensor output is more than the real value. This addition pressure variation need to be
subtracted from PX to obtain PCMP as shown in Figure 3 and is given as follows in Equation (8):

PCMP = PX − ΔP (8)

In this case, when ‘PT is less than a reference value ‘PREF, the ΔP is the difference of ‘PREF and ‘PT
and is described in Equation (9) as follows:

ΔP = PREF − PX (9)

Hence, the final compensated value in this case is computed as follows in Equation (10):

PCMP = PX − (PREF − PX) (10)
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Similarly, if ‘PT value at current temperature TY is greater than ‘PREF, then it shows the pressure
code is less than the actual value. As is clear from Figure 3, in this case pressure variation of ΔPY is
mandatory to add in PY to obtain temperature-compensated PCMP as explained in Equation (11):

PCMP = PY + (PY − PREF) (11)

Finally, if the ‘PT is equal to ‘PREF then it means, there pressure code represents the actual value
and no compensation is needed as clear from conceptual diagram elaborated in Figure 3. In general,
all three PCMP computation scenarios are summarized as follows in Equation (12):

PCMP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PCODE − (PREF − PT) i f PT < PREF

PCODE i f PT = PREF

PCODE + (PT − PREF) i f PT > PREF

(12)

The reference ‘PREF is configurable and its position is adjustable during compensation
polynomial design.

4. Temperature-Compensation Controller (TCC)

The main core of the proposed polynomial-based temperature compensation is designed as a
configurable digital controller. Since, recent research focuses on the digital solutions rather than
analog circuits due to simplicity, scalability, noise immunity along with less power consumption and
reduced area requirement, and therefore the proposed compensation polynomial is designed as fully
digital circuit. Figure 5 shows the block level architecture of the TCC which is mainly composed
of a polynomial FSM controller (PFC), final compensation unit (FCU) and combinational binary
multiplier (CBM). When enabled, the PFC computes the polynomial for configured parameters based
on the current temperature value. Resource sharing is adopted and a single CBM block is reused for
several timely managed multiplication operations to reduce occupied area and power consumption.
The configurable TCC architecture is very flexible and easily scalable for computing any higher degree
polynomial computation at the cost of additional clock cycles. The PFC computes polynomial value
for current input temperature code TDIN when the NTC sensor path is selected. The AS, BS and C are
configurable polynomial coefficients. The coefficients AS and BS are scaled by factor of 2SF. The PFC
is designed with a finite state machine control unit and related datapath which mainly computes
polynomial in several clock cycles. Single-cycle polynomial computation architecture is also possible at
the cost of more hardware for parallel computing. In current design, sequential architecture is adopted
with minimum possible hardware utilization because the temperature variation is not abrupt and
polynomial evaluation is possible in a very short time interval.
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Figure 5. Proposed temperature-compensation controller (TCC) architecture.
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The PFC flow diagram is depicted in Figure 6. The controller remains in power-up state for
configured duration TPU after turning on or being reset. This allows the other blocks of the chip to be
settled down after soft start and also prohibits TCC contributing to the inrush current. The polynomial
parameters such as AS, BS, C and scaling factor SF are saved in the memory after the compensation
procedure and are loaded in TCC registers on power-up. When the signal conditioning chip is in
normal operation then PFC waits for the enable signal from MC. The MC first selects the NTC path and
enable TCC. The current temperature digital code TDIN is sampled in internal register and polynomial
manipulation starts. In the first phase, AT2 is computed. For this first T2 is calculated by CBM and its
result is saved; then in the second multiplication AS and T2 are multiplied and final AST2 is saved in
internal register. Then in next phase, BsT is computed and saved in a separate register. The coefficient
C is unscaled to reduce its size unlike other scaled coefficients AS and BS and, therefore, it is scaled to
factor 2SF. The final polynomial value ‘PS is calculated and down scaled to original value ‘P by just
right sift operation. The scaling value is chosen as power of 2. This eliminates the requirement of
the binary divider and division is achieved by a simple right shift operation. This technique reduces
significant area and cost. When compensation value ‘P based on current temperature and parameters
is ready, then FCU computes the final compensated code PCMP as according to Equation (12). During
the pressure path, the current pressure digital value PDIN is processed by PPU and its value PCODE
remains hold during NTC path. When ‘P is computed, then it is used for pressure compensation.
If TDIN is less than PMID, it means pressure value is higher than the ideal value. In this case, PCODE
needs to be reduced sufficiently so that it becomes equivalent to PMID. Similarly, PCODE needs to be
increased by an amount if TDIN is greater than PMID. When TDIN code is same as PMID then ‘P will also
be equal to PIMID which means the pressure code is already equal to PMID and does not need to be
compensated for. In the proposed structure, compensation polynomial of both positive and negative
slope is designed and selectable from the main controller.
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Figure 6. Polynomial finite state machine (FSM) controller flow chart.
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5. Sigma-Delta Analog-to-Digital Converter

The ADCs are implemented on system-on-chips (SoCs) so that converted digital data may be used
for further digital processing. In the proposed architecture, the signal frequencies to the ADC are in the
low range and precise digitized signals are required, which leads to the design of a low speed and high
resolution ADC. In the previous designs, successive approximation register (SAR) ADC has been used
for this purpose due to its low power consumption. This ADC structure is not suitable for high-accuracy
measurements as it has a limitation in terms of resolution [22–25]. A reconfigurable second-order
SD-ADC is designed for automotive PRT sensor. In the proposed temperature-compensation
architecture, the existing ADC is shared for digitalizing the NTC temperature signal and, therefore,
n additional converter is not required. In SD-ADC, different techniques at system and circuit levels
have been implemented to address the design challenges. Figure 7a represents a simplified top-block
diagram of the SD-ADC. The proposed ADC consists of a second-order sigma-delta modulator (SDM)
and reconfigurable decimation filter (RDF). The chopper stabilization technique is used in each SDM
integrator stage to reduce the influence of low-frequency noise and offset error. The placement of each
cell is also optimized to obtain the required specification of the SD-ADC. A non-overlap clock generator
circuit to overcome delay differences is also implemented in the proposed design. In order to ensure
better stability performance and low area, a second-order discrete-time (DT) SDM with a cascaded
integrator feedback (CIFB) structure is realized. The block diagram of the second order SDM is shown
in Figure 7b. The modulator consists of two switched capacitor integrators whose output is fed back to
the integrators with the coefficients b1 and b2. The values of these coefficients have been derived and
fixed through Simulink® modeling which is done in MATLAB®. Figure 7c shows the schematic level
implementation of the second order SDM. The coefficients a1 and a2 are implemented as the ratio of
two capacitances CS1/CI1 and CS2/CI2, respectively. In the modulator, top and bottom reference voltages,
VREFH and VREFL, define the feedback coefficients b1 and b2 with the optimized values of 0.25 and 1.0,
respectively. A gain-boosted topology is employed for amplifier used in the integrator stages of SDM.
The folded-cascode with P-type and N-type structures are used in gain-boosted structure. Moreover,
the chopper stabilization technique is used to minimize the influence of 1/f noise at lower frequencies.
Moreover, a common mode feedback (CMFB) is applied to all amplifiers to keep the biasing level.
The structure uses a single bit quantizer, consisting of a dynamic type comparator followed by two
set/reset (SR) latch cells, which determine the outputs of the comparator. For small area and low power,
CIC filter structure is used as a decimation filter for SDM [26]. Figure 7d shows that a digital controller
is used along with CIC filter to make it reconfigurable and hence it is used for different date rates and
input signal bandwidth. The decimation factor is configurable among 32, 64, 128, 256, 512, 1024 and
2048 depending upon the required output data rate and input signal.
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Figure 7. Sigma-Delta analog-to-digital converter (ADC): (a) block diagram with sigma-delta modulator
(SDM) and reconfigurable decimation filter (RDF); (b) second order SD-ADC block diagram; (c) second
order SD-ADC circuit diagram; (d) reconfigurable decimation filter (RDF) architecture.

6. Programmable Gain Amplifier with Offset Compensation and Single to Differential Circuits

The programmable gain amplifier with offset compensation circuit (OCC) [7] and single to
differential (STD) is shown in Figure 8. The PGA is designed with three amplifiers and an additional
offset compensation block. To meet the performance requirements, such as high immunity towards
noise and a large signal-to-noise ratio, a differential signal is needed to drive the ADC. A single to
differential amplifier is designed with two amplifiers to convert a single-ended PGA output signal
VPGA to a differential signal pairs V+ and V- as shown in Figure 8. The PGA amplifies the difference
between input signals VP and VN by gain of APGA as described in Equation (13) as follows:

VPGA −VOF = APGA(VP −VN) (13)

The PGA gain, APGA is depended and controlled by ratio of resistors R1 and R4 and is give as
follows in Equation (14).

VPGA = VOF − ΔRI(1 +
2R3

R4
)

R2

R1
(14)

where, I is current passing through NTC or PRT sensor and VOF is OCC offset voltage value. With the
designed resistor values, the PGA gain is controllable from 4.88 V/V to 25.83 V/V with step size of
0.655 V/V. The designed bandwidth is 2 MHz at maximum PGA gain of 25.83 dB. In the pressure sensor
interface IC, the PGA facilitates the digital conversion process for SD-ADC by the amplifying voltage
signal obtained from PRT or NTC sensors and enhances resolution. The output voltage for each sensor
differs slightly depending on the pressure and temperature. This voltage difference is compensated for
by controlling the gain. The offset voltage VOF is applied from OCC. For generating constant offset
voltage for PGA, the compensation circuit in low drop-out structure is used. The VOF depends on
resistors ratio and is obtained by Equation (15) as follows:

VOF = (1 +
ROF1

ROF2
)VBGR (15)
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where VBGR is BGR output voltage. The PGA should not exceed the input range of the ADC at the
pressure range. Therefore, PGA gain and offset are controlled by resistors ROF1, R1, and R4 from
MC These resistors are implemented as resistor backs which are controllable form MC. The final
calibrated resistors codes are stored in memory by the MC digital controller. During normal operation,
the calibrated resistor values are fetched from memory and are applied before reading signal values
from NTC or PRT sensors.
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Figure 8. Programmable gain amplifier (PGA) with offset compensation (OCC) and single to differential
(STD) circuits.

7. Experimental Results

The proposed polynomial-based digital temperature compensation is integrated in piezoresistive
type pressure sensor signal conditioning IC for automotive applications. The design is fabricated
with a 1P6M 180 nm CMOS process. The chip microphotograph is depicted in Figure 9 in which
TCC, SD-ADC and PGA are highlighted. The existing analog front end (AFE) and ADC used for the
pressure path are shared and only with the integration of TCC, the proposed technique is implemented.
The TCC is fully synthesizable and occupies only 465 × 180 μm2 area. The performance of the
temperature-compensation controller is summarized in Table 2. The fully scalable and configurable
TCC architecture requires only 1386 K logic gates for its full implementation and consumes only
1375 μW for its full operation. Figure 10 shows the pressure sensor module with the integrated chip
including the proposed digital compensation. Inside metal cover, PRT, NTC and pressure sensor
interface chip are stuffed on a flexible printed circuit board (PCB). The NTC sensor is connected
in Wheatstone bridge configuration. The NTC sensor has very high sensitivity of −3% to −6% per
◦C compared to PTAT or a resistance temperature detector (RTD). It demonstrates comparatively
very steep resistance-temperature slope and typically suitable for the −55 ◦C to 200 ◦C temperature
range. In the pressure sensor interface IC, the NTC sensor is used for temperature information and
temperature calibration.
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Figure 9. Chip microphotograph.
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Table 2. TCC performance summary.

Parameter Value

CMOS process 180 nm
Occupied area 0.0837 mm2

Gate count 1.386 K
Supply voltage 1.8 V

Current consumption 764 nA
Power consumption 1.375 μW

Clock Frequency 10 MHz
Polynomial 2nd Order

Scalable Yes
Configurable architecture Yes

Pressure Sensor 
Interface IC

PRT Pressure 
Sensor

NTC 
Temperature Sensor

Metal Cover Plastic Housing  

Figure 10. PRT pressure sensor module with PRT and negative temperature coefficient (NTC) sensors
and proposed temperature compensation.

The performance comparisons of the proposed temperature compensation with the exiting
methods are summarized in Table 3. Most of the prior works adopted PTAT and BGR as the
temperature sensor element. Their sensitivity is very low compared to NTC. The NTC exhibits very
high sensitivity in the required temperature range according to AEC-Q100 grade 0. In prior works,
the lookup table (LUT) which is based on simulation analysis is used which results in poor performance.
Furthermore, low-resolution ADC in previous works also limits the accuracy. In the proposed work,
very high-sensitivity NTC temperature element and a 14-bit ADC are used for polynomial-based
digital on the fly compensation.

Table 3. Temperature-compensation performance comparison.

Parameter [7] [12] [13] [27] This Work

CMOS process (μm) 0.35 0.35 0.18 - 0.18

System clock (MHz) 4 8.96 4 - 10

Power consumption (mW) 1 23.5 25 11.8–64.8 20 22.5

Pressure sensor type PRT Capacitive PRT SOS 2 PRT

Temperature range (◦C) −40–+150 −30–120 −40–+85 −20–+140 −40–+150

Temperature method LUT 3 LUT 3 Digital Software PDTC 4

Temperature sensor PTAT BGR PTAT RTD 5 NTC

ADC type Flash Flash Charge
balancing Sigma-Delta Sigma-Delta

ADC resolution 4 4-bit 16 24 14

Deviation (%) FS 6 0.5 1.0 0.1 0.3 0.068
1 Chip current and supply voltage. 2 Silicon-on-Sapphire. 3 Lookup table-based temperature compensation.
4 Polynomial-based digital temperature compensation. 5 Resistance temperature detector. 6 Temperature
compensation deviation from ideal value for full scale (FS).

35



Sensors 2020, 20, 5256

The accuracy is the ratio of deviation of output NMEAS from ideal value NIDEAL to full-scale output
value NFOS, and is given as follows in Equation (16):

Accuracy = Min
{

1− NMEAS −NIDEAL
NFSO

}
× 100(%) (16)

After PGA gain and offset compensation, the minimum and maximum measured digital
temperature codes are 68 and 16,285 when chip temperature is −40 ◦C and 150 ◦C, respectively,
at fixed pressure. With this measured range, the full-scale value is 16,217. The maximum measured
deviation of digital code from ideal value is 11. With these values, from Equation (16) the accuracy is
99.9321%. Hence, the output temperature compensation accuracy is within ±0.06783% with full scale.

Figure 11 explains the experimental environment for measuring temperature-compensation
performance. The pressure is applied from nitrogen gas cylinder and different temperature conditions
are measured with temperature chamber. The digital serial output is received on a computer for
analysis. Different temperature-compensation measurement results are depicted in Figure 12.
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Figure 11. Experiment environment: (a) measurement block diagram; (b) experimental lab setup.
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(a)

(c) (d)

@ 11 bar, PCMP = 16,275 ± 10

@ 8 bar, PCMP = 11,654 ± 9

@ 5.5 bar, PCMP = 7790 ± 9

@ 3.2 bar, PCMP = 4238 ± 11

@ 0.5 bar, PCMP = 76 ± 8

(b)

@ 0.5 bar, PCMP = 76 ± 11

@ 3.0 bar, PCMP = 3929 ± 9

@ 5.0 bar, PCMP = 7018 ± 9

@ 9.0 bar, PCMP = 13,196 ± 9

@ 11 bar, PCMP = 16,275 ± 11

@ 7.0 bar, PCMP = 10,107 ± 8

@ 5.6 bar, PCMP = 7991 ± 9

 

Figure 12. Temperature-compensation measurement results: (a) temperature compensation results at
different input pressure; (b) with and without temperature compensation at 5.6 bar input pressure;
(c) 24-h measurement at different fixed pressure and constant temperature; (d) percentage output
deviation from ideal value at different pressures with full temperature range.

In Figure 12a, various fixed pressures are applied and the temperature is changed from –40 ◦C to
150 ◦C. The pressure range is 0.5 bar to 11.0 bar. The maximum deviation from ideal value is 11 which
results in 0.06783% accuracy including ADC noise. The measurement with and without temperature
compensation is depicted in Figure 12b in which fixed 5.6 bar pressure is applied. The ideal digital
output is 7991 whereas the maximum deviation of ±9 is reported. The fixed pressure is applied at fixed
temperature for 24 h and proposed temperature compensation performance is analyzed. The results
are summarized in Figure 12c. As is clear from results, the digital output is almost constant with
variation in four least significant bits. Figure 12d explains the percentage output deviation from ideal
value for various fixed pressures while sweeping temperature. It also includes ADC noise with input
DC value.

Figure 13 shows the measured fast Fourier transform (FFT) spectrum of SD-ADC with an effective
number of bits (ENOB) of 13.22 bits and signal-to-noise and distortion ratio (SNDR) level of 81.37 dB.
The measurement is done with 0.61 kHz input signal frequency (fIN), input signal level of 300 mV and
an OSR 1024 operating at a sampling frequency (fS) of 2.5 MHz.
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Figure 13. Measured sigma-delta analog-to-digital converter (SD-ADC) fast Fourier transform
(FFT) spectrum.

The detailed post-place and route (P&R) simulation results with a NC-Verilog® simulator of TCC
are elaborated in Figure 14. The polynomial computation for a single input of temperature value is
shown in Figure 14a. The polynomial coefficient parameters AS, BS, C and SF are configured to 75,
205,018, 1 and 24, respectively. The PREF and PCODE are 700 and 5242, respectively. In this simulation,
the temperature TDIN is 3029 when it is enabled from main controller. After enabling, TCC takes
37 clock cycles to compute compensating value ‘PT of 79 which is adjusted to pressure code to compute
compensated pressure PCMP of 4621. The full temperature-seep simulation results are shown in
Figure 14b. It is clear from results that the ‘PT is perfect compensation curve of temperature-dependent
pressure sensor characteristics represented as PCODE.
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Figure 14. TCC simulation results: (a) polynomial computation and temperature compensation for
single iteration; (b) full temperature sweep from −40 C to 150 C with constant input pressure.
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The PGA simulation results including STD for entire configurable gain range is depicted in
Figure 15. The S2D differential output voltage ranges from 114.6 mV to 607 mV when PGA input
voltage difference is 23.0 mV. The PGA gain is controllable from 4.88 V/V to 25.83 V/V with step size
of 0.655 V/V. The gain is controlled from MC with G <4:0> signal. The configurable PGA gain is
acceptable for the SD-ADC with 300 mV of peak-to-peak input.
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Figure 15. Programmable gain amplifier (PGA) simulation results at different gain including STD.

8. Conclusions

A highly accurate, polynomial-based adaptive digital temperature compensation is presented for
automotive piezoresistive pressure sensor applications. By integrating compensation characteristics of
the pressure sensor as function of temperature, non-ideal temperature dependency of the pressure
sensor is accurately compensated. The compensation polynomial is fully implemented in a digital
form with a scaling technique introduced to enhance its accuracy. For area and power efficient
design, a resource-sharing technique is adopted. The NTC instead of PTAT or CTAT is used as a
temperature-sensing element as it offers the best temperature characteristics for ACE-Q100 grade 0
ambient temperature operating range. A high-resolution 14-bit SD-ADC is proposed for improving
accuracy over a wide temperature range. When temperature varies from −40 ◦C to 150 ◦C according
to ACE-Q100, temperature compensation accuracy reported is 99.93% and it is within ±0.068% at
full scale. It takes 37 μs to compute the temperature compensation with 10 MHz of clock frequency.
The proposed technique is integrated in an automotive pressure sensor signal conditioning IC using a
1P6M 180 nm CMOS process.
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Abstract: Closed-loop implantable electronics offer a new trend in therapeutic systems aimed
at controlling some neurological diseases such as epilepsy. Seizures are detected and electrical
stimulation applied to the brain or groups of nerves. To this aim, the signal recording chain must
be very carefully designed so as to operate in low-power and low-latency, while enhancing the
probability of correct event detection. This paper reviews the electrical characteristics of the target
brain signals pertaining to epilepsy detection. Commercial systems are presented and discussed.
Finally, the major blocks of the signal acquisition chain are presented with a focus on the circuit
architecture and a careful attention to solutions to issues related to data acquisition from multi-channel
arrays of cortical sensors.

Keywords: epilepsy; seizure; multichannel neural recording; feature extraction; closed-loop
neurostimulator; low-power; low-noise amplifier; implantable medical device

1. Introduction

Over a long period of time of being constrained to experiment, bioelectricity has matured into
the fundaments of bio-electronic interfaces, paving the way to new therapeutic systems in recording
or stimulation modes of operation. Implantable electronic medical devices (IEMDs) have emerged in
recent years, based on the success of early medical applications of bioelectricity, including for instance
external electro-cardiograms (ECG), recording or external heart defibrillators (stimulation), as well as
based on the advancements of low-power integrated microelectronics.

Commercial IEMD products are multiple and include, for instance, heart monitoring systems
such as the CardioMEMS HF System provided by Abbott Laboratories for heart failure detection [1],
heart pacemakers such as the Momentum X4 provided by Boston Scientific that applies electric pulses
to the heart muscles to regulate its contractions [2]. Additional successful IEMDs include cochlear
implants aimed at restoring hearing capability, pain control devices, deep-brain implantable systems
aimed at controlling and eluding tremors due to Parkinson’s disease, and recently, retina implants
aimed at restoring lost vision by electrical stimulation of remaining healthy retina tissues.

This paper reviews microelectronic techniques aimed at epilepsy control in a closed loop. Epilepsy
is briefly discussed from an engineering perspective in Section 1.1, i.e., with a focus on the conditions
and parameters that are specific and relevant to electrical neuromodulation. The architecture of
epilepsy-control implantable systems is presented in Section 2. Classical electrodes are presented
along with a discussion of electrical recording and stimulation of the brain. Commercial systems
aimed at epilepsy control are reviewed, as implantable and external systems, as open and closed-loop
systems and discussed in terms of their operational principles, advantages and drawbacks in Section 3.
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Finally, analog front-end amplifiers are reviewed in terms of classical topologies aimed at single,
and multi-channel recording from the brain in Section 4. The major blocks in the recording chain that
are specific to epilepsy control are reviewed and discussed. A detailed review of the stimulation chain
is deliberately not considered in this review.

1.1. Engineering Overview of Epilepsy, Seizures and Treatment

Neurological disorders are defined as diseases that affect the nervous system, including the central
and peripheral nervous systems. Among multiple different neurological disorders, several diseases
are prevalent such as amyotrophic lateral sclerosis, brain tumors, epilepsy, Parkinson, etc. Epilepsy
consists of the recurrence of a phenomenon called a seizure. A seizure occurs when the brain produces
a brief abnormal and uncontrollable electrical discharge. Clinically, according to the International
League Against Epilepsy (ILAE) official report [3], epilepsy is considered to be a disease of the brain
defined by any following conditions:

• At least two unprovoked (or reflex) seizures occurring >24 h apart.
• one unprovoked (or reflex) seizure and a probability of further seizures similar to the general

recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years.
• diagnosis of an epilepsy syndrome.

1.1.1. Phases of a Seizure

Seizures often proceed over four consecutive phases; prodromal, auras, ictal and postictal.
Some patients experience a prodromal stage which mostly involves emotional signals. This stage may
develop over hours or even days before the start of the seizure. The second phase which is called aura
occurs immediately before a seizure onset and may last for a few seconds. During aura, patients may
experience déjà vu, jamais vu, headaches and other symptoms. The third phase, which is called ictal,
covers the period over which a seizure extends. This period is correlated with the electrical seizure
activity in the brain. The fourth phase, which is called postictal is a period of recovery from a seizure.
The postictal stage is different among the patients and may last from a few minutes to a few hours.
The recovery period is determined by the type of seizure (Section 1.1.2) as well as the part(s) of the
brain involved in the seizure.

1.1.2. Seizure Classification

Understanding and diagnosis of the seizure type bears a significant implication on the daily
life of an epileptic patient. The type of seizure determines whether a patient can safely perform
some common daily-life tasks, including driving, and sports. Natural tasks with potential high social
impediment are affected by seizures, including walking and communicating. In addition, the type of
seizure has a tremendous impact on understanding which medication is suitable for the treatment or
which medication may potentially be harmful [4].

Describing the different types of seizures was initiated in the times of Hippocrates. In 1964,
Gastaut proposed a new and modern classification of seizures [5]. The traditional classification of seizures
is based on anatomy comprising temporal, frontal, parietal, occipital, diencephalic, or brainstem seizures.
However, the understanding of the mechanism of seizures has evolved thanks to modern research.
In 1981, an ILAE commission classified seizures into partial and generalized-onset, simple and complex
partial seizures, as well as various specific generalized types [6,7]. This classification was established
from the study of hundreds of video–electroencephalography (EEG) recordings of seizures. This latter
classification is the main reference to date, with some terminology revisions [8,9]. One of the newest
classifications is the 2017 classification proposed by ILAE [7]. The overview of the new classification is
shown in Figure 1. With respect to the 1981 classification, the 2017 classification significantly reduces
the number of unclassifiable cases. The combination of motor/non-motor and awareness level features
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provides better flexibility and detailed seizure description [10]. The new classification is based on several
important facts expressed as follows [4]:

• The onset or beginning of a seizure;
• a person’s level of awareness during a seizure, and
• whether body movements occur during a seizure.

Figure 1. The new classification of seizure types based on the International League Against Epilepsy
(ILAE) report (Reprinted with permission of Wiley Periodicals, Inc. © 2017 International League
Against Epilepsy) [7].

Based on the 2017 classification, three major groups of seizures are observed, including generalized
onset seizures, focal onset seizures and unknown onset seizures. Generalized seizures affect both
sides of the brain or group of cells located over both sides of the brain, simultaneously. Focal seizures
(Partial seizures in the 1981 classification) start in one area or group of cells in the brain. Unknown
onset seizures is the term used when the location of the seizure onset is unknown.

1.1.3. Statistics

According to World Health Organization (WHO) [11], approximately 50 million people worldwide
suffer from epilepsy. 80% of them live in low and middle-income countries. Among them 75% do not
receive proper treatment. The estimated proportion of the general population with active epilepsy
(continuing seizures or with the need for treatment) is between 4 and 10 per 1000 people. However,
this number is much higher in low and middle-income countries, i.e., between 7 and 14 per 1000 people.

Each year, 2.4 million people are diagnosed with epilepsy [11]. The estimated proportion of
new cases with epilepsy in high-income countries is between 30 and 50 per 100,000 people. This rate
doubles in low and middle-income countries.

1.1.4. Epilepsy Treatment

Several studies have explored the reason for the initiation of seizures [12,13]. The importance
of finding the reasons and origin lies in the correct diagnosis and treatment of epilepsy. No medical
treatment can be safely provided without having knowledge of the different sources that cause epilepsy.
The development of modern medical devices and implantable systems participate in improving the
understanding of the origins of epilepsy.

The treatment of epilepsy is composed of three levels. The first level is the treatment with
medications. Several anti-epileptic drugs (AEDs) are available for epilepsy patients. There are
approximately 25 different AEDs suitable for controlling seizures; different AEDs are suitable for
different seizure types. The benefits of AEDs consist of the reduction of stopping seizures and risk of
accidents. A first-line AED is an AED that is tried first in the therapy. The AEDs added to the first-line
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AED are called second-line AEDs. The success rate of the third medication delivered after trying two
different medications is approximately 5%.

Epilepsy is defined as a drug-resistant epilepsy when a patient has unsuccessfully tried two
different anti-seizure medications. The second level of epilepsy treatment is lobectomy. Lobectomy is
the removal of the part of the brain that is responsible for seizure initiation, if the region is uniquely
detectable, and if it is not in a sensitive region of the brain. Before lobectomy, surgeons must find the
precise location of the brain from which the seizures start. Following modern medical procedures,
seizures can be identified and categorized using three Tesla magnetic resonance imaging (3T MRI),
video-EEG, single-photon emission computed tomography (SPECT), magnetoencephalography (MEG)
scan and positron emission tomography (PET) scan as prerequisites of further treatment steps.
A resection surgery would be prescribed in cases of a focal seizure and if a single location can
be identified [14]. In a resection surgery, a part of the skull is temporarily removed by craniotomy and
the part of the brain which is engaged in the seizure initiation is removed. Laser thermal ablation is
another way to stop the seizures, which is a minimally invasive method. This method is performed
in the MRI in real time. In this surgery, during an MRI scan, the part of the brain that is engaged in
the seizure initiation is heated up and destroyed, while local temperature is monitored using the MRI
scanner. This method can only be employed in limited areas of the brain.

In order to precisely detect the part of the brain that is a target of resection surgery or laser thermal
ablation, intracranial monitoring is necessary, which is a diagnostic surgery. Intracranial monitoring is
carried out in two different ways, including recording using subdural grids and strips or stereo-EEG
using SEEG electrodes.

Patients responding to prevalent cures like medications and surgeries are approximately
70%, while approximately 30% of the patients are untreated or poorly treated because of the
following reasons:

• Seizures diffuse over an excessively large area;
• seizures occur in sensitive areas of eloquent cortex that may not be surgically treated;
• seizures have multiple foci (multifocal seizures) which are thus difficult to individual localization

and in practice impossible to surgically treat;
• surgery may not be tolerable due to specific medical conditions.

Implantable electrical stimulators offer an alternative therapy to untreated or poorly treated
patients whose seizures are not controlled using medication or surgery. These stimulator systems
either operate in an open-loop or closed-loop mode. IEMDs operating in open-loop stimulation only
consist of electrical stimulators. In contrast, closed-loop stimulators record neural signals from the
brain and detect the seizure onsets. Upon seizure detection, closed-loop stimulators trigger electrical
stimulation. Commercial stimulators are reviewed in Section 3.

Intracranial Pressure (ICP) is reported to influence drug-resistant epilepsy in some cases. In [15],
a 23-year old patient was reported as the case study. In this study, an increase in ICP is shown to
augment the efficiency of anti-seizure medications. The epileptic patient had undergone a shunt
surgery in childhood to decrease the ICP. The patient had uncontrolled seizures in spite of three years
of pharmacotherapy. However, the uncontrolled seizures suddenly stopped after shunt removal.

2. Introduction to Epilepsy Control Using Implantable Microelectronic Systems

Several electronic building blocks are essential to design and implement a low-power seizure
detection system. These blocks are also some of the main building blocks of an epilepsy control
system. Figure 2 shows the general overview of a low-power seizure detection (Figure 2a) and epilepsy
control (Figure 2b) system. Both systems have common essential building blocks which are shown
with gray boxes including the analog front-end (AFE), analog-to-digital converter (ADC), and seizure
onset detector (SON). The Epilepsy control system has an additional essential building block which
is the electrical neural stimulator aimed at suppressing or modulating the seizure electrical activity.
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In addition, data compression may be applied prior to feeding the data to the SON to lower the power
consumption of the systems. Data compression can be done either in analog or digital domains.

In the following, the operation principles of some of these blocks are briefly reviewed, including
the neural amplifiers, compressive sensing and feature extractors inside the SON block.

Figure 2. General overview of (a) a low-power seizure detection, and (b) a low-power seizure
control systems.

2.1. Electrical Stimulation

The historical developments of electrical stimulators are considered to begin in the European
post-Middle Ages, especially from the 16th century when a Dutch scientist, Jan Swammerdam,
performed the first experiment on the muscle of a dissected frog [16]. He realized that the severed
muscle of a frog is contracted by irritation. The idea of contracting a muscle by a stimuli had an
important impact on neuroscience by demonstrating the fact that the observed behavior is based on
the stimuli. More than one hundred years after Swammerdam’s first experiment, on 6 November 1787,
Luigi Galvani realized that a frog muscle can be contracted by placing an iron wire to the muscle and a
copper wire to the nerve during a random experiment. He observed that an animal body performs
convulsive movements when electricity is applied to it. The work of Galvani inspired Alessandro
Volta to invent the voltaic pile in 1799. Using a voltaic pile, Luigi Rolando performed the first cortical
stimulation experiment on an animal cortex in 1809. Indeed, Rolando is well-known for his pioneering
research on brain localization of function. In 1825, J.-B. Sarlandiere published an extensive study on
the benefits of electricity for pain relief by applying electricity to acupuncture needles. Gustav Fritsch
and Eduard Hitzing published an article in 1870, showing that the stimulation of some specific part of
the cortex leads to muscle contraction in dogs. Robert Bartholow, who was an American physician,
was the first to report the findings of a study on electrical stimulation applied to the cerebral cortex of
an awake human in 1874. All of these studies led to the design and introduction of different types of
modern electrical stimulators and implantable stimulation devices.

Medical devices for electrical stimulation can be considered to belong to two classes, including
implantable electrical stimulators and external electrical stimulators. External electrical stimulators are
also categorized as transcranial and transcutaneous electrical stimulators. Some of the well-known
external electrical stimulation methods include transcranial Alternating Current Stimulation (tACS),
transcranial Direct Current Stimulation (tDCS), transcutaneous Trigeminal Nerve Stimulation (tTNS),
transcutaneous Vagus Nerve Stimulation (tVNS) and transcutaneous Electric Nerve Stimulation
(tENS). Each type of external electrical stimulator is developed, aiming at a specific application and
target. For example, tTNS stimulators are currently commercialized for the relief and prevention
of headaches. A commercialized tTNS is designed by Cefaly Technology. Implantable stimulators
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including deep-brain stimulation (DBS), retinal implants, pacemakers, cochlear implants and functional
electrical stimulation (FES) are employed to assist or restore the functionality of organs that are
not properly functioning. Electrical stimulators operate on the principle of initiating an action
potential (AP) upon the transfer of electrical charge into excitable tissue. Electrical stimulators
operate in three distinct modes, namely voltage-mode stimulation, current-mode stimulation and
charge-mode stimulation.

Safety issues of biological cells impose a strict condition on the electrical pulses, i.e., a biphasic
stimulation is necessary to prevent tissue damage and any long-term effects such as pH shift (during
the usage of IEMDs) and erosion of the electrodes. Biphasic stimulation consists of a cathodic phase
followed by an anodic phase. During the cathodic phase, the cell membrane is depolarized. Then,
the anodic phase neutralizes the charge which has been injected during the cathodic phase. For exerting
a safe stimulation, the voltage across the electrode must be constraint within a specific window.
In addition, to block any direct current passing through the tissue, a large off-chip capacitor, namely a
blocking capacitor, is placed in series with the stimulation electrode. This capacitor blocks the flow
of any dc current through the tissue in case of semiconductor failure which makes the stimulator
fail-safe. However, in multichannel stimulators such as retinal or cochlear implants, a large silicon
area cannot be allocated to the large blocking capacitors. Hence, various circuits are proposed in the
literature to substitute blocking capacitors with active circuits and to reduce the overall size of the
stimulation system.

2.2. Physiological Signal Recording

The current healthcare systems are expected to deal with two major issues including chronic
diseases and global population aging [17–19]. Early detection, as well as timely treatment of diseases,
require monitoring systems that allow physicians to closely monitor the physiological signals
of their patients. Acquiring physiological signals requires robust, light-weight and low-power
wearable or implantable electronic medical devices. There are several important physiological
signals that provide vital information of the human body such as electromyogram signals (EMG),
electroencephalogram signals (EEG), electrocardiogram signals (ECG), phonocardiogram signals
(PCG), electroretinography signals (ERG) and photoplethysmograms (PPG). Each of these signals
has its own electrical characteristics, i.e., they have specific bandwidth and maximum amplitude.
The bandwidths of some of these signals are depicted in Figure 3.

Figure 3. Bandwidths of some vital physiological signals (modified from [20]).

Although epilepsy can be detected from different physiological signals, the most important signal
to predict or to detect a seizure onset are neural signals recorded from the brain. The following
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Subsection describes the characteristics of different types of neural signals that can be recorded from
different types of electrodes.

Neural Signal Recording

Historically, electrophysiology is based on the discovery of Italian scientist Galvani (1737–1798).
Galvani realized that the tissues of frog muscles exhibit electrical potential. Studies on the living
tissues continued until Hans Berger (1873–1941) discovered the human electroencephalogram (EEG).
Berger could record the first human EEG signal using a Siemens double-coil galvanometer in 1924.
When Berger’s work was confirmed, EEG started to be used in clinical trials. Although vacuum
tubes amplifiers were available since 1906, it took long time before they were used in the recording
of neural activities. A group of researchers including Fredrick Gibbs (1903–1992), Hallowell Davis
(1896–1992) and WG Lennox (1884–1960) with an EEG technician, namely Erna Gibbs (1906–1987),
demonstrated EEG signals corresponding to a clinical absence attack [21] in 1935. They showed that the
inter-ictal signals corresponding to an absence seizure attack have a specific signature of three spikes
per second. Shortly after, in 1936, F. Gibbs demonstrated the importance of EEG in diagnosis and
localization of epileptic seizures. Collaboration between F. Gibbs and Albert Grass, a MIT graduate,
resulted in the development of EEG recording systems which smoothed the way for Grass Instrument
Company. Grass Instrument Company was founded by A. Grass and his wife, Ellen, in 1945 and was
acquired by Astro-Med Inc. in 1994, two years after the death of A. Grass. In 1946, the American EEG
society (AEEGS) was founded and a year after, in 1947, the first annual meeting of the American EEG
society was held in Atlantic City, NJ on 13–15 June [22]. In 1950s, William Grey Walter (1910–1977)
developed the first EEG topography machine which can show a map of brain activity. During this
decade, Wilder Penfield (1891–1976) and Herbert Jasper (1906–1999), neurosurgeons at the Montreal
Neurological Institute, developed electro-corticography (ECoG) as a part of a surgical procedure for
treating patients with severe epilepsy. The brain activity is recorded from the cerebral cortex using
ECoG. It is shown that recording using ECoG has higher spacial resolution than EEG. Thus, this method
is preferred for finding the regions of the cortex that generates epileptic seizures. Until now, recording
brain waves has evolved thanks to the improvements in the technology of the electrodes. Nowadays,
recording the activity of a single neuron is possible.

Decoding the functional operation of the brain requires recording of the electrical activity of
neurons of the central nervous system [23]. Understanding and diagnosing neurological disorders such
as epilepsy are based on the recording of the brain electrical activities. Furthermore, neural recording is
a major module of brain–machine interfaces and neuroprosthetic technologies that aim at aiding
paralyzed patients [24–26]. The demand for technologies that empower the neuroscientist and
clinicians to observe the electrical activity of a large population of neurons in the brain has increased
in the last decade. Extremely complex circuit solutions are needed to simultaneously monitor a
large population of neurons in the brain that exceeds hundreds of cites in some applications [27],
Simultaneous recording of the neural activities requires low-noise, low-power and area-efficient
amplifiers. Good gain matching over the various channels and low crosstalk over the channels are
other criteria.

The neural signals of interest for the recording of the brain activity using implantable devices
have a frequency band of 1 Hz to 5 KHz [28]. As shown in Figure 4 [25,28–30], these signals consist
of local field potentials (LFPs) and action potentials (APs) which are shown to include biomarkers
that are useful for diagnosis and therapy of neurological disorders. LFP signals occupy a frequency
band of 1 Hz to 100/200 Hz and a voltage range of 0.5–5 mV. AP signals have a frequency band of
100/200 Hz to 5 kHz with a voltage range of 50–500 μV. In addition, recording electrodes introduce
background noise due to their resistance. This noise is thermal noise. Typically, noise integrated in the
LFP bandwidth is smaller than 2 μVrms whereas noise integrated into the AP bandwidth is smaller
than 5 μVrms. On account of the dynamic range of the LFPs and APs, an ADC with an effective number
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of bits (ENOB) larger than 12 to 14 bits is required for recording LFPs and an ADC with an ENOB
higher than 8 to 10 bits is required for recording APs.

Figure 4. Signals characteristics in neural recording systems.

Signal conditioning is the first step to accommodate the signal before digitizing it to ensure
accurate reading of neural activities. As shown in Figure 5, a low-noise amplifier (LNA) is the first
stage in the front-end acquisition chain, in which neural signals of small amplitudes are amplified.
In this stage, the amplifier should offer a high-pass filtering behavior in order to filter out the large
electrode dc offset (EDO). Classically, the gain and bandwidth of the LNA is fixed. Following the LNA,
a programmable-gain and bandwidth amplifier (PGA) is used to maximally cover the input range
of the ADC that follows in the signal conditioning chain. Analog-to-digital converters (ADCs) are
normally used to digitize acquired signals into data prior to its further processing or transmission
from the implanted device to the outside of the body. One of the most important features of a neural
amplifier is its input impedance. Since most of the electrodes present a 1 kHz impedance (Z1kHz) of
less than 200 kΩ [31], the input impedance of the amplifier should be much larger than this value to
accurately record the neural signals.

In a conventional sensing system, one amplifier is designed at each sensor site. To ensure matching
and to reduce the level of the noise, the input stage of the amplifier consumes the largest portion of the
power that is provided which allows it to satisfy matching constraints while reducing the electronic
noise level. Different signal-to-noise ratio (SNR) are required to record different types of neural signals,
and thus, the amplifiers are tuned for the specific targets of recording. Reducing the amplifier internal
noise and its power are a trade-off that must be optimized in careful consideration of the target signals
and application.

Recording electrodes are required to transduce neural signals that consist of transmembrane ion
exchanges into electrical signals that can be processed by microe-elctronic and information systems.
The type of electrode is adapted to the target of the neural recording in the brain. Different types of
neural recording electrodes are depicted in Figure 6. A brief description of different types of electrodes
is provided in the following:

• Electroencephalography (EEG) Electrode ([32–34]): EEG electrodes are placed on the surface
of the scalp. The international 10–20 system is a well-known and internationally recognized
distribution of each of the EEG electrodes on the scalp. EEG recording offers several applications
including brain-machine interfaces (BMI), polysomnography (PSG) for a sleep study, seizure
detection, as well as other medical applications aiming at brain research. EEG recording is not
an invasive method. The amplitude and bandwidth of the neural signals recorded by EEG
electrodes are significantly smaller than the signals recorded by implantable electrodes due to
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the filtering behavior of cerebrospinal fluid (CSF), dura, skull and scalp. Furthermore, the fragile
EEG signals are more exposed to different sources of artifacts including patient-related artifacts
(e.g., movement, sweating, ECG, eye movements) and technical artifacts (50/60 Hz artifact,
cable movements, electrode paste-related). The bandwidth of the EEG signals lies in the bandwidth
of the LFP signals.

• Intracranial Electroencephalography (iEEG) [35]: Recording the neural signals inside the skull
provides better signal quality in terms of signal-to-noise ratio and bandwidth. Intracranial EEG
recording can be done using different types of electrodes including epidural electro-corticography
(ECoG) electrodes, subdural ECoG electrodes, intracortical electrodes and depth electrodes.
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Figure 5. Simplified block diagram of a practical neural recording system.

Figure 6. Placement of the different types of electrodes for neural recording.
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Epidural ECoG electrodes [36,37]: this type of electrode is placed between the dura and skull.
Hence, the dura need not be incised and opened for the placement of the electrodes on the cortex.
This type of electrode is implemented in both micro-electrode and macro-electrode arrangements.
Epidural electrodes are either strips of electrodes or a multicontact array as shown in Figure 7a.
Epidural ECoG electrodes are suitable for both recording and stimulation.

Figure 7. Different types of electrodes for neural recording including (a) grid array for intradural
or subdural recording, (b) laminar intracortical electrodes, (c) intracortical micro-electrode array
(Reprinted with permission of Wiley Periodicals, Inc., © 2003 The American Laryngological,
Rhinological and Otological Society, Inc.), [38]) and (d) SEEG electrode (Courtesy DIXI medical).

Subdural ECoG electrodes [39]: This type of electrode is placed between the dura and the surface
of the cortex. In this case, the dura must be incised for the placement of the electrodes on the cortex.
This type of electrode is implemented in both micro-electrode and macro-electrode arrangements.
The design of the Subdural electrodes is identical to Epidural electrodes as shown in Figure 7a.
Subdural electrodes record LFP and AP signals, also depending on the size of the electrode. The main
advantage of Subdural electrodes is the large coverage of the brain which enables performing a wide
range of cognitive studies. Subdural ECoG electrodes are suitable for both recording and stimulation.
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Intracortical electrodes [40]: intracortical electrodes are mainly micro-electrodes that are designed
to record the signals from different layers of the brain. This type of electrode can perform single-unit
recording, where a unique integrated circuit embeds the amplifier(s) or multi-unit recording where
several integrated circuits embed multiple amplifiers, depending on the size of the electrode.
In general, there are two types of intracortical electrodes including Laminar electrodes (Figure 7b) and
micro-electrode arrays. These are also commonly known as neural probes or shank-based electrodes,
e.g., [41]. The Utah electrode (Figure 7c) is a micro-electrode array contains up to 96 electrodes which
enable high-density multi-channels recording from a large population of neurons, providing valuable
data by delivering high spatial resolution within a small area of the brain.

Depth electrodes [42]: depth electrodes are placed at a precise location in the brain using a
stereotactic system. Hence, this type of electrodes is also called stereoelectroencephalography (SEEG)
electrodes. SEEG electrodes are suitable for recording and stimulation. Figure 7d shows a SEEG
electrode manufactured by DIXI Medical [43].

2.3. Additional Blocks of Closed-Loop Epilepsy Control System

Neural signals that originate from several electrodes that are distributed over the surface of the
cortex are digitized and can then be processed. Filtering and compressing are two classical digital
processing, with which encryption has recently been complemented. In terms of the core functionality
of the epilepsy control implantable system, seizures should be detected from the multi-channel
recorded data. Algorithms aiming at seizure onset detection and seizure prediction should be accurate
in terms of sensitivity and specificity such as to conceive durable and long-lasting IEMDs for seizure
prediction and closed-loop stimulation. In addition, algorithms that are used in closed-loop stimulation
systems should have a tolerable latency. An ideal seizure detector used in a closed-loop system has
a sensitivity of 100% and a specificity of 100% or a false alarm rate (FAR) of zero. The importance
of sensitivity is higher than specificity. Indeed, with a perfect sensitivity of 100%, a closed-loop
stimulation system can detect and suppress all seizures. Improving the specificity of the seizure detector
enables the closed-loop stimulation system to save power by reducing the periods of unnecessary
stimulation. Furthermore, the seizures should be detected in advance or with small latency such as
to be suppressed by the stimulation. Failing to satisfy the latter constraint, stimulation may not be
effective for suppressing the seizures [44].

Delivering power to implanted devices is one of the major challenges in the design of IEMDs.
Powering should be carried out over a wireless link, through the living tissues consisting of the scalp
or skin layers. If the powering is not efficient, excessive heat due to power loss may damage the tissues
around the IEMDs or may cause strange and unwanted sensations to the patients. Powering an IEMD
requires applying several technologies including implantable batteries, energy harvesting or wireless
power transfer. Two types of batteries are suitable for IEMDs consisting of primary batteries that are
non-rechargeable, and secondary batteries that are rechargeable. Medical-grade battery equipped
IEMDs are designed to include such technology. Several companies in the world provide medical
batteries such as Eaglepicher [45]. Energy harvesting, which is also known as energy scavenging or
ambient powering, is a process in which energy is captured from the environment and stored for
further usage in small and ultra low-power systems. Energy sources may originate from external
sources including solar power, thermal energy, or kinetic energy. Wireless power transfer is also a
method that is suitable to power an implantable electronic system. Wireless power transfer (WPT) is
also used to recharge the secondary medical-grades batteries in IEMDs.

Implantable electronic medical devices also require a wireless data transceiver. A data transceiver
or a data receiver are implemented depending on the type of IEMD that is used for epilepsy control.
An IEMD operating in an open-loop stimulation does not necessarily require the presence of a wireless
data transmitter; however, a data receiver is needed for setting the stimulation parameters. On the
other hand, an IEMD used for intracranial recording or closed-loop stimulation requires a wireless
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data transceiver to set the internal parameters as well as to send the recorded data to an external
base station.

3. Commercial Systems and Products for Epilepsy Control

Commercial devices for seizure alerting and epilepsy control are reviewed in this section.
These devices are considered to be partitioned into two categories, namely invasive medical devices,
or implantable electronic medical devices, and non-invasive medical devices.

3.1. FDA Approved Implantable Electronic Medical Devices

Commercial IEMDs that are proposed in epilepsy control therapy apply electrical stimulation.
These devices may operate as open-loop or closed-loop devices. In the case of open-loop stimulation,
electrical stimulation is applied to the brain or group(s) of nerves without detecting any feedback from
the body. On the other hand, closed-loop devices record physiological signal(s) and process them to
adapt the stimuli. A closed-loop system would only stimulate the brain or a group(s) of nerves upon
detection of seizure onset.

Although the quality of epilepsy detection and control of IEMDs is significantly better than it
is in non-invasive medical devices, employing IEMDs presents several disadvantages, including the
necessary surgery, perioperative risks, as well as side-effects such as hoarseness, throat pain, coughing,
dyspnea, paresthesia, to quote the most prominent [46]. The potential of causing these symptoms
enters into the decision of implanting and the selection of the device type. Governmental agencies
approve devices and systems that can be implanted; these agencies are local to a country or group
of countries, and include the U.S. Food and Drug Administration (FDA, USA), the Chinese National
Medical Products Administration (NMPA, China; formerly the China Food and Drug Administration,
CFDA), the European Economic Area CE Marking (CE marking, Europe).

3.1.1. Vagus Nerve Stimulation Therapy

Vagus nerve stimulation (VNS) therapy was approved by the FDA in July 1997, for the treatment of
epilepsy in patients who suffer from drug-resistant epilepsy. The request was presented by Cyberonics
Inc. [47] which was subsequently renamed LivaNova. The VNS therapy consists of sending mild
electrical pulses to the brain through the vagus nerve (generally the left vagus nerve) using an electrical
pulse generator as shown in Figure 8. The stimulation parameters are set within a frequency range of
1 Hz to 30 Hz, a current range of 0 mA (no stimuli) to 3.5 mA and a pulse-width range of 130 μs to
1000 μs [48]. The vagus nerve is one of the longest nerves in the body that originates from the brain
stem located on both sides of the brain. The vagus nerve is a part of the parasympathetic nervous
system which is responsible for recovery and digestion, in particular. The benefits of VNS therapy
may include fewer seizures, shorter seizures, better seizure recovery time, decreased seizure severity,
less medication, improved mood and memory and generally improved quality of life of epileptic
patients. The major adverse effects of VNS include voice alteration, coughing and shortness of breath
as well as headache and neck pain. A study [49] of 60 patients with VNS therapy shows that the most
common adverse effects that affect more than 20% of the patients were voice alteration (55%) and
headaches (22%). In 1997, the premarket approval application (PMA) from FDA for VNS therapy
(PMA number of P970003) indicated that this device is approved for use as a therapy in adults and
adolescents over 12 years old. In the new version of this PMA with PMA number P970003/S207,
the FDA added the patients within 4–11 years old to the VNS therapy approval. Hence, this made
VNS therapy the only candidate of IEMDs that are suitable for patients less than 18 years old.

There are three types of vagus nerve stimulators for epilepsy control proposed by LivaNova
including the standard model, the AspireSR and SenTiva. The standard model VNS is the earliest
device designed for epilepsy therapy which only offers basic programming features. The most common
stimulation pattern using this model consists of 30 s of stimulation every 5 min [50]. In the standard
model, a magnet is provided to apply additional stimulation during a seizure. The new model of VNS
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is a closed-loop VNS based on heart rate signal acquisition and processing. This model, namely the
AspireSR (Figure 8a), received the CE mark in Europe in February 2014. A study [51] of 66 seizures
from 16 patients using a closed-loop VNS shows that the cardiac-based seizure detection presents more
than 80% sensitivity. In addition, the severity of the seizures was significantly reduced after 3–5 days
of closed-loop stimulation. In general, this study confirmed that using a cardiac-based closed-loop
VNS presents an acceptable sensitivity and specificity for triggering the stimulation. The AspireSR can
also apply pre-programmed stimulation throughout the day and night. The third and the newest VNS
product is SenTiva shown in Figure 8b. This device offers similar characteristics as the AspireSR with
some additional features. For example, SenTiva can detect if a patient is lying after a seizure, revealing
a potential loss of consciousness; in addition, it can be programmed to apply a different amount of
stimulation at different times of the day. The VNS is FDA-approved for MRI under specific conditions.
The estimated battery life for SenTiva is 4.9–10 years [52].

Figure 8. Vagus Nerve Stimulation (VNS) devices by LivaNova [47] including (a) AspireSR and
(b) SenTiva, (Reprinted with permission; copyrighted material of LivaNova).

3.1.2. Responsive Neurostimulation

The responsive neurostimulation (RNS) therapy is a method for epilepsy control that received
FDA approval in 2013. The RNS system, which is placed on the skull of the patient as shown in Figure 9,
monitors the neural activity of the brain using two leads. Each lead has four electrode contacts that are
used for stimulation and recording. Four amplifiers are used to the aim of recording neural signals.
Each lead contains four electrodes that can be assigned to one or two out of four amplifiers [53].
The RNS system can store up to 30 min of ECoG activity [53]. The stimulation parameters are set
within a frequency range of 1 Hz to 333 Hz, a current range of 1 mA to 12 mA and a pulse-width
range of 40 μs to 1000 μs [54]. The current density limit of the stimulation equals 25 μC/cm2 in each
phase, while the current density is usually much less than the limit [55]. The stimulation can be
applied between any two stimulation electrodes or between the electrode and the neurostimulator
case. Typical stimulation parameters include a current of 1.5–3 mA, a pulse width of 160 μs, a burst
duration of 100–200 ms, and a frequency of 100–200 Hz [54].

The RNS system continuously monitors the brain signals and employs several methods to extract
the appropriate feature required for seizure detection. Three algorithms are employed by the RNS
system to detect seizures, namely the area, line-length and half-wave algorithms. Physicians can
change the algorithms’ parameters to obtain an appropriate sensitivity, specificity and latency.
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Figure 9. FDA approved responsive neurostimulation (RNS) system for closed-loop epilepsy detection
and stimulation (courtesy of NeuroPace, Inc.) [53].

Before implanting the RNS system, the patients should undergo several tests. In order to receive
the treatment from the RNS system, the patients should be older than 18 years, and suffer from
disabling partial-onset seizure from no more than two foci, and they should be refractory to more than
two antiepileptic medications that are properly chosen [53].

In [56], 230 patients with implanted RNS system were studied over time to measure the average
decrease in seizures. This study shows that the average decrease in seizures was 44% after the first
year, 53% after the second year and up to 66% after 3 to 6 years from implanting the RNS. This trend
was observed among the patients who were followed over 7 years and the seizures were decreased
by 72%.

3.1.3. DBS

The Medtronic [57] Deep Brain Stimulation (DBS) system for Epilepsy which was approved by
the FDA in 2018 is a device that delivers controlled electrical pulses to the brain. The system consists
of a pulse generator (IPG) as shown in Figures 10 and 11, that is implanted under the skin of the upper
chest, and two leads implanted in the brain. The Medtronic DBS system for epilepsy helps to decrease
the frequency of seizures. Unlike the RNS system, the DBS system applies an open-loop stimulation
technique. The stimulation parameters are set within a frequency range of 2 Hz to 250 Hz in voltage
mode, and 30 Hz to 250 Hz in current mode, a current range of 0 mA to 25.5 mA, a voltage range of
0 V to 10.5 V and a pulse-width range of 60 μs to 450 μs [58]. The Medtronic DBS system for epilepsy
is used in conjunction with antiepileptic drugs in individuals 18 years of age or older, with partial
onset seizures, with or without secondary generalization, who have not responded to three or more
antiepileptic medications. The DBS system is used in patients who have an average of six or more
seizures per month. It has not been evaluated in patients with less frequent seizures.

In [59], 157 patients with implanted DBS were studied over time to measure the average decrease
in seizures. This study shows that the average decrease in seizures frequency was 56% after the second
year of implantation. This study also shows that 54% of the patients had a seizure reduction of at least
50% after the second year of implantation. During this study, 14 patients were reported seizure-free
for at least 6 months.
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Figure 10. FDA approved deep-brain stimulation (DBS) system for epilepsy (Courtesy Food and Drug
Administration (FDA)).

Figure 11. FDA approved DBS system for epilepsy [57] (Image with kind permission of Medtronic).

3.2. Commercialized Non-invasive Medical Devices

Several different commercialized non-invasive medical devices are available in the market. In the
following, we mention some of these devices. In general, non-invasive medical devices belong to the
two following groups, namely,

• external stimulators, and
• seizure alerting devices.

3.2.1. External Stimulators

In spite of considerable advantages in terms of efficiency and patient comfort and safety,
implantable electronic medical devices for epilepsy control have the disadvantage of invasiveness,
which may in some cases be intolerable. In contrast to IEMDs, external stimulators are not invasive
and thus, no perioperative risks are taken. External stimulators are cheap and easy to use, although
they are not as comfortable as IEMDs. Two types of external stimulators have been shown to affect the
seizure frequency, namely the transcutaneous Vagus Nerve Stimulation (tVNS) [60] and the External
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Trigeminal Nerve Stimulation (eTNS) or transcranial Trigeminal Nerve Stimulation (tTNS). In the
following, each type of external stimulation is reviewed and commercialized products are presented.

The effectiveness of tVNS for depressive disorders treatment is reported in [61]. One hundred and
twenty cases with mild and moderate depression were studied in a double-blinded randomized clinical
trial. This study shows that tVNS has the same effect as VNS in the treatment of depressive disorders.
These results encouraged researchers to investigate the effects that tVNS has on epilepsy. In [62], a group
of ten patients with drug-resistant epilepsy were studied. tVNS was applied while keeping the dose
of the medication. Stimulation was performed using biphasic pulses of pulse-width of 300 μs with an
applied average voltage of 25 V. The stimulation frequency was chosen as 10 Hz. This pilot study shows
that employing tVNS could reduce the seizure frequency in half of the patients. However, this study has
several drawbacks including a lack of randomized stimulation, due to a small number of patients and
an inhomogeneous patient group in terms of the type of seizures (focal, generalized epilepsy). This study
led to introducing the Nemos system (Figure 12), manufactured by Cerbomed [63], which was taken
over by tVNS Technologies GmbH in October 2018. Nemos, which is a transcutaneous device, stimulates
the auricular branch of the vagus nerve using a handheld pulse generator. The patients have to apply
the stimulation four hours per day. This device received the CE marking in Europe and costs 2499.00 €.
The Gammacore is another device introduced by ElectroCore Medical LLC which employs transcutaneous
VNS for the treatment of epilepsy. This FDA-approved device which is mainly designed for the treatment
of headaches is also suggested as a treatment for epilepsy [64].

Figure 12. Transcutaneous Vagus Nerve Stimulation device for epilepsy control [63] (Image reprinted
with kind permission of tVNS Technologies GmbH).

In 2008, Dr. Christopher DeGiorgio started a project pertaining to the long-term study on the
effect of external trigeminal nerve stimulation (eTNS) on epilepsy control [65]. The project started
with 50 patients. Out of 50 patients, 35 patients continued the long-term study for one year. In this
study, it is shown that the median seizure frequency decreases by 34.8% after one year by employing
eTNS. The Monarch eTNS system is an external trigeminal nerve stimulation system proposed by
NeuroSigma [66]. This device has European approval for the treatment of epilepsy in adults and
children 9 years and older.

3.2.2. Seizure Alerting Devices

Seizure alerting devices are designed to notify the onset of a seizure. These devices help the patients
to quickly obtain help from their surroundings. Sudden unexpected death in epilepsy (SUDEP) is a fatal
circumstance of epilepsy which often occurs during sleep. Seizure alerting devices help the caregivers
and family by notifying the seizure onsets. Some seizure alerting devices are capable of monitoring
the breathing of the patients during the sleep; upon detecting any abnormal circumstance, they notify

58



Sensors 2020, 20, 5716

the family or the caregiver of the patients. In addition, alerting the parents of an epileptic child is vital
since a prolonged seizure can lead to brain damage, and even death. Hence, seizure alerting systems are
important recent devices with a new role in epilepsy handling. Nevertheless, seizure alerting devices
are by essence not useful for the patients who are alone, or patients who do not accept to be checked by
others. Most of these devices detect the seizures by monitoring the repetitive movements of the patient,
which may be ineffective to some types of epilepsy, e.g., tonic-clonic seizures or focal motor seizures.
Hence, these devices cannot detect the seizures if the patient does not exercise large movements, e.g.,
during an absence seizure. Four types of seizure alerting devices are available at the time of writing:

• Watch devices
• Motion devices
• Mattress devices
• Camera devices

Most watch devices used as seizure alerting systems employ an accelerometer to detect abnormal
and repetitive movements. Some of these devices have a global positioning system (GPS) device.
Hence, if a seizure is detected, the location of the patient is sent by smartphone text messages or email.
The Smartwatch Inspyre by Smart Monitor [67] is a smartwatch that detects the repetitive shaking
motions and alerts determined contact person(s).

The electrodermal activity (EDA) which is also known as galvanic skin response (GSR) is a biomarker
that is shown to be effective in seizure detection. The EDA relates to the electrical characteristic of the
skin that changes due to sweating in response to a physiological change in the body. The electrodermal
activity is monitored by measuring skin conductance. For example, the conductance can be calculated by
applying a low-amplitude constant voltage while measuring the current [68]. In [69], it is shown that
using an EDA sensor in addition to the accelerometer used for motion/movement detection increases
the quality of the seizure detection, which led to proposing new algorithms for seizure classification
reported in [70,71]. This concept is used in the watch device with FDA clearance which was introduced
by Empatica Inc. [72]. Embrace2 is the latest watch device for seizure alerting which monitors the EDA,
temperature and also employs an accelerometer and gyroscope. This 249 $ device, which is shown in
Figure 13 offers more than 48 h of battery life with fast charging capability (30 min). This device sends the
data acquired by the sensors to a compatible smartphone using Bluetooth technology. The smartphone
processes the data using an application and alerts the family or a caregiver if a seizure is detected.
Empatica Inc. also proposes a 1690 $ device namely the E4 for scientific research. The E4 has several
sensors including a photoplethysmography (PPG) sensor, an electrodermal activity sensor, an infrared
thermopile for reading the skin temperature and a three-axis accelerometer. Raw data delivered by the
watch can be viewed in real-time and saved for future use.

Figure 13. Embrace2 by Empatica Inc. [72] for seizure detection (Image reprinted with kind permission
of Empatica Inc.).
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The EDA is also one of the most important biomarkers of SUDEP, as shown in [73]. It is reported
that post-ictal generalized EEG suppression (PGES) appears to be a flat EEG following a seizure which
is found in 100% of cases of SUDEP [73]. It is also shown that the duration of PGES correlates with
the amplitude of EDA measured from the skin. This founding confirmed that seizure alerting devices
such as the Embrace2 can deliver alert if there is a probability of SUDEP, which could save thousands
of lives.

The first FDA cleared seizure alerting system that is not based on EEG recording is the Brain
Sentinel monitoring and alerting system (known as SPEAC system) by Brain Sentinel, Inc. This device
records the surface electromyography (sEMG) signals from the biceps of the patients. Hence, this device
can accurately detect the seizures in case of tonic-clonic seizures. In addition to sEMG recording,
the system records the audio during each event. This system helps physicians to accurately measure
the seizure frequency characteristics.

Mattress seizure alerting devices are placed under a mattress where they can detect vibrations and
movements. If a seizure-like movement is detected, an alarm will be triggered. The main difference
between mattress devices and watch devices is that mattress devices are not wearable. The MP5-UTB
is a mattress seizure-alerting device, designed by Medpage Ltd. The Emfit MM is a mattress device
which is designed by Emfit Ltd. and which monitors the movements during sleep. This device was
used in a study [74] including 45 patients. In this study, 78 seizures were detected using video-EEG.
The Emfit MM system could detect 23 seizures out of the 78 seizures. Most importantly, this device
could detect 11 out of 13 tonic-clonic seizures.

Camera devices are alternate non-wearable seizure alerting devices with which the movement of
the patient is recorded and processed. The system warns the family or the caregiver of the patient if
any unusual movement is detected. SAMi is a camera-based seizure alerting system by Hipass Design
LLC. In this system, a remote infrared camera records the patient movements and sends the data to a
smartphone for processing. This device records the audio of each event, as well.

4. Neural Recording Circuit Techniques

As a common block to most aforementioned systems, the front-end amplifiers in the recording
chain represents one of the most challenging part. Owing to the extremely low amplitude of the
recorded brain signals, low-noise electronics are required. Simultaneously, low-power design is
necessary to guarantee the autonomy of the implantable and also portable systems. These constraints
turn into contradictory design specifications and thus trade-offs must be accepted. While solutions
have been provided, new challenges appear to emerge with the increase in the number of electrodes
and recording channels. This criteria is in contrast to most other blocks of implantable systems which
can be limited even to a single unit. Consequently, recording techniques show significant design
challenges, which are explored in the following along with their possible solutions.

4.1. Low-Noise Front-End Amplifier

A neural amplifier is required next to the sensing electrode to amplify the weak neural signals
and filter them. A neural amplifier should have five main features as follows:

• high-pass filtering for electrode offset rejection
• appropriate gain for conditioning the signals prior to digitization
• low input-referred noise for sensing weak neural signals
• low-power consumption (for neural amplifiers used in implantable devices)
• compact size (for neural amplifiers used in implantable devices)

In addition to the aforementioned features, a neural amplifier may provide integrated low-pass
filter functionality. A low-pass filter is an important part of the analog front-end (AFE) to avoid aliasing.
In general, neural amplifiers are considered into two categories, including ac-coupled amplifiers and
dc-coupled amplifiers.
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The ac-coupled amplifiers use a capacitor placed at the input, in the signal path to block the
dc level. Several architectures of ac-coupled neural amplifiers are proposed in literature including
capacitive-feedback network neural amplifiers, open-loop network neural amplifiers and chopper
amplifiers. Figure 14 shows two common architectures for designing ac-coupled capacitive-feedback
neural amplifiers.

Figure 14. Overview of the ac-coupled capacitive-feedback structure for neural amplifiers. (a) Classical
feedback topology and (b), capacitive T-feedback topology.

Figure 14a presents the general architecture of ac-coupled capacitive-feedback neural amplifiers.
In this structure, C1 is used to block the dc level that is created at the electrode-electrolyte interface.
The value of C1 is typically selected smaller than 20 pF since this capacitor affects the input impedance
of the amplifier. The mid-band gain of this amplifier is defined as C1/C2. There is a high-pass
corner in the frequency response of this amplifier which is determined by C2 and R1. For recording
low-frequency neural signals, the high-pass corner frequency of the amplifier should be at few MHz
to few Hz. Hence, a very large resistance is required to achieve such a corner frequency. In neural
amplifiers used in implantable devices, these resistors are implemented as pseudo-resistors to avoid
bulky physical resistors. A pseudo-resistor is implemented as a highly-resistive triode-biased MOS
transistor as shown in Figure 15a [75]. This type of resistors is highly susceptible to process, voltage and
temperature (PVT) variations. In addition, pseudo-resistors are highly non-linear resistors and placing
such a resistor between the input and output of an operational transconductance amplifier (OTA) may
yield a voltage-dependent resistor. If the voltage swing across this resistor is large, then its value
may change significantly with respect to the voltage across it, and thus create a voltage-dependent
high-pass pole for the neural amplifier. In addition, the structure shown in Figure 15a is not tunable
and only creates one value of resistance. In order to design a neural amplifier with an adjustable
high-pass pole, a tunable pseudo-resistor is required as shown in Figure 15b. The voltages across
the Gate-Source of the PMOS transistors are set using an NMOS and a current source, such that the
equivalent resistance changes [76].

For achieving a high-gain amplification in the structure shown in Figure 14a, C2 is typically
selected very small. Lowering the value of C2 affects the common-mode rejection ratio (CMRR) of the
amplifier as well as the gain precision. Figure 14b shows an architecture that is similar to Figure 14a,
yet with a minor topological difference. In Figure 14b the capacitor -feedback network is implemented
using a capacitive-T topology. This topology allows the implementation of a low-value of the feedback
capacitor using higher values of capacitors [77]. This technique improves the matching between
feedback capacitors, thus improves the CMRR of the amplifier. The equivalent feedback capacitor in
this architecture is calculated as:
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Ce f b =
C2C3

2C4 + C2 + C3
. (1)

Figure 15. Pseudo-resistor architectures. (a) Fixed-value and (b) tunable pseudo-resistor.

Figure 16. The ac-coupled chopper amplifier architectures. (a) Classical topology with servo loop and
(b) alternated topology without servo loop.
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Amplifying LFP signals using a neural amplifier creates significant issues related to Flicker noise,
also named 1/ f noise that lies in the same frequency range. In order to deal with this issue, chopper
amplifiers are widely used for sensing LFP signals. However, ac-coupled chopper amplifiers carry
over new issues which require new circuit and systems solving techniques. The classical architecture
of a chopper amplifier is shown in Figure 16a. Chopper switches are placed before the ac-coupling
capacitors. Hence, the dc value of the signal is modulated to a higher frequency and the ac-coupling
capacitors can not filter it out. In order to filter the dc component of the input signal, a dc servo-loop is
used in this circuit. Furthermore, chopper switches used in conjunction with ac-coupling capacitors
reduce the input impedance of the amplifier. An impedance-boosting circuit must be used in the
architecture of the chopper amplifier. Another issue of this circuit relates to the ripples introduced into
the signal path by the chopper switches. This issue is addressed using a ripple-reduction circuit in the
architecture of chopper amplifiers.

An alternate architecture employing a chopper amplifier is shown in Figure 16b. The chopper
switches are placed after the ac-coupling capacitors in the signal path. Hence, this architecture does
not require a dc-servo loop to block the dc component of the input signal. However, placing the
chopper switches after the ac-coupling capacitors results into shaping the OTA thermal noise with 1/ f
characteristic when referred to the input of the neural amplifier [78]. Hence, this architecture requires a
very high value of C1 (in the order of 300–500 pF) to degrade this effect. In [79], ac-coupling capacitors
are implemented using off-chip capacitors.

Figure 17. General architecture of dc-coupled amplifiers.

In contrast to ac-coupled amplifiers, dc-coupled amplifiers use a low-pass filter to block the dc
component of the input signal, as shown in Figure 17. Several methods are introduced in the literature
to implement a dc-coupled amplifier. The low-pass filter used in the structure of a dc-coupled amplifier
can be implemented in analog [80], digital [81] or a combination of the domains [82].

Amplifier Sharing Methods

A technology trend is currently observed towards increasing the number of recording sites,
which in turn creates severe constraints to the amplifier-related microelectronics. Hence, alternate
solutions must be explored to satisfy the constraints in dense multichannel designs in terms of silicon
area and power consumption. Techniques supporting sharing one amplifier among multiple channels
become attractive as the number of recording channels increases. The sharing technique can be either
applied at system-level or circuit-level. In circuit-level techniques, the amplifier is not totally shared
and the current that is provided to an input differential pair circuit is reused by the other channels’
input pairs. This method, which is called orthogonal current reuse technique, is introduced in [83].
System-level techniques are widely presented in the literature. Two different methods aiming at sharing
a single amplifier are introduced in literature, namely the time-division multiplexing (TDM) [84] and
frequency-division multiplexing (FDM) [85] techniques which are shown in Figure 18a,b, respectively.
Several critical design challenges yield from these sharing techniques, such as crosstalk, settling,
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accuracy, and filtering. If the amplifier used in TDM is not fast enough, it may introduce large crosstalk
between channels. the timing of all signals is very critical in TDM. As discussed in [86], in addition to
the crosstalk, timing issues may cause settling errors during the analog-to-digital conversion, in turn
causing noise aliasing degrading the noise performance of the circuit.

Figure 18. Amplifier sharing techniques: (a) time-division multiplexing (TDM) technique proposed
in [84] and (b) frequency-division multiplexing (FDM) technique proposed in [85].

The first chopper amplifier based on FDM was proposed in [85]. As shown in Figure 18b, inputs
are modulated using different chopping frequencies that are orthogonal. In order to guarantee the
orthogonality between chopping frequencies, 2n × FM is proposed, in which n = 0, . . . , N − 1 and N is
the number of channels. Rademacher functions are actually applied, which are sequences of orthogonal
functions that have two values of ±1 and are defined by the conditions expressed in Equation (2).

φ0(
t
T ) = 1 (0 ≤ t

T < 1
2 )

φ0(
t
T ) = −1 ( 1

2 ≤ t
T < 1)

φ0(
t
T + 1) = φ0(

t
T )

φn(
t
T ) = φ0(

2nt
T ) n = 1, 2, . . .

(2)

in which φn is called the nth Rademacher’s function and T is the period of the functions. The waveform
of the first four Rademacher’s functions are shown in Figure 19. Except φ0, Rademacher’s functions can
be used as the modulating signal in a chopper amplifier based on FDM. Nevertheless, the technique
proposed in [85] presents some major drawbacks which are discussed in the following.

A significant issue regarding the usage of different chopping frequency for different channels
relates to the mismatch between the input impedance of the channels. An additional issue of the
technique relates to the need for a low-pass filter after the demodulation of each channel. Since the
chopper is located after the opamp, high-frequency signals that remain in the demodulated signal
(Flicker noise and offset) are not filtered out. Therefore, an additional low-pass filter is required to
clean the output signal from high-frequency contents. A third issue of the technique relates to the
gain mismatch between channels which in turn relates to the bandwidth of the opamp used in the
chopper amplifier.
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Figure 19. First four Rademacher functions.

Figure 20. Effect of the dc servo loop on the overall frequency response of the chopper amplifier.
(a) Topology including a dc-servo loop. (b) Block-level frequency responses of the topology including
a servo loop. (c) Overall frequency response.
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The usage of a two-channel chopper amplifier proposed in [85] as a neural amplifier presents
a significant drawback. The lack of a dc servo-loop indeed represents a severe issue of two-channel
chopper neural amplifiers. A large electrode dc offset can easily saturate the amplifier if it is not filtered.
In chopper amplifiers, the dc servos loop (DSL) is employed to implement a high-pass corner in the
frequency response of the chopper amplifier, as shown in Figure 20a. Figure 20b,c illustrate the effect
of the DSL on the overall frequency response of the amplifier, using control theory. The DSL introduces
a high-pass corner at a frequency of (1 + AB) fDSL, in which fDSL is the bandwidth of the integrator
used in the DSL. At the circuit level, (Figure 20a), the high-pass corner is calculated using Equation (3).

fhp =
Chp

Cf b
f0DSL, (3)

in which f0DSL is the unity-gain frequency of the integrator in the DSL.
The noise performance of a two-channel orthogonal chopper amplifier is also degraded with

respect to the single-channel amplifier. In a single-channel amplifier as shown in Figure 21a, the signal
gain from input to the output is equal to −Cin/Cf b and the noise gain from the amplifier input to the
output (Vout/Vn) is equal to 1 + Cin/Cf b. In a two-channel chopper amplifier as shown in Figure 21b,
the signal gain from the input to the output is equal to −Cin/Cf b; however, the noise gain from the
amplifier input to the output (Vout/Vn) is equal to 1 + 2Cin/Cf b. Therefore, the input-referred amplifier
noise of a two-channel chopper amplifier is approximately two times higher than single-channel
chopper amplifier.

Figure 21. Noise analysis model of (a) a single-channel chopper amplifier and (b) a two-channel
chopper amplifier.

4.2. Data Compression

Data compression is a well-known method to reduce the power consumption of wireless
transmitters in implantable electronic medical devices. Using data compression also reduces the power
consumption of feature extractors as shown in [87]. Compressive sensing (CS) is a compression scheme
presenting relevant characteristics for multi-channel neural recording. This emerging compression
method has lower complexity in comparison to established compressing methods. Compressive
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sensing reduces the number of measurements for a high-dimensional signal with respect to the number
of measurements dictated by the Nyquist sampling theorem. Compressive sensing can be applied
in three different domains, including analog, digital and multichannel. Analog compressive sensing
(ACS) is a method applied to reduce the data rate and digitization power. However, due to the
multi-path nature of this technique, a large on-chip silicon area is required. Digital compressive
sensing (DCS) is shown to be a superior method over ACS in terms of power consumption [88].
However, this technique requires several accumulation blocks for each channel, which is not tractable
in a multi-channel system with a limited silicon area.

Figure 22. Multichannel compressive sensing (MCS). (a) Overview of the MCS concept. (b) Structure
of the conventional multi-input single-output compressive sensing (MISOCS) block with 16 inputs.

The multi-channel compressive sensing (MCS) technique has been developed as a
hardware-suitable compressive sensing that allows a straightforward circuit design as well as an
efficient power × area performance [87]. Figure 22a depicts the simplified concept of the MCS
operating over N channels. Φ is a measurement matrix that consists of a random sequence of ones
and zeros, striclty. Φ is used to project a matrix that stores data from N channel into the compressed
domain. The result of the operation is a vector comprising data that is the compressed image of the
data recorded from N channels.

Circuit area and power dissipation can be optimized by applying the MCS at the sensing
node. The complexity is deferred to the receiver that applies the data reconstruction algorithm
from compressed data. The complex data reconstruction operation is performed in the digital domain
and involves a significant latency which would slow down any seizure pattern detection or further
feature extraction processes. Feature extraction from spatially filtered data based on the MCS is
presented in [87] to the aim of detecting seizures. A multi-input single-output compressive sensing
(MISOCS) block carries out the projection of data originating from N channels into the compressed
domain. The MISOCS block processes the input channels in parallel owing to its implementation as a
summing amplifier, which is detailed in the following.

Figure 22b presents the system architecture of a 16-channel (N = 16) conventional MISOCS
block and the signals that control the corresponding circuit. A compression ratio of 16 (CR = 16) is
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achieved by the system [87]. The 16 inputs to the MISOCS block originate from the front-end neural
amplifiers differential outputs. The control signals of the MISOCS block consist of a sampling signal
φs as well as a measurement matrix Φ ∈ R

1×16. Sixteen random sampling signals φR1, . . . , φR16 form
the measurement matrix. The conventional MISOCS block operates in two phases. Signal φs controls
the sampling phase during which the output of the individual channels are sampled. φs at the LOW
level marks the summation phase. The value presented on the channels that correspond to a random
sampling value equal to one in the measurement matrix are accumulated at the output node of the
summing amplifier. This conventional architecture of the MISOCS block is straightforward but suffers
from circuit-level intricacies.

First, the random nature of the measurement matrix yields a random number of ones in the
random sampling signals [87]. The offset of the summing amplifier depends on the number of ones,
thus causing an error. In practical terms, a random signal which has a value between zero and
Vos(1 + KCin

Cf
) is summed up with the compressed signal, at the output of the summing amplifier.

The error is random in nature and derives from the implementation of the method at the circuit level.
The random error causes a degradation of the seizure detection efficiency which is due to a degradation
of the quality of the signal reconstruction.

In addition, careful consideration must be devoted to controlling the dynamic range of the
compressed signal, as it is generated at the output node of the summing amplifier. The dynamic range
of the compressed signal at the output of the MISOCS block is calculated in the following, considering
the two extreme cases. The first extreme case consists of a full correlation of input signals (C = 1)
while the random sampling signals are all at one. This situation yields an output corresponding to a
linear sum of all inputs and thus the highest level of the compressed signal. In the highest level worst
case, all the N random sampling signals are at one; thus, the output consists of a linear sum of the
input resulting in a highest value of the compressed signal that is N times larger than a single channel.
The second extreme case consists of a single random sampling signal at one, while all others are at zero.
This situation yields the lowest level of the compressed signal which is meaningful, and corresponds
to the RMS noise of a single channel analog front-end (AFE).

The dynamic range of the compressed signal can be expressed from the highest and the lowest
meaningful levels that are acceptable at the output node of the amplifier. Consequently, the dynamic
range of the compressed signal in an N-channel conventional MCS system is N times larger than a
single AFE channel. The dynamic range of the compressed signal is thus used in the calculation of the
resolution of the ADC that follows the MISOCS block, as expressed in Equation (4).

BADC ≈ BChannel + log2 N, (4)

where BChannel is the required equivalent resolution of the AFEs.
For example, a 16-channel acquisition system with an equivalent bit-resolution of each channel

assumed to be equal to 8-bit yields the necessity of a 12-bit ADC to accurately reconstruct the
compressed signal.

The mMISOCS block is presented in the following [89] as a modified MISOCS block aiming at
overcoming the issues of the conventional architecture that were described above. The mMISOCS
architecutre is shown in Figure 23. The circuit topology includes a butterfly switch which is used
to invert the output of a channel Vout,i when the corresponding random sampling value is at zero;
the result is then summed up with other channels output during the summing phase. Hence, in contrast
to the conventional MISOCS block, the mMISOCS architecutre generates compressed data that is
composed of data originating from all channels, i.e., not a random number of channels with coefficient
at one. As a result, the noise level of the compressed data is fixed at

√
N times the RMS noise of a

single AFE. Consequently, the dynamic range of the compressed signal is also fixed at
√

N times larger
than the dynamic range of a single AFE. The ADC resolution is thus expressed in Equation (5).

BADC ≈ BChannel + log2

√
N. (5)
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As an additional benefit of the mMISOCS topology, the offset signal that appears in the compressed
signal for any combination of the values of the sampling signals is fixed because all input signals
participate in the output node summation in a positive or negative value. The offset that appears at
the output of the summing stage is expressed in Equation (6)

Vos,err = Vos(1 + 16
Cin
Cf

). (6)

Consequently, the error is constant and can thus be canceled by processing in the digital domain.

...

...
...

...

Figure 23. Schematic of the proposed multiple-input single-output compressive sensing block,
mMISOCS.

4.3. Feature Extraction

Feature extraction has an important role in the quality of the seizure detection [90].
Several classical features are introduced, which must be implemented in the digital domain, in
an implantable epilepsy control device.

Considering a one-dimensional signal representing the electrical activity recorded from the brain,
features can be extracted in the time and spectral domains.

• Time-domain feature extraction. The raw signal originating from the signal conditioning chain to
the ADC is in turn processed. Usually, the algorithms process the data delivered as successive
windows comprising a fixed number of samples. The processed feature score is compared to a
threshold yielding a decision.

• Frequency-domain features. Spectral-based feature extractors operate in the digital domain.
A fast-Fourier transform is typically applied to the input signal originating from an ADC,
and prior to extracting features in the frequency domain. Bandwidths of interests are determined,
and the energy is computed within a selected frequency range, e.g., [91]. The process is repeated
in time (or time-window) yielding a decision.

Features are typically patient-specific, and thus parameters must be tuned such as to improve
the accuracy of the decision. Recently, artificial intelligence and machine learning techniques also
including deep-learning methods have been applied to support the feature extraction and classification,
Refs. [92–94]. Moreover, the success of advanced AI and deep-learning algorithms in epilepsy detection
has opened the way to epilepsy prediction, where interictal signals that are observed between seizures
are studied with the aim of extracting reliable markers of a future seizure [95].

The hardware resources that are involved in frequency-domain feature extractors as well as
deep-learning and machine-learning methods are important. The nature of the algorithms dictates a
large number of memory accesses, multiplications, as well as non-linear operations processed using
lookup tables. All of the aforementioned operations are time- and energy-consuming. In addition,
the algorithms are developed such as to accurately operate over 32-bit number formats, while reducing
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the bit representation decreases the reliability. Hence, these techniques are considered not suitable
for implantable devices, as excessive consumers of hardware resources and power. Recently, complex
deep-learning and machine learning algorithms find adaptations to portable hardware that are dictated
by new requirements of internet-of-things. Nevertheless, implantable devices require low-power blocks
and feature extraction methods which are best found as the time-domain features presented in the
following [96].

• Energy: the energy feature is a popular feature. The average energy of d samples is calculated as
expressed in Equation (7).

Average Energy =
1
d ∑

d
x2[n]. (7)

A multiple and accumulate block is used to process the data that streams-into. The inputs of the
multiplier are identical, yielding the x2 operation.

• Accumulated energy: the accumulated energy extractor applies the energy criteria over several
time-windows.

• Variance and Hjorth variance The variance criteria has extensively been applied in EEG studies.
The variance is processed over a window of d samples, and then averaged. The intuitive
formulation that directs the hardware implementation is expressed in Equation (8).

Variance =
1
d ∑

d
x2[n]− μ2. (8)

The hardware is more complex than the hardware required in the energy extractor, and consists of
multipliers and accumulators, subtractors and temporary storage registers.

• Line-length or Coastline: the line-length is a measure of the absolute value of the length between
two consecutive data points. Line-length is a feature that increases with low-amplitude while
high-frequency signals are presented, as well high-amplitude while low-frequency signals are
presented. The line-length feature for d samples is calculated as expressed in Equation (9).

Line− length =
1
d ∑

d
|x[n]− x[n− 1]| (9)

The hardware is relatively straightforward and consists of multipliers and accumulators,
temporary storage registers as well as multiplexers.

• Area: area is a popular feature for seizure detection. The simplicity of the algorithm enables a
low-cost and accurate seizure detection. Area is one of the features used in RNS (Section 3.1.2.
The area feature for d samples of the signal is calculated as expressed in Equation (10).

Area =
1
d ∑

d
|x[n]| (10)

• Non-linear autocorrelation: non-linear autocorrelation feature extraction is based on detecting
and accumulating the minimum of the maximum of the samples in three consecutive windows,
also detecting and accumulating the maximum of the minima of the samples in three consecutive
windows, and finally subtracting the latter from the former result, as expressed in Equation (11).
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HV = min(max(Xwini ), max(Xwini+1), max(Xwini+2))

LV = max(min(Xwini ), max(Xwini+1), max(Xwini+2))

Autoc = ∑
3

HV − LV.
(11)

The hardware requires many resources including a multiplier-accumulators, subtractors, storage
resisters as well as several comparators.

5. Discussion

Several challenges must be solved in open and closed-loop IEMDs, from the point of view of
microelectronics engineering. Limitations are imposed from the technical and engineering perspectives,
and are combined with limitations imposed by medical regulations, methods and ethical concerns.
Some of the relevant open issues are summarized in the following.

• Size: the most important challenge of an implantable system is the size. Any implantable medical
device (IEMD) is composed of several electrical modules. Some of these modules consist of off-chip
components such as wireless powering modules or the wireless data transmitter. The specification
of these modules should be defined in a way that the IEMD system presents an acceptable size.
The IEMD weight is a related parameter. Increasing the size and the weight of IEMDs also
increases the complexity of the surgery. Hence, for the convenience of the patients, IEMDs should
have a minimum number of off-chip components in order to present a minimum size and weight.

A solution for decreasing the size of an implant is to integrate the active circuits as close as
possible to the electrode. One method to realize this solution consists of fabricating a silicon-based
electrode which allows the active circuits to be implemented on the same silicon or by attaching
the active circuitry to the silicon-based electrode using post-CMOS processes.

• Power consumption and temperature elevation: a limitation for temperature raise is imposed
by medical regulations for IEMDs. IEMDs temperature should not exceed predefined limits.
Generally, the temperature of the outer surface of an implanted device must be limited to 2 °C
above body temperature [97]. However, this limit is reported to be 1 °C above body temperature
in IEEE standards [98], specially in cortical implants [99]. A device that exceeds this limit should
be turned off immediately. Hence, temperature sensors should be considered in the design of
IEMDs and stimulators to enable temperature management capabilities of the systems [100].

• Battery powering and rechargeability: IEMDs should offer freedom to patients to proceed in
their life with regular activities. This autonomy cannot be provided without using an implanted
battery. Moreover, to increase the lifetime of IEMDs, the battery should be rechargeable. Therefore,
patients undergo less surgery for the placement and/or removal of the IEMDs. However, the main
challenge in the design of rechargeable IEMDs consists of wirelessly and efficiently recharging
the implanted battery. Efficiency in the wireless battery charging is very important since this
procedure may generate heat and cause skin burning or unpleasant feeling during the battery
charging process.

• Biocompatibility: the package and enclosure of IEMDs must be bio-compatible. A biocompatible
package serves as a barrier between the electronics and other chemical materials to which a
biological system may adversely react. The host response to an implanted IEMD (resulting from
tissue trauma during the implantation of an IEMD and the presence of the device in the body [101])
depends on the type of material that is used for the packaging and the enclosure of the IEMD.
The importance of the biocompatibility lies in the fact that the systemic toxicity impairs the entire
biological system such as the nervous or the immune system [101]. In addition, the reason for a
systemic reaction due to the biocompatibility cannot be traced back to its origin since it generally
takes place at a location far from the point of contact of an IEMD. Due to all aforementioned issues,
biocompatibility has become the most important part of the U.S. FDA approval procedure, even
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for Class I devices (lowest risk). Furthermore, biocompatibility is the major part of acquiring an
ISO (International Organization for Standardization) standard such as ISO 10993.

• Data storage: in order to increase the accuracy of the seizure detection as well as to provide
freedom and autonomy to the patient during the recording period, the implant should store data
over a few hours. This feature is important since patients should not have to wear any bulky
holder of an external unit (helmet, belt) during some specific activities or during sleeping. Hence,
the system should save the recorded data on an implanted memory. If the IEMD is powered by a
rechargeable battery, the IEMD should save the recorded data on a non-volatile memory since the
IEMD may be turned off by the under-voltage lockout detection circuit.

While many of the aforementioned challenges find solutions at circuit and system levels,
we observe a trend aiming at efficiently solving these issues considering the circuit and the system
as a whole, i.e., some part of the trade-offs is solved exploiting specific circuit characteristics,
while other parts of the trade-offs find solutions exploiting algorithms or taking benefits of system-level
improvements.

6. Conclusions

This review paper presents and discusses the major blocks of the signal recording and seizure
detection of an implantable system aiming at epilepsy control. While classical techniques pertaining to
analog and digital circuit design are used, the paper focuses on specificities related to neural signal
recording in multichannel systems. Epileptic signals are discussed from an engineering perspective, i.e.,
summarizing the major electrical characteristics and their impact on the microelectronics front-ends.
The commercial implantable systems aiming at epilepsy control which command over an official
approval at the moment of writing are reviewed. External systems which represent non-invasive
systems are presented as a new trend in seizure alarming.

Circuit and system techniques are presented that aim at solving contemporary issues related to
low-power, low-noise and low-area trade-offs met in modern microelectronics multi-channel neural
acquisition systems. Specifically, the amplifier-sharing technique, as well as the compressed sensing
technique, are discussed and presented.
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Abbreviations

The following abbreviations are used in this manuscript:

ACS Analog Compressive Sensing
ADC Analog-to-Digital Converter
AED Anti-Epileptic Drug
AFE Analog Front-End
BMI Brain-Machine Interface
CC-LNA Capacitive-Coupled Low-Noise Amplifier
CMRR Common-Mode Rejection Ratio
CS Compressive Sensing
CSF Cerebrospinal Fluid
DBS Deep-Brain Stimulation
DCS Digital Compressive Sensing
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DSL dc Servo Loop
ECG Electrocardiogram
ECoG Electrocotricogram
EDA Electrodermal Activity
EDO Electrode dc Offset
EEG Electroencephalogram
EMG Electromyogram
ENOB Effective Number of Bits
ERG Electroretinogram
eTNS External Trigeminal Nerve Stimulation
FDA Food and Drug Administration
FDM Frequency-Division Multiplexing
FE Feature Extractor
FES Functional Electrical Stimulation
ICP Intracranial Pressure
iEEG Intracranial Electroencephalography
IEMD Implantable Electronic Medical Device
ILAE International League Against Epilepsy
IMD Implantable Medical Device
IPG Integrated Pulse Generator
LFP Local Field Potentials
LL Line-length
LNA Low-Noise Amplifier
MCS Multi-channel Compressive Sensing
MEG Magnetoencephalography
MISOCS Multi-Input Single-Output Compressive Sensing
mMISOCS modified Multi-Input Single-Output Compressive Sensing
MRI Magnetic Resonance Imaging
NEF Noise Efficiency Factor
OTA Operational Transconductance Amplifier
PCG Phonocardiogram
PET Positron Emission Tomography
PGA Programmable-Gain Amplifier
PMA Premarket Approval
PPG Photoplethysmogram
PSG Polysomnography
RNS Responsive Neurostimulation
PVT Process, Voltage and Temperature
SEEG Stereo-EEG
sEMG Surface Electromyography
SNR Signal-to-Noise Ratio
SPECT Single-Photon Emission Computed Tomography
SUDEP Sudden Unexpected Death in EPilepsy
tACS transcranial Alternating Current Stimulation
tDCS transcranial Direct Current Stimulation
TDM Time-Division Multiplexing
tENS transcutaneous Electric Nerve Stimulation
tTNS Transcranial Trigeminal Nerve Stimulation
tVNS transcutaneous Vagus Nerve Stimulation
VLSI Very Large-Scale Integration
VNS Vagus Nerve Stimulation
WHO World Health Organization
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Abstract: Modern sensor nodes have multiple operating states, which causes a conventional voltage
converter to perform poorly over a wide load range of the operating states. This paper proposes a
voltage converter whose switching frequency and output voltage are proactively adjusted to maintain
high conversion efficiency. This allows the converter to exploit a wider frequency range to cover
a wide load range. In addition, the proposed converter uses multiple smaller capacitor banks and
employs multiphase operation to provide low output ripple voltage. A distributed topology for
non-overlapping signal generation is proposed and used in the converter to minimize the number of
wires running from connecting the controller to the converter. The proposed voltage converter has
been implemented in a chip using a 0.13 um CMOS process. The measurement results demonstrate
the ability to support a wide load range of 10 μA to 10 mA, for switching frequencies ranging from
100 kHz to 200 MHz, while providing an efficiency of above 80%.

Keywords: switched capacitor; voltage converter; wide load range; multiphase operation;
variable frequency

1. Introduction

Modern sensor nodes perform a set of tasks repeatedly, and thus often exhibit periodic transition
between different load states based on a schedule [1–3], as shown in Figure 1. The predictable transition
schedule allows the software to proactively reconfigure the voltage converter to supply required
amount of current for various load conditions. Under varying load conditions, however, a large
Switched Capacitor (SC) converter often provides poor efficiency at smaller loads. It is known that, in
recent mobile platforms, around 32% of the overall power is wasted, in step-down conversions [4].
This is because most voltage converters are optimized targeting the average load condition, and thus
perform poorly under peak and minimum load conditions.
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Figure 1. Load behavior with multiple operating states, repeated with a schedule/interval.

Another challenge faced by modern SC converters is the large output ripple voltage, which is often
alleviated by having a large output capacitor and/or high switching frequency. These approaches to
reducing ripple result in large area overhead and high switching losses, respectively. In [5], a dithered
capacitance modulation scheme is presented to reduce ripple at the expense of much higher oscillator
frequency than the converters’ switching frequency and circuit complexity. A simpler and effective
approach to reduce ripple is splitting a converter into smaller units and operating the units at a fixed
phase difference [5–7]. A multi-phase converter, due to its low ripple, can offer high conversion
efficiency as well. For example, a multiphase operation equally distributes the current surges from the
input capacitor, over time. This reduces the ripple voltage ΔV = VMax − VMin on the input capacitor.
It is known that charging a capacitor with small voltage difference results in high energy efficiency in
charge transfer process between the supply and capacitor voltage [8].

Under light load conditions, the smaller units can be individually turned-off to reduce losses [9].
However, turning off some of the capacitor banks operating at multiphases causes the output ripple
voltage to increase unevenly. Therefore, to fully benefit from a converter using multiphase, all capacitor
banks must be operational at all times. A popular technique to reduce switching losses is utilizing
Pulse Frequency Modulation (PFM), which reduces the switching of the converter depending on the
load [6,10,11]. Most of existing PFM methods are reactive (act in response to an event), which change
the switching frequency based on the output voltage feedback. This results in a slower response
and failure to utilize a wide frequency range, which degrades conversion efficiency at light loads.
Furthermore, PFM methods (especially when combined with multi-phase) generate low frequencies
from a high-speed oscillator with a fixed phase difference. Therefore, in PFM methods, the control
circuit’s power consumption dominates for small load current leading to poor conversion efficiency [10].

Multi-phase voltage converters (comprising of multiple units) need a large number of switches
and associated control signals. Therefore, it is infeasible to apply the conventional techniques for
non-overlapping signal generation, since they adopt a centralized approach [9,11] and need a large
number of wires. Due to the large number of wires, the conventional techniques incur disadvantages
such as large area, high power consumption, switching uncertainty and susceptibility to noise.
The researchers of [5] suggest reducing the number of phases to reduce the power consumption
induced by non-overlapping signals and other switching circuits. A distributed non-overlapping
scheme is presented in [6], where an additional NMOS or PMOS is added in the MOSFET driver circuit
to delay the turning-on. However, adding an additional NMOS or PMOS in the last stage of the driver
would add significant area overhead and slowly turn on the MOSFET (in additional to the delay).

This paper proposes a multi-phase SC converter targeting sensor nodes that operate in predictable
schedules of alternating active and sleep periods exhibiting a wide range of load as shown in Figure 1.
The converter maintains high conversion efficiency by proactively adjusting its switching frequency,
using an integrated oscillator, based on the schedules of load current demanded by the target load.
This approach allows the converter to operate with a wider frequency range than existing PFM designs.
The proposed distributed non-overlapping signal generation is realized in the MOSFET drivers by
delaying the turn-on transition with minimal area overhead and reduced power consumption.
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Section 2 presents the proposed converter in more detail. Section 3 discusses the implementation
of a test chip to evaluate the proposed converter. Section 4 describes the test setup and demonstrates
the converter’s performance measurements. Section 5 discuss the measurement results and compares
with other works. Finally, concluding remarks are presented in Section 6.

2. Proposed SC Voltage Converter

2.1. Architecture

This paper proposes a voltage converter that offers high conversion efficiency over a wide range of
loads and reduced ripple voltage. To deliver a wide load range, the operating frequency of the converter
is adjusted by power management software based on the task scheduling prediction. To provide
reduced ripple voltage, the SC voltage converter is split into multiple units (capacitor banks) that are
operated with a predefined phase difference. Figure 2a illustrates the overall structure of the proposed
voltage converter which consists of an oscillator, main controller, delay elements and multiple capacitor
banks. Here, each capacitor bank includes a set of Non-Overlapping Signal Drivers (NOSDs), which
can minimize the switching losses at very low cost of circuit overhead.

 

*NOSD is Non-Overlapping Signal Driver

100M
Freq.

6.4M
1.6M

N -1 0.1M
N 0.1M

clk

OSI  (Operating State Index)
FC

(Freq. Code)

Figure 2. Proposed Switched Capacitor (SC) converter: (a) block diagram and operation; (b) an example
Operating State Index (OSI) table in the controller; (c) Voltage Conversion Ratio (VCR) table specifying
control signals for each state.

The SC converter in Figure 2a has four identical capacitor banks, which operate at a phase
difference of T/4. Each capacitor bank toggles between two states: state0 (charging) and state1
(delivery). Thus, one period of converter operation comprises of two clock cycles; see Figure 2a. All the
capacitor banks share one controller, while each delay element defers the control signal for individual
capacitor bank by T/4.

2.2. Operation

Before the SC converter starts a normal operation, its main controller is pre-programmed with
the sequence of the operating states of the load. Figure 2b shows an example of such a program for
operation states. The program stores a sequence of Operating State Indexes (OSI), which contains the
target Voltage Conversion Ratio (VCR) and Frequency Code (FC). The VCR indicates the ratio of the
target output voltage to the input voltage. The FC in each entry in the OSI table is programmed to
match the target load current for the corresponding operating state. To configure the proper voltage
ratio, the main controller stores a VCR table, which is shown in Figure 2c. Each entry of the VCR table
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provides control signals for the two states of the capacitor banks, e.g., state0 (charging) and state1
(delivery).

When the power management software in the load CPU of sensor nodes is about to change its
operating state, it sends its operating state index (OSI) to the controller of the converter. The main
controller looks up the OSI table and retrieves VCR and the FC for the corresponding OSI. The VCR is
passed to the VCR table to retrieve the control signals for each state of the capacitor bank. The FC is
provided to the oscillator to generate the frequency that allows the converter to supply the required
current. The main controller maintains its current frequency and VCR, until a new OSI is received
from the power management software.

2.3. Oscillator

An adjustable oscillator can easily change the operating frequency of the converter when the load
condition changes. In the proposed converter, the integrated oscillator provides sixteen frequencies
ranging from 0.1 to 200 MHz, which are selected by the main controller using 4-bit FC. For our voltage
converter, the accuracy of the frequency is not critical to maintain the target output voltage, which is
proven by the measurement results. Therefore, a simple low-power oscillator suffices our needs.

Figure 3 illustrates the proposed oscillator, which is a ring oscillator consisting of nine
current-starved inverters. The current-starved inverters are controlled by a biasing circuit using
4-bit digital control to tune the delay of each inverter. The digital current control has multiple current
multiplication branches, one of which is selected based on the FC to provide appropriate current to the
biasing circuit. A low-power Schmitt trigger is used at the output to reduce the power consumption of
the subsequent buffers.

 

Digital
Current 
Control

fOUT

Figure 3. Ring oscillator with current starved inverters and biasing circuit.

2.4. Non-Overlapping Signal Driver (NOSD)

Conventional multiphase converters employ a shared delay controller to generate non-overlapping
signals. Such architectures, however, require excessive number of long routing wires as shown in
Figure 4a. In contrast, this paper proposes a distributed architecture that generates non-overlapping
signals using edge delay circuits at each MOSFET switch, which is illustrated in Figure 4b. The proposed
architecture can significantly reduce the number of long routing wires and their associated buffers,
consequently reducing the power consumption. Each switch (NMOS and PMOS), in the capacitor
banks of the proposed converter, includes a driver that generates non-overlapping control signals by
delaying the turn-on transition of the switch, as shown in Figure 4c. The NMOS and PMOS drivers in
the NOSDs, respectively, delay the rising and falling edges of the resulting non-overlapping signals.
These drivers ensure that no short-circuit path occurs during switching, thus reducing the switching
losses. From Figure 4c, it can be observed that the turn-on delay of a switch is approximately equal to
the propagation delay of first buffer (tp1) in the drivers. This distributed topology reduces the number
of wires connecting the controller with the switches.
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Figure 4. (a) Conventional non-overlapping architecture; (b) proposed non-overlapping architecture
with reduced buffers and wires; (c) proposed non-overlapping MOSFET drivers with edge-delaying.

Consider the propagation delays of the gates in drivers as: tp1 for the buffer, tp2 for OR/AND
gates, and tp3 for the final multi-stage buffer. The rising- and falling-edge delays of PMOS driver can
be represented as:

tpp−r = tp2 + tp3, (1)

tpp− f = tp1 + tp2 + tp3, (2)

Similarly, the propagation delays for rising and falling edges through NMOS driver can be
represented as:

tpn−r = tp1 + tp2 + tp3, (3)

tpn− f = tp2 + tp3, (4)

By using the above equations, we can calculate the non-overlapping periods. Upon rising-edge,
NMOS turns-on and PMOS turns-off, the non-overlapping period can be formulated as:

tnol−r = tpn−r − tpp−r, (5)

tnol−r = tp1 + tp2 + tp3 −
(
tp2 + tp3

)
, (6)

tnol−r =tp1, (7)

Upon falling-edge, PMOS turns-on and NMOS turns-off, the non-overlapping period can be
formulated as:

tnol− f = tpp− f − tpn− f , (8)

tnol− f = tp1 + tp2 + tp3 −
(
tp2 + tp3

)
, (9)

tnol− f =tp1, (10)

It is important that OR- and AND-gate have equal propagation delays to ensure symmetric
non-overlapping periods for both the edges.

3. Implementation of Test Chip

To verify the proposed architecture, we have implemented a test chip consisting of four capacitor
banks, a reconfigurable test controller, and clock oscillator using 130 nm 1.5 V CMOS process, as shown
in Figure 5a. The individual outputs of the four capacitor banks have been brought out of chip
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for measurement purposes, and they are combined on the PCB. In addition, to ensure accurate
output voltage observations, four buffered outputs have been added. For test chip implementation,
the oscillator does not include a digital current control circuit. Therefore, an external current
Digital-to-Analog Converter (DAC) is used to drive the biasing circuit of the oscillator, as shown in
Figure 5b. In addition, some components of the main controller (of Figure 2), such as OSI and VCR
tables, have been moved to the off-chip CPU module to have flexibility in testing.

Parallel    _
Interface    _

(obs_out/in_dig) _

v

v

v

v

obs

obs

obs

obs

MOSI

SCK

MISO

nSS

vosc_bypass

ext_clk

Config.

1 Includes delay elements for multiphase genertion
2 Two-channel differential ADC

Current 
Sensor

Figure 5. (a) Test chip implementation block diagram; (b) off-chip components for testing.

3.1. Reconfigurable Test Controller Implementation

A test controller is designed with a host interface that emulates the interface to power management
software. It operates the four capacitor banks at different phases (or in phase) and can be programmed
through its host interface, as shown by the simplified block diagram in Figure 6. In addition to its main
functions, we implemented various test and fallback modes in the controller for test purposes. The next
entry of the OSI table provides the state information for each capacitor bank, which is stored in VCR
state registers (state_reg[0] and state_reg[1]). The VCR state registers’ values are used to generate
control signals for each attached capacitor bank.
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*sphase: 0-Multiphase, 1-Single phase operation
*op_mode[1:0]: Enable Capacitor banks, 0- none, 1- sc0, 2- sc0+sc2, 3- all

Figure 6. Reconfigurable test controller with interfaces, for a multiphase SC converter.
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The multi-phase generator (MPG) block reads the state signals and operates the capacitor banks
by supplying phase-delayed signals. The four operation modes of MPG are listed in Figure 6, which
allows one, two or all four converters to operate concurrently. It is also possible to operate two or four
capacitor banks in phase, by asserting sphase input, to compare the performance of single-phase and
multi-phase operations.

The test controller has been synthesized using Synopsys design tools targeting 250 MHz. The final
implemented layout of the controller has an active area of 590 μm × 15 μm. The aspect ratio of the test
controller was chosen to minimize the routing overhead when connecting the controller to a stack of
four capacitor banks.

3.2. Capacitor Banks

For the test chip, we implemented four identical series-parallel switched capacitor banks. A circuit
block diagram of one bank is shown in Figure 7. Each bank has three flying capacitors which provide
five buck voltage conversion ratios (1/4, 1/3, 1/2, 2/3, 3/4). For our target load current range, we chose
80 pF for each flying capacitor and 160 pF for the load decoupling capacitor in each capacitor bank.

 

v v vC2

v
v

Figure 7. Capacitor bank circuit diagram with three switched capacitor branches.

Figure 8 illustrates an example of non-overlapped switching operation. Figure 8a shows example
MOSFET switches corresponding to transmission gates cA0 and cB0 of Figure 7. The NMOS and
PMOS drivers are part of the NOSD of a capacitor bank shown in Figure 4c. Figure 8b shows the
post-layout simulation result of the circuit in Figure 8a. It reveals that the NMOS and PMOS gates have
a non-overlapped period when transitioning between φ1 and φ2, which ensures that no short-circuit
path occurs while switching. For the test chip, the non-overlapped period introduced by the NOSD
varies from 130 to 200 ps, depending on the potential on the source and drain terminals of the MOSFET
being driven.
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2
1

clk clk

clk clk

Figure 8. (a) Transmission gate switches controlled by Non-Overlapping Signal Drivers (NOSDs).
For example, the blue transmission gate indicates cA0 and the red transmission gate indicates cB0 of
Figure 7. (b) Post-layout simulation of the NOSDs, demonstrating non-overlapping control to mitigate
short-circuit losses.

3.3. Overall Test Chip Implementation

Complete layout (including pads) of the overall test chip is shown in Figure 9a, where the
converter occupies an area of 0.59 mm2. The voltage supplies are located on the top left, whereas
analog/power outputs (vout and obsvout) are located on the bottom. Decoupling capacitors are added
to the voltage supplies of MOSFET drivers, oscillator and reconfigurable test controller, as shown in
Figure 9a. The test chip shown in Figure 9a occupies total area of 1.76 mm2 (1.56 mm × 1.13 mm),
including test circuits and pads. For this implementation, only metal–insulator–metal (MIM) capacitors
are used for capacitor banks to minimize switching losses [12] caused by the bottom plate capacitance
(Cbot.,mim = 0.0025 × C). To reduce the overall area, a metal–oxide–semiconductor (MOS)+MIM stack
can be safely used as load capacitors, without sacrificing conversion efficiency. Using an MOS+MIM
stack as a load capacitor, the area can be reduced by 21% (from 0.59 mm2 to 0.461 mm2), compared
to an MIM-only load capacitor. Moreover, our analysis also shows that replacing all capacitors by
an MOS+MIM stack yields a 54% reduction in area (from 0.59 mm2 to 0.266 mm2) at the expense of
conversion efficiency.

  

(a) (b) 

Figure 9. (a) Die microphotograph of the implemented proposed controller with test controller and
oscillator; (b) measurement setup showing test PCB and off-PCB current measurement devices.
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4. Results

The measurement setup to verify the implemented test-chip is shown in Figure 9b. For accurate
current measurements at the input and output of the converter, two current sensors [13] and
high-resolution Analog-to-Digital Converters (ADCs) are employed. To adjust the frequency of
the on-chip oscillator, a 12-bit DAC is used. For the sake of testing, we have split the load and the
power management CPU of Figure 2 into separate external components. Two series variable resistors
are acting as a load, one of which can be bypassed to toggle between heavy and light load conditions.
A CPU module is used to run a power management program and governs the on-chip controller,
the external DAC, and the load. The CPU module also reads the current measurements using the
external ADC and the voltage measurement using the internal ADC.

The first measurement result is the difference between single-phase and multi-phase operations,
which is shown in Figure 10. It can be observed that the ripple voltage of the multi-phase case is
significantly reduced compared with the single-phase. Moreover, the average output voltage of the
multi-phase case has increased, resulting in improved efficiency.

Figure 10. Single-phase vs. multi-phase operation of the implemented converter.

To evaluate the performance of the implemented converter over a wide load range, a set of
measurement are performed by reconfiguring the load and the oscillator frequency. The load is
configured by adjusting the off-chip resistor, while the converter takes 1.4 V as input. The oscillator
frequency is adjusted by the power management CPU via the DAC. The results provided in Figure 11
demonstrate that the converter is able to maintain a high efficiency of above 80% for the targeted
load range from 10 μA to 10 mA, by adjusting the switching frequency using the on-chip oscillator.
Furthermore, the converter provides a conversion efficiency of 74% at 15 mA, while operating at
150 MHz. In the test chip, where the source and load are off-chip, the conversion efficiency drops
above 7.5 mA due to a large voltage drop across the bonding and metal wires. However, for true
on-chip implementation, this efficiency will be maintained above 7.5 mA as well. At high frequencies,
the power losses (switching) increase while the power delivered slowly saturates due to conduction
losses. This results in the degradation of the conversion efficiency at higher frequencies.

To verify the transition operation between heavy (active) and light (sleep) load, the CPU module
momentarily changes the load and the frequency. Figure 12 shows the transition operation when the
load switches between 68 μA and 10 mA by switching the frequencies between 600 kHz and 100 MHz,
respectively. Usually in an active state, a higher voltage is needed to support fast computation in the
load (CPUs or SoCs) than the sleep state [14,15]. Therefore, in the test for Figure 12, we configured the
voltage conversion ratio to 1/2 for sleep and 3/4 for active period.
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Figure 11. Measurement results demonstrating wide load range performance over various switching
frequencies for a voltage conversion ratio of 3/4.

Figure 12. Measurement result for transitions between sleep and the active period of the load.

Figure 13 reflects the power consumption of the main blocks of the test chip, over the supported
frequency range. It can be observed that the power consumption of the oscillator and the controller
decreases with the decrease in frequency, allowing for higher conversion efficiencies at low currents.
The power consumption of the SC converter does not include the power supplied to the test controller.
Since the test controller is designed to provide many additional test features, its power consumption
does not truly reflect an optimized main controller. Moreover, the on-chip analog buffers (used for
output voltage observation) consume around 20 mW.

 
Figure 13. Test-chip power consumption at various operating frequencies.
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5. Discussion

The proposed SC converter’s advantage—the ability to transition smoothly between light and
heavy loads, while maintaining high conversion efficiency—makes the converter well suited to loads
that frequently change operating states. We have proposed a figure of merit (FOM) to evaluate a
converter for wide load range operation, using:

FOM = (ηMax + ηI,Max + ηI,Min) × log
(

IMax

IMin

)
, (11)

Here, ηMax is the peak conversion efficiency, while ηI,Max and ηI,Min are the conversion efficiencies at
maximum and minimum load, respectively. Table 1 compares the design parameters and performance
of our work with previously reported solutions. Table 1 shows that the proposed converter maintains
higher efficiency compared to other works [6,10,16]. This is accomplished by the ability of the
proposed converter to operate at a much wider switching frequency. Due to the limitation of existing
feedback-based PFM, only limited fmax/fmin of 132 is used in [6], while the proposed converter allows
for an extremely large fmax/fmin up to 1000. The capacitor banks used in this implementation offer five
buck voltage conversion ratios, higher than the works in [5,6,9–11,16]. To further reduce the output
ripple while having the wide load range, our architecture allows the number of phases to be increased
to match [5,6]. The proposed FOM reveals the superior performance of 7.44, compared to existing
works. Though the converter proposed in [9] reaches an FOM of 6.74, it uses off-chip flying capacitors
and two discrete converters for sleep and active operation.

Table 1. Comparison of performance with state of the art.

Characteristics [6] [9] [10] [16] This Work

Tech (nm) 65 800 45 130 130
No. of VCRs 3 1 1 1 5

Vin (V) 1.6–2.2 3.6–4.2 1.8 3.3 1.5
Vout (V) 0.6–1.2 1.7–2.1 0.8–1 1.2–1.5 0.4–1.1

IL,Min (mA) 5 b 0.005 0.1 1 b 0.01
IL,Max (mA) 125 b 2 10 53 10

C f ly (pF) 4797 440,000 a 534 2176 960
CL (pF) 2000 1,000,000 a 700 1000 640

Ripple (mV) 2.2–30 100 <50 8–55 56
ηMax (%) 80 94 69 73 85
ηI,Max (%) 73 b 85 48 73 b 80
ηI,Min (%) 71 b 80 65 44 b 83

FOM 3.13 6.74 3.64 3.28 7.44
Area (mm2) 0.842 N/A 0.16 2.04 0.59
Freq. (MHz) 0.25–33 0.05 30 40 0.1–200

a Off-chip Component. b Approximated values from graphs.

While this paper is focused on the proactive PFM, it is not limited only to proactive PFM with prior
schedules. We can combine the proactive PFM with existing feedback-based PFM methods [6,11] to take
advantage of both methods. Then, the feedback can allow finer adjustments in frequency, whereas the
proactive PFM provides a wider frequency range, which is expected to provide further improvement.

6. Conclusions

This paper has proposed and evaluated a wide load range SC converter aiming on sensor nodes,
where the load power requirements varies based on a schedule. The proposed voltage converter is
proactively reconfigured to ensure high conversion efficiency, for various load current and voltage
requirements. The converter utilizes multiphase operation to mitigate output ripple voltage and
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phase frequency modulation using an integrated oscillator to maintain high conversion efficiency
across the load range. In addition, the converter employs the proposed distributed non-overlapping
generation to reduce area and power consumption. The measurements demonstrate above 80%
efficiency for output current ranging from 10 μA to 10 mA. Due to its wide load range, the converter is
a strong candidate for driving sensor nodes, where the power requirements often change by orders of
magnitude between sleep and active state. The converter architecture allows for upscaling the number
of phases/capacitor banks to further reduce output ripple. Moreover, the converter architecture can be
evolved to incorporate existing feedback-based PFM to fine-tune its oscillator frequency against minor
load variations.
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Abstract: An EEPROM (electrically erasable programmable read-only memory) reprogrammable
fuse for trimming a digital temperature sensor is designed in a 0.18-μm CMOS EEPROM. The
fuse uses EEPROM memory cells, which allow multiple programming cycles by modifying the
stored data on the digital trim codes applied to the thermal sensor. By reprogramming the fuse,
the temperature sensor can be adjusted with an increased trim variation in order to achieve higher
accuracy. Experimental results for the trimmed digital sensor showed a +1.5/−1.0 °C inaccuracy in
the temperature range of −20 to 125 °C for 25 trimmed DTS samples at 1.8 V by one-point calibration.
Furthermore, an average mean of 0.40 °C and a standard deviation of 0.70 °C temperature error were
obtained in the same temperature range for power supply voltages from 1.7 to 1.9 V. Thus, the digital
sensor exhibits similar performances for the entire power supply range of 1.7 to 3.6 V.

Keywords: integrated circuits; EEPROM reprogrammable fuses; memory cells; trimming techniques
with fuses; digital temperature sensor; temperature sensor with digital serial interface

1. Introduction

Digital temperature sensors are suitable for thermal and power management systems
of PCs, laptops, and smartphones. A low-cost and high-accuracy temperature sensor
with a digital interface is desired nowadays due to the high demand for electronic smart
gadgets [1–4]. Furthermore, the use of temperature detectors with digital output has been
recently reported in smart sensor networks, image sensors, Internet of Things devices, and
biomedical applications [5–9].

Modern CMOS smart temperature sensors are categorized according to the sensing
device (BJT, MOS in subthreshold region and resistor) or the physical principle on which
the temperature is detected (bandgap voltage and thermal diffusion (TD)) [7,8]. Increased
accuracy, high precision, and output linearity with low power consumption are some of the
most important targets to achieve when designing such integrated sensors [10–20]. The aim
to meet these requirements with low production costs becomes more and more challenging
these days. The limitation for achieving higher accuracy for a thermal sensor is based on a
trade-off between the production costs for calibration and the required precision [21].

In deep submicron processes, nonideal factors like the temperature coefficient of the
devices, components mismatch, or absolute deviation of resistance affect the performance
of a smart sensor. Furthermore, process spread and packaging stress play important roles in
limiting the accuracy of a thermal sensor [22–24]. Thus, calibration methods and trimming
techniques are required to achieve the imposed performances of a digital temperature
sensor.

A calibration procedure provides information about the accuracy of a thermal sen-
sor [22–26]. Most circuits are calibrated to two well-defined temperature points, after which
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the circuit is adjusted to minimize the temperature error by trimming techniques [23]. A
one-point calibration has the advantage of lower production costs [25].

Smart sensors are usually calibrated by comparing them with a reference thermometer
of known accuracy. The calibration can be done at the wafer level or after packaging.
Regarding wafer-level calibration, the temperature of a complete wafer is stabilized and
measured using a number of reference thermometers mounted on the wafer chuck [26].
Several electrical tests and temperature readings from the chip are performed, followed by
adjustments in order to meet its performance requirements. Calibration after packaging
implies achieving the same temperature for every individually packaged IC (integrated
circuit) as for the reference thermometer in a thermally conducting medium, such as a
liquid bath or a metal block [26].

After calibration at wafer level or after packaging, smart temperature sensors usually
require an adjustment for the targeted parameter by applying a digital trim code [27].
Conventional methods consist of a permanent modification of the IC by laser trimming or
by altering metal fuse links [28]. Nowadays, a one-time programmable fuse (OTP fuse) is
often used for trimming a thermal sensor due to its ability to store the values of the trim
codes in a data latch and, for instance, to allow two states for the digital trim code [23,27,29].

For any of these trimming techniques, once the fuse is trimmed, it cannot return to
its original state [1]. Thus, a more complex trim involves several programming cycles.
Furthermore, trimming an integrated sensor with OTP fuses requires a lot of extra pads,
which are not accessible to the user, in order to store the digital trim codes required for
calibration [27]. Using EEPROM memory cells (EEcells), the fuse can be reprogrammed,
allowing multiple programming cycles for trimming the digital temperature sensor. The
endurance of an EEPROM memory cell, without altering its precision in time, covers
around 1,000,000 programming cycles, while its data retention exceeds 100 years [2]. With
this technique, the thermal sensor can be trimmed in an increased trim variation with
multiple digital codes, offering an efficient way to achieve its performance requirements.
For instance, the benefit of using the proposed EEPROM technique is that it allows an
increased number of digital trim codes for calibrating the circuit, with a low production cost.

In comparison with OTP fuses, an EEPROM fuse offers multiple advantages, such
as an increased number of programming cycles and no extra pads required for trimming,
which reduce the area consumption of the IC. Furthermore, the reprogrammable fuse
allows retrimming when the IC’s specifications are changed by the beneficiary. Addition-
ally, testing/trimming time is drastically reduced, resulting in a lower production cost.
Moreover, an important advantage of using EEPROM fuses includes the possibility of
choosing the number of fuses used to achieve the desired accuracy of the thermal sensor.

In this paper, a digital trimming technique with reprogrammable fuses for a digital
temperature sensor (DTS) is proposed. The fuse uses EEPROM memory cells, which allow
multiple programming cycles by altering the stored data of the digital trim codes. Thus,
the digital sensor can be adjusted with an increased trim variation in order to achieve
higher accuracy. The thermal sensor with the digital trim is designed and implemented in
a 0.18-μm CMOS EEPROM process.

2. EEPROM Reprogrammable Fuse

An EEPROM reprogrammable fuse is proposed in Figure 1 [1]. The circuit includes
a fuse-sensing part formed by two controlled current paths, LEFT and RIGHT, with four
switching transistors, an output S-R latch, and two EEPROM memory cells, EEcell_L and
EEcell_R, and an EEcell Control Logic & Programming Block [1]. The state of the fuse is
controlled by the command signal CMD, while a programming signal is provided by the
EEcell Control Logic & Programming Block.
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Figure 1. Schematic of the EEPROM reprogrammable fuse [1].

EEcells have electrically isolated gates, storing data in the form of a charge on the
floating gate (FG). The charge is transported to the FGs in the programming operation.
The EEcells have four terminals: drain read (DR), control gate (CG), source read (SR), and
programmable drain (PD).

By appropriate programming controlled by the EEcell Control Logic & Programming
Block, a high voltage (HV) is applied to the control gate or the programmable drain
terminal. When programming the EEcells with “1”, the FG potential has a positive value,
determining DR to provide a path to ground. In the scenario of “0”, a negative value is
stored on the floating gate, switching the DR signal to high, while the path to ground is
disconnected. In order to maintain proper operation of the fuse-sensing part, EEcell_L and
EEcell_R are programmed with complementary data.

The novel fuse presented in Figure 1 was designed using a 0.18-μm CMOS EEPROM
process with low voltage (2V) transistors, while its operation was tested through Synopsys
HSPICE® (HSPICE is a trademark of Synopsys Inc. in the US and/or other countries.)
simulations, with the resulting waveforms shown in Figure 2. The circuit is supplied at
power supply voltage VDD = 2 V, while for programming the EEcells, a high voltage (HV)
is applied to the EEPROM memory cells.
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Figure 2. Detailed EEPROM reprogrammable fuse waveforms: (a) POR, (b) CMD, (c) VFGL, (d) VFGR, (e) DRL, (f) DRR,

(g) LEFT, (h) RIGHT, (i) OUT [1].

After power-up and initialization of the output S-R latch, POR switches from “0”
to logic “1” (Figure 2a). When CMD is asserted (CMD = 1; Figure 2b), the fuse enters
evaluation mode. In the first scenario, EEcell_L is programmed with “0” and a negative
value is stored on the FG (VFGL = −4 V; Figure 2c), while EEcell_R is programmed with “1”
(VFGR = 4 V; Figure 2d). In this case, the current path to ground is provided by the right
branch (DRR = 0; Figure 2f), pulling RIGHT to “0” (Figure 2h), while LEFT is tied to VDD
(Figure 2g). Thus, the output latch stores “0”, while the output of the fuse will be in “0”
logic (Figure 2i) [1].

The second EEcell programming is done with complementary data. When the fuse
is evaluated again (Figure 2b), a positive value is stored on FG_L (VFGL = 4 V; Figure 2c),
and the floating gate potential of EEcell_R has a negative value (VFGR = −4 V; Figure 2d).
At this time, DRL is pulled to ground (Figure 2e), while DRR switches to 0.9V (Figure 2f).
Thus, LEFT is pulled to ground (Figure 2g), while the RIGHT signal will be in logic “1”
(Figure 2h). For this scenario, the S-R latch will memorize “1” logic (OUT = 1; Figure 2i) [1].

Two similar scenarios for reprogramming the fuse are represented in Figure 2, showing
the capability to change the fuse multiple times by reprogramming the EEcells. This
provides the advantage of being able to trim a smart sensor with various digital trim codes
until the desired parameters are obtained. Thus, the proposed fuse is used for trimming a
digital temperature sensor in order for it to exhibit increased accuracy.

In addition to the benefit of being able to reprogram the fuse, the proposed trimming
technique achieves lower area consumption compared to a metal fuse implementation. The
digital trim of the temperature sensor presented in Figure 3, which includes 16 proposed
EEPROM fuses, occupies only 0.030067 mm2 of the total chip area of 2.07 mm2. A metal
fuse trimming technique for another temperature sensor implementation, which contains
7 trim pads, occupies 0.05077 mm2 of the 0.3195 mm2 chip area, representing almost
1
4 of total area consumption. Thus, the proposed fuse technique has twice-lower area
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consumption than the metal fuse implementation and allows more digital trim codes that
can be reprogrammed.

 

Figure 3. Block schematic of digital temperature sensor (DTS) [1].

3. Trimming a Digital Temperature Sensor with EEPROM Fuses

A digital temperature sensor (DTS) with the proposed EEPROM reprogrammable
fuse is shown in Figure 3. The smart sensor includes a serial interface, a digital trim
block, and temperature sensing circuitry. The interface communicates with the trimming
circuitry in order to provide the digital trim codes required for adjusting temperature sens-
ing. Furthermore, after detecting the temperature in a digital representation, the sensing
circuitry communicates with the interface by sending the data stored in a temperature data
register [30].

The interface has two serial communication lines: a serial clock line, SCL, which is an
input pin, and a serial data line, SDA, a bidirectional pin. The serial interface sends the
data for controlling 16 EEPROM reprogrammable fuses (Figure 1) with a CMD signal (for
evaluating the fuse) and a CMDP signal (for programming the EEcells) [1]. Accordingly,
with the programmed EEcells (Figure 2), the trimming circuitry offers digital trim codes
from 0 × 0000 (minTRIM) to 0 × FFFF (maxTRIM), allowing the digital sensor to be
adjusted in order to achieve increased accuracy [1].

The core of the temperature-sensing circuitry is a bandgap reference with calibration,
which provides a PTAT current (IPTAT), and a reference current (IREF). The AD converter
(analog to digital converter) compares the analog values and offers the digital representa-
tion of the temperature (TEMP). The digital value is stored in the temperature data register,
which is sent to the serial interface.

A detailed view of the temperature-sensing circuitry of the DTS is illustrated in
Figure 4. The bandgap reference and calibration include two identical BJT transistors,
Q1 and Q2, which are biased with I1 and pI1 currents [26]. The positive to absolute
temperature values (VPTAT, IPTAT) are obtained by subtracting the base-emitter voltages
of the sensing devices (VBE1, VBE2) [26]. The reference voltage (VREF) is expressed as
the sum between the resulting positive voltage VPTAT and the base-emitter voltage
VBE2. In order to acquire the reference current (IREF), a buffer (OPAMP) and the resistor
(RTRIM) are used [31]. The bandgap reference and calibration are trimmed by adjusting
IREF in order to improve the accuracy of the digital temperature sensor.
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Figure 4. Detailed temperature sensing circuitry of DTS.

The AD converter of the DTS described in Figure 4 comprises a sigma-delta modulator
and a digital filter. The sigma-delta modulator processes the analog currents IPTAT and IREF
and generates a bit stream signal (BS) [32]. The integrator of the sigma-delta modulator
stores the difference between the analog currents IPTAT and IREF, while the rising voltage VI
is compared with VREF. The output of the comparator is then sampled by a clocked flip flop,
which synchronizes the received data with the clock. The resulting signal (BS) is fed back
into the system by a 1-bit DAC converter, which acts as a switch for the loop. When BS is
in logic “0”, only IPTAT will be processed by the integrator, while in logic “1”, the difference
between the analog values will be taken into account. The output of the sigma-delta
modulator is then processed through the digital filter, which generates a filtered multibit
digital signal by oversampling and decimation techniques [33,34]. Thus, the temperature
detected by the BJT transistors is represented in a digital format (TEMP [0:11]).

The digital temperature sensor depicted in Figure 3 was designed using a 0.18-μm
CMOS EEPROM process. The system operates at supply voltages from 1.7 to 3.6 V. The
operation of the trimmed DTS was observed through Synopsys HSPICE simulations and
wafer-level and encapsulated IC measurements. A DC sweep analysis for the trimmed
current IREF in the temperature range of −20 to 125 ◦C, with minTRIM and maxTRIM
digital codes, is depicted in Figure 5a. The reference current can be adjusted between 7.5
and 8.5 μA, depending on the digital trim code.

The temperature error of the DTS applied to IREF is shown in Figure 5b. A negative
slope of the error vs. temperature variation results from trimming IREF with maxTRIM,
while a positive slope is observed by applying minTRIM. By modifying the slope of the
temperature error through the trim applied to IREF, an increased accuracy can be achieved.
Thus, an optimal digital trim code is available for the reference current, which provides a
minimum temperature error.

The DTS’s measurements were performed at the wafer level and on ceramic encapsu-
lated ICs. For testing the untrimmed sensor’s performances, wafer-level measurements
were carried out at room and hot temperatures (25 and 85 °C). The temperature error
for 5 measured untrimmed DST samples is represented in Figure 6. For half of the sam-
ples, a variation of −2 °C inaccuracy can be observed for both measured temperatures,
while a maximum −9.5 °C variation of temperature error is obtained. Furthermore, the
investigated DTS samples show a +13.75/−5 °C inaccuracy for the untrimmed DTS.
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(a) (b) 

Figure 5. (a) Simulated dependence of the IREF with trim variation and temperature for DTS (b) simulated temperature
error of DTS with trim variation.

 
Figure 6. Measured temperature error of 5 untrimmed DTS samples at 1.8 V.

In order to evaluate the trimmed sensor’s inaccuracy for the entire temperature
range, measurements on encapsulated ICs were investigated. The test setup involves the
test system Maverick-II and the micro-bath calibrator Fluke7103 [35], which control the
environmental temperature precisely. The one-point calibration method follows the steps
described in Figure 7. The circuit is calibrated at 85 °C. If accuracy is achieved, the process
is finished and the optimum digital trim code is found. Otherwise, the investigations
continue until accuracy is obtained or the trim variation reaches all its digital trim codes.
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Figure 7. One-point calibration diagram.

IREF is adjusted with the optimal digital trim code during the test process for each
fabricated sample. DTS samples (supplied at 1.8 V) with the optimal trim code were
measured in the temperature domain of −20 to 125 °C. The temperature error of the DTS
for 5 encapsulated ICs is illustrated in Figure 8. A fairly low inaccuracy of +1/−0.75 °C
was obtained. Furthermore, for most of the samples, the temperature error varied by
±0.5 °C for the entire temperature range. Thus, a 0.24 °C average mean with a 0.44 °C
standard deviation of the measured error was obtained for the full temperature range. The
advantage of using this proposed digital trim is the possibility of adjusting each sample
with an optimal digital trim code in order to minimize the effect of device spread for a
given technology. Additionally, in comparison with the measurements of the untrimmed
sensor depicted in Figure 6, the inaccuracy illustrated in Figure 8 is more than 5 times
lower for the entire investigated temperature range.

Further investigations of the digital temperature sensor’s inaccuracy were performed
by measuring 20 DTS samples. The measured error dependence as a function of tempera-
ture for three power supply values is presented in Figure 9a–c. The full DTS temperature
range was tested. The means and standard deviations of the temperature errors for the
measured samples at each supply voltage are shown in Table 1.

Table 1. Mean and standard deviation of the temperature error for 20 measured DTS samples.

Parameter Power Supply [V] Temperature Range [◦C] −20~125

Mean [◦C]
1.7 0.30
1.8 0.44
1.9 0.35

Standard Deviation
[◦C]

1.7 0.71
1.8 0.71
1.9 0.69
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Figure 8. Measured temperature error of 5 trimmed DTS samples at 1.8 V.

 
 

(a) (b) 

 
(c) 

Figure 9. (a) Measured temperature error of 20 trimmed DTS samples at 1.7 V; (b) measured temperature error of 20 trimmed
DTS samples at 1.8 V; (c) measured temperature error of 20 trimmed DTS samples at 1.9 V.
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The measured error data of samples supplied at 1.8 V have similar dependence at
high temperatures (Figures 8 and 9b). At low temperatures, the inaccuracy increases up
to +1.5 °C (Figure 9b) for less than half the samples. Thus, a mean value of 0.44 °C, with
a standard deviation of 0.71 °C, for the 20 measured temperature errors is observed in
Table 1 in the temperature range of −20 to 125 °C at 1.8 V.

At a lower power supply voltage (Figure 9a), the inaccuracy at −20 °C increases to
1.56 °C, while for high temperatures, it varies between +0.75 to +1.3 °C in almost all cases.
At 1.9 V (Figure 9c), the error reported by most of the measured samples varied by ±1 °C
in the full temperature range. With regards to the mean and standard deviation of the
temperature error reported at 1.7 and 1.9 V, they have similar values to the ones obtained
at 1.8 V (Table 1).

The performances of the trimmed thermal sensor (Figure 3) are compared with
recently reported digital temperature sensors [4–25] in Table 2. The experimental
results of 25 measured DTS samples are in good agreement with the majority of referred
data [4–6,11–15,18,19,21,24], providing low inaccuracy in a wide temperature range.
Furthermore, the proposed trimmed DTS can be supplied with an extended domain of
supply voltages. The presented digital sensor achieves its performance by calibration to
just one point, while the inaccuracies obtained in [7–9,11,13,18,20–22,24] are performed
using the two-point calibration method. With regards to power consumption, the
investigated sensor reaches an acceptable value in comparison with [11,12,18,22].

Table 2. Comparison with recently reported digital temperature sensors.

Type
Process

[nm]
Power

Supply [V]
Temperature
Range [◦C]

Inaccuracy [◦C] Calibration
No.

Samples
Power
[μW]

This
Work BJT 180 1.7~3.6 −20~125 +1.56/−1.0 One point 25 850

[4] TD 55 0.8~1.3
−40~125 ±0.70 (3σ)/±0.94 (3σ) Two points 4 9.3
−10~110 ±1.38 (3σ)/±1.64 (3σ) One point 4 9.8

[5] CIS
pixels 180 3.3 −20~80 ±1.30 (3σ) Two points 3 36

[6] CIS
pixels 180 3.3 0~100 ±1.40 (3σ) Two points 3 144

[7] MOS 130 1.3 −20~85 ±0.60(3σ) Two points 10 6
[8] TD 130 1.3 −20~85 ±0.60 (3σ) Two points 10 6
[9] MOS 180 1.0 0~100 +0.29/−0.98 Two points 10 22.3
[10] BJT 160 1.8 −40~180 ±0.25 (3σ) One point 24 9.75
[11] MOS 350 3.3 0~90 +0.7/−1.35 Two points 3 3000
[12] BJT 180 - 16~87 +0.68/−0.8 One point 3 586
[13] RES 65 0.6~1.0 −20~120 ±1.5 (3σ)/0.80 (3σ) Two points 16 0.1

[14] RES 65 0.6~1.2 −45~85
+1.6/−1.0 Two points 8

47.2±4 One point 8
[15] RES 65 1.0 0~100 +1.5/−1.1 One point 12 36
[16] BJT&MOS 22 1.0 −30~120 ±1.07 (3σ) One point 38 50
[17] TD 180 1.2 −40~120 +1.0/−1.0 One point 4 3
[18] BJT 14 1.35 0~100 +1.0/−1.5 Two points 52 1600
[19] MOS 60 1.0 20~80 ±3 One point 4 14
[20] BJT - 3.0~5.5 −20 ~55 ±0.15 Two points 14 -
[21] MOS 180 0.8 −20 ~80 +1.2/−0.9 Two points 9 11
[22] BJT 180 1.8 −55 ~125 ±0.3 (3σ) Two points 20 8280
[23] BJT 180 1.8–5.5 20 ~50 ±0.1 (3σ) One point 15 16
[24] MOS 180 1.2 0~100 +1.5/−1.4 Two points 4 0.071
[25] RES 65 0.83–1.35 −50~105 ±1.2 (3σ) One point 20 32.5

4. Conclusions

A 0.18-μm CMOS reprogrammable fuse using EEcells is proposed for trimming a
digital temperature sensor. The fuse uses EEPROM memory cells, which allow multiple
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programming cycles by altering the stored data for digital trim codes applied to the smart
sensor. By reprogramming the fuse, the digital sensor can be adjusted with an increased
trim variation in order to achieve higher accuracy. The operation of the trimmed DTS
was validated by Synopsis HSPICE simulations and wafer-level and encapsulated IC
measurements. A +1.5/−1.0 ◦C inaccuracy in the −20 to 125 ◦C range was obtained for
25 DTS measured samples at 1.8 V by one-point calibration, while the mean was centered at
0.44 ◦C, with a standard deviation of 0.71 ◦C. The digital sensor exhibits similar results for a
power supply range of 1.7 to 3.6 V. Thus, the DTS’s performance is in fairly good agreement
with recently reported temperature sensors, and the proposed trimming technique can be
used in multiple presented applications.

Author Contributions: Conceptualization, A.M.V., A.N., and A.T.; methodology, A.M.V. and A.N.;
software, A.M.V. and A.N.; validation, A.N., A.T., and G.B.; formal analysis, A.M.V.; investigation,
A.M.V. and A.N.; resources, A.M.V. and A.T.; data curation, A.M.V.; writing—original draft prepara-
tion, A.M.V.; writing—review and editing, A.N.; visualization, A.T. and G.B.; supervision, A.T. and
G.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dragan, A.; Negut, A.; Tache, A.M.; Brezeanu, G. A Reprogrammable Fuse with EEcells for trimming a Temperature Sensor. In
Proceedings of the 2020 International Semiconductor Conference (CAS), Sinaia, Romania, 7–9 October 2020; pp. 111–114.

2. Datasheet of N34TS04 Circuit. Available online: https://www.onsemi.com/pub/Collateral/N34TS04-D.PDF (accessed on 25
February 2021).

3. Datasheet of N34TS108 Circuit. Available online: https://www.onsemi.com/pub/Collateral/N34TS108-D.PDF (accessed on 25
February 2021).

4. Tang, Z.; Fang, Y.; Shi, Z.; Yu, X.-P.; Tan, N.N.; Pan, W. A 1770-μm2 Leakage-Based Digital Temperature Sensor with Supply
Sensitivity Suppression in 55-nm CMOS. IEEE J. Solid-State Circuits 2019, 55, 781–793. [CrossRef]

5. Xie, S.; Prouza, A.A.; Theuwissen, A. A CMOS-Imager-Pixel-Based Temperature Sensor for Dark Current Compensation. IEEE
Trans. Circuits Syst. II Express Briefs 2019, 67, 255–259. [CrossRef]

6. Xie, S.; Theuwissen, A.J.P. A CMOS Image Sensor With Thermal Sensing Capability and Column Zoom ADCs. IEEE Sens. J. 2019,
20, 2398–2404. [CrossRef]

7. Ballo, A.; Bruno, G.; Grasso, A.D.; Vaiana, M. A Compact CMOS Temperature Sensor for On-Chip Thermal Monitoring. In
Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul,
Turkey, 12–13 June 2020; pp. 1–5.

8. Ballo, A.; Bruno, G.; Grasso, A.; Vaiana, M. A Compact Temperature Sensor with a Resolution FoM of 1.82 pJ·K2. IEEE Trans.
Instrum. Meas. 2020, 69, 1. [CrossRef]

9. Setiabudi, A.; Tamura, H.; Tanno, K. CMOS Temperature Sensor with Programmable Temperature Range for Biomedical
Applications. Int. J. Electr. Comput. Eng. 2018, 8, 946–953. [CrossRef]

10. Yousefzadeh, B.; Makinwa, K.A.A. A BJT-Based Temperature-to-Digital Converter With a ±0.25 ◦C 3σ -Inaccuracy From −40 ◦C
to +180 ◦C Using Heater-Assisted Voltage Calibration. IEEE J. Solid-State Circuits 2019, 55, 369–377. [CrossRef]

11. Chen, C.-C.; Chen, C.-L.; Fang, W.; Chu, Y.-C. All-Digital CMOS Time-to-Digital Converter with Temperature-Measuring
Capability. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2079–2083. [CrossRef]

12. Deotti, D.; Ramirez, J.L.; Fruett, F. Design and Characterization of a Smart Temperature Sensor. In Proceedings of the 2020 IEEE
11th Latin American Symposium on Circuits & Systems (LASCAS), San Jose, Costa Rica, 25–28 February 2020; pp. 1–4.

13. Pelzers, K.; Xin, H.; Cantatore, E.; Harpe, P. A 2.18-pJ/conversion, 1656-μm2 Temperature Sensor With a 0.61-pJ·K2 FoM and
52-pW Stand-By Power. IEEE Solid-State Circuits Lett. 2020, 3, 82–85. [CrossRef]

14. Park, H.; Kim, J. A 0.8-V Resistor-Based Temperature Sensor in 65-nm CMOS With Supply Sensitivity of 0.28 ◦C/V. IEEE J.
Solid-State Circuits 2018, 53, 906–912. [CrossRef]

15. Xin, H.; Andraud, M.; Baltus, P.; Cantatore, E.; Harpe, P. A 174 pW–488.3 nW 1 S/s–100 kS/s All-Dynamic Resistive Temperature
Sensor With Speed/Resolution/Resistance Adaptability. IEEE Solid-State Circuits Lett. 2018, 1, 70–73. [CrossRef]

103



Sensors 2021, 21, 1700

16. Lu, C.-Y.; Ravikumar, S.; Sali, A.D.; Eberlein, M.; Lee, H.-J. An 8b subthreshold hybrid thermal sensor with ±1.07 ◦C inaccuracy
and single-element remote-sensing technique in 22nm FinFET. In Proceedings of the 2018 IEEE International Solid—State Circuits
Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 318–320.

17. Azcona, C.; Calvo, B.; Medrano, N.; Celma, S. 1.2 V–0.18-μm CMOS Temperature Sensors With Quasi-Digital Output for Portable
Systems. IEEE Trans. Instrum. Meas. 2015, 64, 2565–2573. [CrossRef]

18. Oshita, T.; Shor, J.; Duarte, D.E.; Kornfeld, A.; Zilberman, D. Compact BJT-Based Thermal Sensor for Processor Applications in a
14 nm tri-Gate CMOS Process. IEEE J. Solid-State Circuits 2015, 50, 799–807. [CrossRef]

19. Xie, S.; Ng, W.T. Digital integrated temperature sensors for VLSI thermal management. In Proceedings of the 2014 12th IEEE
International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 28–31 October 2014; pp. 1–4.

20. Lewis, G.D.; Merken, P.; Vandewal, M. Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature
Correction. Sensors 2018, 18, 4087. [CrossRef] [PubMed]

21. Someya, T.; Islam, A.K.M.M.; Sakurai, T.; Takamiya, M. An 11-nW CMOS Temperature-to-Digital Converter Utilizing Sub-
Threshold Current at Sub-Thermal Drain Voltage. IEEE J. Solid-State Circuits 2019, 54, 613–622. [CrossRef]

22. Yousefzadeh, B.; Makinwa, K.A.A. 9.3 A BJT-based temperature sensor with a packaging-robust inaccuracy of ±0.3 ◦C (3σ) from
−55 ◦C to +125 ◦C after heater-assisted voltage calibration. In Proceedings of the 2017 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 162–163.

23. Deng, C.; Sheng, Y.; Wang, S.; Hu, W.; Diao, S.; Qian, D. A CMOS Smart Temperature Sensor With Single-Point Calibration
Method for Clinical Use. IEEE Trans. Circuits Syst. II Express Briefs 2015, 63, 136–140. [CrossRef]

24. Jeong, S.; Foo, Z.; Lee, Y.; Sim, J.-Y.; Blaauw, D.; Sylvester, D. A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power
Wireless Sensor Nodes. IEEE J. Solid-State Circuits 2014, 49, 1682–1693. [CrossRef]

25. Lee, Y.; Choi, W.; Kim, T.; Song, S.; Makinwa, K.A.A.; Chae, Y. A 5800-μm2 Resistor-Based Temperature Sensor with a One-Point
Trimmed Inaccuracy of ±1.2 ◦C (3σ) From −50 ◦C to 105 ◦C in 65-nm CMOS. In Proceedings of the ESSCIRC 2019—IEEE 45th
European Solid State Circuits Conference (ESSCIRC), Cracow, Poland, 23–26 September 2019; pp. 68–71.

26. Meijer, G.; Pertijs, M.; Makinwa, K. 2—Calibration and Self-Calibration of Smart Sensors. In Smart Sensor Systems: Emerging
Technologies and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [CrossRef]

27. Meijer, G.C.; Wang, G.; Heidary, A. Smart Temperature Sensors and Temperature Sensor Systems; Elsevier BV: Amsterdam, The
Netherlands, 2018; pp. 57–85.

28. Sabate, A.C.; Nordin, N.; Jimenez, B. Fuse trim links physical analysis methodology. In Proceedings of the 2016 IEEE 23rd
International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 18–21 July 2016; pp.
100–104. [CrossRef]

29. Wong, C.-C.; Chang, S.-P.; Tseng, C.-H.; Chen, W.-S.; Chang, S.-J. Communication—Diffusion Break-Assisted Programming Mode
for Active Electrically Programmable Fuse. ECS J. Solid State Sci. Technol. 2018, 7, Q109–Q111. [CrossRef]

30. Dragan, A.M.; Enache, A.; Negut, A.; Tache, A.M.; Brezeanu, G. An improved digital output buffer for a digital temperature
sensor with an I2C high speed interface. Solid State Electron. Lett. 2019, 1, 147–151. [CrossRef]

31. Chen, Y.; Tan, X.; Yu, B.; Li, C.; Guo, Y. A new all-in-one bandgap reference and robust zero temperature coefficient (TC) point
current reference circuit. In Proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China,
25–28 October 2017; pp. 541–544.

32. Ramirez, J.L.; Tiol, J.P.; Deotti, D.; Fruett, F. Delta-Sigma modulated output temperature sensor for 1V voltage supply. In
Proceedings of the 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS), Armenia, Colombia, 24–27
February 2019; pp. 249–252. [CrossRef]

33. Mankani, S.K.; Sajjanar, S.; Aradhya, H.R. Power and area optimization of decimation filter for application in Sigma Delta ADC.
In Proceedings of the 2016 International Conference on Circuits, Controls, Communications and Computing (I4C), Bangalore,
India, 4–6 October 2016; pp. 1–5.

34. Caldwell, T.; Shibata, H. High-speed oversampled continuous-time analog-to-digital converters. In Proceedings of the 2017 IEEE
60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1001–1004.

35. Datasheet of Fluke7103 Calibrator. Available online: https://instrumentation.com/PDFs/fluke%207103%20user%20guide.pdf
(accessed on 25 February 2021).

104



sensors

Communication

A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR
ADC for WAVE ITS Sensor Based Applications

Khuram Shehzad, Deeksha Verma, Danial Khan, Qurat Ul Ain, Muhammad Basim, Sung Jin Kim, Behnam

Samadpoor Rikan, Young Gun Pu, Keum Cheol Hwang, Youngoo Yang and Kang-Yoon Lee *

Citation: Shehzad, K.; Verma, D.;

Khan, D.; Ain, Q.U.; Basim, M.; Kim,

S.J.; Rikan, B.S.; Pu, Y.G.; Hwang,

K.C.; Yang, Y.; et al. A Low-Power

12-Bit 20 MS/s Asynchronously

Controlled SAR ADC for WAVE ITS

Sensor Based Applications. Sensors

2021, 21, 2260. https://doi.org/

10.3390/s21072260

Academic Editor:

Francesc Serra-Graells

Received: 21 February 2021

Accepted: 21 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea;
khuram1698@skku.edu (K.S.); deeksha27@skku.edu (D.V.); danialkhan@skku.edu (D.K.);
quratulain@skku.edu (Q.U.A.); basim@skku.edu (M.B.); sun107ksj@skku.edu (S.J.K.); behnam@skku.edu (B.S.R.);
hara1015@skku.edu (Y.G.P.); khwang@skku.edu (K.C.H.); yang09@skku.edu (Y.Y.)
* Correspondence: klee@skku.edu; Tel.: +82-31-299-4954

Abstract: A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register
(SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment
(WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To
optimize the architecture with respect to power consumption and performance, several techniques
are proposed. A switching method which employs the common mode charge recovery (CMCR)
switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the
switching energy. The switching technique proposed in our work consumes 56.3% less energy in
comparison with conventional CMCR switching method. For high speed operation with low power
consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch
comparator with cascode is implemented. In addition, to optimize the flexibility relating to the
performance of logic part, an asynchronous topology is employed. The structure is fabricated in
65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of
20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at
Nyquist frequency while consuming only 472.2 μW with 1 V power supply.

Keywords: asynchronous control logic; successive approximation register (SAR); wireless access in
vehicular environments (WAVE); low power consumption; capacitive digital to analog converter
(CDAC)

1. Introduction

Internet of Things (IoT) is considered as a challenging technology and next growth
engine that will have an everlasting effect in the semiconductor field. IoT devices have
capability to connect a plenty of different end systems. IoT based techniques applied on
traffic management systems result in an intelligent and advanced transportation system.
A wireless access in vehicular environments (WAVE) is a protocol related to vehicle com-
munications and provides an efficient, and reliable radio communications in an intelligent
transportation system (ITS). In most of the ITS application, the WAVE protocol system
has been designed in such a way to allow one vehicle to communicate with other vehi-
cles (V2V), to other device (V2R), or to infrastructures (V2I) via dedicated short-range
communications (DSRC) [1,2]. WAVE protocol has the potential to carry out an authentic
and competent V2V, V2I and V2R communications to facilitate the mobility, safety and
environmental applications. It consists of an on-board equipment (OBE) and a roadside
equipment (RSE), wirelessly connected to provide an intelligent system. An on-board
equipment (OBE) generally should offer low power, low cost, low design complexity, good
reliability, and high energy efficiency. A fully-integrated RF-SoC is a most suitable option
to meet the above mentioned requirements.
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Figure 1 plots the top block diagram of highly integrated 5.8 GHz DSRC transceiver
system. It satisfies the aforementioned requirements without any externally connected
block like low-noise amplifier (LNA) and external power amplifier (PA) [3]. The main
building blocks consists of a matching network (M.N), single pole double throw (SPDT)
switch, an inductively generated low-noise amplifier (LNA) to amplify the input signal, a
mixer (MIXER), a 12-bit ADC, a 12-bit DAC, a received signal strength indicator (RSSI), a
variable gain amplifier (VGA) with a low pass filter (LPF) and power amplifier (PA) [4].
An integrated SAR ADC allows transceiver to communicate with the digital baseband [5].
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Async. 

ADC

VGA
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LPF

RX_Mixer

DAC

LNA

LPF
DOUT<11:0>

TX_Mixer
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RSSI
VRSSI

M.N SPDT 20MHz

Proposed ADC

 
Figure 1. Top architecture of the DSRC transceiver.

As a result of the breakneck advancement in wireless technologies, a number of
communication standard applications including ITS transceivers require on-chip ADCs
with a sampling speed of few tens of MS/s and a resolution of more than 10 bits. The
converters for finest communication systems, which include wireless local area networks
(WLANs) based on IEEE standards protocol IEEE 802.11 require comparatively higher
resolution of more than 10-bit and sampling rate of about few tens of MS/s [6].

Successive approximation register (SAR) analog-to-digital converters (ADCs) have
been proven to be energy efficient in achieving moderate resolution and speed range [7,8]
having a single comparator structure with no static power consumption and comparatively
a simple structure. Recently, SAR algorithm based ADCs have also been used for higher
speed and medium resolution applications by time interleaving multiple sub-SAR channels
replacing traditionally implemented flash or pipeline structures [9]. However, with the
increased number of bits, limitations due to comparator noise become severe which make
SAR ADC as a difficult approach to implement for high resolution [10,11]. An energy-
efficient prototype for high resolution is implemented front-end sampling switch, which
results in eliminating the timing skew [12]. For high resolution ADCs, capacitive DAC
consumes very high switching energy [13], for noise filtering integrator-based amplifier
is used in [14]. Re-configurability and bandwidth scalability is achieved in [15] SAR
ADC at a cost of comparatively high power consumption. A top-plate sampling increases
the precision for 12-bit due to the implemented bootstrap switch. For a smaller overall
capacitance, a DAC configurable binary window switching technique is implemented
in [16]. However, it is lagging behind in terms of energy efficiency. For fully differential
architecture, several techniques have been implemented to decrease the capacitor array size
without digital calibration [17]. To reduce the switching energy and improve the linearity,
floating DAC switching technique is presented in [18]. In [19,20], a binary-window DAC
switching technique is presented to decrease switching error and DAC non-linearity at the
cost of excessive power consumption. To decrease the distortion introduced by threshold
voltage and parasitic capacitance, a linearity enhancement switch is implemented in [21].
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A top-plate sampling technique is used to reduce the capacitor array size by half in [22],
but it can cause non-linearity and common mode dependency upon input. A bottom plate
sampling method is presented in [23] to reduce the overall size of the capacitor array.

This paper presents a 12-bit, 20 MS/s asynchronously controlled fully differential SAR
ADC for wide-band WAVE based DSRC transceiver systems. To improve the static and
dynamic performance of ADC, various techniques have been implemented. For 12-bit
ADC, the implemented switching technique with CMCR switching conversion reduces
the switching energy of DAC by 56.3% as compared to the conventional CMCR switching
technique. The top-plate sampling results in increased settling because the influence
of charge injection is reduced due to the aligned switching (AS) and detect-and-skip
(DAS) switching technique. The implemented bootstrap switching technique improves
the static performance of ADC. A constant DC shift and gain error can be introduced
by the sustainable charge injection error, and sampling linearity will not deteriorate by
implemented bootstrap switches. To decrease the power consumption and kickback noise
of ADC, the proposed dynamic latch comparator with cascode is used.

The top configuration of the proposed asynchronous SAR ADC architecture is de-
picted in Section 2. The sub-blocks of the proposed ADC, such as the proposed capacitive
DAC with a modified CMCR switching method, bootstrap switching, and dynamic latch
comparator with cascode are explained in Section 3. The measured results and the perfor-
mance summary of the presented ADC architecture is discussed in Section 4, and finally,
we conclude our brief in Section 5.

2. The Top-Block Diagram of Proposed ADC Architecture

The presented configuration of SAR ADC is depicted in Figure 2. The presented
architecture contains a comparator, SAR logic, clock generator, binary-weighted capac-
itive DAC and bootstrap switch. To improve the common-mode noise rejection and to
reduce the noise of supply voltage we have implemented a fully differential architecture of
SAR ADC. By bootstrap switches, the differential input signal is sampled at the bottom
plate of capacitive DAC. According to the comparator decision and output digital code
stored by the modified asynchronously controlled SAR logic, which controls the capacitive
DAC switches.
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Figure 2. Top block diagram of proposed 12-bit asynchronous SAR ADC.

3. Circuit Implementation

3.1. Capacitive DAC with Modified CMCR Switching Technique

In a conventional switching scheme, for N-bit resolution, SAR ADC usually requires
2N number of unit capacitors. The number of the unit capacitor can be reduced by op-
timizing the capacitive DAC’s switching sequence, which is broadly explored, such as
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common mode based switching, set-and-down [24,25], and so on. The Area and power
consumption of the capacitive DAC are significantly large for the high-resolution ADC
such as over 10-bit resolution. To lower the capacitance from the DAC part, we adopt
the common-mode charge recovery (CMCR) switching method [26]. With this switching,
we use the possible minimum size of the unit capacitor in a capacitive DAC layout. An
example of a 3-bit CMCR switching sequence is represented in Figure 3.
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Figure 3. A 3-bit example of CMCR switching scheme.

The CMCR switching technique operation is based on the common-mode voltage
scheme anticipated by the last comparison cycle. An additional bit is monotonously
converted to the lowest capacitor of capacitive DAC to VREFT from VCM. Due to differential
implementation, noise can be eliminated by the CMCR switching technique, furthermore,
this switching method introduced the ripple in the LSB conversion by VCM. Although,
VCM can easily implement 1-bit accuracy, and it is effective for the reduction of the
cost of sampling switches and DAC. We propose a switching technique based on the
CMCR switching method for 12-bit SAR ADC as shown in Figure 4. Switches S1~S4 are
input sampling switches which sample the input signal to the sub-DACs. The driving
requirement of the SAR logic and comparator must be satisfied by the DAC control switches.
For the 12-bit ADC, large switches are needed to achieve the charge sharing within the
restricted time, because the peak-to-peak value of voltage discrepancy is VREF on the top
plate of the capacitive DAC, which causes the large power dissipation. Besides, the loss
of switching energy in the proposed switching technique for the first ten comparison
cycle is 2/4 times in comparison with the 10-bit CMCR switching method for the DAC
capacitance increase.
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Figure 4. Example of proposed switching technique for 6-bit SAR architecture (a) Sampling phase (b)
First two conversion cycles (c) 3rd conversion cycles (d) 4th conversion cycle (e) 5th conversion cycle.
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The proposed DAC switching sequence use the detect-and-skip (DAS) technique, and
aligned switching (AS) technique to minimize the switching energy loss and the size of
DAC controlling switches S1~S4, in the comparison phase [14]. The proposed switching
procedure prosecute with two steps:

(1) LSB conversion by the whole sub-DACs.
(2) MSB conversion by one sub-DAC.

The proposed switching technique for 6-bit SAR ADC which contains two sub-DACs
is represented in Figure 4. In the implemented DAC, with the CMCR switching technique
ADC start the conversion of sampling signal after the sampling phase, while sub-DAC
A does not consume any switching energy because it is idle. By using the DAS and AS
technique, the data transferred to sub-DAC A after the generation of the first three bits
(B3~B5). Simultaneously, B2 determines by the comparator. When the sub-DAC B’s LSB
capacitors are switched by B2, the switches SP and SN are switched on in the 4th comparison
cycle. During the 3rd comparison cycle, AS sets up and sub-DACs switching does not
require any additional settling time. In the end, by the CMCR switching technique, the
bits (B1~B0) are converted. By the proposed switching method, we are able to reduce the
loss of switching energy from the capacitive DAC part, because the generation of the first
nine bits is done by only one sub–DAC, and others are idle. The comparison between the
conventional switching and the proposed switching energy versus output code is shown in
Figure 5. The proposed switching method consumes 56.3% less energy when compared to
the conventional CMCR switching method. The voltage variation is very small at the top
plate, and DAC controlling switches S1~S4 requirements are reduced because they turn on
after the achievement of nine bits. The switching energy is very efficient for the DAS and
AS techniques. The dynamic performance with behavioral simulation is done in MATLAB®

of proposed switching technique with 1% unit capacitor mismatch is shown in Figure 6.
The static performance differential non-linearity (DNL), and integral non-linearity (INL)
behavioral model of proposed switching technique with 1% unit capacitor mismatch is
shown in Figure 7.

Figure 5. Comparison between switching energies of the proposed and conventional switching
technique.
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Figure 6. Dynamic performance with behavioral model of proposed switching technique with 1%
unit capacitor mismatch.

(a) (b) 

Figure 7. Static performance with behavioral model of proposed switching technique with 1% unit capacitor mismatch (a)
differential non-linearity (DNL), and (b) integral non-linearity (INL).

For 12-bit, unit capacitor size is calculated with 1 V power supply by considering
the capacitor mismatch and thermal noise power from DAC and due to sampling. The
effective noise power due to sampling and from DAC is calculated by following the
Equations (1) and (2) respectively,

v2
ns =

2KT
CSAM

(1)

v2
nd =

2KT(CDAC)

(CSAM)(CA)
(2)

where, v2
ns is noise because of sampling,v2

nd is effective noise from DAC, K is Boltzman’s
constant, T is the temperature, CSAM is the total sampling capacitance, CA is the intentional
grounding capacitor for attenuation, and CDAC is the overall DAC capacitance. The total
sampling capacitance is 286 C, where C is the unit capacitance with a value of 15 fF.

3.2. Bootstrap Switch

Figure 8 shows the employed schematic of bootstrap switching, which is improved as
proposed in [27]. The implemented bootstrap switch operates at the supply voltage. The
gate body voltage (VGB) of transistor M11 will be twice the supply voltage. Deep N-well
(DNW) transistors M10–M13 are used to reduce the risk of enhancing reliability and failure.
Transistors M10–M12 are turned on during the sampling phase. During this phase, the
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gate source voltage (VGS) and VGB of transistor M11 abide to supply voltage. During the
sampling period, the implemented procedure is also competent to increase the sampling
linearity and abolish the body effect because the body source voltage (VBS) of transistor
M11 stays at zero. When the substrate of transistor M11 goes to zero, while M13 is turned
on then transistors M10–M12 are turned off during the conversion phase. In this way, we
can ensure the separation of input VIP/VIN from the output VOUT, because both drain
substrate pn junction and source substrate pn junction are inversely-biased.

 

CLKB CLK

CLKB

CLK

CLKB
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VIP/VIN

VOUT

Sampling Switch

C1 C2 C3

M1 M2 M3

M4

M5
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M11

M12 M13

Figure 8. Bootstrap Switching Schematic.

For the differential architecture, we assume that the bootstrap switches matching
accuracy is sufficient, since small common mode variation is caused by this, and the clock
feed-through effect can be ignored. By embracing the implemented bootstrap switch
architecture, we can alleviate the body-effect impact. On the differential inputs, a constant
DC shift and gain error can be introduced by the sustainable charge injection error, and
sampling linearity will not deteriorate. Hence, the clock feed-through and the charge
injection’s negative effect is attenuated by the differential architecture.

3.3. Dynamic Latched Comparator

To decrease the power consumption of ADCs, dynamic latched comparators are
frequently used [28]. Several issues have been considered during the comparator designing
such as; due to the comparator’s clock operation, kickback noise affects the CDAC top
plate. During the monotonic switching, offset voltage Voffset dependent on the VCM and
Voffset generated by device mismatch. The clock transition of the comparator distributes the
comparator differential input VCIP and VCIN. In the proposed dynamic latched comparator,
when the comparator clock signal CCLK goes to high then the input difference is settled.
By the clock feed-through, at the comparator input, kickback noise is created during the
CCLK transition. When the comparator input VCIP and VCIN sort out to a stable voltage
then there is a recovery period. The comparator begins to sort out the variance between
inputs, during this recovery period. Decision error can cause by a small asymmetry in the
recovery period.

The implemented architecture of the comparator is depicted in Figure 9a. Due to the
process variation, mismatch and hysteresis can exist in the comparator because of the use
of transistors M13 and M16. Therefore, to minimize the hysteresis common centroid layout
is used. To reduce the kickback noise and common mode dependent offset calibration
the proposed comparator is designed. Cascode transistors M2, M5, and M6 shield the
input transistors M3 and M4 to reduce the kickback noise of the comparator. The aspect
ratio of cascode transistors M2, M5, and M6 is small so that these transistors operate in
the saturation region and increase the output resistance of these transistors. Increased
output resistance attenuates the large voltage step produced in result of the transition from
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CCLK. By the circuit simulation, we choose the bias voltages VB1 and VB2 and size of the
cascode transistors. We control the current of transistors M5 and M6 through bias voltage
VB2. During the CCLK transition, the peak current reduced through transistors M5 and M6
when bias voltage VB2 is reduced. Furthermore, we optimize the size of input transistors
M3 and M4. The kickback peak value is reduced by using the size optimization and cascode
transistors. Figure 9b represents the DAC output voltages VCIP and VCIN. When CCLK
goes to high from low, the input difference is minimized in the dynamic latched comparator.
At the comparators input, kickback noise is generated by clock feed-through of CCLK
transition. When the comparators input VCIP and VCIN settles to a stable voltage, then
there is a recovery period and in this time period input difference of comparator start to
resolve, decision error can cause by a small asymmetry in the recovery period.

 

(a) (b) 
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Figure 9. (a) Schematic of Dynamic Latched Comparator using Cascode to reduce kick-back (DNL), and (b) Waveform
represented the CDAC settling with comparator.

Comparator offset calibration is performed by using binary-weighted capacitor array
to control voltage offset Voffset. We select digital approach instead of analog offset calibration,
because it requires additional DAC [29]. The voltage offset Voffset consists the dynamic and
static offset of the comparator. Voffset of comparator can be derived as:

Vo f f set = ΔVTH3,4 +
VSG − |VTH3,4|

2

(
Δ(W/L)3,4

(W/L)3,4
+

ΔRload
Rload

)
(3)

where VTH3,4 is the threshold voltage, ΔVTH3,4 is the threshold mismatch, ΔRload is the load
resistance mismatch, and Δ(W/L)3,4 is the physical dimension mismatch between transistors
M3 and M4.

3.4. Asynchronous SAR Logic Processing

Asynchronous SAR control logic avoids the need of high frequency external clock
signal as all conversions are carried out in a single clock cycle. To optimize the flexibility
relating to the performance of logic part, an asynchronous topology is employed as shown
in Figure 10.
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Figure 10. SAR logic block diagram.

To optimize the DAC switching and conversion time, we have added the digitally
controllable delay cells for each conversion. Schematic and logic explanation of modified
asynchronous clock generator CCLK is presented in Figure 11. The comparator output
reset to VDD, when CCLK signal is high which is controlled by sampling signal SAM.
SAM is the modified Clock signal with changed duty cycle. After sampling phase SAM
signal goes to low and CCLK makes the comparator starts working after T1 time. The
comparator’s outputs generate a high signal A through NAND1. After T2 time, CCLK goes
to high which results in resetting the comparator for further comparison. After T3 time,
the comparator’s outputs goes to high which generates a low signal A and comparator is
triggered. Digitally controllable delay cell is added in time T3, to optimize the conversion
speed, depending upon the settling time of the DAC.
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Figure 11. Asynchronous CCLK generator (a) Schematic of asynchronous clock generator with controllable delay (b) Logic
description of CCLK generation.

4. Measurement Results

In a one poly six metal (1P6M) 65 nm CMOS technology, the fabricated prototype
occupies an active chip area of 0.14 mm2 as shown if Figure 12. The marked contents of the
die micrograph correspond to each sub block of the proposed SAR ADC. The measured
dynamic performance of the proposed ADC at two different frequencies is shown in
Figure 13. The FFT spectrum shows that it achieves an ENOB of 10.98 bit at 4 MHz input
frequency and 10.58 bit at around Nyquist input frequency with a sampling rate of 20 MS/s
and an input single with a peak-to-peak voltage range of 600 mV.
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Figure 12. Die photograph of the implemented ADC.

 
(a) (b) 

 
(c) (d) 

Figure 13. Measured dynamic performance for two different input frequencies at the sampling rate of 20 MS/s (a) for
1.25 MHz input frequency (b) for 2.50 MHz input frequency (c) for 4.00 MHz input frequency, and (d) for nyquist input
frequency of 9.95 MHz.

Figure 14 presents the measured static performance. The peak differential non-linearity
(DNL) and integral non-linearity (INL) values are +0.6/−0.6 LSB and +0.9/−0.9 LSB,
respectively.
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(a) (b) 

Figure 14. Static performance parameter (a) DNL, and (b) INL.

Figure 15a presents the trend of SFDR and SNDR versus the applied input signal
frequencies at 20 MS/s with 1 V of power supply. ENOB variation with respect to input
signal frequency is shown in Figure 15b. The breakdown of power consumption with
respect of sub blocks is presented in Figure 16.

 
(a) (b) 

Figure 15. (a) Input frequency versus SNDR and SFDR. (b) Input frequency versus ENOB.

Figure 16. Breakdown of power consumption of ADC.

Table 1 presents the performance summary of the proposed architecture and its
comparison with the other state of the art architectures [15,16,19–21]. It is evident that the
proposed architecture exhibits a competitive performance in terms of energy efficiency and
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linearity. To evaluate the overall performance of the proposed ADC, the commonly used
parameter, Figure of Merit (FOM), is used as

FOM =
PADC

min{FS, 2× ERBW}2ENOB (4)

where, FS denotes the sampling rate and PADC is the power consumed by the structure.
The proposed structure achieves a FOM of 15.42 fJ/conv. step.

Table 1. Performance summary and comparison.

Parameter [15] [16] [19] [20] [21] This Work

Process (nm) 180 180 180 180 180 65
Supply Voltage (V) 1.8 1.5 1.5 1.2 1.8 1

Resolution (bit) 12 12 12 12 12 12
Sampling Rate (MS/s) 20 20 10 40 10 20

SNDR (dB) 64.6 59.1 63.8 62.5 66.9 65.44
ENOB (bits) 10.44 9.52 10.31 10.09 10.82 10.58
DNL (LSB) −0.51/0.445 −0.65/0.58 1.05 2.33 0.69 −0.46/0.48
INL (LSB) −1.01/0.98 −1.06/1.04 1.38 3.1 1.15 −0.50/0.58

Power Consumption (μW) 1770 1220 600 1320 820 472.2
FOM (fJ/conv. step) 63.7 83 47.2 30.4 44.2 15.42

5. Conclusions

A low power 12-bit, 20 MS/s asynchronously controlled SAR ADC was fabricated
with one poly six metal (1P6M) 65 nm CMOS technology to be used in WAVE protocol
based intelligent transportation system. Several techniques have been proposed to optimize
the architecture with respect to power consumption and performance. To alleviate the
switching energy problem of the DAC part, the proposed switching method which employs
CMCR switching technique is implemented in CDAC part. A mutated dynamic latch
comparator with cascode is implemented to make certain a high speed operation with
low power consumption and to overcome the kick back issue. Moreover, the presented
modified asynchronous topology in control logic part optimizes the flexibility relating to
the performance of logic part. The structure have an active area of 0.14 mm2. The presented
SAR ADC was operated at a sampling rate of 20 MS/s, attaining a peak SNDR level of
65.44 dB with a peak ENOB of 10.58 bits at Nyquist frequency. While consuming only
472.2 μW of power with 1 V power supply, the proposed architecture achieved a FOM of
15.42 fJ/conv. step.
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Citation: Trzpil-Jurgielewicz, B.;
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Abstract: Integrated CMOS neural amplifiers are key elements of modern large-scale neuroelectronic
interfaces. The neural amplifiers are routinely AC-coupled to electrodes to remove the DC voltage.
The large resistances required for the AC coupling circuit are usually realized using MOSFETs that
are nonlinear. Specifically, designs with tunable cutoff frequency of the input high-pass filter may
suffer from excessive nonlinearity, since the gate-source voltages of the transistors forming the
pseudoresistors vary following the signal being amplified. Consequently, the nonlinear distortion in
such circuits may be high for signal frequencies close to the cutoff frequency of the input filter. Here
we propose a simple modification of the architecture of a tunable AC-coupled amplifier, in which the
bias voltages Vgs of the transistors forming the pseudoresistor are kept constant independently of
the signal levels, what results in significantly improved linearity. Based on numerical simulations
of the proposed circuit designed in 180 nm technology we analyze the Total Harmonic Distortion
levels as a function of signal frequency and amplitude. We also investigate the impact of basic
amplifier parameters—gain, cutoff frequency of the AC coupling circuit, and silicon area—on the
distortion and noise performance. The post-layout simulations of the complete test ASIC show that
the distortion is very significantly reduced at frequencies near the cutoff frequency, when compared
to the commonly used circuits. The THD values are below 1.17% for signal frequencies 1 Hz–10 kHz
and signal amplitudes up to 10 mV peak-to-peak. The preamplifier area is only 0.0046 mm2 and the
noise is 8.3 μVrms in the 1 Hz–10 kHz range. To our knowledge this is the first report on a CMOS
neural amplifier with systematic characterization of THD across complete range of frequencies and
amplitudes of neuronal signals recorded by extracellular electrodes.

Keywords: CMOS neural amplifier; AC coupling; pseudoresistor; nonlinear distortion; area-
efficient design

1. Introduction

Multielectrode neural interfaces are widely used in basic neuroscience research [1–4]
and for development of advanced brain-computer interfaces and neuroelectronic pros-
theses [5–7]. Taking advantage of large numbers of closely spaced microelectrodes, such
systems make it possible to record activity of large neuronal populations with resolution of
individual neurons, providing new insights into processing and coding of information in
the brain circuits. Systems with several hundred to a few thousand of channels are now
routinely used for recording the brain activity in live animals [8,9] and a prototype device
with tens of thousands of recording channels was reported recently [10]. Systems dedicated
to large-scale recording of brain activity in human are also being developed [11].

The neural signals acquired by extracellular electrodes are of two types. First, the
action potentials (APs) can be recorded from individual neurons located close to the sensing
electrode. An action potential is generated by a neuron when the total input signal received
by this cell—either from sensory circuits of the central nervous system like the eyes or ears,
or from other neurons—exceeds a specific threshold [12]. The APs recorded by extracellular
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electrodes have forms of short pulses with frequency spectrum from 300 Hz to 5 kHz and
amplitudes range 50 μVpp–2 mVpp (peak-to-peak). Second, the electrodes can record
local field potentials (LFPs) that are primarily generated by ionic currents that occur at
the synapses—the physiological connections between neurons—when the information is
transferred between cells; however, other processes also contribute to the LFPs [13]. The
LFPs are low-frequency oscillations (1–300 Hz) with amplitudes up to 10 mVpp.

The readout electronics for modern multielectrode systems is routinely designed as
application specific integrated circuits (ASIC) that can comprise hundreds or thousands of
recoding amplifiers on a single chip. High-fidelity recording of neuronal signals requires
that the noise within the AP range (300 Hz–10 kHz) and the LFP range (1–300 Hz) is not
much higher than 5 μV. Also, signals up to ~10 mVpp should be recorded with the total
harmonic distortion on the order of 1% or lower [14]. Minimization of the dissipated power
and silicon area is also critical for the design of neuronal interfaces with very large number
of recording channels.

One technical difficulty in electrical recording of neural signals is related to the large
DC voltage at the input of the amplifier that results from electrochemical interactions
between the electrode and the tissue [15]. The recording circuit must cut off this DC
electrode voltage with high-pass filter with lower cutoff frequency typically on the order of
1 Hz and amplify the remaining AC signals with a gain on the order of 40 dB. Most of the
multichannel integrated neural amplifiers are based on the architecture proposed in [15]
(Figure 1a); in some designs, the circuit is followed by another amplification stage. The
gain of the circuit shown in Figure 1a is given by the Cina/Cfa ratio and the cutoff frequency
of the AC-coupling circuit is defined by the Rfa × Cfa product [15].

 

 

(b) 

 
(c) 

 
(a) (d) 

Figure 1. Architecture of an AC-coupled neural amplifier: (a) Schematic (b–d) Implementations of the pseudoresistor: (b)
diode-connected; (c) subthreshold with variable Vgs; (d) subthreshold with fixed Vgs. For the following sections we impose
Cina = Cinb, Cfa = Cfb, Rfa = Rfb. The distinction between the names of elements of identical values is important for some of
the following analyses, where impact of individual elements on the system performance must be analyzed separately.

Due to silicon area restrictions, the Cin is typically in the range 5–20 pF and the Cf
capacitance is typically in the range of tens to hundreds of fF. The feedback resistance
in the TΩ range is necessary to achieve sufficiently large time constant. Such a resis-
tance is realized by transistors connected in diode configuration [15] (Figure 1b) or in
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subthreshold mode that allows one to tune the channel resistance value by changing the
gate voltage [16–18] (Figure 1c). Such tuning allows the user to control the cutoff frequency
of the high-pass filtering and to find—for specific experimental conditions—the optimal
compromise between the two requirements:

- efficacy of filtering out of the ultra-slow oscillations present in the brain [19] and
electrode drifts, which improves with increasing the cutoff frequency,

- the quality of recording of low-frequency signals with minimized amplitude and
phase distortions related to analog high-pass filtering, which improves with lowering
of the cutoff frequency.

As the two requirements mentioned above are difficult to define quantitatively in a
general way, the ability to control the cutoff frequency of the high-pass filter is a desirable—
even if not mandatory—feature of a neural amplifier.

The circuitry shown in Figure 1a makes it possible to achieve very low input-referred
noise values. Since the resistor Rfa is in the feedback loop, its thermal noise is divided by
the amplifier gain when referred to the input. Although this does not apply to resistor Rfb,
its integrated thermal noise is minimized thanks to the parallel connection with the large
capacitor Cinb (detailed analysis of the thermal noise introduced by the AC-coupling circuit
is presented in Section 4).

Three alternative approaches to remove the electrode offset have been proposed. First,
a high-pass RC filter can be used to remove the DC voltage at the input of the amplifier
that works without feedback loop [14,20]. This solution has worse noise performance than
the circuit shown in Figure 1a, since the thermal noise source from the large resistance is
located directly at the amplifier input. The rms (root mean square) value of noise can be
minimized by setting the cutoff frequency to very low values—much below the frequency
range of interest [20]—but this would compromise on filtering out very slow signals, as
discussed previously. As a result, open-loop neural amplifiers use larger input capacitors
(20 pF and more) to improve the signal-to-noise ratio (SNR). This comes at the cost of
increased area, which is not optimal for systems with high channel counts.

Chopper stabilization is another technique to remove electrode offset in neural ampli-
fiers [21,22]. This method uses modulation to shift the spectrum of the input signal to higher
frequencies and to minimize the problem of 1/f noise in the amplification circuits [23].
However, high complexity of the design (further increased by a dedicated feedback loop to
boost the input impedance, which is low in such circuits) results in increased circuit area.

The third alternative approach to remove the electrode DC voltage is to use a low-
pass filter in the feedback loop of the amplifier, which allows for subtraction of the low-
frequency signal components (including the offset) from the input signal by a differential
amplifier [24,25]. The low-pass filter requires using additional operational amplifier in the
feedback loop that increases the circuit area and power. Using a sigma-delta modulation
for low-pass filtering was proposed in [25] with a promise of reduced circuit area in case of
using higher-density CMOS process. However, the presented amplifier design in 130 nm
technology has a total area (amplifier + ADC) per channel at ~0.05 mm2, which is 3–4 times
more than the most area-efficient existing designs. At the same time, using very high-
density technologies for a large-scale design (with thousands of recording channels) that
is not expected to be produced in high volume is impractical because of very high cost
of fabrication.

In overall, the architecture shown in Figure 1 remains the gold standard for modern
neural amplifiers [26–28]. Many designs based on this circuit idea, with excellent noise
performance and low power consumption, have been reported; for a review see [29,30].
However, a weak point of the pseudoresistor is its poor linearity. The pseudoresistor is
placed in the feedback loop and the voltage drop across this resistance is identical to the
amplifier output voltage. Within the range of the output voltage swing (several hundreds
of mV to 1 V) the effective resistance of a pseudoresistor may differ by several orders of
magnitude [15]. For the circuit with tunable cutoff frequency (Figure 1c) the main reason for
the nonlinearity is the modulation of Vgs bias voltage by the continuously changing voltage
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across the resistor. This nonlinear behavior affects the THD of the circuit, in particular
for input signals of large amplitudes and frequencies close to the cutoff frequency of the
AC-coupling circuit.

Very few of the published articles on neural amplifiers discuss this problem. Kassiri
et al. [31] analyzed several subthreshold two-transistor configurations with fixed-Vgs
voltage for the pseudoresistors and achieved significant reduction of nonlinear distortion
compared with the classic diode-based architecture. However, the distortion level reported
in that paper is still high for 0.5 Vpp voltage swing across the resistors. Another paper by the
same group includes measurements of the THD vs. signal frequency for the AC-coupled
amplifier. The reported value was 3% for the signal frequency equal to cutoff frequency,
and input signal amplitude of 1.4 mVpp [32]. The distortion for larger amplitudes was not
shown. To our knowledge, this is the only published measurement of THD as a function of
signal frequency for amplifiers of this class.

It is important to note that the THD value of neural amplifiers is typically reported
in the literature for the frequency of 1 kHz. Since this frequency is about three orders of
magnitude higher than the cutoff frequency of the AC coupling circuit, the impedance of the
feedback loop at this point is entirely defined by the capacitor Cfa. The THD value defined
this way describes the performance of the operational amplifier used for the circuit but—as
we show in this paper—it is not related to the distortion produced by the pseudoresistors
at low frequencies. To our best knowledge, there has been no multichannel AC-coupled
neural amplifier described in the literature with low distortion (~1% THD or less) reported
consistently for the complete range of frequencies of extracellular neuronal signals.

In this paper we discuss an improved tunable AC-coupling architecture for CMOS
neural amplifiers, based on pseudoresistors built from transistors working with fixed gate-
source voltage, which yields low-distortion (~1%) for input signals ranging from 1 Hz to
10 kHz and with amplitudes up to 10 mVpp. Based on numerical simulations we describe
in detail the mechanism of nonlinear distortion generation and scaling of the THD with the
amplifier gain, the cutoff frequency setting, and sizing of the feedback transistors and input
capacitors. We also discuss the impact of the AC coupling circuit parameters on the noise
performance of the recording system and the noise-distortion design trade-off. Finally,
we present results of post-layout simulations of an area-efficient neural preamplifier in an
180 nm PD-SOI technology for verification of the proposed AC coupling architecture at the
level of complete integrated circuit.

2. Materials and Methods

The work reported here is based on numerical simulations performed in Cadence
Virtuoso 6.1.6 (Cadence Design Systems, San Jose, CA, USA). The design has been imple-
mented in an 180 nm PD-SOI technology from XFAB (X-FAB Semiconductor Foundries
GmbH, Erfurt, Germany) and all simulations have been performed for the selected technol-
ogy. Also, for comparison of the key circuit parameters simulations have been performed
for other processes (65 and 350 nm). The data analysis and visualization were done using
MATLAB (MathWorks, Natick, MA, USA).

2.1. Circuits Used for Simulations

To identify the dominant sources of noise and distortion in the circuit and to optimize
the design of the proposed amplifier, the analysis of the circuit has been performed in four
stages: (a) using a schematic based on ideal passive components (resistor and capacitors)
and an ideal differential amplifier, (b) using a transistor level models for the pseudoresistor
and an ideal differential amplifier, (c) adding a transistor level models for the amplifier,
and (d) using the post layout extracted circuit including parasitic components.

For the analysis of noise contribution of the AC-coupling circuit (Section 4) we used
a simplified version of the schematic presented in Figure 1a, with the pseudoresistors
replaced by ideal resistors. This allowed us to analyze the thermal noise of resistors Rfa
and Rfb separately from other noise sources of the pseudoresistors—like the flicker noise—
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which could be dependent on technology and sizing of pseudoresistors. For all the other
simulations of noise and nonlinear distortion discussed in the paper, the pseudoresistors
built from PMOS transistors were used.

For the analysis of nonlinear distortion and noise introduced by the pseudoresistors
(Sections 3 and 4) we used the schematic shown in Figure 1a, with ideal operational
amplifier. This allowed us to analyze signal distortions introduced by the pseudoresistor
independently of distortions caused by the operational amplifier. The open-loop gain of
the operational amplifier was set to 100 dB; increasing the gain beyond this value did not
affect the simulation results.

For simulations discussed in Section 6 we used the operational amplifier designed
in 180 nm PD-SOI technology. The analysis of nonlinear distortion was based on circuits
extracted from the chip layout. For the Monte Carlo simulations, we combined post-layout
extracted circuits of a single channel with schematics of all the off-channel circuits to reduce
the computational cost of simulations. We confirmed that results of such simulations for
nominal circuits (without Monte Carlo sampling) were undiscernible from simulations
based on chip-scale extracted circuits.

2.2. Methodology of I-V Characteristics Analysis

To characterize linearity of the I-V characteristics of pseudoresistors (Section 3.1) we
performed DC simulations. One terminal (named V- in Figure 1c,d) of the pseudoresistor
was grounded, and the other terminal (named Vout in Figure 1c,d) was connected to
varying voltage. Both polarities of the changing voltage were analyzed. For the variable-
Vgs configuration the gates of both transistors were shorted and connected to voltage fixed
at a constant value with respect to ground. For the fixed-Vgs configuration the gate-source
voltages were applied using DC voltage sources as shown in Figure 1d.

2.3. Methodology of THD Analysis

All the analyses of the nonlinear distortion of the AC-coupled amplifier were based
on transient simulations. We routinely analyzed the THD as a function of the input signal
frequency. We ran the simulation separately for every frequency of the input signal within
the frequency range of interest. For each simulation the input signal was a stationary
sinewave. The THD numbers were calculated offline by taking rms value of the first five
harmonics.

We used 15 frequencies points per decade for majority of the performed analyses
of THD. For the Monte Carlo analyses we used 5 frequencies points per decade. Initial
analyses of distortion (Section 3.2) and final verification of the preamplifier (Section 6)
were performed in a wide frequency range (0.1 Hz–10 kHz). For detailed discussion of the
distortion introduced by the pseudoresistors we present the results limited to frequency
range 0.1–10 Hz where these distortions are most prominent. For plots combining the THD
and noise characteristics we use range 0.1–100 Hz to show critical features of all these
curves. For plots of the THD we used a piecewise cubic hermite interpolating polynomial
(PCHIP) interpolation [33].

With exception of the initial analysis presented in Section 3.2, we used signal amplitude
of 10 mVpp for all the simulations of nonlinear distortion. This is the worst case scenario
from the distortion point of view, as this is the largest realistic amplitude of the input signal,
and the THD values for the analyzed circuit consistently increase with the signal amplitude
(Section 3). We note that in experimental practice the recorded signals may have lower
amplitudes, in particular at high frequencies. However, the goal of this study is to propose
the circuit architecture that is relevant for high-fidelity recording of a complete range of
neuronal signals, including large-amplitude voltage oscillations.

2.4. Methododology of Noise Analysis

The analysis of the equivalent input noise of the AC-coupled amplifier were based
on noise simulations. We routinely analyzed the output-referred noise spectrum and
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amplifier’s closed loop gain as a function of the input signal frequency. The input referred
noise was integrated within three ranges: from 1 to 300 Hz (LFP range), from 300 Hz to
10 kHz (AP range) and from 1 Hz to 10 kHz (full range).

3. Amplifier Architecture and Sources of Nonlinear Distortion

3.1. DC Analysis of Linearity of Pseudoresistors

As discussed in Section 1, one critical problem with tunable AC-coupled neural
amplifier designs in CMOS technology (shown in Figure 1c) is the poor linearity of the
pseudoresistors. The main reason for this poor linearity is the variability of the gate-
source voltage of the transistors forming pseudoresistors when AC signal is amplified
by the circuit. We compared linearity of the I-V characteristics for two configurations of
pseudoresistor: a standard configuration based on two PMOS transistors in symmetric
configuration (Figure 1c) and alternative configuration with transistors working with fixed-
Vgs voltage (Figure 1d) using DC simulations. All the transistors had identical dimensions
(W/L = 1 μm/40 μm). The small-signal resistances for both pseudoresistors were identical.

Figure 2a shows the I-V characteristics and Figure 2b shows the incremental resistance
values for both solutions. The linearity of the fixed-Vgs configuration is much better and
particularly good within ±100 mV range of voltage across the resistor. We therefore
propose to use the fixed-Vgs configuration for the low-distortion amplifier design. We
note that such a circuit can be practically realized by including only a single resistor to
the amplifier circuit (and additional off-channel circuitry that can be shared by multiple
channels), and the required value of this resistor (several hundred of kΩ) means it can be
realized in typical CMOS process with small and perfectly linear polysilicon resistor. The
complete design of such circuit is presented in Section 6.

 
(a) (b) 

Figure 2. (a) Simulated current-voltage relationship for variable-Vgs and symmetric fixed-Vgs pseudoresistors (b) Incremen-
tal resistance for both implementations.

Having in mind that the designed circuit aims at low-distortion recording of signals
up to 10 mVpp, we propose to take advantage of very good linearity of the fixed-Vgs
pseudoresistor in the ±100 mV range of the output voltage and to set the amplifier gain
value K = 20 V/V. We use this value as the nominal gain setting for the following sections,
although we analyze impact of the gain on the noise performance (in Section 4) and on
distortion (in Section 5). To achieve the required gain of the complete recording circuit
(~100) we plan to use a second amplification stage following the presented preamplifier.
The second stage can be DC coupled to the output of the preamplifier to avoid additional
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nonlinearity. The contributions of the second amplifier stage to both noise and distortion
of the recording circuit would be much lower than that of the preamplifier and are not
analyzed in this paper.

3.2. THD-vs-Frequency Characteristics of AC-Coupled Amplifier with Tunable Cutoff Frequency

It is expected that the large difference in the linearity of the I-V characteristics for the
variable-Vgs and fixed-Vgs pseudoresistor configurations is reflected in the nonlinear dis-
tortions of the complete AC-coupled amplifier processing an AC signal. In particular, one
can suspect that highly nonlinear I-V characteristic for the variable-Vgs pseudoresistor con-
figuration should result in very high distortion, making this configuration impractical for
amplification of signals up to 10 mVpp. To evaluate these effects, we used Spectre transient
simulations (Cadence Design Systems, San Jose, CA, UAS) to find the THD-vs-frequency
curves for the AC-coupled amplifier (Figure 1a) using the standard tunable and improved
tunable pseudoresistor configurations (Figure 1c,d, respectively). The operational amplifier
and capacitors Cin and Cf used in these simulations are ideal elements, therefore the only
source of nonlinearity is the pseudoresistor in the feedback loop. Transistor models for
180 nm PD-SOI technology were used for the pseudoresistor.

The results are presented in Figure 3. We present the THD values in the range limited
to 3%—we assume that higher THD values disqualify given curve from further analysis,
so the corresponding fragments of the THD curves are not shown to avoid confusion. The
THD values for the variable-Vgs pseudoresistor configuration almost reach the 3% threshold
already for 1 mVpp signal amplitude (Figure 3a). The shapes of the THD curves for this
configuration exhibit a single maximum nearby cutoff frequency of the AC-coupling circuit.
This is easily explained by the increase of the I-V curve nonlinearity for larger voltage drop
across the resistor (Figure 2). On one hand, for frequencies below the cutoff frequency
of the AC-coupling circuit the signal amplification is reduced which implies lower THD
values. On the other hand, for signal frequencies much above the cutoff frequency the
impedance in the feedback loop is dominated by the Cfa, therefore the THD values are also
lower than for frequencies closer to the cutoff frequency. Combination of these two effects
results in the single-maximum shape of the THD curve. The overall increase of distortion
for larger signal amplitudes (Figure 3a) is also an expected consequence of highly nonlinear
I-V characteristic for large voltages (Figure 2).

(a) (b) 

Figure 3. Simulated THD vs. signal frequency for AC-coupled neural amplifier (with 1 Hz cutoff frequency) and for various
input signal amplitudes: (a) using the variable-Vgs pseudoresistor (b) using the symmetric fixed-Vgs pseudoresistor.
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We note that although these results clearly show that the variable-Vgs pseudoresistor
configuration is not compatible with design requirements for the neural amplifier consid-
ered in this paper (signal amplitudes with frequencies down to 1 Hz and amplitudes up
to 10 mVpp) it may be a reasonable option for different applications. For example, if the
recording of low-frequency LFPs is not critical, the cutoff frequency of the AC-coupling
circuit can be increased. Since the LFPs amplitude follows, in general, the 1/f depen-
dence [19] the signal amplitude in the critical frequency range—that is, close to the cutoff
frequency—would be lower than 10 mV and could be amplified with low distortion.

Another potential application is in experiments performed in-vitro, where signals
from slices of neural tissue or dissociated neuronal cultures are acquired. As the LFPs
produced by such neuronal populations have much lower amplitudes than that observed
in the in-vivo measurements, the variable-Vgs configuration could be a sensible option
for the pseudoresistor design. In fact, several designs of CMOS neural amplifiers with
variable-Vgs pseudoresistors were reported in the literature [16,34,35] (the details of the
pseudoresistor configurations differ between specific designs and the linearity performance
may also vary to some degree). That said, for the design requirements considered here, the
performance of this configuration with respect to nonlinear distortions is not acceptable.

The levels of THD for the fixed-Vgs configuration of the pseuderesistor are significantly
lower than for the standard pseudoresistor, especially in the low frequency range around
the cutoff frequency (Figure 3). This is expected considering improved linearity of the I-V
characteristic for this configuration (compare Figure 2). However, the THD vs. frequency
curves for this configuration show particular profiles with two local maxima, which are
clearly separated for the highest input signal level of 10 mVpp. To explain this shape one
must consider additional source of nonlinearity in the circuit, associated with the gate
capacitances of the transistors comprising the pseudoresistors.

3.3. Impact of Capacitive Gate Currents of Pseudoresistors on THD

A simplified model of the feedback loop for the fixed-Vgs pseudoresistor is shown
in Figure 4a. Since the transistors are biased in the deep subthreshold region the gate
capacitances are practically equal to the gate-bulk capacitances. These capacitances are
not perfectly linear and depend on the Vgb voltage. The AC current Igb is present in both
transistor B (current flow between the output of the amplifier and the common bulk of
both transistors) and transistor A (current flow between the common bulk and the external
voltage source Vgs1—Figure 4a). We note that if the gate-bulk currents were identical for
both transistors, all the AC current flowing from the output of the amplifier to the gate
of transistor B would go to the external voltage source Vgs1. This would be equivalent
to additional capacitive load of the amplifier output with no impact on the impedance
of the feedback loop, therefore, no impact on THD. However, closer examination of the
simulation results shows that the effect is more complex.

In order to confirm that the gate capacitances indeed contribute significantly to the
impedance of the feedback loop we show in Figure 4 the results of transient simulations
for a sinewave signal of 2.5 Hz for three different sizes of transistors composing the
pseudoresistor. The cutoff frequency for each size of transistors was set at 1 Hz by tuning
of the Vgs value. The plots show the output voltage, the drain-source currents and the
gate-bulk currents for transistors A and B. As expected, the gate currents scale linearly
with the gate area. The current is driven by the AC component of the gate-bulk voltage,
which is equal to Vb–Vref for transistor A and Vout–Vb for transistor B. Since the Cgb also
changes with Vgb, the Igb is not linear function of Vgb and it must include harmonics of the
base frequency of the signal. As visible in Figure 4 the harmonics for transistors A and B
are similar in amplitudes but different in phase (Figure 4e,f), and the differential current
IgbB–IgbA includes almost entirely the harmonic frequencies (with very low component of
the base frequency—Figure 4g). It means that while the base frequency component of
the IgbB current flows in almost 100% through CgbB and CgbA to external voltage source
Vgs1, the current path for the harmonic components of IgbB closes via the drain-source
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resistances of transistors A and B. As a result one should expect the increase of the THD
values. This effect will be reduced for very low frequencies—where the gate currents
become very small compared with drain-source currents—and for frequencies much above
the cutoff frequency, where the feedback loop impedance becomes dominated by Cf. For
the amplitude of 10 mVpp the nonlinear gate currents result in second maximum in the
THD curve located at ~2.5 Hz and become the dominating source of distortion. For smaller
amplitudes these two maxima overlap.

 
(a) 

  
(b) (c) (d) 

  
(e) (f) (g) 

Figure 4. Results of transient simulations for a sinewave signal of 2.5 Hz for three different sizes of transistors composing
the pseudoresistor: (a) Design of the preamplifier with a model of the fixed-Vgs pseudoresistor; (b) Output voltage; (c–f)
Drain-source currents and the gate-bulk currents for transistors A and B; (g) Difference between gate-bulk currents for
transistors A and B.
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There are two additional issues with the results shown in Figure 3 that require separate
comments. First, the nonlinear distortion generation due to AC gate currents, described
above, must be also present in the standard variable-Vgs pseudoresistor configuration
(Figure 3a). However, with large distortion values caused by the I-V characteristic, this
effect is simply too subtle to be visible in the THD plots. Second, the THD curves for
the fixed-Vgs pseudoresistor configuration show inversion of the THD vs. amplitude
dependence at high frequencies—that is, the THD values decrease when signal amplitude
increases. We note, however, that absolute values of the signal harmonics decrease for
lower amplitudes. These values are in sub-microvolt range (when referred to the input) for
signal amplitude 1 mVpp, and will be even lower for smaller signals. Therefore, the effect
has no practical implications and is not analyzed in more details here.

3.4. Scaling of THD with Gate Area and Oxide Thickness of Transistors Forming Pseudoresistors

The contribution of gate current to the circuit distortion is expected to scale with the
gate area of transistors A and B. Figure 5 shows the simulated THD value as a function
of input signal frequency for various sizing of the transistors and large signal amplitude
(10 mVpp). As expected, the height of the second peak (at 2–3 Hz for different curves) scales
with the product W × L; in contrast, the first peak is associated with the nonlinearity of the
I-V curve (at ~0.3 Hz) scales with the transistor channel length. These observations may
lead to a conclusion that reducing the gate area of transistors forming the pseudoresistor is
a way for reduction of the THD. However, we note that excessive reduction of the gate areas
may result in significant mismatch of transistors A and B and disturbed symmetry of I-V
curve for positive and negative voltages. This would lead to increased THD values. For this
reason, we accept the gate width W = 1 μm and length L = 40 μm for the following analyses.

Figure 5. Simulated THD versus signal frequency for the fixed-Vgs circuit for different dimensions of
the pseudoresistor. Signal amplitude: 10 mVpp. Vgs values were tuned for each simulation to get the
same cutoff frequency (1 Hz).

Finally, the presented analysis suggests that the thickness of the gate oxide should also
affect the circuit distortion. We performed simulations of the circuit shown in Figure 1a
with fixed-Vgs pseudoresistors designed in three different CMOS technologies (350, 180
and 65 nm), using the available thick-oxide transistors for the pseudoresistors. The sizes
of transistors were identical in all simulations (W = 1 μm, L = 40 μm) and the Vgs values
were tuned for each simulation to get the same cutoff frequency (1 Hz). The results are
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shown in Figure 6. Consistently with the analysis presented above, transistors with larger
oxide thickness (and proportionally lower gate-bulk capacitances) yield lower distortion
related to gate-bulk currents. The 5 V transistors in two technologies (350 and 180 nm)
result in virtually identical THD values above the cutoff frequency. Below the cutoff
frequency, where THD value is determined by the nonlinearity of the I-V characteristic,
the distortion does not correlate with the oxide thickness. Although the results suggest
that technologies that provide higher voltage transistors (5 V) may be preferable, we
note that the distortion also critically depends on the gate area. Since more advanced
technologies offer in general improved transistor matching [36] it may be possible to use
smaller transistors in more advanced nodes to compensate for lower oxide thickness. These
aspects require further systematic studies. For this work, the 180 nm technology with 5 V
transistors for pseudoresistor design was chosen.

Figure 6. Simulated THD versus signal frequency for the fixed-Vgs circuit for different technologies.
Signal amplitude: 10 mVpp. Vgs values were tuned for each simulation to get the same cutoff
frequency (1 Hz).

4. Noise Contribution of the AC-Coupling Circuit

Since a neural amplifier must be capable of recording signals with amplitudes down
to tens of μV with good SNR, noise performance is a critical aspect of the design [15]. In
this context, the noise contribution of the resistive elements of the AC coupling circuit must
be carefully analyzed.

The results presented in this section are based on simulations of circuit shown in
Figure 1a, with ideal operational amplifier and ideal resistors. This way, the thermal
noise of the resistors is analyzed in separation from other sources of noise associated
with the pseudoresistors (like flicker noise) or with the operational amplifier. In the
Section 5 we discuss noise and nonlinear distortion based on simulations taking advantage
of pseudoresistor built from PMOS transistors.

We start with analyzing the noise contribution from the feedback resistor Rfa (compare
Figure 1a). At this point we assume the non-inverting input is at virtual ground, therefore
the noise measured across the Rfa is equivalent to the noise contribution of this resistor
measured at the output of the circuit. The total rms voltage noise of this resistor is:

Vni,rms R f =

√
kT
Cf a

, (1)
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and is independent of the Rfa value and the cutoff frequency. However, this value comes
from integration of power spectral density (PSD) curve from 0 to infinity. In order to quan-
tify noise level in the defined frequency range, we need to look closer at the noise spectrum.

In Figure 7a we present the PSDs of the noise contributed by Rfa. The PSDs are shown
at the amplifier output for various values of the cutoff frequency of the AC-coupling circuit.
Although the tuning does not change the total rms noise, it shapes the noise spectrum.
Therefore, the noise in the frequency range of interest can be reduced by shifting the cutoff
frequency below this range; this is discussed in more detail later in this section.

(a) (b) 

(c) (d) 

Figure 7. Characteristics of the AC-coupling circuit thermal noise for different settings of the AC-coupling circuit cutoff
frequency (a) output noise PSD from resistor Rfa (b) noise PSD of resistor Rfb measured across this resistor (c) AC gain of the
circuit with respect to non-inverting input of the operational amplifier (d) PSD of the combined input-referred noise from
both resistors Rfa and Rfb.

In order to explain the noise contribution of the resistor Rfb, we analyzed the PSD of
its thermal noise (measured across the resistor itself) and the transmittance of the complete
circuit with respect to signals that appear at the noninverting input of the operational
amplifier U1 (compare Figure 1a). The plots are shown in Figure 7b,c. Since the resistor Rfb
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is shunted with large capacitance (Cinb + Cfb) the PSD values for most of the frequency range
are much lower than those shown in Figure 7a. On the other hand, the 1/f dependence is
extended toward lower frequencies as the time constant has a large value of Rfb × (Cin + Cfb).
For extremely low frequencies (below 0.1 Hz) the PSD values of the curves shown in
Figure 7a,b become identical. At the same time, the circuit transmittance for this noise is
equal to 1 at the very low frequencies and equalizes at value (Cina + Cfa)/Cfa for higher
frequencies. Multiplication of the respective curves shown in Figure 7b,c results in the
output noise PSDs characteristics that are identical to that presented in Figure 7a. We
conclude that the resistors Rfa and Rfb have identical impact on the noise performance of
the circuit, both in terms of noise PSDs and the rms values.

The input-referred noise rms values calculated in 1 Hz–10 kHz frequency range are
given in Table 1. One way to reduce the noise contribution of the AC-coupling circuit in
specific frequency range is to set very low cutoff frequency. Some designs take advantage
on this by shorting the gate and the source of the pseudoresistors, which leads to very large
resistances of Rfa and Rfb. Such a solution will result in extremely low cutoff frequency in the
range of tens of mHz or even lower and greatly reduced noise from feedback resistors above
1 Hz. Unfortunately, such filters do not remove the very slow and large-amplitude drifts
of the electrode voltage from the signal, and this can lead to saturation of the recording
amplifier. For this reason some users prefer circuits with tunable cutoff frequency which
is set closer to the frequency range used for analyses, as discussed in the Introduction.
Nevertheless, careful optimization of the filter time constant for specific experimental
conditions may potentially be very useful in reducing the system noise.

Table 1. Input-referred noise rms for various parameters of the circuit. The rms values are calculated in 1 Hz–10 kHz
frequency range. Assumptions: Cina = Cinb = Cin, Cfa = Cfb = Cf, Rfa = Rfb = Rf.

Characteristic
Parameters

Cin, Cf [F] AC Gain—K [V/V]
Cutoff Frequency of

the AC-Coupling
Circuit [Hz]

Equivalent Input
Wide-Band Noise

[μVrms]

Variable cutoff
frequency (variable Rf )

4 p, 200 f 20 1.0 7.2
4 p, 200 f 20 0.5 5.5
4 p, 200 f 20 0.2 3.6

Variable AC gain
(variable Cf)

4 p, 200 f 20 1.0 7.2
4 p, 80 f 50 1.0 4.6
4 p, 40 f 100 1.0 3.2

Variable design area
(variable capacitors)

4 p, 200 f 20 1.0 7.2
8 p, 400 f 20 1.0 5.1
12 p, 600 f 20 1.0 4.2

The noise can be also reduced by decreasing the feedback capacitance Cfa and con-
sequently increasing the preamplifier gain (Table 1). We speculate that for this reason
virtually all the reported CMOS neural amplifiers use higher gain of the first amplification
stage than the circuit proposed in this work. However, as increasing the gain results in
higher voltage drop across the feedback resistor Rfa, it is expected that the side effect of
such a solution will be higher signal distortion, particularly for large input signals. We
provide more detailed discussion on distortion-vs-noise trade-off in Section 5.

Finally, an easy way to reduce the noise level is to increase the values of capacitors
Cina, Cinb, Cfa and Cfb (Table 1). Unfortunately, this comes at the price of circuit area. In
reality, the total silicon area of many reported neural amplifiers is primarily defined by the
capacitors—namely, both the input capacitors Cina and Cinb (Figure 1). For design aiming
for a compact amplifier footprint the capacitances must be kept as small as possible.

The analysis presented in this section and the noise values given in Table 1 lead to
conclusion that that the proposed design parameters (Cina = Cinb = 4 pF, Cfa = Cfb = 200 fF,
K = 20) should allow for reasonably good noise performance, comparable with advanced
multichannel neural amplifiers reported in the literature [10,28]. At the same time, the
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moderate gain value K = 20 V/V should help keeping the level of distortion under control.
We therefore accept these parameters as the starting point for the following detailed analysis
of the circuit distortion.

5. Design for Low Distortion, Low Noise and Small Silicon Area

In Section 3 we described the mechanism of nonlinear distortion generation based
on simulations of the circuit with nominal settings (K = 20 V/V, Cin = 4 pF, cutoff fre-
quency = 1 Hz). In this section we analyze how changing of these parameters affects
the THD values and we discuss the distortion-noise trade-off. The results are based on
simulations with an ideal operational amplifier so we can analyze distortion and noise
introduced by the pseudoresistor decoupled from nonidealities of the operational ampli-
fier itself. The pseudoresistors in these simulations are built from 5 V PMOS transistors
(W/L = 1 μm/40 μm). We note that the results of the noise analyses presented here may be
slightly different than those presented in Section 4, where only the thermal noise from an
ideal resistor was considered; however, the conclusions given in Section 4 are sufficient to
explain qualitatively the results presented here.

Figure 8 shows the noise PSD and the THD as a function of input signal frequency
for various values of Cin and Cf but at fixed ratio Cin/Cf = 20. Both the noise and distortion
performance benefit from larger capacitors. Increasing the Cf determines proportional
decrease of the feedback resistance if the time constant of the high-pass filter is not expected
to change. Obviously, the total current in the feedback loop increases proportionally to
the increase of capacitors. The same applies to current in capacitor Cfa as well as to the
drain-source currents of transistors forming the pseudoresistor (the ratio of drain-source
current to current in Cfa for given frequency does not change, since we assumed that the
time constant did not change). At the same time the gate currents for transistors A and
B (Figure 4a) do not change (as both the gate capacitances and the gate-to-bulk voltages
for these transistors do not change). In consequence the influence of the current IgbB–IgbA
on the drain-source currents is reduced and the second peak in THD curves decreases,
according to analysis presented in Section 3.3. On the other hand, increasing of Cfa and Cina
results automatically in reduction of thermal noise across both resistors Rfa and Rfb.

Figure 8. THD as a function of input signal frequency and output noise PSD for various values of Cin

and Cf with fixed ratio Cin/Cf = 20. Cutoff frequency is fixed at 1 Hz.
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Figure 9 presents the dependence of THD and noise spectrum on the amplifier gain.
For the three gain settings the Cin value was fixed at 4 pF and the Cf value was set to 200,
80 or 40 fF for the gain of 20, 50 and 100 V/V, respectively. On the other hand, larger gain
results in significant increase of the distortion, for two reasons. First, increased gain results
in larger amplitudes of Vout, for which the pseudoresistor linearity becomes much worse;
this effect is visible in the DC I-V curves in Figure 2. Second, the distortion related to
gate-bulk nonlinear currents are also expected to increase, since these currents increase
accordingly with larger gate-bulk voltages, and the total current in the feedback loop
remains the same (as Cin does not change). The end result is that the ratio of IgbB–IgbA
current to the drain-source currents is higher, and so are the THD values. On the other
hand, since the noise rms is inversely proportional to the square-root of Cf and the gain is
inversely proportional to Cf, the input-referred noise from the feedback resistor is lower if
Cf is reduced. We conclude that for designs with strict limits on the silicon area, when Cin
must be kept small, the gain of the preamplifier should be optimized for specific application
in order to get the best compromise between noise and distortion values.

Figure 9. THD as a function of input signal frequency and output noise PSD for various values of K
and Cf. Cin value is fixed at 4 pF and cutoff frequency is fixed at 1 Hz.

Tunable AC coupling circuit provides the opportunity to shape the spectrum of noise
and distortion. One can shift the maxima of the THD curve out of the frequency range of
interest by lowering the cutoff frequency (Figure 10). However, the low frequency signal
components can still generate harmonics leaking into higher frequency range and can
modulate higher-frequency signals due to circuit nonlinearities. It is therefore difficult to
analyze the profit of the cutoff frequency decrease on the output signal distortion without
knowing the spectrum of the input signal, and in particular, the power of very slow (out-
of-band) oscillations of the electrode voltage. The positive effect of lowering the cutoff
frequency on the noise measured above 1 Hz is straightforward, as shown in Figure 10.
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Figure 10. THD as a function of input signal frequency and output noise PSD for various values of
the cutoff frequency with Cin = 4 pF and Cf = 200 fF (K = 20 V/V).

6. Complete Preamplifier Design

In order to verify results of our analyses in practical circuit we designed a complete
neural preamplifier based on the AC coupling architecture discussed above. Figure 11a
presents the block diagram of the preamplifier. We note that the Vgs voltage that tunes
the feedback resistance is generated differently for transistors A and B. Since the source
of transistor A is at virtual ground, the gate potential of transistor A can be generated
off-channel and shared between all the channels of the ASIC.

   
(a) (b) (c) 

Figure 11. Design of the preamplifier: (a) Fixed-Vgs AC-coupling architecture using polysilicon resistors; (b) Design of the
preamplifier with integrated polysilicon resistor; (c) Design of preamplifier for the test chip.

The gate potential of transistor B must be shifted by a constant value (Vgs) from the
output voltage of the amplifier. This can be easily realized by integrating a single resistor
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into the amplifier, as shown in Figure 11b, and taking advantage of the bias current of
transistor M2 to generate the Vgs. The required Vgs values are on the order of 250–400 mV
(see below) so assuming the bias current of ~1 μA, the value of resistor R must be in the
range of several hundreds of kΩ. Such values can be easily realized using a polysilicon
resistors that typically have resistivity of a few kΩ per square (6.6 kΩ per square in case
of process used in this work). Due to excellent linearity and matching properties of the
polysilicon resistors, the proposed method for generation of Vgs value may be preferable to
alternative solutions based on transistor-based voltage shifter [31]. Although tuning of the
feedback resistance requires changing of the bias current which affects the thermal noise of
the preamplifier (contributed mostly by transistors M3 and M4 in Figure 11b), this effect
is negligible. The cutoff frequency scales exponentially with Vgs and can be shifted by an
order of magnitude from its nominal value (1 Hz) with changing the bias current by ~25%.
This results in a change of the thermal noise of transistors M3 and M4 by only ~12%.

For the design of the test integrated circuit we decoupled the controls of bias current
and cutoff frequency, as shown in Figure 11c. This will allow us to measure the noise
contribution of the amplifier as a function of bias current without changing the cutoff
frequency. The current flowing through the polysilicon resistor is generated by cascode
current sources. We used the resistor of 1 MΩ and the current of 315 nA is necessary to set
the cutoff frequency to 1 Hz. For the design of the preamplifier we used the telescopic cas-
code architecture. Because the amplifier is designed for bidirectional neural interfaces with
electrical stimulation capability, we plan to use relatively high supply voltage (3.0–3.6 V)
for which the telescopic cascode architecture offers the best noise/power performance [37]
and provides enough voltage headroom for the ±200 mVpp ac voltage swing. The supply
voltage for the simulations was set at ±1.8 V with respect to ground.

Figure 12 shows the layout of the test integrated circuit. The chip includes 14 iden-
tical channels. Each channel includes eight versions of the preamplifier differentiated
by the sizing of the pseudoresistors (four versions with W/L respectively: 2 μm/40 μm,
1 μm/40 μm, 2 μm/20 μm, 1 μm/20 μm) and capacitors Cin/Cf (two versions: 4 pF/200 fF
and 8 pF/400 fF). The design of the operational amplifier is identical for all 8 versions. The
bias current and Vgs are controlled externally. The design was submitted to fabrication and
the detailed measurements report will be published separately.

  
(a) (b) 

Figure 12. (a) Layout of the test integrated curcuit; (b) Layout of the preamplifier for the test chip. The elements inside
the orange rectangle include the cascode transistors (MP, MPC, MNC, MN—compare with Figure 11c) and an output buffer;
these blocks will not be included in the final preamplifier design shown in Figure 11b. The layout of the preamplifier is
118 μm × 60 μm (77 μm × 60 μm for the final design).
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The results of noise simulations are presented in Figure 13 and Table 2. The total noise
is dominated by the pseudoresistors in the LFP range (1–300 Hz) and by the preamplifier
noise in the AP range (300 Hz–10 kHz). For both frequency ranges the noise on the order of
6 μVrms is achievable. The results of post-layout simulations are perfectly consistent with
simulations based on the schematics.

Figure 13. Output noise PSD for pseudoresistors and operational amplifier.

Table 2. Equivalent input noise [μVrms]. For each bias current and cutoff frequency the noise is
shown for two frequency ranges: 1–300 Hz and 300 Hz–10 kHz.

Cutoff Frequency of the
AC-Coupling Circuit

Total Bias Current

2 μA 4 μA 6 μA

1.0 Hz 9.16 | 6.18 9.03 | 4.6 9.02 | 3.93
0.5 Hz 7.49 | 6.15 7.29 | 4.57 7.26 | 3.90
0.2 Hz 5.66 | 6.13 5.44 | 4.55 5.41 | 3.87

In Figure 14 we compare the post-layout simulations of the THD-vs-frequency char-
acteristic of the circuit presented in Figure 11c with schematic-based simulations of the
circuit based on an ideal operational amplifier (discussed in the previous sections). The
post-layout results show slightly higher THD peak at around 2.5 Hz (1.17% vs. 1.01%);
otherwise the two graphs are very similar. Finally in Figure 15 we present the results of
post-layout Monte Carlo simulations of the THD curves. The transistors mismatch leads
to slight increase of THD below the cutoff frequency, which is associated with perturbed
symmetry of the I-V curve for positive and negative voltages. However, the peak at ~2.5 Hz
that is responsible for the global maximum of the THD characteristic, is not affected by
the mismatch.
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Figure 14. Simulated THD versus signal frequency for the complete AC-coupled preamplifier. Signal
amplitude: 10 mVpp, cutoff frequency 1 Hz.

 
(a) (b) 

Figure 15. Results of Monte Carlo simulations of complete AC-coupled preamplifier: (a) Spread of the cutoff frequency; (b)
Spread of the THD versus signal frequency characteristics.

The parameters of the test ASIC are given in Table 3. The results suggest that the
proposed circuit should be capable of providing the low-distortion amplification of full
range of neuronal signals, with competitive noise and power figures and very small design
area. However, small corrections of the preamplifier gain and/or absolute values of
capacitors Cin and Cf may be necessary to meet the goal of <1% THD value for large
signal amplitudes (10 mVpp) and across complete range of signal frequencies. These
considerations will be concluded based on detailed measurements of the test chip.
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Table 3. Parameter of the amplifier based on post-layout simulations. Cutoff frequency was set at 0.2 Hz.

Parameters Values

Open loop gain 89.5 dB
AC gain 25.9 dB

Total bias current 2 μA
Power dissipation per channel 7.2 μW

Equivalent input noise in the LFP range 5.66 μVrms
Equivalent input noise in the AP range 6.13 μVrms

Equivalent input wide-band noise 8.34 μVrms
NEF 4.55

Area single amplifier prototype 0.0071 mm2

Area single amplifier simplified 0.0046 mm2

7. Conclusions

In this article we present an improved AC-coupled CMOS neural amplifier that
operates with low nonlinear distortion over wide range of signal frequencies (1 Hz–10
kHz) and amplitudes (up to 10 mVpp). Since in the proposed circuit pseudoresistors
that control the time constant of AC-coupling circuit work with fixed Vgs voltages, the
linearity of the resistance is improved and the THD values are greatly reduced. The
proposed solution requires adding of only a single compact polysilicon resistor to the
preamplifier schematic. We describe the origins of nonlinear distortion and analyze the
THD as a function of signal frequency and amplitude. We also analyze the impact of basic
amplifier parameters (silicon area, gain and cutoff frequency) on the distortion and noise
performance of the circuit. Post-layout simulations confirm that the proposed preamplifier
is suitable for recording the full spectrum of electrophysiological signals with low distortion
(THD < 1.17%) and competitive noise performance (~8.3 μVrms). Compared with the
standard solution using the AC-coupling circuit with variable Vgs, the circuit described
here provides reduction of the THD values at low frequencies and large amplitudes by more
than one order of magnitude. High-fidelity signal amplification and very compact footprint
of the preamplifier (0.0046 mm2) make the design relevant for the future CMOS-based very
large scale neuroelectronic interfaces.
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Abstract: Wireless sensor nodes are heavily resource-constrained due to their edge form factor,
which has motivated increasing battery life through low-power techniques. This paper proposes a
power management method that leads to less energy consumption in an idle state than conventional
power management systems used in wireless sensor nodes. We analyze and benchmark the power
consumption between Sleep, Idle, and Run modes. To reduce sensor node power consumption, we
develop fine-grained power modes (FGPM) with five states which modulate energy consumption
according to the sensor node’s communication status. We evaluate the proposed method on a test
bench Mica2. As a result, the power consumed is 74.2% lower than that of conventional approaches.
The proposed method targets the reduction of power consumption in IoT sensor modules with long
sleep mode or short packet data in which most networks operate.

Keywords: sensor node; power mode; wireless sensor networks; power management

1. Introduction

In the Internet of Things (IoT), a wireless sensor network node (WSN) is a system
that recognizes physical changes or signals targeting various users or environments. It
is widely used in various forms for a range of purposes across home and industrial use.
In general, a sensor network requires a single smart sensor node capable of detecting
numerous signals such as pressure, temperature, humidity, gas flow, infrared, chemical
reactions, surface, sound, steam, and others. Handling huge datasets using multiple sensory
modalities is within the domain of machine learning, and interpreting the information
from numerous signals is becoming increasingly important in an IoT-driven world. The
common communication protocols used in WSN have been a combination of cellular
and short-range wireless network technology such as Bluetooth, ZigBee, etc. [1,2]. WSN
requires a long battery life, so a low-power circuit is essential with substantial resource
constraints. To achieve energy efficiency, MIMO is used in the 5G environment [3]. A
WSN typically has one or more connected sensors on each node and is monitoring a given
physical environment with distributed multiple hops. Baniata et al. [3] used a probability
sub-optimal multi-hop routing mechanism among cluster heads to increase the lifespan
of the sensor network. The sensor node operates according to an event or application
command, and each node communicates wirelessly. Each node has one or more sensors,
a microprocessor unit, and a radio unit that receives wake-up signals. Piyare et al. [4]
introduced an extension of the TSCH (Time Slotted Channel Hopping) protocol to low data
rate applications using the sub-GHz frequency bands operating on TI’s System-on-Chip.
They employed a special schedule for the network’s root nodes and their direct neighbors,
as well as the option to have multiple root nodes in a single network. Most WSNs rely
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on small batteries, which is a serious bottleneck in the system [5,6]. Battery capacity is
developing at a very slow rate compared to other technologies, such as integrated circuits
or software design. Therefore, energy efficiency has been the prime goal when designing
and deploying WSNs [7,8]. Bachir et al. address the challenges related to the reliability of
communication and the efficient use of the node’s battery in WSN [9]. The performance is
improved by doubling the network packet delivery ratio. Please note that the sensor node
is in an idle state most of the time. David et al. [10] provided a platform wake-up receiver
(WuR) with high integrability and a low cost per node to facilitate the implementation
of low-cost sensor nodes. They demonstrate the feasibility of implementing a WuR with
commercially available off-chip components by demonstrating a radio frequency envelope
detection (RFED) WuR on a PCB mount. The most significant power consumption savings
are observed when WuRs are used in low-traffic and low-density WSNs, mainly because
the main transceiver is in the sleep mode for most of the time [11]. However, this type
of customized platform is not cost-effective. Therefore, low-power design of circuits,
architectures, algorithms, protocols, and other elements that affect power management
must be carefully considered [12–14]. The conventional radio interface or transceiver
is frequently the most power-consuming element in a WSN node, dominating both the
static and dynamic power consumption of the sensor [15]. The duty cycle controlling a
radio receiver and transceiver is a common and well-known solution for reducing the
power consumption of WSNs. It reduces the active operation time of the sensor node
but increases the wake-up time when the sensor node is in a power saving state for a
long time. Therefore, in real-time communication, a wireless method with a very low
duty cycle may be inadequate. Similarly, Bdiri et al. [8] introduced the wake-up receiver
(WuRx), which handles idle listening while keeping the main radio completely off. The
main function of WuRx is to send an interrupt signal to the processing unit when receiving
a radio frequency (RF) or wake-up packet (WuPt). However, the drawback is that the WuRx
must always be turned on for communication with a very short waiting time. In terms of
IoT MCU, ESP32 MCU [16] is conceptually similar to the FGPM proposed in this paper, but
the difference is the lack of a distinction between Idle and Active modes. Our proposed
FGPM distinguishes the transmit and receive stages in specific modes, which allows for
fine-grain control of the duty cycle, which has been shown to be more advantageous for
power consumption control. In this paper, we propose a power management method for
WSNs with five states of fine-grained power modes. We evaluate the proposed method
on a test bench Mica2 [17]. As a result, of increased granularity, power consumption is
reduced by 74.2% when compared to conventional methods [12]. This paper is structured
as follows: Section 2 will present the communication protocol in WSNs, Section 3 will
propose the fine-grained power state approach, Section 4 will present simulation results
and energy consumption data of our approach, with a comparison against comparable
methods, before concluding the work.

2. Communication in Wireless Sensor Node

2.1. Wireless Sensor Node Architecture

Each wireless sensor node has a sensing unit which detects events in the allocated
area. In a given physical environment, the WSN monitors the events distributed via
multi-hops routing. It communicates with the neighboring nodes to deliver the event
to the user upon detection. Each inter-node communication uses a wireless transceiver
in accordance with the given network protocol [18]. Figure 1 shows a basic WSN and a
block diagram of a sensor module. Each node nearby events and broadcasts a signal to
the users once the event is confirmed. The node module Mica2 consists of sensing units,
a processor Atemga128L with memory, and an RF (CC1000) subsystem with low supply
voltage, 1.6–3.6 V [17]. The Mica2’s CC1000 is a wireless data transmitter and receiver
suitable for short-range communications such as gas sensors and has the advantage of
easy low-power management with a simple circuit. The firmware on the microprocessor
controls all sub-modules with a power management strategy.
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Figure 1. WSN Network connected multiple sensors and hardware block diagram of the sensor node
module with a similar architecture to Mica2.

2.2. Wireless Sensore Node Communication

Figure 2 shows that sensor node communication is based on a handshake protocol.
The first node that detects an event becomes a transmitting node (Node 1). It broadcasts a
wake-up message to neighboring nodes in a fixed time slot. The node then transfers data
packets to a downstream node. After packet transmission, the communication between
nodes is completed by the Ack signal. When the possible communication nodes are from
Node 2 to Node 4, communication is completed from the node with the highest priority (e.g.,
based on distance). Then, the successor node becomes a transmitting node which sends
the wake-up signal to another neighboring node repeating the above procedure. When a
time-out occurs due to packet loss, the scenario is restarted from the wake-up message
transmission. Finally, the data on the first wake-up node is transmitted to a sink node as an
alarm signal to alert the user. Additional functionalities can be integrated into the WSN
as determined by the application and specifications [13]. The communication scheduling
between nodes is an important issue to be considered for node power management.

Figure 2. Simplified sensor node communication with a handshake protocol.

Figure 3 shows the node communication schedule based on the WiseMAC protocol
that determines switching from sleep mode to wake-up mode. All nodes stay in the
medium idle state to receive periodically wireless wake-up signals to preserve battery
life. The WiseMAC (Wireless Sensor MAC) protocol is a low-power media access control
protocol designed for wireless sensor networks developed based on CSMA and preamble
sampling [19]. The advantage of WiseMAC is that it dynamically reduces the size of the
wake-up preamble. The wake-up signal does not require high traffic and shows that it can
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have low-power consumption in the wake-up state. The disadvantage is that it has a slow
response performance at wake-up time from sleep. However, this trade-off is tolerable
under the given circumstances, where the primary aim is to have a long battery lifetime.
Table 1 shows the time parameters that are defined in Figure 3 [20]. We set the medium
idle checking pulse Tp such that the WSN receives a wake-up message at this time. The
medium idle term TW is the time interval of the idle time Tp. Therefore, a node broadcasts
a wake-up message during TW and the neighbor node detects an event at TP. The receiver
node (Node 2) returns an Ack signal during Tc when it receives the lossless data packet.
Please note that Ack includes the wake-up schedule of the receiver node as piggyback data.
When the Ack is completed without any irregularities, the Node 1 transmits a wake-up
message (wRx, wake-up Rx) during TP+Tidle according to the received wake-up schedule
of the Node 2. This can be applied to the WiseMAC protocol. A time-out occurs since the
Ack does not normally arrive during inter-node communication. Node 1 regards it as a
packet loss or wake-up failure and transmits the wake-up message and packet again in the
next schedule [13,21].

Figure 3. Node communication considering wake-up schedule.

Table 1. Node communication time parameters based on WiseMAC protocol.

Parameter Description Value

TW Medium idle term 1000 ms
TD Packet exchange 16 ms
Tc Ack exchange 3.2 ms

TT
Turnaround time between

RX and TX 0.4 ms

TP Event sensing time 120 ms
Tidle Received wake-up and waiting for Packet receive 880 ms

3. Proposed Fine Grain Five States Power Mode

3.1. Power Management

The sensor node has three operating modes: sleep, idle, and run, as shown in Figure 4.
Sleep mode waits for a wake-up event, idle mode is for receiving data or standby state
to receive a specific command, and run mode is for executing a specific command. In
this paper, we divide the sleep mode into three modes: a deep-sleep mode (state 0), a
semi-idle sensor (state 1), and a semi-idle wRx (state 2, using wake-up Rx channel). These
correspond to a sleep mode which uses minimum power, a sleep mode using only the
sensing unit, and a sleep mode using the wake-up Rx channel. The sleep mode transits to
idle mode (s3) when a wake-up event is detected or transits to run mode (s4) according to
the node schedule.
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Figure 4. Tri-state power mode control is modified to five states power mode to reduce power
consumption on WSN.

Table 2 shows modules and power consumption for each state [22,23]. As the state
increases, the power consumption, as well as the time (TTR) and energy (ETR) for changing
between modes also increases. Each state is classified based on the processing state of
the sensor node. This power mode distinction is similar to Advanced Configuration and
Power Interface (ACPI) [5,13,24]. The paper [9] also lists power consumption parameters
for the preselected microcontrollers stated in the datasheet. However, it is estimated at the
MCU level.

Table 2. Power consumption of the function blocks of the sensor module.

MCU Memory
Sensing

Unit
Radio

Wake
Ctrl

Power

State 0 Sleep sleep off off off 95 uW
State 1 Sleep sleep on off on 203 uW
State 2 Sleep on on wRx on 28.2 mW
State 3 Idle on off wTx, pRx, Tx off 88 mW
State 4 Run on off wTx, pRx, Tx off 385.5 mW

3.2. FGPM Operation

Figure 5 shows the transition between power modes using the proposed FGPM
management technique, which controls the five states of various power modes [25]. It is
represented as a finite state machine initializing at state 0. The communication schedule in
Figure 3 shows how to switch between states. The sensors of the sensor module periodically
switch between ON/OFF to check for events, which is the same as a state transition between
State 0 and State 1. State 2 uses the wRx channel, and also periodically switches ON/OFF.
This is identical to the medium idle state described above [12,20]. A node detects an event
by periodically transitioning between State 0→ State 1, and State 2→ State 0 within a short
period of time. When an event is detected in State 1 or State 2, it moves to State 4 through
State 3. If an event is detected in State 1, then State 4 broadcasts a wake-up message and
transmits the data packet. Finally, it switches to State 3 using only a packet Rx (pRx) at the
receiving Ack. When an event is detected in State 2, the system switches to State 4 and
returns the Ack signal. The sensor module goes back to State 0 when the scheduling of
each node is completed. The inter-node communication performs the same procedure in a
subsequent cycle.
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Figure 5. Power mode state transition for fine-grain (with five states) power control on WSN. State 0
is the initial state which is sleep state.

3.3. Power Mode Control on the Sensor Node Platform

Figure 6 shows the power control of functional blocks for states of a node by using
the power management procedure of the microprocessor on the module. The sensing
unit and wRx communicate their signals to the MCU through the wake-up controller. By
using a separate wake-up controller, the MCU can sleep while receiving those signals thus
preserving the battery life for longer than using an extended standby state. The MCU
controls the power management mode that it supplies, or blocks the power of each function
block. Table 2 shows power consumption of each functional block for each state [26,27].

Figure 6. Self-waking paths on the sensor node module.

Figure 7 shows the wake-up signal process. When the sensor node switches from
State 0 to State 1 and State 2 and detects an event, it transmits a wake-up message to the
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MCU. This enables the sensing unit and wRx channel. After the sensor node processes
the signal from the sensor and antenna, they are transmitted to the wake-up controller
which is the intermediate manager [28]. A controller that uses a separated power supply
sends an interrupt signal to the MCU. Having completed its task, the activated MCU resets
the blocks.

Figure 7. Modeling of node wake-up signal processing.

4. Energy Analysis of FGPM

Five-State Energy Consumption

The power consumption at each state of FGPM is shown in Figure 8. When the state
increases, it is transmitted through the intermediate state. As described in Section 2, node
communication is processed according to a defined protocol. Even if there is a time delay,
it does not affect communication when adhering to a dedicated schedule [29]. FGPM can
be applied with significant savings for WSNs that have long latency and short-length data
communications, such as gas sensors [13,27].

Figure 8. Modeling of node wake-up signal processing.

The energy consumed at a state k is shown in Equation (1). It is the sum of the energy
consumed by the transition from State 0 to State k, ETR, and the energy at State k, EAct,k.
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The energy consumption, ETR, while activating State k is equal to the product of the power
consumption, Pk, and the duration of State k, Tk.

Ek = Pk × Tk = ETR + EAct,k (1)

ETR is an important factor in the calculation of energy consumption. By increasing
power mode states, the energy consumption due to state transitions also contributes to
a greater power consumption. Thus, too many power modes will result in diminishing
returns. The equation for ETR is given in Equations (2) to (7).

ETR,k = PTR,k × TTR,k (2)

TTR,k = ( Ts0←k + Tk←s0) =
(τu,k + τd,k)

2
(3)

where τu,k and τd,k are the time taken to activate the node in the previous State k − 1 and to
return to the previous power reduction mode, are given as follows:

τd,k =
(

τd,k−1 + τd,(k−1)←k

)
, k ≥ 2 (4)

τu,k =
(

τu,k−1 + τdelay,k + τu,k←(k−1)

)
, k ≥ 2 (5)

Table 3 shows the time taken for WiseMAC protocol communication and the time
required for state transitions when the node’s power consumption state is changing.

Table 3. Power states and Time used in the sleep state.

Parameter Value Parameter Value

Tw 1000 ms τu,s1 0.09 ms
TD 16 ms τu,s2←s1 2.8 ms
Tc 3.2 ms τu,s3←s1 128 ms
TT 0.4 ms τu,s4←s1 140 ms
TP 120 ms τu,s4←s3 12 ms
L 1000 s τu,s3←s2 128 ms
θ 30 ppm τd,s1 0.01 ms

For an example, we calculate τu,s2 using Equation (4), τu,s2 = τu,s1 + τdelay + τu,s2←s1.
The parameters are summarized in Table 3 as τu,s1 = 90 us, τu,s2←s1 = 2.8 ms, where τdelay,k
is the time for the state k to stabilize (set to 0 in this experiment). Therefore, τu,s2 = 2.89 ms.
The power PTR,k required to change State 0 to State k can be obtained using TTR,k. We can
derive PTR,k as shown in Equation (6) by substituting Equation (3) into Equation (2). This
is used to obtain Eth,k in Equation (7).

PTR,k =
Ts0←kPs0←k + Tk←s0Pk←s0

TTR
=

τu,k
2 |Pk − Ps0|+ τd,k

2 |Pk − Ps0|
TTR

=
Pk − Ps0

τd,k
+

Pk − Ps0

τu,k
(6)

ETR,k =
Pk − Ps0

2
τu,k +

Pk − Ps0

2
τd,k (7)

TAct,k contains the time parameters TW, Tp and TD shown in Table 1, which depend
on the node state. The consumed energy EAct,k is given in Equation (8).

EAct,k = TAct,k (Pk − Ps0) (8)

Thus, energy consumption Ek of State k during Tk is given by Equation (9).
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Ek(Tk) = PkTAct,k + (Pk − Ps0)TTR= PkTAct,k +
(Pk − Ps0)

2
(τd,k + τu,k)= PkTAct,k +

(Pk − Ps0)

2
τu,k +

(Pk − Ps0)

2
τd,k (9)

Since State 4 and State 0 use the maximum and minimum power, respectively, it is
clear that a lower number state will use less power. Equation (10) shows the energy saving
for the case where Pk(Tk) = Ps4 − Pk in Equation (9) and subtracting the additional power
consumption ETR. Equation (11) shows the amount of power saving.

Esaved,k(Tk) = (Ps4 − Pk)TAct,k − ETR (10)

Esaved,k =
(Ps4 − Pk)TAct,k − ETR

Tk
(11)

Please note that State (k − n) (where n ≤ k − 1) uses less energy than State k, but
absolute energy reduction is not guaranteed. To save energy at State (k − n), the energy
ETR,n used in the transition from the existing State (k − n) to State k must be greater than
the energy Eth,k given in Equation (12).

Eth,n = Pn × Tth,n (12)

We can find the minimum time Tth,k at State k keeping Esave,k > 0 using PTR,k described
above is given as:

Tth,k−n =
1
2

[
τd,n +

(Pk + Pk−n)

(Pk − Pk−n)

]
τu,n (13)

5. Energy Consumption in Wireless Sensor Node

5.1. Node Energy Consumption in Sleep Mode

The proposed FGPM has three highly granular power modes in sleep mode. In the
standby state, wRadio and sensor modules consume power to detect input signals. The
proposed structure repeats the use of State 0 and State 1 in order to switch the sensing
unit ON/OFF. In the medium idle state, the FGPM makes a state transition from State 3 to
State 2 to reduce energy consumption. This section describes the total energy consumption
considering all scenarios for the state of dormancy. Table 4 shows power consumption and
timing parameters for the sleep mode shown in Figure 9. Pk is power consumption in the
FGPM complying with a communication protocol. The duration Tk for State k has many
variables as shown in Figure 9.

Table 4. Power states and Time used in the sleep states.

Scenario Power Time

Conv
wRadio term Ps3, Ps1 TwRx + n

(
Tslp + Tsensing

)
Medium idle Ps2 TwRx,conv = TTR,s3←s1 + TP
Sensor term Ps1 Tslp + Tsensing

Prop
wRadio term Ps2, Ps0 TwRx + n

(
Tslp + Tsensing

)
Medium idle Ps2 TwRx,prop = TTR,s2 + TP
Sensor term Ps1, Ps0 Tslp + TTR,s1 + Tsensing

Each sensor node is in a sleep state before detecting an event which is as long as
i × TW . During this time, there is one wRx term for sensing a wake-up Rx signal and the
sensing time is n = (Tw − TwRx)/Tst. Equations (14) to (16) show energy consumption
while the node awaits the onset of an event.

Esleeps =
j

∑
TW=1

(EwakeRx(TP) + n·Esensor)TW
+ Esensed (14)
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where j represents the total sleep time of a node. It is equivalent to the sum of the energy
consumed from sensing, j× TW , and j times of energy of the medium idle state. EwakeRx
is the energy consumption of the medium idle state of a node while receiving a wake-up
signal with wireless communication. It is the largest cause for energy consumption for a
node in the sleep state is given as Equation (15).

EwakeRx,save
(
Tp
)
= Ps0Tslp + ( Ps3 − Ps2 )TP + (ETR,s3←s1 − ETR,s2) (15)

Esensor has two types of energy consumption. Based on the proposed method, Esensor 

eτd,s1 = (Ps1 − Ps0)τd,s1 because the node sleeps again if it fails to detect an event. If it detects
an event, it sends an event signal to the MCU through the wake-up controller, so the energy
is the same as Esensor 
 eτu,s4←s1 = (Ps4 − Ps1)τu,s4←s1. Please note that TAck,s1 ≥ Tth,s1 can
be obtained from Equation (13). Thus, the sensor energy saving is given in Equation (16).

Esensor,saved = (Ps1 − Ps0)Tslp − (ETR,s1 + ( Ps1 − Ps0 )τu,s1) (16)

Thus, the saved energy Esleeps,saved by the proposed method can be written as

Esleeps,saved =

Twait
TW

∑
i=1

(
Tslp(n + 1)(Ps1 − Ps0) + TP(Ps3 − Ps2) + ETR,s3←s1 − (ETR,s2 + n·ETR,s1 )

)
i

(17)

Figure 9. Transforming of energy states in sleep mode of a node.

5.2. Energy Consumption in Sleep Mode

Figure 10 shows energy consumption in sleep mode for both the conventional and
proposed method. Based on the Mica2 node, the energy consumption when using the
conventional continuous sensing unit and when the ON/OFF is repeatedly used is 178.64 uJ
and 95. 96 uJ [27]. The energy saving is approximately 46.3%. Employing State 2 reduces
energy consumption from 11.38 mJ to 3.5 mJ when the node is in the medium idle state,
which is a 69.2% energy reduction. By adding these two factors, the Mica2 node consumes
7.96 mJ for 1 s, which results in a total energy saving of 74.2% [20,26,27].

Figure 11 shows energy consumption in sleep states for 4 s to compare the existing
and proposed methods. The sensing interval shows a very slow rise of energy, and the
medium idle interval shows a faster rate of energy consumption increase. This is because
the energy consumed by the node’s radio subsystem is large. Therefore, it can be seen
that energy reduction in the radio system is emphasized. Compared with the proposed
method, energy consumption varies greatly over time. Figure 11 presents a staircase energy
consumption difference, but it increases linearly with respect to time.
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Figure 10. Comparison of energy consumption in the sleep mode.

Figure 11. Node energy consumption in the sleep mode.

5.3. Sensor Node Energy Consumption in Communication

In most cases, the sensor node is in the sleep state for event sensing. When a node
senses an event at the sensing unit, it becomes a sender node as the first wake up node.
Then, it transmits a wake-up message and data packet to the neighboring nodes and
receives an acknowledge signal. In these scenarios, power consumption in a node varies
with each time schedule. The WiseMAC protocol has several power consumption levels
in the node’s communication scenario; however, the state of power consumption was
defined only into three types: sleep, doze (idle), and communication state (RUN). The
proposed approach introduces FPGM with five states, where partitioning the states enables
fine-grained power management and reduced energy consumption. Figure 12 shows the
change of energy consumption in communication between nodes for WiseMAC in each
communication scenario. Node 1 wakes up from the sleep state by sensing an event of
the sensing units and starts to communicate with Node 2. As illustrated in Figure 2, a
node can have feedback after communicating at least twice for a single event. We show the
advantages of the proposed fine-gained partitioned power mode that are analyzed using
energy consumption benchmarks in conventional communication.
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Figure 12. Energy state transition in WiseMAC protocol-based node communications.

Each node sends a wake-up message and data packet to neighboring nodes. The
node that first wakes up through a sensor event from the sleep mode receives an Ack.
This is phase 1 communication. A time delay of τsendelay may occur due to repeated use
of the sensor switching ON/OFF that uses energy, though power consumption can be
reduced by using State 3 in the Rx state receiving Ack. Energy consumption is calculated
in Equations (18) and (19).

Econv,node1,ph1 = Ps4TW + Ps4TD + Ps4TT + Ps4Tc + ETR,s4 (18)

Eprop,node1,ph1 = τsendelayPs1 + Ps4TW + Ps4TD + Ps3TT + Ps3Tc + ETR,s4 (19)

Nodes can communicate repeatedly even after one data packet transmission. For
example, in the case of a gas sensor node, the sensor detects events periodically for a given
duration, and the number of times is set by the user for checking the current physical
environment and the state of the node. It is periodically fed back to the upper node, which
is phase 2 communication. In phase 2, the parameter value TW of Node 1 is changed to TP.
Additionally, τsendelay is deleted because the medium idle state does not use the sensor. The
energy consumption is given in Equations (20) and (21).

Econv,node1,ph2 = Ps4TP + Ps4TD + Ps4TT + Ps3Tc + ETR,s4 (20)

Eprop,node1,ph2 = Ps4TP + Ps4TD + Ps3TT + Ps3Tc + ETR,s4 (21)

Node 2 wakes up from a long sleep state upon an incident wRx event. It therefore only
plays the receiver role until communication with the wRx sender is completed. Node 2
becomes a receiver node that wakes up through a wireless signal without detecting an event
from the sensor. In the initial communication, Node 2 can send a piggy-back Ack to inform
the sending node that it is in a medium idle mode. Therefore, the energy used for the first
communication of the transmitting node and the energy used in the next communication
are different for m ≥ 2 in Tidle,m, where m represents the number of communication events
for a range of 0 ≤ Tidle,m ≤ TW − TP [8,10,13]. Equations (18) and (19) are modified to (22)
and (23).

Econv,node2,ph1 = Ps3TP + Ps3Tidle,1 + Ps4(TD − τu,s4←s3) + Ps4TT + Ps3Tc + ETR,s4 (22)

Eprop,node2,ph1 = Ps2TP + Ps3Tidle,1 + Ps4(TD − τu,s4←s2) + Ps4TT + Ps3Tc + ETR,s4 (23)
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From Phase 2, Node 1 can check the detailed medium idle schedule of Node 2. Thus,
the time error Tidle of TP approaches zero. The energy is modified to Equations (24) and (25).

Econv,node2,ph2 = Ps3TP + Ps3Tidle,2 + Ps4(TD − τu,s4←s3) + Ps4TT + Ps3Tc + ETR,s4 (24)

Eprop,node2,ph2 = Ps2TP + Ps3Tidle,2 + Ps4(TD − τu,s4←s2) + Ps4TT + Ps3Tc + ETR,s4 (25)

6. Experimental Results

Based on the Mica2, we compared the energy consumption of the conventional and
proposed approach using the Equations (18) to (25). The ad hoc network is shown in
Figure 1, which accounts for inter-node communication from Node 1 to Node 6 in the
network. The dotted circles are communication pairs. Node 1 wakes up Node 2 and
transmits its signal. Subsequently, Node 2 wakes-up Node 3 by broadcasting a wake-up
signal for other nodes. Node 2 wakes up Node 4 separately from communication between
Node 1 and Node 3. In the same order, Node 4 communicates with Node 5 and Node
6. There is no communication between Nodes 3 and 4, because Node 2 has a direct line
of communication with Node 4. Figure 13 shows the amount of power consumption
for the single communication of a dotted circle. The time required at the send Node is
TW + TD + TT + Tc + τu,s4←s1 + τd,s4←s1 , and at the receive node is TW + TD + TT + Tc +
τu,s4←s2 + τd,s4←s1. However, the power consumption according to the time period is taken
from Table 2. Phase 1 is for sleep mode and phase 2 is for run mode. The proposed method
is not significantly different from the previous method in the sender node, but a relatively
large difference can be seen in the receiver node.

Figure 13. Comparison of node energy consumption for each communication scenario.

Figure 14 shows the energy saving as a function of the parameters time and the
number of events in the node. The energy consumption of the waiting time in the proposed
method is about 74.2% lower than that of conventional methods. However, the energy
reduction effect caused by wake-up is less than 2%, so as the number of events increases,
the energy reduction of the proposed method does not necessarily scale. We assumed that
the number of events occurred from a minimum 0 to a maximum 16 in a space of two
minutes. There is an energy saving of about 57 J for 0 events, but about 9.7 J of energy
saving is less than 15% of that for 16 events.
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Figure 14. Reduced energy consumption with the parameters time and number of events.

Figure 15 shows the reduced energy consumption parameter space over one minute
for the number of nodes and event probability in the WSN. This shows the energy saving
effect when it is assumed that each node wakes up once due to a single event. The energy
saving rises as a 2nd order function for the event probability, but it is linearly increasing
for the number of nodes. Based on 100 nodes, the sensor node consumes significantly less
energy at 20 mJ for a 0% event probability, but energy consumption exceeds 1100 mJ at
the 100% event probability. As in Figure 14, this shows that our approach can save more
energy for systems of low event probability [27].

Figure 15. Comparison of node energy consumption for each communication scenario.

7. Conclusions

In this paper, we proposed a method to reduce power consumption according to the
protocol usage by introducing fine-grain power modes to the WSN node. The conventional
sensor system has three kinds of power modes: sleep, idle, and run. We divide the sleep
mode into three states: a deep sleep mode (State 0), a medium-idle state of the sensor
(State 1), and a medium-idle state of the wake-up Rx channel (State 2). Thus, the proposed
WSN platform has five states of power mode, including idle and run. Even in sleep mode,
power consumption is very different depending on WSN status. For example, the medium-
idle mode for the sensor consumes eight times more power than the medium-idle state for
wRx. We can manage the scheduling of power modes at the protocol level using a frame
pending bit in the header of data packets. This power mode can be applied to the scenario
of node communication, event detection, and standby according to the environment. The
sleep state, which is a standby state, is an event that has the most impact on the battery life
of a sensor board and has the longest time occupancy in power mode. Event recognition in
sleep mode is not continuous, but periodic sensing. Thus, the minimum time to operate
the sensor was calculated and we obtained the energy consumption. Besides, periodic
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radio signal receiving consumes the most energy in sleep mode. However, the proposed
system saves energy during radio communication because the node is not used until the
idle mode. The experimental results are simulations based on the architecture in Figure 1,
using parameters in Tables 2 and 4, and Figure 5. We assumed the use of gas sensors on the
Mica2 platform in WSNs. The node module senses gas at state 1 of a node. The sensor node
is in sleep mode and the event sensing period is set to 1 s. The proposed FGPM controls
the node status of the sleep mode finely that offers energy savings of 74.2% compared
to the conventional approach. This can be seen as a significant contribution to battery
saving since the sensor nodes are idle in sleep mode for majority of time. However, when
events occur consecutively without a sleep time, the power reduction is less than 2%. As a
result, the proposed method can be expected to save power more effectively in a wireless
sensor network with a low event probability or a small number of events in which most
networks operate.
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Abstract: To realize a large-scale Spiking Neural Network (SNN) on hardware for mobile applications,
area and power optimized electronic circuit design is critical. In this work, an area and power opti-
mized hardware implementation of a large-scale SNN for real time IoT applications is presented. The
analog Complementary Metal Oxide Semiconductor (CMOS) implementation incorporates neuron
and synaptic circuits optimized for area and power consumption. The asynchronous neuronal circuits
implemented benefit from higher energy efficiency and higher sensitivity. The proposed synapse
circuit based on Binary Exponential Charge Injector (BECI) saves area and power consumption, and
provides design scalability for higher resolutions. The SNN model implemented is optimized for
9 × 9 pixel input image and minimum bit-width weights that can satisfy target accuracy, occupies
less area and power consumption. Moreover, the spiking neural network is replicated in full digital
implementation for area and power comparisons. The SNN chip integrated from neuron and synapse
circuits is capable of pattern recognition. The proposed SNN chip is fabricated using 180 nm CMOS
process, which occupies a 3.6 mm2 chip core area, and achieves a classification accuracy of 94.66%
for the MNIST dataset. The proposed SNN chip consumes an average power of 1.06 mW—20 times
lower than the digital implementation.

Keywords: spiking neural network; leaky integrate and fire; neuromorphic; artificial neural networks;
artificial intelligence; image classification; CMOS

1. Introduction

In recent years, neuromorphic systems, which are comparable to a biological neural
network, have been widely investigated for prospective computing systems [1]. These
neuromorphic systems consume very little energy and provide parallel signal processing [2].
Deep Neural Networks (DNN) are receiving much attention as the chosen classifier for
various machine learning and computer vision applications due to their high classification
accuracy [3]. However, for applications requiring a real environment using conventional
von Neuman computing systems, the DNNs involve an immense number of computations
and memory requirements. The bottleneck for DNN efficiency is the excessive and repeated
update of data [4], high power consumption and memory bandwidth, making them not
suitable for mobile applications where area and power are big constraints [5].

The driving force in field of computing has been to outperform the human brain
using the von Neumann architecture. However, this architecture has significant differences
with the human brain in terms of the organizational structure, computing methodology,
area, and power constraints [6]. Today’s digital microprocessors have a basic architectural
difference with the central nervous system. The von Neuman-based microprocessors,
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constituted of logic gates, have distinct computational and storage devices [7]. However,
the latter is composed of a massive parallel arrangement of neurons, densely interconnected
to one another in a vast network through links called synapses [8]. Moreover, in the central
nervous system of the human brain, the processing elements (neurons) are placed very
close to the memory units (synapses). The human brain emerges as a vast energy-efficient
network by increasing the neuron–synapse interconnection, while consuming just 20 W and
performing computations unmatched by modern computers [9]. Due to power and memory
bottlenecks of conventional computers along with inspiration from biological achievements
a new paradigm of neuromorphic architectures have evolved. Fundamentally, these are
complementary to von Neumann architectures and have shown promising results in
specific applications [10–12]. Neuromorphic architectures are not only energy efficient,
but perform parallel signal processing, fault tolerance, and can be configurable. Moreover,
they can be realized by numerous silicon-based technologies, large-scale architectures, and
computational models of neural elements [13,14].

Although Artificial Neural Networks (ANN) can offer higher efficiency in training and
inference tasks, they generally require higher complexity in hardware and power consump-
tion than SNNs. Among various ANNs inspired from the human brain, Spiking Neural
Networks aim to bridge the gap between neuroscience and machine learning. SNNs offer
massive parallel computations on hardware, mimicking the human brain. SNNs process
information via numerous neurons and communicate that information through a web of
synapses. The transfer of information in the shape of small electric currents is carried
out by a sequence of action potentials called spike trains. In light of the Shannon Theory,
some studies suggest that the information contained in spike trains in the form of temporal
codes are more energetically efficient than rate codes [15–17]. Neuromorphic architectures
based on SNN benefit from computation organization—achieving high energy efficiency
by co-locating computing (neurons) and memory (synapse) elements, and information
representation—less power consumption by event-driven spikes encoding information [18].
The power constraints of mobile applications suffer due to the exponentially increasing pro-
cessing complexity of large-scale ANN-based neuromorphic hardware and thus necessitate
energy-efficient SNN-based neuromorphic hardware [19]. SNNs process the information
by spike propagation, which enables it to accelerate the computational speed and improve
energy efficiency [20]. It incorporates biologically plausible neuron models in acquiring the
temporal dynamics of the neural membrane [21]. To realize the advantages of SNNs on a
chip, it is crucial to optimize the neuron and synapse circuits for low power and a compact
area. Therefore, to realize large-scale SNN hardware requires power and area optimized
computational (neuron) and memory (synapse) elements.

When Carver Mead coined the idea of implementing neural networks in hardware, a
new paradigm in neuromorphic engineering was established. The neural characteristics
can be captured on hardware by the integration of robust and less power-hungry analog
components [1]. Confronting challenges in the field of neuromorphic engineering requires
a multidisciplinary approach, as the next generation VLSI technology can realize better
hardware [22]. Implementing neuromorphic hardware requires numerous transistors to be
integrated on the chip. This can be achieved to some extent by the scalability feat of the
CMOS technology, although still incomparable with the integration density of the brain.
Therefore, hybrid techniques that have merged conventional robust CMOS with newly
developed technologies like memristors are attracting interest in research [23,24]. However,
memristor crossbar architectures still require additional process requirements and are
currently under study for simpler problems with discrete devices, whereas conventional
CMOS, by virtue of its robustness and scalability has clear advantages for realizing large-
scale neuromorphic hardware [25].

Since the emergence of neuromorphic architecture, several studies have been per-
formed considering different large-scale architecture, technologies, and neuronal models.
Neurogrid [26], a mixed signal and system, employs subthreshold circuits to model neu-
ronal elements. This allows for a compact neuron area, but with all neurons sharing the
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same parameters and therefore becoming less configurable and power hungry. In Brain-
ScaleS [21], a mixed signal approach was adopted where all the neurons have dedicated
parameters. This allows high tunability, reconfigurability, and reliable parameter mapping
at the cost of higher power consumption. The analog–digital neural network classifier [5]
consists of an analog core with a current multiplier and environmental noise compensation
circuits; it achieves area efficiency due to its recurrent operations. However, its excessive
read and write operations via the digital controller makes it less energy efficient.

This paper presents the implementation of a large-scale SNN Artificial Intelligence
(AI) hardware based on analog CMOS for real time IoT applications. The SNN hardware,
optimized for area, power, and accuracy, is realized on a chip based on the preliminary
prototype design [27]. The choice of SNN model is dictated by the analog design constraints
for hardware. A four-layer fully connected SNN model is optimized for a reduced number
of neurons, input image size, and weight resolution which can achieve targeted classifi-
cation accuracy along with a minimal chip area. The proposed SNN comprises synapse
and neuron circuits optimized for power and area using a 180 nm process design kit.
Furthermore, a fully digital implementation of SNN is replicated to analyze and compare
the power consumption and estimated chip area with the analog counterpart. This work
elucidates our SNN model and design methodology, elemental circuit designs, simulations
and calibrations, and measurement results from the test chip on board. Section 2 describes
the overall SNN model architecture and design pre-considerations. In Section 3, the un-
derlying analog CMOS circuits design and implementation is explained and validated by
simulation results along with a description of its digital implementation. In Section 4, the
measurements and performance result of analog and digital SNN are analyzed. Finally, a
discussion and comparison of results achieved with other state-of-the-art large-scale neural
networks is performed in Section 5, before concluding the paper in Section 6.

2. Architecture and Design

2.1. Spiking Neural Network Model

The choice of neural network on chip for this work is SNN, regarded as the third-
generation neural network, due to its biological feats and efficiency in the spatial–temporal
signal coding [28]. In SNN, a web is weaved by the interconnections of neurons and
synapses to perform inference and training tasks. Contrary to the continuous behavior of
ANN, SNN works by making use of discrete events called spikes, which appear at spe-
cific time intervals. The occurrence of a spike event (0/1) mirrors the biological-chemical
process of information delivery between different neurons. The neuron (post-synaptic) in
a layer receives an input spike train from another neuron (pre-synaptic) in the previous
layer, which are interconnected through synapses. The Figure 1a demonstrates a simple
model of an SNN with a neuron, connected to a multitude of input synapses that receive
input spike trains from pre-synaptic neurons. These input spike trains are modulated
according to the respective synaptic strength (weight) and converted into current. The
proportionate charge from all the synapses is then accumulated on the neuronal mem-
brane as membrane potential. When membrane potential accumulates up to a predefined
threshold value then the neuron emits or fires an output spike [29]. Thus, neurons act as
an accumulation and comparison processing unit, while synapses are formed as memory
with a communication interface.
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Figure 1. (a) Spiking Neural Network Model with a single neuron connected to multiple input synapses; (b) Leaky Integrate
and Fire Model of the CMOS neuron cell.

2.2. Leaky Integrate and Fire Model

The choice of neuronal model for our large scale SNN is influenced by the pre-
considerations of optimizing the design for area and power consumption, along with
capturing the biological and temporal dynamics of the neuronal membrane. This requires
that the neuronal model to be imitated replicates most of the computational studies, along
with its simple design, which can unify a multitude of neurons on a chip. Therefore, for
the implementation of large-scale SNN, our choice of model is the Leaky Integrate and Fire
(LIF). This model possesses refractoriness and adaptation features to effectively mimic the
biological computational features of neurons with good accuracy and adopts simpler circuit
designs [30,31]. Contrary to other models [32,33], the LIF model for large scale neuromor-
phic architectures still draw the interest of researchers by virtue of the robustness of the
CMOS design and its compact silicon implementation. Figure 1b models the LIF, where the
neuron is represented by simple CMOS devices. The evolution of the neuronal membrane
potential Vmem can be modeled by a Resistor–Capacitor circuit, which is composed of a
membrane capacitor Cmem and a membrane resistance Rmem (leakage path). A spiking
neuron receives input spikes from the several pre-synaptic neurons interconnected via
synapses. Each synapse acts a current source and injects a current equivalent to its strength
called weights (W). The state (potential) of Cmem is updated by injecting current through
multiple current sources. Upon reaching a predefined threshold value, the comparator
decides to evoke an output spike and resets the Vmem.

The parallel combination of Cmem and Rmem can be defined by Kirchhoff’s current
law [21] and is modeled by Equation (1). When an input current I(t) flows into a neuron, it
will charge the Cmem with IC(t) and discharge through the resistance with the current IR(t).

I(t) = IR(t) + IC(t), (1)

I(t) =
Vmem −Vreset

Rmem
+ Cmem

∂Vmem

∂t
, (2)

Cmem
∂Vmem

∂t
= I(t)− Vmem −Vreset

Rmem
. (3)

When Vmem ≥ Vth, then Vmem = Vreset. In Equation (3) above, Vmem is the membrane
potential, Vreset is the resting potential, and Vth is the predefined threshold potential. When
there is no input current, then the capacitive charge will decay by leaking through the
resistance until it reaches the resting potential. In the resting state without any input current,
the Vmem stays at the resting potential Vreset. In Equation (3), the I(t) is the summation of
the excitatory and inhibitory input synaptic currents and is expressed as:

I(t) = ∑
i

∑
f

Wi × Ire f , (4)
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where Wi denotes the weight strength of the ith synapse and ‘f ’ is the number of the
spike. Iref is the external reference current to be injected upon each input spike activity. To
exhibit the inhibitory behavior of the synapse, the weights may have negative values, thus
discharging the Iref upon each input spike activity.

3. SNN Implementation and Circuit Design

Learning in the neuromorphic systems can be categorized into on-chip [34,35] and
off-chip learning [36,37]. The former mimics the biological neural systems, while the latter
can benefit from the use of pretrained weights for achieving the same performance results
as that of a software-based ANN [38]. Some SNN implementations employ their SNN
architecture equivalent to an ANN, to determine trained weights using the ANN model in
software and map the weights into the SNN hardware implementation [39]. Other works
such as the STBP method in [40] have proposed direct training techniques that propagate
spiking signals through the synapse and neuron models of the target SNN iteratively
while converging the weights of each synapse for higher accuracy. Our proposed SNN
architecture is based on the latter technique.

3.1. BSRC-Based SNN Architecture

For the SNN implementation proposed in this paper, the SNN model for the MNIST
dataset is first optimized using a low-cost spike signal representation technique called
Binary Streamed Rate Coding (BSRC), which was presented in our previous work [41].
While the proposed SNN employs the off-chip training technique, it determines the SNN’s
floating point weights by propagating sequences of spikes through an accurate model of the
target SNN chip, instead of an ANN counterpart as in most other SNNs. It then quantizes
the floating-point weights into integer values of minimum bit-width while satisfying the
target accuracy goal. In this paper, the target accuracy of 94% or higher is chosen, which
leads to 4-bit quantized weights for our SNN chip implementation. The equivalence
between our BSRC-based SNN model and its hardware implementation enables us to train
the SNN with very high accuracy while allowing for a very small chip size.

Figure 2 illustrates the overall block diagram for the proposed SNN hardware whose
architecture is optimized using the BSRC-based SNN model. The SNN under study com-
prises four fully connected layers constituting synapses, neurons, and flipflops for weight
and image memories. In order to minimize the chip size, our BSRC SNN optimization
method reduced the input image size to 9 × 9 pixels from 28 × 28 pixels of the MNIST
dataset. This proved to be the smallest size that could satisfy our target goal for accuracy
of 94% or higher. The Input layer has 81 neurons for utilizing the 9 × 9 grayscale images as
an input to the SNN. Our BSRC SNN optimization also determined the structure of each
layer as follows: The output layer consists of 10 neurons for classifying the image, while
two hidden layers consist of 30 and 20 neurons. All the neurons in each layer are fully
connected with one another via 3311 synapses. After many iterations of the BSRC SNN
optimization process, an SNN of four layers, namely (81-30-20-10), is determined, which
consists of an input layer of 81 nodes, 1st hidden layer of 30 nodes, 2nd hidden layer of
20 nodes, and an output layer of 10 nodes.

The minimum weights are determined to be 4-bit wide, which are trained by a su-
pervised training technique based on the BSRC-based backpropagation using the MNIST
dataset. The 4-bits are stored in flip flop memories located close to the associated synapses
in each layer, which leads to a short wire design, and consequently to faster operation and
lower power consumption. The BSRC SNN optimization also chose 4-bits to represent
the sequence of spike signals, which consists of a maximum of 15 spike pulses—no spike
indicates a pixel value of zero, while 15 spikes denote a pixel value of 15. These spike
pulses are provided to the inputs of synapse circuits in each layer, and also produced as
outputs by neuron circuits of each layer. Each MNIST image is converted to an input spike
sequence consisting of 15 possible spike pulses, proportional to the 4-bit pixel value of
the image. In the output layer, a digital controller counts the number of spikes in each
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spike sequence and classifies the type of image on the measured spiking activity. The
Analog CMOS-based implementation of the SNN’s constituent circuits and a fully digital
implementation of SNNs are described in upcoming subsections.

Figure 2. Block diagram of the SNN implementation consisting of four fully connected layers.

3.2. Analog Spiking Neural Network

To realize a large-scale SNN on hardware requires not only the minimal SNN architec-
tures, but also highly optimized CMOS circuits for minimal area and power consumption.
The SNN model (81-30-20-10) in Figure 2 consist of 4 layers, where each layer has been
built up from many unit cells that are constituted from Synapse and neuron circuits. These
unit cells are designed from CMOS devices based upon the principles of the LIF model
explained earlier. Keeping in mind the aforementioned design goals and constraints, a
prototype synapse and neuron circuits were designed earlier [42], which can be integrated
in the development of a large-scale SNN hardware while replicating most of the biological
neuromorphic characteristics.

3.2.1. Neuron Circuit

The LIF-based neuron circuit design is explained in Figure 3a. The neuronal membrane
is simply modeled by a capacitor Cmem, which integrates the synaptic currents in order to
generate Vmem across it. Cmem is realized by the Metal–Insulator–Metal Capacitor (MIMCAP)
to achieve better linearity along with less power consumption. The leakage path of the
neuronal membrane is modeled by a resistor that is implemented via partially-on NMOS
transistor to save the area. The decision of a neuron to fire an output spike is performed
by a comparator for which we have implemented a Schmitt Trigger circuit as shown in
Figure 3b. The Schmitt Trigger compares the Vmem with the predefined threshold voltages.
When the Vmem exceeds the threshold voltage, the Schmitt Trigger fires an output spike,
and the feedback path resets the membrane potential to the initial resting potential (Vreset)
via a separate NMOS transistor. As an important part of a neuron circuit, it needs careful
designing in order to achieve optimum threshold voltages to ensure high speed and low
power operations. Traditional neuron circuits often employ digital comparators requiring
a global clock, which are power hungry as compared to asynchronous circuits. Analog
asynchronous circuit implementations can achieve higher energy efficiency [43]. Therefore,
the choice of asynchronous Schmitt Trigger for our neuron circuit provides a significant
advantage by consuming less power and providing higher speed. Moreover, its simpler
circuit implementation leads to small chip size, while its high sensitivity results in a highly
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accurate performance. The output buffers are implemented to provide the reshaping of the
output spike pulses and isolation from the synapse circuits of the next layer.

Figure 3. (a) The circuit schematic of the LIF-based neuron; (b) The circuit schematic of the Schmitt Trigger used inside the
neuron circuit.

3.2.2. Synapse Circuit

The synapse circuit for our SNN implementation is shown in Figure 4, which is based
on a Binary Exponential Charge Injector structure and uses a 4-bit value of weight for
each synapse. Each synapse circuit comprises an excitatory synapse and an inhibitory
synapse. The excitatory synapse is composed of a pull-up PMOS network, while the
inhibitory synapse consists of a pull-down NMOS network. Each network has 3 branches
to realize the 3-bits of weight and are binary exponential sized for equivalent charge
injection. The MSB of the 4-bit weight is used to switch between excitatory and inhibitory
behavior through digital gates. If the MSB is 0, then the weight is positive and thus
activates the excitatory synapse by injecting charge onto Cmem. On the other hand, if
the MSB is 1, then the weight is negative and thus activates the inhibitory synapse by
discharging Cmem. Upon receiving a spike event in each synapse branch, the weight of
each synapse determines the amount of injected current from the excitatory synapse or
the discharged current of the inhibitory synapse. The injected current of all branches is
accumulated onto the membrane potential capacitor Cmem. The BECI synapse circuit is
inspired by the efficient structure of current mirroring DACs, which provides advantages
including minimal number of transistors, minimum size for saving area, reduced power
consumption, and design scalability for higher resolutions. For storing pretrained weight
values on synapses, standard cell flip-flops collocated with each synapse circuit are used.
Using this design method, not only can area be saved but energy required for read and
write operations can also be reduced effectively.

3.2.3. Circuit Simulation

The proposed SNN chip employs two types of synapse-neuron (one neuron cell) cir-
cuits: input layer circuit and hidden layer circuit. First, the input layer circuit is introduced,
which consists of one synapse and one neuron to convert input pixels to spike sequences.
Then, the hidden layer circuit comprising of multiple synapses and one neuron is described,
which fires output spike signals based on weights and input spikes.

Figure 5 shows a circuit simulation result for one neuron cell of input layer, composed
of a synapse and neuron circuits explained in the former sections. It verifies our BSRC spike
generation mechanism upon receiving an input spiking event, which is designed based on
the LIF model using 4-bit weight values. Upon receiving an input spiking signal, the BECI
synapse circuit injects an amount of charge onto Vmem, which is equivalent to its weight
value. For this simulation, an input spike train acts as an initial enable signal, while the
synapse is configured with both positive and negative weight values. Figure 5a shows an
example of an excitatory behavior, where the synapse is configured with a positive weight
value of +1, which slowly charges Vmem with every input spike activity. Subsequently, the
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neuron fires an output spike when Vmem reaches Vth. Similarly, Figure 5b illustrates an
example of an inhibitory behavior, where the synapse is configured with a weight value
of −1, which discharges the Vmem from its resting potential and the neuron refrains from
firing an output spike. When the weight value is zero or when there is no input spike, then
Vmem discharges (leaks) towards Vreset and the neuron does not fire an output spike.

Figure 4. The circuit schematic for the BECI-based synapse with three branches and digital gates.

Figure 5. The circuit simulation results for one neuron cell of an input layer with an input spike train of 15 pulses: (a) shows
the Vmem and spike-out when the weight value is +1; (b) shows the Vmem and spike-out when weight value is −1.

Figure 6a illustrates the general structure of a hidden layer, while Figure 6b depicts a
circuit diagram of an example of a hidden layer with two synapses and one neuron. Each
synapse has its own distinguished weight value, which can be either excitatory or inhibitory.
Due to large number of input synaptic activity, the neuron and synapses parameters need
to be configured accordingly. To realize such a fully connected SNN, the circuit shown in
Figure 6b was simulated. Here, two synapses with weight values W1 and W2 are connected
to a single neuron constituting one neuron cell of hidden layers.
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Figure 6. (a) Fully connected hidden layer with a large number of synapses connected to a single neuron; (b) One neuron
cell of the hidden layers with two synapses connected to a single neuron.

Figure 7 shows the circuit simulation result for the hidden layer circuit given by
Figure 6b. In the top graph of Figure 7, the spike-in signal of the current layer is the output
spike signal from the previous layer. Although individual synapses receive their spike-in
signals from different neurons’ outputs of the previous layer, in the simulation of Figure 7,
for simplicity, the same spike-in signal is applied to the two synapses of Figure 6b. The
synapses connected to a neuron in the hidden layer can have either positive or a negative
weight value. The simulation verifies in three cases with two synapses connected to a
neuron having a different combination of weight values. The first case in Figure 7a is when
one synapse has a weight value W1 = +1, and the other has a weight value W2 = 0. This
case demonstrates an excitatory behavior, where the neuron fires an output spike after
receiving a sequence of input spikes. The second case illustrated in Figure 7b is when one
synapse has W1 = −1 and the other has W2 = 0. It demonstrates an inhibitory behavior,
where the neuron does not fire any output spike. The third case is depicted in Figure 7c,
which shows the case when one synapse has W1 = +1 and the other has W2 = −1 weight
value. Here the excitatory synapse injects the charge on Vmem, while the inhibitory synapse
discharges the Vmem at the same amount. Therefore, Vmem remains at resting potential Vreset
resulting in no output spiking activity. The simulation elucidates the biological neural
behavior by the proposed circuit implementation of LIF model. The important simulation
parameters along with neuron and synapse area and power estimation are summarized in
Table 1.

Table 1. Neuron Cell Simulation Specifications.

Parameters Values

Neuron cell Area 2022.72 μm2

Neuron cell Power Consumption 25 μW
Resting potential 500 mV

Threshold Voltage 1.4 V
Resolution 4-bit
VDD/VSS 1.8 V/0 V

Membrane Capacitance 35 fF
Off-chip Bias voltages 8
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Figure 7. Circuit simulations for a neuron cell (one neuron connected to two synapses) where 15 input spikes are same for
all the three cases: (a) shows Vmem and an output spike when weight values are W1 = +1 and W2 = 0; (b) shows Vmem and
spike-out when weight values are W1 = −1 and W2 = 0; (c) shows Vmem and spike-out when weight values are W1 = +1
and W2 = −1.

3.3. Fully Digital Implementation of Spiking Neural Network

To evaluate the advantage of our analog implementation in terms of area and power,
the BSRC-based SNN model is also implemented in a full digital design. The full digital
design of SNN is verified on FPGA, while its area and power estimates are obtained using
Synopsys Design Compiler using Standard Cell Library of the same process technology as
the analog counterpart—TSMC 180 nm. The digital SNN realizes the same network shown
in Figure 2 using Verilog HDL.

The input layer converts each input pixel value to a sequence of spikes using a
design implementation of the integrate and fire (without leakage) neuron logic. The input
layer converts 81 pixel values using 81 synapses in a way similar to the analog SNN
implementation presented in Section 3.1. Figure 8 shows the detailed block diagram of a
hidden layer implementation. Each neuron logic in the SNN has a membrane potential
storage register and has a number of synapses attached as inputs. The neurons and
synapses operate at discrete events represented by the rising edge of the spike-event clock.
The spike-event clock is generated by dividing the system clock by an adjustable factor,
which is set to 3 for the measurements results provided in Section 4.2. Each synapse, upon
receiving a spike, adds its weight value to the membrane register. Whenever, the membrane
potential exceeds the threshold value, the neuron generates an output spike and reset its
membrane register value. The spikes are generated and received at the spike-event clock,
while the width of each spike is equal to the system clock period.
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Figure 8. The block diagram of the full digital implementation for the output layer. A number of synapses accumulate in
membrane register and the comparator fires the digital output spike pulses.

4. Measurement Results and Analysis

This section analyzes the performance and measurements results of analog SNN and
digital SNN implementations for determining an optimized hardware for the area and
power constraints.

4.1. Implementation of Analog SNN

The full-chip layout (including pads) of the analog SNN is described in Figure 9a.
The test chip of the analog SNN is fabricated using the 180 nm CMOS process as part of a
multiple project wafer. The fabricated chip’s micrograph with bonding wires is given in
Figure 9b. The test chip occupies an active area of 3.6 mm2 within the allocated die area of
2700 μm × 1550 μm. The layout of the chip distinguishes the four fully connected layers
of the SNN as input layer (IPL), hidden layer1 (HL1), hidden layer2 (HL2), output layer
(OPL), and a Digital Controller (DC). The compactness is achieved via the tight placement
of individual cells and smaller routing paths. The layers are placed side by side so that
interconnection between two layers is of minimal length. Moreover, decoupling capacitors
are added inside every neuron cell to allow for scalable and reliable design.

Figure 9. (a) The complete layout of the SNN implementation constituting of 4 fully connected layers
with area estimation; (b) The bonded die micrograph highlighting the fabricated SNN chip.
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Figure 10a shows a test printed circuit board (PCB) for testing the analog SNN chip
and the measurement setup. A host CPU board (Raspberry Pi in our test setup) was used
to download weight data and configuration parameters, and then provide input image to
the SNN chip via a Serial Peripheral Interface (SPI). The on-chip digital controller activates
the input layer to take pixel values from the image memory and convert them to input
spike signals for SNN. Once all the spike signals are propagated through each layer, the
output layer counts the final output spikes, while the digital controller sends back the data
to the host CPU board for an evaluation of the classification results. Figure 10b shows the
measurement setup for the fully digital implementation, which is described in Section 4.2.

Figure 10. Measurement Setups: (a) analog SNN test chip mounted on test PCB is measured using oscilloscope, function
generator, and a host CPU board (Raspberry Pi 4); (b) digital SNN implementation is measured via FPGA board interfaced
with a host CPU board (Raspberry Pi 4).

The measured results are shown in Figure 11. The spike propagation phenomenon is
achieved successfully, as observed in circuit simulations. Figure 11a is the case when one
input spike applied at the first neuron cell propagates through the first neuron cell of all the
layers. This propagation is achieved by having maximum weight (7 in our implementation)
for the first synapse of the first neuron in every layer, while all other weight values are set
to zero. With one input spike applied to the first layer and the maximum weight value in
every layer, the output layer generates one output spike. Similarly, in Figure 11b, 7 input
spikes are applied to the first layer and propagated by using the same weight configuration
as of Figure 11a. The measured results of Figure 11 verify the biological propagation of
spikes from one layer to another layer for the SNN chip under test. The MNIST data set was
applied during testing and the average on-chip current was measured for different applied
images. The measured average current was 592 μW, which gives the power consumption
of the test chip as 1.06 mW, while operating at a 10 MHz clock signal.

4.2. Implementation of Digital SNN

The aforementioned implementation of a fully digital SNN was tested using the
measurement set-up described in Figure 10b. The fully digital SNN chip was implemented
on an FPGA board (Xilinx ZYNQ Ultrascale), interfaced with Raspberry Pi 4 for the digital
SNN measurements. Similar to analog SNN, the input image, weights data, and the
configuration parameters for the digital controller are provided via SPI to the digital
SNN. The controller generates stimulus input spike signals for SNN, counts the output
spikes from the output layer, and sends back the data for further classification. The
measured results obtained via Xilinx Integrated Logic Analyzer from FPGA are illustrated
in Figure 12. The results show different input test images with respective to the classifier’s
output spiking activity for correct and failed classification. For example, when applied
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with an input image of 7, the 7th node of the output layer exhibits the maximum spiking
activity. The digital SNN has a measured area of 3.5 mm2 including routing overheads and
a power consumption of 21.2 mW. This power consumption of the fully digital SNN chip
was estimated by Synopsys Design compiler, while the power consumption of the analog
SNN chip was measured from the fabricated chip. The estimated power consumption is
accurate enough for our purpose of comparison, since the EDA tool was configured with
an accurate 180 nm CMOS process PDK database provided by the same foundry.

Figure 11. Measurement results for the spike propagation: (a) One input spike propagates through all layers; (b) seven
input spikes propagates through all layers.

Figure 12. The measurement results for Digital SNN showing the correct classification of different input images along with
the failed classification of input image ‘5’.

Table 2 compares the area and power consumption between our analog and digital
SNN implementations for the same optimized SNN model. The digital SNN implemen-
tation benefits from less design complexity and is easier to implement as compared to
the CMOS-based analog SNN implementation. However, the analog SNN finds massive
advantage over its digital counterpart in terms of power consumption while occupying
nearly the equivalent area. This makes the analog SNN design a superior choice for a
low-power implementation of SNNs for mobile applications.

Table 2. Comparison between the Proposed Analog SNN and Fully Digital SNN.

SNN Chip Area Power

Proposed Analog SNN Chip 3.6 mm2 1.06 mW
Fully Digital SNN Chip 3.5 mm2 21.2 mW

5. Performance Analysis

The classification analysis for implemented SNN is performed using MNIST—a hand-
written digit dataset comprising of 10,000 test images. Firstly, an optimized SNN model is
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implemented in the Python framework considering its analog circuit architecture and chip
size. Secondly, the SNN model is trained in the Python framework that follows the detailed
architecture of the analog SNN structure. Finally, the trained weights are downloaded
to the analog SNN chip to conduct the inference operation using the MNIST validation
dataset. Figure 13 shows the case when the applied input image is ‘7’, the SNN predicts
the correct classification result of ‘7’ by producing the maximum spiking activity at the 7th
output node. The average classification accuracy achieved for the SNN is 94.66%, which is
very close to the accuracy of 94.69% for the optimized SNN model in Python [41].

Figure 13. The measured results on the oscilloscope for the analog SNN. The applied input image to
the SNN is ‘7’ and the 7th output classifier shows maximum spiking activity.

The performance of the SNN test chip has been compared with state-of-the-art works
previously reported, as shown in Table 3. The comparison has been made among various
neuromorphic chips to identify the optimum implementation in terms of area, power con-
sumption, and classification accuracy. As the physical dynamics of various neuromorphic
chips is different for diverse applications, the complexity of the system is therefore defined
by the total number of weights. The complexity is then divided by total occupied area, and
by the power consumed for the area, and the power efficiency (η) analysis, respectively.
The large-scale biological plausible analog Neurogrid [26] implementation benefits from
the compact neuron size (1800 μm2), which is based on the quadratic I & F model, achieves
good area efficiency. Whereas our SNN based on the LIF model neuron cell occupies an
almost similar area of 2022.72 μm2, it consumes much less power and achieves 40× higher
power efficiency. The second generation analog BrainScaleS neuromorphic systems [21],
comprised of neuronal array prototype chip with tunable parameters, has a compact area
but is power hungry. The mixed-mode neural network classifier [5], based upon the Radial
Biased Function Network (RBFN) and the Multilayer Perception (MLP), occupies less
area due to its analog core implementation but is less power efficient. In contrast, the
proposed SNN provides optimum area and power efficiencies and is thus suitable for AI
mobile applications.
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Table 3. Comparison of Performance of the SNN Chip with Other State of the Art Neuromorphic Chips.

Parameters [26] [21] [5] [44] This Work

CMOS tech. [nm] 180 65 130 800 180
Architecture Analog Analog Mixed-Mode Mixed-Mode Analog

Classifier type SNN SNN MLP/RBFN SNN SNN
Neuron Model Quad. I & F LIF Current mode LIF LIF

Chip Area [mm2] 168 3.6 0.140 1.6 3.6
Power [mW] 3100 48.62 2.20 40 μ 1 1.06

Energy/Spike [pJ] 941 2 790 - 900 900
Accuracy (%) - - 92 - 94.60
Complexity

[Total # of weights] 256 K 1024 750 256 3311

Area η

[Complexity/Area] 1523 284.5 5360 160 920

Power η
[Complexity/power] 82.5 21.06 341 - 3123

1 For one neuron. 2 Energy per synaptic operation.

The energy consumption per spike was estimated for the current SNN chip by comput-
ing the total energy consumed for processing input spiking event divided by the number
of the processed input spiking events [45]. As shown earlier in Figure 11a, for a single
input spike it takes 9 clock cycles to evoke an output spike. It therefore consumes 900 pJ of
energy per spike while operating at 10 MHz, which is different from energy per synaptic
activation calculated as 941 pJ for [26]. The energy per spike for the proposed SNN is quite
comparable with the 790 pJ energy per spike calculated for [21] and 900 pJ for [44]. Data
for the accuracy was not available for the [26] and [21] analog implementations. Compared
with the previous implementations [5], the proposed SNN implementation achieves an
optimum classification accuracy at lower cost and power consumption, which makes it a
strong candidate for mobile AI applications.

6. Conclusions

This work presents a hardware implementation of a large-scale SNN optimized for
area and power, which is aimed at real-time AI/IoT applications. The SNNs allow for
compact hardware implementation that is better suited for mobile or edge AI applications,
if compact synapse and neuron circuits are used. Area and power efficient synapse and
neuron circuits are proposed and an example SNN chip of 4 layers is constructed by
integrating the synapse and neuron circuits. The SNN chip was implemented with a
180 nm CMOS process, which occupies a die area of 3.6 mm2 and consumes a power
of around 1 mW. The analog SNN chip has an advantage over its digital counterpart in
terms of power consumption while occupying almost same area. The SNN chip achieves
a classification accuracy of 94.60%, which is comparable with its software model, while
consuming 900 pJ of energy per spike, which is 20 times lower than the digital SSN
chip. Moreover, the prototype SNN implementation can be easily expanded for higher
resolutions and number of classes. As future work, we plan to develop a large-scale SNN
chip that can be an alternative solution to ANNs for increased image size and number
of classes.
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Abstract: The design of advanced miniaturized ultra-low power interfaces for sensors is extremely
important for energy-constrained monitoring applications, such as wearable, ingestible and im-
plantable devices used in the health and medical field. Capacitive sensors, together with their
correspondent digital-output readout interfaces, make no exception. Here, we analyse and design
a capacitance-to-digital converter, based on the recently introduced iterative delay-chain discharge
architecture, showing the circuit inner operating principles and the correspondent design trade-offs.
A complete design case, implemented in a commercial 180 nm CMOS process, operating at 0.9 V
supply for a 0–250 pF input capacitance range, is presented. The circuit, tested by means of detailed
electrical simulations, shows ultra-low energy consumption (≤1.884 nJ/conversion), excellent linear-
ity (linearity error 15.26 ppm), good robustness against process and temperature corners (conversion
gain sensitivity to process corners variation of 114.0 ppm and maximum temperature sensitivity of
81.9 ppm/◦C in the −40 ◦C, +125 ◦C interval) and medium-low resolution of 10.3 effective number
of bits, while using only 0.0192 mm2 of silicon area and employing 2.93 ms for a single conversion.

Keywords: capacitance-to-digital converter; iterative-delay-chain discharge; CMOS capacitive sensor interface

1. Introduction

Capacitive sensing technologies underpin many sensory applications, including indus-
trial, automotive, consumer [1] and life-science electronics [2]. At the same time, dedicated
and power-optimized readout interfaces have been proposed to take full advantage of
this technology. In this sense, capacitance-to-digital converters (CDCs) represent a class of
integrated interfaces capable of delivering a digital output readout of the capacitive sensor.
Many architectures of CDCs are demonstrated in the literature, exploiting the principles of
phase/pulse modulation (PM) [3–7], ΔΣ modulation (ΔΣM) [8–10] and capacitive succes-
sive approximation register (CSAR) [11–15]. A detailed review of these techniques can be
found in [16].

Recently, a simple and compact solution, which presents a significant number of
innovations over other kinds of CDCs, was proposed in [17]. The most relevant innovations
regard that (i) the CDC implementation is based on basic digital gates (inverters, Nands and
Xors); (ii) an external clock signal is not required; and, (iii) as it will be clear in the remainder
of this paper, the scaling of the capacitance full scale, i.e., the maximum capacitance value
that can be converted, does not affect the internal state variables range in terms of voltage
headroom and/or current intensity, as it usually occurs in many other CDC architectures.
This fact allows for the extension of the CDC dynamic range (DR) relying only on the
length extension of the digital output register. However, the inner working principles of
the iterative delay-chain discharge (IDCD) architecture are poorly explained, leaving the
designer with numerous unknowns hindering the adoption of this architecture despite its
excellent performance in terms of power.

In this work, we address this issue by providing a deeper insight into this new architec-
ture by giving a formal (rather than heuristic) explanation of the CDC operating principle.
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This discloses the CDC’s intrinsic limits, thus providing awareness of the fundamental
trade-offs. Moreover, the analysis paves the way for different implementations of the
same architecture that better adapts to specific cases within the voltage-headroom/signal-
bandwidth design space.

Skin

Flexible PCB +
Fluid channels 
engraved on
elastometer layer

Connections:
SPI + power lines

ASICSweat inlet Sweat outlet Cross section:

Elastometer layer

Flexible PCB

Cu tracks 
(buried electrodes)

Channel

Figure 1. Concept of a wearable platform for volumetric sweat-rate sensing.

The target capacitive sensor considered in this work derives from the wearable plat-
form for sweat-rate sensing sketched in Figure 1. This device is intended to be used for
activity tracking in sport applications, and it consists of (i) a flexible printed-circuit board
(FPCB) layer, typically a polyimide film; (ii) a decorated elastometer layer, typically poly-
dimethylsiloxane (PDMS), and (iii) an application-specific integrated circuit (ASIC) [18–21].
The fluidic pathway is then formed by sealing the two layers together and providing an
inlet and an outlet, facing, respectively, the skin and the air. In correspondence to the
fluidic pathway, two buried electrodes, implemented by the FPCB Cu tracks, work as
electrostatically coupling electrodes, providing the capacitive transduction mechanism for
the volume occupied by the sweat within the channel. By taking successive capacitance
measurements, the volumetric sweat flow can be reconstructed. The measurement readout
control is provided by the ASIC, which is placed in close proximity to the sensor in order
to avoid interference and excessive parasitic coupling. The ASIC may also provide a stan-
dard digital interface, e.g., a serial peripheral interface (SPI), for communication with an
external wireless communication module. Preliminary estimation of the capacitance range
of structures, such as those in Figure 1, suggests values between 10 and 250 pF, depending
on the specific channel geometries and constitutive materials. Similar capacitance range
can also be found in other capacitive sensors [22,23].

A 0–250 pF capacitive sensor interface, applying the design rules resulting from the
theoretical analysis, is implemented in the UMC 180 nm complementary metal–oxide–
semiconductor (CMOS) technology. The chosen capacitive conversion range is compatible
with a number of micro-electro-mechanical systems (MEMS) capacitive sensors. Detailed
electrical simulations show the following converter performance: systematic input offset of
255.6 fF, linearity error of 15.26 ppm, worst-case process-corner sensitivity on the conversion
gain of 114 ppm, temperature sensitivity of 81.9 ppm/◦C, maximum signal-to-noise ratio
(SNR) of 63.9 dB and maximum conversion energy of 1.884 nJ when operated at 0.9 V
supply. In the discussion section of this work, these figures are compared to those of [17]
in order to provide insight into the porting of this architecture across different CMOS
technological nodes.

2. Materials and Methods

Electrical simulations were performed on a 3.3 GHz 14 core CPU x86-64 workstation,
operated through CentOS 7, and Cadence IC6.1.7 (ADEXL, Spectre simulator and AMS
simulator). The CMOS design kit from UMC 180 nm mixed mode/RF was made available
from the Europractice IC Service to European academic and research institutions. Graphical
data preparation and presentation were performed by means of Python 3.5.2 importing the
following modules: Numpy 1.17.0 and Matplotlib 3.0.3.
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3. Results

The CDC operation principle is analysed for the first time in Section 3.1, while its
implementation in the commercial 180 nm CMOS technology is presented in Section 3.2,
followed by detailed electrical simulation in Section 3.3.

3.1. Principle of Operation

The CDC operation consists of the discharge of the capacitance CS between two voltage
levels, VH and VL, with VH being the precharge value and VL the value assumed at the
end of the conversion (see Figure 2). For the sake of a clearer explanation, let us assume
that CS has one of its terminals connected to the ground. The conversion operation starts
by the falling edge of the precharge signal. The discharging of CS supplies the attached
ring oscillator (RO), simply implemented by inverter gates, which starts oscillating at a
frequency determined by its supply voltage (VC). The output of the RO is the frequency
modulated two-level signal p(t), whose instantaneous oscillation frequency encodes the
amplitude VC. The integral of this quantity is the phase ϕ, which is updated at every cycle
as shown in Figure 2b. The oscillation frequency decreases by decreasing VC since the
overdrive voltages of the logical gates are decreasing, thus slowing the charge of the next
gate in the ring.

step height = 1

ASYNC 
COUNTER

REGISTER

RO reset

Figure 2. Simplified CDC operation based on a voltage level comparator: (a) block-level schematic di-
agram comprising an RC-circuit equivalent of the RO; (b) chronograms of the most important signals.

While the oscillation edge completes a loop, i.e., ϕ completes a full cycle, the RO
absorbs a certain amount of charge from CS, which causes VC to decrease in time. An asyn-
chronous counter keeps track of the number of loops. Finally, VC reaches the VL level,
eventually detected by a voltage comparator set to the VL threshold, which, in turn, pro-
duces the end-of-conversion signal (eoc) used also to strobe the counter value (dout) into
an output register.

Since each loop consumes a certain quantity of charge q[i] (at i-th loop), the following
relationship must hold:

N

∑
i=1

q[i] + qε = CS(VH −VL), (1)
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where N is the number of loops during the discharge, and qε is the residual error due to
the last incomplete loop.

The heuristic conclusion drawn in [17] is that N is proportional to CS apart from the
quantization error qε/(VH − VL). Nevertheless, Equation (1) does not give any support
to this conclusion since the relation between N and CS is not explicit. Moreover, since
the RO supply voltage-to-frequency characteristic is generally non-linear, the capacitance-
to-digital conversion law is not evident. An explanation of the principle of conversion is
given in [24]; however, some unverified assumptions were made to simplify the analysis,
which, on the other hand, may lead to wrong interpretations about the linearity of the
conversion characteristic.

In order to show the linear relationship between CS and N, let us consider the RC
circuit represented in Figure 2a, where the parameters RRO and CP were introduced. The
parameter CP represents any parasitic capacitance due to the RO and the precharge switch
added to the discharge node, while RRO models the charge absorption rate at each voltage
value VC. It is important to note that during the full RO cycle, charge is impulsively
absorbed due to the sequential switching of the digital gates, causing VC(t) to resemble a
staircase shape. Hence, an effective current IC per cycle can be defined, accounting for the
amount of charge q in the interval of time defined by the p period. In our approach, VC(t)
interpolates the actual staircase, allowing for a continuous-time description of the circuit
behaviour as in Figure 2b. Hence, RRO is simply the ratio between the interpolated VC and
IC. It is convenient to express RRO and CP as

RRO(VC) = R0 uRO(VC) and CP(VC) = C0 uP(VC), (2)

being that R0 = RRO(VH), C0 = CP(VH) and the functions uRO(VC) and uP(VC) are positive
and continuous in the (VL, VH) interval such that uRO(VH) = 1 and uP(VH) = 1. The charge
absorption rate modelled by RRO is determined basically by two mechanisms: (i) charge
is absorbed due to inter-stage charging within the RO, and (ii) charge is absorbed due to
short-circuit currents in the digital gates of the RO at transition times.

The Kirchhoff’s law of currents applied to the simple RC circuit of Figure 2 gives

d((CS + CP)VC)

dt
= − VC

RRO
, (3)

where the total charge Q = (CS + CP)VC is subjected to variations in time due to both VC(t)
and CS(t), being that the latter is the dynamic component of the capacitive sensor (i.e., the
capacitively transduced signal to be converted). This can be neglected when

1
CS + CP

∣∣∣∣dCS
dt

+
dCP

dt

∣∣∣∣�
∣∣∣∣ 1
VC

dVC
dt

∣∣∣∣, (4)

meaning that at any time point during the conversion, the variations of CS and CP rela-
tive to the total capacitance CS + CP are much smaller than the relative variation of VC.
Such a condition is typically found in a large class of capacitive sensors, where the capaci-
tively transduced signal varies slowly compared to the conversion time Tconv. Under this
hypothesis, (3) can be simplified in order to obtain(

1 +
C0

CS
uP(VC)

)
uRO(VC)

dVC
VC

= −dt
τ

and τ = R0CS. (5)

Note that in a linear RC circuit, i.e., where both RRO and CP are independent from
VC, Equation (5) describes the known exponential relaxation of VC(t), determined by the
time-constant τ. The analytical and/or numerical solution of Equation (5) is, in principle,
viable once uRO(VC) and uP(VC) are known, either from an analytical insight on a particular
RO topology, or directly from fitting simulation data.
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The number of counts N, stored in dout, is determined by the accumulation of cycles
during Tconv, which is related to the accumulated phase ϕ as follows:

ϕ(Tconv) = 2π
∫ Tconv

0
fosc(t) dt and N = � ϕ(Tconv)

2π
, (6)

being that fosc is the instantaneous oscillation frequency of p(t). The operator �x indicates
the floor operation on the variable x. Since fosc is dependent on VC, we can elaborate
Equation (6) as

N = �
∫ Tconv

0
fosc(t) dt = �R0CS

∫ VH

VL

(
1 +

C0

CS
uP(VC)

)
uRO(VC) fosc(VC)

dVC
VC
, (7)

where the differential dt and the time constant τ are substituted with their respective
expressions given in Equation (5). For better readability, Equation (7) can be rewritten as

N = �kGCS + kG0C0, (8)

where

kG = R0

∫ VH

VL

uRO(VC) fosc(VC)

VC
dVC; kG0 = R0

∫ VH

VL

uP(VC)uRO(VC) fosc(VC)

VC
dVC. (9)

The expressions in Equations (8) and (9) remarkably show that N is linearly dependent
to the input CS through the conversion gain kG regardless of the oscillator implementation,
as long as fosc > 0. An offset term, kG0C0, is also present due to any parasitic capacitance
added to the precharge node.

The quantization error εQ is

εQ =
ϕ(Tconv)

2π
− N = kGCS + kG0C0 − �kGCS + kG0C0. (10)

Clear design guidelines can be obtained from the expression of kG of Equation (9)
under the following simplifying assumptions. First, let us assume the following relationship
between fosc and VC, describing the linearised behaviour of the RO:

fosc = f0 + koscVC, (11)

where f0 is the frequency bias and kosc, given in [s−1V−1], is the voltage sensitivity coef-
ficient. A second simplification regards the uRO(VC) function introduced in Equation (2),
which is approximated to an effective constant value u�

RO ≥ 1 across the whole interval
(VL, VH):

uRO(VC) = u�
RO, for VL ≤ VC ≤ VH . (12)

Under the assumptions (11)–(12), the integral of Equation (9) is simplified to

kG = R0u�
RO ·

(
f0 log

VH
VL

+ kosc · (VH −VL)

)
. (13)

The quantization error referred to as CS, i.e., εQ/kG, is reduced by increasing kG
(Equation (10)). Therefore, the simplified expression of kG suggests the following de-
sign guidelines:

1. kG is increased by increasing the R0u�
RO term, which is related to both the W/L aspect

ratio and the area WL of the digital ports and the number of delay stages of the
inverter-based RO. The short-circuit current, which contributes to IC, is reduced by
increasing L; however, the short-circuit time interval is minimized by reducing the
total area. So for a given gate area WL, it is convenient to reduce the W/L ratio.
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Clearly, incrementing the number of delay stages increases the discharge rate in each
cycle, thus reducing R0u�

RO.
2. kG is increased by increasing f0, which can be attained for minimum-sized transistors,

i.e., W = Wmin and L = Lmin. The parameter kosc depends on the chosen linearisation
point, being strongly dependent on the VL-VH range. However, as it will be clear in
the following discussion, the fully-digital implementation of the CDC rules out this
parameter from the design space. As in point 1, reducing the number of delay stages
is beneficial to increase kG.

3. kG is increased by maximizing VH and minimizing VL as can be seen in the logarithm
argument and in the difference term. VH is limited by the available supply voltage
value, while VL is limited by the minimum viable supply voltage for the correct
operation of the digital gates.

Points 1 and 2, in principle, may lead to divergent design indications as far as the
L of the digital gates is concerned. For this reason, the optimal solution can be obtained
by performing electrical simulations, where L is swept across a reasonable interval that
includes Lmin.

Regarding the contribution of the comparator physical noise affecting the architecture
shown in Figure 2, we can consider the comparator root-mean-square noise Vn,cmp. At the
end of the conversion, VC will pass the VL threshold with a certain slope, so

Nn,comparator � fosc(VL)
Vn,cmp

dVC/dt|t=Tconv

� τ fosc(VL)uRO(VL)
Vn,cmp

VL
, (14)

The last part of the approximation is found elaborating Equation (5)—which also
gives the definition of τ—and neglecting, for the sake of simplicity, the contribution of CP.
Equation (14) describes the relationship between the comparator noise and the fluctuation
on the conversion code, but most importantly, it establishes also a linear relationship
between this fluctuation and the capacitance value through τ = R0CS. This is a very
remarkable property of this converter type since the effects of one of the most important
sources of physical noise scale proportionally with the quantity to be converted. This also
suggests that no particular effort is to be put in the comparator design.

The architecture represented in Figure 2 is based on a continuous-time voltage-domain
comparator whose noise effects are analysed in Equation (14). The next step in our analysis
is the introduction of the time-domain comparator used in [17], which allows for a fully-
digital implementation of the CDC—clearly advantageous since it nulls any static current
consumption (except leakage current components).

In order to understand this step, let us consider the synchronized delay-chain RO
shown in Figure 3b, derived from the simple RO of Figure 3a. Here, the time-encoded
signals, A1 and A2, are originated by two separate delay chains. The following Xnor gate
asserts the Boolean “A1 == A2” condition, i.e., both signals present the same logic level, so
allowing the propagation of the oscillator travelling edge. In a scenario where the travelling
edge of A2 lags the one of A1, this assertion permits their synchronization at the Nand gate
before closing the feedback loop. Figure 3c shows the chronogram details of the oscillator
signals A, A1, A2 and B.

In the actual CDC operation, A2 is generated by the reference delay chain fed at
VL, while A1 is generated by the sensing delay chain, fed at VC. So, while VC > VL,
the reference delay chain always lags behind the sensing delay chain. Ideally, both chains
are synchronized for VC = VL, while the lagging condition is inverted as soon as VC < VL,
marking the end-of-conversion condition.

182



Sensors 2022, 22, 121

DELAY CHAIN

DELAY CHAIN 1

DELAY CHAIN 2

Figure 3. Derivation of a RO with synchronized delay chains: (a) starting point representation of
a generic RO; (b) synchronization principle by a Xnor gate; (c) synchronized delay-chain oscilla-
tor chronogram.

The time-delay comparator, proposed in [17] and depicted in Figure 4a, provides the
same synchronizing function of the Xnor/Nand gates of Figure 3b, while also signalling the
end of conversion. It is based on a Nand-type set–reset latch and simple combinational logic
to produce the two output signals, B and finish. The operation of such circuit is described
in Figure 4c considering the following conditions: (i) A1 leads A2, and (ii) A2 leads A1.
In both conditions, B acts as a synchronization gate, while finish is an active-low signal
that pulses only after the first occurrence of the A2-leads-A1 condition. It is important
to observe at this point that, while the voltage-domain comparator of Figure 2a is placed
outside the RO, the time-domain comparator will be part of the RO, thus contributing to
the oscillator parameters, such as f0 and the conversion gain kG (see Equation (13)).

Figure 4. Time-delay comparator: (a) schematic diagram, (b) symbol view and (c) chronogram when
operated inside the synchronized delay chains loop.
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Figure 5 shows the effect of noise on the decision process of the comparator, both
voltage-level based and time-delay based, when VC crosses the decision threshold VL. The
figure shows how a lower value of CS makes the decision process less prone to error since
for a constant amount of charge dissipated by the RO in a single cycle, the voltage step
(the delay between the travelling edges of A1 and A2) is higher for smaller CS values.
This observation is in accordance with Equation (14) and its related discussion on the
contribution of comparator noise.

Figure 5. Comparison of comparator noise effects for two different values of CS: (a) classic voltage-
level based comparator as in Figure 2; (b) time-delay comparator of Figure 4.

Regarding the rest of noise sources in the circuit, it is well known that a standard
voltage-fed RO presents a typical phase-noise spectrum characterized by the 1/ f 3 and 1/ f 2

behaviours, corresponding to the flicker and thermal noise sources, respectively [25–27].
In the synchronized-delay-chains case of Figure 3b, however, part of this noise is rejected
due to the synchronization between the travelling edges of A1 and A2. Intuitively, every
disturbance (i.e., phase lag or lead) produced after B and before A, affects both A1 and A2 in
the same way, thus showing up as a common-mode noise, rejected by the differential-input
nature of the time-delay comparator.

The residual differential-mode phase noise is generated once the RO path is split, cor-
responding to the separate delay-chain paths before the time-delay comparator. The effects
of such noise on the final conversion count are influenced by the interval of time Δt between
the A1 and A2 edges. We observe that at the end of conversion, this temporal difference
tends to zero; however, the time-domain comparators are less affected by metastability
(less prone to error) if the sensitivity of Δt with respect to VC, i.e., the quantity d(Δt)/dVC,
is high.

The complete IDCD-CDC is shown in Figure 6, which features also a noise reduction tech-
nique, also proposed in [17], based on correlated averaging on a three-comparators system.
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SENSING
DELAY CHAIN

REFERENCE
DELAY CHAIN

NOISE-AVERAGING
DELAY CHAIN

LEVEL
SHIFTER

CMP1

CMP2

CMP3

ASYNC COUNTER 1

reset

ASYNC COUNTER 2

reset

ASYNC COUNTER 3

reset

Figure 6. Complete CDC schematic including time-delay comparator-noise averaging and the one-
point calibration network.

The comparator-noise averaging operates as follows: CMP1 and CMP2 are respectively
fed with A1 and A2 and their inverted correspondents, while CMP3 is fed by A1 and a
delayed version of A2 (D2). While CMP1’s finish will detect the lagging condition on the
rising edges, CMP2’s finish will detect the same condition on the falling edges of A1 and
A2. The travelling edges at comparator output are synchronized by a three-input Nand
gate. The complete RO loop includes a VL-to-VH level shifter that guarantees the correct
level transmission to both sensing and reference delay chains. The eoc signal pulses when
the A1 travelling edge lags that of D2. Before this condition occurs, the finish outputs of
CMP1 and CMP2 have pulsed a certain number of times depending on the amount of extra
delay provided by the noise-averaging delay chain. These finish pulses of CMP1 and
CMP2 are registered by dedicated counters, which provide dout1 and dout2, respectively.
The final conversion code is given by

N = 2× dout0− (dout1+ dout2). (15)

The multiplicative factor of 2 before dout0 accounts for both the rising and falling
edges. To give a better understanding of the noise averaging mechanism, let us consider in
the first instance that all the delay chains of Figure 6 are identical and their individual delay
on the travelling edge dominates over the rest of the elements in the RO, i.e., the time-delay
comparators, the Nand gate and the level shifter.

In such a scenario and in absence of noise, if we artificially set VC = VL, CMP1 and
CMP2 have 50% probability to pulse their finish signals, while CMP3’s finish will not
pulse. In order to force CMP3’s finish to pulse, we need to further lower VC to a certain
value VC = V�

L < VL. At this point, the conversion ends, meaning that the effective voltage
step explored by the sensing chain is VH − V�

L , and thus, some excess count was made.
Nevertheless, the finish signals of both CMP1 and CMP2 start to pulse as soon as VC is
slightly below VL, thus dout1 = dout2, accounting for the excess of counts.

When the comparator noise is considered, the probability of CMP1 and CMP2 to make
the wrong decision goes from 50% when VC = VL to much lower values, as soon VC < VL.
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By repeating the comparison process a certain number of times at different VC values below
VL, the probability of error, and thus the noise effect, is reduced. In practice, starting from
a certain value of V�

L far from VL, the probability of decision error can be neglected; thus,
the decision redundancy only adds up to power consumption. So, in terms of power vs.
resolution trade-off, an optimum value V�

L exists, which can be tuned by the sizing of
the noise-averaging delay chain of Figure 6. It must be observed that the crossing of the
zone between VL and V�

L occurs at different slopes, depending of the value of CS to be
converted and also depending on d(Δt)/dVC, as previously discussed. As a consequence,
the number of excess counts increases for higher values of CS, having a beneficial effect on
the maximum attainable SNR.

The one-point calibration scheme is also shown in Figure 6, implemented through
the CREF capacitance and a switch controlled by the signal cal. The CDC calibration is
obtained on demand by operating a conversion on a known value of CREF, obtaining from
Equations (6) and (10)

NREF = kGCREF + kG0C0 + εQ,REF. (16)

The parameters kG, kG0 and C0 may be strongly dependent on process corners and the
operating temperature. While the former can be addressed by a one-time calibration at the
beginning of the CDC operation, the latter can be addressed by occasionally performing a
calibration conversion.

The calibrated value of the conversion, neglecting the physical noise, is obtained by
the following formula:

Ccalibrated
S = CREF

N
NREF

= CS

1 +
kG0C0

kGCS
+ εQ

1 +
kG0C0

kGCREF
+ εQ,REF

. (17)

The rightmost side of Equation (17) reveals the residual error after calibration that
can be minimized once CS � C0 and CREF � C0 for acceptable quantization errors
εQ and εQ,REF. Clearly, this calibration method relies profoundly on the stability of the
absolute value of CREF. Any process-related dispersion on the nominal value of CREF affects
the conversion value, despite the calibration. From the system-level point of view, two
alternative solutions can be adopted. On one side, CREF can be a very reliable external
component, which, however, is affected by connection parasitics. On the other side, CREF
can be integrated all together with the converter circuitry using a metal–oxide–metal
(MOM) or a metal–insulator–metal (MIM), when available from the process, capacitor.
Nevertheless, the solution concerning the monolithic integration will be affected by the
process corners spread. This former hindrance can be overcome by dedicated CREF testing
structures at the wafer level.

3.2. 180 nm-CMOS Implementation

Following the design indication explained in Section 3.1, a monolithic implementation
of a IDCD-CDC is done in a standard 0.18 μm 1-poly 6-metal-level MIM CMOS technology.
In this case study, we aim at optimizing the energy efficiency of the CDC while maintaining
10 effective number of bits (ENOB) of resolution and a total area ≤0.02 mm2. Regarding
the operating conditions, we aim for a button-cell operated system; thus, the specification
VH = 0.9 V applies for the rest of the discussion.

Referring to Figure 6, all inverters in the delay chain have W = 240 nm, L = 180 nm.
All the delay chains (sensing, reference and noise-averaging) are implemented with 2 stages.
With these values, kG results to be 246.468 × 10−12 F−1, and the output code can be stored
in a 16-bit output register. The digital gates of CMP1–CMP3, all identical, have all minimal
W = 240 nm, and L = 180 nm.

The level shifter topology is adopted from [28]. Its schematic together with the
sizes of transistor parameters are shown in Figure 7. Among other possible circuital
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solutions [29–32], that of Figure 7 provides the best energy efficiency when operating across
subthreshold and super-threshold regions, defined by VL and VH . It is important to note
that, in this design, the circuit propagation delay is of minor concern since it only affects
the conversion time.

The CREF capacitance is implemented by a MIM capacitor of 10 pF, which is the largest
component of the CDC. However, since it is implemented between the two highest top-
metal layers, the area underneath is used for the rest of the digital circuitry, using the rest
of the metal layers for signal routing.

MOS W [nm] L [nm]

M1 440 250
M2 330 200
M3 250 440
M4 200 240
M5 240 3750
M6 400 200
M7 250 440

Figure 7. Wilson current-mirror based level shifter and transistor optimized geometrical parameters
values for the design case in Section 3.2.

The total energy per conversion, Etot, and the conversion time, Tconv, are evaluated
as function of VL in order to find an acceptable trade-off between quantization error and
energy consumption. Figure 8a shows that a shallow optimum is found for VL = 0.5 V.
This is due to the fact that Etot accounts for currents supplied by the VH and VL sources,
respectively EH and EL, during the precharge and the conversion phases:

Etot = Eprecharge
H + Econversion

H + Econversion
L , (18)

where the precharge energy supplied by VH is

Eprecharge
H = CSVH(VH −VL) (19)

and Econversion
H is supplied to the level shifter.

Both Equations (18) and (19) neglect any leakage components, which add up to the total
energy balance proportionally to Tconv. Equation (19) depicts a monotonically decreasing
function of VL. The terms Econversion

H and Econversion
L , related to the conversion phase, depend

on Tconv, which increase by lowering VL, as shown in Figure 8b, where VH is fixed to 0.9 V.
Intuitively, we may expect that both Econversion

H and Econversion
L should follow the same trend

as Tconv. This is true for Econversion
H , but Econversion

L actually has the opposite behaviour
as shown in Figure 8c. This is due to the dominant contribution of comparators activity
happening at higher VL values: the higher the VL, the higher the Econversion

L .
In our design, VL is set to 0.5 V. For such value and for CS = 250 pF, Etot = 1884 fJ,

accounting for the following contributions: Eprecharge
H = 90 fJ, Econversion

H = 224 fJ (due to the
operation of the level shifter) and Econversion

L = 1570 fF. The latter is the major contribution
since VL supplies also the time-domain comparators and the asynchronous counters.

The behaviour of RRO as a function of VC, introduced in Figure 2a, is shown in
Figure 8d along with Δt(VC). The RRO(VC) trend is to increase by increasing VC. This is
due to the dominant short-circuit currents contributions (transition time shorten as VC
increases) over the RO interstage-charging contribution. On the other hand, Δt(VC) shows a
quite noticeable non-linear behaviour. The relatively high value of d(Δt)/dVC in the vicinity
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of VL, resulting to be 71.8 ns/V, favours the CDC immunity against the noise introduced by
the split path of the sensing and reference delay chains, as discussed previously.

Finally, the layout of the implemented CDC is shown in Figure 9 showing a silicon
area occupancy of 0.0192 mm2 (excluding pads).
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Figure 8. Key design parameters: (a) total energy per conversion Etot as function of VL for fixed
VH = 0.9 V; (b) energy balance as from Equation (18) as function of VL for CS = 50 pF and fixed
VH = 0.9 V; (c) conversion time Tconv as function of VL for fixed VH = 0.9 V; (d) RRO and Δt as
function of VC.
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Figure 9. Layout of the CDC in a standard 0.18 μm 1-poly 6-metal-level-MIM CMOS technology.
Bounding box size is 160 μm (width) × 120 μm (height).
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3.3. Prototype Performance

The CDC DNL, calculated with respect to the end-points characteristic, when operated
at VL = 0.5 V and VH = 0.9 V, is shown in Figure 10, and tested against process corners.
In all cases, the maximum observed code deviation falls within the ±12 counts interval
over an output register of 16 bits, corresponding to an equivalent capacitance LSB of 3.82 fF
(kG = 246.468× 1012 F−1). The total energy per conversion scales linearly with CS, resulting
to be 1.884 nJ at full-scale CS,FS = 250 pF. As far as process corner sensitivity is concerned,
Etot presents small variations around its nominal value (worst case: +2.9% in the Fast-
NMOS Slow-PMOS corner), while at the same time, Tconv shows quite large variations:
2.93 ms in the nominal case vs. 0.99 ms and 10.71 ms in the fast-NMOS fast-PMOS and
slow-NMOS slow-PMOS, respectively.

The effectiveness of the one-point calibration against process corners is reported in
Table 1, where the relative error εkG , defined as

εkG =
knominal

G − kG

knominal
G

(20)

is evaluated, showing a ×30 error reduction when calibrated. The systematic offset of the
CDC, as in Equation (6), is <255.6 fF. Hence, the CDC shows an input capacitance range
from 255.6 fF to 250 pF with a small linearity error of 15.26 ppm.

Table 1. Conversion-gain relative error εkG
(see Equation (20)) againts process corners: before and

after calibration. Offset code, for CS = 0, is also reported. Nominal offset code is 63.

Process Corner Uncalibrated εcorner
kG

[%] Calibrated εcorner
kG

[%] Offset Code

Fast NMOS, Fast PMOS 3.126 −0.099 59
Slow NMOS, Slow PMOS −3.342 0.112 67
Fast NMOS, Slow PMOS 0.437 −0.114 62
Slow NMOS, Fast PMOS 0.213 −0.063 62

For the sake of equal comparison, the figure of merit (FoM), as defined in [17],
is evaluated:

FoM =
Etot(CS,FS)

2(20 log10(Input range/2
√

2/Resolution)−1.76)/6.02
= 99.61 fJ/conversion-step. (21)

where the resolution is calculated only on the basis of nonlinearity effects, while noise is
not taken into account.

Transient noise simulations are performed to determine the SNR, which results to be
63.9 dB (10.3 ENOB) at CS,FS. The noise-related FoM, FoMN, of this converter is calculated as

FoMN =
Etot(CS,FS)

2(SNRmax−1.76)/6.02
= 1.47 pJ/conversion-step. (22)

Temperature sensitivity is also evaluated as shown in Figure 11, showing a ×20
improvement, from 1696.5 ppm/◦C without calibration to 81.9 ppm/◦C after calibration,
across the −40 ◦C, +125 ◦C range.
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Figure 10. CDC differential non-linearity (DNL) against process corners. The output register width is
16 bits.
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Figure 11. CDC output temperature sensitivity before and after one-point calibration.
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4. Discussion

The CDC based on the IDCD architecture, introduced in [17], has the important
characteristic to relay only on digital gates, thus being easily portable among different
technological nodes once the fundamental design trade-offs, analysed for the first time in
Section 3.1, are taken into account.

Here, we presented a design case, implemented on a low-cost commercial 180 nm-
CMOS technology, capable of operating at button-cell supply voltages. Direct comparison
with the original implementation of [17] is presented in Table 2. Energy figures are less
favourable in the presented design case, as expected, due to the larger minimum feature
size of the process used in this work with respect to the case of [17].

Table 2. Operative conditions and performance comparison table of IDCD CDCs.

ISSCC’15 [17] This Work

Technology 40 nm 180 nm

VH , VL 1.0 V, 0.45 V 0.9 V, 0.5 V

Input range 0.7 pF to 10 nF 255.6 fF to 250 pF

Linearity error 1090 ppm 15.26 ppm

Conversion time 19.06 μs at CS = 11.3 pF
132.43 μs at CS = 11.3 pF
2.93 ms at CS = 250.0 pF

Conversion energy 35.1 pJ at CS = 11.3 pF
85.2 pJ at CS = 11.3 pF

1884.0 pJ at CS = 250.0 pF

SNR 53.0 dB 63.9 dB

FoM (Equation (21)) 141.0 fJ/conversion-step 99.6 fJ/conversion-step

FoMN (Equation (22)) 96.5 fJ/conversion-step 1.47 pJ/conversion-step

Temperature sensitivity 15.5 ppm/◦C 81.9 ppm/◦C

Core size 42 μm × 40 μm
160 μm × 120 μm
including CREF

The large difference between the FoM and FoMN values clearly states that, in the
current work, distortion effects are much less important than physical noise, while in [17],
both distortion and noise contributed to the final resolution of the converter. These aspects
confirm the analysis developed in Section 3.1 and give insights into energy efficiency vs.
resolution trade-offs of the IDCD-CDC architecture when ported across different CMOS
technological nodes.

In conclusion, the IDCD-CDC architecture proves to be a valid solution for capacitive
sensor read-out interfaces in the medium/low resolution range. The IDCD-CDC fully
exploits the benefits of miniaturization offered by more advanced CMOS technological
nodes, while still providing competitive energy figures, even when implemented in low-
cost 180 nm CMOS technology. In both cases, compatibility with low-voltage operation
is maintained. When looking at evolutions of this architecture, capable of targeting more
stringent resolution requirements, the inclusion of additional control circuitry needs to
be investigated. Such circuitry should be devoted to the implementation of dynamic
techniques for noise reduction and/or noise-shaping mechanisms.
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Abbreviations

The following abbreviations are used in this manuscript:

CDC Capacitance-to-Digital Converter
PM Phase/Pulse Modulation
ΔΣM ΔΣ Modulation
CSAR Capacitive Successive Approximation Register
DR Dynamic Range
IDCD Iterative Delay-Chain Discharge
FPCB Flexible Printed-Circuit Board
PDMS Polydimethylsiloxane
ASIC Application-Specific Integrated Circuit
SPI Serial Peripheral Interface
CMOS Complementary Metal–Oxide–Semiconductor
MEMS Micro-Electro-Mechanical Systems
RO Ring Oscillator
VCO Voltage-Controlled Oscillator
MOM Metal–Oxide–Metal
MIM Metal–Insulator–Metal
SNR Signal-to-Noise Ratio
ENOB Effective Number Of Bits
DNL Differential Non-Linearity
LSB Least-Significant Bit
FoM Figure of Merit
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