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ABSTRACT 

Emerging infrared and visible imaging applications require higher sensitivity, 

larger pixel array, larger contrast ratio (dynamic range), very low power consumption 

and faster data readout rate operations all at the same time. Some of these applications 

are camera surveillance used both in day/night (very bright and dark conditions), 

medical diagnostics, weather forecasting, and aerial search & rescue operations etc. The 

digital-pixel focal plane array (DFPA) implemented in this thesis has the capabilities to 

capture a wide dynamic range of more than 120dB in a single global shutter without 

saturating the pixels at a huge frame rate of more than 500Hz. An adaptive Integration 

Window technique has been developed which ensures that we are able to measure such a 

huge dynamic range using a counter of only 10 bits (this helps us lower the power 

consumption of the design). This proposed image sensor has been designed, fabricated 

and tested in 65nm CMOS technology. It has 16 x 16-pixel array with 16 x 9 pixels with 

an inbuilt Silicon APD for optical testing and 16 x 7 dummy pixels for electrical testing. 

Our design proposes an off-chip digital calibration technique to cut down the burden on 

the analog circuitry. The sensor design achieved more than 128dB+ of dynamic range 

with a DNL/INL of 0.65/1.65 respectively with a power consumption of only 0.58 

uW/pixel. The digital calibration scheme successfully cuts down the pixel-pixel variation 

standard deviations by a factor of 4. The proposed image sensor design should be able to 

address most of the short-comings of conventional FPAs and provides a one-shot 

solution to the design of high performance CMOS image sensors. 
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1. INTRODUCTION 

Electrical-optical photo-detectors helps us in measuring or sensing the radiation 

reflected by the respective objects if falling in the detector’s spatial observation view. 

Detectors operating passively, work without any object illumination by the imaging 

solution, they rely solely on the objects self-luminance or the reflection-transmission of 

light present in the environment. Whereas in active systems, the scene is irradiated (as in 

the flash of a camera) with the radiation of interest and then the information is captured 

[1]. Imaging is done using a 2-D array of photo-detectors which are placed in a grid like 

format to capture the spatial variation of the incident light intensity. These are placed at 

the focus point of the optical lens system. The incident optical light falling on the photo-

diode get converted to photo-current which is directly corelated with incident light’s 

intensity. Post detection, the read-out circuit (ROIC) captures the incoming current 

where it is processed, and is sent over a serial link, and/or stored locally or in a remote 

location [1]. ROIC and the detector array are the focus of our thesis work where the 

ever-growing emerging trends in sensing applications demand large contrast ratio, large 

sensitivity, larger pixel array, low power consumption, and a faster read-out. 

1.1 SPECTRAL RANGES  

Over the time, many indices have been employed to designate each of the 

spectral region. There has been significant overlap between the regions and the 

transitions are not sharply well defined. Electromagnetic sensors cover the entire region 

of electromagnetic spectrum starting all the way from 200nm till 20um and even beyond. 
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Table 1.1 [1] lists the definition of different spectral regions along with the physical 

significance of each spectral region. Figure 1.1 shows graphically of how exactly the 

electromagnetic spectrum is divided into different spectral regions. 

 

 

Table 1-1: Definition of Spectral Regions [1]     

Region Wavelength Band (um) Physical Significance 

Solar Bind Ultra-violet 0.21 – 0.27  

Ultra-violet 0.27-0.41 Atmospheric transparency 

Visible Region 0.405-0.75 Maxima of Solar region 

NIR 0.68-1.1 silicon detectors 

Cut-off. 

Short-wave Infrared 1.0-2.8  

MWIR 2.7-6.3  

LWIR 6.1-15.2  

VLWIR 15.0-20.5  

 

 

Figure 1-1: Display of spectral bands & wavelength distribution. Reprinted from [1] 

1.2 INFRARED SPECTRUM 

Infrared (IR) portion of electromagnetic radiation is invisible to the human eye. 

It’s spectral content spreads all the way from the visible region on one side and radio 

waves on the other. Its wavelength extends all the way from 700nm till 1mm (the 



3 

 

boundary of the visible spectrum to radio waves) which equates to a huge frequency 

range spanning all the way from 300GHz to 400 THz. Figure 1.2 details the spread of 

infrared radiation [3].  

 

 

Figure 1-2: Infrared Spectrum region. Reprinted from [3] 

The infrared electromagnetic radiation spectrum is further cut-down to near-wave 

infrared (NIR), mid-wave infrared (MWIR), long-wave infrared (LWIR) and far-wave 

IR. Every spectral region carries its own properties. Near infrared is closer to the 

ambient light (visible spectrum) whereas far infrared is far from that [3]. 

Today, Infrared imaging is an emerging area of interest due to their abundant 

applications in all the fields which range anywhere from diagnosis of a medical 

situation, surveillance to assistance in patrolling the borders, search and rescue, to 

military applications etc. [4]. For example, these can assist in various scenarios such as 

rescue operations during a disaster by providing read time camera feed, night vision 

goggles for patrolling the borders looking for enemies, forecasting the weather, 

diagnosing a medical problem, and also consumer applications like mobile phone for 
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face recognition etc. [4] Section 1.3 details about some of the applications for the 

Infrared Imaging. 

1.3 APPLICATIONS OF INFRARED IMAGING 

Safety and Law Enforcement: It helps in seeing the hidden thief’s or track 

someone escaping a crime area. The infrared cameras are very widely used in Military 

and defense area in a range of applications starting from aerial drones, border patrol and 

security etc. Please see the example in figure 1.3 [4] 

Night Vision: They are an excellent tool for night vision imaging. They detect 

things even in the absence of illumination and can capture image even when there is no 

illumination at all (during very dark nights) and can even see through smoke, foggy or 

rainy weather conditions. These are used in the surveillance networks, and also assisting 

in aircrafts during the night. Please see the example in figure 1.4 [4] 

 

 
 

Figure 1-3: Infrared Image capture of an area, where a thief is hiding behind the car 

and also during a disaster rescuing. Reprinted from [4] 
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Figure 1-4: Military and Border Patrol Surveillance. Reprinted from [4] 

Weather Forecasting, Medicine and Building Diagnostics: Satellite mounted with 

the Infrared Cameras helps in predicting the weather patterns on earth, and distinguish 

between changing seasons, rain, heat waves etc. Similarly, it also has huge applications 

in the field of Medicine and Building Diagnostics [8].  See figure 1-5 for the same. 

1.4 TYPES OF INFRARED DETECTORS 

Thermal Detectors: In thermal detectors, absorbing of the photon leads to a 

certain variation in the detector’s temperature, which can be sensed by a device whose 

property changes with change in temperature such as a temp. dependent resistor whose 

value changes with temperature. They are quite advantageous as their frequency 

response is pretty broadband in nature; but a bigger disadvantage is that it is very 

challenging to make a material that has quantifiable variation in the temperature for very 

low strength signals. But we can have larger capturing time for detecting weaker signals, 

at cost of higher response time [5] [1]. 
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Figure 1-5: Blood Circulation flow in the leg, Infrared image of the Sahara Desert, 

Inflammation in the leg. Reprinted from [4] 

Photon Detectors: Quantum or photon detectors, are typically the semiconductor 

devices with the band gap of the material very near to the incident optical energy. 

Absorption of light usually lead to the generation of electron and hole in pairs. There are 

three different categories of photon detectors namely photovoltaic, photo-conductive and 

photo-emissive [6][7].  

 Photovoltaic Photon Detectors: This is designed with a junction fabricated in a 

semiconductor material. A region where it’s the electrons which are conducting and a 
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region where conductivity is because of the holes (called p-n junction). As the light falls 

on the photo-detectors, its either the current or voltage signal produced. [6][7] 

Photovoltaic Photon Detectors: In these detectors, the incoming photons changes 

the electrical conductivity of the detector. As the light intensity falling on the detector 

changes so does its conductivity. The material often produces currents corresponding to 

the incident light.  These are also designed using silicon based material. [6][7] 

Photo-emissive: In these detectors, free electrons are generated upon the 

reception of the incident light. They are based on the photo-electric effect. The free 

electrons can then be captured by the readout electronic circuits. [6]  

Our work in this thesis will rely upon the photo-emissive based photo-detectors 

for the optical sensing. We will cover this in more details in sections 2 and section 3 of 

the thesis. 

1.5 SCHEMATIC REPRESENTATION OF THE TYPICAL INFRARED 

IMAGING SYSTEM 

Figure 1.6 presents the schematic of the generic infrared imaging system having 

an infrared light emitting source on the left followed by a transmitting medium which is 

usually air (atmosphere) in most of our use cases. This is followed by a system of lens 

(optical system) to focus the incoming light on the detector array. It is followed by the 

read-out Integrated Circuits which digitizes the incoming electrical signal from the 

detector array and transmits it to further downstream devices for further processing, 

display or storage [1]. Figure 1.7 is the block diagram of each component. Our thesis 

focusses on the implementation of the detector array and the read-out integrated circuits.  
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                Figure 1-6: Schematic representation of a typical Infrared Imaging system 

 

Figure 1-7: Block diagram of a typical Infrared Imaging system 

1.6 FOCAL PLANE ARRAY 

A focal plane array is an image capturing unit where individual photo-detectors 

(each element) are placed in an array like structure. Detector arrays are usually referred 

as pixel arrays. Focal plane arrays (FPA) are used mainly for imaging purposes but are 

not limited to them. They are also used for non-imaging purposes like spectrometry, 

LiDAR etc. In the infrared imaging systems, FPA refers to the element which converts 

the incoming infrared light into the electrical charges. The method of designing a pixel 

array is way more difficult as to design an individual element [1]. For infrared detectors, 

as the detecting element can’t be fabricated in silicon (this is usually a different substrate 

material, a common material is InGaAs), the focal plane array need to be designed 
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separately from the read out integrated circuit and then bonded together. Each detector 

element (pixel) is bonded to a silicon based circuit with the help of bumps made using 

indium [1]. We will discuss more about the focal plane array design for infrared 

detectors in section 2.  

1.7 READ OUT INTEGRATED CIRCUIT 

The readout circuit is a silicon based cell whose main function is convert the 

incoming photo-diode current to respective analog value which can be digitized and 

further processed. The readout cell is a medium to connect the detector array and digital 

signal processing unit. The photo detector current produced by the IR detector is 

digitized in the readout integrated circuit using a unit cell on a per pixel basis. 

1.8 ORGANIZATION OF THESIS 

In this thesis we are proposing an infrared image sensor prototype based upon the 

digital focal plane array which can accomplish the wide dynamic range while still 

consuming as little power as possible. The thesis is divided into seven sections, the first 

one been the introduction. Below is the description of each chapter in detail. 

In chapter 2, we discuss an overview and background of the infrared image 

sensor. We initiate the chapter by discussing the different methods of designing the 

infrared detector arrays (like detector materials, material absorption length) and route 

that we have taken as part of this prototype design. Post description of the detector 

arrays, we concentrate on the readout integrated circuits. We provide a literature survey 

of the present-day methods of designing the front end of the image sensors, different 
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specification using which the performance of the readout integrated circuits can be 

characterized and the different ADC designs for converting the incoming photocurrent 

into the digital code. After explaining in detail, the design constraints on the readout 

integrated circuits, we introduce the concept of dynamic range in image sensor and how 

it is measured. We also mention some of the techniques that have been used in the past 

to increase the imaging sensors dynamic range.     

In chapter 3, we describe in detail the design of photo-diode which has been 

implemented as part of the optical testing in the prototype build in the thesis. In the start, 

we describe the different performance metrics through which photo-diodes are 

characterized (quantum efficiency, bandwidth, dark current etc.) and the physics behind 

the working operation of the photo-didoes. Then, we introduce different types of photo-

diodes which can be designed in CMOS process which were feasible for our design (N-

well / p-substrate, N+/ p- substrate, P+/N-well/p-substrate, T-well/N-well/p-substrate). 

We mention the photo-diode design approach that we have taken in this work and the 

layout techniques used for the photo-diode. In the end of the chapter, we table the 

different layers that were used in the photo-diode layout and the step by step guide of 

how the photo-diode has been laid out. 

In chapter 4, we introduce the circuit and system level specifications of the 

targeted image sensor and then describe the readout integrated circuit that we have 

designed in the prototype and explain in detail the working operation of the used 

techniques. After this we introduce the method of dynamic integration time control 

where the integration window is automatically adjusted based upon the incident light 
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intensity. We demonstrate how the integration time control techniques helps us reduce 

the counter size and thereby the power consumption. Next, we introduce the digital 

calibration scheme and showcase how it assist in cutting down the fixed pattern noise. 

In chapter 5, we describe in detail the design of each block of the proposed image 

sensor. We commence by showing a top level architectural block diagram of the sensor 

with all the critical blocks (pixel arrays, timing and control block, scan chain, biasing 

circuitry, FPGA readout block etc.). There are total 256 pixels broken down into 16 rows 

of 16 pixels each. Out of the 256 pixels, there are 16 x 7 showing the electrical 

performance of the chip whereas the rest of them have an APD inside for showing the 

optical performance. Each Pixel cell has a Pixel ADC which contains the photo-diode 

(PD), calibration current source for digital calibration, photo-diode biasing circuitry, 

comparator, and fixed pulse and reset control, 10-bit counter cum shift register, timing 

and control signal buffers, dynamic integration control circuitry etc. After describing the 

pixel ADC from top level and its operation, each component of the ADC is discussed in 

detail one after the other along with their respective explanation. Post the pixel ADC, the 

other blocks in the chip are discussed in detailed and their corresponding operation.    

In chapter 6, we show the micrograph of the proposed image sensor chip. We 

describe in detail the packaging, bonding and assembling procedure of the chip. After 

that we provide a description of the lab setup that has been used for testing of the chip 

which includes bias board, scan chain programmer through lab-view, ML604 FPGA 

board programming and data capturing through chip-scope. Then, we show the different 

metrics tested on the chip and the corresponding procedures. Firstly, we tested the 
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dynamic range performance of the sensor using the in-built test pixels with a given 

frame and readout rate. Then we showcase the performance of the digital calibration 

scheme implemented in the design and how it reduces the fixed pattern noise in the pixel 

array. We also capture how the scheme works over all the 1023 codes. Then, we show 

the linearity performance of the pixel in terms of linearity plot across all the codes and, 

also DNL/INL. Lastly, we show a performance comparison table against the infrared 

references available on internet. 

In section 7, a summary of the work is given, conclusions are made and the 

nature and scope of future work in this thesis is discussed. 
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2. OVERVIEW AND BACKGROUND OF THE INFRARED SENSOR                                                                                                                                 

2.1 DETECTOR ARRAY 

The first and one of the most critical blocks in the complete signal chain of the 

optical imaging solution is the focal plane array. It is a grid of photo-diodes which 

converts the incoming light into electrical charges. Photo-diodes are often characterized 

based upon these three specifications namely dark current, quantum efficiency 

(responsivity) and rise time (bandwidth). The silicon based p-n/pin diodes have 

maximum optical sensitivity (amount of incident light converted into electrical current), 

around an incident wavelength around 800-850nm. Silicon has very large absorption 

length, hence its device structure needs to be very precisely optimized to support the 

Infrared detection. Apart from Silicon based photo-diodes, a lot of other detector 

compositions have been studied in the past which might be more suitable for the Infrared 

spectrum [9]. Please refer to figure 2.1 [9] comparing the spectral sensitivity of various 

semiconductor photo-diodes in several materials structures spanning all the way from 

UV (>200nm) region to LWIR (>1400nm). 

In Figure 2.2 [9], absorption length is plotted for different semiconductors. For a 

visible spectrum ranging from 600-850nm, the light penetration depth is larger than 6um 

but less than 10um which means a very little fraction of light is absorbed in the junctions 

and walls, while most of it is absorbed in the substrate. 
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Figure 2-1: Spectral sensitivity of different photodiodes. Reprinted from [9] 

Our end application targeted is Infrared Imaging Solution, but Silicon doesn’t 

absorb a wavelength more than 800-850nm (for higher wavelength, the penetration 

depth is very high for silicon), hence its sensitivity reduces dramatically as the 

wavelength increases. For Infrared solutions, InGaAs is an optimal choice but that 

cannot be fabricated in the silicon. Hence a hybrid solution (multi-chip module, flip chip 

bonding using Indium bump pads etc.) as shown in figure 2.3 [11] [20] needs to be 

designed which was not feasible for the extent of our project. Hence, we decided to 

showcase the performance of our read-out Integrated circuit with a silicon photo-diode 
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operating in visible spectrum rather than infrared region. A detailed description of the 

silicon based photodiodes designed for the thesis work has been given in section 3. 

 

 

Figure 2-2: Absorption length of various photo-diodes. Reprinted from [9] 

 
 

Figure 2-3: Generic Infrared pixel detector 
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2.2 READOUT INTEGRATED CIRCUITS (ROIC) 

The detector array used in the FPA outputs the signal in the form of the current. 

As shown in the figure 2.4, the current from the photodiode (due to excitation) is fed into 

the read-out cell, there it integrates onto the integration capacitor and gets converted to 

voltage which can be digitized and processed further [10] [12]. So, therefore the readout 

cell has a very important function of extracting out the information from the incoming 

photo-diode current and convert it into a form which can readily be used by ADC’s to 

convert it into digital form. Simultaneously, the read-out cell also biases the photo-diode 

for its operation in the region of interest [12].  

 

 

 

Figure 2-4: Readout Cell Schematic Description  

2.3 IMPORTANT SPECIFICATIONS OF THE ROIC 

As ROIC serves as an interface between the photo-diode array and the ADCs, it 

is an important block and plays a very considerable role for the overall system design. 

The photo-current generated by the photo-diode is partially shunted by the photo-diode 

resistance as shown in figure 2.5 and reduces the photocurrent transferred to the readout 
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circuit. There is a terminology used to define the amount of photo-current transferred to 

the readout circuit from the photo-diode current, it’s called as injection efficiency.   

 

 

Figure 2-5: Equivalent Photo-diode Circuit  

𝑛𝑖 =  
𝑖𝑟

𝑖𝑝
=

𝑅𝑜𝐴

𝑅𝑖𝑛
  

Where the injection efficiency ni  is given by the above equation. 

Apart from the injection efficiency, the parasitic capacitance CD limits the 

bandwidth of the circuit. Therefore, to increase the effective bandwidth, the cell ideally 

should have as little resistance as possible. As the frame rate for the imaging solutions 

are usually lower, the bandwidth usually comes out to be lot larger than that. So, in a 

general scenario, to increase the performance (bandwidth) of the imager, a very high 

output resistor and small output capacitance is desired for the photo-diode (PD). But 

certainly, that the output resistance can’t be increased beyond a certain limit due to the 

device structure and imperfections, the input resistance of the cell should be even lesser 

for a sufficiently good imager performance. 
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The responsivity, dark current and shot noise generated by PDs are all dependent 

upon the bias voltage which should be very stable and should not change as the voltage 

at the integrating cap changes. The biasing voltage circuitry should be optimized to 

provide a very stable biasing supply to the photodiode. 

Another important performance metric for the readout integrated circuit is the 

dynamic range/sensitivity that the cell can capture. From the application view-point, it 

must be as high as possible so that we can capture both high illumination images and 

low illumination images at the same time. Hence the dark current, the size of the 

integrating capacitor determines the dynamic range that a readout cell can capture. In 

practice, a higher value of integrating capacitor is required to capture large dynamic 

range which in turn increases its size.  

Size of the readout element is another critical parameter which needs to be 

considered while designing the readout cell. Ideally the readout cell should be smaller 

than the detector array pitch so that they can be easily bonded to each other without any 

hassles. The more advanced technology nodes help us in cutting down the pixel size and 

packing more circuitry in the same pixel pitch as earlier.  

Frame Readout rate also needs to be seriously taken into consideration as more 

dynamic patterns need to be captured. The frame rate is affected by the integrating 

capacitor time, pixel array time, ADC conversion time, readout time etc. Out of these the 

integrating time is usually the dominant limiter of the frame readout rate. Hence it needs 

to be taken into consideration while designing. 
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Lastly, the power consumed by the readout element is a very important metric 

and especially given that in the latest systems the size of the pixel array is continuously 

increasing.  The total power consumed by the entire readout array usually increases with 

the size of the array and hence places a very heavy reliance on the cooling-down system.  

 

2.4 CONVENTIONAL READOUT CELL CIRCUITS 

In the conventional analog ROIC’s (Read-out Integrated Circuit), the 

photocurrent generated in the detector is integrated onto an integration capacitor which 

is then further multiplexed with many pixels and then digitized using an ADC which can 

either a pixel/column level ADC. The dynamic range for these conventional structures is 

often constrained on both the lower and higher side of illumination due to maximum 

charge storage capacity of the integration cap on the higher side and dark current/noise 

on the lower side.  A generic structure of the unit element (pixel) is presented in Figure 

2.6 [13]. In conventional readout cells, the maximum well capacity is often limited to 10’s of 

million electrons. This is usually achieved by 1pF of Integration capacitor which if implemented 

in 65nm using a MIM capacitor will occupy 400um2 of area. This is more than 60% of the pixel 

area. Plus, still the maximum well size is still limited to 15-25Me-. Given that pixel saturates at 

higher illumination and is not able to capture the lower brightness due to minimum limit posed 

on the frame rate, the maximum dynamic range that it can capture is often limited. 



20 

 

 

Figure 2-6: Conventional ROIC – Direct Injection 

There are many other architectures available in the literature for the ROIC like 

Buffered direct injected cell, Gate modulated input (GMI) cell etc. But all of them poses 

serious constraints on the dynamic range, readout frame rate, power consumption and 

pixel size. These challenges necessitate a need to develop a more robust wide dynamic 

range and high-speed read-out rate read out integrated circuit which should be easily 

scalable to accommodate large pixel array format. This is where Digital focal plane array 

comes to rescue and provides a much more beneficial solution to all the above 

challenges. 

 

2.5 DIFFERENT ADC ARCHITECTURES 

The readout cell outputs an analog voltage signal. For infrared and visible 

imaging applications and in general for most of the imaging applications, the voltage 

output will need to be digitized using an ADC for image signal processing, display and 

storage etc. It would be ideal if we are able to convert the signal directly to digital data 
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inside the ROIC as it would reduce the noise coupling and thereby increase the SNR. 

The main attributes for the on-chip ADC is that it should consume very low power, 

should have high sensitivity with sufficient precision, lower conversion time, lower 

noise and higher sampling rate etc. 

Global ADC: Global ADC topology implements one single ADC to resolve the 

whole pixel array data. The conversion rate is typically around 10MS/s to 100MS/s, 

according to pixel array size and frame rate requirement. Please refer to figure 2.7 for 

one of the examples of Global ADC architectures as implemented in literature. The 

typical ADC architecture in here is pipelined-ADC or SAR-ADC. Since all pixel data is 

converted through the same ADC, any distortion within the conversion will be common-

mode background noise and does not cause fix-pattern-noise (FPN). Single ADC also 

reduce the complexity of digital background calibration. However, as pixel size 

increases, the ADC conversion rate needs to be increased too. For example, from 1MP to 

2MP pixel array, ADC conversion rate needs to be increased by two times. Two time-

interleaved ADCs are usually utilized to support high conversion rate and consumes very 

high power. Typically, global ADC architecture is used in pixel array smaller than 1MP. 

 

 
 

   Figure 2-7: Global ADC architecture. Reprinted from [14] 
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Column ADC: Column ADC topology is to utilize a low-power ADC in each 

column to speed up the conversion rate. The most well-known ADC design for column 

ADC is “single-slope ADC.” In the design, a ramp signal is used to compare with CDS 

output (pixel output). A digital counter is synchronous with that ramp signal. As the 

ramp signal is larger than CDS output, the counter output is latched and the digital value 

is: 

DN=VCDS/ (slope of ramp) 

                       

Since it is a low ramping, the ramping and counter signals can be generated 

globally (Fig. 2.8) and the rest of parts implemented inside columns are low-power 

circuits such as the comparator and time register. Therefore, the power of each column 

circuit can be greatly reduced. Since the power of column ADC is less sensitive to array 

size than that in global ADC, column version can support large pixel array. The 

challenge of column ADC is the mismatch (gain error, and offset) in each column.  The 

mismatch can come from process variation and circuitry design. A background column 

FPN (CFPN) calibration is needed. 

 

 
 

Figure 2-8: Column ADC Architecture. Reprinted from [15] 
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2.6 DIGITAL READOUT INTEGRATED CIRCUIT WITH BUILT-IN ADC 

DROIC overcomes the limitations of traditional readout cells by doing analog to 

digital conversion inside the pixel. The DROIC leads to a very large sensitivity due to 

much lesser noise, and can perform a lot of on the chip signal conditioning digitally. The 

basic DROIC unit-cell circuit [13] is presented in the figure 2.9. 

 

 

Figure 2-9: DROIC Unit Cell  

The basic building blocks of a DROIC are direct injection pre-amplifier, 

integration capacitor, reset circuit, a comparator (I to F converter) and a counter. Finally, 

the data need to be serialized and read out. Here since the integrating capacitor gets reset 

each time the comparator trips, the maximum well capacity is not limited by the 

capacitor size but rather by the counter resolution. Similar on the lower current side 

given that the integration capacitor is very small, we will not be limited by the very low 

frame rate to capture very small currents. Hence DROIC can certainly extend the 

dynamic range without much system/circuit design constraints. Since the integrating 
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capacitor size is drastically reduced, the overall pixel pitch can be reduced. All the major 

blocks used in the pixel are digitally implemented, hence the read noise will be of a very 

small order. 

2.7 DYNAMIC RANGE OF THE PIXEL SENSOR 

Pixel’s dynamic range (DR) is its ability to capture the scene information both 

under very bright condition (broad day sun light) and also under very dark conditions 

(night) without saturating the pixel for higher brightness and under-utilizing the pixel 

resolution for lower brightness. 

Dynamic Range (DR) = 20 𝑙𝑜𝑔10 
𝑖𝑚𝑎𝑥

𝑖𝑚𝑖𝑛
 

 
The higher side of the DR is constrained because of the maximum charge holding 

capacity of the integrating capacitor whereas on the lower side it is constrained by the 

maximum possible integration time for a given noise current. 

Therefore, if the dynamic range need to be increased, we have to either increase 

the imax and/or reduce the imin. There are several available methods in the literature [36] 

[37] [38] for extending doing the same, some of them have been listed below. 

Multiple Capture Scheme: This method increases the DR of the readout cell by 

capturing the information from a pixel with different integration times and then 

combining them in post processing using an algorithm in DSP [16] as shown in Figure 

2.10. The algorithm to run efficiently, will require an on-chip memory bank to store 

different capture values and also good hardware signal processing capability [17]. The 

dominant blocks which consumes power are the on-chip memory, the signal processor 

and also the readout. As the number of captures can be significantly large for small 
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photo-diode currents, this scheme will increase the memory size drastically and reduce 

the readout time as the photo-diode current reduces.  

 

 

Figure 2-10: Multiple Capture Scheme  

Logarithmic Sensor: In logarithmic readout cell, the voltage signal is directly 

generated by the readout cell rather than integration unto an integration capacitor [18] 

[19], using the non-linear response curve of the MOSFET in the sub threshold region as 

shown in figure 2.11. Up to 4-5 decades of input signal can be fit into a small voltage 

range (based upon the Vt of the transistor and number of series transistors). There is 

usually a lot of variation in the transistor characteristics in sub threshold region. And the 

also the succeeding circuitry need to be extremely precise so that it can make use of the 

dynamic range that we have packed into such a small voltage range. The non-integrating 
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nature of the sensor also usually leads to higher noise and other non-idealities, hence 

should be accounted for. 

 

 

Figure 2-11: Logarithmic compression technique in Sensor 

𝑣𝑜𝑢𝑡 = 𝑘 𝑙𝑛
𝑖𝑝ℎ

𝐼𝑜
 

 

So, all the present architectures have some challenges either in the terms of 

design, complexity, read-out rate or precision to meet the wide dynamic range 

requirement of the pixels. In this thesis, we are trying to demonstrate a new method 

through which the DR of the pixel sensor is increased without sacrificing the readout 

rate, design complexity, precision or other variables. 
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3. PHOTODIODE DESIGN 

                                                                                                                                   

3.1 INTRODUCTION TO THE PHOTODIODES 

A photo-diode transforms the incident light into the current. In optical-electronic 

systems such as cameras, telescopes etc., photo-diodes are the first and the basic 

component of front end electronics of a camera. In this research work, the incident light 

reflected from the surfaces will be sensed by the silicon photo-diodes and afterwards the 

electrical signals produced by the photo-diodes will be converted to digital domain using 

a read-out integrated circuit (ROIC) for post processing.  

There are four major specifications associated with the photo-diodes, namely 

their responsivity, optical bandwidth, dark current and their parasitic capacitance. These 

are heavily dependent on the geometry of the photo-diode, junctions used to design 

them, process node, and on the material which are used in fabrication process. Silicon 

photo-diodes are solid-state devices exploiting the internal photoelectric effect, as 

opposed to the photoemission effect. It stands out to be a good material for photo-

detection purposes mainly because it has high mobility of charge carriers (defines the 

speed/bandwidth of the photo-diode), low dark current (increases the sensitivity of the 

photo-diodes) and the pre-dominance of electron-hole pair generation compared to 

phonon generation or single carrier excitation (leads to higher quantum 

efficiency/responsivity) [22]. Junction photo-diodes are the most common 

semiconductor photodiodes due to their generally good performance and low cost [21]. 
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When incident photons carry energy larger than silicon’s bandgap, pairs of 

electron and holes are created as light fall on a reversely biased p-n junction. This exact 

phenomenon happens inside a p-n junction photo-diode (inside the depletion created in 

between the type junctions) as shown in Fig. 3.1 [23]. Now, because of the strong 

unidirectional electric field, as soon as the electron-hole pair are created, they are swept 

away towards their majority carriers. The sweeping of the majority carriers leads to drift 

current. On the other hand, photons absorbed inside the neutral region, diffuses in the all 

possible directions. Some of them reaches the depletion region, and thereby are pulled 

by the majority carrier region. In total three are 2 diffusion currents (created in both the 

neutral regions) and one drift current [23].    

 

 
Figure 3-1: (a) Carrier generation in reverse biased p-n jun. (b) Relation between 

junction dimensions and the penetration depth. Reprinted from [23]. 
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The useful photocurrent generated by the photo-electric emission can be written 

as [24]: 

 

Iop = 𝑞 × 𝑔𝑜p × 𝐴 (𝑊 + 𝐿n + 𝐿p) 

 
 

where W denotes the width of depleted region, gop is the rate at which pairs of 

electron-hole are generated, q the electronic charge, Lp the diffusion length of holes, Ln 

the diffusion length of electrons, and total junction area with side and bottom-walls is 

denoted by A [24]. The depletion width is a function of the doping purity of the p-n type 

materials of which the diode is made and also the reverse bias voltage which is applied 

across the diode.  

In addition to the p-n junction design, doping concentrations etc., its spatial 

location also determines the responsivity we get from the photo-diode. For instance, if 

the junction is shallow, it is possible that a lot of electron-hole pairs generated might not 

contribute to the actual current as compare to a deeper junction whereas owing to better 

collection efficiency the overall quantum efficiency might be higher. Over-all the 

junction depth, doping concentration, wavelength of light captured all have a great 

influence on the sensitivity of the photo-diode and should be seriously taken into 

consideration. [25] 

Other than the responsivity of the photo-diode, other photo-diode specifications 

like dark current (photo-diode output in the absence of the incoming light), thermal noise 

are heavily dependent on the composition of the diode and its physical design. Dark 

current is produced where is there no optical light falling, due to the random thermal 

(1) 
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motion.  It is one of the major contributor to noise under low light conditions and often 

determines the dynamic range performance on the lower side of the illumination. [26].  

Above analysis proves that the various characteristics of the photo-diodes 

designed using p-n junction depends on the junction used for the diode, and various 

properties of the PD material. With CMOS process, multiple methods are present for 

designing a p-n diode. For deciding on the most suitable photo-diode structure, different 

types of photo-diodes are investigated and listed with their characteristics and difference 

in the following section 3.2. Types of Photo-diodes; and in section 3.3 we will discuss 

the layout of the Photodiode as it is implemented in our design with specific layers used.  

 

3.2 TYPES OF PHOTO-DIODES 

In standard CMOS processes, different kinds of photodiodes can be implemented 

using basic layers. Since in the over-all pixel design only a fraction of area is reserved 

for photodiodes, the highest possible photo-current value is desired to obtain from this 

limited area, i.e. highest quantum efficiency/responsivity is aimed from the photo-

diodes.  

In this section, various kind of photodiode structures are studied and compared 

against with each other, by keeping in mind the three major specifications characterizing 

them (optical bandwidth, responsivity, and dark current) figure 3.2 [27] [28]: 

• N-well / p-substrate 

• N+/ p- substrate 

• P+/N-well/p-substrate 
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• T-well/N-well/p-substrate 

For different types of photo-diodes we also considered the fingered structures. 

Fingered structures are used for increasing the area of the junction for fixed width 

stripes. However, it was learned that a default process layer called shallow trench 

isolation (STI) prevents current flow between the layers, which annihilates the positive 

effect of fingering. For avoiding this process extra masks are needed, which costs 

additional money. [28] Thus, fingered structures were not further considered.  

3.2.1 N-well/P-substrate Photodiodes 

The most common photodiode is designed using n-well / p-substrate. Its 

depletion region is very lightly doped. As doping concentration is smaller for n-well as 

compare to the higher n+ diffusion layer, the depletion width is larger. The increase in 

depletion width considerably cuts down the junction capacitance. As the depletion 

region’s width is larger, it should better help us in improving the photo-diode 

responsivity as its collection efficiency should be higher [25] [22]. The smaller junction 

capacitance of the diode also improves the Q-to-V conversion. Wider the depletion 

region, higher the probability of photon absorption becomes. The p-n junction is located 

deeper in the substrate; thus, this photo-diode is suitable for high penetration depths. [25] 

[22]. 
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Figure 3-2:  a) N-well/P-substrate b) N+/P-substrate c) P+/N-well/P-substrate 
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3.2.2 N+/P-substrate Photodiodes 

This type of photo-diode introduces one diffusion layer in between, n+ implant 

layer/p-substrate region instead of using a n-well directly. It is a kind of scaled down 

version of the N-well & p-substrate based photo-diode having a higher doped n-region 

(N+, instead of lightly doped N region). As per design rules, this structure can be made 

more compact (as there are restrictions on the minimum n-well spacing/size from p-

substrate for n-well and p-substrate photodiode etc.). But since N+ ions are used instead 

of lightly doped n-well, junction is formed relatively close. This causes a degradation in 

the responsivity of the photodiode. This structure is more suitable for the smaller 

wavelength as compare to higher [25] [22]. 

 

3.2.3 P+/N-well/P-substrate Photodiodes 

This photo-diode is very much like N-well & p-substrate based photo-diode but 

adds another implant of p+ diffusion layer above the n-well diffusion. This has two-fold 

advantage. The first advantage is that in similar junction area, 2 diodes are in parallel 

(p+/N-well, N-well/P-substrate), hence our depletion region widens. This leads to higher 

quantum efficiency. Overall this creates a depletion width even much larger than the n-

well/p-substrate type photodiode. Secondly, it is expected for this photo-diode to have 

much smaller dark current as compare to basic photo-diode. It is known the un-occupied 

interface states due to lattice deformities at the surface leads to dark current, but because 

of p+ implant, there should be more free charge carriers at/near the surface. Hence the 

photodiode is expected to have lower dark current and lesser noise [25] [22]. 
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3.2.4 Designed Photodiode Approach 

In this research, a different photo-diode design methodology has been taken to 

improve the photo-diodes sensitivity and make them better useable for our application. 

Instead of N-well/P-substrate junction, the p+/n-well/p-substrate junction has been used 

which assists in removing the ultra-slow diffusion carriers associated with the p-

substrate. To increase the photo-detection efficiency further, the reverse biased junction 

(p+/n-well) will be controlled from the external supply which in turns control the photo-

diode avalanche gain. Hence an Avalanche photo-diode is designed out of this 3-layer 

structure [28] [29].  

 

3.3 LAYOUT OF THE PHOTO-DIODES 

The p+/n-well/p-substrate type photo-diode has been found to be the most 

convenient for this project. There are several ways to layout a photo-diode like area 

version or finger version [22]. There also need to be special attention given while laying 

out the photo-diode.  

• Metal layers usage should be kept to minimum within the active region. As most 

of the metal layers are opaque to the incoming light. We need to make sure that 

metal layers are removed from the top of the active diffusion area. Otherwise the 

light will not reach the photo-diode, and the photo-sensitivity of the diode will 

reduce dramatically. 

• There is a trade-off between the contact resistance and the parasitic capacitance. 

You want to minimize the contact resistance by having more number of the 
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connections with the p+/n-well/p-substrate regions but also don’t want to 

aggravate the parasitic capacitance. 

• The area apart from the active diffusion region of the photo-diode should be 

made opaque, so that photons don’t get scattered in the circuitry other than 

photo-diode. This can otherwise cause leakages and optical coupling etc. 

• Another layer which doesn’t let the light pass through and is opaque in nature are 

silicide’s. Make sure that the layout doesn’t have the silicide layer on top of the 

active region. In this way, you can make sure that light does reach the photo-

diode active region. 

• Another thing to look for laying out the photo-diode is metal dummy layers; 

usually metal dummy layers get inserted during the metal fill in the final stages 

of the layout. As most of them opaque, we need to make sure that we use dummy 

block layers on top of the active diffusion region of the photo-diode so that the 

normal operation doesn’t get hurt. 

3.3.1 Fingered Photo-diode Layout  

Fingers are a critical component which can further improve the sensitivity and 

bandwidth of the photo-diode. Efficiency will be increased mainly because there are 

more sidewall junctions with a compromise of less bottom junction. Increasing the 

junction area through side-wall should give a boost to the responsivity and bandwidth. 

Thus, using fingers instead of area layout photo-diode can be a better proposition for 

larger bandwidth and higher sensitivity. The problem with the fingered structure is that a 
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default process called as shallow trench isolation (STI) prevents side-walls to contribute 

to the photo-sensitivity. To make a mask avoiding STI is costly, thus fingered structure 

is not a good option for this work. 

3.3.2 Area Photo-diode Layout 

The area layouts are much simpler and easy to design as compare to fingered 

structures [30]. We designed a square shaped photo-diode with basic diffusion layers 

present in 65nm CMOS. The size of the optical window is 10um x 10um and the whole 

photo-diode has the size of 15um x 15um. Figure 3.3 shows the full layout of the photo-

diode including all the layers (including the diffusion layers, metallization, silicide block 

layer, dummy metal layers) etc. Table 3.1 gives a description of all the layers used in the 

photo-diode layout. Figure 3.4 deals with the step by step guide of how each layer of the 

APD layout is done step by step. The final APD layout has been used in 16 x 9 pixels for 

optical testing where the reverse bias voltage will be optimized for controlling the APD 

gain and thereby sensitivity. 
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Figure 3-3: Photodiode Layout 

Table 3-1: Layers used in the photo-diode layout and description 

Layer/s Name Description 

OD Active Diffusion for 1V devices 

NP N+ Implant 

PP P+ Implant 

N-well Lightly Doped N well 

M1-M8 Metallization 

RPO and RH Layers Silicide Block Layers 

DM1-DM9, POBLK, ODBLK, DMEXCL Dummy Block Layers 
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 Figure 3-4: Step by Step Guide to final photo-diode layout 
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Final Layout 
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4. IMAGE SENSOR DESIGN SPECIFICATIONS                                                                                                                                 

 

4.1 CIRCUIT AND SYSTEM LEVEL SPECIFICATIONS 

 

Table 4-1: Circuit and System Image Sensor Specifications 

Specification Value Comments 

Minimum Photo-diode Current 

to be captured by the Image 

Sensor 

20pA This can be even lower, depends on the 

receiver BW, photodiode responsivity 

and application 

Maximum Photo-diode 

Current to be captured by the 

Image Sensor 

20uA This can be even lower, depends on the 

application etc. 

Maximum Integration time for 

the photo-diode current 

500us – 1ms This is mainly decided by the 

maximum frame rate and minimum 

photodiode current 

Dynamic Range >= 120dB  Will cover well both the high and low 

illumination regions 

Photo-diode Responsivity 0.3-0.4 A/W  

Counter Size 10-12 bits Cut down the counter size to reduce 

the power consumption 

Readout Frame Rate 100Hz- 500Hz Should be user Controllable 

Pixel Array Size 16 x 16  

Fixed Pattern Noise (FPN) 

Calibration  

Digital/Analog Preferably Digital Method 

Power Consumption  Ultra-low Power  

Digital Interface FPGA-Compatible   

    

4.2 DIGITAL READ-OUT INTEGRATED CIRCUIT (DROIC) 

In this work, we have implemented DROIC as it overcomes the limitations of 

conventional readout cells by performing analog to digital conversion inside the pixel. 
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The DROIC leads to a very larger dynamic range, much lesser additive noise, and a lot 

of on-chip signal processing. 

 

 

Figure 4-1: Digital Read-out Integrated Circuit (DROIC) Unit Cell 

The basic building blocks of a DROIC are direct injection pre-amplifier, 

integration capacitor, reset circuit, a comparator (I to F converter) and a counter. Finally, 

the data need to be serialized and read out. Here since the integrating capacitor gets reset 

each time the comparator trips, the maximum well capacity is not limited by the 

capacitor size but rather by the counter resolution. Similar on the lower current side 

given that the integration capacitor is very small, we will not be limited by the very low 

frame rate to capture very small currents. Hence DROIC, without any design constraints 

can certainly extend the dynamic range. Since the value/size of integrating capacitor is 

drastically reduced, the overall pixel pitch can be reduced. All the major blocks used in 

the pixel are digitally implemented, hence the read noise will be of a very small order. 
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The working operation of the DROIC has been presented in the next section of the unit 

cell description. 

 

4.3 WORKING OPERATION OF DIGITAL READOUT INTEGRATED 

CIRCUIT (DROIC) 

The working operating of the DROIC is explained by refereeing to figure 4.1. At 

the beginning of integration, the infrared photo-diode captures the photon energy and 

converts it into a photocurrent (Iph) based upon its optical responsivity that charges the 

integration capacitor (Cint) on floating node (FD). A pixel comparator is utilized to 

sense the voltage level of FD. Once the FD crosses the trip point of pixel comparator, it 

will trigger a pulse signal and reset FD through the reset device (M3). FD will recharge 

again till it crosses trip point and trigger the next reset pulse. Therefore, a linear 

relationship between photocurrent and frequency of pixel reset can be obtained if an 

ideal (delta) pulse signal is applied: 

frst = Iph/ (Cint*Vtrip) (1) 

 

where Cint is integration capacitor, Vtrip is the trip point of comparator, and frst 

is the frequency of pixel reset. In ADC part, a counter, counts the number of times pixel 

resets the floating node (FD).   

For a limited integration time (Tint), the counter output is: 
 

Cout=frst*Tint 
 

(2) 

 

replacing the first with (1), we can get: 

Cout = [Tint / (Cint*Vtrip)] * Iph (3) 
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Thus, the counter output is a digitized photocurrent value times a linear gain Tint 

/ (Cint*Vtrip), and the LSB photocurrent for the ADC is: 

 LSB (A) = (Cint*Vtrip)/Tint  (4) 

 

According to (4), we can notice that the LSB is related to the integration time of 

pixel. At longer integration time, we can achieve higher resolution for the ADC but 

lower measurement range due to the fixed dynamic range (let’s say if we use a 10-b 

ADC in this case), while at shorter integration time, we can achieve larger measurement 

range but lower resolution.  

Thus, the integration time will need to be made adaptive based on the 

illuminance condition: at strong illuminance, the resolution of brightness is not critical 

so we can use longer integration time to extend measurement range. At low illuminance, 

the resolution of brightness is critical due to the low contrast ratio in the dark image, and 

a short integration time can be used. To cover the bright region and dark region in one 

image frame, multiple lengths of integration time are used. In this method, multiple 

frames that are captured with different integration time are merged together in image 

signal processor either using Digital Signal Processor or FPGA. The merged image 

preserves the high brightness value in the frames of short integration window and the 

high resolution in the frames of longer window. As the technique relies on a powerful 

image signal processor to merge the different images captured during lower and higher 

integration time conditions, it consumes the extra power and chip area and is often 

tedious to implement. In this research, we implemented an automatically adapting 
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integration time control at pixel-level that doesn’t require a background signal processor. 

This is explained in the next section. 

 

4.4 ADAPTIVE INTEGRATION TIME CONTROL  

  To capture the six-fold of dynamic range (>120dB), we would ideally 

need more than 20 bits of ADC. But implementing a 20Db is not feasible practically 

from the power consumption, performance and area point of view. Hence, we need to 

devise a low power scheme with which we shall be able to capture this wide dynamic 

range using a smaller bit ADCs, something like 10 or 12 bits. In our case the best way to 

meet the wide dynamic range is through control of the Integration time but to remove the 

big, bulky image signal processor (as it consumes large amount of chip area, power etc.), 

we need to make the Integration time adaptive in our system.  

Fig. 4.2 shows the trade-off between Full-signal-range (FSR) and LSB of ADC 

versus pixel integration time. Shorter integration time achieves large FSR and LSB. It is 

suitable for strong illuminance condition since we need a wide FSR to cover the input 

signal amplitude. The LSB is not critical in strong illuminance. This is because the retina 

in human eye cannot identify the small brightness change at high illuminance. On the 

other side, long integration time achieves small FSR and LSB and suitable for low 

illuminance condition. FSR is not critical here because of the low input signal amplitude. 

The resolution, however, need to be high since a slight change of brightness in dark 

condition can be detected by human eyes. For covering both high and low illuminance, 

we proposed a new adaptive integration time control that doesn’t require back-end 

digital circuitry. 
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Figure 4-2: Integration Time vs. Full-signal-range (FSR) and LSB 

The concept of adaptive integration time can be illustrated by the pixel 

integration timing diagram as shown in Fig. 4.3. Let’s assume, that each pixel starts the 

integration of the photo-diode current after the GLOBAL_RESET pulse is pulled low. 

Due to the integration of photo-diode current, the FD node will rise and reset low 

repeatedly. Now let’s take two cases. In case 1, the photo-diode is illuminated under 

high brightness, means it generates large photo-diode current. Now, because this pixel is 

illuminated strongly (i.e. PIX1), T1 is used as the integration time, the ADC counter stop 

integration after end of T1. On the other side, for the case 2 let’s assume that photo-

diode is illuminated under very low light conditions. Now, because the pixel (PIX2 in 

this case) receives low illuminance, it will not trigger the counter even once during the 

T1 integration time hence the pixel Integration period is automatically increased to more 

than T1 till T2.  But because the integration time is larger, the resolution (LSB size) will 

be lower. Let’s assume that the T2 integration time is self-adaptively increased to 
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1000*T1 to achieve higher ADC resolution. The ADCs (let’s assume that the counter 

size is 10 bits) output value will be resolved as: 

Dout = CNT [9:0] *1000 (if Tint=T1) 

 

Dout = CNT [9:0] (if Tint=T2) 

 

 

 

  Figure 4-3: Timing Diagram of Pixel Integration Time 

The technique allows to not only the sense the low-level illuminance pixels but 

also extend the dynamic range by 1000 for high illuminance pixels but still using a 

counter size of only 10 bits (as used in the above example). Hence the power 

consumption and size of the pixel is still very small but we can meet the wider dynamic 

range requirement. The circuit implementation of this technique has been detailed in the 

section 5.  

T1

T2=1000*T1

0 5

0 1 2 3 500

GLOBAL_RESET

INT_CLK

FD (PIX1)

CNT[9:0] (PIX1)

FD (PIX2)

CNT[9:0] (PIX2) 499

Pixel Integration Timing

T1: Integration window for high illumination (PIX1).
T2: Integration window for low illumination (PIX2).
IPIX1= 10* IPIX2.

Check out for T1

INT_WIN_PRE (PIX1)

INT_WIN_PRE (PIX2)

RD_EN



46 

 

4.5 DIGITAL CALIBRATION TO OVERCOME FIXED PATTER NOISE 

As the integrating capacitor value and threshold voltage of the comparator 

changes from pixel to pixel, different counter values were observed over the Monte 

Carlo Analysis. This variation from the Pixel to Pixel is called fixed pattern noise. Its 

known as fixed pattern noise, because it doesn’t change over time or the noise 

component which is not random in nature. Usually in the image sensors this fixed pattern 

noise is corrected by some form of Analog plus digital Calibration techniques. Here we 

propose a digital Calibration based on which the Fixed Pattern Noise can be reduced 

significantly.  

Method: We provide a same reference (current) to all the pixels and capture the 

counter values across the pixels. Ideally, without the fixed pattern noise all the pixels 

digital counter value should be same but given that each pixel will have different 

comparator threshold voltage, and integrating capacitance, we will observe different 

values from pixel to pixel. Our calibration scheme works by storing all the pixels values 

in the memory. After we store the values, we take an average of all the pixels counter 

values and then run a calibration routine where we find out the variation in the counter 

value from the average value for each pixel and store that variation for each pixel. We 

don’t need the original counter values now, so they can be removed from memory but 

we will need to store the original average counter value. 

Once we have captured the variation in ∆(CV) across all the pixels then, we can 

use that information to calibrate the actual frequency points by scaling the variation to 

the ratio of the new counter value to the average of the reference current and subtracting 
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it from the actual point. Figure 4.4 is flow-chart of calibration routine currently 

implemented in excel for 96 pixels which will be implemented inside the DSP core or 

FPGA for an actual system. This calibration routine can be extended easily to an array of 

256 x 256 or even larger depending upon the need.  

 

 

Figure 4-4: Digital Calibration Scheme Flow Chart 

The further details on the implementation of the digital calibration scheme can be 

found in section 5 along with the simulation results. In the section 6 we have provided a 

rough estimate of the memory that will be required to run the calibration scheme for a 

256 x 256 pixels array. 
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5. IMAGE SENSOR CIRCUIT DESIGN                                                                                                                                  

 

5.1 TOP LEVEL ARCHITECTURE 

 
 

       Figure 5-1: Top level Image Sensor Chip Architecture  
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Figure 5-1 details the block diagram of image sensor chip that we designed. For 

our chip, we have total 256 Pixels in a 16 x 16 Pixel array. Of these 16 x 7 Pixels (112 

Pixels) are used for showing the electrical performances of the chip with the appropriate 

electrical test circuitries which can quantify the chip’s electrical performance. The 

remaining 16 x 9 Pixels (144) have a photo-diode (APD) fabricated on chip inside them 

for the optical testing, for capturing the optical performance of the chip. This chip has 

been designed in TSMC 65 nm CMOS process.  

Apart from the 16 x16 Pixel array, the other blocks inside the chip are Timing 

and Control Block which provides the required timing and control signals to the whole 

pixel array for integration, readout and dynamic integration window control etc. This 

block takes three inputs in the form of two clocks signals HCLK (High Clock 

Frequency), LCLK (Low Clock Frequency) and RESET. There is also a FPGA read-out 

block which interfaces the chip digital data with the FPGA, makes it compatible with it 

and provides the required clocking, sync and 11-bit parallel data to be read out by the 

FPGA. The output signals will need to be level shifted based on the FPGA requirements. 

There is also a SCAN Chain block which helps in providing a fixed register setting to 

the chip at the startup which are user controlled externally. We will discuss in detail each 

section of the chip along with the appropriate explanation. 
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5.2 PIXEL CELL 

 

Figure 5-2: Pixel Cell  

Fig. 5-2 depicts the internal circuit blocks of the unit pixel circuit that contains 

one infrared photodiode pixel (IR-PD), integration time control unit (ITCU) and the 

pixel-level ADC.  

 

5.3 HV AND LV SECTIONS 

The whole Pixel level ADC is divided into sections. One using 2.5 Volts HV 

(high voltage) devices and the other using minimum length transistors with 1.0 Volts LV 

(low voltage) devices. In the front end of the pixel, where the photo-diode current 

integrates onto the integration capacitor, the leakage current of the comparator, reset 

circuit and calibration circuit should be very low as we are going to be capturing very 
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small magnitudes of current (of the order of few pAs). During simulations, we found that 

in the minimum length devices which are available in 65nm CMOS, they have 

sufficiently large gate-drain, gate-source and drain to source leakage which was 

dumping the current onto the integrating cap even when there was no external excitation. 

This causes unnecessary trip of the counter even in the event there is not photo-diode 

current. Hence, we need to use the HV devices the front-end. These are all 2.5 Volts 

devices with 280nm Length and VT is larger as compare to the 65nm devices. Once the 

front-end operation is bit wise digitized by the comparator, we translate into the low 

voltage devices regime through a level shifter, this helps us in implementing the rest of 

the circuitry in the minimum length devices with lower supply voltage as compare to 2.5 

Volts to save power and area. 

 

5.4 DIGITAL CALIBRATION SCHEME DESIGN 

 As discussed previously in section 4.5, we have implemented a digital 

calibration scheme which helps in reducing the fixed pattern noise of the Pixel array. 

This is implemented using CAL_EN, PD_EN switches and the low voltage Cascode 

current mirror. To enable the calibration, CAL_EN is pulled high and PD_EN is pulled 

low. Once the appropriate switches are pulled low/high, the FD node start receiving the 

calibration current for integration rather than the PD current. Each pixel coverts the 

incoming calibration to the respective digital code and is readout during the FPGA 

readout mode. The pixel-pixel variations are captured through the variations in the 

digital code and calibration route is run in the post analysis to reduce the standard 

deviation. The important point to consider is that the digital calibration scheme relies on 
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the fact that we have a fixed calibration current source (Ical) inside each pixel whose 

value shouldn’t change from pixel to pixel. There are many possible ways to provide this 

calibration current inside each pixel but there is an important design consideration which 

needs to be kept in mind while implementing. As the FD node is connected to the Ical 

current source through a MOSFET switch, any extra capacitive loading of the node 

supplying the calibration current will automatically load the integrating node (FD node) 

and will hinder the normal operation of the pixel (as the PVT variations of this parasitic 

capacitance will limit the performance of the digital calibration scheme). Therefore, we 

need to make sure that we reduce the loading of the node supplying the calibration 

current source. To ensure this, we must locally mirror the current inside the pixel so that 

routing parasitic to each pixel doesn’t come into picture if a single current source is used 

to supply current to each pixel. But given that we would need to use a mirror locally 

inside each pixel, there will be fluctuations in the mirroring current from one pixel to 

another (because of mismatch, arbitrary fluctuations in the mirroring ratio from the pixel 

to pixel). To ensure that the random variation from pixel to pixel is small a large 

transistor (W x L) need to be selected so that the Vt mismatch in the mirrors can be 

reduced. But if the large transistor is placed right at the node supplying the calibration 

current, we will again load the FD node through the switch. Hence a low voltage 

Cascode has been used for this purpose with smaller M3 & M4 and larger M1 and M2 

devices. Low- Voltage Cascode also has better mismatch performance as compare to 

simple current mirror and it also helps reduce the loading of the node by using very 
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small M3 and M4 devices. Please refer to the figure 5.3, showing the design of the low-

voltage Cascode used for the mirroring. 

 

 

Figure 5-3: Low Voltage Cascode Current Mirror used for the Digital Calibration 

To check the effectiveness of the digital calibration scheme, MONTE CARLO 

simulations were performed. As in the simulation test bench we didn’t have actual 

photo-diodes and neither the optical setup. We used a calibration current of 1uA. We 

included the current mirror also in these simulations and the whole pixel front end to 

capture the effect of variations in the pixel. After capturing the pixels information with 

1uA calibration current, we calibrated 2uA of excitation current (instead of PD current) 

across 100 pixels. Figure 5.4 shows the results that we received from this calibration.  
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Figure 5-4: Standard Deviation of Un-calibrated and Calibrated Pixels 

In the figure 5.4, graph on the left shows the standard deviation in the frequency 

obtained across all the pixels when 2uA was fed to each one of them. The average 

frequency value across the pixels is roughly 137 Mhz. Graph on the right side shows the 

standard deviation in the across after the calibration. So clearly, we can see that the 

standard deviation across the pixels which is observed to be roughly 2.15% before 

calibration has been cut-down to a factor of 0.3% which is about 86% improvement. To 

test this scheme in the actual chip scenario, we will be using in total 96 pixels where 

instead of the PD, a second excitation current of 2uA is generated along with the 

calibration current using the current mirrors instead of one as per the figure 5.5. 
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Figure 5-5: Pixels front end used for digital calibration 

5.5 COMPARATOR DESIGN 

As already discussed in the working operation of the pixel at the beginning of 

integration, the IR-PD captures photon energy and converts it into a photocurrent (Iph) 

that charges the integration capacitor (Cint) on floating node (FD). A pixel comparator is 

utilized to sense the voltage level of FD. Once the FD crosses the trip point of pixel 

comparator, it will trigger a pulse signal and reset FD through the reset device (M3). FD 

will recharge again till it crosses trip point and trigger the next reset pulse. Hence an 

Ultra-low power comparator is required inside each pixel to sense the trip point and 

therefore provide a pulse to the counter. The comparator design that we have 

implemented has four back-back CMOS inverters as shown in 5.6. [32] [33] The 

comparator’s threshold level gets set by the first inverter, which is tunable using the 
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voltage transfer characteristics of the inverter which is controlled by the sizing of the 

transistors. The comparator’s trip point is set as per the equation (1) [31] [33] 

𝑉𝑡ℎ =  
𝑉𝑑𝑑 −|𝑉𝑡𝑝| + 𝑉𝑡𝑛√

𝐾𝑛
𝐾𝑝

1+√
𝐾𝑛
𝐾𝑝

                            (1) 

 

Where Vdd is supply voltage used in the inverter, Vth is the threshold voltage of 

the comparator, Kp & Kn are the functions of mobility, size, and capacitance for PMOS 

and NMOS, respectively, Vtp and Vtn are the threshold voltages for the PMOS, NMOS 

transistors respectively [33]. 

 

 

Figure 5-6: Comparator Design of four cascaded Inverters 

Four inverters were planned for the design as they increase the comparator gain 

which helps in generating a sharp pulse each time the comparator trips. The second 

inverter design should ideally match the first stage so that the crossover point is 

maintained throughout. This assists in making the rising and falling of the pulse signal 

generated more symmetrical in nature. [33] [34]  
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The above comparator design has advantages, it’s a very simple design and can 

operate with a very low conversion time (gate delays control the conversion time) as 

opposed to many others like static amplifier based designs, plus its doesn’t consume any 

static current but only dynamic power which automatically scales with the frequency of 

operation. There are couple of disadvantages of the above designed comparator. Firstly, 

the comparators trip point Vth is prone to PVT variations, which will be calibrated by the 

digital calibration scheme implemented in the design. As per Eq. (1), the transistor’s 

threshold voltage and mobility are dependent on temperature. Therefore, the threshold 

voltage also changes with temperature. A calibration scheme need to designed which can 

compensate for pixel-pixel variation at the power on. Also, the inverters are quite 

sensitive to the noise coming from power supply. This noise needs to be bypassed to 

ground using a big capacitor. [33] Now, the inverter delay is majorly a function of the 

device size. First inverter in the comparator chain loads the integration capacitor, hence 

first stage should not be very big. A minimum device size transistor is chosen for the 

first inverter. Now, as discussed earlier we would like to keep the dimensions for each 

subsequent inverter stage to be same, so that we can keep it symmetrical. This leads to a 

much simpler inverter delay control equation which can be tuned just by controlling the 

inverter supply and the length of the device used in inverter stage, the inverter delay 

when added together for this design comes out to be approximately 60 ps. [33] [35] 

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐷𝑒𝑙𝑎𝑦   
𝐿2

𝑉𝑑𝑑
                                  (2)  

Comparator generates a pulse of fixed width every-time it gets triggered which is 

further fed to the counter. The third stage in the comparator also acts as a bridge between 
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the high voltage and low voltage devices and performs level shifting operation from 2.5 

Volts to 1Volts. This ensures that a seam less transition is observed in the regions. 

5.6 RESET CIRCUITRY AND PULSE GENERATOR 

Usually the counter requires a minimum pulse width to be applied before it can 

increment correctly. In our case for the counter design, this minimum pulse width was 

found to be around 200-240ps. Hence the pulse generated by the comparator can’t be 

applied directly to the reset circuit because in that case, the comparator will trip back to 

being low within its propagation delay (~60ps) which is much lesser than what is 

required by the counter. Hence a delay needs to be introduced in the signal path in such a 

way, that a minimum pulse width of roughly 300ps (by keeping some safety margins) is 

being provided to the counter each time the comparator trips. This is done by the 

asynchronous set-reset flop. Each time the comparator trips, it generates a pulse which 

sets the D-Flipflop, which after passing through the multiple buffers delay resets the flip-

flop back to low stage. This same pulse also keeps the pixel in reset stage and releases 

the reset as soon as the flip flop gets reset.   



59 

 

 

Figure 5-7: Fixed Pulse Generator and Reset Circuitry 

5.7 INTEGRATION TIME CONTROL UNIT (ITCU) 

The adaptive integration time control unit as discussed in section 4.4, helps us 

dynamically control the integration time based upon the received photo-current signal. 

This is implemented as shown in the figure 5.2 using a 1-b latch. It is utilized to latch 

value-1 once the trigger signal (CNT_TRIG) occurs which occurs when the comparator 

trips. The output of 1-b latch (INT_WIN_PRE) is checked at the end of T1 which is 

defined by the rising edge of INT_CLK. If INT_WIN_PRE- is 1 at end of T1, meaning 

that counter value is larger than zero, and T1 will be used as integration time. This also 

shuts down the further pixel integration and ensures that pixel value is intact till the 

integration time T2 is over and we readout the data. If INT_WIN_PRE- is 0 at end of T1, 

meaning the resolution is too low for the input signal, and the integration time is 
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extended to T2.  Please refer to figure 5.8 for the timing diagram illustration of the 

Integration Time Control Unit.  

The technique allows to not only the sense the low-level illuminance pixels but 

also extend the dynamic range by 1000 for high illuminance pixels. The occurrence of 

the INT_CLK is user dependent and can be externally controlled. All the pixels are 

readout together at the end of T2, independent of their integration time. This ensures that 

there is no discrepancy in the readout data. In the event if we are receiving the high 

intensity for all the pixels, it might be helpful to limit the integration time to just T1 and 

increase the frame rate to even few MHz’s.  

 

 

Figure 5-8: Pixel Integration Timing 

 

T1

T2=1000*T1

0 5

0 1 2 3 500

GLOBAL_RESET

INT_CLK

FD (PIX1)

CNT[9:0] (PIX1)

FD (PIX2)

CNT[9:0] (PIX2) 499

Pixel Integration Timing

T1: Integration window for high illumination (PIX1).
T2: Integration window for low illumination (PIX2).
IPIX1= 10* IPIX2.

Check out for T1

INT_WIN_PRE (PIX1)

INT_WIN_PRE (PIX2)

RD_EN



61 

 

5.8 COUNTER AND SHIFT REGISTER 

For the counter design, 10-bit ripple counter is utilized to digitize the comparator 

tripping cycles. Each time the comparator trips, as we know the fixed pulse generator 

circuitry generates a pulse, whose rising-edge triggers the flip flop (DFF) which is basic 

unit cell of the shift register. To minimize the pixel circuitry, the counter is designed to 

support 10-bit rising counting and shift register readout scheme (Fig. 5.9) both at the 

same time. The same counter shifts to counting mode during integration and changes to 

shift register during data readout mode. To start counting mode, READ_EN is equal to 

0. The 10-b DFFs are cascaded where the output Q_bar is feedback connect to input D, 

and the clock is triggered by the output Q of previous unit. 

 

 

Figure 5-9: Counter and Shift Register 

The counter gets triggered from the CNT_TRIG signal which is generated by the 

fixed pulse width generator. As the pixel integration time is over, circuits will enter 

readout-mode by connect READ_EN to 1. In readout-mode, the counter circuitry will be 

reconfigured as shift registers: all registers are synchronous with PCLK, and the input D 



62 

 

of all the flip flops is connected to the output Q of respective previous pixels. The 

overall shift register chain is connected from most left pixel to most right pixel so that 

the counting value can be transferred from pixel to pixel. As shown in Fig. 5.9, the 1-bit 

data from left-hand side pixel is shifted into the unit counter circuitry from Din, and 

shifted out to right-hand side pixel through Dout. All the pixels get connected in the 

series chain and at every rising edge of PCLK (pixel clock) starts shifting the data out. 

This is explained in detail along with the timing diagram in the next section. The Pixel 

clock can go as high as 10’s of MHz depending upon the maximum driving strength of 

the CMOS driver and FPGA readout rate and related power consumption. 

 

5.9 DATA READOUT MODE 

In the data Readout mode, all the pixels get connected in series one after another. 

The figure 5.10 shows how the pixels gets connected to each other in this mode.  The 

11bit data (10-bit counter + 1-bit integration window output) from the last left pixel gets 

connected to the input of the right pixel. The data starts to shift out at the rising edge of 

the PCLK after the READ_EN goes high. 
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Figure 5-10: Pixel Configuration in Read-Out Mode 

 

 

Figure 5-11: Pixel Readout Timing 

Figure 5.11 gives the top-level pixel timing diagram. The frame rate for the 

sensor is given by the equation 3. 
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                            𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 =  
1

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝐼𝑇)+𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑇𝑖𝑚𝑒 (𝑅𝑇) 
                (3) 

 

Let’s say the maximum integration time we are targeting is 1ms and PCLK used 

to readout data has a rate of 5MHz. Then the frame rate will be given as below: 

 

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑇𝑖𝑚𝑒 (𝑅𝑇) = 256 𝑥 0.2 𝑢𝑠 = 51.2𝑢𝑠 

 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑅) =
1

1𝑚𝑠 + 51.2 𝑢𝑠
= 950𝐻𝑧 

 

Therefore, the maximum Frame Rate possible with the above integration time 

comes out to be of the order of 950Hz. This can be certainly increased beyond this in the 

event we start with smaller integration time. 

 

5.10 TIMING AND CONTROL BLOCK (TCBLK) 

As shown in the figure 5.11 we would need four timing and control signal inside 

each pixel for the operation of the pixel. These signals are GLOBAL_RESET, 

INT_CLK, RD_EN and PCLK. Global Reset resets the pixel each time its triggered high 

and makes sure that once it is released the pixel starts the integration. INT CLK is the 

integration window control signal, which distinguishes between the high and low 

integration region and comes at a fixed time interval after the reset is released. RD_EN 

is the signal which when pulled high puts the pixel in the readout mode and pixel stops 

the integration. PCLK is the clock which is used to shift out the data from the pixels.   

All the four signals in the chip are generated from two clocks. One is a high 

clock frequency (HCLK) and another is a lower clock frequency (LCLK). The lower 
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clock frequency is used to set the frame rate of the image sensor. At the rising edge of 

the LCLK, the device is reset.  

Timing and control block generates the reset pulse for a fixed unit interval 

controlled by the delay cell in the feedback path of the flip flop. After the reset is pulled 

low, the pixel starts integration which continues until the INT_CLK is pulled high for 

the dynamic integration control. This is generated by the timing and control block with 

the help of reset signal and HCLK. A counter is incremented each time the HCLK is 

triggered and compared digitally in a comparator with the user input external count 

value. After the counter has incremented to the user input count value, the INT_CLK 

pulse is generated.  

At the falling edge of the LCLK, RD_EN is enabled and shifts the chip from the 

Integration mode to Readout mode. This also defines the higher integration limit for the 

pixel. After the RD_EN is pulled high, pixel clock is also supplied along with it to 

serially shift the data out from the pixel array. A description of the implemented circuitry 

is shown in the figure 5.12 
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Figure 5-12: Timing and Control Block 

This may not be the best way to implement the required timing and control 

signals, but it sufficed the need for our test chip. Typically, the LCLK and HCLK were 

of the range 100Hz – 15KHz whereas the HCLK from 500KHz – 15MHz.   

 

5.11 TIMING AND CONTROL SIGNALS ROUTING  

All the pixels need the four timing and control signals and their relative timing 

should not be disturbed. The first pixel receives the four timing and control signal 

directly from the timing and control blocks. It uses the four signals for its operation and 

buffers them out for the next pixel. This trend is continued down till the last pixel. The 

present pixel uses the timing and control signals and buffers them out to the next pixel. 

In this manner, the four signals are never overly loaded by routing and placement plus 
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their relative timing mismatch is also considerably lesser, it is of the order of magnitude 

10’s of ps which doesn’t impact the performance and fixed pattern noise of the pixels. 

The figure 5.13 shows how the above methodology is implemented in the pixel array.  

 

 
 

          Figure 5-13: Routing of Timing and Control Signals 

5.12 FPGA READOUT BLOCK 

The serial data coming out of the pixels goes to the FPGA Readout Block which 

re-samples the data again with the falling edge of Pixel Clock to make sure that the data 

is well aligned with the clock. It also outputs a buffer copy of the last flip flop sampling 

clock which can be used by the FPGA to sample the incoming data. The FPGA Readout 

block also features a test-mode where it outputs a fixed pattern of 2047 (decimal) 
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followed by 0 at each edge of PCLK. This test-mode helps in interfacing the FPGA 

readout block with the FPGA and to remove any wiring phase delay etc. Please refer to 

figure 5.15 which shows the implementation of the FPGA readout block. 

 

 

Figure 5-14: FPGA Readout Block 
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6. EXPERIMENTAL RESULTS                                                                                                                                   

 

6.1 IMAGE SENSOR SOC DESIGN  

The figure 6.1 portrays the photo micrograph of the designed imaging solution 

SoC (System on Chip). The chip has in total 256 Pixel (16 x 16 Pixel Array). Out of 

which the first 6 rows of pixels (in total 16 x 6 pixels) are for showing the performance 

of digital calibration. The next 16 pixels (one row) are the test pixels for showing the 

electrical performance and remaining 9 rows of 16x9 pixels (144 pixels) are with APDs 

and for measuring the optical performance. The chip also has timing and control block, 

scan chain, de-coupling capacitors on all the supply lanes, input/output buffers on all the 

input/output pads and the biasing circuitry. The chip has in total 36 pads and has 

dimension of 1.04mm x 1.04mm.  

The die was bonded using ball bonding with a 5mm x 5mm QFN40 package. 

Figure 6.2 shows the picture of bonded die in the QFN40 packages. The extra 4 pads in 

the package apart from the 36 used in the chip were shorted to the GND. A PCB board 

was designed to test the SoC with all the required other devices. After the packaging and 

bonding, the chip was assembled onto the Sensor PCB board for testing in the lab. The 

chip requires two power supplies of 1V (for the smaller channel length devices) , 2.5 

Volts (for long channel length devices) and one more for APD which can range 

anywhere from 2.5-6 Volts for their operation (we are yet sure of the supply 

requirements for APDs)      
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            Figure 6-1: Image Sensor SoC Micrograph 

 

 

              Figure 6-2: Bonded Image Sensor Chip Micrograph 
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6.2 LAB SETUP FOR TESTING THE CHIP 

The chip is powered from the DC bias board which provides all the necessary 

supply outputs and biasing current for the bias circuitry. The chip also requires two clock 

signals named as LCLK and HCLK. The LCLK is a low frequency 1V CMOS level 

square wave signal. The frequency of the signal can range anywhere from few 100Hz’s 

to 15-20KHz. The HCLK is a high frequency 1V CMOS level square wave signal. The 

frequency for the HCLK can range anywhere from 100KHz to 20-25 MHz’s. The digital 

data coming out from the chip passes through a level shifter and is read through the 

ML605 (Virtex-6) evaluation board. Chip-scope is used inside the ISE Design Suite to 

read the incoming data and store it. Figure 6.3 shows how the above setup is done in the 

lab. 

 

 

           Figure 6-3: Lab Setup for testing the performance Chip 
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6.3 DYNAMIC RANGE TESTING 

There are total 14 test pixels inside the chip which are used for dynamic range 

measurements. A bias current of 10uA flows inside the chip which after passing through 

the bias circuitry produces 1uA reference current for each of the test pixel. Test Pixels 

internally have current Mirrors which can both multiply this current and in parallel also 

divide the reference current to be measured by the chip. A Frame rate of 250Hz (LCLK 

frequency) and Readout rate of 2MHz (HCLK frequency) was used to capture the 

dynamic range performance. 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒  (𝐹𝑅) = 250𝐻𝑧 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 = 4𝑚𝑠 

𝐿𝑎𝑟𝑔𝑒𝑟 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 = 2𝑚𝑠 

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 = 2𝑀𝐻𝑧 

𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 = 2𝑢𝑠 

 

The smaller integration time window has been set to 1000 times smaller than the 

larger integration time. This ensures that we have divided down the total integration time 

into two regions as previously discussed. Table 6.1ists down the digital code received 

from the chip corresponding to the different currents which were fed to the ADC inside 

each pixel. The table has total 15 values. We have linearly scaled down the last value to 

the digital code of 1 to receive the full dynamic range that sensor can support with the 

above conditions.  
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Table 6-1: Test Current vs. Digital Code  

Digital Code Obtained From 

FPGA 

Current 20-bit Scaled Digital Code 

(if Digital Code >1024) 

then (Code-1024) *1024 

1 7.7505E-12 1 

31 2.4027E-10 31 

45 3.4877E-10 45 

66 5.1153E-10 66 

130 1.0076E-09 130 

1026 1.5873E-08 2048 

1028 3.1746E-08 4096 

1032 6.3492E-08 8192 

1039 1.1905E-07 15360 

1110 6.8254E-07 88064 

1150 1.00E-06 129024 

1245 2.00E-06 226304 

1427 4.00E-06 412672 

1746 1.00E-05 739328 

2011 2.00E-05 1010688 
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Figure 6-4: 20-bit scaled Digital Code vs. Test Current 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 20 × log
𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
 

= 20 ×  log  
2 × 𝑒−5

7.75 ×  𝑒−12
= 128.75𝑑𝐵 

 

Hence, the total dynamic range achieved with the design is about 128.75dB. This 

can be extended further by changing the lower and the higher clock frequency.  

6.4 DIGITAL CALIBRATION TESTING 

In our chip there are total 96 pixels for testing the performance of the digital 

calibration. We supply the required 10uA bias current to the chip from the DC board and 

internally to each pixel two reference current of 1uA and 2uA are generated inside each 

pixel. Firstly, the digital code values are captured across the 96 pixels with 1uA 
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reference current and then with 2uA. The digital codes captured with the first reference 

current are used to calibrate the second reference current. Figure 6.5 shows the variation 

in the code value obtained without 2uA current without calibration across the 96 pixels. 

The average Code Value is 807. The standard deviation obtained is 11.456 codes across 

all the pixels. This is 1.42% variation in the code value.  

 

 

   Figure 6-5: Standard deviation in the code value before calibration 

After this the pixels are calibrated using the reference current information we 

have captured at 1uA. Figure 6.6 shows the standard deviation in the code obtained after 

calibration. The average code value after the calibration is still 807, and the standard 

deviation is reduced to 3 codes which is 0.38% of the actual code value. The original 
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standard deviation has been cut down by a factor of 4 and roughly an improvement of 

75% 

 

 

Figure 6-6: Standard deviation in the code value after calibration 

We also tested the calibration scheme for 54 pixels (the middle ones) by 

removing the corner pixels of the top, bottom and side pixels. The assumption here is 

that the layout environment observed by the middle pixels should be more common as 

compare to the corner pixels. Figure 6.6 shows the standard deviation in the code 

obtained for just 54 pixels. The standard deviation is about 2.89 codes which is roughly 

0.357% of the code value. 

 



77 

 

 

Figure 6-7: Standard deviation in the code value after calibration for 54 Pixels 

Therefore, there is not a huge difference between the standard deviation of 54 

and 96 Pixels. After this we ran digital calibration for all the 1023 codes (1-1023) to see 

if our scheme works for all the digital codes and the performance that we can achieve. 

Figure 6.7 shows the standard deviation in the code value before and after calibration for 

all the 1023 codes. It seems that our calibration scheme maintains its performance across 

the 1023 codes and can cut down the variation by a factor 3-4.5 across all the codes. The 

calibration schemes require a certain memory size for its implementation to store the 

value of the variation across the pixels. For a pixel array of 256 x 256, the memory size 

should be of the order of 450kbits.  
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Figure 6-8: Standard deviation in the code value across the 96 pixels before and after the 

calibration for all the 1023 code values.  

6.5 LINEARITY TESTING 

The linearity performance of the pixel ADC is measured using the non-linearity 

parameters of Integral Non-Linearity (INL) and Differential Non-Linearity (DNL). For 

the first test pixel the integration time window is swept from 2us – 16ms in steps of 2us, 

this let the pixel pass through all the 1024 codes and thereby the measure the linearity 

performance. Figure 6.8 shows the linearity plot of the pixel digital output code with the 

pixel integration time. Figure 6.9 and Figure 6.10 shows the DNL and INL observed 
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over the length of digital codes. The maximum DNL is 0.65 LSB and INL is 1.65 LSB 

over the complete length of 1024 codes.  

  

Figure 6-9: Digital Code vs. Integration Time (us) 

 

Figure 6-10: DNL (LSB’s) vs. Digital Code 
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Figure 6-11: INL (LSB’s) vs. Digital Code 

Table 6-2: Performance comparison against the latest references 

Specification Ref [39] Ref [40] Ref [41] Ref [42] This work 

ROIC Type Analog Analog Digital Digital Digital 

Detector Type LWIR LWIR SWIR-

LWIR 

SWIR-

LWIR 

NIR/ 

CMOS 

Technology Node 350nm 600nm 90nm 90nm 65nm 

Frame Rate NA NA Not tested 10KHz 10KHz 

Maximum 

Readout Speed 

2MHz 5MHz NA NA 20MHz 

Format 32 x 4 576 x 6 256 x 256 256 x 256 16 x 16 

Pixel Pitch 30um x 

30um 

56um x  

43um 

30um x 

30um 

30um x 

30um 

30um x  

30um 

Dynamic Range 

(dB) 

77 79 100 112 128 

Power 

Consumption 

(uW/pixel) 

781 28.93 1.22 0.9 0.58 
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7. SUMMARY AND CONCLUSION                                                                                                                                  

 

`Certainly DROIC (Digital Read-out Integrated Circuit) based image sensor 

implemented in the thesis has a lot more advantages over the traditional analog and 

digital architectures. It can overcome the fundamental limitations of lower side and 

higher side photo current integration limits due to much higher well capacity and easily 

extend the dynamic range as displayed in this case well over 125dB. The design achieves 

a very low power consumption of about 0.58uW/pixel as compared to the other 

reference designs, mainly because of the novel dynamic integration control technique 

implemented in the design. The power consumption is reduced because of two main 

reasons. Firstly, if the photocurrent is higher, the integration is automatically switched 

off after a fixed duration and, it also lets us use a much smaller counter size (of only 10 

bits + 1-bit of integration control). There was Fixed Pattern Noise observed from one 

pixel to another owing to variation in the front-end comparator gain, threshold and 

offset, and the integration capacitor. This was compensated in the digital domain with 

gain and offset correction. We have implemented a digital calibration scheme in the post 

processing mode which cuts down the standard deviation (of the pixel-pixel variation) 

by almost 75%. The imager also shows a good linearity performance of 

0.65LSB/1.65LSB DNL/INL respectively. All the circuits were implemented in 65nm 

TSMC CMOS technology process node. The lower process node helps us push the 

readout frequency to as high as 20MHz (the last tested frequency). Overall, the imaging 
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solution proposed has shown very promising performance and should serve the emerging 

needs of infrared and visible sensing applications. 

Future work involves testing of the APDs implemented in the design and 

verifying their performance across the six folds of optical signal’s intensity given to the 

APDs. This involves de-encapsulation of the chip’s QFN package to remove the lid from 

the top of the chip so that light can fall on the APDs. Then PCB should be mounted on 

the optical test-bench, and it needs to be fed with the intensity varying light source 

through an optical lens (for focusing the light), and showcase that we are able to capture 

that wide dynamic range using the imaging solution.  
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