769 research outputs found

    On the delivery robustness of train timetables with respect to production replanning possibilities

    Get PDF
    Measuring timetable robustness is a complex task. Previous efforts have mainly been focused on simulation studies or measurements of time supplements. However, these measurements don't capture the production flexibility of a timetable, which is essential for measuring the robustness with regard to the trains' commercial activity commitments, and also for merging the goals of robustness and efficiency. In this article we differentiate between production timetables and delivery timetables. A production timetable contains all stops, meetings and switch crossings, while a delivery timetable only contains stops for commercial activities. If a production timetable is constructed such that it can easily be replanned to cope with delays without breaking any commercial activity commitments it provides delivery robustness without compromising travel efficiency. Changing meeting locations is one of the replanning tools available during operation, and this paper presents a new framework for heuristically optimising a given production timetable with regard to the number of alternative meeting locations. Mixed integer programming is used to find two delivery feasible production solutions, one early and one late. The area between the two solutions represents alternative meeting locations and therefore also the replanning enabled robustness. A case study from Sweden demonstrates how the method can be used to develop better production timetables

    Efficiency and Robustness in Railway Operations

    Get PDF

    An adjustable robust optimization approach for periodic timetabling

    Get PDF
    In this paper, we consider the Robust Periodic Timetabling Problem (RPTP), the problem of designing a periodic timetable that can easily be adjusted in case of small periodic disturbances. We develop a solution method for a parametrized class of uncertainty regions. This class relates closely to uncertainty regions known in the robust optimization literature, and naturally defines a metric for the robustness of the timetable. The proposed solution method combines a linear decision rule with well-known reformulation techniques and cutting-plane methods. We show that the RPTP can be solved for practical-sized instances by applying the solution method to practical cases of Netherlands Railways (NS). In particular, we show that the trade-off between the efficiency and robustness of a timetable can be analyzed using our solution method

    State of the Art Overview on Automatic Railway Timetable Generation and Optimization

    Get PDF
    In railway transportation, each train needs to have a timetable that specifies which track at which time will be occupied by it. This task can be addressed by automatization techniques both in generating a timetable and in optimizing an existing one. In this paper, we give an overview on the state of the art of these techniques. We study the computation of a technically valid slot for a train that guarantees a (short) spatial and temporal way through the network. Furthermore, the construction of a cyclic timetable where trains operate e.g. every 60 minutes, and the simultaneous construction of timetables for multiple trains are considered in this paper. Finally, timetables also need to be robust against minor delays. We will review the state of the art in the literature for these aspects of railway timetabling with respect to models, solution algorithms, complexity results and applications in practice

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    An Empirical Analysis of Robustness Concepts for Timetabling

    Get PDF
    Calculating timetables that are insensitive to disturbances has drawn considerable research efforts due to its practical importance on the one hand and its hard tractability by classical robustness concepts on the other hand. Many different robustness concepts for timetabling have been suggested in the literature, some of them very recently. In this paper we compare such concepts on real-world instances. We also introduce a new approach that is generically applicable to any robustness problem. Nevertheless it is able to adapt the special characteristics of the respective problem structure and hence generates solutions that fit to the needs of the respective problem

    Railway Rolling Stock Planning: Robustness Against Large Disruptions

    Get PDF
    In this paper we describe a two-stage optimization model for determining robust rolling stock circulations for passenger trains. Here robustness means that the rolling stock circulations can better deal with large disruptions of the railway system. The two-stage optimization model is formulated as a large mixed-integer linear programming (MILP) model. We first use Benders decomposition to determine optimal solutions for the LP-relaxation of this model. Then we use the cuts that were generated by the Benders decomposition for computing heuristic robust solutions for the two-stage optimization model. We call our method Benders heuristic. We evaluate our approach on the real-life rolling stock-planning problem of Netherlands Railways, the main operator of passenger trains in the Netherlands. The computational results show that, thanks to Benders decomposition, the LP-relaxation of the two-stage optimization problem can be solved in a short time for a representative number of disruption scenarios. In addition, they demonstrate that the robust rolling stoc
    • …
    corecore