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Summary

Passenger railway transport is an effective means of providing high capacity
transport that is energy efficient and has low emissions. As the population of
Denmark grows and there is an increased request for mobility, there is a need
for railway services offering greater capacity and more reliability. Offering
these services presents a challenging sequence of planning problems for
operators. These range from problems considered on a daily basis to planning
for years in the future, with different problems interacting and influencing
each other.

Operations research methods can be used to effectively model, investigate,
and solve railway planning problems. Despite advances in computational
power these large problems are still challenging to solve, especially as more
modelling detail is sought. Within a Danish context this thesis seeks to apply
operations research methods to different planning problems beyond past
approaches, and where applicable, investigate solution methods that place
more focus on the passenger and passenger experience. To cater to the growing
demand for rail transport, and compete with different modes of transport,
Danish railway operators must offer a consistent, reliable service, that is well
planned from both a passenger and operator perspective. This thesis therefore
considers different planning problems within passenger railway considering
robustness of the system, and efficiency and optimality from the point of view
of the passenger or operator.

The contributions of the thesis are in the investigation of robustness in railway,
the application of optimization to a number of railway planning problems, and
a detailed consideration of the specific concerns of Danish railway services.
These contributions are summarised in the introductory chapter, and in the
latter part of the thesis are given in each chapter.





Resumé (Danish summary)

Passager-transport via jernbane er en effektiv transport form der sikrer høj
kapacitet, er energi effektiv og har lav udledning af drivhusgasser. Efterhånden
som Danmarks befolkning vokser og der er et ønske om øget mobilitet er der
brug for at jernbanen som en del af den offentlige transport tilbyder større
kapacitet og pålidelighed. At udbyde disse services stiller operatørerne overfor
en udfordrende række af planlægningsproblemer. Disse går fra operationelle
problemer på daglig bases til mere strategiske planlægningsproblemer, hvor
tidshorisonten er et år eller mere.

Operationsanalyse kan bruges til at modellere, analysere og løse mange af
disse jernbane-relatede planlægningsproblemer. På trods as stigende comput-
erkraft er en række af disse optimeringsproblemer stadig en udfordring at
løse bla. fordi man søger at få stadig flere detaljer med i modelleringen. Med
baggrund i problemstillilngerne som de ser ud for en dansk operatør belyser
denne ph.d.-afhandling hvordan operationsanalytiske metoder kan anven-
des til forskellige planlægningsproblemer i den samlede planlægningsproces.
Afhandlingen afspejler også et øget fokus på passagerne og deres oplevelse af
den transport-service de tilbydes. Der er specifik behandlet problemstiilinger
omkring robusthed af togsystemet samt effektivitet og optimalitet ud fra et
passager fokus og/eller operatør-fokus.

Denne afhandlings primære bidrag ligger i undersøgelser af robusthed i
jernbanedrift, anvendelse af optimering på en række centrale planlægningsr-
problemer og en detaljeret beskrivelse af centrale udfordringer for danske
operatører. Bidragende er overordnet beskrevet i det introducerende kapitel
og efterfølgende behandlet mere grundigt.
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Part I

Introduction





Chapter 1

Thesis Overview

1.1 Motivation

Globally, passenger numbers are increasing, placing more demand on in-
frastructure, operations, and consequently on planning. In a Danish context
passenger railway systems are relied upon daily by commuters and long dis-
tance travellers. Railway services offer a viable alternative to private vehicles,
especially as cities become more densely populated. However with increasing
passenger numbers, challenges arise in meeting demand while still providing
a reliable, punctual service.

This thesis is largely focused on railway operations in Denmark, with rail
operator Danske Statsbaner (DSB) and especially on the Copenhagen S-tog
commuter network. In a Danish context, there is recognition that passengers
are not committed to railway and will make use of alternative modes of
transport if railway services are not sufficiently reliable. Quoting the 2011
annual report for DSB S-tog [DSB S-tog a/s, 2011]:

. . . a continued increase in passenger numbers is expected.
Therefore, an important task will be to ensure capacity for the
growth while at the same time ensuring that we can retain the
customers who have already abandoned other means of transport
. . .



4 Thesis Overview

The challenge of avoiding a degradation in service while increasing capacity
is highlighted, and the fact that passengers will not maintain a commitment
to rail if service degrades.

Passenger numbers have indeed increased; the 2015 annual report for DSB
[DSB, 2015a] tabulates annual passenger numbers (in thousands) for the years
2011–2015, reproduced in part in Table 1.1. Passenger numbers for both the
S-tog network in Copenhagen and for other Danish rail use grew every year,
and in total S-tog passenger numbers grew by over 10% during the five year
period.

Table 1.1: Rail usage in Denmark, in thousands of annual passenger trips.

2011 2012 2013 2014 2015

S-tog 103,393 106,133 109,242 111,967 114,121
Other 72,710 74,844 75,973 76,360 77,760
Total 176,103 180,977 185,215 188,327 191,881

To meet this challenge, planning and decision support tools are needed.
Despite increases in computational capability, railway planning problems are
still large and complex, and it is difficult to find good quality solutions for all
problems. In many cases planning is or has been performed manually, by teams
of planners with detailed knowledge and experience. However as greater
capacity is sought, and the complex interactions and inter-dependencies
between parts of plans and between different systems become more significant
and more constraining, such manual planning becomes infeasible.

Operations research methods provide tools that can effectively assist in describ-
ing and solving these complex planning problems. However more research is
needed in exploring, testing and validating new models and methods for solv-
ing such problems. Despite similarities, operations in different countries often
have different details and requirements that facilitate (and require) different
methods being investigated. Changing attitudes, policies and expectations for
rail transport require new approaches and greater assurances.

RobustRailS (Robustness in Railway OperationS) is an interdisciplinary re-
search project funded by the Danish Council for Strategic Research bringing
together four departments of DTU to investigate improvements for railway
reliability, punctuality and sustainability in Denmark. This PhD thesis is one
of four RobustRailS PhD projects and aims to apply operations research and
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optimization methods to railway planning problems, specifically considering
passenger perspectives of service quality and reliability.

1.2 Thesis structure

This thesis consists of three parts. Part I contains an introduction to the topic,
background, the methods used and problems studied. Part II contains the
main research topics studied. Part III contains additional research work not
included in the main body.

Part I has a single bibliography chapter, while in Parts II and III, each chapter
has its own bibliography section.

1.3 Thesis contributions

The main contributions of this thesis are contained in the four chapters of
Part II. These are summarised here:

Chapter 6: A Survey on Robustness in Railway Operations.
A survey on the concept of robustness as used for railway planning or for
assessing railway plans. The scope spans all levels of railway planning,
from long term strategic planning to short term tactical level planning.

Chapter 7: An applied optimization based method for line planning to
minimize travel time.
A line planning problem is defined here, with particular features for
the Copenhagen S-tog problem included, and particular features for
modelling passenger costs in a detailed way. The model is tested on the
Copenhagen S-tog problem, showing a range of solutions, and several
metrics are proposed for comparing the different solutions. Different
methods are also proposed for solving the problem, and though we can
not generally find optimal solutions we can for some special cases, and
can find good quality solutions for the general case.

Chapter 8: Integrating robust timetabling in line plan optimization for railway
systems.



6 Thesis Overview

The problem of line planning while considering well spread, “robust”
timetabling, is described here. Taking a heuristic approach, a method is
presented for modifying a line plan based on a timetabling model. The
iterative approach is applied to the Copenhagen S-tog network, showing
how different line plans, including two real line plans, can be modified
in this method to ensure good timetables can be created for them.

Chapter 9: Exact Methods for Solving the Train Departure Matching Prob-
lem.
The Departure Matching Problem is defined, as a subproblem of the
ROADEF/EURO Challenge 2014 problem [Ramond and Nicolas, 2014].
Two different methods for solving problem instances are derived and
compared with the given instances problems of Ramond and Nico-
las [2014]. The departure matching (sub-)problem is proven to be NP-
complete, suggesting that the entire challenge problem is difficult. The
sub-problem is not solvable to optimality for all challenge instances but
solutions are obtainable and bounds discovered which are valid for the
full challenge problem. The method for the challenge problem itself,
presented in Appendix A, was awarded the second place PhD prize for
the ROADEF/EURO Challenge 2014.



Chapter 2

Railway planning and
operations

Passenger railway is a complex service that operates daily on tight time
schedules. There are different stakeholders concerned with the operation,
each holding different viewpoints on the objectives and outcomes observed in
operations, such as the passengers, the operator, and the transport authority.
The plans executed on the day of operation are a composition of different sub-
problems that have been assembled in a planning process over a long period
of time. Typically, a sequence of sub-problems is solved in the lead up to the
day of operation, starting from problems that have a very long term outlook
on passenger railway (course plans made potentially years in advance), and
terminating with very detailed and exact planning for a single day. Solutions
to long-term planning problems may be valid for long periods of time and
only reconsidered occasionally, while shorter term planning problems may be
regularly re-solved.

In this chapter we give an overview of a typical decomposition of railway
planning for passenger railway services. These will be expanded upon in the
sections below, but in short these consist of:

• Network design: determining the station locations and network topology.

• Line planning: determining the “lines” (routes, frequencies) for trains in
the network.
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• Timetabling: determining exact times for specific trains travelling through
the network.

• Rolling stock planning: assigning sequences of trips to rolling stock
units; planning precise movements in stations and depots.

• Crew planning: assigning crew persons to duties required by the timetable
and rolling stock plans.

Network Design

Line planning

Timetabling

Rolling stock
planning

Crew rostering

Recovery

years

years to days

present

Figure 2.1: A typical sequence of rail planning problems, indicating their
relative time horizons.

These problems are shown in Figure 2.1, showing the relative timings of the
planning problems and some indication of the time horizon they consider.
Also displayed on the figure is recovery, which also includes disruption
management and other decision processes that occur during operations, but
here we do not focus on these problems. The arrows are only indicated in a
single direction here but in reality there are also feedback mechanisms where
plans at an “earlier” stage are adapted due to considerations or difficulties
encountered in a “later” stage.

We expand upon each of these in the following sections with a view toward the
problems’ susceptibilities to operations research and optimization methods.
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2.1 Network design

At a strategic level of planning, planners consider the location and size of
stations and the tracks connecting them. In the European model of public
transport, network resources are owned and managed by a single entity,
while the operation of trains on the network is carried out by one or more
independent operators.

Network design, or network planning, is the consideration of these long term
decisions about investment in railway infrastructure. It includes the building
of new stations, tracks, and network systems, and also considers in greater
detail aspects such as the number of platforms in a station and detailed track
layouts.

With such a long term view, decisions made must remain valid for the long
term. Station locations for example tend to remain fixed for decades, while
the nature of the operation of trains running through them may change
significantly in that time. Such decisions are therefore made considering a lot
of uncertainty, and are typically made irregularly. The decisions made have
economic and political implications outside the immediate scope of passenger
railway transport itself, and as such, these problems have not been as studied
in the literature in a similar manner to some of the following problems we
describe, especially from an operations research point of view. Nevertheless,
some work has been undertaken.

Magnanti and Wong [1984] give an overview of models and method used
for network design in transportation. There, the authors comment that due
to the time scale involved in transportation network decisions, and the role
that uncertainty plays in the outcome rather than combinatorial effects, opera-
tions research models are not always applicable. As an exception, the author
identifies transport service networks such as an airline network, where net-
work alteration does not involve capital expenditure, such as building tracks,
but rather simply deciding to offer a service between a pair of cities. An
analogy may be drawn with the liner shipping network design: the problem
of designing a service network for liner container ships that carry shipping
containers on fixed schedules. Brouer et al. [2014] give a recent overview
of the problem, reference model and example benchmark instances. Here,
ports (analogous to railway stations) are taken as fixed, and implementing
a connection between them simply requires sailing a ship directly between
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them (and a ship may generally sail between any pair of ports). Therefore, the
liner shipping network design problem has much freedom for changes to the
underlying network structure in terms of connections between ports, while in
contrast in railway such changes would require significant expenditure. Due
to that freedom, liner ship network design considers not only the existence of
connections between ports but also the ship circulations (analogous to train
lines) that operate in the network as part of a single problem. In railway,
line planning is generally considered as a distinct problem that is elaborated
upon in the following section. Quak [2003] considers the construction of a bus
line plan, which would again be a combination of the distinct problems of
network design and line planning. The author takes as a problem parameter
the driving time between every pair of stations, which is possible without
additional investment in infrastructure due to the existence of a road network.
In the work, bus station locations are fixed, but as bus stations are relatively
easy to build or reposition, their locations can also be considered as part of the
network design planning problem. Silman et al. [1974] for example consider
the problem of planning bus routes by dividing a city up into zones, and the
bus network consists of connections and routes travelling between adjacent
zones, without explicitly considering the presence or locations of bus stops.
Again, this problem combines elements of network design in the bus stops
and connections between them, with the line planning problem elaborated
upon in the subsequent section.

2.2 Line planning

As alluded to in the previous section, the line planning problem is that of
planning routes in the network. Typically, in a passenger railway context,
trains operate on fixed published routes within the network at some regular
schedule, with some stopping pattern and published frequency. For example
a local train may operate every hour between two major cities stopping at
every minor town in between, terminating at the end city, while an inter-city
train may also pass between the two cities once every hour but as part of a
longer route. Given the fixed network in infrastructure then, the line planning
problem is that of constructing lines, that are each a route, stopping pattern,
frequency, and service type.

A route is a path in the infrastructure network, which in railway networks
is likely either a simple path between two end stations, or a simple cycle. A
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stopping pattern is the sequence of stations along the network that the line
stops at. A frequency is the number of trains that operate on the line every
hour, generally in both directions. A service type dictates the speed or type
of train unit that operates on the line. In a typical line planning problem,
some of these decisions would be fixed or implied by others. For example,
if planning the lines for an inter-city train system in some country, stopping
patterns would already be known (being the major cities, with other stops
being ignored) as would the type of service e.g. high speed trains.

Like the network design problem, the line planning problem takes a long-term
view, producing plans that may remain unchanged for several years. However,
unlike network design, line plans may be relatively easily changed, and many
considerations for valuing a line plan are combinatorial in nature (i.e. how the
different lines “fit together”). Therefore, mathematical optimization has been
successfully applied to many line planning problems in railway transport. See
Schöbel [2012] for a recent review of the literature on line planning, primarily
in railway transport.

From a passenger point of view, in a city, the line plan is often expressed
as a map showing the physical network and the individual routes indicated.
See Figure 2.2 for an example showing (some elements of) the line plan for
commuter trains in Copenhagen, Denmark. In this particular network, routes
and stopping patterns are part of the line planning problem, but all lines offer
the same type of service by running at the same speed and with (almost the)
same types of units.

For an example of another dense map of lines, see Figure 2.3 showing lines
from the Hong Kong MTR; here there are no stopping pattern considerations
in the current planning as lines stop at every station they pass.

In both examples, decisions at the network design level have strong implica-
tions for what is possible in line planning. For example only certain stations
in networks have the necessary infrastructure to be end stations where lines
terminate. Furthermore, stations may be visited by several lines travelling in
different directions, but due to track layout it may currently be impossible for
trains arriving in certain directions to continue in other directions, therefore
limiting line possibilities.

For a region, the full line plan problem may be decomposed by service type;
for example, inter-city train lines may be planned independently of local trains,
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Figure 2.2: DSB S-tog network of Copenhagen; adapted from DSB [2015b]

even though they may share infrastructure and could be planned conjointly.
However changes can be made; a station once bypassed by inter-city trains
may be stopped at in a new plan, and in many cases such decisions are made
on an individual basis (making a small change to an existing plan rather than
creating a new plan).

Schöbel [2012] categorize line planning approaches into those that are cost
oriented or passenger oriented. Generally, in any line planning problem, there
is an estimate of passenger demands for different trips, and a line plan must
cater to every such demand.
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Figure 2.3: MTR system map in Hong Kong. Adapted from MTR [2016]

A cost oriented approach aims to find a line plan with minimal cost to the
operator while guaranteeing all passengers are transported. A limitation
here is that some passengers are likely to be particularly poorly served.
Another limitation is that operator costs can not be precisely known when
only planning the line plan; costs almost certainly depend upon more detailed
plans that are not known at the line planning stage. Therefore, costs must
be estimated. Goossens et al. [2006] for example model the problem from
an operator-cost perspective, in the (uncommon case) of a problem where
stopping pattern is a decision variable.

In contrast a passenger oriented approach aims to minimise some measure
related to the passenger, such as the total travel time for all passengers. A
weakness here may be that solutions are impractically costly for the operator,
and an operator cost limit is often imposed. However another weakness is that
many passenger related measures can not be accurately assessed with only a
line plan, as things such as travel time can depend on the coordination between
trains of different lines which is not specified in the line plan, and running
time on trains between stations can depend on timetabling decisions. Some
authors [Bussieck et al., 1997, for example] simplify the passenger-oriented
objective by maximizing the number of direct travellers the line plan caters to,
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while in work such as Borndörfer et al. [2007] passenger travel time in trains
is modelled but time spent waiting when transferring is not.

We see then that the line planning problem has conditions imposed on it by
decisions made earlier in planning, and estimates must be made for decisions
to be made in later planning. A similar pattern can be observed in later
planning problems.

2.3 Timetabling

The timetabling problem is perhaps the most studied in the literature from
an operations research point of view, and is perhaps the most “passenger-
visible” component of a railway plan. While the line plan specifies only routes
and operating frequencies, the timetable must assign specific times to trains
throughout an operational period. This time allocation must interact with
other train systems, such as freight rail, and in an area with several operators
of passenger railways, with each other.

Continuing with the example of the Copenhagen S-tog railway network,
Figure 2.4 shows part of the timetable for a single line in the S-tog network,
showing the minute of the hour that the train visits stations, with trains
travelling from Hillerød to Solrød Strand to the left, and the opposite direction
to the right. In this timetable, some stations are marked but bypassed (Virum,
Sorgenfri etc.) by this particular line, although other lines will stop at these
stations. This is a feature of the line plan that is then respected by the timetable.

Also, it is noteworthy that there are six trains’ scheduled every hour (also
defined in the line plan; other lines operate at different frequencies), and
the exact same times repeat every hour. However at the lower end it should
be noted that every second train stops at an earlier end station (Hundige
rather than Solrød Strand). Nonetheless, the timetable for this line (and every
line) repeats every hour. In fact the current S-tog timetable repeats every 20
minutes, and would therefore be referred to as a cyclic or periodic timetable.
Other timetables may not have this periodic feature, but it is common in most
examples of timetabling.

In contrast to the regularity of the S-tog network, Figure 2.5 shows the
timetable for a single line travelling southward toward Wellington city in
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Hillerød

Hillerød
Allerød
Birkerød
Holte
Virum
Sorgenfri
Lyngby
Jægersborg
Gentofte
Bernstorfsvej
Hellerup
Svanemøllen
Nordhavn
Østerport
Nørreport
Vesterport
København H
Dybbølsbro
Sydhavn
Sjælør
Ny Ellebjerg
Åmarken
Friheden
Avedøre
Brøndby Strand
Vallensbæk
Ishøj
Hundige
Greve
Karlslunde
Solrød Strand 

02 12 22 32 42 52 
07 17 27 37 47 57 
12 22 32 42 52 02 
17 27 37 47 57 07

22 32 42 52 02 12
25 35 45 55 05 15

30 40 50 00 10 20 
32 42 52 02 12 22
34 44 54 04 14 24
37 47 57 07 17 27
39 49 59 09 19 29
41 51 01 11 21 31
44 54 04 14 24 34 
46 56 06 16 26 36
49 59 09 19 29 39 
50 00 10 20 30 40 
52 02 12 22 32 42 
54 04 14 24 34 44 
56 06 16 26 36 46 
58 08 18 28 38 48 
01 11 21 31 41 51 
03 13 23 33 43 53 
06 16 26 36 46 56 
08 18 28 38 48 58 

21 41 01
23 43 03
27 47 07

45 55 05 15 25 35
38 48 58 08 18 28
33 43 53 03 13 23
28 38 48 58 08 18

23 33 43 53 03 13
21 31 41 51 01 11

15 25 35 45 55 05
13 23 33 43 53 03
11 21 31 41 51 01
09 19 29 39 49 59
06 16 26 36 46 56
04 14 24 34 44 54
03 13 23 33 43 53
59 09 19 29 39 49
57 07 17 27 37 47
55 05 15 25 35 45
53 03 13 23 33 43
51 01 11 21 31 41
49 59 09 19 29 39
47 57 07 17 27 37
45 55 05 15 25 35
42 52 02 12 22 32
40 50 00 10 20 30
37 47 57 07 17 27

44 04 24 
42 02 22 
38 58 18 

Hundige /
Solrød Strand 

Figure 2.4: Timetable for a single S-tog line. Adapted from DSB [2016]

New Zealand. Here the trains do not operate in a regular fashion but rather
operate approximately every thirty minutes in the morning, though timings
vary, and only two train services are offered between midday and midnight.
The difference in morning and evening frequencies reflect commuter demands,
and the varying timings may reflect the sharing of infrastructure with freight
railway, and a lack of emphasis given to providing a regular service to com-
muters.

However, this timetable presentation gives only a macroscopic view of the
detail of movements in the network. For example dwell times at platforms
are not specified; platforms themselves are not specified. To be consistent
in avoiding any conflicts, where two trains are planned to use a piece of
infrastructure within too tight a time window, greater detail is required. When
modelling the timetabling problem there are different levels of detail that may
be considered. A high-level view may be taken where only times between
stations are decided upon while exact resource utilization through stations,
for example, are ignored, or a more detailed consideration may be undertaken.
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To Wellington Monday to Friday
AM PM

Masterton 5.45 6.21 6.48 10.25 3.40 8.20
Renall Street 5.48 6.24 6.51 10.28 3.43 8.23
Solway 5.51 6.27 6.54 10.31 3.46 8.26
Carterton 6.03 6.39 7.06 10.40 3.56 8.35
Matarawa 6.10 6.46 7.13 10.46 4.03 8.41
Woodside 6.16 6.52 7.19 10.51 4.09 8.46
Featherston 6.27 7.03 7.30 11.01 4.20 8.56
Maymorn 6.42 7.18 7.45 11.16 4.35 9.11
Upper Hutt 6.56 7.32 7.57 11.27 4.46 9.22
Waterloo 7.12 7.50 8.13 11.40 4.59 9.35
Petone 7.18 7.58 8.19 11.47 5.05 9.41
Wellington 7.28 8.08 8.29 11.59 5.17 9.55

Figure 2.5: Timetable for a train line into Wellington, New Zealand. Adapted
from Metlink [2014]

Lusby et al. [2011] provide a review railway track allocation, which includes
timetabling with a microscopic viewpoint.

Cacchiani and Toth [2012] review the literature of train timetabling, consider-
ing both nominal and robust approaches. In the nominal case, they identify
two approaches; those based on models for the Periodic Event Scheduling
Problem (PESP) of Serafini and Ukovich [1989], and approaches that are
aperiodic. The authors suggest that one source of aperiodicity in a resultant
timetable is in a multi-operator environment, where several operators each
supply a preferred, periodic timetable, to an infrastructure manager. To create
a complete, non-conflicting timetable the manager must modify those original
timetables, making them aperiodic. An obvious example of such an occur-
rence is infrastructure shared between passenger rail services and freight rail
services.

An example of an acyclic modelling of a timetable is work by Oliveira and
Smith [2000], who model trains schedules on a single track corridor as a
job-shop problem, where each train is required to perform a number of jobs
on different machines. Here machines corresponding to infrastructure, jobs to
utilizations, and the required sequence is defined by the train’s intended trip.
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2.4 Rolling stock management

A train timetable dictates train journeys and each must be operated by one
or more physical train units. Rolling stock scheduling is the problem of
determining which train unit(s) should operate on each of those train journeys.

A rail operator likely has several different types of rolling stock unit, and the
line plan and timetable place some restriction on which units are appropriate
for each journey. This may be due to required speed, infrastructure restrictions,
or required passenger capacity. If multiple units are assigned to the same
trip, they are physically attached to each other in a composition, which applies
additional constraints.

Over a time horizon, each train unit is assigned some sequence of trips it will
operate. Between trips, there must be sufficient time for the unit to negotiate
the terminal station from its arrival platform to its departure platform. If the
unit is part of a composition that will change, there must also be time for
the physical detachment and attachment of vehicles. Fioole et al. [2006] give
a model for train scheduling that also includes composition changes during
journeys at network bifurcations. For example a train composed of two train
units travelling from station A could stop at station B where the rail network
splits. The units could be detached with the front continuing one direction to
station C while the rear continues in another direction to station D.

In some rail systems, trains are not composed of individual self driving
vehicles but of a powered locomotive and a number of passive carriage units.
In this case many different compositions are possible.

Over some time horizon, many different considerations are important. Each
unit may for example be required to visit cleaning facilities, refuelling facilities,
de-icing facilities at regular intervals, located at different locations in the
network. There may also be maintenance requirements necessitating taking
units out of circulation after travelling a certain distance to visit a maintenance
location. These requirements may then require that a unit is assigned a variety
of journey types in different parts of the network rather than exclusively
operating in some small region.

There are additional sub-problems that may be considered part of rolling stock
planning. One example, though which could also be classified as an extension
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of the timetabling problem, is the allocation of platforms at large stations,
termed by Train Platforming Problem by some authors [Caprara et al., 2011,
for example], where arrival and departure times are specified by a timetable
but there is freedom in assigning platforms to trains. Similarly, the parking of
units for periods when they are not in use can be a standalone subproblem,
where a station depot may consist of a number of long single tracks that
several units can be parked on in a last-in first-out stacking manner. While
if taking a more abstract or high level view of planning it may be assumed
that any rolling stock plan that requires units being parked in and retrieved
from shunting depot facilities will be feasible, it may in fact be impossible to
store and retrieve units in the required order, or it may be possible only with
significant unit movement “reshuffling” them in the depot. These problems
must also be considered. Freling et al. [2005] define the Train Unit Shunting
Problem as two subproblems; matching arriving and departing train units for
shunting, and physically parking those units on shunting tracks. Kroon et al.
[2008] consider these two sub-problems in an integrated manner.

2.5 Crew planning

All planned train movements have some corresponding requirement for crew.
All movements require a driver, and some may also require conductors and
other passenger-serving crew members. Crew planning is required to ensure
that every trip is covered by the required crew members, each with the
necessary skills or qualifications for that trip.

From an individual crew person’s point of view, each requires a block of work
(in some time period) consisting of a sequence of train trips with considerations
given to requirements such as break time, shift length, and initial and final
location. A common planning method is to first create anonymous crew
schedules that cover every required train journey, and then later assign those
schedules to individual crew members. The first step is (sometimes) referred
to as crew pairing and the second step crew rostering.

Caprara et al. [2007] give an overview of railway optimization problems,
and describe these two distinct stages of crew scheduling (pairing) and crew
rostering. A natural way to model crew scheduling is as a set partitioning
problem (or set covering problem). That is, to select from a large set of possible
work-shifts (of trips) a subset such that each trip is contained exactly once in
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their union.

Crew planning for railway shares features to the well-studied crew planning
problems in airlines, although there are some differences. For example airline
work duties often include overnight stays in remote locations which can incur
significant cost.

Optimization methods are heavily used in the crew scheduling process by
some rail operators. For example Abbink et al. [2005] describe what they call
a reinvention of crew scheduling at Netherlands Railways which includes the
use of optimization software package TURNI, which is also used by DSB S-tog
[Jespersen-Groth et al., 2009].

Kohl and Karisch [2004] present an overview of approaches for the crew
rostering problem, and describe their crew rostering system that is used by
eight European and American airlines, and by Swedish rail operator SJ and
German rail operator Deutsche Bahn.

2.6 Disruption management

During daily operations, events often occur that result in plans being inop-
erable exactly as specified. These events may be minor, such as delays, that
can be addressed by minor changes to later event times, but they may also be
major incidents that require large changes to plans and possibly cancellation
of train services. During recovery planning, decisions are made altering plans
or creating new plans, during operation, to operate during the unexpected
scenario and return to normal operations some time afterwards.

In examples such as infrastructure failure requiring temporary closure of a
track section, immediate, significant changes to plans are required. Often the
duration of the closure is unknown, and new incidents may occur, so the
recovery must be performed in an ongoing and flexible manner.

This recovery planning can require significant changes to all types of plans,
including the rolling stock and crew, and it may be true that formerly hard
constraints can be slackened. Similarly, objectives may be different compared
to when plans were originally created; now, the goal may be to create a feasible
plan that can return operations to their “pre-incident” state easily.
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Cacchiani et al. [2014] survey the literature on rescheduling in railway oper-
ations, considering those that focus on the timetable, the rolling stock, the
crew, or take an integrated approach. As an example, Nielsen et al. [2012]
present a rolling time-window method for the rescheduling of rolling stock
units in the case of a track-closure disruption, where plans are updated as
more information about the likely duration of the disruption becomes avail-
able. Here, a modified timetable is taken as input and updated (as input)
as the scenario develops, while crew planning is left for a later component
of rescheduling. Rezanova and Ryan [2010] focus on the crew rescheduling,
considering the problem of repositioning crew who end duties at the wrong
location to continue their next duty, due to rescheduling, and assigning new
crew to trips lacking crew. As an example of an integrated approach, Walker
et al. [2005] consider rescheduling the timetable and crew simultaneously, in a
single track context with limited overtaking sidings.

Taking a passenger-orientated view, and in the context of smaller delays,
Ginkel and Schöbel [2007] study the problem of whether trains (or buses)
should have imposed delays and wait for feeder vehicles that are delayed, or
not. If the vehicles are not made to wait then transferring passengers on the
incoming delayed vehicle will miss their transfer, while if vehicles are made
to wait then more passengers experience a delay.

An approach synergistic to disruption management is considering robustness
in the earlier planning process. This is an attempt to include protection
against some types of disruptive events in plans, so that plans can absorb
things like delays with no or minor alteration, or so that rescheduling around
large scale disruptions is easier or cheaper than if not considered. A more
comprehensive description of robustness considerations in railway planning
is given in Chapter 6.



Chapter 3

Methods Employed

3.1 Linear programming

Linear programming is a method of mathematical optimization which de-
scribed generally is the selection of the best element of some defined set, given
a function for measuring the value of an element. We may consider set P , a
function f : P → R, and then define the mathematical optimization problem:

maximize
x∈P

f (x)

Many industrial decision problems can be expressed in such a way, at the risk
of being so general as to be unsolvable in large scales. By restricting ourselves
in the definition of P and f , we can describe a smaller variety of problems but
ones that we can more readily solve.

Let x be a vector of unknown values to be determined; a decision vector. Let
b ∈ Rm and c ∈ Rn be known real vectors, and let A ∈ Rm×n be a real matrix.
An Linear Programme (LP) is then expressed in standard form as follows:

minimize cᵀx

subject to Ax ≤ b

x ≥ 0

The set of all feasible solutions (P ) is all possible values x that satisfy the
given conditions, and, if non-empty and bounded, there is an element (or
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some elements) that provide a minimum value cᵀx. The feasible set is a convex
polytope.

LPs are easily formulated and easily solved in polynomial time (see Sipser
[2006] for a reference on algorithm complexity, not generally considered
further in this work). One common method for solving such problems is using
the simplex algorithm, which finds an optimal extreme (corner) solution.

Chapters 7, 8 and 9 all make use of LP formulations in some way for problems
in railway line planning, timetabling and rolling stock assignment. Generally,
however, the LP formulations can not sufficiently describe the problems but
rather a relaxation of the problems. A relaxation can provide useful bounding
information for the more refined, complete formulation.

3.2 Integer programming

A weakness of LP models is that the decision variables all have real values, and
due to the convexity of the set of feasible solutions, there are always solutions
between other solutions. If a and b are in feasible set P , then by convexity any
λa + (1− λ)b, where 0 ≤ λ ≤ 1, is in P .

This is a limitation when modelling many industrial problems that often
feature discrete elements such as decisions or costs. For example if formulating
a problem related to finding a route for a train unit in a railway network,
where there are two distinct paths that may be chosen, the only valid solutions
are to choose exactly one of the two paths, but there is no valid solution to
half choosing each of the paths.

Using the tools of LP modelling, an obvious extension is to require elements
of x to be integer; that is, given the polytope P we seek some x ∈ P ∪ Zn. If
we ignore the integrality requirement and solve the problem as an LP (the LP
relaxation of the Mixed Integer Programme (MIP)), we will likely find that the
solution is not integer. However for any MIP there is some “best” formulation,
where the set of feasible solutions exactly coincides with the convex hull of
feasible integer solutions; therefore for any objective function the optimal
solution to the LP will be integer.

Generally however our formulation does not naturally give LP solutions that
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are integer, but the objective value for the optimal LP solution provides a
bound on the optimal solution (in that it can be no better than the LP solution).

A general approach to solving such problems is termed branch-and-bound;
where branching refers to an exhaustive (potentially enumerative) search
of the discrete solution space, and bounding refers to culling parts of the
search using knowledge from the LP relaxation. Details are not given here,
but solving MIP problems via branch-and-bound is well-established; an early
survey of branch-and-bound methods is provided by Lawler and Wood [1966].

Another method is the generation of cutting planes: linear constraints that
separate some discovered extreme optimal (but non-integer) solution from the
convex hull of integer solutions. For a reference on cutting planes, see Wolsey
[1998, Chapter 8]. Cut generation is implemented, with branch-and-bound
methods, in commercial solvers for MIPs. There are specific methods, but
at a high level we may say a cut is a linear constraint that we can add to a
formulation that is violated by some non-integer solutions, but by no integer
solutions. We ourselves however can create cuts, or linear constraints, that are
violated by non-integers solutions; in the best case these coincide with the
convex hull of integer solutions. We can also reformulate our problem so that
the polytope we define is closer to the convex hull; in the LP relaxation, we
will see this as an improvement in the bound.

Chapter 7 uses a MIP formulation for the line planning problem. Chapter 8
combines two MIP formulations of different problems; one for line planning
and one for timetabling. Chapter 9 compares two different MIP formulations
for matching arrival and departure trains at a station.

3.3 Delayed column generation

Some LP problems can be formulated in a way that results in the matrix
A having many more columns than rows. In such cases, a possible method
for solving problems is to delay the creation of all the columns initially, and
generate them as needed. Ideally, the optimal solution will be found with far
fewer columns generated than exist.

Exact details are not given here, but see Lübbecke [2010] for an overview of
column generation. However, in short, delayed column generation mirrors
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the revised simplex method for solving LP problems, where at each iteration
a subset of columns constitute a basis; a new column is identified to enter
the basis and one to leave. This master formulation contains only a subset
of all present columns, and new columns are (typically) introduced by be
solving an optimization problem that creates one or more columns that could
be basis-entering columns for the master formulation if any exist.

A common paradigm is to identify a problem with a certain structure and
perform a Dantzig–Wolfe decomposition which is a reformulation of the
problem as a master problem with several sub-problems, and solving by
column generation. The method originally comes from Dantzig and Wolfe
[1960] and has been applied to many problems. Here, the original problem
is specified by an A matrix with block-diagonal structure, with an additional
number of linking rows. More clearly, the following form is required:


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bn

C1 C1 . . . Cn


Here, block Bi will correspond to one subproblem, and rows corresponding to
coupling rows C will be present in the master problem. Each block is, indepen-
dently and considering its corresponding right hand side, reformulated as a
convex combination of its extreme points. If unbounded, a conic combination
of extreme rays is also required.

In the case of integer programming, delayed column generation may also
be used. In fact a reformulation may result in a tighter model (in terms of
lower bound); this is for example true when extreme points for the original
subproblem polytope are non-integer, but we can reformulate the problem in
terms of a convex combination of integer extreme points.

As a very general example, consider the common set partitioning problem of
maximizing some function cᵀx and requiring Ax = 1. Here elements of A are
either 0 or 1, as must be elements of x. A partition of a set S is the assignment
of the elements of a set into distinct, disjoint subsets, such that every element
of S exists in exactly one subset. Here, rows of A correspond to the elements
of S and columns correspond to valid subsets, where a 1 in a row and column
indicates the presence of appropriate set element in the subset.
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In a column generation approach, we would begin with only some of a
subset of columns, though taking care to guarantee feasibility, and solve the
corresponding LP finding a non-integer solution x, an optimal basis, and a
dual vector π. However this is only optimal give that only a subset of columns
are present in the problem. For each non-basic column present we could check
the reduced cost c− πᵀz for every column c and none would be negative;
however, there may be columns not yet present that would give a negative
reduced cost. Using π, we attempt to find one or more new columns to
introduce to the problem, and continue solving the LP. One identified column
will immediate be an entering column for the simplex method.

3.3.1 Subproblem

The subproblem of finding new columns is formulated as an optimization
problem. We solve the problem of finding some column z (of matrix A, which
we may not have defined explicitly):

minimize
z

c− πᵀz

Where c is as defined for an LP or MIP above, and π is a dual variable vector
provided from the master formulation.

A common problem structure is that in the master formulation variables
correspond to paths, and the subproblem can then be formulated as finding a
shortest path as an optimization problem.

The resource constrained shortest path problem is that of finding a shortest
path in a graph between two given nodes, subject to one or more “resource”
limitations on the path. Each arc in the graph is associated with a cost, to be
minimized, and several resource measures. Each resource has a limit which
must not be exceeded anywhere along the path (although if the arc resource
measures are all positive and additive then the limit must simply be respected
at the end of the path). Irnich [2008] examines resource constrained paths in
depth, considering properties, and modelling and algorithmic implications
for different types of resource extension functions, which are the functions
associated with each arc for modifying the resource along the path. In a
transportation context, resources could for example be related to a maximum
distance a train unit could travel before requiring maintenance, or a maximum
number of transfers a passenger would accept on a journey. A resource
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constrained shortest path problem can be formulated as a MIP, but it can also
generally be solved with a labelling algorithm, where at each node a list of
non-dominated labels must be maintained and pushed to neighbours.

Considering the master problem, if it is a MIP then to find integer solutions
we have to implement a branching strategy, which must also be implemented
in the subproblem (to avoid finding columns that do not confirm to the
branching).

Chapter 9 formulates a problem in a way where delayed column generation is
a natural solution method, and solves instances using a resource constrained
shortest path sub-problem. However a heuristic method is taken to finding
integer solutions to avoid the aforementioned challenge of implementing
branching in the sub-problem.

3.4 Multi-objective optimization

We describe LP and MIP optimization above as particular special cases of
mathematical optimization. In both cases there was a single objective func-
tion, and any two feasible solutions could be compared. However, in many
real-world optimization problems, there is more than one relevant objective
function, and not always any valid method to compare every pair of solutions.
A train operator may wish to minimize both some function of passenger expe-
rience and their operator costs, for example minimizing both passenger wait
time and crew hours worked. In both cases the two objectives are measured
in different units and can not be directly compared.

Let us restrict ourselves to objective functions that can each be expressed in
the form cᵀx. Overall, if we have n objective functions, we may express an
overall objective in the form: 

cᵀ1 x
cᵀ2 x
cᵀ3 x
cᵀ4 x

...


i.e., our objective function is now a linear map to Rn, which we can refer to as
the objective space. We should note, then, if considering an LP problem where
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the set of feasible solutions is convex, that the convexity is conserved by the
map.

Generally, as the objectives are non-comparable and we do not have a prefer-
ence for either one, then when comparing two solutions we may say: x1 4 x2 if,
for every cost vector ci, cᵀi x1 ≤ cᵀi x2. We can further state that some solution x1
dominates another solution x2 if x1 4 x2, and, for some i: cᵀi x1 < cᵀi x2. Rather
than seeking some single optimal solution, one may seek a set of feasible
solutions that is not dominated by any other.

Consider Figure 3.1, where for some unspecified LP problem with two objec-
tives the set of feasible solutions is shown in objective space. Any solution is
either dominated by some solution on the dark black line, or lies on the dark
black line and is not dominated by any other. Furthermore, any of the non-
extreme non-dominated solutions can be expressed as a convex combination
of the adjacent extreme solutions. Therefore, generally we need only find all
extreme non-dominated solutions.

0 0.5 1
0

0.5

1

cᵀ1 x

cᵀ2 x

Figure 3.1: The feasible solutions to an LP, in objective space, shaded in
grey. Non-dominated solutions sit on the dark black line, and non-dominated
solutions are at the blue points.

It is also the case that if we reformulate the problem as a single-objective
problem by weighting objectives, the optimal solutions will be one of the
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non-dominated extreme points. That is, we somehow select λi > 0 for every
objective and minimise the single objective ∑n

i=0 λic
ᵀ
i x. This suggests an algo-

rithm for finding all non-dominated extreme solutions by careful appropriate
calculation of weights.

In the case of a MIP, there are more complications. See Figure 3.2 showing
the convex hull of solutions. Unlike in the LP case, it is not sufficient to
find non-dominated extreme solutions, as these alone are not sufficient to
construct solutions dominating all others (as we can not simply take convex
combinations of adjacent solutions). Now, non-dominated solutions do not
necessarily sit on the convex hull of integer solutions. Potential locations of
non-dominated but non-extreme solutions are shown in red on Figure 3.2;
they can not be discovered by taking a weighted sum of objective functions as
for any weighting an extreme point solution will be superior.

0 0.5 1
0

0.5

1

cᵀ1 x

cᵀ2 x

Figure 3.2: The convex hull of integer solutions to a MIP in objective space,
shaded in grey. Non-dominated extreme solutions are in blue, with additional
non-dominated solutions in red.

More complicated methods are required if all such solutions are to be discov-
ered. Ehrgott [2006] gives an overview of different scalarization methods for
MIP problems with multiple objectives.

Chapter 7 formulates a problem with two competing objectives, seeking



3.5 Heuristics 29

solutions that are acceptable for both. However a full enumeration of all non-
dominated solutions is not sought but a range of solutions that are close to
being non-dominated is discovered.

3.5 Heuristics

The methods we have described so far for solving optimization problems are
exact, in that they can guarantee an optimal solution if one exists, or guarantee
that one does not exist. Heuristic methods are a different class of methods for
approaching problems that do not provide such guarantees, but have other
attractive features such as faster running time.

One common class of heuristic method consists of some constructive compo-
nent and a subsequent search component. Initially a feasible solution must be
constructed which for some problem types is not at all trivial. Subsequently,
some search by modifying the solution occurs until a termination criteria is
met. The simplex method in fact can be described in this way, as it first finds
a basic feasible solution and then iteratively moves from solution to adjacent
solution such that the objective function improves. Termination occurs when a
solution is reached that has no improving adjacent solution. For an LP such a
method is sufficient to find the optimal solution, but for many problems such
an approach will not.

As a heuristic, such search where only improving solutions are accepted is
referred to as a hill-climber, and will guarantee a locally optimal solution.
However many classes of problems have the feature of local optimal solutions
that are better than neighbouring solutions, but which are not globally optimal.
It is in fact easy to construct optimization problems for which a locally optimal
solution is arbitrarily worse than the globally optimal solution.

A description of several search heuristic approaches is given by Pirlot [1996].
The authors describe the meta-heuristic search methods of tabu search, genetic
algorithms, and simulated annealing. These all avoid the problem of only
finding local optimal solutions, to some degree, although all will in general not
guarantee global optimality without substantial running time. Both genetic
algorithms and simulated annealing are examples of a common theme of
heuristics inspired by natural processes. Simulated annealing in particular
is close to a simple hill climbing search, except worsening solutions are also
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accepted probabilistically. As the search progresses, a temperature parameter
that controls this probability decreases, such that at the termination of the
method no worsening solutions are accepted. Černỳ [1985] present early work
applying such a method to the travelling salesman problem, of construct-
ing a tour visiting a number of cities, with the inspiration from statistical
thermodynamics clearly explained.

A recent approach is the hybridization of mathematical programming methods
with meta-heuristics, creating what are termed matheuristics. Boschetti et al.
[2009] survey the developments in the hybridization of meta-heuristics with
other methods, some of which are related to, or solvable with, mathematical
programming methods. A simple example is a meta-heuristic search where
solutions are sought in some neighbourhood defined by the fixing of some
problem variables leaving a small number free, and using a MIP solver to find
a solution in this neighbourhood. Such a method permits the exploration of
a complex neighbourhood with the powerful MIP solver, while avoiding the
intractability of attempting to solve the entire problem as a MIP by restricting
the problem size tackled by the solver.

In this thesis, we will consider only heuristic methods that are based on
exact methods; that is, we generally start from some exact but intractable
formulation for the problem and from this derive some heuristic method.

One simple example heuristic applied to a delayed column generation method
is to solve the master problem as a LP, and then at optimality, find the best
integral solution present given the currently discovered columns. In the worst
case there may not even be a feasible integer solution, and if there is it may
be far from optimal. However for many problems, reasonable solutions may
be expected with such a method, and the quality of the solution can be
assessed given the LP bound. This approach is taken in Chapter 9, avoiding
the complexity of generating new columns while branching.

Appendix A describes a decomposition of a problem into several sub-problems
we solve in sequence, some exactly and some heuristically, which is overall a
heuristic method for the problem. The simulated annealing method described
in the appendix moves to a neighbouring solution by a random insertion of
the removed vehicle trajectories. However a different matheuristic method
was also tested of removing the neighbouring vehicle trajectories, generating
several possible trajectories, and using an exact MIP formulation for the
reinsertion.
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Chapter 7 describes a method based on an exact approach but with several
heuristic elements, and Chapter 8 describes a method consisting of two exact
models combined in a heuristic way.





Chapter 4

Problems Considered

The thesis concerns itself with several related projects in railway optimization,
where different methods have been applied, with different objectives and
approaches.

4.1 Robustness in railway planning

Chapter 6 reviews the literature of methods that include some notion of
robustness in railway planning problems. Given the context of this thesis
as part of the RobustRailS project, we considered it relevant to investigate
the usage of robustness in railway optimization. In particular we considered
the extent to which there are concepts of robustness specific to railway, that
consistently span the different planning problems described in the previous
chapter.

Here the motivation is to consider different approaches, consider their similar-
ities throughout the planning horizon, and originally was to discover if there
can be some all-encompassing definition of robustness for railway planning.
We conclude, however, that even for a single planning problem in railway
there are many different, sometimes contradictory, definitions of robustness.
Despite some authors’ attempts to define robustness for particular planning
problems, we conclude that no single definition can exist that satisfies all
stakeholders even for the particular problem, and certainly can not for railway
planning in general.
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The key findings here for railway robustness are that:

• given the many different and sometimes contradictory definitions of
robustness, no clear single definition exists and is unlikely to be created;

• integrated approaches are becoming more common, not necessarily for
solving problems but in considering robustness of one problem by its
influence on another;

• the railway timetable is the most studied in terms of robustness, and the
most accepted planning level where robustness is to be found.

We expect to see more integrated approaches, in railway planning in general
and also those planning for robustness, and more consideration of robustness
in all areas of railway planning.

4.2 Line planning

As outlined in the previous chapter, the line planning problem is that of
selecting or discovering some pool of lines that meet some operational require-
ments and service passengers. Chapter 7 presents a line planning model and
application to the S-tog commuter network in Copenhagen. The problem has
some unique features that, despite the small size of the network compared
to some other networks overseas, make it an interesting study. In addition
we target the passenger cost with particular consideration for line switching,
finding passenger routes based on input demand for travel between every pair
of stations (origin-destination pairs).

The Copenhagen S-tog system is somewhat unusual in having trains with
different stopping patterns, that are not classified separately as “inter-city”
or “local” trains, as might exist in some other networks, but rather lines that
may skip some stations but stop at different stations that other lines skip. The
possibility of arbitrary stopping patterns greatly increases the solution space;
for every route, there are 2k different lines where k is the number of skippable
stations on the route, while in some different problem the route alone would
uniquely define the line.
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Furthermore unlike some other networks where every line operates at the
same frequency, or at any frequency, in the S-tog network there are distinct
valid frequencies (which differ for different parts of the network). Therefore
we model the frequencies discretely.

Finally, given the very different frequencies of lines in the network (as high
as twelve trains per hour and as low as three per hour) we model passenger
waiting times with a frequency dependence.

The model presented is a multi-commodity flow problem for passengers,
with variables linking flows to line variables, and some additional constraints
imposing the validity of the resultant line plan. Included in this are some
consideration for ensuring the feasibility of creating a timetable for the plan
but forbidding certain sets of lines that are determined to be incompatible for
timetabling. Lines are chosen from a pool rather than allowing any possible
route and stopping pattern, both significantly reducing the problem size
and avoiding determining complicated rules for what constitutes a valid
stopping pattern by defining the limited pool with the help of DSB. We chose
to model passenger flows between origin and destination as non-integer and
therefore splittable (i.e. multiple paths may be used between an origin and
destination). Given that the original passenger data is non-integer (as it comes
from modelled flows), and the assumption that some passengers would indeed
choose to take a longer route if the shortest were crowded.

An obvious reformulation of the model, not presented in the chapter, is to a
flow-based rather than arc-based model, with every possible path between
every origin and destination being a decision variable, and for every such
origin-destination requiring that in aggregate a path is chosen for each (but
not one single path; again allowing splitting). In fact, in work not presented
here we formulated such a model and rather than using a delayed column
generation method, pre-generated every possible route but including some re-
strictions on valid routes. The restrictions resulted in roughly 2 million routes
for the S-tog problem with 170 lines in the pool, which resulted in a problem
with a solvable LP relaxation. However this did not provide a (significantly)
tighter bound than the arc-flow formulation (and just the heuristic restriction
of paths could explain any bound change as the problem is artificially tight-
ened). Given that we do not seek integer passenger paths but rather integer
line decisions, it is the linking between passengers and lines rather than the
formulation of passenger flows that seems most relevant for targeting a bound
improvement.
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In Chapter 7, focus is given to the passenger-oriented objective with some
mention of the other, operator-oriented objective. However given the presence
of a different, competing objective for the operator, this could be seen as a
bi-objective problem. Many solutions are shown which sit somewhat close to
the efficient frontier of non-dominated solutions given the two objectives, but
the finding of them is not clearly explained in the chapter. Refer to Appendix C
for a brief overview of the algorithm used to find these solutions.

4.2.1 Future application

The model has only been applied to the S-tog case in Copenhagen. It would
be interesting to apply a similar approach to a different network, considering
freely-routed passenger travel time with a frequency dependent estimate
of wait times to a different network. However, this only makes sense in a
network with significantly different frequencies for different lines; if all line
frequencies are the same or very similar, then taking a fixed wait penalty is
more reasonable.

In the Copenhagen case, more work could be done considering the affect
of there being multiple valid paths for some given passenger, with different
travel times, but initially coincide. That is, the paths only differ after some
initial journey, and the passenger may wait to select the route later in the
journey when more information about train timings is apparent.

Finally, the predetermined Copenhagen line pool only contains 170 lines,
which is diverse enough to ensure a large variety of solutions, but far fewer
than the number of possible lines. Investigating more diversity would be in-
teresting, but doing so would require both investigating what rules define the
validity of individual lines, and a more comprehensive method for forbidding
sets of timetable-incompatible lines (as currently, these sets are determined
with the pool, by hand).

4.3 Integrating timetabling and line planning

As is discussed in Chapter 7, one concern when creating a line planning is that
no feasible timetable can be created for it. Even if timetables can be created,
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they may all be of poor quality when considering cost to the operator, or
robustness, or some other measure.

We adapt a timetable model designed for trains in Belgium to the Copenhagen
S-tog problem. Given a line plan, specifying the line routes and frequency for
trains, the timetable problem is then to assign times to every trip between
stations along that trip. In work not presented in this thesis, we derive a single
full model of the line planning and timetabling problem, combining elements
of both the line planning model of Chapter 7 with the adapted timetable
model. However due to its size and complexity we did not consider solving
it directly. Instead we present a heuristic method for adapting a line plan to
create on that is feasible, or better, for timetabling.

The combined method is presented in Chapter 8. Earlier results just comparing
different line plans, and the significance of turning restrictions in the S-tog
problem, are presented in Appendix B.

An additional measure in Appendix B: the number of train interactions, is in
fact a valid objective for the line planning model despite being considered in
a timetable context. However finding line plan solutions that minimize that
measure did not lead to results of note and it is not used in Chapter 8.

In the S-tog network, with thirty trains travelling through a central corridor
every hour, there are very tight buffers between trains. Coupled with the
driving time and turning restrictions, many line plans are difficult to timetable,
and necessarily have trains running very close together.

However, the skipped stations in the S-tog network present an opportunity
for modifying the running time as skipping stations saves time (and stopping
requires time). We use the timetable model to create timetable solutions,
in Chapter 8 always requiring feasibility but also potentially considering
infeasible plans, and identify lines to modify. However the modification is
performed by the line planning model, creating a plan similar to the original
but with some appropriate modification.

This iterative method is a partial integration of line planning and timetabling,
and is a heuristic. No information on overall optimality is possible. However,
targeting buffer times in the timetable model, we are able to modify line plans
such that the upper bound for buffer times is reached while maintaining a
line plan similar to that given originally.
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Not presented in Chapter 8 or Appendix B, the timetable model allows
validation of the waiting time estimates made by the line planning model.
We find that, overall, the line plan estimate of waiting time is surprisingly
accurate; for the several tested plans, the line plan estimate was within 5%
of that taken from the resulting timetable. However unsurprisingly, some
passengers wait significantly longer than estimated (waiting almost the full
headway time) while others have very short transfers.

4.3.1 Additional and future application

The timetable model was originally created for the Belgium network, where
timetable creation and robustness have been well studied [Sels et al., 2016,
Vansteenwegen and Van Oudheusden, 2006, for example]. Here we have
applied it to the Copenhagen S-tog network. It may be interesting to apply
a similar integrated approach to the network in Belgium. However there
are significant differences in the structure of a line plan, and it may not
make sense to modify a line running time by adding or removing stations.
Nevertheless, there may be other identifiable features in the timetable that can
be implemented as a line plan modification.

More work could also be done on the single integrated model, both in sim-
plifying it to be tractable and finding a good case study for its application.
Significant complexity comes from the line plan model’s treatment of passen-
gers; a simpler modelling of passengers would certainly lead to a simple (but
not necessarily tractable) model.

As an alternative experiment, we considered more significant changes to plans
(and departure from realistic plans) for Copenhagen. As one example, with
reference to Figure 4.1, we decomposed the network into an independently
running shuttle service in the red central corridor, and lines in the blue finger
tracks that either do not enter the corridor, or only partially enter the corridor.
Here we find it very easy to create good quality timetables, and can explore
a very large range of lines (taking a very large pool), as every finger may be
solved independently (after some passenger pre-processing). However, the
line plans require many more passenger transfers than before.

However this requires some significant and currently unrealistic turning
capacity for trains at the ends of the central corridor. Currently it would not
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Figure 4.1: Structure of the S-tog network, with the red central corridor, blue
fingers, and yellow circle. Adapted from DSB [2015b]

be possible for so many trains to turn at either end, as currently trains only
travel through the stations.

4.4 Operational station planning

A major terminal station is visited by potentially thousands of trains during
the horizon period for detailed planning. There are several related planning
problems that must be considered. Here, several related problems are con-
sidered as part of a railway planning competition, and one of the individual
problems is explored in more detail.
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4.4.1 Problem overview

The ROADEF/EURO Challenge 2014 described such a problem to be consid-
ered. In the problem, train arrival times and departure times are strictly set (by
a timetable). Arriving trains have partial routing pre-determined as they enter
the station’s area of consideration, but exact routes through infrastructure
are not set and neither are platforms (although some platforms are preferred
for some arrivals). Similarly, departure trains have partial outgoing route
information set, but platforms and precise routes are not decided.

After entering the system, an arriving train must be assigned a conflict-free
route through infrastructure to an assigned platform, where it must dwell
for between a minimum and maximum time. It may be routed onward to
either a depot facility, to one of several maintenance facilities, to single track
parking infrastructure, or to a sequence of these. It may be later routed back
to a platform to depart as a later departure train. Alternatively, it may remain
in the station infrastructure at the end of the problem horizon.

The pairing between arriving train units and departure train units is not
pre-determined and must be decided, while meeting certain requirements. For
example every departure has a set of types of train unit that are appropriate
for its journey. Also, some departures must be assigned more than a single unit
coupled together (and some arrivals consist of several units coupled together);
the coupling and uncoupling can be performed at certain infrastructure and
takes some amount of time. Departures also specify some maintenance require-
ments, and some train units in the station will be ineligible for assignment to
certain departures. However trains can be routed to maintenance facilities to
have their (different types) of maintenance levels replenished.

Finally, train units that leave as certain departures in fact return as later
arrivals; we are assigning trains to a sequence of train journeys (from the
point of view of this station) and as maintenance levels decrease with every
outward and returning journey, but a train may visit our station several times,
there may be several visits in the planning horizon where we may decide to
perform maintenance. Given that there are limitations on maintenance facility
capacity, and routing in the station area causes congestion, decisions on when
maintenance should be performed for a single (returning) train unit depends
on other decisions.

Figure 4.2 (reproduced from Ramond and Nicolas [2014]) shows an example of
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an instance infrastructure, and it can be seen here that the stations studied are
particularly large. In the figure, trackgroups 1, 5, and 6 are entrances to the sys-
tem, while the others are for moving trains around. There are strict constraints
for the usages of infrastructure, and, particularly in trackgroups, complex
rules dictating the reservation times of infrastructure and the determination
of whether different routes conflict.

Figure 4.2: Example of ROADEF instance infrastructure

4.4.2 Overall approach

A description of our solution approach is given in Appendix A. The entire
problem is very complex (specified in 39 page document: Ramond and Nicolas
[2014]), with many details that are difficult to capture and model in some
single formulation. We decomposed the problem into a sequence of sub-
problems we solve sequentially, which provides no guarantee of optimality
but, given the ten minute runtime limit for competition entries, we decided it
was unlikely that an approach targeting optimality would be possible.

Matching and platforming are formulated as MIPs, while routing is solved
heuristically by adding and removing unit routes in a simulated annealing
framework. A final heuristic attempts to use remaining time to re-assign costly
trains.

An important feature of the problem is that, despite the competition subtitle
“trains don’t vanish”, in the problem a penalty could be paid to make arriving
trains “vanish” by cancelling trips, or to leave departures uncovered. For some
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test instances we could show that there was no feasible solution that avoided
using this feature; i.e. there were no solutions that avoided cancelling any
arrivals or departures. In our opinion this was a flaw in the problem instances
or problem specification.

Our entry was awarded the second place prize for the PhD category.

4.4.3 Matching subproblem

Chapter 9 presents a derivation of and results for two methods for solving
instances of the matching problem for the ROADEF challenge. We considered
the matching problem to be interesting, and as it naturally formed a first step
for a ROADEF challenge solution method, it could be studied alone with only
the given (or created) instances. Later sub-problems such as routing depend
on decisions made in the matching, platform allocation, maintenance to be un-
dertaken etc. The matching decision, however, captures the complexity of the
unit types, compositions and compatibilities, and incorporates maintenance
decisions.

A complicating feature of the problem is that later arriving trains in the
planning horizon are returning earlier train departures, and if viewed from
a unit point of view, we seek a sequence of tours for train units that each
begin and end at our station of concern. However not all arrivals are returning
departures; some are simply new trains entering the system and becoming
available at the station. A problem instance could in fact have no returning
departures, and therefore all arrivals would be new well-defined trains to be
matched to departures; or an instance could have a very high proportion of
returning departures and a solution would imply many returning tours for
every train unit.

There are then two “obvious” views of the problem. It can be viewed as a
matching between arrivals and departures, requiring additional decisions and
constraints for maintenance, unit classes etc. and some complicated additional
features to capture the returning trains. Or it can be viewed as a per-unit
sequence of tours, where the overall sequence must meet unit maintenance,
unit class etc. requirements and the units’ sequences must together correctly
cover all departures. Given an instance with very few returning departures, the
first viewpoint may be most appropriate and the second needlessly complex,
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while with many returning departures the second is more natural.

We formulate the matching problem from both points of view. In the first
case, we formulate a MIP based on the assignment problem (i.e. assigning
one departure to each arrival, and vice versa), with additional relatively
simple additions to handle the unit classes, maintenance decisions, but rather
complex (and weak) constraints to address returning departures. For the
second case, we formulate a sequence based formulation, and use a delayed
column generation method to create sequences as paths in a graph of arrivals
and departures. We show that, given some assumptions on the minimum
routing time required between an arrival and subsequent departure for a train,
the LP lower bound we find for some instances implies that some ROADEF
instances can not be completely solved, even from a matching point of view
(as cancellation is required).

4.4.4 Additional and future application

The matching problem formulation has potential application to real matching
problems in a real train unit management problem. The ROADEF problem
was sponsored by French operator SNCF, presumably inspired by real data.
However our investigations to the applicability of the matching problem to
problems at DSB revealed some limitations in the problem modelling, at least
in a Danish context, given its station-centric viewpoint.

In the problem, and in our matching formulation, all decisions are centred
around a single station, and events outside the station are either predeter-
mined or irrelevant. For example, the tours that correspond to a train being
assigned to a departure that later return as a different arrival are fixed, and
no maintenance is performed on these trips. However one may imagine that a
departure that returns as a different arrival corresponds to a matching at a
distant station between the departure’s arrival there and the departure there of
the subsequent arrival. It then seems strange to set all such matchings at every
station except for one, and solve matchings at that one in isolation, rather than
taking a wholistic view.

A small pilot study was undertaken considering the routing problem at
Copenhagen central station, using a simpler matching heuristic than that
presented in Chapter 9, and applying the routing heuristic of Chapter A.
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However given the complexity of the infrastructure at Copenhagen central,
and differences in the underlying assumptions, we concluded that an approach
more tailored to the unique characteristics of the station would be more
appropriate.
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Figure 4.3: Østerport track layout for long distance trains

Figure 4.3 shows a schematic view of the infrastructure at Østerport station,
with four platforms, which is connected by double track to nearby Copenhagen
central station which has eight platforms. The interaction between these two
stations and utilization of the limited connection is very significant, and
effectively using the parking facilities at Østerport station (visible at the
bottom of Figure 4.3) and at Copenhagen central considering both as a single
station area.

4.5 Future work

Specific directions and applications are discussed in the individual chapters
of Part II. Here we briefly discuss more general directions for future work.

In the application of optimization methods to railway planning, there is
certainly scope for more depth in the exploration of problems. Due to the
complexity of railway planning problems, better methods are still sought
and generally, planning problems can not be considered solved. Furthermore,
due to subtle differences between systems of different countries, and due
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to differences in underlying assumptions and objective measures used by
different operators, new approaches are still relevant.

A clear direction for further work in railway optimization is in greater inte-
gration of the different planning problems. The commonly used sequential
approach certainly has the potential to negatively impact solution quality.
This integration is a common trend and is a current area of research, often
considering two problems at once. Currently, due to the complexity of the
planning problems alone, complete integration is far from feasible in the near
future.

Robustness has become more relevant, and further investigation and imple-
mentation of robustness is an area where there is obvious scope for further
research. Again, the sequential nature of much of railway planning can be
a factor in failing to achieve overall robustness, and greater integration of
robustness concepts through planning is an area worth exploring.
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6.1 Introduction

Operations Research (OR) plays a large and increasing role in the planning and
execution of railway operations. As methods and approaches improve, and
as rail utilization increases, it is increasingly important that solutions are not
only of good quality in the normal case, but perform well when encountering
unexpected situations or true realizations of estimated parameters. OR can
provide the tools to both assess and quantify planning problem solutions
under uncertainty, and to find solutions that perform well despite uncertainty.
Such well behaved plans may be considered “robust”, and the quantification
of performance may be a measure of robustness.

However given the large scope of the different problems in railway planning
and operations, there are many different interpretations and definitions of
robustness. Some railway planning is carried out with a view to the long
term rather than immediate operations, and consequently any robustness
considerations would be different to robustness considerations in planning
the immediate operations. Within the scope of rail, however, we aim to ex-
amine the different approaches to robustness and in particular consider the
degree to which approaches to robustness in rail can be unified by their
common application, despite being different in scope and methodology. Here,
we primarily consider passenger railway but in some specific cases refer to
relevant or related work in similar application areas of freight railway or
airline operations.

6.1.1 Robustness

Robustness is a concept that exists in many fields with similar general inter-
pretations, but at a detailed level robustness may be significantly different.
Certainly, in cases where robustness is defined by some application-specific
metric the definition has little use outside the application area. However, gen-
erally, robustness refers to how a system or plan behaves in the presence of
uncertainty. This can for example be that some plan is created using estimates
of parameters, but operated with a realization of those parameters that can
differ from the estimates. A plan that is well behaved under a wide range of
realizations of parameters would be considered robust, whereas a plan that
behaves very differently or even fails under different realizations would be
less robust.
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In the field of optimization, robustness has been considered in different ways.
A common framework is termed Robust Optimization, which is surveyed by
Ben-Tal and Nemirovski [2002]. This is strictly and clearly related to the
conceptual idea that robustness is expressed in the context of an uncertainty
of parameters or data for a problem. The following restrictions (among other)
are imposed:

• The data are uncertain/inexact;

• The constraints must remain feasible for all meaningful realizations of
the data.

For a Linear Programme (LP), with the nominal (non-robust) definition
minx{cTx : Ax ≤ b}, a robust optimization version would permit that the
values of A, b and c are not precisely known but lie in some uncertainty set. If
that set is expressible with linear constraints, then the resulting optimization
problem requiring a solution feasible for any realization of A, b, c, is also an
LP. However, a potential problem with such modelling is that solutions can
be somewhat pessimistic, by ensuring feasibility for any unlikely realization
of uncertain parameters. Also, specifying the uncertainty set via linear con-
straints relating different uncertain parameters to each other may be difficult
due to a lack of such data, whereas a lack of sufficient relationships between
different uncertain parameters may result in solutions that are “robust” by
being feasible in the case of particularly problematic but, in reality, impossible
realizations of combinations of parameters.

Fischetti and Monaci [2009] defines the widely used “light robustness” frame-
work. In short, light robustness is a maximization problem of the weighted
slack of constraints, with a constraint on the nominal objective to be within
some bound of the nominal optimal value, and where the slacks are bounded
above by a calculated worst case for each constraint given the optimal nominal
solution. The framework is related to “normal” robust optimization where
there is uncertainty in constraint matrix AAA; say each element has a nominal
value aij but due to uncertainty, in a real instance will be in [aij, aij + âij]. Then,
for a given row in the AAA matrix, and with a bound on the number of elements
that may be different from the nominal value (avoiding the over-conservatism
of allowing any variation), and with a given solution, the worst case tightening
of the constraint by uncertainty may be determined; this is then the maximum
rewarded slack. The authors present railway timetabling as one application of
light robustness.
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Bertsimas and Sim [2004] defines a “price of robustness” probabilistically,
related to traditional robust optimization (uncertainty in input parameters)
but of a probabilistic nature. ... the trade-off between the probability of violation
and the effect to the objective function of the nominal problem, ... is what we call
the price of robustness. In some row, suppose that the number of “modified”
coefficients is bounded; then any solutions that would be feasible given
that restriction are probabilistically protected from uncertainty dependent
on the probability that at most that number of coefficients is modified. The
price of robustness itself is the increase in objective value over that given
by solving only the nominal problem. Here, there is the explicit recognition
that requiring robustness “costs” something, when compared with a solution
that is apparently feasible with no consideration for robustness. In a problem
(such as rail) where the nominal problem defines the most likely realization
of parameters, and variation is unlikely but potentially problematic, this cost
is something that negatively affects the normal operation for a benefit in the
unusual situation. Assessing the value of such solutions, and whether or not
the “cost” is worthwhile, requires detailed probabilistic knowledge of the
likelihood of such realizations, and some idea of the “cost” incurred when
a nominal, non-robust, solution would encounter such realizations. On the
other hand, when compared with the robust optimization described above,
solutions are not necessarily so pessimistic.

Stochastic programming provides a different framework for finding solutions to
optimization problems in the presence of uncertainty. Kall and Wallace [1994]
provide a textbook on stochastic optimization. Here, probability distributions
for unknown parameters can be used to find a plan or policy that has high ex-
pected objective value, and is feasible for all realizations. Commonly, stochastic
programming defines a problem in stages, in which decisions may be made
as uncertainty is revealed. If possible realizations are discrete in nature, this
results in a tree structure of decision making with assigned possibilities. This
tree may be fully enumerated, or, for tractability reasons, sampled as a limited
set of discrete scenarios (see for example Kleywegt et al. [2002]). Rather than a
full, fixed plan for operation, a solution is an initial plan dependent only on
known problem parameters, and many contingency plans to be implemented
as knowledge is revealed.

As a short comparison, generally robust optimization is a worst-case plan-
ning method ensuring feasibility in all circumstances. As an advantage it
does not require probabilistic information, which may be difficult to capture,
with the associated risk that created plans are robust against extremely un-
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likely circumstances. If plans must be kept as originally specified then this
guarantee of feasibility is more reasonable than in problems where reactive
modifications are possible during operation. The concept of light robustness
formulates robustness as a maximization of the level of “protection” in changes
of problem parameters. This then permits less pessimistic solutions that ro-
bust optimization, although again not including probabilistic information.
Stochastic optimization, in contrast, is probabilistic in nature, which has the
potential downside of requiring the gathering or estimation of many parame-
ters, generally related to a discrete number of disruption scenarios. Stochastic
optimization can be a more natural modelling method if changes are to be
made to plans as uncertainty is revealed, and a fixed unchanged plan is not a
requirement.

6.1.2 Railway operations

Passenger railway is a system of public transportation providing rail connec-
tions between stations. It includes a range of operations such as commuter
trains, metro systems, light rail (trams), and regional and intercity trains.
Passenger railway interacts with other public transport systems such as buses
and ferries. Passenger railway decisions take into account other modes of
transport such as freight railway, car traffic and buses, due to both shared
infrastructure (e.g. freight rail and passenger rail on shared tracks; light rail,
cars and buses on roadways), and also to passengers moving between modes.

The planning of railway operations differs between countries but in general
there are several stages of planning from the most long term decision making
to the day-to-day operations, and these stages are planned relatively inde-
pendently and in sequence rather than as a single unified planning problem
(though there may be an iterative process of feedback between stages). The
size and complexity of each individual problem alone tends to mean that
only a sequential approach can be applied in practice. A typical sequence of
planning problems may be:

• Network design
Determining the topological structure of the rail network; station loca-
tions and capacities; see Magnanti and Wong [1984] for an overview of
network design in general transportation.

• Line planning
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Determining the subsets of stations and a route between them that
constitute train lines; deciding on frequencies, speeds, and rail stock
types for each line. See Schöbel [2012] for a survey on line planning in
public transport.

• Timetabling
The determination of exact times for events that should occur for rail
units such as driving between stations, the dwell times at platforms, and
which specific station infrastructure is used. A survey of railway track
allocation, which includes timetabling, is given by Lusby et al. [2011].

• Rolling stock routing
The problem of allocating rolling stock units to the timetabled trips in
circulations, considering compositions and depot parking. An example
of a nominal model for the problem is given by Fioole et al. [2006].

• Crew scheduling
The problem of creating rosters of duties to be performed by a single
crew person over a time horizon. There are similar problems in airline
crew scheduling (which may be termed pairing), and likely many similar
problems in other application areas. A following problem is assigning
these rosters to specific crew members. Caprara et al. [1998] describe
modelling the problem, with an application to Italian railways. Kohl and
Karisch [2004] survey the literature on similar and well-studied airline
crew rostering problems.

These stages may be further divided up, as for example crew scheduling
may consist of two steps: creating anonymous crew schedules followed by
crew rostering. Or stages may be combined, such as integrated line planning
and timetabling (e.g. Schöbel [2015]). However there are clear differences and
distinctions between the stages; network design for example is rarely changed,
and decisions must stay valid for potentially many years, whereas crew rosters
may be different every day. See Figure 6.1 for a suggested overview of how
the different problems in rail planning may be carried out, indicating some
estimate of the time they are considered before the day-of-operation (but not
to scale). This sequence is commonly seen in the rail industry, and figures very
similar to Figure 6.1 appear in other work (e.g. Liebchen and Möhring [2007];
Lusby et al. [2011]). We also indicate recovery but there are in fact several
problems considered in the present, during operations, related to dispatching
and managing delay and disruptions. However we do not focus on these
present operational problems here.
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Network Design

Line planning

Timetabling

Rolling stock
planning

Crew rostering

Recovery

years

years to days

present

Figure 6.1: Overview of the possible steps of rail planning, indicating their
relative time horizons.

Figure 6.2 (reproduced from Salido et al. [2012]) shows different considera-
tions for a railway plan, and the trade-offs operators must generally make in
creating a plan. High robustness can preclude (being close to) optimality, hav-
ing high capacity utilization, and having a heterogeneous plan. In the general
context of rail operations, capacity and heterogeneity do not necessarily have
an obvious interpretation but capacity can be interpreted in relation to usage
of infrastructure up to some maximum (and likely most fragile) level, and
heterogeneity may be interpreted as a measure of the diversity of variety of
rolling stock unit, or the variety in running times of trains on the same track,
or the variety in the types of planned crew schedules. Low heterogeneity has
robustness implications for both small disruptions (e.g. dissimilar running
times lead to delay propagation) and during large disruption scenarios (e.g.
dissimilar unit types may not be usable as replacements). Other factors may
also be included; for example speed (in Salido et al. [2008]) may be reduced in
a network, which also affects capacity and optimality with implications for
robustness.

In the context of rail, robustness is a concept that is intuitively “obvious”
or understandable, but there is no single clear definition. Further, any such
proposed definition could not capture all elements of the intuitive “robustness”
as understood by different stakeholders in public transport. There are in fact
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Robustness

Optimality

Capacity

Heterogeneity

Figure 6.2: Overview of the possible steps of rail planning, indicating their
relative time horizons.

many differing definitions of robustness in the literature on rail planning and
operations, and indeed in other areas, but the core concepts are similar. In rail,
as in most real-world problems, there are inherent uncertainties in aspects
of the problem due either to inaccurate data, unpredictable occurrences, or
stochastic processes.

Specifically referring to passenger robustness, De-Los-Santos et al. [2012] argue
that generally agreed measurements of robustness do not exist. A passenger-
robust timetable, the authors state, is one in which the travel time for passen-
gers is not excessively increased when a particular link fails, and they define
passenger-robust measurements indices. These are:

• the ratio of best-case travel time and the worst case (failure) for that
connection;

• the ratio of best-case travel time and average case (failure) for that
connection.

These can be calculated in the with bridging and without bridging cases, where
bridging refers to the deployment of alternative routes by the operator (e.g.
buses) rather than relying on passengers to re-route themselves or wait for the
disruption to end. Dewilde [2014] investigates a definition of the robustness
of a timetable, stating:

A railway system that is robust against the daily occurring,



62 A Survey on Robustness in Railway Operations

small disturbances minimizes the real weighted travel time of the
passengers.

Dewilde [2014] considers the robustness of station areas. The author argues
that as the purpose of rail networks is to serve passengers, a definition of
robustness should (at least) consider passengers, while also arguing that there
is no common measure of robustness in the literature. The weighted travel time
assessment for passengers mentioned above, when the system is subjected
to small disturbances, is argued to be the most relevant to users as it is a
passenger-centric measure.

When planning railway operations, and when defining and quantifying robust-
ness of operations, some authors take a point of view that indirectly benefits
both the operator and the passenger (such as attempting to provide operations
with little delay), while others explicitly take a viewpoint of the operator or
of the passenger. While it is almost always true that it is the operator that
makes decisions relating to robustness, the robustness itself can be viewed
from the point of view of the operator or the point of view of the passenger,
and the different perspectives do not always coincide. For example, a small
delay to a train may not have a large affect on other operations, but the small
delay may cause passengers to miss a transfer connection who may view the
missed transfer as a symptom of poor robustness. Or, in contrast, to address
an unexpected rolling stock problem an operator may be forced to use a
different rolling stock unit than planned for, incurring additional operating
cost, shunting and dead-head movements, but having no affect on passengers.

6.1.3 Disruption management

Operations are not always able to be carried out exactly as planned, perhaps
due to some unforeseen occurrence, an accident, or closure of track. In these
situations plans must be modified or recovered to create a plan that can be
carried out. There may be several recovery stages undertaken in sequence
following the original stages of operational planning itself; for example a
temporary track closure due to maintenance may necessitate a new timetable,
then requiring modifications or recreation of the rolling stock and crew plans.
It may be that the changes are known long enough in advance that planning
can be done as comprehensively as for the normal case, or only known during
operations and therefore recovery must be done quickly. During the planning
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stages, contingency plans may be created for some possible disruptions, and
recovery may consist of finding an appropriate contingency plan and adjusting
it as necessary to fit the exact situation. Robustness implemented via recovery
may be explicitly related to the previously defined planning problems above
(i.e. network design, line planning, timetabling etc.) or may span several (e.g.
both rolling stock and crew)

In a small scale delay scenario, there can be decisions related to train waiting
such as deciding whether a non-delayed train wait so that planned coordina-
tion between the trains are maintained. This problem, for example, is studied
by Schöbel [2007] for public transport vehicles (e.g. buses or trains).

In contrast, during operations there may be instances of track closure or
blockage that require significant modifications to plans for a possibly unknown
duration. As an example, Louwerse and Huisman [2014] study the problem
of adjusting a passenger rail timetable

6.2 Overview of document

In the remainder of this document we consider robustness in different planning
problems of railway described above. Robustness in network design and line
planning are considered together in a single section. In railway timetabling,
we consider the defining of robustness and optimization with robustness
separately. Finally, robustness of rolling stock and crew planning are each
considered individually.

6.3 Robustness in network design and line plan-
ning

In network design or line planning there has been little research into robust-
ness, but some authors have attempted to define or incorporate robustness
into line plans or even network design. The lack of a timetable at these stages
make robustness measures related to exact passenger or train timings difficult
to consider.
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Goerigk et al. [2013a] investigates line plans or line “concepts”, and their affect
on resulting timetable quality and robustness. They question not whether
the line plan itself is robust, but whether a resulting timetable for the line
plan is or is not robust. The authors use two robustness measures: the relative
increase in travel time for passengers under a disruption scenario, and the
proportion of connections that would be missed in a disruption scenario.
Their assessment is made via simulation, with a tool that both creates a
timetable for a given line plan and provides the delay assessment. The authors
examine two German intercity rail problems, with some provided and some
estimated data and parameters, and the authors first find a line plan and then
a timetable in an iterative way. Four different objectives or approaches for
the line planning problem are used. Finally, the robustness of the resulting
timetable is assessed. One conclusion is that when using an objective focused
on the passenger, line plans offer nominally good solutions for passengers at
the expense of robustness. One justification is that a good passenger solution
can be considered one which provides many direct connections between
stations, which is achieved with a variety of lines and tight transfers. There
is then the potential for more missed transfers. In contrast, they observe
that the (operator) cost oriented line plans have worse nominal passenger
performance, but are more robust. The potential robustness of a resulting
timetable is therefore very dependent on the goals of the line planning model.

Schöbel and Schwarze [2006] present a game-theory model for line planning,
where individual lines seek to minimize their probability of delay, which
depends on the presence and frequencies of other lines sharing infrastructure.
The result is an overall line plan with an equally distributed probability of
delay, which could be considered more robust than a plan where the delay
probability is not equally distributed. As an exploratory numeric study the
authors consider German intercity train lines, with some simplified details
of the line planning problem, and show how their method is able to find
equilibria for the problem.

Kontogiannis and Zaroliagis [2008] present a different view of robust line
planning based on a network manager and independent line operators. The
line operators compete to operate on shared infrastructure resources, managed
by the single network manager. The incentive functions of the operators are
the unknown parameters of the problem, and a robust line plan is one which
maximises the aggregate utilities of the operators while being resilient to
the unknown incentives of the line operators. The authors present a method
for finding such robust solutions when certain conditions hold; however, the
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authors do not present a case study of the method.

Marín et al. [2009] consider robustness in both the line planning and net-
work design problems. They consider robustness from two perspectives; the
passenger and operator point of view, in the context of connection failures.
Here, user robustness means that a failed connection should minimally affect
travel time, and the passengers require geographically distinct routes but with
similar travel times. Operator robustness, however, is measured in the cost of
additional vehicles used to address such failures. The method developed is a
heuristic that integrates both the network design and line planning problems.
As a case study the authors consider the construction of a new high speed rail-
way network in Andalucia (in southern Spain), and show how their method
may be applied. They observe that both robustness measures (operator or
passenger based) result in the same robust railway network but different line
plans

Michaelis and Schöbel [2009] present a heuristic integrating line planning,
timetabling and vehicle scheduling. The focus is not on robustness, but of
including robustness implicitly with slack times for the timetable, and the
authors state that such additional time can provide robustness. However the
slack times are not distributed in some way guided by robustness concerns; it
is simply implied that the presence of slack times provides robustness.

Bull et al. [2016] consider a line planning problem with a nominal passenger
focus, but some mention is made of metrics that may be relevant for robustness
of a subsequent timetable. The robustness of the line plan itself, however, is not
defined or given mention; only the degree to which the line plan influences
the potential robustness of a timetable. The case study considered is from the
S-tog network Copenhagen.

There is not a clear picture of what exactly robustness in line planning or
network design should be, or what uncertainty it is that plans should be
robust against. This may be explained in part by the fact that robustness in
line planning and network design have not been extensively studied. One
natural concern with a line plan, from a robustness perspective, is whether or
not a robust timetable can subsequently be created. This is also a consideration
for optimality, disregarding robustness, and both inspire a more integrated
approach. Railway timetabling, examined in the following section, is the most
studied planning problem from a robustness point of view, and naturally
robustness viewpoints in earlier problems look to the timetable to assess



66 A Survey on Robustness in Railway Operations

robustness. Nonetheless some approaches do consider the earlier problems’
inherent robustness, such as the approach of Marín et al. [2009] addressing
network failure by requiring geographically distinct connections. Elements
of the network design could also influence robustness of subsequent plans,
especially taking a detailed view of track layout, crossings, and locations of
overtaking sidings. However, generally, from an optimization point of view,
such approaches to network design are not taken.

6.4 Robustness in timetabling

In the area of railway planning, timetabling is the area most studied for
implementing robustness. This is perhaps natural due to timetabling being
placed in a moderate planning stage, being not too far removed from the
exact operations (as line planning and network design may be), but having
large scope for changes that are not already very constrained (as rolling stock
and crew scheduling may be). However, the planned timetable affects the
robustness of the subsequent rolling stock and crew planning.

Robustness in railway timetabling is summarised in Table 6.1 and Table 6.2,
each corresponding to one of the two following sections and each introduced
at the end of the corresponding section.

6.4.1 Defining and measuring robustness

Some work is concerned with the defining of robustness of a railway timetable,
potentially for the assessment of different timetables, for the validation of
methods producing robust timetables, or by defining metrics usable in models
for creating railway timetables.

Many considerations of robustness relate to the distribution of buffer times.
This is obviously more applicable to timetabling problems, where buffer
times between trains can be included, and not directly to line planning or
network design (as exact times or are generally not considered in those
problems). Buffer times may also be included in rolling stock scheduling
or crew scheduling though with a different interpretation: the buffer time
between a particular unit finishing one service and beginning another. Buffer
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times are to mitigate the risk of the unknown precise “running time” of a
train between two stations; running times are an input parameter but they
are not necessarily known and are not fixed due to small delays. Buffer time
supplementation is then an approach to create timetables that are still valid or
operational for a range of uncertainties in input parameters. Up to some value
over the anticipated running time, the timetable is still valid as the buffer
time may be consumed. Smaller running times may also valid, if trains slow
down or wait at stations. As pointed out by Dewilde [2014], much work on
robustness in rail timetabling relates robustness to delay propagation, where
a timetable that is unlikely to encounter propagating delay is more “robust”,
and the buffer time is almost always related to the absorption of delay and
subsequent avoidance of delay propagation.

Buffer time can be considered a directly applicable or measurable metric for
robustness, for some small deviation from expected running times. However
for larger deviations the buffer times alone are not necessarily an adequate
measure, as the role of train dispatchers is neglected. For example, dispatchers
may decide to change the order of trains leaving a station due to a delay,
choosing to change the plan to avoid inducing delay for other trains. Also,
additional buffer time does not necessarily mean additional robustness, as
the introduced buffer time may be excessive or introduced in the wrong part
of the timetable. For example buffer time at the end of the day may be less
beneficial than buffer time early in the day, as early delays can have longer
lasting effect than delays late in the day. Deciding on the amount of buffer
time to use is a decision on the trade-off between (potentially) increased
robustness and a decrease in utilization of the rail network and a decrease in
passenger service. More buffer can for example require fewer trains operating
and greater waiting time for passengers transferring between different trains.

As a support for determining the propagation of delay and addressing of it
in planning, Flier et al. [2009] present methods for the derivation of delay
dependencies in actual delay data. The authors formulate and identify possibly
timetabled dependencies between trains where one train may wait for another,
and then quantify the correlation between relevant event times for those
trains using data from certain points of the Swiss SBB network. The authors
show that correlation alone, without the correct underlying model of the
relationship, can fail to identify delay relationships between trains, while with
a model and data relationships can be discovered.

Carey [1999] discuss “heuristic” measures of the reliability of a (public trans-
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port) schedule which can be calculated in advance, and distinguishes heuristic
measures from analytic and simulation methods. It is stated that, for mea-
suring schedule robustness, knock-on delays (where one train being delayed
causes another to be delayed) are most relevant. The measures are divided
into those that are probabilistic in nature, deriving measures of knock-on
delay based on probability density functions for departure times of trains
in the absence of delay, and those that are not probabilistic and are largely
related to headway. The headway, or the interval between subsequent trains,
is used by many authors as a measure of robustness or a target for robustness
in various ways in other measures of robustness. In this case, the measures
are not validated with real data and instances.

Considering the interval between in a timetable events, Goverde [2007] propose
methods for analysing properties of railway timetables, including timetable
robustness. Their robustness measure is related to slack times between events;
the slackness between two events can be quantified by identifying a critical
path which is the path relating those events with the least slack time of all such
event paths. They also propose a delay propagation model to quantify the
effect of some initial delays, though these measures are not explicitly equated
with robustness by the authors. As a case study the authors use the Dutch
national railway timetable, including both passenger and freight rail, and
show how delay propagation may be quantified and show the identification of
critical timetable elements. The identification shows critical cycles of dependent
events that begin at some event and return the same event in a later timetable
period, that consume all of the time of the timetable cycling period. Without
considering planned excess time within events, such cycles have no capacity
to absorb additional delay meaning initial delay in such a cycle will continue
into later timetable periods.

Hofman et al. [2006] present a simulation study on the robustness of commuter
train timetables in Copenhagen, Denmark. There is no single precise definition
of what robustness is, but the study considers the addition of slack time, and
different recovery strategies for late trains. The authors observe an upper limit
to the effectiveness of additional buffer time, above which there is low effect.
Early turn-around is one recovery method the authors consider, which is a
late train stopping at a non-terminal station and becoming a train of the same
line in the opposite direction, and the strategy is shown to be just as effective
as the more drastic cancellation of late trains for some cases.

Vromans et al. [2006] propose methods to increase the reliability of railway ser-
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vices. Their approach is to increase homogeneity of the timetable, by reducing
instances of trains running at different speeds in track sections. The authors
are interested in small disturbances, and in fact state that no timetable is robust
enough to handle larger disturbances (without major online adjustments). As a
case study the authors consider a single line in the Netherlands, and compare
a real “heterogeneous” timetable, and a “homogenized” version, and see a
decrease in delay measure by simulation, and state that the improvement is
predictable with the measures Sum of Shortest Headway Reciprocals (SSHR)
and Sum of Arrival Headway Reciprocals (SAHR). The authors define two
measures of heterogeneity: SSHR and SAHR. For an ordering of trains running
on a sequence of tracks, suppose train i precedes train i + 1, and h−i is the
minimal headway between trains i and i + 1 in the track sequence (and final
train N precedes train 1 in a cyclic manner).

SSHR =
N

∑
1

1
h−i

(6.1)

Claiming that headway at arrival in a section is more significant that headway
later in the section, then authors define hA

i to be the headway between trains i
and i + 1 at arrival in the track sequence.

SAHR =
N

∑
1

1
hA

i
(6.2)

In the homogeneous case, where train speeds are all the same, both measures
are equal and have minimal value when all trains are evenly spaced in the
cyclic interval and has maximum value if they are “bunched”.

Another train buffer related measure that appears in several works (such as
Andersson et al. [2013], Fischetti et al. [2009], Kroon et al. [2007], Vromans
[2005]) is Weighted Average Distance (WAD) of time supplements added to
trips along a line, as a measure of how the supplements are distributed. The
measure is intended to indicate the degree to which supplement or buffer is
biased towards the start of the line, the end, or evenly distributed. If there
are N + 1 trips on a line, from trip t = 0 to trip t = N, and each trip has
supplement time st, then we may define WAD as follows:

WAD =
1
N

∑N
i=0 i · si

∑N
i=0 si

(6.3)

Here, a WAD value of 0 would indicate that all buffer is allocated to trip t = 0;
a WAD value of 1 would indicate that all buffer is allocated to trip t = N, and
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a WAD of 0.5 would indicate that there is equal buffer in both the first half
and second half of the trip.

Andersson et al. [2013] define a robust timetable as one which can maintain its
planned operation, when subjected to some small delays, and also focus on the
headways between trains. They define “critical points” in the timetable, that
are a relationship between two trains at a location and time in the timetable,
from which delay can propagate because the trains are running in the same
direction on the same track, or where one is planned to overtake another.
Critical points come from a timetable study by the same authors; Andersson
et al. [2011]. The critical points are used to make timetable modifications such
as headway increases. The authors measure the robustness of their original
and modified timetables with other timetable-robustness measures from the
literature. The comparative measures from literature are: WAD of runtime
supplements from the start of a line (from Kroon et al. [2007], Fischetti et al.
[2009], Vromans [2005]); SSHR (citing Salido et al. [2008], Vromans et al. [2006]).
The measures of Andersson et al. [2013] are:

• Maximum runtime distance (MRD)
Defined for parts of the network where the parts “are naturally bounded
by the traffic structure”

• Total amount of runtime margin for each individual train (TAoRM)

• Robustness in critical points (RCP)
A quantification of flexibility at the identified critical points, calculated
for a pair of subsequent trains as the runtime margin between trains, the
runtime margin for the earlier train to be earlier at the point, and for the
later train to exit later from the point.

As a case study, the authors apply their methods to part of the Swedish
mainline (a 200km double track in southern Sweden, between Malmö and
Alvesta), and demonstrates the identification of potential modifications to
increase robustness, showing how the different robustness measures may be
interpreted in practice.

Landex and Jensen [2013] develop measures for analysing rail operations at
stations, including two methods for calculating the complexity of the timetable
at a station which the authors relate to the robustness of the operation. The
authors suggest two methods that they specifically relate to robustness. The
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first is buffer time threshold, defined as a ratio of high risk conflicts, where
buffer times between train are below some given threshold, to the total number
of such potential conflicts. The second is and a complexity measure based on
a probabilistic determination of trains delaying other trains. As an example
application the authors apply the measures to Skanderborg station in Den-
mark, with a real timetable instance and two instances derived from the real
timetable to achieve goals related to buffer times. The authors find that the
modified timetable where small buffers are increased has the lowest timetable
complexity (and best robustness), as measured by the delay probability, and
also deduce that that particular measure is the best for timetable comparison
while noting that an analysis of more stations should be done for a better
picture of overall timetable complexity.

Salido et al. [2008] and Salido et al. [2012] develop methods for comparing the
robustness of timetables, where robustness is described as being necessary
to absorb short disruptions. The application is to single railway lines, and the
authors derive both a simulation-based approach and an analytic approach.
The quantification the authors present is of total delay encountered by other
trains, given some initial input delay, and for both the case of homogeneous
trains and heterogeneous trains the authors see agreement in total delay
between the simulation and analytic approaches. The analytic methods consist
of calculating the total delay of all trains for some initial delay in a corridor
based on the absorption of the delay through headway, its propagation to
subsequent trains, and by considering the possibility of overtaking. A timetable
is said to be more robust than another if its total delay for the same initial
input delay is lower. The analytic methods have the advantage of being
computationally efficient compared to the simulation method and the authors
suggest they are applicable in the generation of robust timetables.

Corman et al. [2014b] examine robustness of a train timetable as the perfor-
mance of a timetable when faced with large scale disturbances (examples
given are multiple train delays, speed restrictions, track blockages). The au-
thors use different measures and compare different timetables under a range
of disruption scenarios reporting things such as train delay and passenger
travel time as a result of a disruption, taking those as indicating how robust
the timetable was. The focus is not on the creation of timetables but rather
of comparing timetables and responses to disruption with a robustness view.
As a case study the authors use a section of the Dutch railway network, and
compare the regular timetable and a shuttle timetable in which trains drive
back and forward between pairs of major cities. For comparison the authors
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compare the disruption management methods of re-timing, where train order
is maintained but times are altered; and rescheduling by changing train order
using the method of Corman et al. [2014a]). The authors show results for
both train delay and for passenger delay, showing the potentially conflicting
experience of robustness passengers and the operator may have.

Takeuchi and Tomii [2006] (and Takeuchi et al. [2007]) define a robustness
index for train timetables based on passenger disutility. The authors claim that
any robustness measure should be defined from the passengers’ perspective,
not from the operator’s perspective. The authors define passenger disutility
as a weighted sum of congestion discomfort, number of transfers, waiting
time at stations, and boarding time into trains (dependent on the number of
other passengers boarding). The robustness index is the expected increase in
this passenger disutility, given a sampling of delay scenarios, an estimate of
the resultant train operations, and passenger re-routing given the new train
operation. The authors give experimental results for an unspecified real urban
train line, and compare the actual train timetable and a proposed modified
timetable by re-allocating running time supplements. The authors show that
their robustness index indicates better performance for the modified timetable.
The method, however, is for the quantification of the robustness index and not
for the modification itself.

Dewilde et al. [2011] present a claimed all-embracing, generic definition of the
robustness of a railway timetable:

A railway timetable that is robust against small delays min-
imizes the real total travel time of passengers, in case of small
delays. Limited knock-on delays and a short settling time are nec-
essary but not sufficient conditions for a timetable to be robust.
Furthermore, different weights can be assigned to different kinds
of travel time prolongation.

Here the authors have a clear passenger focus; their robustness measure only
relates to passengers; not to the increase in operator cost in the case of delays
or in the nominal case to guarantee the robustness. The authors apply their
method to method to the 2010 Belgian timetable, using both real and artificially
modified timetables with increased running time supplement. The authors
show that, while the timetables with additional running time supplement have
fewer delays, they have worse robustness as calculated using their definition.
The measure is also strictly related to small delays. In fact, many measures
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and metrics encountered in this section are implicitly or explicitly related
to small delays only. However in the following section, applying different
methods, more authors seek robustness as large-scale disruption robustness.

Table 6.1 summarises work defining or measuring railway timetable robust-
ness, classifying whether they have a passenger or operator focus and noting
whether there is a clear application to some real timetable problem instance.

Table 6.1: Summary of literature measuring or defining timetable robustness

Reference Focus Description Application

Andersson et al.
[2013]

Operator Metric based assessment based
on critical points from which de-
lay can propagate.

Swedish single line

Corman et al.
[2014b]

Mixed Analysis of train and passenger
delay in the case of major disrup-
tion.

Southern Dutch net-
work

Dewilde et al.
[2011]

Passenger Define robustness as realized pas-
senger travel time, encountering
small delays.

Belgian timetables

Goverde
[2007]

Operator Timetable assessment based on
identification of critical paths
and their relation to delay propa-
gation.

Single dutch line

Hofman et al.
[2006]

Operator Assessment of timetables and
recovery strategies; considers
buffer times

Copenhagen com-
muter timetable

Landex and Jensen
[2013]

Operator Station-centric robustness analy-
sis; buffer time and probabilistic
delay propagation measures.

Danish station

Salido et al.
[2012]

Operator Analysis based on delay propa-
gation.

-

Takeuchi and Tomii
[2006]

Passenger Method for comparing timetable
based on delay-induced passen-
ger travel time.

Real, unspecified

Vromans et al.
[2006]

Operator Metric-based assessment, intro-
ducing two measures of hetero-
geneity and spreading of trains.

Dutch single line

6.4.2 Optimization with robustness

Cacchiani and Toth [2012] surveys the literature on the rail timetabling prob-
lem, in its regular and robust forms. The following approaches to robustness
are identified:
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• stochastic programming [Kroon et al., 2008, Fischetti et al., 2009].

• light robustness [Fischetti and Monaci, 2009, Fischetti et al., 2009].

• recoverable robustness [Liebchen et al., 2009, Cicerone et al., 2009,
D’Angelo et al., 2009, Cicerone et al., 2008a].

• delay management [Liebchen et al., 2010, Cicerone et al., 2007b]

Fischetti et al. [2009] are concerned with the modification of railway timetables
to introduce robustness, where robustness is related to the absorption of minor
delays, and explicitly not delay requiring major adjustment. The robustness
is validated with a separate validator that tests a solution on a number of
delay scenarios, permitting limited adjustment but again stating that robust-
ness is not related to major disruptions. Four methods are proposed: one
effective but slow stochastic programming formulation; two “slim” stochastic
programming methods, and a method based on light robustness. The full
stochastic programming formulation minimizes delay time, similar to the
validator, whereas the two slim formulations minimize weighted unabsorbed
delay time (differing only in weighting). Instances are single-line problems
and come from the Italian railway operator. As one measure, the authors use
WAD and are able to draw a relationship between WAD and their measured
robustness. The authors show that with a weighting putting more importance
on earlier events than later events, both the light robustness formulation and
the slim stochastic programming formulation perform well.

Cacchiani et al. [2012a] present a lagrangian relaxation heuristic for robustness
problems, applying the method to the train timetabling problem. The method
finds solutions that are approximately pareto optimal considering nominal
efficiency and an estimate of robustness (against small delay). The solutions
are validated using the tool of Fischetti et al. [2009], reporting average total
delay. In the method itself, however, robustness is estimated as a dynamically
weighted profit for buffer time for certain types of train event. The method is
applied to corridor-focused Italian Railway instances, and also compared with
results of Fischetti et al. [2009] showing better results in many cases found
with less computation time.

Recoverable robustness (Liebchen et al. [2009]) is a new approach to robust-
ness that, briefly, considers a nominal problem with scenarios and recovery
possibilities; a solution to the nominal problem is recoverable robust if for any
scenario, it can be recovered to feasibility using the given recovery possibilities.
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The authors give two rail applications as examples where recoverable robust-
ness may be applicable. The authors contrast recoverable robustness with both
robust optimization and stochastic optimization. Robust optimization can
result in unnecessarily pessimistic solutions, because solutions must accom-
modate for every uncertainty simultaneously and without change. Stochastic
programming instead permits some aspects of the solution to be fixed and
solves the uncertain ones later in a second step; a 2-stage expansion in the
scenarios. However, the authors claim that the complexity of their presented
train timetabling problem results in problems that are too large and complex
to approach with stochastic programming. Recoverable robustness, however,
is claimed to combine “the flexibility of stochastic programming with the
performance guarantee and the compactness of models found in robust opti-
mization”.

Cicerone et al. [2008a] expand the concept of recoverable robustness, consider-
ing the recoverability of a timetable (or more generally some schedule) in the
face of several recovery steps. This is applied to the train timetabling and delay
management problem. Cicerone et al. [2009] consider the timetabling problem
using the concept of recoverable robustness and quantifying the “price of
robustness”. Several algorithms are proposed, which improve upon similar
work and algorithms by Cicerone et al. [2008b]. The authors are explicit in
stating the relationship between robust timetabling and delay management;
Cicerone et al. [2008b] state that:

The field of robust optimization is still in its beginning. This
work can be considered as a first step in the study of recoverable
robust timetables.

The authors do not make an experimental study applying their methods to a
real world problem, but note the value in doing so as future work. Outside
the scope of passenger rail, Cicerone et al. [2007a] apply similar concepts of
recoverable robustness to the shunting of trains.

Goerigk and Schoebel [2014] define robustness in terms of a “recovery to
optimality”; a solution is robust if, faced with the realization of uncertain pa-
rameters, can be recovered to an optimal solution with low recovery cost. Here,
then, robustness is related to large scale disruption requiring intervention
and recovery; not solutions that are still valid in the presence of small scale
disruption. The authors state that their intention is to create a solution that is
not strictly robust but rather one that can be recovered easily to an optimal, or
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good quality, solution for any disruption scenario. As an example the authors
present an aperiodic timetabling application (an LP), with a specific created
instance based on the German intercity rail system, and compare several
different timetables:

1. A nominal (non-robust) solution

2. A strictly robust (robust optimization) solution

3. A lightly robust solution

4. A recoverable robust solution

5. A recoverability to optimality solution

6. A uniformly buffered solution (with 6% extra buffer time applied every-
where)

Testing the solutions using two different samplings of uncertainty, they show
and conclude that their approach can find solutions that have good nominal
objective values, and perform particularly well for a worst case recovery to
optimality, and not as well simply recovering to feasibility. The authors sug-
gest that their approach is effective in cases where a large-scale disruption
is expected to occur, with the exact details unknown but with set of possible
scenarios determined, such as knowledge that one of several disruptive con-
struction plans will go ahead. Their approach leads to a solution that may be
recovered or modified to a good solution in all cases, with low cost measured
as difference from the nominal plan. However the authors note that generally,
periodic timetables are sought and nominal periodic timetabling is (or can
be) modelled as a Mixed Integer Programme (MIP), and not as a LP problem.
They conclude that their method would require adaption.

Schöbel and Kratz [2009] use a bi-objective approach to robust aperiodic
timetabling, using as one objective the nominal timetable quality, and as the
other a robustness measure. The authors give three possible measures of
robustness: the largest initial delay for which no passenger misses a transfer;
the maximum number of passengers who could miss a transfer if all delays
are bounded by some given value; the maximum accumulated passenger
delay that could occur if all delays are bounded by some given value. The first
would be maximized, and the second and third minimized. These, then, are
examples of passenger-centric robustness approaches. The authors show how
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pareto-optimal solutions may be found for the problem by a formulation as a
timetable problem with a robustness level parameter, and other objective is
total passenger travel time. Solutions to this problem, given some robustness
level, are pareto optimal for the bi-objective formulation considering passenger
travel time and robustness as objectives. The authors do not show results for a
particular case study but rather consider formulations, and propose the idea
of using a bi-objective for robustness in general.

Liebchen et al. [2010] introduce robustness into timetable planning by finding
a periodic timetable with high delay resistance. The authors describe their
robustness approach as an extension of light robustness. For the construction
of timetables, the authors use a weighted sum of passenger travel time and
expected deviation (delay) from the published time. The expected delay is
computed in a simplified way in the constructive model using scenarios
with given probability and input delays, and subsequent passenger delay is
calculated using a no-wait policy where non-delayed trains all operate on time
(which may be infeasible in practice). However, results are validated using
a more detailed delay-management model. Delay in the authors context is
many, small delays. Their solutions are assessed with (multiple) input dealy
of at most 20 minutes, while in the creation of timetables delays of up to 40
minutes are considered. As an example, the authors apply their method to
passenger railway lines in the Harz region of northern Germany and show
timetables can be created that substantially reduce expected passenger delay
with only minimal increase in nominal cost.

Vansteenwegen and Van Oudheusden [2006] use a passenger-centric approach
to the cost of a timetable, and use a method to modify times of a given
timetable to reduce expected passenger wait times when trains are delayed.
The authors state that a robust timetable is one that performs well in non-ideal
circumstances, and therefore their planning by including expected delay can
be considered more robust than one that is created without considering the
delay. The authors apply the method to passenger trains in a small part of the
Belgian railway network, and their results show an improvement in overall
waiting time although they also see an increase in passengers who miss their
connection. The method uses arriving train delay probability, justifying their
choice of distribution with delay data from the rail operator. The methodology
is improved by Vansteenwegen and Van Oudheusden [2007] and applied to
the full Belgian network. Their results show that the timetable created with
their LP method outperforms the original timetable for several performance
metrics, including passengers missing connections, and also show a reduction
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in long waiting times even in the no-delay case.

Kroon et al. [2008] consider the railway timetabling problem with stochastic
disturbances, and equate robustness with the ability of the timetable to cope
with those disturbances. They address the problem by a (re-)allocation of
running time supplements, planning for certain events to take longer than their
minimum required time. They state that their approach improves robustness
to small delays only, and furthermore state that most robustness work in
literature is focused on such small delay resilience. The work is an allocation
of buffer time. Given a timetable, buffer time can best be allocated to achieve
robustness to delay. The model itself is a two-stage stochastic optimization
model, consisting of the creation and assessment of the timetable (considering
average weighted delay of trains), by a sampling of possible delay scenarios.
As a case study the authors apply their method to the train timetable for a
northern section of the Dutch railway network, and compare the original to
a timetable they create where running times of trains may change by only
one minute, and another where running times may change by any (feasible)
amount, and see improvement in (train) delay and punctuality over the original
timetable even with only the small modification permitted. The authors sample
input delay from a distribution that permits up to 10 minutes of delay.

Also taking a stochastic optimization approach to railway timetabling for small
disturbances, Kroon et al. [2007] study an optimal placement of running time
supplements along a train line. One measure used is WAD, as defined above,
and the authors observe that with different amounts of total slack allocated
optimally, the distribution favours early buffer supplement (low WAD) when
less total buffer supplement is available.

Burggraeve et al. [2016] consider an integrated approach to robustness of the
line planning and timetabling problems, in a heuristic framework. The S-tog
network of Copenhagen is again studied, and the line plans are modified by
stopping pattern to alter the running times of lines using information from a
timetable model that aims to build a robust timetable for the line plan. The
overall aim is to create a robust timetable but, where this is not possible due
to the line plan, modify the line plan to further facilitate timetable robustness.
The claimed robustness improvement is related to buffer time in the created
timetable, where, in creating the timetable, the goal is to maximize the smallest
buffer time between trains.

Finally, considering the timetable, but entirely from a passenger’s perspective,



6.5 Robustness in rolling stock 79

Goerigk et al. [2013b] considers the concept of robustness in the timetable
information problem, which is the problem of finding a passenger path, given
a timetable, which minimises travel time and/or the number of transfers.
A robust form of the problem is one which guarantees an unchanged, or
minimally changed travel time, or likely unchanged travel time, given some
set of disruption scenarios. The authors give a strictly robust formulation,
where a path maintains validity in all delay scenarios, and a light robustness
formulation where the path length is bounded to be close to the optimal path
length, but additionally should have as few unreliable transfers as possible.
Data instances are from the German rail schedule, and comprise either the full
network or only high speed trains. One conclusion is that strict robustness is
too costly to the passenger in terms of travel time to be used in practice, while
in contrast the light robustness approach leads to solutions that are often as
good in terms of robustness and suffer a much lower penalty in travel time.

Table 6.2 presents a summary of work incorporating robustness in railway
timetables, classifying whether they have a passenger or operator focus and
noting whether there is a clear application to some real timetable problem
instance.

6.5 Robustness in rolling stock

Rolling stock planning is another area where robustness is studied and incor-
porated into railway planning.

Alfieri et al. [2006] mention robustness of railway rolling stock operation
briefly; they relate a minimum turning time requirement to the robustness
of a rolling stock plan, which comes with a cost. They also briefly mention
the impact of required shunting on robustness, where required shunting in
a plan has a risk of delay, and is therefore less robust than a plan with less
required shunting. However the work is more generally focused on rolling
stock circulation without a clear theme of robustness, and is applied to an
intercity line in the Netherlands as a case study.

Abbink et al. [2004] present a model for the allocation of rolling stock units
to timetabled trips, with an objective of minimising relative seat shortages.
However they do indicate the variety (i.e. lack of homogeneity) of rolling
stock unit types as being indicative of a lack of robustness. Via constraints,
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Table 6.2: Summary of literature implementing robustness in timetable opti-
mization

Reference Focus Description Application

Cacchiani et al.
[2012a]

Operator Lagrangian heuristic for creating
robust timetables for small delay
with low cost to the nominal ob-
jective.

Italian “corridor” in-
stances

Cicerone et al.
[2009]

Mixed Study of the timetabling problem
in terms of recoverable robust-
ness; theoretical.

-

Fischetti et al.
[2009]

Operator Modify timetables to be more ro-
bust to small delay; present meth-
ods based on stochastic program-
ming and light robustness.

Italian single line in-
stances

Goerigk and
Schoebel
[2014]

- Finds aperiodic timetables that
are recoverable to optimality in
disruption scenarios; theoretical.

-

Kroon et al.
[2008]

Operator Stochastic-based modification to
a timetable to improve expected
punctuality in the face of input
delay.

Northern Dutch net-
work

Liebchen et al.
[2010]

Passenger Light robustness (inspired)
method to create timetables
resistant to delays

North German net-
work

Schöbel and Kratz
[2009]

Passenger Bi-objective approach to robust-
ness, with application to ape-
riodic timetabling; theoretical.
Gives passenger-based nominal
and robustness definitions.

-

Vansteenwegen and
Van Oudheusden
[2006]

Passenger Modification to a timetable to re-
duce expected passenger delay.

Belgian network sec-
tion

Vansteenwegen and
Van Oudheusden
[2007]

Passenger Modification to a timetable to re-
duce expected passenger delay.

Belgian network

Burggraeve et al.
[2016]

Operator Heuristic integration of line plan-
ning and timetabling, maximiz-
ing minimum headway in the
timetable by altering the line
plan.

Copenhagen S-tog
network
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the number of types of units allocated to a train line is limited, arguing that
such limits lead to improved robustness at some cost to the nominal objective,
although this cost of robustness is not quantified. The authors apply their
model to an instance of regional trains in the Netherlands.

Cacchiani et al. [2012b] present an optimization model based on recoverability
when faced with different disruption scenarios (noting that in the nominal
problem, robustness considerations may be included by a count of composition
changes arguing that such events can lead to delay propagation). In their
full formulation, robustness is considered by simultaneously solving the
rolling stock circulation plan and a recovery plan (with an estimate of the
recovery cost) for a number of disruptions They also consider the solutions
afterwards on a larger range of scenarios. The authors consider the worst
case recovery scenario, rather than an expected value and therefore do not
require probabilities for scenarios. The authors apply their method to an
intercity line in the Netherlands, and when compared to a nominal optimal
solution, can find solutions that experience fewer cancelled trips and have
lower shunting costs for recovery when assessed with many scenarios. Their
Benders’ decomposition method is solved in a heuristic way, and estimates
the true recovery cost for scenarios. The authors observe that the estimate
is generally accurate, although note some cases where it makes a significant
underestimate.

Cadarso and Marín [2010] address the rolling stock routing problem for
the rapid transit routing problem, and consider some robustness aspects.
Robustness is included with two measures; the first is based on penalising
propagated delay, which depends on expected arrival delay and assigned slack
time to absorb the delay (using historic arrival delay distributions). The second
is by penalising certain operations which require additional crew. The authors
apply their method to two instances of the Madrid suburban rail network;
one of a single line, and another of two related lines; and show a reduction in
expected delay when compared with the nominal solution. Cadarso and Marín
[2011] also consider the same two instances from the Madrid suburban rail
network, considering the rolling stock assignment problem. Robustness here is
said to be introduced by penalising solutions that require composition changes
during rush hours, and empty train movements during rush hours, as both are
claimed to risk leading to propagation of delay. The robust solutions presented
do indeed reduce the number of empty movements at rush hour significantly,
and the number of composition changes can be reduced, with a price for
robustness paid for in increased operator cost but not in the service offered
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to the passenger. The same two instances from the Madrid suburban rail
network are considered by Cadarso and Marín [2014], solving the rolling stock
assignment and train routing problem for rapid transit simultaneously using a
method based on a Benders’ decomposition (solved heuristically). Robustness
considerations are introduced by penalising risky empty train movements
and shunting movements, and expected delay, in a weighted objective with
operator costs. Two other robustness considerations are a per-passenger-in-
excess penalty on trains as very full arrivals at stations can lead to congestion,
and finally restricting the number of unit types assigned per line (similar
to Abbink et al. [2004]). In the case study of the two Madrid instances, the
authors show improved solution quality over the nominal solution, and also
find better solutions with less cost for including robustness over a sequential
approach solving assignment and routing separately.

6.5.1 Train routing

Here, we consider works concerned with the routing of train units in station
areas. This could also be classified with the timetabling works, but there we
have focused more in macroscopic timetabling whereas here, we discuss works
taking a more fine-grained view where particular train unit information is
relevant.

Caimi et al. [2005] consider the routing of trains through a station, where
the timetable and station infrastructure layout is given but exact routings
must be determined. The authors seek delay-resistant routings, measuring
the maximum deviation from schedule an individual train may encounter
without conflict if every other train is on time, and use a weighted sum over
all trains as an objective to maximize in a local search heuristic method. The
authors present results for application to Bern station in Switzerland and can
find much improved solutions, as measured by their objective.

Caprara et al. [2010] also consider the train routing problem at a station,
determining platforms and routes through the station infrastructure. The
plans are assess using external delay and considering subsequent delay, when
using different strategies to address the delay. The plans themselves, however,
are created with one of two different ideas intended to introduce robustness.
The first is to increase the robustness to small delay, by ensuring events have
a large capacity to absorb delay. The second is a method of reserving both a
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platform and a backup platform for trains, as a contingency plan in the case
of delay. In their Genova case study, this backup platform method is shown to
be effective at reducing overall delay.

In an approach integrating routing and platforming with timetabling, Dewilde
et al. [2013] consider the improvement of robustness at a single station. The
authors argue that passenger service should be measured by realized total
travel time, and that a robust railway system is one that minimizes real total
travel time in the face of small, frequently occurring disturbances. The authors
define a weighted travel time extension as

realised passenger travel time− nominal travel time
nominal travel time

This is for some system a measure of its robustness, and this may be compared
to other systems by the percentage difference. They would say that system 1 is
x-percent more robust than system 2 if the weighted travel time extensions of
the systems compare in that way. In modelling the problem, the authors use a
measure of the spreading of trains and assess their true defined robustness
with a simulation method when a solution is found. The method itself consists
of a routing module, a timetable module, and a platform assignment module
in a heuristic framework. The authors study two station areas: Brussels (con-
taining three closely linked stations), and Antwerp, both in Belgium, and in
both cases show that they can find solutions that are 8% more robust than the
original solutions.

Jin et al. [2014] present work on the resilience of a metro network to disruptions,
analogous to many definitions of robustness. They introduce resilience by
integrating the metro operation with another transport mode (buses), such
that in the case of a metro disruption alternative capacity and routing may be
provided by the unaffected alternate mode.

6.6 Robustness in crew

Crew rostering at railways can be an optimization research problem; for
example Caprara et al. [1998] apply methods to the crew rostering problem
with an application to Italian railways, and more recently Abbink et al. [2005]
apply operations research to the crew scheduling problem at Netherlands
Railways. However, robustness in crew scheduling has not been as thoroughly
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considered as it has been in other areas of railway. In contrast, in the more
studied field of airline crew scheduling, robustness has been an area of study,
such as the bicriteria approach of Ehrgott and Ryan [2002].

In the field of freight railway, Jütte et al. [2011] describe the modelling and
implementation of a crew scheduling system for the DB Schenker German
freight network. Robustness is not a focus of the work, but some robustness
considerations are included. For example, buffer times are included when a
crew person changes train, and the changes themselves are (optionally) pe-
nalised to avoid duties for a crew person that included multiple train changes.
Another consideration is that employment rules dictate that a maximum of
ten hours may be worked in a duty, and if during operation this would be
exceeded (for example due to delay), then remaining tasks must be reallocated
which is costly and can cause further delay. The authors consider restricting
the maximum number of work hours in a duty to be less than ten hours to
reduce the risk of reallocation being necessary, showing results in ten minute
increments for maximum work of between nine hours and ten hours. Ro-
bustness is improved as measured by a lower risk of such disruption, based
on historic delay data, with an increase in operator cost as the price for the
robustness increases.

Potthoff et al. [2010] present a column generation algorithm for the reschedul-
ing of crew in disruption cases with data from Netherlands Railways. The
authors use a weighted objective with one consideration being robustness;
they suggest penalising any change to the original schedule (as fewer drivers
need to be informed of changes), and penalising any short transfers between
consecutive tasks on different rolling stock units. However in the presented
experiments the penalty for short transfers is set to zero. The authors show
the results for their algorithm using ten instances and different problem pa-
rameters; however the exact affect of the robustness considerations are not
exactly quantified or described.

6.7 Conclusion

Robustness has become an increasingly significant factor in both research and
application for railway planning problems. There has been a clear focus on
robustness of the timetable, but more authors are applying similar ideas to
other areas of railway planning such as rolling stock planning. Robustness
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work also appears in railway crew planning, and in the related field of airline
crew planning robustness features.

Some work has appeared considering the integration of different planning
problems of railway, and consequently some work features robustness in
integrated problems. For example the integration of network design and
line planning has been studied with robustness considered, as have the line
planning timetabling problems.

There have been several metrics and measures for robustness derived for
railway systems, mostly but not exclusively focusing on the timetable. However
it is not evident that a single metric will ever be derived that satisfies all
interested parties, as different metrics focus on different stakeholders and
some are even contradictory.

Without integrating planning problems, robustness planned in the individual
planning steps may be lost in the overall plan. For example a rolling stock
plan designed to have recoverable-robustness, where in large scale disruption
scenarios the rolling stock plan can always be recovered to a good plan, may
in fact lose its robustness if planned crew schedules can not feasibly cover
the required recovery train movements. A robust line plan may not facilitate
robust timetables to be planned; or a robust timetable may lead to non-robust
rolling stock and crew plans.

Measures of robustness indeed generally focus on a particular part of the
plan such as the timetable or rolling stock plan. They are robustness of the
timetable, or robustness measures of rolling stock; not robustness measures of
passenger railway. While a completely integrated planning approach may not
be achievable, an integrated metric of robustness may be more feasibly derived
and provide insight into the possible loss of robustness from non-integrated
planning. We do not yet see the conceptualization of robustness of railway
operations in a wholistic manner, but as metrics and concepts become more
developed for the individual problems we may see more parallels between
them.

We may expect to see more formulations that treat robustness as an additional
objective function and therefore more multi-objective optimization approaches
to planning with robustness. As robustness is generally not measured in
units comparable to other costs, methods that provide several pareto-optimal
solutions for manual planners to assess. Certainly this is an area attracting
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present research, and approximately half the works cited in this review are
from the year 2010 or more recent.
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Abstract. The line planning problem in rail is to select a number of lines from a
potential pool which provides sufficient passenger capacity and meets operational
requirements, with some objective measure of solution line quality. We model the
problem of minimizing the average passenger system time, including frequency-
dependent estimates for switching between lines, working with the Danish rail operator
DSB and data for Copenhagen commuters. We present a multi-commodity flow
formulation for the problem of freely routing passengers, coupled to discrete line-
frequency decisions selecting lines from a predefined pool. We show results directly
applying this model to a Copenhagen commuter rail problem.

7.1 S-tog problem description

The S-tog network in Copenhagen is a commuter rail network serving 84
stations and between 30,000 and 40,000 passengers per hour at peak times.
The S-tog network is operated by the Danish state railway operator: DSB. The
trains in the network operate on published lines which each have an hourly
frequency, and run according to a published timetable. We consider the lines
and the frequencies, but not the exact timetable.

See Figure 7.1 for an example of the lines that may operate in the S-tog
network. Here each coloured path refers to a different line that is operated
at some frequency, and on each a train visits every station marked on the
line in each direction according to that frequency. An important feature of
the network is that a train may not necessarily stop at every station it passes;
for example the red and orange lines (C and H) run parallel to each other in
the top left of the figure, and to the same end station, but the red line stops
at fewer stations and is therefore faster between stations. This is of benefit
to passengers travelling past those stations, but passengers travelling to or
from the skipped stations are left with fewer options. For our purposes, the
possibility of different stopping patterns greatly increases the problem size.

Given the fact that lines may not stop at all stations, a route or path in the
network is not sufficient to define a line. We define a line here as a sequence of
tracks which a train passes, and the stations on those tracks that are stopped
at and not stopped at. We refer to the sequence of tracks as a line route, and
the stations stopped at and not stopped at are the line stopping pattern. Paired
with every line (route and stopping pattern) is an hourly frequency, and the
set of lines with their frequencies defines the line plan.
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Figure 7.1: An example of the lines operated in the S-tog network, showing
different lines in different colours. Each is identified by letter, and the presence
of a dash indicates a stop.

Of the roughly 7,000 pairings of stations we consider non-zero demand for
passengers between just over 4,600 of the pairs, which is around 65% of the
possible demand pairings. As input we take a set of 174 valid lines, each with
one or more valid frequencies at which the line could run; in total 350 line-
frequency combinations are considered. Each line services between 11 and 39
stations with an average of 23 stations served per line, and almost all lines can
operate at exactly two frequencies, while some very small number have more
possible frequencies. However we also experiment with more frequencies.

Our demand data is for a specific peak period of the day, where in reality
demand varies throughout the day. Real S-tog line plans have lines that operate
at different frequencies at different times during the day, and operate modified
line plans during the weekends. We make the following two assumptions,
which are true for the S-tog problem:

• a line plan created for a peak time is valid at other off peak times,
possibly operating at lower frequency;
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• a line operates in both directions at the same frequency.

For the second point, we model both directions of the line as having the
same frequency, where in practice it may be possible to operate each direction
at a different frequency, though balancing vehicle movements may be more
complicated.In practice current plans operate both directions of a line at the
same in frequency, and we model the problem in that way. However, for
capacity reasons the different directions of a line may not use the same rolling
stock unit type; here we do not model rolling stock units but instead take
a fixed capacity of the largest rolling stock unit type available. In practice
there are no other differences between units that are relevant for our purposes
here (for example plans are made for a fixed driving speed, not dependent
on unit type) and through discussions with the operator we are confident
that assuming all units are of the maximum size is a valid simplification.
Assumptions on rolling stock unit are necessary because the line planning
problem is solved early in a sequence of rail planning problems, usually
followed by timetable creation and then rolling stock planning, and exact
rolling stock details are only known at that stage. Without a timetable which
itself depends on the line plan, we can only make estimates or assumptions
about those details.

The presence of mixed stopping pattern lines running on the same infras-
tructure lines has the potential to negatively impact the timetable due to the
mixed driving times of trains. This could be a source of a lack of robustness for
the timetable and line plan. However, we do not calculate a timetable to assess
this impact and make no estimate or derive any metrics for this particular
feature.

The line planning problem we consider is that of selecting a set of lines
from a larger pool of lines, and for each selected line, determining an hourly
frequency at which the line should operate. A line is defined as a route in
the infrastructure network with a stopping pattern, and several lines may
share the same route but have different stopping patterns. The selected line
plan must meet certain criteria, such as provide a minimum hourly service at
each station, not exceed hourly limits on trains using certain track segments,
visiting certain stations and turning at certain stations. These criteria are
required due to the traffic contract between the operator DSB and the Danish
Ministry for Transport

The line plan must also have sufficient capacity to transport all expected
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passengers, providing all with a good path from their origin to destination. As
an objective measure we want to model the entire travel time of passengers,
and include a frequency-dependent cost component to penalize occurrences
of passengers switching to lines at low frequency, in favour of switching to
lines at high frequency.

We take the line pool as a fixed input, and this is a subset of every possible
route and stopping pattern. The lines in the pool are all assumed to be feasible
alone, and are a sensible restriction of the entire pool excluding lines that are
not considered to be appropriate or feasible. The pool is still sufficiently large
to ensure the presence of a large range of feasible line-plan solutions.

In this paper, we present an integer program formulation for the line planning
problem, formulated to allow a primary objective of total passenger travel
time defined as time travelling in train and time switching between lines.
We present a flow based formulation for routing passengers, and show that,
despite being large, we use the formulation directly for real-world instances
without requiring a path-based decomposition. However to reasonably solve
the model, we present some contractions of the flow graph, present how we
can aggregate passengers to reduce the problem size, and present additional
constraints that improve the lower bound.

We present our results for the Danish S-tog case study, where we show a range
of different line plans and how they can be compared with different metrics.

7.2 Related Research

There is much work in the literature on the line planning problem, with
different details and objective measures. Schöbel [2012] gives an overview of
line planning in public transport, and classifies different problem instance
characteristics and models for addressing them.

In many line planing problems, the line and the route are interchangeable;
if a line follows a certain route, then every station on the route is serviced.
Goossens et al. [2004] take an operator-cost oriented approach, with discrete
frequencies and carriage types selected for each line. The authors note that,
due to passengers preferring to switch to a faster type of line as soon as
possible, in a network with multiple line types a decomposition into problems
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considering each type is valid (and therefore in their problem all lines are
of the same type). Goossens et al. [2006] however present several models for
the train line planning problem where a route may have different stopping
patterns (i.e. different line types), with a cost focus rather than a passenger
focus. Other work at DSB for the S-tog problem [Rezanova, 2015] has used a
version of one presented model to find low cost line plans.

There is a more recent focus on the passenger, and on minimizing the total
trip time for passengers (and so modelling their moving and switching times)
as we would like to do for the S-tog system. Schöbel and Scholl [2006] present
a model with a station-line graph in which passengers are freely routed with
both travel times and switching penalties, with continuous frequency decision
variables for lines, and use a decomposition such that decisions are made in
terms of path selection for every pair of stations. Nachtigall and Jerosch [2008]
present a model where passengers are routed freely, measuring travel time
with fixed penalties for switching lines, and with an integer decision variable
per line. Borndörfer et al. [2007] similarly presents a formulation freely routing
passengers (though ignoring transfers) and also dynamically generating lines,
using continuous frequency decision variables. In contrast we wish to model
the switching cost with a frequency dependence. Also, the line frequencies
in the S-tog system are not so free that we can model them continuously as
there are only discrete frequencies that are considered valid. In addition to
passenger travel time, Borndörfer et al. [2007] use operator running cost and
fixed line-setup costs into account in their model.

A simpler passenger-focused measure is using a direct-travellers objective,
maximizing the number of direct travellers the network may transport (i.e.
passengers who may travel with no transfers). Bussieck et al. [1997] present
such an approach while, like many authors, selecting lines from a pool (by
selecting for each line in the pool an integer frequency, which may be zero). A
pool-based approach is used by many authors, and is used in this work.

Goerigk et al. [2013] take an approach selecting an integral decision variable for
each line in a pool, taking either an operator cost approach; a direct travellers
approach, or an approach ensuring an even distribution of frequencies in
the public transport network. Here, unlike in much work, the authors’ main
concern is the impact the plan has on a subsequent timetable. However in this
case the authors draw a positive correlation between more direct travellers and
lower overall travel times, because with fewer overall transfers the transfers
can be scheduled tightly in a subsequent timetable.
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7.3 Lines Model

We take as input a set of valid lines, L, and for each line l there is a predefined
set of discrete frequencies at which the line could operate: Fl .

Ignoring passengers, we may simply find line plans (pairings of lines with
frequencies) which satisfy all operational limits, and consider how well they
serve passengers. In general such solutions do not even guarantee sufficient
capacity for all passengers, though often they are very close; the minimum
visits requirement per station in many areas provides more capacity than
there are passengers travelling to, from or passing by the station. However,
even if a solution does provide sufficient capacity, it is possibly a very poor
quality solution for passengers.

We decide which lines and frequencies we will select from the line pool L,
where each has valid frequencies Fl (defined for each l ∈ L). We let the binary
decision variable yl f ∈ {0, 1} denote selecting line l at frequency f .

Simply selecting a valid set of lines is not in itself trivial; the selected lines must
be compatible, must meet certain service levels, and must not exceed some
fixed operating budget. The service level requirements can all be expressed as
a minimum number of trains visiting a single station per hour, or operating on
a particular track sequence per hour. Similarly, the compatibility requirements
can be expressed as a maximum number of trains per hour visiting stations,
turning at stations, and operating on particular tracks. Selecting a line at
frequency f contributes f trains per hour towards the relevant service level
constraints, and so we can enforce such constraints by summing over every
line frequency decision with the frequency itself as the coefficient.

Every contractual requirement or operational limit can be expressed by deter-
mining exactly those lines which contribute toward the requirement or limit
such as lines visiting the relevant station or using the relevant track sequences.
Consider such a set Z of lines. The contractual requirement or operational
limit for Z may have either a lower limit or an upper limit or both for the
number of trains per hour. For simplicity in definition we assume both; let
these be α(Z) and β(Z) for the lower and upper bounds, respectively. Now,
let C be the set of all such sets Z ; every element of C is a set of lines Z with a
lower (α(Z)) and upper (β(Z)) hourly limit.
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Additionally, certain sets of lines are inherently incompatible for various
reasons not explicitly related to the line plan but for other operational reasons.
Let I be the set of all incompatible sets of lines, where any element of I is a
set of lines from which only one line can appear in a valid line plan.

Finally, every line has a cost when operated at a particular frequency: cl f , and
we impose a maximum budget for the line plan cmax. This generalized cost
may not necessarily scale with frequency; selecting a line at frequency 2 f may
cost more or less than selecting the line at frequency f .

Now, the following constraints define a valid line plan, considering only the
lines themselves but ignoring passengers.

∑
f∈Fl

yl f ≤ 1 ∀l ∈ L (7.1)

∑
l∈L

∑
f∈Fl

cl f · yl f ≤ cmax (7.2)

∑
l∈Z

∑
f∈Fl

yl f ≤ 1 ∀Z ∈ I (7.3)

∑
l∈Z

∑
f∈Fl

f · yl f ≥ α(Z) ∀Z ∈ C (7.4)

∑
l∈Z

∑
f∈Fl

f · yl f ≤ β(Z) ∀Z ∈ C (7.5)

yl f ∈ {0, 1} ∀l ∈ L, ∀ f ∈ F f (7.6)

Constraints (7.1) ensure that a given line is chosen at most once disallowing
a single line at multiple frequencies (because, for example, some line might
be permitted at 3, 6, or 12 times per hour but not at 9 times per hour, so
combinations may not be permitted). Constraint (7.2) ensures that the total
lines cost is no greater than the given budget. Constraints (7.3) permit only
one line for each of the sets of incompatible lines. Similarly, constraints (7.4)
provide minimum service levels for the same visits, turnings or track usages.
Constraints (7.5) provide all operational constraints that can be expressed as a
maximum number of trains visiting or turning at a station, or using a specific
sequence of track.

The formulation (7.1)–(7.6) defines a valid line plan. It completely ignores
passengers; some feasible solutions to the formulation will fail to provide
sufficient capacity for all passengers in the network, and those that do pro-
vide sufficient capacity may nevertheless provide a poor solution for many
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passengers. However, solving the formulation will find a line plan with some
capacity that services all stations, so it can be assessed to determine whether
or not it does provide sufficient capacity. If so, we can assess how well it serves
passengers, and if not we can identify where capacity is lacking.

7.4 Passengers

7.4.1 Graph

We model passenger travel as a movement in a graph, where the existence of
components of the graph depends on the presence of a line in the solution. We
could model each line-frequency pair as a completely distinct component of
the graph. However, this leads to a very large graph, especially if we want to
experiment with many frequencies for each line, and much of the information
depends on the line itself and not its frequency.

Consider Figure 7.2 showing the structure of a single line at a single frequency
visiting three stations. For each station (1, 2, 3) there are three vertices; a source
vertex, a sink vertex, and a platform vertex ( s1

i , s1
o , p1 for station 1, respectively).

All passenger paths originate from some source vertex, and terminate at some
other sink vertex, travelling on dashed line travel edges or switching lines
using a platform vertex. To capture the information we want about frequency-
dependent aspects of the line, we could simply duplicate this structure for
every frequency at which the particular line operates. That is, we would have
a parallel structure to l1, l2, . . . vertices representing the same line with route
and stopping pattern, but operating at a different frequency. However, much
of the information would be redundant, and when experimenting with large
numbers of frequencies per line the graph becomes very large. Alternatively
we could simply have one such structure that represents every frequency,
except that then the cost of a particular path could have no dependence on
frequency of lines used. In our problem we want to penalise switching to
low frequency lines more than high frequency lines. However capacities of
edges, though dependent on frequency, can still be maintained even with a
single structure by summing the capacities of the frequency-line decisions that
would contribute toward them. This suggests that it is possible to partially
aggregate the line-frequencies into simply lines, being careful to accommodate
the frequency-dependent switching cost between lines.
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s1
i s1

op1 s2
i s2

op2 s3
i s3

op3

l1 l2 l2

Figure 7.2: The structure for a single line at one frequency visiting multiple
stations.

The aggregated graph then contains three types of node:

• a source and sink for every station;

• a platform for every station;

• a station-line for every station a line visits, for every line.

The graph also contains several types of edges:

• A travel edge between every adjacent pair of station-line edges for every
line, in each direction;

• A get-off edge from every station-line to every station sink;

• A get-off edge from every station-line to every station platform;

• A get-on edge from every station source to every station-line;

• A get-on edge from every station platform to every station-line at every
frequency.

Note that this is an aggregation of the line/frequency combinations, though
without being able to aggregate those boarding frequency edges. It means the
capacity of an edge (the station-line to station-line edges) is dependent on a
summation over all frequency decisions for that line.

The graph structure is similar to the stop-and-go graph described by Schöbel
and Scholl [2006]. See Figure 7.3 for the structure of the problem graph for
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passengers. The figure shows a single station with its three nodes, and two
distinct lines which visit the station at two frequencies each. Here depicted
as a multi-graph, the graph can be made simple with auxiliary nodes and
edges. For each passenger, a path through the graph from their origin station
s1

i vertex to their destination station s2
o vertex must be found, which incurs

the travelling time (on dashed edges) and switching time costs (on red edges).
Differing from the Schöbel and Scholl [2006] problem structure, in our case
the discrete frequencies a line may operate at are an important feature, and we
want to model different passenger time costs for switching to lines at different
frequencies, so our graph has additional station structure.

si sop

l1

l2

Figure 7.3: The graph structure for two lines at a station. Each station has
three vertices, si and so, which representing either entering or exiting the
system at this station, and p, which represents switching lines at the platform.
Vertices l1 and l2 represent the two lines visiting the station. The solid black
edges have zero cost, while the dashed black edges cost the travel time to the
next station along a line. The thick red edges represent the costly switching
from one line to another, and depend on the frequency of the boarded line
(one edge per frequency the line may operate at).

7.4.2 Flow decisions

The problem can be represented as a multi-commodity flow problem, with
one commodity per OD pair, with additional constraints linking flows to line
presence and capacity. However, with the roughly 4,600 OD pairings in our
regular problem instance and the relatively large graph we describe above,
the problem would be very large. Let us refer to such a model, which we
do not formulate here, as a per-OD arc flow model, where for every OD we
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would select a proportion of passengers who use every edge in the graph
such that every OD has one path from origin to destination, and those edges
used correspond to selected lines and frequencies. We have tested the per-OD
arc flow model for small instances (such as with only the lines of a known
feasible solution, but unspecified frequency still to be determined) and, though
solvable, the model is very large and would not scale to having very many
lines.

The proposed per-OD arc flow model would have one flow variable for every
OD combination, for every edge in the graph, and we would require one
path with capacity sufficient for that OD demand for every OD combination,
respecting every other OD path. As an aggregation, we can combine flows
that have the same origin (or alternatively the same destination), and instead
have one type of flow for every origin. The number of flow decisions is then
lower by a factor of |O|. Instead of requiring one path per OD, we will require
the aggregation of those paths scaled by passenger counts; that is, we will
require a network flow from each origin which supplies the sum of passengers
from the origin to every destination, and each destination from that origin
consumes just the passenger demand from the origin to that destination. The
flow variables are xe

o ≥ 0; the number of passengers from origin o using edge
e. Note that we do not require integer flows, and we do not require a single
path between every origin and destination. In fact we see for currently used
plans that it is infeasible for every OD pair to use a single path, as there is
insufficient capacity. Instead some proportion of passengers on some OD trips
are forced to take less favourable paths than the best available due to limited
capacity on their most attractive path. Here, we note that the capacity we
take for an operating line is assuming the largest possible rolling stock unit is
operating the line, while in reality DSB operates different units with different
capacities. In discussions with DSB we determined that this simplification
was appropriate and, while it potentially over-estimates the true capacity
achievable for a line plan (as DSB has too few of the largest units to use them
everywhere), we do not see solutions where this capacity is required on every
line simultaneously.

In the graph described in Section 7.4.1, let V be the set of vertices and E be the
set of edges. For every vertex in the graph, we define a demand for passengers
for every origin station in the network. Let the demand for passengers at
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vertex v who originate from station s be as
v.

as1
v =


ds1s2 if vertex v is a sink vertex for station s2

−1 · ∑s2
ds1s2 if v is the source vertex for station s1

0 otherwise

We also require constraints that link the flow variables to the line decision
variables yl f , ensuring both that if any flow uses a line, then the line is
present, and that every connection of the line has sufficient capacity for all
flows which use it. Further, we will require that the edges corresponding
to the frequency-dependent boarding of a line are only used if the line is
present at the correct frequency. Constraints linking the flow variables to the
capacity of the selected lines are in fact sufficient, and it is not necessary to
impose additional constraints to link simply a usage of a line to a line decision
variable. To do this, let E l be the set of all edges in the graph that depend on
the presence of line l at undetermined frequency. Let E l

f be the set of all edges
in the graph that depend on the presence of line l at exactly frequency f .

We impose the following constraints:

∑
(u,v)∈E

x(u,v)
s − ∑

(v,w)∈E
x(v,w)

s = as
v ∀s ∈ O ∀v ∈ V (7.7)

∑
o∈O

xe
o ≤ ∑

f∈Fl

Pf yl f ∀l ∈ L, ∀e ∈ E l (7.8)

∑
o∈O

xe
o ≤ Pf yl f ∀l ∈ L, ∀ f ∈ F f , ∀e ∈ E l

f (7.9)

Constraints (7.7) ensure that flow is conserved in the graph, for every origin
defining a network flow moving the required number of passengers from each
origin to every destination. Constraints (7.8) ensure that for every edge on
a line (E l), the edge provides sufficient capacity for all flows using it. The
constant Pf is the capacity of any line at frequency f , which we take as a
constant. An obvious simple extension is to have a line-specific capacity, but
that is not present in our data. Finally, constraints (7.9) ensure that for those
boarding edges from a platform that are frequency dependent (edges E l

f for
line l at frequency f ), again sufficient capacity must be present. In effect, the
difference between constraints (7.8) and (7.9) is that (7.8) are for the aggregated
frequency edges and therefore we sum the yl f variables for all frequencies.
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These constraints (7.7)–(7.9) define the flows and link them to the line decision
variables. The full formulation then is constraints (7.1)–(7.6), and (7.7)–(7.9).

7.5 Objective functions

There are a number of possible objective functions we could use, either re-
lated to passengers, to the operator, or to some combination. Above with
constraints (7.1)–(7.6) we gave the operator cost as a constraint with a fixed
budget, and our primary goal is to minimize a passenger-based objective.
However, other measures are possible. Here we give our primary measure
and some other alternative measures we use.

7.5.1 Passenger travel time

As already stated, we are interested in penalising switching time for passengers
with emphasis on discouraging switching to lines operating at low frequency.
As we do not know the timetable in advance, we can’t know the exact time
required for a switch. In the ideal case, for every switching occurrence, both
trains would arrive at a station at the same time and the station layout would
permit passengers to switch from either train to the other, losing no time.
However, generally this is impossible in the S-tog system. The best case at
most stations is that one train arrives shortly before another, in such a way that
passengers may switch from the earlier train to the later time with minimal
waiting time, but then passengers switching in the opposite direction have
almost a worst-case wait time for their next train.

Overall, we consider passenger travel time to be the most appropriate measure.
In tests, if we ignore switching time and minimize only moving travel time,
we find solutions with many undesirable switches required. Conversely if we
ignore travel time and consider only minimizing some measure of switch cost,
we find solutions which do not use “fast” lines appropriately and have higher
overall average total travel time. Travel time therefore includes both the moving
travel time on train lines and an additional estimate of the wait time. However,
in addition to this we include a separate expression for the “unpleasantness”
of switching lines which we express as a time, in effect calculating a weighted
sum of estimated travel time and the number of switches.
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For every edge in the graph, we assign some cost to the passenger. Let te be the
time cost to one passenger for using edge e. For every travel edge on a line (the
dashed lines in Figure 7.3), the edge time cost is the exact, known, travel time
for trains between the two stations. However, for the frequency-dependent
switching edges (the red edges on Figure 7.3), the edge time cost includes an
estimate of the waiting time and the penalized fixed cost of switching. For
such edges e at frequency f , let te = pfixed + λ 1

f , where λ ∈ [0, 1]. That is, the
time cost is a fixed term with a fraction of the worst case wait time (where
for example in the worst case, a line operating twice per hour has a worst
case switch time of 1

2 an hour). We take, as a parameter, a fixed penalty of
six minutes and λ = 0.5, or an average case wait time estimate. For any other
edges let te = 0. Now, we can define our objective function as simply:

∑
e∈E

∑
o∈O

texe
o (7.10)

7.5.2 Minimum lines cost objective

We are not only interested in line plans which have minimal passenger cost, but
also those that have low operating cost while still providing a good passenger
service. An operating cost objective can easily be used with the formulation
(7.2)–(7.6), iteratively finding many low cost solutions and assessing their
passenger cost. However it is likely that such plans are not feasible; minimal
line cost solutions likely provide low passenger capacity. We can use the
following as our objective function, which expresses operating line cost:

∑
l∈L

∑
f∈Fl

cl f · yl f ≤ cmax (7.11)

We observe that there are many similar cost solutions with the same lines
but with different frequencies, where the aggregated sum of frequencies is
the same (or similar). If we iteratively find solutions and forbid them (which
we can do with constraints described in a later section), we see many similar
solutions. Also, we observe that if a low-cost solution of lines with some
frequencies is infeasible for passengers, then a different low-cost solution
with the same lines at different frequencies is also likely to be infeasible for
passengers. However there is also likely to be other solutions with the same
lines at different frequencies that are feasible, but not low-cost. We can also
find these similar solutions by taking a limited line pool consisting only of the



7.5 Objective functions 109

lines present in a low cost solution, but at any frequency, and solve a problem
with passenger cost as the objective. A feasible solution is guaranteed to be
present as every line and frequency of the provided solution is present, but
we may find there are better feasible solutions with respect to the passenger
objective.

7.5.3 Direct travellers objective

In model (7.2)–(7.6) we can instead use a (pseudo) direct travellers objective,
seeking to maximize the number of direct travellers. This will not be entirely
correct as it will count the number of passengers who have a direct path in
the line plan, but without the guarantee that all such passengers may take
their direct path (due to limited capacity).

To measure the direct travellers we introduce a new binary variable: let
zod ∈ {0, 1} denote whether the line plan provides a direct connection between
stations o and d. Then, let Lod be the set of lines which provide a direct
connection between stations o and d, which can easily be precomputed. We
then maximize the objective function:

∑
(o,d)∈O

dod · zod (7.12)

where dod is the demand between stations o and d.

We require the following additional constraints:

zod ≤ ∑
l∈Lod

∑
f∈Fl

yl f (o, d) ∈ O (7.13)

That is, zod may have value 1 if there is one line providing a direct connection
between o and d in the line plan.

As mentioned in the previous section, we may iteratively find solutions by
forbidding those we do discover with appropriate constraints. We then assess
the feasibility and travel time cost of the line plans. The results are remarkably
poor; the direct traveller objective is not a good approximation of our true
travel time estimate objective. For the S-tog problem we assessed the first three
thousand solutions; all had very high line operating cost, and almost all had
high travel time cost as well. None was a noteworthy solution; all discovered
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solutions are dominated by other solutions, even (some of) those found with
minimal operator cost in the previous section.

Examining the discovered solutions, there are two explanations for the poor
quality of the solutions favouring direct travellers. Firstly, lines that skip
stations in our network provide a small travel time benefit to potentially
many passengers, but provide fewer direct connections than lines with the
same route stopping at all stations. If measuring only direct travellers then
these faster “skipping” lines are less valued, and almost none appear in any
solutions we discover. Secondly, the solutions have a very wide selection of
lines, with more lines being present overall and those lines that are present
all terminate at extreme end stations of the network, not intermediate end
stations. This then has the problem that the line frequencies must all be low
to accommodate many lines turning at each of the extreme end stations, and
then by our travel time estimate, those passengers that do not have a direct
connection are then required to switch onto lines operating at low frequency,
incurring higher cost. We see that, indeed, fewer passengers are required to
make connections (roughly 30% fewer connections in total than plans targeting
total travel time), but that is still then a large number of passengers and most
are switching to low frequency lines.

The direct travellers objective is used by other authors, and in fact has been
noted as being a source of a lack of delay robustness for a timetable [Goerigk
et al., 2013]. The direct travellers objective results in line plans with very
many lines, and therefore those transfers that are required are tight in the
timetable and susceptible to being missed. In the S-tog network there is not
the possibility for particularly many lines, although a direct traveller objective
does discourage using the “intermediate” end stations on the fingers and
instead using the end depots at greater capacity. However a direct travellers
objective in the S-tog case discourages skipped stations which leads to more
homogeneity in driving speed, which might be expected to provide better
delay robustness.
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7.6 Other modeling considerations

7.6.1 Additional linking constraints

In the previous section we defined a formulation where the linkage between
edge flows and line presence is imposed only by the capacity of a line and the
sum of all usages of every element of the line.

In general, in our problem, the demand between some particular pair of
stations is lower than the capacity of a line operating at only the lowest
frequency. In a non-integer solution only a small fractional line decision
variable (yl f ) is required to provide capacity for some OD pair to make use of
the line, if no other OD pair uses that line. Suppose for an OD based arc flow
model there are variables xe

od deciding the flow on edge e for flow from o to d.
In addition to summing all such flows for every OD pair for the usage of the
line yl f which contains e to constrain the capacity of the edge, the following
constraint could be used:

xe
od ≤ dod · ∑

f∈Fl

yl f

where dod is the demand for pair (o, d). This would provide a tighter linkage
between the flow variables and the line variables, at the expense of requir-
ing very many constraints, though it is not necessarily required that such
constraints are included for every edge of a line.

Unfortunately, we do not have individual flow variables xe
od as we have

aggregated the variables by origin; we have only xe
o. Unlike previously, where

the maximum flow on any edge for one (o, d) flow was dod, now the maximum
demand of flow on any edge from one origin is ∑d dod, which is not in general
significantly smaller than the capacity provided by one line; in fact it can
often be that any one line capacity is less than the aggregated demand. The
analogous constraint is much weaker:

xe
o ≤ ∑

f∈Fl

yl f ·∑
d

dod

In general, the flow originating from an origin has much higher edge usage
than any single dod, and close to the origin itself it may in fact be as high as
∑d dod. However the flow from that origin terminates at many destinations
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and at those destinations the flow is much lower; exactly dod flow terminates
at a particular destination from some origin, and that corresponds to usage of
an edge in our graph that belongs to a specific line and is only used by flow
terminating at that destination. That can be seen on Figure 7.3, where edges to
so can each be associated with a single line, and where there are no edges out
of so. Therefore, for every such specific edge e we can include the following
constraint:

xe
o ≤ dod · ∑

f∈Fl

yl f

Let tld be the terminating edge of line l at destination station d (if there is
destination d on line l). Then, we impose the following for every line and for
every (o, d):

xtld
o ≤ dod · ∑

f∈Fl

yl f (7.14)

Given our tight operational constraints, as well as the budget constraint
(constraints (7.2) and (7.5)), such constraints improve the bound given by
solving the LP relaxation of the model, as in general the forcing of some
line variables to have higher value must cause a decrease in others, and then
some passengers must use less favourable lines. However this comes with the
addition of many new constraints; one for every OD pair, for every line that
visits the destination of the pair (up to |L ×O ×O| constraints).

The formulation is constraints (7.1)–(7.6), (7.7)–(7.9) and (7.14).

Figure 7.4 shows how the LP lower bound differs with and without con-
straints (7.14). Here the problem itself is the S-tog problem, and more precise
details are given later. The effect differs with the budget limit: without the con-
straints only a very strict budget limit has any effect on the LP bound, while
with the constraints the bound is affected more with a wider range of budget
limit levels. The difference between the two bounds is most pronounced at
lower budget limits than higher, but in all cases is less than half way from the
worse lower bound to a best IP solution (though the IP solutions were only
obtained with a time limit of 1 hour and so not all are optimal). Note that for
the IP solutions, the actual lines cost may not correspond exactly to one of
the cost constraints applied, as with the applied constraint the best solution
found may have a lower lines cost.
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Figure 7.4: The LP relaxation lower bound found for different cost constraints
with (blue open circle) and without (red filled circle) constraints (7.14). Green
cross-marks show some best integer solutions found with a one hour time
limit for a range of cost constraints.

7.6.2 Forbidding a solution

Let S be a set of lines in a particular solution, and let fl be the frequency of
line l in S . The following constraint forbids this exact solution:

∑
l∈S

yl, fl
≤ |S| − 1 (7.15)

This has the potential problem that it does not forbid a solution containing
only some of the lines in S , or conversely that it does forbid solutions which
contain the lines of S and additional lines. As an alternative, a solution with
the given solution lines at any frequency can be forbidden with the following
constraint:

∑
l∈S

∑
f∈F f

yl f ≤ |S| − 1 (7.16)

As before, this does not forbid a solution containing only some of the lines in
S , and does forbid solutions with additional lines. However, we find that to
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be acceptable for our problems.

Forbidding solutions in this way is used to remove solutions known to be
infeasible for later planning; and iteratively, to find a large pool of solutions by
repeatedly solving the model, forbidding the last found solution, and solving
again.

7.6.3 OD grouping

Stations can be grouped together if they are served similarly by all lines.
Consider two adjacent stations, s1 and s2, which lie on a track sequence, and
all lines in the line pool stop at either both s1 and s2 or neither s1 nor s2. That
is, they are served identically by all lines. Then, if there is a third station s3
with demand to both stations s1 and s2 we can treat the two demands as a
single combined demand to (say) s1. Any demand for travelling directly from
s1 to s2, or vice versa, which would be discarded, can be reserved by requiring
sufficient aggregated extra capacity on the lines visiting both stations. This
may under-reserve capacity on the connection between s1 and s2 if s1 is closer
to s3 than s2 is, or over-reserve capacity if s1 is further from s3. We optionally
apply a pessimistic grouping strategy which reduces the problem size (by
reducing the total number of OD pairs), but given the potential error in under-
use or overuse of some connections, we only consider low magnitude OD
pairs and always assess solutions found using all OD pairs.

With reference to Figure 7.1, the S-tog network has a central region and several
“fingers”. In the presented plan, on each finger, one line serves every station
and the other line serves only some stations, but this is not necessarily true
for any solution plan. However it is in the fingers where grouping is most
relevant; for example the final few stations on every finger may not be skipped
by any line, and are therefore visited identically by every line and may be
grouped.

7.7 Instance size

The OD data is not necessarily well-suited to all applications in that the hourly
demand between many station pairs is non-integral (being the output of a
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demand model). Table 7.1 shows the total passenger demand for different
rounding strategies of the individual OD demands between pairs of stations.

Table 7.1: Total OD demand for different roundings of individual OD demands

method passenger number

rounded up +6.52%
rounded down -6.53%
rounded -0.02%

Always rounding down results in a loss of over 6% of passengers, while round-
ing up adds more than an additional 6% passengers in total. Some solutions
(including real solutions) are very tight in capacity in certain sections, and
the additional passengers in the round-up scenario can make such solutions
infeasible. Rounding down has a similar problem, in that solutions may be
found which have very limited capacity and insufficient capacity for the true
total number of passengers. We instead round all demands to the closest
integer number of passengers which results in a total passenger demand very
close to our raw input data, and is less likely to have such capacity problems.

Now that all components of the problem are defined, we can more explicitly
define the standard S-tog instance size. Table 7.2 shows the size of various
sets defined earlier.

Table 7.2: Sizes of problem instance parameters, and some derived values.

parameter explanation size

|L| Number of lines 174
∑l∈L |Fl | Number of line-frequency decisions 350
|I| Number of marked incompatible lines 258
|C| Number of operational requirements 189
|OD| Number of (o, d) pairs 4645

Figure 7.5 shows the cumulative number of passengers for (o, d) pairs, when
sorted by the number of passengers demanding a route for each (o, d). A
small proportion of the (o, d) pairs account for the majority of the passengers.
A potential simplification may then be to simply ignore some proportion of (o,
d) pairs with small demands; however experiments solving reduced problems
and then assessing solution quality considering all ODs gave poor results, as
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those low-demand ODs cover a diverse range of station pairings that are given
insufficient consideration.
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Figure 7.5: The cumulative proportion of passengers when considering (o, d)
pairs sorted in decreasing order by the size of their passenger demand.

7.8 Method

Primarily, we use the formulation as described, with a constraint on the
operator cost which we vary to find different results, and the total passenger
time estimate as the objective function. Solving the resulting mixed integer
program (MIP) directly can often provide good quality solutions, but we
propose two additional methods for finding solutions.

In the following, we will refer to two real solutions: R1 and R2. These are both
real historic line plans and frequencies as operated by DSB.

All testing is implemented with Gurobi 5.6 as the MIP solver on a machine
with 8 GB of memory, and a four-core 2.5 GHz i7 processor.
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7.8.1 Refining a given solution with a limited pool

From a given solution, we can create a limited pool of lines to use as the
input to the model, which may or may not contain all the lines of the given
solution and possibly also has the original solution as the optimal solution.
The advantage of using a limited pool is that if the pool is sufficiently small,
the model is solvable to optimality in reasonable time.

Suppose a solution is given, and let S be the set of lines present in the
solution, with unspecified frequency. A simple restricted instance is to solve
the model with only the lines S , but with the definition of Fl for each line l
in S unchanged. This is then a very small line pool (with generally one or
two frequencies per line), but there is guaranteed to be at least one feasible
solution present and likely to be others. We see that solving this limited
model for any given solution can quickly find very similar but better solutions,
especially in the case of real past line plans which were generally not planned
with the same objective we use, and likely respect additional requirements.
The similarity of any solution found to a real past solution is potentially
useful, avoiding solutions that are significantly different to a plan that is not
only feasible but known to operate in practice, which we can not in general
guarantee.

To determine a wider but limited line pool, consider a set of lines from the
entire line pool that are similar to a given line; let N(l) be a set of “neighbour-
ing” lines to line l which only differ in some small way to l. Now, we may use
the following as a limited line pool:⋃

l∈S
N(l)

We assume that l ∈ N(l), and therefore S is a subset of this limited line pool.

The definition of N(l) has a large effect on the problem size and solution
quality. For example if N(l) = {l} for all lines in S , then this limited line pool
is the same as simply taking the given solution lines. Alternatively, if N(l) is
very large then the resulting problem may have every line in the entire pool
L, and the line pool would not be “limited” at all.

Table 7.3 shows the problem sizes if we apply these two options, either taking
lines but unspecified frequencies, or expanding with neighbouring lines, to
the two real line plans R1 and R2. Here we indicate the solution with fixed
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frequencies as R1, the problem with the lines of R1 but open frequencies
as R1+, and the problem with all neighbouring lines to R1 as R1∗ (and
the equivalent for R2). For each, we report the number of considered line-
frequency combinations, and for the expanded problems report the solve time
and the percentage improvement in the moving time, train switching time,
and line cost. Note that the line cost is not considered in the objective, and as
expected it increases, while we see modest improvements in the components
of the total travel time.

Table 7.3: Solve times and objective improvements for different limited line
pools. Cost improvements are the improvement in total moving time and
switching time, and the improvement in operator line cost (which in fact
becomes worse as operator cost may increase if it below the budget constraint).

Lines Cost improvements

Problem |L| ∑l∈L |Fl | Solve time (s) Moving Switching Line

R1 9 9 - - - -
R1+ 9 19 1 0.1% 9.7% -3.3%
R1∗ 29 59 395 0.1% 9.7% -3.3%
R2 8 8 - - - -
R2+ 8 17 1 0.2% 5.5% -2.4%
R2∗ 25 52 175 1.5% 4.5% -5.3%

Solve times for the R1∗ and R2∗ instances are much greater than the R1+

and R2+ instances, and in the case of R1∗ no improvement is seen over
R1+. However, we can see that we can relatively quickly find line plans that
“neighbour” a given plan, and here we can improve over these real line plans
with very similar line plans (in the case of R1+ and R2+ the found solutions
modify only the line frequencies). We can see here that there is more scope
for improvement in switching time than travel time, given these reduced
problems. Note, however, that here we report the percentage improvement
for each individually, but the magnitude of those changes is very different,
and in our problem a small relative improvement in travel time can be more
significant than a large relative improvement in switching time.

When we solved both R1+ and R2+, the moving time improved even though
we had exactly the same lines and can alter only frequencies. This may seem
impossible, as the travel time between any pair of stations is unchanged. How-
ever the reason that we see small improvement is that either some passengers
did not take their quickest (moving time) route due to a costly low frequency
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connection, or because some passengers could not take their fastest (moving
time) route due to a lack of capacity, but with higher frequency (and therefore
capacity) can now take that route.

7.8.2 LP heuristic

We propose the following as a simple heuristic for finding solutions. Initially,
we solve the LP relaxation of the model and consider exactly those yl f variables
that have non-zero value. Then, we restrict the problem to only those lines
present but find the optimal integer solution with the restricted problem. We
compare the value of the optimal integer solution to the initial lower bound
to the LP that we had, and, if we wish, we can re-introduce the missing
line-frequency decision variables and allow the solver to tighten that lower
bound and potentially discover better integer solutions. The advantage we
see is that it is much faster to solve to optimality when there is a restricted
pool of lines, and so we can relatively quickly find good solutions. In fact, in
some experiments the solutions are optimal or near optimal. We hope that the
smaller resulting problems have acceptable solve times but still have solutions
of good quality. Also, as a possibility, we can expand the lines in the LP
solution using the ideas from Section 7.8.1.

We compare four different formulations, summarized in Table 7.4. The for-
mulations differ in the presence of the additional constraints (7.14), and in
whether or not the grouping of ODs from Section 7.6.3 is applied.

Table 7.4: Four different formulations, differing in the presence of additional
constraints and their grouping of OD pairs.

Without cons. (7.14) With cons. (7.14)

No grouping M1 M3
Grouping M2 M4

We try solving the problem with the LP heuristic for each of the four methods.
The solve times are summarized in Table 7.5, referring to firstly the solve time
for the LP, and then the additional solve time to reach (potentially) the optimal
solution. However it can be seen that only formulation M4 can solve both the
LP and the subsequent IP to optimality in reasonable time. The others can
all provide the LP solution but none can prove optimality for a solution in
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reasonable time. We allowed 5000 seconds for attempting to solve the resulting
reduced IP for each model. After this time, neither M1 nor M2 both had an
incumbent solution, whereas M3 had nearly found and proven an optimal
solution. In fact, the line-frequencies solution provided by M3 was exactly the
same as that provided by M4.

Table 7.5: LP and IP solve times for different formulations for an LP non-zero
heuristic, where the IP is solved only considering non-zero variables in the LP
solution. Termination with no incumbent marked 1; termination with a 0.8%
gap marked 2.

Times (s)

Formulation LP IP

M1 325 50001

M2 42 50001

M3 4728 50002

M4 178 1086

We see that M1 and M2 do not solve to optimality or even find any feasible
solutions in reasonable time. However, the comparison is potentially mis-
leading because each is solved using the lines and frequencies found to be
non-zero at LP optimality, and as we might expect (due to M1 and M2 lacking
the additional constraints (7.14)) their LP solutions potentially have more
non-zeros than the LP solutions for M1 and M2.

Consider Table 7.6 where we show the number of line-frequency combinations
in the LP solutions to M1 and M3, and then consider expanding those as we
did with integer solutions in Section 7.8.1.

From the table, it can be seen that the additional constraints (7.14) reduce
the number of non-zero variables in an LP solution significantly. Also, in
contrast to the LP solution without constraints (7.14), the solution with the
constraints features the majority of lines at every valid frequency (due to
there being only an increase from 59 to 62 line-frequency variables when the
missing frequencies are included). Without the constraints, however, lines
tend to occur at only a single frequency but a far greater variety of lines is
present. For M1 the expansions of the problem are unlikely to give the benefit
we would like; rather than resulting in a still small problem, it is expanded
to almost every line, and so we would gain little over attempting to solve the
entire problem.
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Table 7.6: The problem size in line-frequency combinations given by taking
non-zero elements of an LP, or expanding that with additional frequencies
(denoted +), or with neighbouring lines (denoted ∗)

Problem ∑l∈L |Fl |
M1 LP 172
M1 LP+ 324
M1 LP∗ 350
M3 LP 59
M3 LP+ 62
M3 LP∗ 156

As can be seen from the table, the LP solution when using M1 has many more
non-zero elements than the LP solution of M3. The same relative difference
occurs comparing M2 and M4. As the heuristic method was to then take only
those non-zero elements, it is perhaps not surprising that it was difficult to
solve M1 with the 172 line-frequency combinations to IP optimality, as it was
to solve M4 to IP optimality with its 59 line-frequency decisions. However, as
a further experiment, we instead solved M2 to LP optimality, discarded the
non-zero line-frequency elements of the problem not in the LP solution, and
then added constraints (7.14). In this case, with a 5000 second time limit, we
were able to solve the model to within 1.3% of optimal. This solution was in
fact 2.8% worse than the solution found with the 59 non-zero line-frequencies
of the M3 LP solution. This reveals a weakness of the LP heuristic method,
in that it may be possible that there are no good integer solutions given the
restricted problem, and possibly no feasible integer solutions at all.

Finally, we simply attempted to solved M4 as a MIP with all lines and fre-
quencies, which, given 5000 seconds found a solution 1.7% worse than the
solution provided by M4 with the LP heuristic. Allowing significantly more
time, the solver can show that the M4 LP heuristic solution is within 1% of
optimal, and it finds the exact same solution itself, but not better solutions.

7.9 Results

Though we assess line plans with total passenger travel time and by line cost
to the operator, there are other metrics we may use to distinguish between
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different line plans. We note that to be implemented in practice a real line
plan must meet other requirements we have not captured, such as facilitating
good timetables. We see that with our formulation of line plan requirements,
examples of real line plans are not optimal for either passenger travel time or
lines operator cost, or for any weighted sum of those measures. However, we
might expect that a usable line plan is one which has an appropriate trade-off
between those two measures and falls within certain bounds for many other
metrics.

Here, we consider the following metrics for line plans described in Table 7.7.

To explore the range of values we might see for these metrics, we generate
a set of solutions that we assess as being “interesting” due to either their
acceptable trade-off between the costs to the operator or the passenger, or for
being particularly good for some other measure. These are primarily generated
iteratively, by solving the problem with different operator cost constraints and
with a passenger cost objective, and storing incumbent solutions found by the
solver. Good solutions were also refined as described in Section 7.8.1. For some
solutions, also tighten some operational limit constraints (Constraints (7.5))
to find solutions that are more conservative but might be more likely to
be operated by DSB as true line plans. Figure 7.6 shows every solution we
consider, plotted by their cost to the operator and to the passenger. The
majority of the considered solutions sit close to the frontier of solutions that
are optimal for some weighted sum of these two measures, while a small
number appear to be poor for both measures but are optimal or close to
optimal for some other measure. These unusual solutions were found with
a primary objective maximizing the number of direction travellers, as in
Section 7.5.3. A real S-tog solution, R1, is marked with an open circle, showing
that it is neither optimal for operator cost nor passenger cost, and there are
solutions that are better for both measures. In reality, there are additional
concerns we do not model that may mean real solutions are more favourable,
or extra requirements that may invalidate the “better” solutions.

On Figure 7.6, the optimal solutions considering only operator cost or only
passenger cost can be seen. Due to the competing nature of the two measures,
the solution providing the best value for one measure is poor for the other,
though the best solution for the operator is not the worst solution for the
passenger, and vice versa. Let us refer to these extreme solutions as SO, the
operator-optimal solution; and SP, the passenger-optimal solution. Finally,
we will refer to one of the solutions that dominates R1 for both line cost
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Figure 7.6: The passenger cost and operator cost for the considered set of
noteworthy solutions. The open circle indicates real line plan R1.

and passenger cost as SM (in fact four solutions strictly dominate R1 in this
solution set).
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Table 7.7: The metrics used for line plan comparisons

Metric Description

Line cost The estimated cost to the operator, per hour,
for running the line plan.

Hourly turn time The minimum time per hour spent by trains
dwelling/turning in end stations.

Hourly run time The total moving time of trains in the line plan,
per hour.

Hourly skipped stations The number of stops that see a train pass by
but not stop, per hour, in the line plan.

Unit requirement The minimum number of units that would be
required to operate the line plan (calculated
using the minimum circulation time for a unit
operating on the line).

Mean station visits The average number of trains that visit a sta-
tion every hour (or the total number of hourly
station visits in the line plan divided by the
number of stations).

Low-service stations The number of stations which see no more than
some threshold number of trains per hour. Here
we use a threshold of 6.

Direct trips The number of direct connection trips possi-
ble in the network, or the number of pairs of
stations which feature together on at least one
line.

Passenger cost The total cost to the passenger, where cost is
travel time with switching estimate and switch-
ing penalty.

Average travel time The average per-person traveling component of
the passenger cost, excluding switching.

Average switch cost The average per-passenger switching cost con-
sisting of the switching estimate and the switch-
ing fixed cost penalty.

Average switching wait The average per-passenger time spent switch-
ing trains in the line plan.

Average switch penalty The average per-passenger fixed switching
penalty in the line plan.

Total transfers The number of passengers who must transfer
trains in the line plan.
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Table 7.8 shows the minimum, maximum, and mean values for the different
measures for all solutions in the set we discuss here. The table also shows the
metric values for four solutions: true solution R1, solution SO that is best for
line cost, passenger-optimal solution SP, and the fourth SM that is better than
R1 for both line cost and passenger cost.

Figure 7.7 shows normalized boxplots for all of the metrics, with the values for
four noteworthy solutions marked on each. The real line plan R1 is marked on
Figure 7.6 with an open circle, and we can see it is below average for line cost
and above average for passenger cost. Noteworthy observations are that it has
a rather low unit requirement (which is a component of the total line cost),
but has a particularly high number of total transfering passengers compared
with most other solutions, and an above average passenger (moving) travel
time. In contrast, the solution SO (optimal for line cost) also has the lowest
unit requirement of all presented solutions, but has the highest number of low-
service stations. It also has a higher total cost to the passenger compared to
solution R1 although it has fewer overall transfer passengers, and surprisingly
it provides a very similar number of direct trips as SO. Solution SP, the
passenger-optimal solution, has, perhaps unexpectedly, a very large number
of hourly skipped stations, which corresponds to many passengers saving
travel time. However this is not completely at the expense of those passengers
at those skipped stations being required to transfer as the solution has a
below-average (but not exceptionally low) number of transferring passengers.
Finally, we mark a fourth solution which is better than R1 for both line cost
and passenger cost (with an open square). We observe that it is similar to
solution R1 for some metrics but surprisingly different for others; for example,
it provides more direct trips and has fewer transferring passengers than R1,
but is greater for metric average switching wait. The interpretation of that
is that while there are fewer overall passengers transferring, those that do
transfer are transferring to lines with greater headway and therefore are
estimated to wait longer. The hourly skipped stations is indicative of a lack
of homogeneity in trains; with zero hourly skipped stations all trans stop at
every station while if this value is high, many stations are bypassed. Bypassed
stations must still be served, and so there must be parallel lines running
on the same infrastructure stopping at the stations, therefore stopping more
and running slower. This could have implications for the robustness of the
subsequent timetable; some authors [Vromans et al., 2006, for example] equate
high robustness with high homogeneity in running speed. We can see that
the real line plan R1 has lower hourly skipped stations that the other marked
plans, but substantially lower values are present in other plans. The measure
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hourly turn time could also be relevant for a robustness perspective, as the
measure indicates the total minimum hourly utilization of turning facilities at
stations, either on-platform turning or using dedicated turning track. A higher
value indicates greater utilization of turning capacity and likely therefore less
buffer between turning events, and subsequently less robustness for absorbing
delay.

0 0.2 0.4 0.6 0.8 1

Total transfers
Average switch penalty
Average switching wait

Average switch cost
Average travel time

Passenger cost
Direct trips

Mean station visits
Low-service stations

Unit requirement
Hourly skipped stations

Hourly run time
Hourly turn time

Line cost

Figure 7.7: Normalized distributions of values for the performance indicators.
The real line plan R1 is marked in each row with an open circle. The asterisk
and the closed circle indicators indicate the optimal line cost and passenger
cost solutions, respectively (SO and SP). The open square indicates a solution
which dominates the real solution for those two measures.

It may be expected that a solution with many direct trips would also be a
solution with low passenger cost, due to the limiting of the line-switching
cost in the total passenger cost. However, that does not take into account
the fact that solutions with more direct trips tend to have fewer missed
stops, resulting in longer travel times for some passengers, and that not all
line switching is equally penalised as we estimate the wait time by the line
frequency. Figure 7.8 shows passenger cost and the number of direct trips
for the range of solutions. Surprisingly, there is a set of solutions that have
many direct trips but are also high in passenger cost. Excluding those, there
may be some negative correlation between passenger cost and the number
of direct trips, but this is not strong. The real solution R1 is marked, and is
not particularly extraordinary for either measure. We see from the figure that
simply maximizing the number of direct travellers, a measure used by some
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other work in the field (for example Bussieck et al. [1997]), is not appropriate
for this particular problem, as those solutions with the highest number of
direct travellers are particularly bad for the passenger.
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Figure 7.8: The total passenger cost and the number of direct trips for the set
of solutions. The real line plan R1 is marked with an open circle.

We may consider the proportion of the total cost to the passenger that is
attributable to travel time, and to switching lines. Further, we can consider the
components of the cost of switching lines. That is, we consider as a fraction of
the per-person passenger cost, the cost attributed to moving (average travel
time) and the cost attributed to waiting to transfer (average switch cost). Of
the waiting time cost, there is the estimate of the waiting time itself (average
switching wait) and fixed penalty (average switch penalty). Table 7.9 shows
a summary of the percentage of passenger cost that can be attributed to the
different constitutive components. For these solutions the vast majority of
the total passenger cost is attributable to actual moving time in trains. All
passengers spend time travelling while only some must switch trains, and
for many journeys with a switch, the actual travel time is greater than the
switching time estimate and penalty combined, so it is unsurprising that
travelling time is greater overall. We see that, for all considered solutions here,
at least 85.81% of passenger cost is attributable to actual travelling in a train,
while up to 14.09% is due to the cost of switching trains.
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Table 7.9: Summary of the percentage of total passenger cost attributable to
passenger travel time, switching cost, and the components of switching cost.

Component Minimum Mean Maximum

Average travel time 85.91 89.33 91.88
Average switch cost 8.12 10.65 14.09
Average switching wait 3.92 5.79 8.77
Average switch penalty 3.40 4.86 6.16

7.10 Solving only lines model

Solutions are a valid line plan if they satisfy constraints (7.2)–(7.6), opera-
tionally and contractually, though these do not guarantee sufficient capacity
for all passengers. However, the minimum-visit requirements at many stations
do mean that most line plans satisfying (7.2)–(7.6) have close to sufficient
capacity, or sufficient capacity, for passengers. To determine the passenger-
feasibility of a solution, and the cost to the passenger, we can construct the
graph described in Section 7.4.1 for only those lines in the given solution, and
solve just the passenger flow problem. Alternatively, as in Section 7.8.1, we
may take the lines but not their frequencies from a given solution, or construct
a neighbourhood of lines, and then solve (7.1)–(7.6), and (7.7)–(7.9) to, with
greater likelihood, find a feasible solution for passengers similar to the line
plan given. It is possible to forbid specific solutions, either by specific line-
frequency (constraint (7.15)), or by just line at any frequency (constraint (7.16)),
as described in Section 7.6.2. A potential method for finding solutions is to
iteratively solve the MIP (7.2)–(7.6) to optimality with some objective, apply
a constraint ((7.15) or (7.16)), and repeat the process. The found solutions
can be assessed in terms of passenger quality by solving the passenger flow
problem, if frequencies are known, or a limited line model if the frequencies
are still to be determined. It is possible that with a well-chosen objective for
the reduced problem, good solutions can be found. As the limited problem
of finding solutions is small (even with hundreds or thousands of additional
solution-forbidding constraints), many solutions can be discovered quickly.
The passenger flow problem is also relatively fast to solve for a fixed solution
and so such solutions can be quickly assessed for quality and feasibility for
passengers.

Of the metrics introduced in Section 7.9, the following do not depend on
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passenger flows:

• Line cost

• Hourly turn time

• Hourly run time

• Hourly skipped stations

• Unit requirement

• Low-service stations

• Mean station visits

• Direct trips

As we describe in Section 7.5.2 and Section 7.5.3, we can use other objective
functions (line cost or direct trips, respectively). In fact we could use all of the
metrics here, some more readily than others, as an objective function. However
we observe that none is a good substitute for the total passenger cost objective
we primarily use, and none gives solutions that are either particularly good
for the passenger or that are similar to real DSB solutions. As already seen,
the real DSB solutions are not extraordinary for any of the metrics we define,
and so using any one metric as an objective function does not give similar
solutions. Furthermore, although we can quickly find, qualify and forbid
solutions and therefore assess a large number in reasonable time, we also see
that there is a very large number of possible solutions to the problem. Such
an approach, with the wrong objective, tends to find many solutions that are
not of particular interest. An exception is when using the line cost objective;
instead we see many infeasible solutions (for the ignored passengers), but the
few that are feasible are interesting for having minimal line cost. However we
note that when ignoring passengers, the first feasible solution is number 1305
discovered (i.e. 1304 other solutions were discovered with better line cost that
were not feasible for the passenger). Subsequent feasible solutions occurred
as solution numbers 2018, 2251, 2155 and 2274 in the first 2500 solutions
discovered.
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7.11 Conclusions

Here we use an arc-flow formulation to attempt to solve a line planning prob-
lem for the S-tog network, focusing on passengers. The integer programme
we formulate can generally not be solved to optimality for our instances, but
we can find relatively good solutions in reasonable time with an LP based
heuristic method. Given more time the full formulation itself can also find
good quality solutions but not generally prove optimality (without excessive
additional time). We also show we can find good solutions quickly when we
restrict ourselves to lines that are similar to currently-operated lines, and this
is perhaps a natural restriction as it is unlikely that the operator would change
all lines at once.

The passenger focus means that the lines are of good quality for the passen-
ger and tend to be at the upper limit of whatever cost limit we enforce. By
reducing the cost limit to be lower than real operated plans, we can show that
there are plans which are both better for the average passenger and cheaper
in line cost (though our line cost does not necessarily reflect all components of
the true operating cost or other important measures). Considering some other
measures, but not including them as constraints or objectives for the optimiza-
tion, we can compare solutions by more than just one or two objectives, and
see that there are significant differences between apparently similar solutions

We show that for this problem, the arc-flow model, though large, can be
directly applied and solved to find solutions of reasonable quality, and we
show a simple LP based heuristic approach to find good solutions more
quickly. In our experiments we have found that the model is also applicable
to the same problem but with many more frequencies per line, without
becoming unsolvable. However, given that the operational requirements are
created considering the given frequency options, there are fewer interesting
solutions with additional frequencies.

One limitation of the model is that, while we try to minimize switching time,
we can only estimate this time as we have no timetable. In fact, the lines
constraints (constraints (7.1)–(7.6)) do not capture everything necessary to
ensure that a timetable can be created for the line plan at all; it may be that our
proposed line plans are infeasible. However, assuming that a valid timetable
does exist, we can still only estimate the wait time.
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Another limitation is that we penalise the cost of switching to one specific
line. However, for many trips, when boarding a subsequent line on a trip, a
passenger can have several similar options in some line plans. For example,
a passenger may begin on line l1 and exit at some station to wait for a train
to their destination, and there are two lines l2 and l3 stopping at both their
intermediate and destination stations, and a real passenger would likely board
the first of those to arrive (even if the first train provided longer travel time).
Therefore if the two lines operate at a low frequency, our long estimated wait
time is pessimistic because the combined frequency of the lines is not low.

Finally, we restrict ourselves to a predetermined line pool which is not an
exhaustive set of every feasible line. However the more limited number of
lines ensures a reasonably sized problem, and also provides more certainty
that every line in the pool is feasible (alone) because they may all be explicitly
checked by an expert.

7.12 Future work and extensions

As we have said, we restrict ourselves to a predetermined line pool of 174 lines
for the S-tog problem. For some different problems not expanded upon here,
but, for example, finding a night-time line plan, we use a different pool of lines
due to the different rules defining a feasible line and line plan. All such limited
pools can be viewed as being subsets of the set of any possible line, which, due
to the possibility of arbitrary stopping patterns, is very large. However, we
have experimented with expanding our limited pool by considering new lines
not in the original pool but with some similarity to pool lines. By fixing some
of the lines in a solution, but for the non-fixed part introducing a large variety
of new, out-of-pool lines, we can find line plans with some different lines
relatively quickly. By performing such moves within a heuristic framework,
there seems to be potential to explore all possible lines in a reasonable way
that is not possible with the MIP formulation we present.

The line plan solutions we find may possibly, but not necessarily, be operated in
practice by DSB. Despite meeting all operational and contractual requirements,
and not containing any explicitly forbidden line pairs which cause problems
for creating a timetable, it can still be the case that it is not possible to create a
feasible timetable for a line plan. Even if there are feasible timetables for a line
plan, there may be no good timetables for the line plan; the measures used to
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compare timetables are not necessarily the same as those we estimate for the
line plans (operator cost and passenger cost) and may include other measures
such as minimal headways. On the other hand, our estimated operator cost
and estimated passenger waiting times can be more precisely assessed when
the timetable is determined. One direction for future work is more closely
integrating the creation of a line plan with the subsequent timetable problem
that takes a line plan as input. This would avoid the risk of finding infeasible
line plans (from the point of view of timetable creation), and could allow
more precise operator cost and waiting time estimates. Looking further in the
planning process, the timetable itself may not facilitate the creation of good
or even feasible rolling stock plans. Closer integration of all planning stages
of rail is obviously desirable to achieve overall optimality of plans, but the
complexities of each problem alone prove to be a challenge, and so complete
integration of every problem stage is unlikely.
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Abstract. We propose a heuristic algorithm to build a railway line plan from scratch
that minimizes passenger travel time and operator cost and for which a feasible and
robust timetable exists. A line planning module and a timetabling module work
iteratively and interactively. The line planning module creates an initial line plan.
The timetabling module evaluates the line plan and identifies a critical line based
on minimum buffer times between train pairs. The line planning module proposes
a new line plan in which the time length of the critical line is modified in order to
provide more flexibility in the schedule. This flexibility is used during timetabling to
improve the robustness of the railway system. The algorithm is validated on a high
frequency railway system with little shunt capacity. While the operator and passenger
cost remain close to those of the initially and (for these costs) optimally built line plan,
the timetable corresponding to the finally developed robust line plan significantly
improves the minimum buffer time, and thus the robustness, in eight out of ten studied
cases.

Keywords: railway line planning; timetabling; robustness; mixed integer linear
programming.

8.1 Introduction

Railway line planning is the problem of constructing a set of lines in a railway
network that meet some particular requirements. A line is often taken to be a
route in a high-level infrastructure graph ignoring precise details of platforms,
junctions, etc. In our case, a line is a route in the network together with a
stopping pattern for the stations along that route, as a line may either stop at
or bypass a station on its route (which saves time for bypassing passengers).
We define a line plan as a set of such routes, each with a stopping pattern
and frequency, which together must meet certain targets such as providing a
minimal service at every station.

Timetabling is the problem of assigning precise utilization times for infras-
tructure resources to every train in the rail system. These times must ensure
that trains can follow their routes in the network, stop at appropriate stations
where necessary, and avoid any conflicts with other trains. A conflict rises
where two trains want to reserve the same part of the infrastructure at the
same time, for example at a switch, platform or turning track. If timetabling is
performed separately from line planning, the line plan specifies the lines and
the number of hourly trains operating on each line but not the exact times
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for those trains and not the precise resources that a train on a line will utilize.
Those timings and utilizations are decided as part of the timetabling.

Traditionally, a railway line plan is constructed before a timetable is made.
However, an optimal line plan does not guarantee an optimal or even a feasible
timetable [Kaspi and Raviv, 2013]. An integrated approach can overcome this
problem. Nevertheless, since line planning and timetabling are both separately
already very complex problems for large railway networks [Michaelis and
Schöbel, 2009, Goerigk et al., 2013], solving the resulting integrated problem
is in most cases not computationally possible [Schöbel, 2015]. We propose a
heuristic algorithm that constructs a line plan for which a feasible timetable
exists. We call a line plan timetable-feasible if there exists a conflict-free timetable
for that line plan. Moreover the algorithm improves the robustness of the
line plan by making well chosen changes in the stopping patterns of the lines
while the existence of a feasible timetable remains assured.

There are different interpretations of robustness in railway research. According
to Dewilde et al. [2011], a railway planning is passenger robust if the total travel
time in practice of all passengers is minimized in case of frequently occurring
small delays. The focus of this definition is twofold, as both short and reliable
travel times have to be provided by the planning. Passenger robustness is also
what we want to strive for with our approach.

The context of this research is a high frequency network where trains are forced
to turn on their platform in their terminal stations due to a lack of shunting
area. The proposed integrated approach originates from insights on why some
line plans do not allow feasible timetables and why some line plans allow
more robust timetables. A first insight is that a line can be infeasible on its own,
which we call line infeasibility. A second insight is that line combinations can be
infeasible due to their frequencies. We call this frequency combination infeasibility.
In Section 8.3 we explain these insights. Furthermore, we present a technique
to develop a line plan that guarantees a feasible timetable. We introduce a
timetabling model based on the Periodic Event Scheduling Problem (PESP) to
create passenger robust timetables. We illustrate with a case study that a smart
and targeted interaction of both techniques develops a line plan from scratch
which guarantees a feasible and passenger robust timetable. Moreover, the
integrated approach can also be used to improve the robustness of an existing
line plan. The line planning and timetabling technique and the integrated
approach are explained in Section 8.4.



8.2 State of the art 139

Related work is discussed initially in Section 8.2. The case study is described
in more detail in Section 8.5. In Section 8.6 the results of the case study are
presented and examined and the integrated approach is illustrated in an
example. The paper is concluded and ideas for future research are suggested
in Section 8.7.

8.2 State of the art

The planning of a railway system consists of several decisions on different
planning horizons [Lusby et al., 2011]. The construction of railway infrastruc-
ture and a line planning are long term decisions. A timetable, a routing plan,
a rolling stock schedule and a crew schedule are made several months up to
a couple of years in advance. Decisions on handling delays and obstructions
in daily operation are made in real time. Each of these decisions affects the
performance of the other decisions. Ideally, a model that optimizes all these
decisions simultaneously is preferred. Each of the separate decision problems,
however, is NP-hard for realistic networks [Schöbel, 2015]. In practice these
planning decisions are usually made one after the other, although the solution
from a previous decision level problem does not even guarantee that a feasible
solution exists for the next level problem [Schöbel, 2015]. In the case that
the output of the previous decision level leads to infeasibility at the next
planning step, there are several possible approaches for looking for a feasible
solution to both planning levels together. First, the outcome of the previous
level can be replaced by a second best outcome in the hope that a feasible
solution for the next level exists. Secondly, the outcome of the previous level
can be specifically oriented towards making a feasible solution for the next
level possible, by using case dependent restrictions specifically for this goal.
Thirdly, the constraints on the outcome of the next level can be loosened. These
approaches increase the possibility of finding a feasible solution for the next
level, but not necessarily guarantee a good outcome for both levels together.
A few integrated approaches for two or three of the typical decision problems
in railway research are described in the literature and clearly outperform the
hierarchical approach [Goerigk et al., 2013]. Most of these solution algorithms
are heuristics to overcome the high computation times of an exact approach for
a realistic railway network. As in this paper we propose an algorithm towards
the integration of line planning and timetabling, we elaborate on existing
integrated approaches for these two planning problems in the first part of
this literature review. We also explain the place of the individual timetabling
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and line planning modules that are used in our integrated approach within
existing literature on timetabling and line planning.

8.2.1 Integration of line planning and timetabling

This paper is not the first attempt towards an integration of line planning
and timetabling in railway scheduling. In Liebchen and Möhring [2007], some
line planning decisions are included in the timetabling process. They assume
that, for some parts (sequence of tracks) of the network, the number of lines
serving each part is known beforehand. On these track sections they put
an artificial station in the middle. Every line along this track section is then
partitioned into two line segments, before and after the artificial station. They
use the Periodic Event Scheduling Problem (PESP) which was introduced by
Serafini and Ukovich [1989] to model the timetabling problem in which they
add constraints such that a perfect matching between the arriving and the
departing line segments is forced. This is achieved by matching arrival and
departure times of the line segments in the artificial station which are assigned
by this same model. Here one line corresponds to one train. This approach is
deficient if, for some network parts, the number of passing trains is not known
beforehand. This is often the case in real world networks. Furthermore, this
approach can lead to a set of lines in which each line is a different combination
of track sections which is not transparent for the passengers.

Kaspi and Raviv [2013] present a genetic algorithm that builds a line plan and
timetable from scratch. They start from a given line pool and per line a fixed
number of potential trains. A solution consists of three characteristics for each
train: the value zero or one, which indicates if the train should be scheduled
or not, an earliest start time and a stopping pattern. A member of the initial
population is constructed by drawing values for each characteristic from
separate Bernoulli distributions. The timetable and line plan are constructed
by scheduling trains with value one for the first characteristic according to a
fixed priority rule. If a train cannot be scheduled without one or more conflicts
with other already scheduled trains, this train is omitted from the solution.
For the resulting timetable, the passenger travel time and the operator cost are
calculated. These performance results affect the distribution parameters of the
Bernoulli distributions from which the next generation will be drawn. This
approach uses the performance of the timetable as input for the line planning
of the next iteration. This interaction between line planning and timetabling is
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also the case in our approach. But in contrast to the stochastic approach of
Kaspi and Raviv [2013], we use information of the timetable to make some
deterministic and tactical changes to the line planning. Also in Goerigk et al.
[2013] timetable performance is used to evaluate line plans. However, they
do not iterate between the construction phase of the line planning and the
timetabling, and they do not use this information to improve the line planning.
They only use it to compare different ways to construct a line plan.

Michaelis and Schöbel [2009] offer an integrated approach in which they re-
order the classic sequence of line planning, timetabling and vehicle scheduling
for bus planning. The different planning steps are, however, performed one
after each other such that the approach is still sequential. Vehicle scheduling
or rolling stock scheduling are not integrated in our approach, but we take
turn restrictions in the end stations into account which significantly simplify
the rolling stock scheduling. Taking turn restrictions into account is useful if
terminal stations are not equipped with enough shunting space for efficient
turning during daily operation. In fact, neglecting turn restrictions can lead
to infeasible timetables. To the best of our knowledge, no other integrated
approach for timetabling and line planning takes turn restrictions during daily
operation into account. This is explained in the next section.

Very recently, Schöbel [2015] published a mixed integer linear program (MILP)
in which line planning and timetabling are integrated for railway planning.
This model is based on the PESP of Serafini and Ukovich [1989]. In the model,
binary variables are introduced to indicate if a certain line is added to the
line plan. There are also big M-constraints added to the PESP model in which
these binary variables are used to push event times of lines which are not
in the line plan to zero and also to switch off lower bounds of activities for
unassigned lines. The objective function minimizes the planned travel time
of the passengers. Transfer penalties are not taken into account, but they can
easily be introduced as a weight in the objective function. No performance
results of this model are presented yet.

An added value of our approach is that robustness is taken into account when
constructing a line plan (and timetable). With our approach we want to shift
the focus in current research on integration of line planning and timetabling to
the creation of passenger robust line plans (and timetables). The algorithm that
we propose constructs a line plan that minimizes planned passenger travel
time and operator costs but also prevents unreliable travel times during daily
operation in order to provide a short travel time in practice for all passengers.
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As mentioned in the introduction, a passenger robust plan minimizes this total
travel time in practice. In order to obtain short travel times in practice, the
propagation of delays from one train to another train has to be avoided. This
can be achieved if the line plan allows a timetable in which the buffer times
between trains are above a certain threshold. Also in Kroon et al. [2008], Caimi
et al. [2012], Salido et al. [2012], Dewilde et al. [2013], Sels et al. [2016] and
Vansteenwegen et al. [2016] the (minimum) buffer times between train pairs
are lengthened in order to reduce the propagation of delays.

Another added value of our approach is that trains with the same route are
equally spread over the period of the cyclic timetable. Making the reasonable
assumption that passengers arrive uniformly in a station of a high frequency
network, a constant time interval between two trains with the same route
minimizes the average waiting time of the passengers before boarding.

In our heuristic approach, a line planning and timetable module alternate,
where each consists of an exact optimization model. We now motivate our
choice for the timetable and line planning models that are used and briefly
discuss related literature.

8.2.2 Timetabling

The goal of the timetabling module is to construct a passenger robust timetable.
This avoids propagation of delays in case of small delays during daily op-
eration in order to provide reliable travel times to the passengers and is
achieved by maximizing the (minimum) buffer times between train pairs.
Parbo et al. [2015] give an extensive overview of passenger perspectives in
railway timetabling. The PESP model of Serafini and Ukovich [1989] is the
foundation of many timetable models [Schrijver and Steenbeek, 1993, Nachti-
gall, 1996, Liebchen, 2006, Peeters, 2003] and [Großmann, 2011] and is also the
framework of our timetabling model. The PESP model schedules events in a
period of the cyclic timetable and takes precedence constraints and relations
between events into account. Arrivals and departures of trains at stations or
reservations and releases of track sections are events. If two events are related
or can affect each other they form an activity. Examples of activities are the
arrival and departure of the same train in a station or the reservation times of a
shared switch or platform by two different trains. The PESP model constrains
each activity time, which is the time between the two events that define the
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activity. The PESP is originally defined without an objective function, but
several objective functions for PESP can be found in the literature. We add an
objective function that maximizes the (minimum) buffer times between trains
using the same part of the infrastructure, in order to achieve robustness. In
our timetabling model, we also have ‘turning’ and ‘providing buffer time’ as
activities between events besides the usual driving, waiting and transferring
activities. Furthermore, we include extra constraints such that trains can be
equally spread over the hour. A recent and elaborate discussion on timetable
literature in general and PESP in specific can be found in Sels et al. [2016].

8.2.3 Line planning

Railway line planning is, generally, the construction of a set of lines to operate
in a rail network. There are parallels to line planning problems in bus network
design and network design for liner shipping. Line planning for rail takes
the physical rail network as a fixed input, and provides a fixed input to
subsequent timetabling and rolling stock planning. So when creating the line
plan, assumptions can potentially be made about the form or characteristics
of timetables, rolling stock and rolling stock planning. Schöbel [2012] gives
an overview of different approaches to model and solve the line planning
problem, broadly categorizing line planning approaches that are (operator)
cost-oriented, and those that are passenger-oriented.

Goossens et al. [2006] focus on minimizing operator cost, for the less-studied
case of line planning where lines may not stop at every station. Also in our
research the stopping pattern of a line is decided in the line planning problem.
The advantage of allowing lines to skip stations is the potential to combine
fast lines which only stop at the stations with high demand and slow lines
which also stop in stations with low demand (with the classification of stations
not specified but decided during line planning). Using fast lines shortens the
travel time of a lot of passengers and the slow lines assure a service in every
station.

With a passenger focus, a common objective function is to maximize the
number of direct travelers, i.e. the number of passengers who have a route
from their origin to destination that does not require transfers. The simplest
interpretation of this objective is to count the number of passengers for which
there exists a line in the solution visiting both their origin and destination. This
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does not actually find passenger routes and does not guarantee that all counted
passengers can actually use the line, as there may be insufficient capacity on
some lines. Using this objective also has the risk in some networks that the
passengers with no direct route may be faced with many transfers. Another
disadvantage is that maximizing the number of direct travelers encourages
long train lines and, critically in our case, does not favour skipped stations.
Bussieck et al. [1997] is one example which uses this direct traveler objective,
while ensuring that direct lines also have sufficient capacity to accommodate
the passengers.

Another objective function with passenger focus is a travel time objective
that takes into account the passenger’s time traveling in trains and a penalty
for switching trains (transfers). The calculation of this objective requires
knowledge on the routing of passengers in the network taking into account
travel time and switching. This routing of the passengers can be modelled in
a graph, which can become very large due to the large number of passenger
routes required (potentially one for every pair of stations). Schöbel and Scholl
[2006] and Borndörfer et al. [2007] are examples where passengers between
a pair of stations are routed by minimizing the sum of the travel time costs
of the used paths. This passenger routing objective could be used as part of
a weighted sum objective along with some operator cost [Borndörfer et al.,
2007], or used alone but with an additional operator cost budget constraint
[Schöbel and Scholl, 2006]. In some practical problems the inclusion of a
budget can be very important when combined with a passenger-oriented
objective, as without it, solutions can contain many lines to individually
satisfy every type of passenger. Our line plan model uses also the passenger’s
travel time objective. In our case study, however, there are tight rate limits on
the maximum number of trains turning at a terminal station and on the use
of certain infrastructure. Thus even without an operator budget consideration
we do not risk solutions having particularly many lines.

Operator focused or passenger focused is a first partitioning that can be made.
Another partitioning is that a line planning model may be based on a prede-
termined set of lines (a line pool), or it may find new lines dynamically. An
advantage of a predetermined line pool is that all lines in the pool can be guar-
anteed to be feasible in terms of line planning requirements, or advantageously
for our case, in terms of timetabling requirements. This latter is explained in
the next section. A predetermined pool also has the advantage of limiting the
problem size in a useful and dynamic way (because the pool can be limited
to be as diverse or as focused as desired). However, it has the disadvantage
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that the full set of possible lines may be very large and so enumerating them
all could be intractable, while taking only a subset of all possible lines risks
missing good solutions. Schöbel and Scholl [2006] present a model that takes
as input a predetermined pool of lines. In contrast, Borndörfer et al. [2007]
present a method where lines are generated dynamically in an infrastructure
network as a pricing problem, finding maximum-weighted paths to introduce
as lines to a restricted master problem. However, the master problem itself is
formulated in terms of a known line pool.

With respect to decision variables, many approaches are similar in using either
a binary decision for the presences of each line, or a non-negative or integral
decision for the frequency of each line, where a frequency of zero means that
the line is not in the solution. In our approach we may only select one of a set
of frequencies defined individually for every line, so our model uses a binary
decision variable indicating the presence of a (line, frequency)-pair.

Specifically related to the S-tog problem at DSB (which we will address as
a case study), Rezanova [2015] solves the line planning problem with an
operator focus, considering train driving time and a particular competing
objective related to new regulations for drivers. The author notes the problem
of finding line plan solutions that are not feasible for timetabling, and suggests
that an integrated approach would be valuable.

8.3 Timetable-infeasibility

In this section we explain how limited shunt capacity and frequency combina-
tions of lines that share a part of the network can lead to timetable-infeasibility
of line plans. Our integrated approach uses these insights to construct line
plans that allow conflict-free and passenger robust timetables.

8.3.1 Line infeasibility

Consider Figure 8.1, showing a single train line operating at six times per
hour. The black dots on the time-axis show the scheduled departures from the
beginning station for this line, which is once every ten minutes. We illustrate
the first two time-distance graphs; the first departing from the beginning
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Figure 8.1: A line can be infeasible on its own

station at minute zero (solid blue line), and the subsequent train following
with a departure at minute ten (red line). In this example, the travel time
between the beginning and ending stations for the line is 29 minutes and
we assume that the train has to turn on its platform due to restricted shunt
capacity in its terminal stations. We define a minimum dwell time of seven
minutes before a train can leave its platform in the other direction. This
dwell time is the time required by passengers to leave the train, by the driver
to change to the driver position at the other end of the train and by new
passengers to board the train before a departure returning to the beginning
station. Note that the subsequent train that departed ten minutes later is
therefore arriving at the ending station ten minutes later as well, so the first
train has a well-defined latest departure which is marked as a dashed blue
line. The train then drives for 29 minutes back to its beginning station, arriving
there between 65 minutes and 68 minutes after its first departure at minute
zero. It can leave for the next round trip at 72 minutes after minute zero at
the earliest (minute 65 arrival with seven minutes minimum required turn
time) and 78 minutes at the latest (68 minute arrival with a maximum of ten
minutes dwell time, assuming that the next train arrives ten minutes later on
the same platform). However, no train is planned to leave the begin station in
the interval of 72 to 78 minutes, which can be seen in Figure 8.1 as no black
dot falls in the interval indicated with the green line. Therefore no feasible
timetable can be found for this line. We will call this line infeasibility.

This insight can be mathematically formulated as: In case of restricted shunt
capacity in its terminal stations, a line is infeasible on its own if there exists no
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k ∈ Z+ such that

2 ∗ drl,sl,0,sl,e
+ nttsl,0 + nttsl,e ≤

P
fl
∗ k ≤ 2 ∗ drl,sl,0,sl,e

+ 2 ∗ P
fl

,

where drl,sl,0,sl,e
is the planned travel time between the start station sl,0 and the end

station sl,e of line l. Further nttsl,0 and nttsl,e are respectively the necessary turn time
for line l in its start and end station, fl is the frequency of line l, P is the period of the
cyclic timetable and trains of the same line are equally spread over the period and use
the same platform in the terminal stations for passenger convenience.

8.3.2 Frequency combination infeasibility

Suppose that different lines share a part of the network and that trains of the
same line are equally spread in the cyclic timetable. A second insight is that
the frequencies of these lines affect the potential buffer time between these
lines. Let fl1 ≤ fl2 be the frequencies of two lines l1 and l2 respectively. It
is straightforward that the higher the frequencies the smaller the potential
buffer time between trains of these lines. But we also claim that the buffer
time between a line at a higher frequency and a lower frequency is no greater
than between two lines at the higher frequency. For example, assume fl1 = 4
and fl2 = 5, then in one cycle of the timetable, there will be, at some point,
two trains of line l2 which are planned between two succeeding trains of l1.
The time between two trains of l1 is 15 minutes and between two trains of l2 is
12 minutes. This would lead to the situation in Figure 8.2. Because a is strictly
smaller than three, the smallest buffer between a train of line l1 and line l2 is
smaller than or equal to one-and-a-half minutes.

tl1 tl2
t′l2 t′l1

0 0a0 a + 12 15 time (min)

Figure 8.2: If lines l1 and l2 have frequencies fl1 = 4 and fl2 = 5 respectively,
then once in 60 minutes two trains (tl2 and t′l2) of line l2 will pass in between
two trains (tl1 and t′l1 ) of line l1. Without loss of generality we can assume that
this happens in the first quarter. Here a ∈ R and 0 < a < 3.

This can be mathematically generalized and formulated as: The minimum time
between a passage of a train of line l1 and line l2 with frequencies fl1 ≤ fl2 respectively
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is smaller than (≤)

P
fl1
− (d fl2

fl1
e − 1) P

fl2

2
(8.1)

where P is the period of the cyclic timetable and dae is the smallest integer b with
b ≥ a.

If this minimum buffer time is strictly smaller than the minimum necessary
buffer time according to safety regulations in the network, then l1 with fre-
quency fl1 and l2 with frequency fl2 are not feasible together. In the example,
if the minimum necessary buffer time according to safety regulations is two
minutes, then these lines l1 and l2 cannot be combined at frequencies fl1 = 4
and fl2 = 5. Note that formula (8.1) is maximal in case fl2 equals fl1 or is a
multiple of fl1 and then reduces to P

2 fl2
which proves our claim.

8.4 Methodology

In this section, we propose an integrated approach that constructs a line
plan from scratch that minimizes a weighted sum of operator and passenger
cost and allows a feasible and robust timetable. First a timetable-feasible line
plan is constructed. Then, iteratively and interactively, a line planning module
produces a line plan, and for the plan, a timetable module produces a timetable
that maximizes the (minimum) buffer times between train pairs. Each loop
an analysis of the timetable indicates how the line plan could be adapted
in order to allow a more robust timetable. This adaptation increases the
flexibility of the line plan which is used, in the timetabling module, to increase
the minimum buffer times between train pairs. The line plan module then
calculates the new line plan that includes this adaptation while minimizing
the weighted sum of operator and passenger costs. This feedback loop stops
when there is no further improvement possible or if there is no improvement
during a fixed number of iterations for the minimum buffer times between
train pairs. We first discuss the line planning module and the timetabling
module separately and then the integration of both. Both the timetable and
the line planning module consist of an exact optimization model, though our
combined approach, and the fact that we do not always solve the models to
optimality, result in an overall heuristic method.
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8.4.1 Line planning module

Constructing a line plan consists of selecting a set of lines which meet certain
requirements from a pool of predetermined lines. The line pool is not exhaus-
tive; there are many more possible lines than those considered, but the set is
reduced to those that meet certain criteria as discussed with the rail operator.
This also keeps the problem size small. The model performs three functions:
(i) selecting the lines and frequencies and creating a valid plan, (ii) routing
passengers between origin and destination stations and (iii) relating passenger
routes to line selections.

Let us first define the set of all lines available: L. For every line l ∈ L we
define a set of valid frequencies for the line: Fl . The operator must meet certain
obligations for any valid line plan and must not exceed certain operational
limits. These restrictions are referred to as service constraints. We define these
all in terms of a set of resources R, and define all limitations as either a
minimum (rminr) or maximum (rmaxr) number of trains using that resource
r ∈ R every hour. The subset of lines that make use of resource r ∈ R
is defined as Lr. Let cl, f be the cost to the operator for operating line l at
frequency f .

The line planning module starts from a known origin-destination (OD) matrix
containing the passenger demand for travel between every origin and destina-
tion, where origins and destinations are simply stations in the rail network.
Let S be the set of stations. For two stations s1, s2 ∈ S we know the demand
ds1,s2 . We model passengers as a flow from each origin station to every relevant
destination station in a graph constructed for the network and all lines in
the pool. This graph captures the passenger cost in terms of travel time on
lines and estimated waiting time between lines (estimated by frequency) in
case a transfer is required. We refer to this graph as the passenger graph. The
graph contains a (line, frequency, station) vertex for every line, frequency, and
every station visited by that line. The edges of this graph represent travel
possibilities, with the edge cost being the known train driving time or the
estimated transfer time. Additionally, this graph contains source (rs) and sink
(ts) vertices for every station s where passengers originate from or terminate
their travel. These vertices are connected to the appropriate (line, frequency,
station) vertices with edges representing boarding or alighting from a line.
These edges have zero cost. Finally, for every station s we have a platform
vertex (ps) with edges from and to every (line, frequency, s) vertex, where the
costs correspond to an estimate of perceived waiting time which consists of a
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fixed penalty component and a frequency-dependent component.

Let V and E be the set of all vertices and edges of this graph, respectively, and
te be the cost to a single passenger of using edge e ∈ E . In total there are five
types of edges.

• Type 1. From (l, f , s) to (l, f , s′) for all lines l ∈ L, f ∈ Fl and s and s′

two succeeding stations visited by line l.

• Type 2. From (l, f , s) to (ps) for all lines l ∈ L, f ∈ Fl and s a station
visited by line l and (ps) the platform vertex of station s.

• Type 3. From (ps) to (l, f , s) for all lines l ∈ L, f ∈ Fl and s a station
visited by line l and (ps) the platform vertex of station s.

• Type 4. From (rs) to (l, f , s) for all lines l ∈ L, f ∈ Fl and s a station
visited by line l and (rs) the source vertex of station s.

• Type 5. From (l, f , s) to (ts) for all lines l ∈ L, f ∈ Fl and s a station
visited by line l and (ts) the sink vertex of station s.

See Figure 8.3 for an example of a simple network with three stations, 1,
2 and 3, and two lines l and l′ visiting two of the stations each (8.3a) and
corresponding passenger graph (8.3b).

This graph is similar to the change&go graph of Schöbel and Scholl [2006],
but distinguishes between line transfers that in our case happen to lines with
discrete frequencies, with a frequency-dependent cost.
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1
2
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l′

(a) Line structure (two lines, three stations)

p2

l2

r2 t2

l1

l′2 l′3

Kfix

Kvar
fl′

p1r1 t1 p3r3 t3

0

0

drl,1,2

drl′ ,2,3

(b) Corresponding passenger graph structure

Figure 8.3: The upper figure shows a simple network with three stations 1, 2
and 3, and two lines l and l′. Line l visits stations 1 and 2, and line l′ visits
stations 2 and 3. Each line operates at just a single frequency. The lower figure
shows the subsequent passenger graph structure used for this network. Costs
are labelled on the edges for a passenger travelling from station 1 to station
3, transferring lines at station 2, with used edges in bold. The costs to the
passenger are drl,1,2, travelling (driving) on line l from station 1 to 2; fixed
cost Kfix for a transfer and an additional Kvar

fl′
frequency dependent cost for

transferring to line l′; and drl′ ,2,3 travelling on line l′ from station 2 to 3.

Let le be the line that edge e is related to and fe be the frequency of the line
that e is related to. This line and frequency of an edge are uniquely defined as
the two vertices connected by edge e are either both related to the same line
and frequency or only one of them is related to a line and frequency.

Let as
v be the demand for passengers originating from station s at vertex v in

the passenger graph. For vertex types (line, frequency, station), as
v = 0. For a

given station s1, there is a single source vertex v corresponding to s1. For this
vertex, and for passengers originating from that station, as1

v = −∑s2∈S ds1,s2 .
For a given station s2, there is also a single sink vertex corresponding to s2.
For every sink vertex v the demand of passengers to that vertex from station
s1 is the demand of passengers from s1 to s2: as1

v = ds1,s2 .
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For relating passengers to lines, let C f be the passenger capacity of any line
operating at frequency f . We are therefore assuming the same rolling stock
unit type and sequence for every line, but a higher frequency provides more
seats than a lower frequency. We require that no more passengers use a line
as the line capacity permits for the frequency the line is operating at.

We use two classes of decision variables: xl, f ∈ {0, 1} is a binary decision
variable indicating whether or not line l is selected at frequency f , and ye

s
decides the number of passengers from origin station s that use edge e in the
passenger graph.

The line planning model is:

Minimize λ ∑
l∈L

∑
f∈Fl

cl, f xl, f + (1− λ) ∑
e∈E

∑
s∈S

teye
s (8.2)

s.t. ∑
f∈Fl

xl, f ≤ 1 ∀l ∈ L (8.3)

∑
l∈Lr

∑
f∈Fl

f xl, f ≤ rminr ∀r ∈ R (8.4)

∑
l∈Lr

∑
f∈Fl

f xl, f ≥ rmaxr ∀r ∈ R (8.5)

∑
(u,v)∈E

y(u,v)
s − ∑

(v,w)∈E
y(v,w)

s = as
v ∀s ∈ S , ∀v ∈ V (8.6)

∑
s∈S

ye
s ≤ C f xle , fe ∀e ∈ E (8.7)

xl, f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (8.8)

ye
s ∈ R+ ∀s ∈ S , e ∈ E (8.9)

The objective function (8.2) is a weighted sum of the operator cost and the
passenger travel time (ride time and wait time), using a parameter λ ∈ [0, 1]
to determine the importance of one component over the other.

Constraints (8.3) ensure that a line is chosen with at most one frequency (i.e.
combinations of frequencies are not permitted, as if valid a discrete frequency
would be present in the frequency set Fl for the line). Constraints (8.4) and (8.5)
ensure that the obligatory and operational requirements are met for the line
plan. Constraints (8.6) consist of the flow conservation constraints. The number
of passengers leaving from an origin station must flow from that station
with the appropriate number arriving at every destination station, such that
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flow is conserved. Constraints (8.7) link the flows of passengers to the line
decisions. The presence of a positive passenger flow on an edge in the graph
is dependent on some line being present in the plan. The maximum flow on
that edge depends on the passenger capacity of the corresponding line at
the appropriate frequency. Finally, constraints (8.8) and (8.9) restrict the line
variables and flow variables to be binary variables and positive otherwise
unrestricted variables, respectively.

The presented model is very large, as the passenger graph we construct
is very large and there are therefore a large number of flow variables and
corresponding constraints. However, we observe that many of the vertices and
edges in the graph are very similar and differ only in line frequency. For lines
with many possible frequencies there is significant duplication. For the edges
related to switching lines at a station, frequency is required to determine the
cost to the passenger. However for all other edges the frequency information
is redundant. Indeed, the cost of travelling on a line between stations does
not depend on the frequency of that line. A first simplification of the model
is that for each line and its frequencies, we replace the edges (and vertices)
which do not depend on frequency with an edge (and vertex) related only to
line and station instead of line, frequency and station. This is shown in Figure
8.4. The capacity of the replacement edge (and resulting right hand side of
constraints (8.7)), is given by ∑ f∈Fl

C f xl, f .

p

f1

f2 f3

r t

(a) Original graph structure

p

f1,2,3

r t

(b) Reduced graph structure

Figure 8.4: The full and reduced graph structure for a single line with three
frequencies at a single station.

Figure 8.4 shows the graph structure for a single station and a single line with
three frequencies as originally described (Figure 8.4a) and with the explained
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reductions (Figure 8.4b). Nodes r and t are respectively the station source
and sink vertices for passengers and p is the platform vertex for that station.
The vertices f1, f2, f3 are the (line, frequency, station) vertices for the three
considered frequencies of the line, in that station. The red edges are the line
switching edges (though no other lines are shown). Edges connecting these
vertices f1, f2, and f3 to corresponding vertices at other stations are not shown.
Vertex f1,2,3 is the combination of the vertices f1, f2, f3. The edge between s
and f1,2,3, and between f1,2,3 and t, is the combination of the edges between s
and f1, f2 and f3 in (Figure 8.4a), and f1, f2 and f3 and t, respectively.

A second simplification of the model is that we consider line-switching edges
only at a minimal set of switching stations. This set of stations is fixed be-
forehand and suffices to facilitate all optimal passenger flows, when every
passenger origin-destination pair is considered individually. Any solution that
is feasible for this restricted problem is feasible if switching is allowed at any
station, but some solutions that are feasible if switching is permitted anywhere
may not be feasible with the restriction (although we have not observed this).
At stations where we do not permit switching we do not include switching
edges, and this reduces the total number of edges in the graph by between
23% and 34% when tested for a range of line pools. Finally, we can determine
that only a subset of all edges should be used for the flows from a given origin
station; generally it is never true that in an optimal solution passengers will
be assigned an edge that travels “towards” the station they originate from.
This is a third measure to simplify the model.

By making these three alterations we find that the line planning problem is
solvable directly as a MILP, though not to optimality in the time frame we
require. For our tests, finding line plans with no other restriction, we use a
time limit of one hour, or until a gap between the solution and best lower
bound is below 0.5% (in most cases the gap limit is reached, but for some
weightings of objectives, one hour is insufficient). However, for a reduced
line pool that we use in the integrated approach described later, the problem
becomes easier and is solvable to optimality in an acceptable time frame.

The formulation (8.2)–(8.9) defines the basic line planning model, ignoring
some minor considerations not given here. However, when searching for line
plans that only differ a little from a give line plan we may impose some
additional restrictions. The simplest types are the following:

∑
l∈L

∑
f∈Fl

f · xl, f ≥ k1 (8.10)
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∑
l∈L

∑
f∈Fl

f · xl, f ≤ k2 (8.11)

That is, we require that the total number of (one-directional) trains running in
the network per hour is between some upper and lower bound. This may be,
for example, to find solutions that do not differ too much from some original
solution. We use this because, from the point of view of the timetable module,
two solutions that differ only in line frequency but not in line routes can
be very different. Without such constraints, when seeking a line plan that is
similar but different to a given plan, a change of frequency would not maintain
the similarities in timetabling that we seek. Now, suppose we are given a line
plan or a partial line plan, in the form X = {(l1, f1), (l2, f2), (l3, f3), ...} where
every (l, f ) in X is a valid line and frequency combination, and that this
(partial) line plan should not be in the solution. Then we may impose the
following constraint for every such line plan:

∑
(l, f )∈X

xl, f ≤ |X | − 1. (8.12)

Such constraints are used to forbid solutions we have already discovered and
do not wish to find again, and also to forbid partial solutions which we already
know are problematic for timetabling, i.e. they lead to timetable-infeasibility.
Finally, and similarly, we may have some given line plan X and desire that
the solution line plan contains at least k lines from the plan:

∑
(l, f )∈X

xl, f ≥ k. (8.13)

Such constraints ensure that a discovered line plan is similar to some previous
line plan, while differing by some number of (unspecified) lines. If instead the
lines that may differ are specified, we can fix the variables of the lines that
may not differ and only permit those variables corresponding to the specified
lines that may differ to change (along with variables corresponding to lines
not in the plan). These extra restrictions are used in the integrated approach
when looking for a similar line plan that is more flexible, i.e. allows a more
robust timetable.

8.4.2 Timetabling module

The timetable problem is modelled as a PESP. We indicate our event-activity
network as (E , A ). The set of trains is indicated as T, the set of lines in the
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line plan (output of the line planning module) as X , the line operated by train
t is indicated as lt, the set of stations is S and the set of stations on a line l is
indicated as Sl . As we assume a railway network with limited shunt capacity,
our model assumes that all the trains can and must turn on their platform at
end stations. The set Tturn contains the train couples (t, t′) for which it holds
that t becomes train t′ after turning on the platform in its end station. Trains t
and t′ share the same rolling stock. Line lt and lt′ contain the same stations
but in opposite direction. The set Tline spread contains the train couples (t, t′)
where t and t′ are two succeeding trains of the same line, i.e. no other train
operating on the same line drives in between them.

The event set E of the event-activity network consists of the following events.

• The reservation of a station environment s (and a platform in this
station) by a train t is a reservation event (t, s, res). We define E res as
{(t, s, res) | ∀t ∈ T, s ∈ Slt}.

• The release of a station environment s (and a platform in this station)
by a train t is a release event (t, s, rel). We define E rel as {(t, s, rel) | ∀t ∈
T, s ∈ Slt}.

• The reservation of a platform pse in a terminal station se by a train t
in order to turn is a platform reservation event (t, pse ,t, res). We define
E res,p as {(t, pse ,t) | ∀t ∈ T}.

• The release of a platform pse in a terminal station se by a train t in
order to turn is a platform release event (t, pse ,t, rel). We define E rel,p as
{(t, pse ,t) | ∀t ∈ T}.

The following inclusions hold E res,p ⊂ E res ⊂ E and E rel,p ⊂ E rel ⊂ E and
E = E res ∪ E rel. So platform pse ,t of train t in its terminal station can be
interpreted as an extra station where the train arrives after arriving in its
terminal station se.

The activity set A contains:

• driving activities between the release of a train in a station and the
reservation of this train of the next station on its line. Let A drive =
{((t, s, rel), (t, s′, res)) ∈ E rel × E res | ∀t ∈ T
and s and s′ succeeding stations of lt};
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• waiting activities between the reservation and the release of a train in a
station on its line. Let A wait = {((t, s, res), (t, s, rel)) ∈ E res × E rel | ∀t ∈
T, s ∈ Slt};

• buffer activities between the release of one train and the reservation of
another train on the same platform in the same station. Let A bu f f er =
{((t, s, rel), (t′, s, res)) ∈ E rel × E res | ∀t, t′ ∈ T : t 6= t′, s ∈ Slt ∩ Sl′t

, ps,t =

ps,t′};

• line spreading activities between the reservations of two succeeding trains
on the same line in the stations on their line. Let A line spread =
{((t, s, res), (t′, s, res)) ∈ E res × E res | ∀t, t′ ∈ T : (t, t′) ∈ Tline spread, s ∈
Slt};

• turning activities between the release of a train of the platform in its end
station and the release of the next train of the opposite line that leaves
from that terminal station. Let A turn = {((t, pse ,t, rel), (t′, se, rel)) ∈
E rel,pse ,t × E rel | ∀t, t′ ∈ T : (t, t′) ∈ Tturn}. This next train is the same
physical train.

As mentioned in Section 8.2, we want to maximize the minimum buffer times
between train pairs. In terms of the event-activity graph, we want to maximize
the minimum activity time of the buffer activities which is the time between
the release of an infrastructure part by one train and the reservation of that
same infrastructure part by another train. Mathematically we have

max min
a=(i,j)∈A bu f f er

(πi − πj + kaP), (8.14)

where πi and πj are the event times of event i and j respectively which define
together a buffer activity. However, this objective function is not linear, but as
it is a max-min objective function, it can easily be linearized. Therefore, we
introduce an auxiliary variable y ∈ [0, P], where P is the period of the cyclic
timetable. We add the constraints

y ≤ πi − πj + kaP ∀a = (i, j) ∈ A bu f f er (8.15)

and we change the objective function to the maximization of y: max y. The



158 Integrating Robust Timetabling in Line Plan Optimization

complete model is then the following.

max y (8.16)

y ≤ πi − πj + kaP ∀a = (i, j) ∈ A bu f f er

La ≤ πi − πj + kaP ≤ Ua ∀a = (i, j) ∈ A (8.17)

0 ≤ πi ≤ P ∀i ∈ E (8.18)

ka ∈ {0, 1} ∀a = (i, j) ∈ A (8.19)

Constraints (8.17) bound all activity times from below and above. The term
kaP avoids negative activity times. To ensure a unique value for ka, the value
of Ua has to be smaller than the period P. The specific values of Ua and La
are listed in Table 8.1 for all activities a ∈ A . The driving activity times are
bounded by the time that a train of line l needs between the release of a
station s and the reservation of the next station s′, indicated as drl,s,s′ . The
driving time between the terminal station of a train and the platform in its
terminal station is zero minutes. The waiting activity times are bounded by
the time that is necessary and provided for a line l to occupy a station s,
indicated as dwl,s. This is the time between the reservation and release time
of that station. The bounds are different for waiting activities on platforms
in terminal stations. Trains have to stay there for at least the necessary turn
time in the terminal station s, which is indicated as ntts. Trains have to leave
the platform before the next train arrives. This is ensured if they all get the
same maximum time that they can stay on the platform which is equal to
the period of the cyclic timetable divided by the number of trains that turn
on platform p. The number of trains that turn on platform p is indicated as
fp. The buffer activities have to be positive and smaller than P− dwlt′ ,s − ε to
ensure that the timetable is feasible, i.e. occupation intervals may not overlap,
independently of the order of both trains that will be assigned. On platforms
in terminal stations the upper bound is smaller because trains occupy the
platform for a longer time, i.e. the upper bound in our model is P− P

fpse ,t
− ε.

Before initializing the timetable module, a check is necessary to determine
if too many trains are scheduled on one platform, i.e. if P

fp
≤ ntts. If so, the

trains do not have enough time for turning and consequently the timetable
will be infeasible. The value of ε depends on the time discretization. We use
0.1 minutes. In this model we equally distribute trains of a line over the period,
and therefore the line spread activity times have to be equal to the period
divided by the line frequency. The frequency of a line l is indicated as fl .
The turn activity times have to be equal to zero, ensuring that the ‘turning’
platform is freed if the next train leaves in the opposite direction.



8.4 Methodology 159

Activity La Ua

((t, s, rel), (t, s′, res)) ∈ Adrive drlt ,s,s′ drlt ,s,s′

((t, s, res), (t, s, rel)) ∈ Await : s 6= pse ,t dwlt ,s dwlt ,s
((t, s, res), (t, s, rel)) ∈ Await : s = pse ,t ntts

P
fpse ,t

((t, s, rel), (t′, s, res)) ∈ Abu f f er 0 P− dwlt′ ,s − ε

((t, s, rel), (t′, s, res)) ∈ Abu f f er : s = pse ,t = pse ,t′ 0 P− P
fpse ,t
− ε

((t, s, res), (t′, s, res)) ∈ Aline spread P
fl

P
fl

((t, pse ,t, rel), (t′, se, rel)) ∈ Aturn 0 0

Table 8.1: Lower and upper bounds for the PESP constraints (8.17)

8.4.3 Integrated approach

Here, we explain how the line planning and timetabling module can be
integrated to construct a line plan and timetable that induce a low passenger
and operator cost and maximize the buffer times between train pairs in
order to provide a passenger robust railway schedule. The line planning
and timetabling module work iteratively and interactively. The line planning
module creates an initial line plan which is evaluated by the timetabling
module. Based on the minimum buffer times between line pairs, a critical line
in the line plan is identified. The line planning module then creates a new line
plan with at least one different line, i.e. the time length of this critical line is
changed. The goal is to create more flexibility in the line plan. This flexibility
will be used by the timetabling module to improve its robustness. This heuristic
approach which is divided into two parts is now further explained. In Figure
8.5, a visual overview of the algorithm is presented and in Section 8.6.2 we
apply the approach to an example.
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Line plan Model
Minimizing

operator cost
Minimizing
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Timetable Model
Maximizing
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minimal buffer times

Timetable-feasible line plan

Critical line(s)

Modified line plan(s)

Stop if minimal buffer
times do not improve

Figure 8.5: Overview of the integrated approach

Part 1: Initialization

Step 1: Construct an initial line plan
We construct a line plan that satisfies service constraints and op-
timizes a weighted sum of the passenger and operator cost with
the line planning module. Beforehand, we check for infeasible lines
in the line pool as discussed in Section 8.3. We check with the
timetable module if a feasible timetable can be constructed for this
line plan. A feasible timetable is a timetable in which no occupation
intervals of trains overlap: if a station or platform is occupied by
one train, no other train can occupy this station or platform un-
til the first train leaves it. In case the constructed line plan is not
timetable-feasible, different strategies can be applied. A straightfor-
ward strategy is to take the second best line plan for the weighted
sum of the passenger and operator cost and if the second best is not
timetable-feasible then the third best and so on. The disadvantage
of this strategy is that it is possible that a lot of line plans are to
be tested before a timetable-feasible line plan is found, because no
insight in the problem is used. We propose another more effective
strategy for a network with restricted shunt capacity as is assumed
in this research. Due to the restricted shunt capacity in the terminal
stations, the occupation of the terminal stations is critical in finding
a timetable-feasible line plan. So an effective strategy for looking for
a timetable-feasible line plan with a close to optimal objective value
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is by restricting the number of lines that share a terminal station.
If a line using a shared terminal station also passes a different
station that may be a terminal station, a close to optimal solution
is a line plan in which this line is replaced by one that ends at
this alternative terminal station. This decreases the number of lines
sharing an end station and in some cases has minimal impact on
operator and passenger costs. This new line plan is only feasible in
case all service constraints remain fulfilled.

Part 2: Iterative steps

Step 2: Evaluate the line plan
Construct a timetable with the timetable module that maximizes
the minimum buffer times between a selection, or between all
the train pairs in the line plan. Calculate the minimum buffer
times between all line pairs in the line plan, and the overall min-
imum buffer time. Refer to Section 8.6.2 for a concrete example.
Test the following stop criteria:

• STOP if the minimum buffer time is closer than 5% to the
desired minimum buffer time. The desired minimum buffer time
can be found by identifying the station or track section which
has the highest ratio of occupation time over free time and
dividing the free time by the number of trains that pass by this
section or station.

• STOP if the minimum buffer times do not improve the best
encountered value during three succeeding iterations.

Otherwise, select the most critical line from the list. The most critical
line is the line that is responsible for the highest number of buffers
in the category of smallest buffers in the list. This is illustrated
in the example in Section 8.6.2. In case of a tie, look at the next
category of buffer times to identify the most critical line. If there is
still a tie, let the decision be made by the line planning module in
the next Step, based on the objective values there. The threshold to
categorize the buffer times depends on the signaling system and
the appearance of single tracks in the network. Go to Step 3.

Step 3: Adapt the line plan by changing the stopping pattern
Make a new line plan that alters the time length of the critical line
by adding or removing a stop in a station on that line, such that this
line becomes more flexible. This flexibility will be used to improve
the buffer times in the timetabling module. This effect can be seen
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in the results and the example presented in Section 8.6. There are
three important considerations. Firstly, changing the time length
can also make a line infeasible as discussed in Section 8.3 which
has to be avoided. Secondly, an extra stop cannot be added to a line
in cases where there are no skipped stations on the line. Thirdly,
some stations cannot be skipped due to service constraints.
We potentially solve the line plan problem with three different
line pools, sequentially, to attempt to find a feasible solution. If a
feasible line plan is found, the line plan problem does not need to
be solved for the other line pools in the sequence. The three line
(and frequency) pools are as follows.

i. All lines of the solution of the previous iteration are fixed,
including their frequency, except that of the critical line. We
add all lines that differ by one stop from the critical line. For
those lines we only allow the frequency of the critical line.

ii. All lines of the solution of the previous iteration are fixed,
including their frequency, except that of the critical line. We
add lines to the line pool that differ by one stop from the critical
line, which we now allow at any frequency.

iii. Solution lines that share no stations with the critical line are
fixed. We introduce lines that differ by one stop from the critical
line and lines that differ from other non-fixed non-critical lines
by one station, at any frequency.

Because the number of lines in the line pool and the number of
feasible solutions is much more restricted, the run time for the
line planning module is now much shorter. The objective function
is the same as in Step 1. For the first line pool, if feasible, the
best alternative line will be selected, i.e. the line that provides the
lowest passenger and operator costs. For the second line pool, if
feasible, one or more of these new lines will be selected, often with
a frequency combination that sums to the frequency of the critical
line. For the third line pool, one or more lines similar to the critical
line will be selected, and other solution lines from the previous
iteration may be replaced with one or more similar lines. A simple
example of solution from the third line pool is where a stop at a
certain station is shifted from the critical line to a line that first
skipped this station. The time length of the critical line changed by
removing a stop and the station that is now skipped by the critical
line is still served, but by another line. Note that in this example,
the length of the non-critical line is also changed. A composition
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resulting from the second line pool is captured in the example in
Section 8.6.2.
In the case that a feasible solution is found, return to Step 2. In the
case that no feasible solution is found, and if there is a second most
critical line, solve the three line plan problems for the second most
critical. Otherwise STOP.

End

The intuition behind the integrated approach is the following. Changing the
number of stops of a line changes the time length of the line. This time length
of a line affects the flexibility of that line. So we alter the stop pattern of a line
to make the line more flexible in order to improve the spreading in the whole
network. The station where the stop pattern is changed is decided by the line
planning module, which takes a weighted sum of passenger and operator
cost into account. These costs are not taken into account during timetable
construction. We note here that in general we do not require that the lines
created to modify a line plan are all in the original pool of lines specified
for the original problem. This explains why the adapted line plan can have
a better weighted sum of passenger and operator cost than the original one.
For the second stop criterion we take three non-improving iterations, to both
restrict the run time while still allowing improvements that require multiple
lines to change before a resultant improvement in minimal buffer time is
observed.

8.5 Case study

The railway system on which the approach is tested is the S-tog network in
Copenhagen operated by Danish railways operator DSB. This is a cyclic high-
frequency network with a one hour period of repetition and which transports
30 000 to 40 000 passengers per hour at peak times between 84 stations. The
network is visualized in Figure 8.6. It contains a central corridor, indicated
in red; five ‘fingers’, indicated in blue; and a circle track, indicated in yellow.
During peak hour on weekdays, there is a service requirement of 30 trains
per hour through the central corridor in each direction. Each train occupies
a station area on its route, in the direction that the train is driving, for one
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minute. The minimum desired buffer time in the DSB S-tog network is therefore
one minute, which is (60 min - 30 min)/30, where 60 minutes is the period
of the cyclic timetable and 30 trains occupy a station in the central corridor
each for one minute. With almost no exception, there are at least two tracks in
between every two adjacent stations. Furthermore, given that the network is
designed with bridges and tunnels, there are very few locations where trains
in opposite directions have to cross each other during normal conditions. In
this research we assume that trains in opposite directions only interact with
each other in terminal stations. One requirement specified by the operator
is that only lines at frequency three, six, nine or twelve are allowed in the
weekday line plan. This restriction decreases the probability of frequency
combination infeasibility (though that is not necessarily the intention for
the requirement). In order to enable and maintain this high frequency in
the central corridor, the spreading of the trains in this part of the network
is crucial. Therefore the timetable module will be sequentially used twice
with two different objective functions. First, the minimum buffer times in the
central corridor are optimized. In a second optimization round the minimum
buffer in the rest of the network is optimized while bounding the buffer
times in the central corridor by the value found in the first optimization. We
also considered one combined weighted objective function, but this proved
computationally worse in our experiments, i.e. the run times were significantly
higher.

We test our approach on ten line plans for this network. The approach can be
applied to a pre-existing line plan, or applied to first create and then improve
a line plan. The full approach is tested for five line plans created as described
in Step 1 of the integrated approach, while the other five line plans come from
the operator or are created by hand. The first two line plans (1-2) were recently
in use for the S-tog network in Copenhagen. We have not considered the
current line plan as it is only temporarily active and specifically developed for
implementing the new signaling system in the central corridor of the network.
The third line plan (3) is a night line plan for weekdays. As the demand during
night time is lower, the frequencies of the lines in this line plan are also lower.
All other line plans are line plans that are planned with the requirements
for use during daytime on weekdays. So, the setting of this third line plan is
different from the other ones. This third line plan is also not the current plan in
the S-tog network as at the present time a temporary plan is in use. The fourth
up to the eighth line plan (4-8) are created within our algorithm by solving
the weighted sum line planning module, using a range of weights that give
distinct line plans. For each of these weights, we solve the line planning model
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Figure 8.6: DSB S-tog network of Copenhagen

with a one hour time limit and to a 0.5% relative gap limit, and terminate
when either is reached. We initially solve the line planning module finding
distinct solutions with no consideration for the feasibility of timetables except
for infeasible lines as explained in Section 8.3. Then we test whether or not
these are timetable-feasible. We find for these considered weights that only a
single line plan (4) is feasible for timetabling. This endorses the statement that
the output of a previous level in railway planning is not necessarily adequate
for the next planning level [Schöbel, 2015]. For those that are not feasible, we
introduce restrictions on the use of terminal platforms, requiring only one
line terminating at each terminal platform a station has. This is described
in Step 3 of the integrated approach in Section 8.4. This is sometimes too
conservative, since it can be possible for more than one line to share a single
terminal platform. Conversely this alone does not guarantee that a feasible
timetable is present for a line plan, but we observe that it is often a sufficient
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restriction. Applying this restriction we find four other distinct line plans (5-8).
We note that, when considering the two line plan objectives of operator cost
and passenger cost, none of the final four plans dominates any other. The
ninth and the tenth line plan (9-10) are two special ‘manually created’ line
plans, which are each based on one of the weighted-objective line plans (5 and
8 respectively). These paired plans only differ in stopping pattern from the
plan they are manually adapted from, as we force every line to stop in every
station it passes, while the original line plans contain many skipped stations.
We want to investigate if each pair (5 and 9, 8 and 10) converges to a final line
plan of similar quality when we modify stopping patterns of lines.

8.6 Results and discussion

In this section we show the results of the integrated approach for all ten line
plans described in Section 8.5. Furthermore, we demonstrate the integrated
approach for line plan 2.

8.6.1 Results for ten line plans

A first performance indicator is the estimated operator cost of a line plan.
This cost is calculated by the line planning module. The total cost of a line
plan is simply the sum of estimated operator costs for each line, which we
take as given by the rail operator, here DSB. Each line in the pool has an
operating cost associated with each frequency at which it could operate, and
in calculating the total cost there are no additional considerations given to the
combinations of lines.

A second performance indicator is the estimated passenger cost of a line plan.
This cost is calculated by the line planning module. It is the sum of travel time
of all passengers in the OD matrix. Because a timetable is not known (by the
line planning module), the transfer time is estimated based on the frequency
of the line as half of the time between two trains of that commuter line. For
each passenger transfer an additional penalty of six minutes is added to the
estimated passenger cost as transfers are perceived to be worse than direct
connections.
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The third performance indicator is the minimum buffer time between train
pairs in the central corridor of the DSB S-tog network, optimized by the
timetable module. The fourth performance indicator is the minimum buffer
between train pairs everywhere in the network, while bounding the minimum
buffer time in the central corridor first.

This fourth performance indicator is also optimized by the timetable module.
The focus on the minimum buffer time first in the central corridor of the
network and thereafter on the minimum buffer time overall is in consultation
with DSB S-tog.

A fifth performance indicator is the sum of the inverse of the minimum buffer
times between train pairs in each station that they have in common (and pass
by in the same direction). We take the inverse minimum buffer times in order
to give smaller buffers a higher weight than large buffers. As in Dewilde et al.
[2013] a buffer time smaller than the time discretization ε (here 0.1 minute)
has a contribution of 15 to the sum of the inverse buffer times. So the lower
the sum of the inverse buffer times the better, because this means generally
larger buffer times. The results are summarized in Table 8.2, Table 8.3 and
Table 8.4.
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In Table 8.2 we observe that there is a significant improvement in the buffer
times for eight out of the ten line plans. For three out of the ten line plans,
the desired minimum buffer time is reached both in the central corridor and
in the rest of the network. For three other line plans the desired minimum
buffer time is reached in the central corridor but not in the rest of the network.
Furthermore, we see that the sum of the inverse buffer times between train
pairs in every station they have in common decreases, which means that the
buffer times themselves increase as desired. Moreover, the results on the sum
of the inverse buffer times are very similar to the minimum buffer time results
in the central corridor and in the overall network. We note that a big absolute
improvement of the minimum buffer time in the central corridor (or of the
minimum buffer time overall) corresponds to a big improvement in the sum
of the inverse buffer times, and vice versa. Unfortunately, for two out of the
ten line plans (7 and 8) no improvement in minimum buffer time is achieved.
To identify the critical line in Step 2 of the integrated algorithm, we categorize
the buffers as zero, smaller than 30 seconds, smaller than one minute and
bigger than one minute. We observe that for the two timetables corresponding
to the initial line plans almost half of the minimum buffer times between line
pairs are smaller than 30 seconds, while for the other line plans this is at most
one third of the minimum buffer times. As a possible explanation, we note
that for these line plans almost every line has a pairwise minimum buffer time
below half a minute with some other line, and we may therefore expect that
multiple lines must be modified to see an improvement. We typically change
a single line in every iteration and in such cases, it may take more than three
non-improving iterations before seeing an improvement, given that every line
plan we consider has between six and ten lines.

The buffer times in Table 8.2 appear to be small. However, as discussed earlier,
the minimum desired buffer time in a daytime week line planning is one
minute and this is thus the value of the stopping criterion in Step 2 of the
integrated approach. The maximal minimum buffer time everywhere in the
network is also restricted by this maximal minimum buffer time in the central
corridor. Moreover, even if the buffer time between two trains is zero the
timetable is still feasible. A zero buffer time only means that the second train
reserves and occupies a track section between two signals immediately after
the first train leaves and releases this track section. However, a zero buffer time
is undesirable and any delay of the first train is immediately propagated to
the second. In the case study, a line plan performs best if it allows the desired
buffer time of at least one minute between every two trains. As an exception,
for line plan 3 the desired buffer time is three minutes. This desired buffer
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time is for example achieved for line plan 9.

One explanation for not reaching the desired value for some line plans could
be no further improvement was made, because at each iteration the same line
was identified as being critical. Either changing this line was no longer feasible
or changing this line was feasible, but did not result in acceptable solutions.
If changing the critical line is not feasible, then the second most critical line
of the last found line plan is chosen. In the current algorithm, however, if the
critical line itself does not give rise to good results, there is no backtracking to
a previous iteration to try the second most critical line.

Operator cost Passenger cost
(×105) (×107)

Line plan in
iti

al

final
ch

an
ge

in
iti

al

final
ch

an
ge

1 real 6.79 6.84 +0.74% 4.17 4.23 +1.47%
2 real 6.84 7.21 +5.40% 4.22 4.21 -0.12%
3 real 3.40 3.43 +0.64% 1.05 1.06 +1.08%
4 random 6.25 6.64 +6.23% 4.24 4.27 +0.87%
5 random 6.48 6.80 +4.94% 4.27 4.29 +0.36%
6 random 6.66 6.74 +1.13% 4.12 4.14 +0.51%
7 random 7.02 7.02 +0.00% 4.09 4.09 +0.00%
8 random 8.27 8.32 +0.71% 4.05 4.04 -0.22%
9 special 7.15 7.14 -0.17% 4.43 4.44 +0.32%
10 special 9.00 9.01 +0.20% 4.35 4.30 -1.06%

Table 8.3: The operator cost and passenger cost differ only slightly when
applying the integrated approach for most plans.

In Table 8.3 the operator cost and the passenger cost for the initial and final
line plan are presented. We observe that they differ only slightly for most
plans. This is important because it illustrates that our improvement in terms
of expected delay propagation, by modifying the line planning and timetable,
does not necessarily require an increase in operator and passenger cost. Note
in fact that in Table 8.3 some plans do improve for one measure but become
worse for another, and although it is possible for both to improve (as we
are in fact allowing lines that were not in the original line pool), we do not
observe this here. Note also that for line plans 4 and 5 we do see a relatively
large increase in operator cost (6.23% and 4.94%), combined with an increase
in passenger cost which may be a relatively large cost to pay for timetable
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improvement. In contrast, for line plan 2 though we see a similarly large
increase in operator cost but a reduction in passenger cost. Here the impact
must be judged by the perceived relative importance of the two measures.

Stop # iterations # out-of-pool Average run time
Line plan criterion lines timetabling (min)

1 real DES 4 5 183.40
2 real DES 3 5 4.88
3 real BFV 2 3 0.50
4 random BFV 6 5 75.71
5 random BFV 7 7 385.563
6 random BFV 7 5 167.19
7 random BFV 3 0 126.75
8 random BFV 3 1 9.25
9 special DES 1 2 47.5
10 special BFV 5 3 346.83

Table 8.4: Characteristics of the integrated approach

In Table 8.4 some characteristics of the integrated approach are presented
together. We indicate there under which stop criterion the algorithm was
terminated. If the algorithm terminated because the minimum buffer time
between the selected train pairs is closer than 5% to the desired minimum
buffer time, we indicate this as ‘DES’ from desired. If the algorithm ended
because the minimum buffer time between the selected train pairs did not
improve the best found value in three consecutive iterations, we indicate this
as ‘BFV’, i.e. best found value. We see that three out of the ten line plans
were within the desired minimum buffer time and for the remaining seven the
algorithm ended with the best found value. The table also reports how many
iterations the integrated approach passed through before a stop criterion was
achieved. This value ranges between one and seven. We report the number
of out-of-pool lines which are in the final solution, referring to lines that are
in the final solution but do not come from the original, restricted, line pool
but instead are similar to a line in the pool but with a modified stop pattern.
We observe that the five line plans with the highest number of out-of-pool
lines (line plan 1, 2, 4, 5 and 6) have the greatest relative improvement of the
minimum buffer time in the central corridor; have the greatest increase in
operator cost; and (with one exception) have the highest increase in passenger
cost. Therefore, including new lines in the line pool has the potential to
improve the minimum buffer times significantly, but may have a negative
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effect on passenger and operator costs.

The final characteristic in Table 8.4 is the run time for timetabling. The total run
time for timetabling consists of the creation of the optimal timetable in Step 2
of the integrated approach for each iteration and for determining the initial
timetable. As described in Section 8.5 the timetable is solved sequentially with
two objective functions at each iteration. Firstly, the buffer time in the central
corridor is maximized, and secondly the buffer time in the rest of the network
is increased with a bound on the buffer time in the central corridor fixed by
the first step.

For example the algorithm stops after three iterations for line plan 2. This
means that eight timetables are calculated: two initially (for the two optimiza-
tion criteria) and two at each of the three iteration steps. The average run time
for timetabling for optimizing line plan 2 is 4.88 minutes, which means that the
run time for each calculated timetable in the integrated approach on average is
4.88 minutes. All timetables are calculated with CPLEX 12.6 on an Intel Core
i7-5600U CPU @ 2.60 GHz. We observe that there is a high variability in the
average run times for the different line plans. Moreover, a high computation
time may occur in case where there is both a big improvement (line plans 1
and 5) and also where there is either no improvement (line plan 7) or only a
small improvement (line plan 10). Furthermore, the run time for timetabling
can differ significantly from one iteration to the next. Even if two line plans are
not dissimilar one can be intrinsically more difficult to solve. An explanation
could be that due to changes in the stopping pattern, trains of different lines
are more or less susceptible to catching up with each other in the fingers of
the S-tog network, resulting in it being more complex to spread the trains
optimally. The timetable module runs to optimality (relative gap smaller than
0.05%) for about 85% of the timetables. The average run time per timetable
optimized within the time limit of 12 hours is 3801 seconds. For the other
optimizations a time limit of 12 hours is imposed. The line planning module
for the selected line pool determined by the critical line runs to optimality in
all instances, taking at most up to ten minutes for cases where many lines are
to be changed.

Finally, from Tables 8.2, 8.3 and 8.4, we deduce that line plans 5 and 9 did not
converge to the same final line plan and line plans 8 and 10 did not either.
We see that the final line planning and timetable for line plan 9 and 10 score
better on robustness, i.e. minimum buffer time between line pairs is larger,
while line plan 5 and 8 score better on operator and passenger cost. Based on
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these results, the final decision on which line plan is preferred, rests with the
operator. In our opinion, the optimized version of line plan 1 will be the most
passenger robust, without adding expense for the operator or passengers.

8.6.2 Illustration

In order to illustrate the integrated approach, we apply it to line plan 2. As
this is an existing line plan, we skip Part 1 of the algorithm and only look at
the iterative steps in Part 2. The estimated operator cost of this line plan is
6.84× 105, the estimated total passenger travel time is 4.22× 107. The optimal
value for the minimum buffer time for this line plan in the central corridor
of the network is 0.73 minutes. The optimal value for the minimum buffer
time overall if the minimum buffer time in the central corridor is bounded
below by 0.73 minutes is zero minutes. The minimum buffer times between
the line pairs are present in minutes in Table 8.5. The smallest buffer time
between line i and j is the same as the smallest buffer time between line j
and i, so Table 8.5 is in fact symmetric, but we omitted here the superfluous
information. If two lines do not share a part of the network, the minimum
buffer time between these lines is indicated as 60 minutes, which is the period
of the cyclic timetable. The smallest buffer time between two lines is zero
minutes. This buffer time is between line 1 and itself. This means that the turn
platform of line 1 in one of its terminal stations is permanently occupied by a
train of the first line. Obviously, the critical line is line 1.

line 0 1 2 3 4 5 6 7
0 1.73 0.73 0.73 2.47 2.88 3.13 2.47 60
1 - 0.00 2.47 0.73 1.15 2.57 0.73 60
2 - - 2.2 1.30 1.47 1.30 3.50 60
3 - - - 7.17 0.88 1.40 6.70 60
4 - - - - 4.45 7.58 1.03 60
5 - - - - - 2.87 0.80 60
6 - - - - - - 6.97 60
7 - - - - - - - 0.57

Table 8.5: The minimum buffer time overall is zero minutes, if the minimum
buffer time in the central corridor is bounded below by 0.73 minutes

The line planning module adds a stop to line 1 by considering only the line
pool that contains alternatives for line 1 of the same frequency. The new
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estimated operator cost increases to 6.99× 105 and the new estimated total
passenger travel time slightly increases to 4.23× 107. The optimal value for the
minimum buffer time for this line plan in the central corridor of the network
is 1.00 minute. The optimal value for the minimum buffer time overall if the
minimum buffer time in the central corridor is bounded below by 1.00 minute
is still zero minutes. The minimum buffer times between the line pairs of
the first modification of line plan 2 are present in minutes in Table 8.6. The
smallest buffer time between two lines is still zero minutes. This buffer time is
now only associated with line 6. Again, this means that the turn platform of
line 6 in one of its terminal stations is permanently occupied by a train of line
6. The critical line is line 6.

line 0 1 2 3 4 5 6 7
0 6.17 1.01 2.99 60 3.01 1.00 3.99 2.99
1 - 2.14 2.99 60 1.00 1.99 1.00 1.00
2 - - 0.29 60 1.00 1.00 1.01 1.00
3 - - - 0.67 60 60 60 60
4 - - - - 1.82 2.99 2.99 2.99
5 - - - - - 7.23 6.99 6.99
6 - - - - - - 0.00 1.00
7 - - - - - - - 3.02

Table 8.6: The minimum buffer time overall is zero minutes, if the minimum
buffer time in the central corridor is bounded below by 1.00 minute

In Step 2, the line planning module first considers line pools that contain only
alternatives for line 6 of the same frequency and of different frequencies, but
they do not lead to a feasible line plan. We then consider the line pool that
also contains alternative lines for different frequencies for the lines that share
a part of the network with line 6. The result is a feasible line plan that does not
include original line 6 and 7, each of frequency three, but contains a new line
of frequency 6. The original line 6 stops at the same stations as the original
line 7, but has some additional stops at one end of the line. The new line is
similar to the original line 6 but skips one stop of that line. The new estimated
operator cost is 7.22× 105 and the new estimated total passenger travel time is
4.20× 107. The optimal value for the minimum buffer time of this line plan in
the central corridor of the network remains 1.00 minute. However, the optimal
value for the minimum buffer time overall if the minimum buffer time in
the central corridor is bounded below by 1.00 minute has now increased to
0.70 minutes. The minimum buffer times between the line pairs of the second
modification of line plan 2 are present in minutes in Table 8.7. The smallest
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buffer time between two lines is now 0.7 minutes. This buffer time is now only
associated with line 3, so the new critical line is line 3.

line 0 1 2 3 4 5 6
0 10.16 2.99 1.00 60 2.99 8.98 1.00
1 - 2.10 2.99 60 1.00 2.01 1.00
2 - - 1.15 60 1.00 1.01 3.01
3 - - - 0.70 60 60 60
4 - - - - 2.06 3.01 2.99
5 - - - - - 8.05 1.00
6 - - - - - - 1.69

Table 8.7: The minimum buffer time overall is 0.70 minutes, if the minimum
buffer time in the central corridor is bounded below by 1.00 minute

The line planning module skips a stop of line 3. The new estimated operator
cost is 7.21× 105 and the new estimated total passenger travel time is 4.21× 107.
The optimal value for the minimum buffer time of this line plan in the central
corridor of the network is still 1.00 minute. The optimal value for the minimum
buffer time overall if the minimum buffer time in the central corridor is
bounded below by 1.00 minute is now 1.00 minute. The minimum buffer times
between the line pairs of the second modification of line plan 2 are present
in minutes in Table 8.8. This minimum buffer time overall is closer than five
percent to the minimum desired buffer time of one minute, so this is the last
iteration of the algorithm.

line 0 1 2 3 4 5 6
0 10.20 3.01 1.00 60 2.99 8.98 1.00
1 - 2.15 2.99 60 1.00 1.99 1.00
2 - - 1.09 60 1.00 1.00 2.99
3 - - - 1.00 60 60 60
4 - - - - 2.11 2.99 2.99
5 - - - - - 8.02 1.00
6 - - - - - - 1.66

Table 8.8: The minimum buffer time overall is 1.00 minute, if the minimum
buffer time in the central corridor is bounded below by 1.00 minute



176 Integrating Robust Timetabling in Line Plan Optimization

8.7 Conclusion and further research

This paper presents a heuristic algorithm that builds a line plan from scratch
resulting in a feasible and robust timetable. Our method iterates interactively,
alternating between a line planning module and a timetabling module, im-
proving the robustness of an initially built line plan. Both modules consist of
an exact optimization model. The line planning module optimizes a weighted
sum of passenger and operator costs, while the timetabling module focuses
on improving minimum buffer times between line pairs. Appropriate and
sufficiently large buffer times between train pairs are needed to reduce the
risk of delays being propagated from one train to the next, thereby obtaining
a robust railway schedule. The timetable module identifies a critical line based
on the minimum buffer times between line pairs. The line planning module
creates a new line plan in which the time length of the critical line is changed.
Changing the time length of a line may create more flexibility in the schedule,
which may result in improvements in robustness. The approach was tested
for ten different line plans on the DSB S-tog network in Copenhagen. This
is a high-frequency railway network with 84 stations, currently nine lines
and restricted shunt capacity in the terminal stations. For eight out of ten
initial line plans the robustness could be significantly improved, while the
changes to the line plan generally did not result in significant changes in the
weighted sum of operator and passenger cost. Ultimately the operator makes
the final decision on the preferred criterion, considering the measures we have
presented and others we have not captured.

An initial idea for future research is a smart extension of the integrated
approach to overcome the situation where a certain line remains critical in each
iteration, while keeping the computation time restricted. Another extension
would be to allow different shunt characteristics in different terminal stations.
In the presented research we had the very strict requirement present in the
DSB S-tog system to have a schedule in which no train uses shunt capacity
in a terminal station during daily operation. Furthermore, the development
of a single integrated exact model that combines line planning and robust
timetabling which is solvable in a reasonable amount of time for other real
networks (similar to the DSB S-tog network) would be a next noteworthy step.
A further idea for future research is to remove the requirement that trains
of a line must operate exactly evenly timed (e.g. once every ten minutes for
a six-per-hour line). Currently, this requirement is consistent with operation
and ensures a regular service for customers. However it is potentially severely
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restrictive for the timetable given the tight spacing of trains in the central
corridor. Relaxing this requirement could increase the complexity of the
timetable model, both by expanding the solution space and by requiring new
constraints and possibly an objective measure for the evenness of train timings.
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Abstract. In this paper we consider the train departure matching problem which is
an important subproblem of the Rolling Stock Unit Management on Railway Sites
problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails
matching arriving train units to scheduled departing trains at a railway site while
respecting multiple physical and operational constraints. We formally define that
subproblem, prove its NP-hardness, and present two exact method approaches for
solving the problem. First, we present a compact Mixed Integer Program formulation
which we solve using a MIP solver. Second, we present a formulation with an
exponential number of variables which we solve using column generation. Our results
show that both approaches have difficulties solving the ROADEF problem instances
to optimality. Due to the complexity of solving the instances for this problem we have
developed a heuristic based on both approaches. The column generation approach is
able to generate good quality solutions within a few minutes in a heuristic setting.

9.1 Introduction

Many railway planning problems have been studied in the literature for the
last two decades. These range from long term high and level planning prob-
lems, such as line planing, to detailed and short term rolling stock and crew
scheduling problems. At train stations, planning problems include platform
assignment, routing, and shunting. These problems often have direct or indi-
rect dependencies but due to the high complexity, or company organizational
structure, they are often solved in isolation and in sequential order. The
ROADEF/EURO Challenge 2014 presents a problem where the goal is to adopt
a holistic approach to the planning problems at railway stations. The problem
combines several planning aspects that must be handled between arrivals and
departures at terminal stations such as matching available trains to departures,
routing trains in the station infrastructure (without any two trains occupying
the same infrastructure without sufficient time between them), determining
whether and when to perform maintenance, and when and where to do the
couplings and decouplings of train convoys.

In this paper we present our contribution for the Departure Matching Problem
(DMP) in this challenge. The DMP can be considered a pure subproblem of
the problem presented in the ROADEF/EURO Challenge 2014 document Ra-
mond and Nicolas [2014], which we will refer to as the Rolling Stock Unit
Management on Railway Sites (RSUM) problem.
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The RSUM problem entails many different aspects but the performance of
any solution approach will be greatly affected by how trains are matched
to departures. The considered subproblem (DMP) is the problem of finding
a good and feasible matching of trains to departures while respecting train
compatibility and maintenance constraints. In contrast to the RSUM problem
the DMP does not consider how to route, couple and de-couple train units in
the station. For the purpose of this paper, we will assume that routing is done
in a subsequent step. Importantly, many routing decisions are motivated by
the matching of trains to departures; whether an arriving train should visit a
maintenance facility or be parked in a yard depends on the train’s subsequent
departure.

In this paper we propose and benchmark two distinct optimal solution meth-
ods for solving the DMP. We will consider finding solutions that are either
optimal or proven to be some percentage from the optimum. The proposed
solution methods are however flexible and can be adjusted to find solutions in
a heuristic manner. We investigate the potential of the methods in a heuristic
setting.

9.1.1 Our Contributions

We present a definition for the DMP; a distinct, self contained subproblem
of the RSUM. We prove the DMP to be NP-hard in the strong sense. Two
optimization-based approaches for solving instances of the DMP are proposed.
Firstly, we introduce a Mixed Integer Program (MIP) mathematical model
and present results produced using a commercial MIP solver. Secondly, we
propose an alternative but equivalent MIP mathematical model that is solved
using column generation. Due to time limitations and the hardness of the
instances we only solve the pricing problem at the root node. The results are
presented in the benchmark section.

9.2 Problem definition

A full solution to the RSUM problem requires routing trains in the station
infrastructure, respecting routing restrictions, headways, capacities, and many
other constraints. Solutions are ranked using a weighted sum of multiple
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objectives such as making preferred matchings, allocating arrivals and depar-
tures to preferred platforms, avoiding unnecessary and platform dwell times.
Solving the entire problem as a single optimization problem is intractable con-
sidering the given strict run-time requirements of the competition. The RSUM
problem can be decomposed into several subproblems. The first subproblem,
namely the DMP, is the scope of this paper.

A solution to the matching subproblem (DMP) can be used to build a solution
to the overall RSUM problem, taking into account its other constraints and
objectives. However the fixed matching provided from the DMP may lead to
suboptimal solutions to the entire problem. Our approach for solving instances
of the RSUM is to first solve a DMP instance, and then use an optimal approach
to assigning platforms, before heuristically finding train routes. Our solution
method is described in Haahr and Bull [2014]. The DMP contains components
of the RSUM that are weakly linked to following subproblems in order to
improve the tractability of the RSUM.

The DMP is a matching problem between arrivals and departures at some
terminal station, with complicating dependencies between potential matches.
Given a fixed planning horizon at the station, there is a set A of trains
arriving and a set of pre-specified departures D that must be assigned some
compatible train unit. Every arrival a ∈ A has an arrival time arrTimea, and
every departure d ∈ D has a departure time depTimed. One arrival corresponds
to a single train unit, and if several trains arrive together as a convoy then
they are represented by multiple arrivals with the same arrival time. Similarly
one departure exists for every train that departs in a convoy sharing the same
departure time. A set I of initial trains may reside in the station infrastructure
at the start of the planning horizon. These are all available from the start of the
planning horizon h0. The total set of trains is denoted by T = I ∪A. We define
the availability time of a train t ∈ T as startTimet where startTimet = arrTimet
if t is part of an arrival and startTimet = h0 if t is an initial train (i.e. in I).
Note, that h0 denote the start of the planning horizon.

Some departures are the beginning of a tour that returns the train units
to the terminal station as arrivals within the same planning horizon. If an
arrival is linked to an earlier departure we call it a linked arrival. Likewise we
call the earlier departure a linked departure. In order to avoid confusion, we
note that the “linked” concept does not refer to physical train units that are
coupled together to form a convoy. A linked arrival states that the arriving
train is the same train that was assigned to the corresponding (earlier) linked
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departure. In contrast to a non-linked arrival, this means that the arriving
train is the same physical train which was assigned to the linked departure. If
the linked departure is canceled, then a new replacement train arrives instead.
The linking between arrivals and departures is important because it means
that the properties of (linked) arrivals are not known, without knowing what
trains (if any) are matched to those arrivals’ linked departures. We define the
set L ⊆ A as the set of arrivals which have an earlier linked departure, and
define σ(a) as the linked departure of the arrival train a ∈ L.

Every train t ∈ T belongs to some category catt ∈ C that defines common
characteristics such as train length, capacity and maintenance durations. Two
trains of the same category are considered interchangeable when assigning
trains to departures – with one exception. All trains in the system are subject
to two types of maintenance constraints: Distance Before Maintenance (DBM)
and Time Before Maintenance (TBM). Each train t has some initial remaining
DBM (remDBMt) and remaining TBM (remTBMt). Every departure d ∈ D
has a required DBM (remDBMd) and a required TBM (remTBMd) to perform
the round-trip. If a train is to be matched to departure d, then it must have
sufficient DBM and TBM.

A train may visit a maintenance facility at the station between arriving and
departing, which in the RSUM problem takes a fixed amount of time and
resets both the DBM and TBM to their maximum value for the train, and we
include the decision of whether or not to perform maintenance in the DMP.
The constants maxDBMt and maxTBMt indicate the level of DBM and TBM
that is obtained if a maintenance operation is performed on train t. For trains
of the same category (i ∈ C) the constants have identical values, and we can
therefore use the notation maxDBMi and maxTBMi without ambiguity. Due to
a limited amount of manpower at the maintenance facilities the total number
of maintenance operations per day is limited to a constant of maxMaint ∈ Z+.
The imposed limit means that certain combinations of matches can not all be
made: if there are n > maxMaint otherwise independent matches that would
all occur on the same day and all require maintenance, at most maxMaint
of them can be made. The remaining (n − maxMaint) trains could not be
maintained and would therefore not have sufficient DBM and TBM to be
matched to the (n−maxMaint) departures.

For those arrivals that have a linked departure, category, DBM and TBM
are dependent on any matching made to that linked departure. An arrival
a ∈ L is linked to a previous departure d ∈ D, i.e., the train t ∈ T assigned
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to departure d is the same train arriving later in a. The train in a therefore
inherits the remaining DBM and TBM and category of train t. In the case
where no train is assigned to d then another new train arrives with its own
specified remaining DBM, TBM, and category.

Every train t ∈ T can only be matched with a limited set of departures.
We define CompDep(t) as the set of departures that are compatible with t.
Likewise we define CompTr(d) as the set of trains that are compatible with
departure d ∈ D. These two sets are considered as parameters to the problem,
and it is up to the end-user to specify which factors to consider. These factors
could include for example a minimum routing time, a maximum time between
arrival and departure, or a maximum number of potential matchings for any
given train. For the sake of simplicity, we define only a few simple rules for
possible matchings. Given a departure d ∈ D and a non-linked arrival train
or initial train t ∈ T a matching is possible if the following conditions are
satisfied:

catt ∈ compCatDepd

startTimet + maintenancet > depTimed

max{remDBMt, allowDBMt ·maxDBMt} ≥ reqDBMd

max{remTBMt, allowTBMt ·maxTBMt} ≥ reqTBMd

where the binary parameters allowDBMt and allowTBMt indicate whether
DBM and TBM are allowed to be performed. In some cases there is only
time for one of the two operations but not both. The constant maintenancet
indicates the time needed to perform the necessary maintenance operations
for train t, or zero if no maintenance is required.

Given a departure d ∈ D and a linked arrival t ∈ L it is harder to limit
the options beforehand. In the preprocessing it can only be restricted by
startTimet > depTimed as the category, remaining DBM and remaining TBM
of the linked arrival t are unknown.

In practice it is in some cases expected that certain arrivals are matched
with specific departures. If such a match is successful we call it a train reuse,
otherwise it is a missed train reuse. We denote U as the set of train uses, where
tru and depu define the train t ∈ T and departure d ∈ D for a reuse u ∈ U .

Definition 9.1 (The DMP definition) We define the DMP as the problem of
finding a feasible matching between trains and departures that respects the
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Figure 9.1: An illustration of the matching problem showing potential matches
between three arrival trains (A1, A2, A3) and two departures (D1, D2). Each
arrival has a train category (c1, c2, c3) and each departure has one or more
acceptable train categories. Departure D1 and arrival A3 are linked; arrival A3
has replacement category c3 only if departure D1 is unmatched, but instead
has category c1 or c2 depending on which arrival is matched to D1. The
only matching of cardinality 2 is {(A2, D1), (A3, D2)}; matching A1 with D1
precludes matching A3 with D2 as the category of arrival A1 is incompatible
with departure D2.

departure maintenance requirements, the departure train category compat-
ibility, the time required to perform the needed maintenance, and the total
number of maintenance operations per day. The objective of the DMP is to
minimize the number of uncovered departures and to maximize the number
of train reuses. In every instance of the problem there is a fixed penalty for
every missed train reuse and a fixed penalty for every uncovered departure.

Figure 9.1 shows a small example with three arrival trains (A1, A2, A3) and two
departure trains (D1, D2), considering three different train categories having
no maintenance requirements or other restrictions. In this example departure
D1 and arrival A3 form a linked arrival pair: whatever is matched to departure
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D1 returns as arrival A3. Arrival train A3 is in L, and its linked departure is
D1; that is, σ(A3) = D1. In the figure, arrival A3 has category c3 marked as its
replacement train category. That is, it only has category c3 if no match is made
to departure D1, but if instead some match is made, the category of A3 is
inherited from that match. The match between arrival A3 and departure D2 is
not independent of other matchings made; it is only feasible if a match is also
made between arrival A2 and departure D1. If D1 is unmatched, arrival A3
will have the category of its replacement train, incompatible with departure
D2. Similarly, if D1 is matched to arrival A1 then arrival A3 will inherit the
category of arrival A1, also incompatible with departure D2.

9.3 Related problems

The RSUM as defined for the ROADEF competition is based on real station in-
frastructure and problems, with certain simplifications to make it appropriate
for the competition, such as simplifications of the switching and yard infras-
tructure. Real train stations face similar problems, though those problems
differ in specific details. A matching problem similar to the DMP subproblem
(that we have identified) could also exist as a subproblem at stations, though
it may not necessarily be treated as a self-contained subproblem.

If the linking between some departures and later arrivals is ignored or not
present, and performing maintenance is ignored, then whether or not a match
is possible would be pre-determinable. If the problem was just that of minimiz-
ing the number of uncovered departures, then it would be a relatively simple
maximal bipartite matching problem, solvable in polynomial time Hopcroft
and Karp [1973]. If minimizing a weighted sum of uncovered departures and
missed reuses, the problem could be formulated as an assignment problem,
also solvable in polynomial time Kuhn [1955].

The presence of linked arrivals inherently changes the structure of the problem.
The matchings themselves are not independent because whether or not some
train can be matched to some departure can depend on what other train is
matched to some other departure. Similarly, the ability to perform maintenance
changes which matches are possible, and the restriction of the maximum
number of maintenance operations per day makes matches non-independent.
The DMP combines the matching with components of the RSUM that we
have identified as being closely related to and significantly interacting with
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the matching, without including so many aspects of the RSUM to make the
problem intractable. For example, in the RSUM problem the restriction of
the maximum number of maintenance operations per day means that some
sets of potential matches can not all be included, and maintenance decisions
should be included with the matching subproblem. If however there was no
restriction on the maximum number of maintenance operations per day then
perhaps a subproblem that ignores maintenance could be sufficient to provide
feasible or optimal solutions, relying on it always being possible to perform
maintenance if necessary. For some other similar station arrival problem, a
similar but distinct problem to the DMP might instead be identified as a
subproblem.

Freling et al. identify the subproblem of matching departures and arrivals as
part of a shunting problem Freling et al. [2005]. The authors formulate a match-
ing subproblem that considers the unattractiveness of producing matches that
require breaking up trains into units matching different departures. In con-
trast, in the DMP we do not include any cost or penalty for matches which
require coupling or decoupling. The authors do not describe anything similar
to linked arrivals or maintenance decisions and daily restrictions, which are
the features of our problem that make matches interdependent.

Kroon et al. identify a matching subproblem as part of a larger station shunting
problem Kroon et al. [2008]. However there is no analogue to the linked arrivals
of the DMP. The authors do not solve the matching problem in isolation but
as part of a larger formulation that includes shunting features that are not
part of the DMP or even necessarily part of the RSUM.

In the shunting literature there are many problems that share similarities with
the RSUM problem and potentially have a subproblem that is very similar to
the DMP. However shunting is not necessarily an important component of the
ROADEF challenge because the station infrastructure has large and simplified
“yard” resources. These are abstractions with only a maximum capacity, but
train units can be parked in or removed from the yards without considering
their ordering.
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max ∑
i∈{1,2,3}

p1xi1 + p2xi2 + p3xi3 + p4xi4

w1x11 + w2x12 + w3x13 + w4x14 ≤ c1

w1x21 + w2x22 + w3x23 + w4x24 ≤ c2

w1x31 + w2x32 + w3x33 + w4x34 ≤ c3

∑
i∈{1,2,3}

xij ≤ 1 ∀j ∈ {1, 2, 3, 4}

xij ∈ {0, 1}

Figure 9.2: Multiple Knapsack Problem instance with 4 (coloured) items and
three knapsacks.
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Figure 9.3: The constructed Train Matching Problem instance from the Multi-
ple Knapsack Problem instance shown in Figure 9.2. Each train (T1, T2, T3)
corresponds to a single knapsack, and each linked departure (L1, L2, L3, L4)
corresponds to one item. For the sake of clarity, initial trains have been grouped
together since the graph is identical for each train.
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9.4 NP-hardness

It is relatively simple to prove that the DMP is NP-hard by reduction from
the Knapsack Problem. However, since the classic version of the Knapsack
Problem is NP-hard in the weak sense, we prove the same by reduction from
the 0-1 Multiple Knapsack Problem (MKP). We adopt the definition of the
MKP of Kellerer et al. [2004]:

Definition 9.2 Given a list of items to pack, each with a profit pi and weight
wi, and one or more knapsacks of capacity cj. The 0-1 Multiple Knapsack
Problem is the problem of choosing a list of items for every knapsack such
that the profit of the selected items is maximized while respecting the weight-
restriction of every knapsack.

Note that the 0-1 variant only allows each item to be packed at most once. We
show NP-completeness by reduction from a MKP instance to a DMP instance
with a simple mapping from knapsacks to trains and items to departures.
All physical train units have a DBM constraint that must be respected, this
will be the map to the capacity of a knapsack. All departures assigned to a
train consume some level of DBM and a profit/penalty is achieved/given, this
corresponds to putting an item into the knapsack. The weight corresponds to
the required level of DBM.

An illustrative example of the transformation is shown in Figure 9.2. The
knapsack example contains four items and three knapsacks with individ-
ual knapsack capacities where every item can be packed at most once. The
resulting DMP instance is shown in Figure 9.3.

Consider a MKP instance with N items and M knapsacks, let the weights and
profits respectively be defined as wi and pi for every item i, and finally the
capacities as cj for every knapsack j.

We construct a DMP instance with M initial (or arrival) trains and N linked
departures. Each individual train has remaining DBM corresponding to one
of the capacities cj of a knapsack. We set the remaining TBM to some high
value such that this constraint is never binding. The departure and arrival
times are set such that any of the four trains could be matched to any of
the four linked departures, provided that it has sufficient remaining DBM.
Any train can also visit any subset of the departures. The cost of matching
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every respectable (linked) departure is set to the negative profit of the item
corresponding to each departure in the MKP instance. The cost of cancelling
a departure is set to zero, and w.l.o.g. no maintenance is allowed. We can
ensure that no maintenance will be performed by enforcing zero allowed
maintenance operations, or by setting a high cost on maintenance, or by
setting the replenished value to zero after maintenance. No train-reuse costs
are defined. The initial trains are of the same single category, and all departures
(of the linked departures) are compatible with only that train type. The
replacement train of the linked arrivals have a different (incompatible) train
type, and therefore do not influence the solution or quality in any way. Thus
it is only possible for the initial trains to be matched to any of the linked
departures. The optimal solution of the DMP instance will therefore only
match the linked departures with the physical trains starting as the specified
initial trains. Further, the matching-sequences are restricted by the given
capacities of the MKP instance, where every matching/item consumes the
specified knapsack weights. Due to the departure constraint, every linked
departure can be matched at most once, thus every item is at most assigned
to one knapsack. If any train is matched to linked departure i, −pi is added
to the objective and inflicts a consumption (reqDBMi) of wi to the DBM of the
train. As no costs, but the profits of the MKP instances are present, the optimal
solution value will correspond to the optimal value of the MKP instance, only
with a negative sign. Alternatively, in order to more closely follow the DMP
objective function we adopt in later sections, the profit can be reformulated in
terms of minimizing the cost of cancellations. A item of the MKP instance is
only picked in a particular knapsack iff the corresponding linked departure is
matched in the DMP instance to a particular train (initially, or as a returning
linked arrival of that train). In conclusion, by transforming (in polynomial time
and resources) an instance of the MKP is solved by solving the constructed
DMP instance. The transformation graph is polynomial in the number of
vertices and edges. The number of vertices is 1 + M. The graph is acyclic
and every node only connects forward in time (with respect to arrival and
departure times) which results in a total of ∑N

k=1 k = 1/2(N2 + N) edges.

Theorem 9.3 The DMP is NP-hard

Proof. It is straightforward to verify whether a solution to the DMP is feasible
or not. This is verified by checking that the DBM and TBM constraints are
valid, that the train types are compatible, and that the matched arrival and
departures times are respected by the train units. Likewise, it is simple to
calculate the objective cost of any given feasible solution. The number of



194 Exact Methods for Solving the Train Departure Matching Problem

operations and resources used to construct the DMP instance is polynomial.
The number of vertices and edges created are polynomial in the MKP instance
size. By reduction from the MKP, as described in the example, we have
argued that there is a one-to-one correspondence between the solution of the
constructed DMP instance and the MKP instance. Any feasible train matching
solution to the DMP instance is a feasible item selection for the MKP instance,
and vice versa.

9.5 Mixed integer program model

In this section we present a MIP mathematical model for the DMP. The size of
the proposed MIP model for the DMP is polynomial in the number of input
trains and departures, and can be solved using a commercial solver.

The model contains six types of variables. A set of binary variables md
t deter-

mine whether train t ∈ T is matched to departure d ∈ D. Matches that are
not present in the compatibility set (CompDep(t) or CompTr(d)) are omitted
or fixed to zero. We also introduce a set of binary variables cati

t that indicate
if train t ∈ T is of category i ∈ C. For all initial trains and non-linked arrival
trains the category is known and the corresponding variable can be fixed (or
omitted). The continuous variables dbmt and tbmt determine the DBM and
TBM of train t ∈ T at the time before departure, which is the initially available
DBM/TBM or maxDBMt/maxTBMt if maintenance is performed on the train.
Finally we introduce the binary variables f d

t and gd
t that determine whether

a train t ∈ T matched to d ∈ D is being maintained on DBM or TBM. In the
following we will assume that maintenance of DBM and TBM can only be
done on one specific known day, for a particular matching. We introduce a
binary parameter ωd

t,day that is 1 if a match between t and d would perform
maintenance on day (if it performs it at all), and 0 otherwise. The objective is
formulated as a minimization of the number of unmatched departures and
the cost of missed train reuse:

min ∑
d∈D

cancellationCostd · cd

− ∑
u∈U

reuseCost ·mdepu
tru

+ reuseCost · |U |
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We minimize the number of cancelled trains and maximize the number of
reuses. Note that the final term is constant and can be left out. The constraints
of the model are the following:

∑
t∈T

md
t ≥ 1− cd d ∈ D (9.1)

∑
t∈T

md
t ≤ 1 d ∈ D (9.2)

∑
d∈D

md
t ≤ 1 t ∈ T (9.3)

∑
t∈T

∑
d∈D

(
ωd

t,day f d
t + ωd

t,daygd
t

)
≤ maxMaint day ∈ H (9.4)

f d
t + gd

t ≤ 2md
t t ∈ T , d ∈ D (9.5)

Constraints (9.1) ensure that every departure is assigned (to some train),
unless there is a cancellation. Constraints (9.2) ensure that at most one train is
assigned to every departure. Constraints (9.3) ensure that each train is assigned
at most once. Constraints (9.4) ensure that the total number of maintenance
operations (every day) is respected. Constraints (9.5) prohibit maintenance
usage on a match if that match is not made.

∑
i∈C

cati
t = 1 t ∈ T (9.6)

md
t ≤ ∑

i∈compCatDepd

cati
t t ∈ T , d ∈ D (9.7)

cati
t ≥ cati

t′ + mσ(t)
t′ − 1 t ∈ T , t′ ∈ T \ {t}, i ∈ C (9.8)

catit
t ≥ cσ(t) t ∈ T (9.9)

Constraints (9.6) ensure that every train is assigned exactly one category.
Again, the constraint for initial trains and non-linked arrival trains can be
omitted, if the correct value is fixed. Constraints (9.7) ensure that trains
cannot be assigned to departures where the category is not compatible. Con-
straints (9.8) ensure that if train t′ is matched to the linked departure σ(t) of
train t, then train t inherits the category i of train t′. Finally, constraints (9.9)
ensure that, if the linked departure σ(t) of train t is not covered, then train t
has the category it of its replacement train.

dbmt ≤ ∑
t′∈T \{t}

(
dbmσ(t)

t′ − reqDBMσ(t)

)
·mσ(t)

t′ t ∈ T (9.10)

+ cσ(t) · remDBMt
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+ ∑
d∈D

f d
t ·M

dbmt ≤ ∑
i∈C

maxDBMi · cati
t t ∈ T (9.11)

0 ≤ dbmt −md
t · reqDBMd t ∈ T , d ∈ D (9.12)

Constraints (9.10) ensure that the available DBM for a train t is correct. The
right hand side consists of three terms. The first term counts the contribution
from trains that are linked to t. If the train is cancelled the term sum is zero,
and the second term will contribute with remDBMt which is the new train
inserted in case of a cancellation of departure σ(t). The third term makes the
constraint non-binding if maintenance is performed; the constant M is a big
number that is no less than the maximum of maxDBMi for all i ∈ C. For the
sake of clarity the constraints have been presented using a non-linearity in
the first term. In order to maintain a linear model we replace the constraints
with linear constraints described in section 9.5.1. Since the train category i
of a train t might be unknown we further constraint the DBM of the train to
respect the maxDBMi in Constraints (9.11). Constraints (9.12) make sure that
enough DBM is available for a matching. For all matchings that are not active
the constraint is just requiring dbmt to be non-negative.

We will not present the corresponding constraints for TBM since they are
analogous to Constraints (9.10), (9.11) and (9.12).

9.5.1 Reformulating the nonlinear constraints

The first term on the right hand side of Constraints (9.10) is non-linear and can
be remodeled as a linear constraint by adding one more group of continuous
variables and additional constraints. We introduce one new auxiliary variable
κdbm

t for each train t that measures the DBM contribution of the train linked
to departure σ(t). We replace Constraints (9.10) with the following set of
constraints:

dbmt ≤ κdbm
t + cσ(t) · remDBMt + ∑

d∈D
f d
t ·M t ∈ T (9.13)

κdbm
t ≤ dbmt′ −mσ(t)

t′ · reqDBMσ(t) t ∈ T, t′ ∈ T \ {t} (9.14)

+ ∑
d∈D\σ(t)

md
t′ ·M + ∑

t′′∈T \t′
mσ(t)

t′′ ·M
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κdbm
t ≤ M · (1− cσ(t)) t ∈ T (9.15)

The three terms of Constraints (9.13) are analogous to the three terms of
Constraints (9.10), except the first non-linear term is replaced with the new
contribution term κdbm

t . Constraints (9.14) have four terms defining an upper
bound on the linked contribution for train t. The first two terms are relevant if
train t′ is matched to the linked departure σ(t) and ensure the contribution is
no greater than the difference between the DBM for t′ and the required DBM
for departure σ(t). The third term loosens any bound on κdbm

t related to t′ if t′

is matched to some departure other than σ(t). The fourth term loosens the
bound on κdbm

t related to t′ if some other train t′′ is matched to σ(t). Finally,
Constraints (9.15) make sure that the contribution is zero if departure σ(t) is
canceled.

9.5.2 Reducing the model

In order to simplify (and streamline) the model description we treated every
train as a linked arrival train. However, some arrival trains are not linked, and
some trains are initial trains already in the system. For both types of trains the
constraints can be simplified, and for an instance with few linked arrivals the
model may be reduced substantially. The variables cati

t decide the category
for a train t. For initial trains and non-linked arrivals the category is set as a
problem parameter, and so for such trains Constraints (9.6) are not necessary.
Constraints (9.7) can be removed and replaced by setting the upper bound
to zero for any departure for which the known category of t is incompatible.
Constraints (9.8)-(9.9) are unnecessary.

A non-linked arrival or an initial train t has no DBM or TBM contribution
from any previous train. Constraints (9.14) can have the κdbm

t term removed,
and we can set cσ(t) = 1 (because instead train t will always take its own
remaining DBM). Constraints (9.14)-(9.15) are unnecessary in such cases.

9.6 Column generation model

The formulation presented in section 9.5 models every initial and arrival train
individually even if some of them constitute a sequence of linked arrivals and
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departures and therefore essentially represents a single physical train unit.
In this section we present a formulation that models each physical train unit
using a single variable. The number of possible variables grows more than
exponentially by the number of present linked arrivals. Initially every train
can be matched to any linked departure (i.e. departure with a linked arrival),
and continue to any other linked departure, before it finally reaches its final
departure. The number of potential paths is bounded by O(|T| · |L|! · |D|),
where |L| is the number of linked arrivals/departures. We therefore propose
a column generation approach for solving the model. Column generation is a
well-described technique used with success for solving MIP problems, e.g. the
Vehicle Routing Problem with Time Windows (VRPTW) Barnhart et al. [1998],
Kallehauge et al. [2005], Lübbecke and Desrosiers [2005]. It is assumed that
the reader is familiar with column generation solution methods.

The model contains two types of variables. For every departure d ∈ D we
introduce a binary variable cd that indicates whether d is canceled or not. For
every possible train unit pattern p ∈ P we have a binary variable λp that
indicates whether pattern p is used or not. A pattern represents a sequence of
linked arrivals and departures. The objective is formulated as a minimization
of the number of unmatched departures and cost of missed train reuses :

min ∑
d∈D

cancellationCost · cd (9.16)

− ∑
u∈U

∑
p∈P

reuseCost · αdepu
p · βarru

p · λp

+ reuseCost · |U |

∑
p∈P

αd
pλp ≥ 1− cd d ∈ D (9.17)

∑
p∈P

αd
pλp + ∑

p∈P
φd

pλp ≤ 1 d ∈ D (9.18)

∑
p∈P

βt
pλp + ∑

p∈P
ϕt

pλp ≤ 1 t ∈ T (9.19)

∑
p∈P

maintday
p · λp ≤ maxMaint day ∈ H (9.20)

λp ∈ {0, 1} p ∈ P (9.21)

cd ∈ {0, 1} d ∈ D (9.22)

The αd
p is a binary coefficient that indicates whether departure d is covered

by pattern p. The βt
p is a binary coefficient that indicates whether train t is
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used by patten p. Therefore α
depu
p indicates whether departure depu ∈ D is

covered by pattern p, and βarru
p whether train depu ∈ T is used by p. Finally,

φd
p and ϕt

p are binary coefficients that indicate whether a departure d or train
t is blocked as a result of pattern p. A train is blocked by a pattern if the final
matching of the pattern ends (or terminates) on a departure that is linked to
some arrival. No other pattern may use this arrival-train, as it would mean
that two patterns are using the same physical train without keeping proper
score on train type, DBM and TBM. A departure is likewise blocked by a
pattern if it starts using a train of a linked arrival. This corresponds to using
one of the replacement trains which assumes (or requires) that the linked
departures was canceled. Essentially this means that the departure must be
blocks if such a pattern is used. Finally, the coefficient maintday

p ∈ Z+ indicates
the number of maintenance operations performed on day day using pattern p.

Constraints (9.17) ensure that every departure is assigned (to some train),
unless there is a cancellation. Constraints (9.18) ensure that at most one train
is assigned to every departure, and also blocks departures for trains that
assume that the departure is cancelled. Constraints (9.19) ensure that each
train is assigned at most once. Trains are blocked by patterns if they use the
corresponding linked departure. Constraints(9.20) ensure that the total number
of maintenance operations (every day) is respected. For comparability it is here
assumed that, given a matching (t,d), the day that a maintenance operation
is performed is fixed. The day of maintenance operations can however be
made a choice in the subproblem without difficulty. Finally, Constraints (9.21)
and (9.22) show the variable domains. Note that Constraints (9.22) can be
relaxed as Constraint (9.17) ensures that the variables are naturally binary in
all feasible solutions.

The number of variables in the model is exponential by the number of linked
departures, however compared to the MIP model present earlier the number
of constraints is reduced to O(|D|+ |T |+ |H|).

For obtaining the optimal integer solution to this problem (using column
generation) a Branch and Price (B&P) framework can be adopted. In our
solution method we will however only add columns in the root node and use
Branch and Bound (B&B) for finding the best solution using the generated
columns. In general this produces solutions of high quality, but no guarantee
of optimality can be given in general. The gap between the found solution
and the LP solution (of the root node) gives a bound on the optimality gap. It
is left as future research to develop a full B&P framework.
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9.6.1 Column generation subproblems

We distinguish between generating two families of columns. The first family of
variables consists of patterns containing only one train-to-departure matching.
It is relatively easy to enumerate all choices in this family and produce columns
with the most negative reduced costs. In our implementation we pre-generate
all columns of this family. Therefore, for the next family of variables, assume
that the following patterns consist of at least two train-to-departure matches.

The subproblem can be split into one subproblem per train category. This
transformation will both simplify and reduce each individual problem as
the number of compatible departures is lower. The complexity of a labeling
algorithm is also reduced since it is no longer needed to keep track of the train
category when extending arcs. An additional advantage is that all subproblems
can then be solved in parallel.

The subproblem consists of solving a Resource Constrained Shortest Path
Problem (RSCPP). The underlying graph consists of one node per linked
arrival in addition to one source and one sink node, see Figure 9.4. The
arcs constitute matching choices. Three types of arcs are added. First, arcs
originating from the source to every node in the graph represent compatible
trains that are matched to the linked departure of the node. Second, arcs are
added between nodes that represent compatible linked continuations, i.e.,
linked arrival/departures that connect to another linked arrival/departure.
An example: in the (s, a, d, t) path the departure of the initial train matching
(represented by arc (s, a)) is linked to an arrival (node a). The departure of
the next matching (arc (a, d)) is connected to another linked arrival (node d).
The departure of the last matching is not linked to any arrival, and thus the
sequence ends. As described earlier, some patterns (represented by the path)
may block other trains or departures.

More formally, we construct a directed non-cyclic graph G(V, A) for every
category c ∈ C. Let vπ ∈ V denote the source vertex, and vω ∈ V denote the
sink vertex. Finally, we construct one vertex vla ∈ V per compatible linked
arrival la ∈ {a ∈ L|c ∈ compCatDepa}. The arcs in the graph represents a
train and departure match. For every train t of category c ({t ∈ T |catt = c})
an arc a(π,la) ∈ A connects vπ and to vla if the distance between availability
time of t and departure time of departure σ(la) is sufficient2. Likewise for

2This could depend on multiple factor such as expected/minimum routing time, maintenance



9.6 Column generation model 201

a b c d es t

Figure 9.4: An illustration of the underlying graph for the matching sub-
problem. Every arc represents a match between a train and a departure. A
feasible path (or linked sequence pattern) starts in the source s and ends in
the sink/target t traversing a set of arcs. The feasible path (s, a, d, t) is shown
in green. A linked sequence can start (or terminate) with many different trains
(or departures) thus the dashed arcs illustrate where multiple arcs exist with
the same origin and destination vertex.

every departure d compatible with category c ({d ∈ D|c ∈ compCatDepd}) an
arc a(ld,ω) ∈ A connects vertex vla with vω, again only if the necessary time
is available. Finally for every pair of linked arrivals (la1, la2) an arc a(la1,la2)

connects the train of la1 to departure σ(la2) if it respects the required time.
No edge directly connects the vπ to vω.

Theorem 9.4 Any path originating in π and terminating in ω represents a feasible
matching.

Proof. Every path consists of an initial arc and a terminating arc, and option-
ally multiple intermediate arcs. All arcs represent matchings that are possible
to make. Since we only have one category per subproblem, the construction of
the graph inherently ensures that the train category is compatible with the
assigned departures. Since we assume that maintenance can be performed on
any matching, the required DBM and TBM can be fulfilled.

Theorem 9.5 All possible matchings of at least two departures are valid paths in the
constructed graph, originating in π and terminating in ω.

Proof. All feasible matchings, w.r.t. category and time, are present in the
graph. All initial matchings are represented as arcs originating in the source
π. All intermediate matchings are present as arcs connecting the non-terminal
nodes. Finally, all possible terminations of linked sequences are represented
as arcs terminating in the sink ω.

time and dwell time. For the sake of simplicity and comparability reasons we only require that
the train availability time is less (or equal) to the departure time.
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The subproblem can now be defined as the problem of finding the minimum
cost path originating from vπ and to vω , given some edge costs, maintenance
costs and restrictions. Every edge has a primal cost corresponding to the
objective in the master problem, i.e., zero if no train reuses are satisfied or
−(n · reuseCost) cost if n reuses have been satisfied by the path. A dual cost
also appears on every edge that depends on the dual values given after
solving the master problem in each iteration. The dual value of (9.17) and
(9.18) are added to all arcs that include the corresponding departure. The dual
of (9.19) is added to arcs including the corresponding train. The maintenance
restrictions relate to the DBM and TBM restrictions. These values must be
positive at all times, and all edges either increase or decrease these values.
A path starts with values of 0 for DBM and TBM. All arcs originating from
the source increase the values as indicated by the remDBM and remTBM on
the train (of the arc). Other edges only decrease the values as indicated by
reqDBM and reqTBM of the departures. Before extending an arc maintenance
can be performed, which replenishes the DBM and/or TBM levels, but this
comes at a cost of the corresponding dual of (9.20).

The problem is a RSCPP due to the maintenance constraints. In addition to the
objective coefficients, the duals from Constraints (9.17) and (9.18) are added
to arcs of the corresponding departure, and the duals from Constraint (9.19)
are added to arcs of the corresponding trains. The appropriate dual from
Constraints (9.20) is added every time a maintenance operation is scheduled.

The subproblem can be formulated as a mathematical problem:

min ∑
(i,j)∈A

cijxij + ∑
(i,j)∈A

βijyij + ∑
(i,j)∈A

αijzij (9.23)

s.t. ∑
(i,j)∈δ+(π)

xij = 1 (9.24)

∑
(i,j)∈δ−(ω)

xij = 1 (9.25)

∑
(i,j)∈δ+(v)

xij = ∑
(i,j)∈δ−(v)

xij ∀v ∈ V \ {π, ω} (9.26)

∑
(i,j)∈Πv

reqDBMij · xij + maxDBM · yij ≥ 0 ∀v ∈ V (9.27)

∑
(i,j)∈Πv

reqTBMij · xij + maxTBM · zij ≥ 0 ∀v ∈ V (9.28)
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xij ∈ {0, 1} yij ∈ {0, 1} zij ∈ {0, 1}

Where δ+(v) and δ−(v) respectively denote the outgoing and ingoing edges
of vertex v. The binary variables xij define whether flow is used on edge
(i, j) in shortest path, and yij and zij respectively determine whether DBM
and/or TBM is performed on arc (i, j). Constraints (9.24)-(9.26) constitute the
flow-conservation in a shortest path formulation. Constraints (9.27) and (9.28)
ensure that the sufficient DBM and TBM is available - these levels can never be
negative. Note that the graph is acyclic which means that we know all possible
edges that can appear before reaching any vertex v - we denote Πv as the set
of all such edges. The constraints thus ensure that if a matching is made, then
the DBM/TBM levels on any edge (leading up to v) must be non-negative.

9.6.1.1 Labeling algorithm

As an alternative to solving the mathematical model of the subproblem directly,
we propose a dynamic programming approach for finding the optimal paths
for the resource constrained shortest path. We refer to Irnich Irnich [2008] for
a more in-depth description of a this topic.

The labeling algorithm is similar to a shortest path algorithm that uses full enu-
meration, e.g. using a Breath First Search (BFS) strategy, to find the minimum
cost path. In addition, we also need to respect some side-constraints. In our
method, a label is a partial path from the source to some intermediate vertex
that also keeps track of the total reduced cost, remaining DBM, remaining
TBM and performed maintenance. Every arch has a primal and dual cost and
a required level of DBM and TBM.

Initially, we generate the empty label at the source. In every iteration of the
labeling algorithm, we pick one label at some vertex v and extend it. When
extending we generate new labels from every outgoing edges from v. Due to
the possibility of performing maintenance, we generate multiple labels for
every outgoing edge: one that does not perform any maintenance, one that
only performs DBM maintenance, one that only perform TBM maintenance
and one that performs both DBM and TBM maintenance. Labels are not
extended if either DBM or TBM becomes negative when subtracting the
required level of DBM and TBM since these represent prefixes of infeasible
paths.
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In order to reduce computational time, we introduce dominance rules. A label
a is said to dominate another label b, if we can safely remove b without loosing
optimality. By removing a label b we omit searching all paths that follow the
matching pattern of b.

Theorem 9.6 A label (costa, remDBMa, remTBMa) at vertex v dominates (costb,
remDBMb, remTBMb) at vertex v if costa ≥ costb , remDBMa ≥ remDBMb and
remTBMa ≥ remTBMb.

Proof. The first label has lower cost and more DBM and TBM remaining.
The second label cannot have any advantages in terms of future matchings or
maintenance costs. Thus, no matter how the path continues from v, the first
label will always be at least as good as the second label.

Finding the optimal path in the subproblem can be both time and space
consuming. Since it is sufficient to find any one path with negative reduced
cost, we will rely on generating heuristic columns initially. Only when no
heuristic columns (with negative reduced cost) can be found, we solve using
the exact labeling algorithm.

We adopt two variations of the full labeling algorithm to find heuristic negative
reduced cost paths. The first variant allows no DBM nor TBM maintenance
which efficiently limits the number of possible matchings. The second variant
only allows at most one DBM and at most one TBM maintenance. This is mo-
tivated by the fact that one maintenance is likely sufficient when considering
short planning periods, c.f., the provided data-set.

9.7 Benchmarks

The main characteristics of the tested instances are shown in Table 9.1. They
correspond to the instances of the final phase of the ROADEF Challenge
2014. All tests are run on a dedicated machine with dual 2.66 GHz Intel Xeon
E5345 processors and 24 GB of memory. Both processors have 4 physical cores
supporting 2 threads per core. The IBM ILOG CPLEX version 12.5 optimization
software is used for solving all Linear Programs (LPs) and MIPs. All solutions
are verified to be correct (with respect to feasibility and solution cost) using a
modified version of the provided solution checker Ramond and Nicolas [2014].
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Instance Arrivals Linked Departures Reuses

B1 1235 475 1235 804
B2 1235 475 1235 0
B3 1235 0 1235 0
B4 1780 722 1780 1089
B5 2153 720 2153 1089
B6 1780 722 1780 1089
B7 304 144 304 187
B8 304 144 304 187
B9 1967 860 1967 1226
B10 196 89 196 123
B11 1122 486 1122 726
B12 570 263 570 377

Table 9.1: A description of the tested instances. The columns show instance
names, number of train arrivals, number of linked train arrival/departures,
number of train departures and number of specified train reuses.

In the modified version all constraints unrelated to the matching have been
omitted.

The timelimit set in the ROADEF Challenge 2014 was 10 minutes. Within this
limit the submitted algorithms had to perform both matching and routing
within the station. The provided instances cover up to 7 consecutive days of
arrivals and departures. The provided timelimit for the challenge seems a bit
restricting given a planning horizon of several days. Due to the difficulty of
the problem we target a time limit of 10-30 minutes.

An initial benchmark shows that both solution methods are unable to solve
all instances to optimality within a few hours. Table 9.2 shows the details of
the instances that were solved to optimality using the Column Generation
Method (CGM). A few instances run out of memory before being able to solve
the root relaxation to optimality. Given a high time-limit the MIP method is
able to solve the same instanced except B12. We discuss details of the column
generation later in this section.

Solving the root relaxation of the instances seems to be a hard in general.
Given a time-limit of 30 minutes only four instances are solved, see Table 9.3.
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Runtime in seconds

Instance Obj Generated Cons Vars Sub LP MIP Total

B3 0 0 3 749 229 841 0.0 3.3 21.0 25.0
B7 4 400 15 629 946 19 048 33.4 28.2 20.3 83.0
B8 4 400 17 070 946 19 027 27.4 25.9 21.1 76.0
B10 2 100 3 413 620 7 050 0.7 2.4 0.2 3.0
B12 14 700 25 017 1 753 47 258 22 912.6 81.0 52.3 23 115.0

Table 9.2: Instances solved using column generation. The columns show
instance name, objective of found solution, number of generated column,
number of constraints and variables in final program, and finally total runtime
of subproblem, LP solving, MIP solving and total. The omitted instances (B1,
B2, B4, B5, B6, B9, B11) were not solved.

Runtime(s)

Instance LP Relaxation Columns Subproblem LP

B1 74 278 363 378 255.9 1 484.1
B2 32 596 633 486 214.9 1 532.0
B3 0 0 0.0 3.6
B4 134 582 619 406 264.2 1 485.9
B5 132 582 429 643 191.9 1 567.7
B6 133 095 652 439 270.3 1 477.5
B7 3 400 28 980 10.6 52.4
B8 3 400 30 242 12.0 55.7
B9 222 156 399 799 253.4 1 508.2
B10 1 800 6 168 1.1 3.4
B11 34 735 285 340 393.4 1 368.3
B12 13 503 71 922 1 533.2 173.6

Table 9.3: Root relaxations results given a time limit of 30 minutes. The
columns show the instance name, objective of final relaxation, number of
generated columns, and time spent generating columns and solving the LP
relaxations. Optimal results were found for B3, B7, B8 and B10.
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9.7.1 Heuristic results

Solving the problem instances using the exact methods proves to be very
difficult and we therefore also investigate the performance of the methods in
a heuristic context.

The next benchmark shows results obtained using CGM with a 20 minute time
limit. We allocate 10 minutes for generating columns, followed by a 10 minute
MIP solve (using CPLEX) of the master problem. Table 9.4 summarizes the
results. The results are compared to no column generation, i.e., not allowing
any linked sequences. It is observed that the result of disabling column
generation seems to have a drastic effect on solution quality. This argues
that ignoring linked sequences altogether is undesirable as it will drastically
penalize the achievable objective. Solutions are now found for all instances
in contrast to the exact approach, were only 4 instances where solved within
the same timelimit. It is observed that the time is mostly spent solving LP
relaxations, except for one case. Heuristic columns were used to speed up the
subproblem process instead of solving the exact optimization problem in every
iteration. Whenever no columns with negative reduced cost are found the
method solves the exact problem. Preliminary results show that this approach
is favorable as solving the exact subproblem is in many cases extremely time-
consuming. Many columns are generated during the execution of CGM, and
these are gradually increasing the master problem size. In future work, it
might be interesting to remove unnecessary columns after a few iterations.

In our final benchmark we run the instances using the MIP Method (MIPM).
As before we set a runtime limit of 20 minutes – the results are shown in
Table 9.5. We note that this approach was unable to provide any solution for
most instances. However, for instances B7, B8 and B10 MIPM was able to find
slightly better results than CGM. A worse objective was found for the B12
instance. MIPM was unable to find solutions to all instances due to insufficient
memory.

9.8 Conclusions

We have described and investigated the Departure Matching Problem which is
identified as a crucial subproblem of the RSUM problem in the ROADEF/EURO
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Using Column Generation No Column Generation

Instance Columns Time Objective Time Objective

B1 278 229 1 207 93 200 1 213 254 600
B2 383 937 1 200 61 000 1 201 228 000
B3 0 26 0 5 0
B4 300 143 1 162 209 300 333 379 000
B5 248 919 1 203 221 100 87 370 900
B6 285 498 1 201 211 800 341 379 000
B7 30 245 78 4 300 81 73 200
B8 27 942 86 4 400 81 73 200
B9 277 485 1 207 252 900 1 215 456 700
B10 5 908 5 2 000 26 42 400
B11 171 118 1 215 80 600 1 210 258 000
B12 71 442 1 206 14 300 1 205 135 600

Table 9.4: Solutions found using the column generation approach in 20 min-
utes. Results are compared to using no column generation, i.e., allowing no
linked sequences.

Instance Objective Constraints Variables Time

B3 0 1 151 899 706 138 1199.4
B7 3 400 119 708 42 400 31.3
B8 3 400 119 708 42 400 31.0
B10 1 000 72 160 20 440 56.0
B12 43 900 571 526 131 360 1204.5

Table 9.5: Solutions found using the MIP approach. This approach was unable
to produce any feasible solution to the omitted (B1, B2, B4, B5, B6, B9, B11)
instances.
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Challenge 2014. Without explicitly considering the matching problem, too
many departures will be uncovered.

We prove in section 9.4 that the DMP is NP-hard in the strong sense by
reduction from the 0-1 Multiple Knapsack Problem.

We have proposed two methods for solving the DMP. We first presented a
pure MIP formulation of the problem which could act as a reference point
for future studies. The model is however large in terms of variables and
constraints and the benchmarks show that this model is unable to solve most
of the proposed instances. Memory usage is one significant drawback of this
method.

A second solution method based on column generation has also been pre-
sented. This model is simple and can without much difficulty be extended
even further to handle more constraints. It is shown how the subproblem can
be split into several independent problems thereby reducing complexity and
enabling parallelism. The benchmarks for this approach show that we can
find good solutions fast, if the method is used with time limits. However, even
solving the root node relaxation is shown to be difficult in multiple cases. We
expect that the method could be improved if embedded in a B&P framework
with more efficient handing of the columns. Furthermore, the performance
of this method could be further improved if a good initial solution can be
provided as a hotstart to the CGM, e.g., the result of a heuristic method.

The considered data instances proved to be surprisingly hard to solve. The
final results of the ROADEF challenge winners suggests that it is not possible
to obtain a satisfactory solution to the overall problem, RSUM. There may not
even exists a solution without cancellations.

For the sake of simplicity it has been assumed that all matches are possible
where the departure time occurs after the arrival time. In reality it might be
more realistic to remove matching options where the time between arrival
and departure is either insufficient. Trains may arrival late, some time is
required to perform routing inside the station and time is required to perform
maintenance. Further, it may not be necessary to consider long matchings, e.g.,
an arrival on day 1 with a departure on day 7. Reducing the number of possible
matchings will reduce the number of decision variables and constraints and
likely improve the success-rate of solution methods. This may be a viable
practical approach to ensure feasibility.
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For future work there are a multiple matters worth considering. There are
several column generation techniques that can be investigated to improve
performance, e.g., dual stabilization, branch-and-price and reduced-cost fixing.
The potential of heuristic methods for DMP is unknown. Such methods can
potentially find good solutions fast, or even be used to speed up an exact
approach. It would be interesting to consider new data instances where it is
know that there exists at least one feasible solution without any cancellations.
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Figure A.1: An overview of the solution framework flow

A.1 Overview

The proposed solution framework can be classified as a math heuristic as it
combines exact with heuristic methods. The heart of the solution framework is
an Simulated Annealing (SA) framework that iteratively destroys and builds
random train routes. However, in order to improve convergence (and runtime)
a few smaller Mixed Integer Program (MIP) problems are solved in advance in
order to avoid resource use conflicts and improve resource utilization. Figure
A.1 illustrates the flow (and main components) of the solution framework.
The full Rolling Stock Unit Management on Railway Sites (RSUM) problem
is decomposed into four sequential steps which will be described in the
following sections of this document. In the first step arrivals and departures
are matched in order to get the best possible matching, such that e.g. the
number of cancellations is minimized. Next, a platform slot is reserved for
all arrivals and departures such that as many as possible are assigned to
preferred platforms. Thirdly, a track group usage pattern is chosen for all
arrival/departure sequences, such that no pairs of patterns are in conflict and
such that no pattern is in conflict with the pre-specified imposed resource
usages. Fourthly, non-overlapping facility usage slots are reserved for all
maintenance activities (these are generated as a results of the matching).
Finally, an SA approach iteratively removes and reroutes a group of related
(see section A.4) trains as specified by the found matching.
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A.2 Matcher

The first subproblem in the solution framework tries to match departures with
compatible trains, i.e., initial trains or arrivals. The matching is formulated
as a mathematical model consisting of linear constraints (and an objective)
and solved using column generation, due to the large number of variables.
The primary goal is to minimize the number of uncovered departures while a
secondary goal is to maximize train re-uses.

The objective is formulated as a minimization of the number of unmatched
departures and cost of non-satisfied train reuse :

min ∑
d∈D

cancellationCostd · cd

+ ∑
d∈D

∑
t∈Comp(d)

reuseCostd
t ·md

t

+ ∑
p∈P

reuseCostp · λp

A few heuristic artificial heuristic costs are also be added to improve the ability
to perform the routing afterwards. The constraints are:

∑
t∈Comp(d)

md
t + ∑

p∈P
αd

p λp ≥ 1− cd ∀d ∈ D (A.1)

∑
t∈Comp(d)

md
t + ∑

p∈P
αd

pλp + ∑
t∈Comp(d)

Blockt
d ·m

d
t + ∑

p∈P
Blockd

p · λp ≤ 1 ∀d ∈ D (A.2)

∑
d∈Comp(t)

md
t + ∑

p∈P
βt

pλp ≤ 1 ∀t ∈ T (A.3)

∑
d∈D

∑
t∈Comp(d)

Maintday
t,d ·m

d
t + ∑

p∈P
Maintday

p λp ≤ MaintLimitday ∀day ∈ H (A.4)

Where md
t is a binary variable indicating whether train t is matched to

departure d. The binary variables cd indicate whether departure d is canceled
or not. The binary variables λp indicate whether a linked-departure pattern p
is chosen. Since it is not trivial to model linked departures the md

t variables
only indicate choices for non-linked matches while all linked arrival and
departures are modeled using patterns. A pattern is the arrival/departure
trajectory of a real train, i.e., a pattern is a sequence of matches where all
(except possibly the last) have non-linked departures. A full enumeration of
these patterns is intractable which is why column generation is used, the
column generation process is describe in subsection A.2.1.
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The cancellation cost also includes the cost of a non-satisfied reuse, if such is
present. The sets D, T and H respectively represent all departures, all trains
and all days of the planning horizon. The Maintday

t,d and Maintday
p coefficients

denote how many maintenance operations are needed at day day ∈ H. The
Blockt

d and Blockd
p indicate whether the assignment blocks departure d. The co-

efficients αd
p and βt

p respectively denote whether a pattern contains departure
d or train t. The set Comp(d) is the set of trains which are compatible with d,
likewise the Comp(t) is the set of departures that are compatible with train t.
These two sets are generated in a preprocessing step. Constraints (A.1) ensure
that every departure is assigned to some train, unless there is a cancellation.
Constraints (A.2) ensure that at most one train is assigned to every departure,
and also block departures for trains that assume that the departure is can-
celled. Note that where t is a linked train md

t assumes that the linked departure
d′ is cancelled. Constraints (A.3) ensure that each train is assigned at most
once. Finally, Constraints(A.4) ensure that the total number of maintenance
operations (every day) is respected. For simplicity it is here assumed that,
given a matching (t,d), the day that a maintenance operation is performed is
fixed. With the additions of more variables, it is possible to make the day of
maintenance operations a choice.

Instead of enumerating all possible train and departure matches the sets
Comp(d) and Comp(t) are computed. First, any pairs with a train t arriving
after the departure d are removed as such clearly cannot be matched. Second,
all pairs where the train is not compatible with the departure are removed.
Third, pairs are removed by inspecting the timespan between train and de-
parture and comparing this to the minimum time required for routing and
required maintenance appointments. Finally, all arrivals (or departures) are
removed where there exists no feasible arrival (or departure) sequence, due to
imposed resources. Since runtime is scarce a number of heuristic choices can
also be employed here. In order to reduce the MIP size the solution framework
furthermore removes matches longer than a certain timespan. Due to the team
size and time all joint arrivals and departures are removed.

A model (solved in a full branch-and-price framework) can be used to generate
a true lower bound on uncovered departures, or even a lower bound on the
minimum cost. Such a lower bound could prove useful for heuristic methods.
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A B C D Eπ ω

Figure A.2: An illustration of the underlying graph for the matching subprob-
lem

A.2.1 Column generation subproblem

Column generation is a well-described technique used with success for solving
MIP problems, e.g. the Vehicle Routing Problem with Time Windows (VRPTW).
It is assumed that the reader is familiar with column generation solution
methods. The subproblem can be solved as a Resource Constrained Shortest
Path Problem (RSCPP). The underlying graph consists of one node per linked
arrival and departure pair in addition to one source and one sink node, see
Figure A.2. The edges constitute matching choices. Three families of edges are
added. First, edges originating from the source to every node in the graph
represent compatible arrivals that are matched to the linked departure of
the node. Second, edges are added between nodes that represent compatible
linked continuations, i.e., linked arrival/departures that connect to another
linked arrival/departure. An example: In the (π, A, D, ω) path the departure
of the initial train matching (represented by edge (π, A)) is linked to one
arrival (node A). The departure of the next matching ((A, D)) is to another
linked arrival (node D). The departure of the last matching is not linked to
any arrival, and thus the sequence ends.

The problem is a RSCPP due to the maintenance constraints. In addition to
the objective coefficients, the duals from Constraints (A.1) and (A.2) are added
to edges of the corresponding departure, and the duals from Constraint (A.3)
are added to edges of the corresponding trains. The appropriate dual from
Constraints (A.4) is added every time a maintenance operation is scheduled.
Labels in the Shortest Path enumeration method keep track of total cost,
remaining DBM and remaining TBM. Domination is possible if a label has
lower cost (≤), and at least equal remaining DBM and TBM (≥). Labels
originate from the source vertex and are extended by traversing available arcs
and deciding whether to perform maintenance (DBM or TBM or both).
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A.3 Platform assigner

Platforms must be assigned to all covered arrivals and departures. Once an ar-
rival/departure matching is known, a platform assignment can be performed.
In a highly utilized network the arrivals and departures may be competing
for the same platforms, which motivates an exact solution approach. In the
solution framework a MIP is formulated that assigns one compatible platform
to every covered arrival and departure:

max− ∑
a∈A

cancellationCost · sa − ∑
d∈D

cancellationCost · sd + ∑
(i,j)∈NC

c · di,j

The constraints are:

∑
p∈Comp(a)

xp
a ≥ 1− sa ∀a ∈ A (A.5)

∑
p∈Comp(d)

xp
d ≥ 1− sd ∀d ∈ D (A.6)

xp
i + xp

j ≤ 1 ∀p ∈ P, (i, j) ∈ C (A.7)

endi + M(1− xp
i ) + di,j ≤ beginj + M(1− xp

j ) ∀p ∈ P, (i, j) ∈ NC (A.8)

(A.9)

Two sets of binary variables are used xp
a and xp

d respectively indicating whether
arrival a or departure d is assigned to platform p. A set of continuous variables
di,j exists for measuring the (approximate) slack between two consecutive
platform usages. The ideal objective is to maximize the smallest slack variable.
However, for performance reasons the objective is changed to maximize the
slack sum (i.e. average). A coefficient c ∈ R is used for scaling the distance. C
is the set of all usage pairs that are overlapping in time. NC denotes all pairs
of consecutive (in time) usages. Constraints (A.5)-(A.6) ensure one assignment
(or cancellation). Constraints (A.7) ensures that two assignments (arrival or
departure) cannot be assigned to the same platform if they overlap in time.
Constraints (A.8) measure the slack between two consecutive events if they
appear on the same platform. The startj ∈ R and endj ∈ R are determined by
the minimal usage required for the corresponding arrival or departure usage.

Note that an arrival or a departure is not limited to using the assigned platform,
however the found platform assignment will ensure a minimal cancellation
due to lack of a available platforms.
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A.4 Simulated annealing

In the final step a SA approach is used to search for a good solution. The
initial solution is an empty solution and in every iteration a train is selected
for routing, and a randomized path is generated for the train (based on the
matching and allocated resource allocations). Before routing the neighborhood
of the selected train is also removed (if the path is blocked). The neighborhood
is the set of other trains in the current solution that intersect usages on the
selected path. After adding the generated path for the selected train the
neighborhood is re-inserted (if possible) in random order. The new solution
is then accepted or rejected depending on new solution cost and the current
temperature. An overview is shown in Algorithm 1.

Algorithm 1 Simulated Annealing

1: current← GenerateEmptySolution()
2: T ← Tinit
3: while Tterm < T do
4: for i ∈ {0, . . . , iterations} do
5: t← RandomTrain()
6: p← RandomPath(t)
7: n← FindNeighborhood(p)
8: solution′ ← current
9: solution′ ← Destroy(solution′, p)

10: solution′ ← Destroy(solutoin′, n)
11: solution′ ← Route(solution′, p)
12: solution′ ← Route(solution′, n)
13: δ← Cost(solution′)− Cost(current)
14: if δ < 0∨ Random(0, 1) < e

−δ
T then

15: current← solution′

16: T ← T · α

A.4.1 Router

Given a existing resources usages and a valid resource path (with unspecified
entrances, exits and gates) through the infrastructure the Router aims to find
non-conflicting usages for that path. Multiple feasible solutions may exist,
but ties are broken by assigning an artificial cost to dwell times at each
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resource. The Router recursively explores all available usage windows on a
single resources. If compatible windows (earliest entrance and latest exit) are
found for all resources on the path then the lowest cost assignment is made
(using the artificial costs). The optimal solution can be sought by continuing
the search and pruning unexplored paths whenever possible.

A.5 Final remarks

The problem has proven to be very difficult. Implementing the solution frame-
work has been time-consuming and the work is still not completed. Routing
of joint arrivals and departures has been omitted due to time constraints.
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B.1 Introduction

In this paper, we study the impact of the ‘turn conditions’ in end stations on
the performance of a line plan. If trains have to turn on their platform in an
end station, they occupy the platform for several minutes. A more preferred
option, from a timetabling point of view, would be that a train disappears from
the platform in its end station after dwelling and only appears again when
departing for a subsequent trip. In this case, the train will not interfere with
other trains that dwell on the platform during the time between these events.
However, this option is only possible if the train can stay in a flexible and large
enough shunt. Starting from a given line plan, we compare two timetables,
one where trains have to turn on their platform and one where trains can turn
in a shunt. We evaluate the impact on the performance of the line plan by its
feasibility for timetabling, the minimum overall buffer time between trains,
the sum of the buffer times and the buffer times in individual stations. A case
study on the DSB S-tog in Copenhagen (Denmark) is performed.

B.2 State of the art

Railway network characteristics affect the performance of a railway service,
for example, the use of tracks or junctions by trains in opposite directions,
the number of platforms in the stations, the existence of alternative routes,
the layout of the shunt in end stations, etc. In [Marín et al., 2009], an iterative
approach is presented to integrate robust network design and line planning.
They focus on the construction of connection links that offer an alternative in
case of link failure. However, we focus on the design of the terminal stations.
Line plan characteristics also influence the performance of a railway system, for
example, the number of lines that use the same infrastructure, the frequency
of a line and the combination of frequencies, the trip lengths (catching up
due to skipping stations), etc. Goerigk et al. [2013] analyse different line
planning models by comparing typical characteristics of line plans, but also
by comparing their impact on timetables and their robustness against delays.
Therefore, they calculate a timetable for each line plan. In this paper, we also
calculate timetables in order to evaluate line plans, but we focus on the impact
of an infrastructure change and we don’t compare line plans mutually.
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B.3 Methodology

We create a set of diverse line plans. For each of these line plans we test if
it is possible to generate a feasible timetable with and without turning on
the platform. The majority of the initial line plans are not timetable feasible
with turning on the platform. Then, we update the line planning model by
including information on why timetables are infeasible. If the line plan is
timetable feasible with and without turning on the platform, we find optimal
(or near optimal) solutions to both timetable problems. We then compare the
performance of both. The line planning module, its updates and the timetable
model are now briefly explained.

B.3.1 Line planning

Railway line planning is a long term planning problem which consists of the
determination of the routes, stopping patterns, and hourly frequencies that
should be operated in the railway network. We use a mixed integer linear
program (MILP) to create line plans. Passengers are simultaneously routed,
each picking a route with best estimated travel time, waiting time (estimated
from headway times) and additional transfer penalties, but subject to capacity
constraints. Operator line cost is estimated based on the rolling stock unit
requirements and running times for the plan. A feasible line plan satisfies
operational requirements and contractual service levels, satisfies conditions
for feasible timetabling (though no all-embracing set of conditions is known),
and provides capacity for all expected passengers. Line plans are either found
by minimizing total passenger travel time or running cost, with a constraint
on the other, or a weighted sum of each. We report average passenger travel
time, which is similar across line plans as the majority of passenger demand
is between stations that are well-served by all “reasonable” line plans but
the differences are important as they are large differences for a minority
of passengers. To find timetable feasible plans, additional constraints are
introduced and tightened iteratively, concerned with the shared use of end
stations. Additionally, specific line combinations meeting certain unfavourable
conditions for timetabling, e.g. one line that would certainly catch up with
another one, are forbidden from appearing together.
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B.3.2 Timetable model

Railway timetabling is a mid-long term planning problem, which consists of
the determination of train arrival and departure times in stations. We use a
MILP to build a cyclic timetable with a period of one hour starting from a line
plan. The trains of a line are equally spread over the period. The goal function
of this timetable model maximizes the minimal buffer time between every
two trains. Reserve and release times of station areas are taken into account in
the calculation of the buffer times between the trains. There is only one type
of constraint that is necessary to allow for feasible turnarounds in the end
stations of the lines. A train reserves the platform in its end station until the
next train in the opposite direction departs from that platform (because that is
the same physical train). This constraint is necessary to connect the schedule
of trains in opposite directions, but it shortens the buffer time between trains
of the same line in the same direction.

B.4 Case study

The DSB S-tog is a high frequency railway service that transports 30 000
to 40 000 passengers per hour at peak times between 84 stations. An illus-
tration can be found on http://www.dsb.dk/Global/STog/S%20kort%20udk%
202015%233%20(3).pdf. This network has seven terminal stations with two
platforms and eight intermediate stations in which one platform is constructed
as a terminal. Every train turns on the platform in its end station and thus
occupies this platform for several minutes. A train’s occupation time of this
platform is bounded below by the minimum time needed to turn and bounded
from above by the time until the arrival of the next train. The DSB S-tog net-
work is designed so that trains that cross each other in opposite directions
(almost) only affect each other in the end station. We assume that trains occupy
every station area on their trip for 60 seconds. Trains of the same line are
equally spread over the period of one hour.
The results of the case study can be found in Table B.1. The first line plan was
previously used by DSB S-tog. The second line plan is designed to be better
for the passengers than line plan 1. The third line plan is designed to have
a better operator cost than line plan 1 and the fourth line plan outperforms
line plan 1 on both characteristics. The upper part of the table shows some
general information on the line plans. The passenger and operator cost are

http://www.dsb.dk/Global/STog/S%20kort%20udk%202015%233%20(3).pdf
http://www.dsb.dk/Global/STog/S%20kort%20udk%202015%233%20(3).pdf
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estimated by the line plan model. The number of interactions are the number
of train pairs that share a platform in at least one station. In the lower part, we
report four indicators on the spreading of the trains in time. All the timetables
are constructed with a calculation time limit of 5400 seconds. We see that the
minimal overall buffer time (Min buf time) and the sum of the minimal buffer
times (∑ buf times) improve if turning on the platform is not required. The
values of the number of stations with a buffer time bigger than two minutes or
equal to the minimum buffer time, show no clear trend, but they show that the
turn restrictions affect the buffer times in the whole network. Optimal values
give railway companies the information on how much the performance could
be increased if flexible large enough shunts would be built in the terminal
stations.
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B.5 Conclusion and future research

We analysed the effect of train turn restrictions on railway service perfor-
mance. We conclude that for different kinds of line plans, the probability of
propagation of delays can significantly be improved if the terminal stations
have an appropriate shunt so trains don’t need to turn on (and occupy) their
platform. Moreover, with our approach we can calculate the magnitude of
this performance improvement. Furthermore, we found that information on
trip lengths and frequency combinations in end stations is useful for finding
line plans that are feasible for timetabling with train turn restrictions. Future
research consists of further integration of line planning and robust timetabling.
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C.1 Method description

Here, we briefly discuss the method used to generate multiple solutions in
Chapter 7. Recall the two objectives: one related to passenger flows and the
other to operator cost.

The operator cost objective and has the form:

minimize ∑
i

cixi

where xi ∈ {0, 1}.

Algorithm 2 Enumerative solution discovery

1: model ← FormulateProblem()
2: solutions← ∅
3: for i ∈ {0, . . . , iterations} do
4: S← GetEfficientSolutions(model)
5: for s ∈ S do
6: model ← ApplySolutionCut(model, s)
7: solutions← solutions ∪ S

Algorithm 2 explains the method for finding a variety of solutions. In short,
we simply use a method to find efficient solutions; apply a constraint to forbid
each found solution; and continue in the reduced problem. If continued with
no other stop criteria, eventually every feasible solution would be enumerated.
In contrast, if only one applied for one iteration then only efficient solutions
would be discovered. Applying the method for a few iterations only finds
solutions that are efficient and close to being efficient.

In finding the efficient solutions, we tested using a weighted sum scalarization
method, and an ε-constraint method (see [Ehrgott, 2006]). In the case of the
ε-constraint method, we turn the cost objective into a knapsack constraint
which for some right hand side values proved to cause large degradation in
solve time. Instead we primarily used a weighted sum method.
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