22 research outputs found

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Towards edge robotics: the progress from cloud-based robotic systems to intelligent and context-aware robotic services

    Get PDF
    Current robotic systems handle a different range of applications such as video surveillance, delivery of goods, cleaning, material handling, assembly, painting, or pick and place services. These systems have been embraced not only by the general population but also by the vertical industries to help them in performing daily activities. Traditionally, the robotic systems have been deployed in standalone robots that were exclusively dedicated to performing a specific task such as cleaning the floor in indoor environments. In recent years, cloud providers started to offer their infrastructures to robotic systems for offloading some of the robot’s functions. This ultimate form of the distributed robotic system was first introduced 10 years ago as cloud robotics and nowadays a lot of robotic solutions are appearing in this form. As a result, standalone robots became software-enhanced objects with increased reconfigurability as well as decreased complexity and cost. Moreover, by offloading the heavy processing from the robot to the cloud, it is easier to share services and information from various robots or agents to achieve better cooperation and coordination. Cloud robotics is suitable for human-scale responsive and delay-tolerant robotic functionalities (e.g., monitoring, predictive maintenance). However, there is a whole set of real-time robotic applications (e.g., remote control, motion planning, autonomous navigation) that can not be executed with cloud robotics solutions, mainly because cloud facilities traditionally reside far away from the robots. While the cloud providers can ensure certain performance in their infrastructure, very little can be ensured in the network between the robots and the cloud, especially in the last hop where wireless radio access networks are involved. Over the last years advances in edge computing, fog computing, 5G NR, network slicing, Network Function Virtualization (NFV), and network orchestration are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Robotic systems are a key piece in the industrial digital transformation and their benefits are very well studied in the literature. However, designing and implementing a robotic system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. This thesis studies the integration of modern Information andCommunication Technologies (ICTs) in robotic systems and proposes some robotic enhancements that tackle the real-time constraints of robotic services. To evaluate the performance of the proposed enhancements, this thesis departs from the design and prototype implementation of an edge native robotic system that embodies the concepts of edge computing, fog computing, orchestration, and virtualization. The proposed edge robotics system serves to represent two exemplary robotic applications. In particular, autonomous navigation of mobile robots and remote-control of robot manipulator where the end-to-end robotic system is distributed between the robots and the edge server. The open-source prototype implementation of the designed edge native robotic system resulted in the creation of two real-world testbeds that are used in this thesis as a baseline scenario for the evaluation of new innovative solutions in robotic systems. After detailing the design and prototype implementation of the end-to-end edge native robotic system, this thesis proposes several enhancements that can be offered to robotic systems by adapting the concept of edge computing via the Multi-Access Edge Computing (MEC) framework. First, it proposes exemplary network context-aware enhancements in which the real-time information about robot connectivity and location can be used to dynamically adapt the end-to-end system behavior to the actual status of the communication (e.g., radio channel). Three different exemplary context-aware enhancements are proposed that aim to optimize the end-to-end edge native robotic system. Later, the thesis studies the capability of the edge native robotic system to offer potential savings by means of computation offloading for robot manipulators in different deployment configurations. Further, the impact of different wireless channels (e.g., 5G, 4G andWi-Fi) to support the data exchange between a robot manipulator and its remote controller are assessed. In the following part of the thesis, the focus is set on how orchestration solutions can support mobile robot systems to make high quality decisions. The application of OKpi as an orchestration algorithm and DLT-based federation are studied to meet the KPIs that autonomously controlledmobile robots have in order to provide uninterrupted connectivity over the radio access network. The elaborated solutions present high compatibility with the designed edge robotics system where the robot driving range is extended without any interruption of the end-to-end edge robotics service. While the DLT-based federation extends the robot driving range by deploying access point extension on top of external domain infrastructure, OKpi selects the most suitable access point and computing resource in the cloud-to-thing continuum in order to fulfill the latency requirements of autonomously controlled mobile robots. To conclude the thesis the focus is set on how robotic systems can improve their performance by leveraging Artificial Intelligence (AI) and Machine Learning (ML) algorithms to generate smart decisions. To do so, the edge native robotic system is presented as a true embodiment of a Cyber-Physical System (CPS) in Industry 4.0, showing the mission of AI in such concept. It presents the key enabling technologies of the edge robotic system such as edge, fog, and 5G, where the physical processes are integrated with computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure level. In the last part of the thesis, the movement prediction is selected to study the feasibility of applying a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses ML to infer lost commands caused by interference in the wireless channel. The obtained results are showcasing the its potential in simulation and real-world experimentation.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Karl Holger.- Secretario: Joerg Widmer.- Vocal: Claudio Cicconett

    A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development: Final Technical Report

    Get PDF
    During the two-year project period, the consortium members have developed control algorithms for enhancing the reliability of wind turbine components. The consortium members have developed advanced operation and planning tools for accommodating the high penetration of variable wind energy. The consortium members have developed extensive education and research programs for educating the stakeholders on critical issues related to the wind energy research and development. In summary, The Consortium procured one utility-grade wind unit and two small wind units. Specifically, the Consortium procured a 1.5MW GE wind unit by working with the world leading wind energy developer, Invenergy, which is headquartered in Chicago, in September 2010. The Consortium also installed advanced instrumentation on the turbine and performed relevant turbine reliability studies. The site for the wind unit is InvenergyÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs Grand Ridge wind farmin Illinois. The Consortium, by working with Viryd Technologies, installed an 8kW Viryd wind unit (the Lab Unit) at an engineering lab at IIT in September 2010 and an 8kW Viryd wind unit (the Field Unit) at the Stuart Field on IITÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs main campus in July 2011, and performed relevant turbine reliability studies. The operation of the Field Unit is also monitored by the Phasor Measurement Unit (PMU) in the nearby Stuart Building. The Consortium commemorated the installations at the July 20, 2011 ribbon-cutting ceremony. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on turbine reliability included (1) Predictive Analytics to Improve Wind Turbine Reliability; (2) Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through Advanced Wind Sensing Technology; (3) Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense Alternative; (4) Survivable Operation of Three Phase AC Drives in Wind Generator Systems; (5) Localization of Wind Turbine Noise Sources Using a Compact Microphone Array; (6) Wind Turbine Acoustics - Numerical Studies; and (7) Performance of Wind Turbines in Rainy Conditions. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on wind integration included (1) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (2) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection; (3) Integration of Non-dispatchable Resources in Electricity Markets; (4) Integration of Wind Unit with Microgrid. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs education and outreach activities on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development; (3) Wind Energy Outreach

    XXIII Congreso Argentino de Ciencias de la Computación - CACIC 2017 : Libro de actas

    Get PDF
    Trabajos presentados en el XXIII Congreso Argentino de Ciencias de la Computación (CACIC), celebrado en la ciudad de La Plata los días 9 al 13 de octubre de 2017, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Informática de la Universidad Nacional de La Plata (UNLP).Red de Universidades con Carreras en Informática (RedUNCI

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    IIASA Reports, 3(2):237-474 (Completing Volume 3) (April-June 1981)

    Get PDF
    This volume, which completes Volume 3, contains five papers on IIASA research, as well as an overview of "Energy in a Finite World," IIASA's study of global energy supply and demand through 2030. The five papers are: -- N.S.S. Narayana and K.S. Parikh, "Estimation of Farm Supply Response and Acreage Allocation: A Case Study of Indian Agriculture;" -- M. Breitenecker and H.-R. Gruemm, "Economic Evolutions and Their Resilience: A Model;" -- H.-D. Haustein, H. Maier, and L. Uhlmann, "Innovation and Efficiency;" -- L. Bergman and L. Ohlsson, "Changes in Comparative Advantages and Paths of Structural Adjustment and Growth in Sweden, 1975-2000;" -- A. Propoi and I. Zimin, "Dynamic Linear Programming Models of Energy, Resource, and Economic Development Systems.

    Pilot\u27s Handbook of Aeronautical Knowledge, 2016

    Get PDF
    The Pilot’s Handbook of Aeronautical Knowledge provides basic knowledge that is essential for pilots. This handbook introduces pilots to the broad spectrum of knowledge that will be needed as they progress in their pilot training. Except for the Code of Federal Regulations pertinent to civil aviation, most of the knowledge areas applicable to pilot certification are presented. The Pilot’s Handbook of Aeronautical Knowledge provides basic knowledge for the student pilot learning to fly, as well as pilots seeking advanced pilot certification. For detailed information on a variety of specialized flight topics, see specific Federal Aviation Administration (FAA) handbooks and Advisory Circulars (ACs). Occasionally the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at www.faa.gov. The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from https://www.faa.gov

    A Biomimetic, Energy-Harvesting, Obstacle-Avoiding, Path-Planning Algorithm for UAVs

    Get PDF
    This dissertation presents two new approaches to energy harvesting for Unmanned Aerial Vehicles (UAV). One method is based on the Potential Flow Method (PFM); the other method seeds a wind-field map based on updraft peak analysis and then applies a variant of the Bellman-Ford algorithm to find the minimum-cost path. Both methods are enhanced by taking into account the performance characteristics of the aircraft using advanced performance theory. The combined approach yields five possible trajectories from which the one with the minimum energy cost is selected. The dissertation concludes by using the developed theory and modeling tools to simulate the flight paths of two small Unmanned Aerial Vehicles (sUAV) in the 500 kg and 250 kg class. The results show that, in mountainous regions, substantial energy can be recovered, depending on topography and wind characteristics. For the examples presented, as much as 50% of the energy was recovered for a complex, multi-heading, multi-altitude, 170 km mission in an average wind speed of 9 m/s. The algorithms constitute a Generic Intelligent Control Algorithm (GICA) for autonomous unmanned aerial vehicles that enables an extraction of atmospheric energy while completing a mission trajectory. At the same time, the algorithm automatically adjusts the flight path in order to avoid obstacles, in a fashion not unlike what one would expect from living organisms, such as birds and insects. This multi-disciplinary approach renders the approach biomimetic, i.e. it constitutes a synthetic system that “mimics the formation and function of biological mechanisms and processes.

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 2

    Get PDF
    These 92 papers comprise a peer-reviewed selection of presentations by authors from NASA, the Lunar and Planetary Institute (LPI), industry, and academia at the Second Conference on Lunar Bases and Space Activities of the 21st Century. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics included the following: (1) design and operation of transportation systems to, in orbit around, and on the Moon; (2) lunar base site selection; (3) design, architecture, construction, and operation of lunar bases and human habitats; (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology; (5) recovery and use of lunar resources; (6) environmental and human factors of and life support technology for human presence on the Moon; and (7) program management of human exploration of the Moon and space
    corecore