162 research outputs found

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    Fault Diagnosis for Large Petri Nets

    Get PDF

    Production system identification with genetic programming

    Get PDF
    Modern system-identification methodologies use artificial neural nets, integer linear programming, genetic algorithms, and swarm intelligence to discover system models. Pairing genetic programming, a variation of genetic algorithms, with Petri nets seems to offer an attractive, alternative means to discover system behaviour and structure. Yet to date, very little work has examined this pairing of technologies. Petri nets provide a grey-box model of the system, which is useful for verifying system behaviour and interpreting the meaning of operational data. Genetic programming promises a simple yet robust tool to search the space of candidate systems. Genetic programming is inherently highly parallel. This paper describes early experiences with genetic programming of Petri nets to discover the best interpretation of operational data. The systems studied are serial production lines with buffers

    Diagnostic Based on Estimation Using Linear Programming for Partially Observable Petri Nets with Indistinguishable Events

    Get PDF
    In this paper, we design a diagnostic technique for a partially observed labelled Petri net where the faults of the system are modelled by unobservable transitions. The fault detection and isolation uses an on-line count vector estimation associated with the firing of unobservable transitions exploiting the observation of firing occurrences of some observable transitions. The support of the approach is an algebraic description of the process under the form of a polyhedron developed on a receding horizon. We show that a diagnostic can be made despite that different transitions can share the same label and that the unobservable part of the Petri net can contain circuits

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    State Estimation of Timed Discrete Event Systems and Its Applications

    Get PDF
    Many industrial control systems can be described as discrete event systems (DES), whose state space is a discrete set where event occurrences cause transitions from one state to another. Timing introduces an additional dimension to DES modeling and control. This dissertation provides two models of timed DES endowed with a single clock, namely timed finite automata (TFA) and generalized timed finite automata (GTFA). In addition, a timing function is defined to associate each transition with a time interval specifying at which clock values it may occur. While the clock of a TFA is reset to zero after each event occurs and the time semantics constrain the dwell time at each discrete state, there is an additional clock resetting function associated with a GTFA to denote whether the clock is reset to a value in a given closed time interval. We assume that the logical and time structure of a partially observable TFA/GTFA is known. The main results are summarized as follows. 1. The notion of a zone automaton is introduced as a finite automaton providing a purely discrete event description of the behaviour of a TFA/GTFA of interest. Each state of a zone automaton contains a discrete state of the timed DES and a zone that is a time interval denoting a range of possible clock values. We investigate the dynamics of a zone automaton and show that one can reduce the problem of investigating the reachability of a given timed DES to the reachability analysis of a zone automaton. 2. We present a formal approach that allows one to construct offline an observer for TFA/GTFA, i.e., a finite structure that describes the state estimation for all possible evolutions. During the online phase to estimate the current discrete state according to each measurement of an observable event, one can determine which is the state of the observer reached by the current observation and check to which interval (among a finite number of time intervals) the time elapsed since the last observed event occurrence belongs. We prove that the discrete states consistent with a timed observation and the range of clock values associated with each estimated discrete state can be inferred following a certain number of runs in the zone automaton. In particular, the state estimation of timed DES under multiple clocks can be investigated in the framework of GTFA. We model such a system as a GTFA with multiple clocks, which generalizes the timing function and the clock resetting function to multiple clocks. 3. As an application of the state estimation approach for TFA, we assume that a given TFA may be affected by a set of faults described using timed transitions and aim at diagnosing a fault behaviour based on a timed observation. The problem of fault diagnosis is solved by constructing a zone automaton of the TFA with faults and a fault recognizer as the parallel composition of the zone automaton and a fault monitor that recognizes the occurrence of faults. We conclude that the occurrence of faults can be analyzed by exploring runs in the fault recognizer that are consistent with a given timed observation. 4. We also study the problem of attack detection in the context of DESs, assuming that a system may be subject to multiple types of attacks, each described by its own attack dictionary. Furthermore, we distinguish between constant attacks, which corrupt observations using only one of the attack dictionaries, and switching attacks, which may use different attack dictionaries at different steps. The problem we address is detecting whether a system has been attacked and, if so, which attack dictionaries have been used. To solve it in the framework of untimed DES, we construct a new structure that describes the observations generated by a system under attack. We show that the attack detection problem can be transformed into a classical state estimation/diagnosis problem for these new structures

    Control and diagnosis of real-time systems under finite-precision measurement of time

    Get PDF
    A discrete event system (DES) is an event-driven system that evolves according to abrupt occurrences of discrete changes (events). The domain of such systems encompasses aspects of many man-made systems such as manufacturing systems, telephone networks, communication protocols, traffic systems, embedded software, asynchronous hardware, robotics, etc. Supervisory control theory for DESs studies the existence and synthesis of the supervisory controllers, namely, supervisors that restrict the system behaviors by dynamically disabling certain controllable events so that the controlled close-loop system could behave as desired. Extensive work on supervisory control of untimed DESs exists and the extension to the timed setting has been reported in the literature. In this dissertation, we study the supervisory control of dense-time DESs in which the digital-clocks of finite-precision are employed to observe the event occurrence times, thereby relaxing the assumption of the prior works that time can be measured precisely. In our setting, the passing of time is measured using the number of ticks generated by a digital-clock and we allow the plant events and digital-clock ticks to occur concurrently. We formalize the notion of a control policy that issues the control actions based on the observations of events and their occurrence times as measured using a digital-clock, and show that such a control policy can be equivalently represented as a digitalized -automaton, namely, an untimed-automaton that evolves over the events (of the plant) and ticks (of the digital-clock). We introduce the notion of observability with respect to the partial observations of time resulting from the use of a digital-clock, and show that this property together with controllability serves as a necessary and sufficient condition for the existence of a supervisor to enforce a real-time specification on a dense-time discrete event plant. The observability condition presented in the dissertation is very different from the one arising due to a partial observation of events since a partial observation of time is in general nondeterministic (the number of ticks generated in any time interval can vary from execution to execution of a digital-clock). We also present a method to verify the proposed observability and controllability conditions, and an algorithm to compute a supervisor when such conditions are satisfied. Furthermore we examine the lattice structure of a class of timing-mask observable languages, and show that the proposed observability is not preserved under intersection but preserved under union. Fault diagnosis for DESs is to detect the occurrence of a fault so as to enable any corrective actions. It is crucial in automatic control of large complex man-made systems and has attracted considerable attention in the literature of reliability engineering, control and computer science. For the event-driven systems with timing-requirements such as manufacturing systems, communication networks, real-time scheduling and traffic systems, fault diagnosis involves detecting the timing-faults, besides the sequence-faults. This requires monitoring timing and sequence of events, both of which may only be partially observed in practice. In this dissertation, we extend the prior works on fault diagnosis of timed DESs by allowing time to be partially observed using a digital-clock which measures the advancement of time with finite precision by the number of ticks. For the diagnosis purposes, the set of nonfaulty timed-traces is specified as another timed-automaton that is deterministic. We show that the set of timed-traces observed using a digital-clock with finite precision is regular, i.e., can be represented using a finite (untimed) automaton. We also show that the verification of diagnosability (the ability to detect the execution of a faulty timed-trace within a bounded time delay) as well as the off-line synthesis of a diagnoser are decidable by reducing these problems to the untimed setting. The reduction to the untimed setting also suggests an effective method for the off-line computation of a diagnoser as well as its on-line implementation for diagnosis. The aforementioned results are further extended to the nondeterministic setting, i.e., diagnosis of dense-time DESs using digital-clocks under nondeterministic event observation mask. We introduce the notion of lifting (associating each event with each of its nondeterministic observations), and show that diagnosis of dense-time DESs employing digital-clocks to observe event occurrence times under nondeterministic event observation mask can be reduced to that of the deterministic setting, i.e., diagnosis of the lifted dense-time DESs under the deterministic lifted event observation mask, and hence can be further reduced to diagnosis of the untimed setting

    Modeling of Avionics Systems using JGrafchart and TrueTime

    Get PDF
    The first part of the thesis aims to investigate the applicability of JGrafchart and its associated Model of Computation(MoC) for describing sequential control in aircraft primary power distribution systems. The motivation behind this is the need for better modeling tools and in particular support for separation between nominal control and fault handling. Also, as system complexity increases, better structuring capabilities are required. The application for this part of the thesis is a typical primary power distribution system in a medium-sized aircraft, and JGrafchart is used as substitute for Stateflow for the sequential parts of the controller. Simulations were run to determine whether JGrafchart is suitable for these types of systems, and if it provided any additional value compared to Stateflow. The second part focus around a different tool (TrueTime) to help assess the impact of embedded architecture on control performance. Today it is common for systems to be distributed over multi-tasking kernel nodes, which communicate on different networks. In these systems the nodes compete for the shared resources (The CPU and bandwidth) and the distribution of bandwidth is determined by the network protocol. Since the shared resources are limited in terms of bandwidth different kinds of delays arise, such as transmission delays and back-off times. The delays might lower the control performance significantly, which is why it is important to identify them early in the development process, preferably at the design stage. In the thesis, TrueTime is extended to support Avionics Full Duplex Switched Ehternet(AFDX) and applied to a typical aircraft electric power system
    • …
    corecore