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Nederlandse samenvatting

Dit proefschift behandelt het ontwerpen van algoritmes voor foutdiagnose
voor grote en complexe systemen die gemodelleerd worden als Petri-netten.
De toestand van het systeem evolueert onder de invloed van gebeurtenissen.
Een gebeurtenis in het systeem stemt overeen met de uitvoering van een
transitie in het Petri-netmodel. De toestand van het Petri-netmodel wordt
beschreven door het aantal tokens in de verschillende plaatsen in de net-
werkgraaf. Een transitie kan uitgevoerd worden - en de corresponderende
toestandsverandering is mogelijk - als de ingangsplaatsen van die transitie
genoeg tokens bevatten.

De evolutie van het systeem wordt extern waargenomen door sensoren
die het uitvoeren van sommige transities detecteren. Sommige van de niet-
waarneembare transities worden beschouwd als fouten (b.v. kortsluitingen
in een transmissienet). Bedoeling van dit proefschrift is om algoritmes te
ontwerpen die de waargenomen rij transities gebruiken om te bepalen of er
al dan niet fouten optraden (met zekerheid opgetreden, of misschien opge-
treden).

Foutdiagnose gebeurt in twee stappen. Eerst wordt nagerekend welke rij-
en van opeenvolgende transities toegelaten zijn volgens het Petri-netmodel,
voor een gekende begintoestand van het systeem, en zo dat de waargeno-
men transities overeenstemmen met de waarneembare transities in de gege-
nereerde rij. Dit kan bijvoorbeeld gerealiseerd worden door, vertrekkend uit
de begintoestand van het systeem, alle mogelijke rijen transities te genereren,
en die rijen te verwerpen welke niet overeenstemmen met de waargenomen
transities. Nadien wordt nagekeken of alle toegelaten rijen, of sommige toe-
gelaten rijen, transities bevatten die fouten voorstellen.

Dit probleem is computationeel moeilijk op te lossen via een gecentra-
liseerde, monolithische berekeningsmethode wegens de exponentiële groei
van de toestandsruimte van een groot Petri-net. In dit proefschrift tonen
we aan dat volledige enumeratie kan vermeden worden door enkel die rijen
transities te genereren die zeker moeten uitgevoerd worden om de waar-
genomen rij gebeurtenissen te verklaren. Dit verkleint de verzameling van
minimale verklarende rijen aanzienlijk, en we tonen aan dat die verzame-
ling volstaat om die fouten te detecteren die, gegeven een rij waarnemingen,
zeker plaats hadden.
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Tevens tonen we aan dat het genereren van alle minimale verklarende rij-
en gebeurtenissen voor een waarneming ook mogelijk is door achterwaarts
te redeneren. Vertrekkend van de waargenomen gebeurtenis zoekt men de
voorwaarden die moeten vervuld zijn opdat die gebeurtenis kan uitgevoerd
worden. Om aan die voorwaarden te voldoen moeten vroeger andere ge-
beurtenissen uitgevoerd geweest zijn, waartoe weer nieuwe voorwaarden
moeten vervuld geweest zijn. Dit wordt verder gezet tot men de begintoe-
stand bereikt. De complexiteit van deze berekeningen hangt enkel af van de
grootte van een deel van het Petri-net dat enkel niet-waarneembare transities
bevat.

Ten einde de computationele complexiteit verder te beperken bestuderen
we in dit proefschrift gedistribueerde algoritmes. Het systeemmodel wordt
opgesplitst in verschillende componenten. Elke component wordt voorge-
steld door een Petri-net dat interageert met naburige componenten door het
uitwisselen van tokens via gemeenschappelijke grensplaatsen. Elke compo-
nent wordt bestuurd door een lokale agent die enkel lokale waarnemingen
ontvangt. Het uitwisselen van tokens via grensplaatsen is niet direct waar-
neembaar. De agent kent enkel het lokale Petri-netmodel, de lokale begin-
toestand, en de naam van de naburige componenten waarmee tokens uitge-
wisseld worden.

Voorwaartse analyse is dan niet mogelijk omdat de lokale begintoestand
niet gekend is, maar achterwaartse analyse kan wel. Wanneer de lokale
agent voorwaarden berekent die afhangen van het ontvangen van tokens uit
naburige componenten, dan wordt dit als een grensvoorwaarde genoteerd
door de lokale agent. Lokale agenten kunnen dus lokale verzamelingen
minimale verklaringen genereren via achterwaartse analyse. De bijhoren-
de foutdiagnose geldt dan onder expliciet gekende onderstellingen op het
uitwisselen van tokens. In dit proefschrift worden voorwaarden gegeven
waaronder de lokale foutdiagnose alle zeker opgetreden fouten detecteert,
maar eventueel ook meer fouten dan een centrale diagnose-agent zou vin-
den. Een centrale diagnose-agent is een agent die alle waarnemingen van
alle componenten zou ontvangen, en die alle modellen van alle componen-
ten, en alle begintoestanden zou kennen.

Om de verzameling zeker opgetreden fouten in een lokale agent te redu-
ceren tot de verzameling fouten die door een centrale diagnose-agent zou-
den gedetecteerd worden moet er informatie uitgewisseld worden tussen
agenten van naburige componenten. Deze informatie-uitwisseling moet na-
gaan of de randvoorwaarden van alle paren lokale verklaringen in nabu-
rige componenten compatibel zijn met elkaar. In dit proefschrift wordt een
communicatie-algoritme ontwikkeld tussen naburige agenten die toelaat om
die compatibiliteit in een eindig aantal stappen te bekomen (voor een sys-
teem met slechts 2 componenten volstaan 3 boodschappen per agent).

In dit proefschrift wordt aangetoond dat onmiddellijk nadat een
informatie-uitwisseling met naburige agenten heeft plaats gevonden vol-
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gens het beschreven protocol, elke lokale agent dezelfde lokale fouten als
zeker opgetreden fouten detecteert als een globale agent zou detecteren.
Dit geldt onafhankelijk van de keuze van het tijdstip van de informatie-
uitwisseling. Informatie-uitwisseling kan dus geı̈nitieerd worden ofwel
door een centrale superviserende regelaar, of door een willekeurige lokale
agent.

In het tweede deel van dit proefschrift wordt foutdetectie besproken voor
een systeemmodel dat ook gedetailleerde informatie kan bevatten over de
tijdstippen waarop gebeurtenissen plaats vinden. Time Petri-netten model-
leren ook de tijdsvertraging tussen het ogenblik waarop de voorwaarden
voor het uitvoeren van een transitie voldaan zijn en het effectief uitvoeren
van die transitie. We onderstellen dan dat het exacte tijdstip van uitvoe-
ring van waarneembare transities beschikbaar is voor de lokale agenten. Die
bijkomende informatie maakt sommige verklarende rijen uitgevoerde tran-
sities onmogelijk omdat die niet aan het time Petri-netmodel voldoen.

Voor de time Petri-netmodellen lossen we dezelfde vragen op als voor
modellen zonder tijd. De analyse is veel ingewikkelder omdat de toestand
van een time Petri-net in principe niet aftelbaar is (vermits men het exac-
te tijdstip moet onthouden waarop vroegere gebeurtenissen plaats hadden).
We tonen aan dat er methodes bestaan om een eindig aantal equivalentie
klassen van toestanden te vinden die voldoende informatie bevatten om
centrale en gedistribueerde foutdetectie te doen. Onder meer restrictieve
voorwaarden op de lokale Petri-netmodellen bestaan er ook in dit geval pro-
tocollen voor informatie-uitwisseling zodanig dat een lokale agent dezelfde
fouten als zeker opgetreden markeert als een centrale foutdetector. Tevens is
de lokale foutdetectie vóór de informatie-uitwisseling heeft plaats gevonden
steeds een overdiagnose.
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English Summary

In this thesis we study the diagnosis of large and complex systems mod-
eled as Petri Nets (PNs). The fault diagnosis problem is to detect the occur-
rence of a fault exploiting the model and the received observation. In the PN
model the faults are explicitly modeled as unobservable transitions and the
plant observation is considered via a subset of events whose occurrence is
(always) reported. The plant diagnosis is obtained in two phases: first the
plant behavior that obeys the received observation is derived (as a set of le-
gal traces in the PN model) and then it is checked if some or all of the legal
traces include fault transitions.

It is well known that for large PNs the monolithic calculations cannot be
performed because of the state space explosion. This is because the set of
complete explanations of the plant observation is computed. However we
show that only a small subset (called the minimal explanations) of the set of
complete explanations is sufficient to design a diagnoser that has the same
performance in detecting the faults that for sure happened in the plant as the
one based on the set of complete explanations.

The set of minimal explanations is calculated backwards starting from
the observation and deriving traces that lead back to the initial marking. The
computation complexity of the backward search is however not comparable
with the computational complexity of the forward search since they explore
different state spaces but has the advantage that it does not depend on the
size of the PN model but only on the size of the largest sub-net in the model
that includes only unobservable transitions. Moreover and very important
the set of complete explanations can be calculated from the set of minimal
explanations whenever this is required.

We consider then a distributed setting where the plant consists of differ-
ent components, and associated with each component there is a local agent
(diagnoser-agent). Each component is modeled as a Petri Net while the inter-
actions between components are modeled by common border places that al-
low tokens from one component to enter/exit to a neighbouring component.
As a novelty we consider the case of unobservable interactions between com-
ponents. Thus tokens can enter/exit unobservably (silent) a component.

Each local agent only knows the model of the local component and of
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its interactions with its neighbours and only receives signals from the mon-
itoring system for the local events. The local agents are linked by commu-
nication channels that allow them to exchange limited information. The dis-
tributed plant calculation comprises two phases: local calculations and then
inter-agent communication for consistency. We consider that the commu-
nication is not driven by local observations, and moreover we require each
local agent to derive a preliminary calculation of its component such that the
preliminary diagnosis result of its component can be used for taking manda-
tory isolation/control actions in absence of communication with the other
agents.

The main difficulty in this general setting is to design a procedure for
deriving the preliminary local calculations of a component. This is because
the initial marking is only partially known since tokens can enter/exit the
local component.

The solution that we propose is to use the concept of minimal explana-
tions of the received observation. Thus using a backward search method
each agent derives starting from its local observations a set of local mini-
mal explanations. A minimal local explanation comprises the unobservable
events in the component that must have happened before the observation to-
gether with the minimal number of tokens that must have entered the com-
ponent.

We show that if the PN model of each component satisfies the condition
that each oriented path that starts from an input place and leads to an output
place of the component contains an observable transition then the prelimi-
nary local diagnosis provides an over-diagnosis of the component w.r.t. the
fault events that would be detected by a centralized diagnoser that for sure
happened in the local component. If this condition is not satisfied the local
preliminary diagnosis can omit the detection of some fault transitions that
are included on unobservable paths that link the input and output places of
a component but this would generally mean that the plant decomposition is
not appropriate.

When communication is allowed the agents first extend their minimal lo-
cal explanations for deriving the tokens that could have been delivered to
the neighbouring components. Then they exchange information about the
marking of the border places (the tokens assumed to enter/exit the compo-
nents) to check the consistency of their results. Local explanations are found
consistent if the agents agree on the marking of the border places. The com-
munication protocol that we design is proved to terminate recovering the
centralized diagnosis result by consistent local diagnosis results.

Then we extend these results for the case when the models include tim-
ing information about the plant operation. For Time Petri Nets models we
design diagnosis algorithms considering the exact observation of the time
when the observable events are executed in the plant. The timing informa-
tion allows for more accurate models and consequently more accurate diag-
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nosis but the price to be paid is that analysis of timed models becomes very
complicated. As a result, for a similar distributed setting as considered for
untimed models, we need some simplifying assumptions in order to meet
the requirement that the communication protocol terminates (recovering the
centralized diagnosis result) and the requirement that the preliminary local
calculations can be used for tacking control/isolation actions. This is because
Time Petri Nets (TPNs) lack a monotonicity property w.r.t. the initial mark-
ing and thus the analysis of a TPN model of a component with an unknown
marking of the border places becomes extremely complicated. The simplifi-
cations that we consider are that the models of the components are required
to be free-choice TPN and each oriented path that starts in an input place of
and leads to an output place of the component should include an observable
event.
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Chapter 1

Introduction

1.1 General introduction to fault diagnosis

Man made systems are becoming more and more complex thanks to rapid
developments in different technological areas that allow for powerful com-
putational devices and fast communication facilities. The growth in the com-
plexity of the modern systems allows for high performances but the price
that is paid is that their analysis becomes more difficult, especially for plants
where society expects a very high reliability (e.g. power systems, transporta-
tion, health care).

In a general description a system can be viewed as comprising differ-
ent components (sub-systems) that interact one with each other in order to
achieve the goals for which the plant was designed. Thus the overall plant
performance relies on the performance of each individual component as well
as on the quality of the interaction between the components. No matter how
simple or well designed a man made system is, it is subject to abnormal be-
havior. The abnormal behavior of a component can be understood as any
deviation from its designed behavior.

The causes of such deviations can be very complex and not all the time
known. The abnormal behavior of a component of a system is in many cases
due to the occurrence of a fault within the component itself or due to ab-
normal behavior that is propagated via the interactions between the compo-
nents. Thus a fault in the plant can be defined as an unexpected deterioration
(malfunction) of one of its components as a result of execution of an undesir-
able event. The execution of such an undesirable event (e.g. a valve sticks, a
short circuit) is called a fault.

To prevent the cascading propagation of the faults in the plant it is cru-
cial to detect and diagnose the faults accurately and in the shortest time af-
ter their occurrence. Thus the diagnosis task is of crucial importance for
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every made man system. The diagnoser of a plant is required to answer
the following questions: ”Did a fault happen or not?”(fault detection), ”What
kind of fault happened if any?” (fault isolation) and ”How did the fault hap-
pen?”(explanations).

In order to answer these questions one must have some knowledge about
the plant that comprises knowledge on the plant description and operation
as well as knowledge on the normal (designed) behavior, and of the possible
faults that can occur.

The first approach to solve the diagnosis problem was to use the knowl-
edge of human experts in order to derive a set of rules about the relationships
between the faults and the symptoms in the plant under investigation. The
main inconvenient of the rule-based diagnosis is that it cannot be practically
applied to large and complex systems since the knowledge acquisition from
human experts is difficult and time consuming. The set of rules grows expo-
nentially with the plant size and it is hard to maintain. Moreover it cannot
be reused for other systems, and it can not cope with changes of the plant
structure (components that are plugged in or removed).

The natural way to overcome these limitations is to exploit an explicit
model of the plant model for deriving the plant diagnosis [Rei87]. The ad-
vantages are that the plant model encodes the set of all the rules that govern
the plant behaviour. Rules derived by human experts are derived from ob-
serving a plant that behaves like this model. The quality of model-based
diagnosis relies on the accuracy of the model rather than on the subjective
knowledge of the human experts. The model of the overall plant can be accu-
rately built up from small models, each modeling a component of the plant
and its interactions with its neighbouring components. The overall plant
model is simply adjusted when its structure changes by adjusting the model
of only those components that are changed instead of updating a huge data-
base of rules.

Thus the model-based diagnosis exploits an explicit model of the plant and
the plant observation in order to derive what faults have happened in the
plant and to predict the future behaviour. We refer to [LZ03] for an extensive
classification of the model-based diagnosis approaches.

1.2 Model-Based Diagnosis for Discrete Event

Systems

In this thesis we study fault diagnosis for plants that can be modeled as a
Discrete Event Systems (DES). A DES can be thought as a dynamic system
whose state changes with an event occurrence (event driven) rather than
as time elapses. A DES can be modeled in different ways, among others as
a finite-state automaton or a Petri Net (PN). The model-based diagnosis of
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DES has received a lot of consideration over the past few years being applied
in various technological areas e.g. telecommunication networks [Pen00],
[PCR01], [BFHJ03], [FBHJ05], power systems [YOYS92], [BL99], [HV00],
[JB03], FMS and production systems [BSC02], [HA02], [MLRV02], [ZKW03].

Most commonly the faults are represented in a DES model as fault events
in automaton, respectively fault transitions in PN model while the plant ob-
servation is represented by a subset of the set of events (transitions). The
occurrence of an observable event is reported to the monitoring system. The
subset of events that are not observable (the unobservable events) are con-
sidered executed in the plant silently, i.e. their occurrence is not reported to
the monitoring systems. Obviously the set of fault events is included in the
subset of unobservable events, otherwise the detection of faults would be
trivial.

Among the two above mentioned methods to model a DES we chose in
this thesis the Petri Net approach to represent the plant model. In a basic
formulation the model-based diagnosis of Petri Net models can be formulated
as follows:

Given the plant model as a Petri Net and given the observation generated by the
plant up to the current time determine whether an unobservable transition that mod-
els a fault event has happened in the plant or not.

We consider an a priori and complete description of the plant and also we
consider that the faults to which the plant is exposed are known in advance,
and included in the model. Moreover the plant observation is assumed cor-
rect, i.e. the occurrence of an observable event is all the time reported (no
loss of observation) without any delay. The assumption that there are no-
delays in receiving the plant observation simply means that the observation
includes the time of the execution of an observable transition and this is mea-
sured with perfect accuracy (according to a global clock).

The model-based diagnosis for DES models comprises two stages. First
the set of traces that are legal from the initial marking and obey the received
observation is derived and then the diagnosis result of the plant is obtained
checking if some or all of the legal traces include fault transitions. If all the
traces include fault transitions the fault is declared to have happened for sure;
if none of the legal traces include a fault event the diagnosis result is normal;
while if there are legal traces that include fault transitions as well as legal
traces that do not include fault transitions the diagnosis result is uncertain
[SSL+95].

The model-based diagnosis of DES can be classified as follows:

1. Centralized approaches: There is one centralized diagnoser that de-
rives the plant diagnosis based on its (complete) knowledge of the
overall plant model and the overall plant observation. The centralized
approach can be further classified as:
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(a) diagnoser approach [SSL+95] where a diagnoser automaton is de-
rived off line and the on-line plant analysis is carried out by elim-
inating the diagnoser-states that are not consistent with the plant
observation.

(b) active system approach [BL99] where the diagnosis result is de-
rived a posteriori when the system is in a quiescent state (out of
work or idle).

2. Decentralized approaches: There is one centralized agent receiving in-
formation from several local diagnosers, each of which performs some
local diagnosis of the plant with incomplete knowledge (e.g. based
on a sub-set of sensor readings or a partial knowledge of the over-
all plant model). The local diagnosis results are compiled in a con-
sistent diagnosis result for the overall plant by the centralized diag-
noser [DLT00], [Pen00], [PCR01], [BvS02], [DLT03].

3. Distributed approaches: The overall plant consists of different com-
ponents, and associated with each component there is a local agent
(diagnoser-agent) that derives the local diagnosis of its component.
Each local agent only knows the model of the local component and
of its interactions with its neighbours. Each local agent moreover only
receives signals from the monitoring system for the local events. No
centralized structure is assumed to coordinate the results of the local
agents but from time to time the local agents may exchange messages
over communication channels linking them. Thus the local agents de-
rive the distributed plant diagnosis by local calculations and by infor-
mation exchange [Pro02], [KKSW02], [BFHJ03], [GL03], [SW04], [BJ04],
[FBHJ05], [GL05], [JB05b].

The main disadvantage of a centralized approach is its high computa-
tional complexity. It requires a centralized plant model and generates a cen-
tralized plant diagnoser. Since the diagnoser-automaton can be viewed as a
special observer-automaton its size may become too large to be practically
stored [OW90]. Even if a centralized diagnoser can be constructed it has the
following disadvantages [Su04]:

1. weak robustness - a partial malfunction of the centralized diagnoser
affects the overall plant diagnosis.

2. low maintainability - a change in the plant structure requires a com-
plete re-calculation of a new centralized diagnoser. This may be serious
problem when the plant structure is known to change often.

The decentralized approaches overcome the high complexity and the low
maintainability limitations of the centralized approach by calculating local
state spaces (of size a lot smaller than the size of the overall plant) that are
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maintained consistent by a centralized structure (agent). But the existence of
a a centralized agent does not eliminate the disadvantage of a weak robust-
ness.

The distributed approaches consider that there is no centralized struc-
ture that coordinates the results of the local diagnosers. The local results
are checked for consistency by pairwise communication between the neigh-
bouring agents. Thus the price that is to be paid for eliminating the dis-
advantages of the centralized approach is that an adequate communication
protocol should be derived to guarantee that the centralized diagnosis result
is recovered by consistent local diagnosis results. Moreover to design such a
communication protocol requires some structural assumptions to be fulfilled
by the distributed plant description e.g. the interaction between the local
components is restricted to the structure of a so-called hyper-tree [BFHJ03].
However the distributed diagnoser will be robust against many failures in
the agents and in the communication system provided the local diagnosis
obtained by each agent provide an acceptable approximation of the optimal
fault diagnosis.

To prevent the deterioration of the plant behavior and possibly catas-
trophic failures the diagnosis of a fault occurrence must be followed by im-
mediate isolation actions. In an electric power system the diagnosis of a short
circuit must be followed by opening of circuit breakers removing power sup-
ply to the short-circuited lines. Thus the diagnosis task should be viewed in
a broader supervisory architecture that comprises also control and isolation
modules.

1.3 Centralized diagnosis

The chief drawback of the centralized approaches is its high computational
complexity due to state space explosion. This is because the size of a diag-
noser automaton may be exponential in the number of places of the under-
lying plant automaton model [OW90]. For large systems this means that the
diagnoser-automaton cannot be stored on a computer. This problem persists
even if the plant diagnosis is obtained a posteriori [BL99] by deriving the part
of the diagnoser-automaton that corresponds with the received observation.

As already mentioned the diagnosis result should be viewed as an in-
put to control and isolation modules that clear up the effects of the faults.
For a certain plant observation the diagnosis result may be either sure that
a fault happened or uncertain whether a fault happened or sure that a fault
did not happen, corresponding with the states in the diagnoser-automaton F,
UF, and N respectively [SSL+95]. Thus the diagnoser state F requires actions
to be taken whereas the diagnoser state N does not require any action. The
diagnoser state UF is delicate since the plant observation and the model indi-
cate that it is possible that some fault has happened but this is not for sure.
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In absence of any probabilistic information about the fault occurrences it is
natural to assume that no control actions are taken unless the diagnoser is
sure that a fault happened in the plant, except in cases where consequences
of a fault could be catastrophic.

In the model-based fault diagnosis paradigm the faults are explicitly
modeled by a subset of the unobservable events. Since the occurrence of a
fault is unexpected it is natural to assume that there is no reachable state in
the plant from where only fault transitions can be executed otherwise the
fault occurrence would be predictable before its occurrence. The straight-
forward implication of this assumption is that the faults are represented as
unobservable choice transitions. Moreover a fault can be detected for sure
only if the occurrence of the fault has an observable manifestation in the
future. Thus the fault transitions that can be detected that for sure happened
are only those that are predecessors of the transitions that were observed to
be executed in the plant.

It means that it is sufficient to derive the minimal explanations of the re-
ceived observation in order to derive a diagnosis result that has the same
quality in detecting the faults that for sure happened as the diagnosis re-
sult based on the complete explanations of the observation [JB04a]. For large
plants the set of minimal explanations is a lot smaller than the set of com-
plete explanations. Notice also that all the complete explanations can be
calculated by extending the minimal explanations. Thus the complete diag-
nosis result including faults that happened for sure and faults that may have
happened can be derived at any time if required.

The computation of the set of minimal explanations for PN models can
be achieved by a backward calculation starting from the observed events.
The backward calculation can be seen as a forward calculation in the reverse
PN obtained by reversing the direction of the arcs in the original PN and
modifying the enabling and firing rule of a transition.

Methods based on backward calculations for PNs were proposed in
[LA94], [SJ94], [CKV95] for diagnosis purpose, in [NAH+98], [AIN00],
[FRSB02], [DRvB04] for model checking, and in [GS02], [GCS05] for state
estimation of a PN model with uncertain initial marking.

The backward algorithm that we design for computing the set of min-
imal explanations is similar to the algorithms used in model checking for
deciding whether a bad marking can be covered from a given initial state
[AIN00], [DRvB04]. In our case the bad marking is represented by the mark-
ing of the input places of an observed event and we must calculate back-
wards all the traces that cover it unobservably. For diagnosis we need all
the traces not just showing the existence of one explanatory trace. The com-
putational complexity of the backward calculations is not easily compara-
ble with the forward calculations since they explore different state spaces.
However its efficiency can be increased using place invariants and other
heuristics [FRSB02] to drive the backward search, as well as the backward
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unfolding technique [AIN00] to avoid the consideration of all the possible
interleavings of the concurrent events. Notice that the backward calcula-
tions in our case involve only unobservable transitions. Thus the method is
potentially very efficient for practical applications that do not comprise large
sub-nets containing only unobservable transitions.

1.4 Distributed diagnosis

To overcome the limitations of the centralized approach this thesis presents
an efficient distributed diagnosis algorithm using as plant description a col-
lection of place-bordered PNs [Val94], [GL03], [BFHJ03], [BJ04], [FBHJ05],
[GL05], [JB05a]. Each PN models a component (local site) of the overall plant
while the border places model the interactions between the components.

The distributed diagnosis problem can be formulated as follows. First
the local agents perform a preliminary local diagnosis, then they exchange
information updating their preliminary calculations until the consistency is
achieved. We require that at the time the agents achieve consistency of their
local results, the agents recover the result that would have been derived by a
centralized agent that knows the overall plant model and receives the whole
plant observation.

A very useful property is also that a preliminary local diagnosis (calcu-
lated locally in absence of information exchange) is useful for control and iso-
lation actions that are necessary after a fault occurrence. This ensures robust-
ness against communication channel break downs, even when the (global)
consistency of a local site result was not achieved yet. This problem is of
practical importance for spatially distributed large systems with unreliable
communication between sites and is related to the question of how the diag-
nosis result relates with some control/isolation actions that may be required
to be taken in response to fault occurrences. Thus before being able to com-
municate, a local agent may receive a sequence of observed events and is
required to have a local preliminary calculation that explains what was lo-
cally observed.

A difficult problem arises when no assumption is made on the observ-
abiltiy of the border places (i.e. the observability of the input/output transi-
tions of the border places). When the input/output transitions of the border
places are unobservable the number of tokens in the input places is unknown
and the problem we face is to analyze a PN model with an uncertain initial
marking.

When a priori knowledge of the token traffic between two sites is assumed
known the problem can be solved by considering for the preliminary calcu-
lations upper bounds (maximum number of tokens that could have entered
a local site) that result in the preliminary calculation of an over-estimate of
the local site behavior. Based on this overestimate each local agent computes
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an over-diagnosis of the local site. This may be useful for very conservative
applications [SW04]. This method is a translation of the methods proposed
in [BL99], [KKZ01], and [SW04] for the plant model given as a network of
communicating automata. This translation is not straightforward. Struc-
tural assumptions must be satisfied, otherwise the calculation of the upper-
bounds is not possible unless first generating the overall plant state space.
This is exactly what we want to avoid.

We assume that the unobservable transitions are silent: tokens can move
unobservably from one PN model to another. Thus we extend the dis-
tributed diagnosis methodology to the situation when a sensor failure is
reported to the supervisor, the plant operation cannot be stopped, and the
sensor is not repaired immediately. To avoid that local calculations would
have the same magnitude as the global plant calculation [Val94] we have
proposed in [BJ04] a backward search method that starts from the locally
observed events and derives the minimum number of tokens required to
have entered from the neighboring sites. In this way we derive the set of
minimal explanations of the local observation.

After locally computing the set of minimal explanations of the local ob-
servation based on the minimal number of tokens required to have entered
the border places, a local agent extends (forwardly) the minimal explana-
tions for estimating the tokens that could have exited the PN model of its
component.

Then the algorithm checks whether local preliminary traces from one
component can be matched to consistent traces from another (neighbour-
ing) component, or not. Preliminary traces that can not be matched are dis-
carded. Some new traces may be also generated because by communication
”new things may be found to be possible”. This is because initially a min-
imum number of tokens was assumed to have entered while later it may
be found that more tokens than this minimal number may have entered the
border places of the PN model of the component. Since at each communi-
cation round new traces are generated, we need to show that the algorithm
terminates by achieving a fix point when no new traces are generated by any
agent. In Section 4.3 of this thesis we show that this can indeed be achieved.
Moreover this thesis proves that the sets of local traces that were found con-
sistent recovers the result of a centralized agent.

To increase the computational efficiency we use the unfolding technique
for both forward [McM93], [Esp94] and backward [AIN00] calculations. Be-
side the advantage that a configuration in an unfolding compactly represents
a family of traces (obtained by linearizing the partial order relation between
the event nodes of the configuration) there is also the advantage that the
partial order between the nodes induces the time information on the border-
conditions (ordering times when tokens must have entered and tokens that
could have exited).

The information exchanged between agent allows each local agent to
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check the consistency of its local results with the results of the neighboring
agents. We show that if the plant description satisfies the condition that all
the unobservable circuits in the overall plant PN model contain transitions
of at most two components then the local agents can achieve the global con-
sistency of their local results exchanging information regarding only their
common border.

Moreover we analyze what the preliminary local diagnosis includes. We
show that if each component satisfies the condition that each oriented path
that starts in an input place and ends in an output place contains at least one
observable event then the local preliminary diagnosis is an over-diagnosis of
the centralized diagnosis of the component w.r.t. the detection of the faults,
i.e. each fault that is detected to have happened for sure by a centralized
diagnoser is also detected in the preliminary local diagnosis. If this condi-
tion is not satisfied then some fault transitions that are situated along the
unobservable paths that start in input places and end in output places of the
component may not be diagnosed properly.

1.5 The diagnosis of Time Petri Nets

Often a user has precise information about the time intervals for the execu-
tion of operations in the plant, while accurate measurements of the execution
times of the observed events are possible in many cases (e.g. if a GPS system
provides a global time for the plant).

PN models where the time is considered as a quantifiable and continuous
parameter allow for a more accurate analysis of the plant. A formalism that
is convenient for expressing temporal constraints regarding the execution
and the duration of the events is represented by Time Petri Nets [Mer74].

The diagnosis of Time Petri Nets (TPN) has only recently received some
consideration [GBT05], [CJ05] in the framework of [SSL+95]. Both papers
use a centralized approach and assume no global clock available. The plant
observation in these papers does not include the exact time when an observ-
able event is executed in the plant. These papers are directed at applications
such as communication networks where the inherent time scale of the plant
is so fast that no accurate time measurement is possible.

In this thesis we treat models that are inherently slower. Hence in this
thesis it is assumed that accurate global clocks are available and that the
plant diagnosis uses the exact time when the observable events occurred
in the plant. This is motivated by our interest in the diagnosis of electri-
cal power systems [BJ03b] where the availability of a global clock is very
common [YOYS92], [MDHM04].

Since a transition in a TPN can fire at any time in some predefined in-
terval, TPN models have in general infinite state spaces because a state may
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have an infinite number of successor states. Methods based on grouping
states that are equivalent under a certain equivalence relation in to so called
state classes were proposed in [BM83], [YR98], [BV02] where it was shown
that for bounded PNs the state class graph is finite. Thus the potentially infi-
nite state space of a TPN can be finitely represented and the analysis of TPN
models is computable.

In order to represent more accurately the plant behavior we consider the
plant analysis based on the atomic state class graph [YR98], [BV02]. The
atomic state class graph is a refinement of the linear state class graph. It is
based on the observation that a state in a linear state class may contain states
that do not have successors in all the successor state classes.

The on-line monitoring algorithm for fault diagnosis works as follows.
When the process describing the behaviour of the plant starts we derive
paths in the atomic state class graph up to the first observable event. If ei-
ther the observable event is not observed as executed in the plant, or if it
is executed sooner than it is allowed by the plant model then the path is
deleted. Otherwise an equality relation is added to the characteristic sys-
tem to express the fact that the observable event occurred at the time given
by the received observation. Adding equality relation destroys in general
the atomicity property and thus to restore it one must refine the predecessor
state classes.

A similar algorithm was proposed in [Vic01] for the timeliness analysis
of time-dependent systems but considering the plant analysis based on the
linear state class graph.

Since the TPN analysis based on state-classes becomes computationally
unfeasible for models of reasonable size because of the state space explosion
due to the interleaving of the unobservable concurrent events methods based
on partial orders were proposed in [HB95], [SY96], [AL97], [YS97], [Lil98].

The diagnosis algorithm that we propose first considers a centralized
plant analysis based on time-configurations (time-processes [AL97]). A time-
configuration is an untimed configuration with a valuation of the execution
time for its events. A time-configuration is valid if there is a time trace in
the original TPN that can be obtained from a linearization of the events of
the configuration where the occurrence time of the transitions in the trace
are identical with the valuation of their images in the time-configuration.
To check whether a time-configuration is valid or not requires to solve a
(max,+)-linear system of inequalities called the characteristic system of the
configuration (a (max,+) algebra is like a standard (+,×)-algebra but with
maximization as first binary operation and addition as second binary opera-
tion).

Since the number of valid time-configurations is uncountable we intro-
duce the concept of time-interval configurations to finitely represent the set
of all possible valid time-configurations. The idea is simple. The set of all
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solutions of the characteristic system of a configuration (the set of all valid
times) is represented as a cover of subsets of solutions such that each sub-
set of solutions has a time independence property for the concurrent events
in the configuration. The time independence property of a subset of solu-
tions of the characteristic system of a configuration can be intuitively un-
derstood as follows: given any set of concurrent events in the configuration and
fixing the execution times of their predecessors, their executions times belong to a
hyper-rectangle in high dimensional space. The execution time-intervals for the
events in the configuration are obtained from the smallest hyperbox (of di-
mension equal with number of events in the configuration) that includes a
given subset of solutions of the characteristic system.

We present efficient algorithms to derive such a partition of the solution
set of the characteristic system of a configuration and show how the method
can handle the addition of extra inequalities (constraints) that are due to the
received observation.

Then we extend the distributed diagnosis algorithm to the case of TPN
models. The distributed setting is very similar with the one that we con-
sider for the untimed models. However some simplifying assumptions are
needed in order to prove important properties of the distributed fault di-
agnosers, namely the overall plant model is a free-choice net and on each
component a path that leads from an input place to an output place con-
tains an observable event. These conditions are required in order to meet the
requirement that the preliminary local calculations can be used for taking
some control/isolation actions.

As for the untimed PN models, the preliminary local calculations of the
TPN model of a component give rise to a major difficulty namely the anal-
ysis of a model with uncertain initial conditions. We adapt the backward
unfolding method to Time Petri Net models and show for the case of two
components that the distributed algorithm that we propose recovers the di-
agnosis result of a centralized agent by consistent pairs of local diagnosis
results.
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Chapter 2

Mathematical background

for Petri Net models

2.1 Sets, numbers, and relations

Let X and Y be sets. We write X ⊆ Y if X is a subset of Y , including the
case X = Y . X ⊂ Y denotes that X ⊆ Y and X 6= Y . X \ Y denotes the set
of elements of X that do not belong to Y . | X | denotes the cardinality of X
and Pwr(X) is the power set of X , that is, the set of all subsets of X . Given
f : X → Y and A ⊆ X then f(A) =

⋃
x∈A f(x).

N denotes the set of natural numbers including 0. N+ denotes the set
of natural numbers excepting 0. Q,Z and R denote respectively the set of
rational, integer, and real numbers.

Given two vectors A,B of dimension m we have that: i) A ≤ B if for
q = 1, . . . ,m, A[q] ≤ B[q] and ii) A < B if A ≤ B and ∃q s.t. A[q] < B[q].

Definition 1. A set X is a collection of distinct elements. Then given a non-empty
set X and a function µ : X → N we say that Xµ is multi set over X where:

Xµ = {(x, µ(x)) | x ∈ X}

and µ represents the number of appearances of x in Xµ. Thus a set X can be under-
stood as a multi-set that has no repeated elements.

Example 1. Let X = {x, y, z, u, v} be a set and then consider the function µ
given as µ(x) = 3, µ(y) = 2, µ(z) = 4, µ(u) = 0, and µ(v) = 0. Then we
have the multi-set Xµ = {x, x, x, y, y, z, z, z, z} or in a shorter notation Xµ =
{(x, 3); (y, 2); (z, 4)}.

Whenever clear from the context we drop the lower index µ of a multi-set
Xµ, since a set is a multi set where µ(x) = 1 for all x ∈ X .
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A (binary) relation R on a non-empty set X is a subset of the cartesian
product X ×X . We use the notation:

idX = {(x, x) | x ∈ X} is the identity relation

R−1 = {(y, x) | (x, y) ∈ R} is the inverse of R

For υ ∈ {1, 2, 3, . . .} , Rυ is inductively defined by R1 = R and for υ > 1:

Rυ =
{
(x, z) | (x, y) ∈ Rυ−1 and (y, z) ∈ R for some y ∈ X

}

R+ = R1 ∪R2 ∪R3 ∪ . . . is the transitive closure of R

R∗ = idX ∪R+ is the reflexive and transitive closure of R

In the following for (x, x′) ∈ R we use also the notation xRx′.

A (binary) relation R ⊆ X ×X is an equivalence relation if:

(∀x ∈ X) xRx (R is reflexive)

(∀x, x′ ∈ X) xRx′ ⇒ x′Rx (R is symmetric)

(∀x, x′, x′′ ∈ X) xRx′ ∧ x′Rx′′ ⇒ xRx′′ (R is transitive)

We have that (R∪R−1)∗ is the least equivalence relation that includes R.

For x ∈ X denote [x]R the equivalence class of R that includes x that is:

for x ∈ X , [x]R = {y ∈ X | (x, y) ∈ R}

and then denote X/R = {[x]R | x ∈ X} the set of equivalence classes of R.

Let � be binary relation on X . �⊆ X ×X is a partial order relation on X
if it is:

(∀x ∈ X) x � x (� is reflexive)

(∀x, x′, x′′ ∈ X) x � x′ ∧ x′ � x′′ ⇒ x � x′′ (� is transitive)

(∀x, x′ ∈ X) x � x′ ∧ x′ � x ⇒ x = x′ (� is antisymmetric)

If ∀x, x′ ∈ X either x � x′ or x′ � x then � is a total order on X .

In the following for a partial order relation � on an nonempty set X we
use the notation (X,�). Then max�(X) and min�(X) denote the set of maxi-
mal respectively minimal elements of X w.r.t. �:

max�(X) = {x ∈ X | (x′ ∈ X ∧ x � x′) ⇒ x′ = x}

min�(X) = {x ∈ X | (x′ ∈ X ∧ x′ � x) ⇒ x′ = x}



2.2 Sequences and languages 15

2.2 Sequences and languages

Let Σ be a finite set of symbols a,b, . . .. We refer to Σ as an alphabet. Let
Σ+ denote the set of all sequences, of the form a1a2 . . . aυ where υ ≥ 1 is
arbitrary and aλ ∈ Σ for λ = 1, . . . , υ. Denote then by ǫ the empty sequence
(sequence with no symbols) where ǫ 6∈ Σ.

Then for Σ∗ = Σ+ ∪ {ǫ} we say that an element of Σ∗ is a word or a
string while ǫ is the empty string. We refer in the following to Σ∗ as the
Kleene-closure of the alphabet Σ .

A language L over a set of symbols Σ is a subset of Σ∗, i.e. an element of
the power set Pwr(Σ∗) .

A language may be thought as a formal way of describing the behavior of
a discrete event system (DES). It specifies all admissible sequences of events
that are allowable (legal) under the DES model.

Given u, v, w ∈ Σ∗ and uvw = s we say that:

- u is called a prefix of s

- v is called a substring of s

- w is called a suffix of s

The catenation of two strings u and v (u, v ∈ Σ∗) is the string s obtained
from u followed by v, that is s ∈ Σ∗ and s = uv.

Let the following operations be defined for languages:

- Concatenation: For L′,L′′ ⊆ Σ∗:

L′L′′
∆
= {s ∈ Σ∗ : (s = s′s′′) ∧ (s′ ∈ L′) ∧ (s′′ ∈ L′′)}

- Prefix-closure: For L ⊆ Σ∗:

L
∆
= {u ∈ Σ∗ : ∃v ∈ Σ∗ s.t. uv ∈ L}

(L is the language that contains all the prefixes of all the strings of L)

- Kleene-closure: Let L ⊆ Σ∗:

L∗
∆
= ǫ ∪ L ∪ LL ∪ LLL . . .

Consider a string s ∈ L ⊂ Σ∗. Denote Σ(s) the set of symbols of Σ that
appear in s. Then for each symbol a ∈ Σ(s) denote µs(a) ∈ N+ the number
of appearances of a in s. Denote by Σµ(s) the multi-set of symbols generated
by s:
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Σµ(s) = {(a, µs(a)) : a ∈ Σ(s)}

Given a language L (L ⊆ Σ∗) define the equivalence relation ≡Σµ
as fol-

lows:

∀s, s′ ∈ L, s ≡Σµ
s′ if Σµ(s) = Σµ(s′)

Denote the equivalence class that includes s:

[s]≡Σµ
= {s′ ∈ L : Σµ(s) = Σµ(s′)}

and the quotient language L/≡Σµ
=

{
[s]≡Σµ

| s ∈ L
}

.

Example 2. Given the set of symbols Σ = {a, b, c}, denote L = {aab, acc, ccb}
and L′ = {aa, bb} two languages defined over the set of symbols Σ. Then we have:

LL′ = {aabaa, accaa, ccbaa, aabbb, accbb, ccbcc}

L = {ǫ, a, c, aa, ac, cc, aab, acc, ccb}

Given s = accaa we have Σ(s) = {a, c} and Σµ(s) = {(a, 3); (c, 2)}. Then for
s′ = ccaaa we have that Σµ(s) = Σµ(s′) that is s ≡Σµ

s′.

Definition 2. Consider a partially ordered set (Σ,�) . Then the string s =
a1a2 . . . aυ is a linearization of (Σ,�) if υ =| Σ | and ∀aι, aλ ∈ Σ:

i) aι = aλ ⇒ ι = λ

ii) for ι 6= λ, if aι � aλ then ι < λ

In words s is a string obtained considering all the symbols of the set Σ, where each
symbol appears only once in the string s and for any two different elements of Σ s.t.
aι � aλ then aι is considered in s before aλ.

Then denote by 〈Σ〉� the set of all the strings s that are linearizations of (Σ,�).
Notice that whenever clear from the context we drop the lower index � of 〈Σ〉�.

2.3 Discrete Event Systems

When the state of a system is described by a discrete set like {0, 1, 2, . . .}, and
state transitions are only observed at discrete points in time, we associate
these state transitions with events and talk about discrete event-systems.

2.3.1 Automata

An automaton is a mathematical model of a sequential system. It provides
a compact way of representing a language. Some well defined operations
on automata allow for manipulation and analysis of large and complex lan-
guages.



2.3 Discrete Event Systems 17

Definition 3. [CL99] A Deterministic Automaton, denoted G is a five-tuple:

G = (X,E, f, g, x0)

where:

X is a countable set of states

E is the set of events associated with the transitions in G

f : X × E → X is the transition function: f(x, e) = y represents that e is
defined in state x and when e is executed in x then the state is transformed
into y. Since for some state x′ the transition e may not be allowed, f(x, e) is
a partial function on its domain

g : X → Pwr(E) is the active event function (or feasible event function);
g(x) is the set of all events e for which f(x, e) is defined and it is called the
active event set (or feasible event set) of G at x.

x0 is the initial state

If X is finite then we call G a deterministic finite state automaton. G is said
to be deterministic because f is defined from X × E onto X .

Remark 1. If f is defined fromX×E onto Pwr(X) thenG is a nondeterministic
automaton.

The automaton G defines a dynamical system with language L as fol-
lows. It starts in the initial state x0 and upon the occurrence of an event
e1 ∈ g(x0) ⊆ E it will make a transition to state x1 = f(x0, e1). Then
e2 ∈ g(x1) can be executed leading to state x2 = f(x1, e2). The process
continues executing each time a transitions eυ for which f(xυ, eυ) is defined.

For the sake of convenience f is always extended from domain X ×E to
domain X × E∗ in the following manner:

f(x, ǫ)
∆
= x

f(x, se)
∆
= f(f(x, s), e) for s ∈ E∗ and e ∈ E

Definition 4. The language generated by G = (X,E, f, g, x0) is :

LG
∆
= {s ∈ E∗ : f(x0, s) is defined }

Definition 5. Consider an automatonG = (X,E, f, g, x0) and a labeling function
l : E → Ω where Ω is a set of labels. Then the labeled language generated by G is:

Ll
G = {l(s) : s ∈ LG}

Example 3. Consider the automaton G = (X,E, f, g, x0) displayed in Fig.2.1
where: X = {x0, x1, x2, x3, x4}, E = {a, b, c}. Then we have that: LG ={
(aba)∗cac∗

}
.
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2.3.2 Petri Nets

First developed by C.A. Petri in early 1960’s, a Petri Net is a mathemati-
cal model for modeling and analyzing distributed systems comprising syn-
chronous and asynchronous activities. A Petri Net is a way of graphically
representing automata by using state representation in the form of an inte-
ger vector.

In Petri Nets, events in the corresponding automaton correspond to the
execution of a transition in a Petri Net. A transition can occur when several
conditions are satisfied. These (pre-) conditions are expressed as the places
that are input to a transition. The occurrence of a transition affects the output
places of a transition (i.e. the post-conditions). Transitions, places and cer-
tain relationships between them define the basic components of a Petri Net.
Thus Petri Net is a bipartite graph comprising two types of nodes: places
and transitions, and arcs connecting places to transitions and transitions to
places.

2.3.3 Petri Net notation and definitions

Definition 6. A Petri Net is a structure N = (P , T , F ) where:

P denotes the finite set of places,

T denotes the finite set transitions, and

F ⊆ (P × T ) ∪ (T × P) is the incidence (flow) relation that specifies the
arcs from places to transitions (Pre) and from transitions to places (Post):
F = Pre ∪ Post, Pre : P × T → N and Post(t, p) : T × P → N where:

- Pre(p, t) ∈ N gives the weight that is associated with the arc directed from
place p to transition t
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- Post(t, p) ∈ N gives the weight that is associated with the arc directed from
transition t to place p

If all the arcs have the weight 1 (∀p ∈ P , ∀t ∈ T Pre(p, t) ≤ 1 and Post(t, p) ≤ 1)
then N is an ordinary PN. In this thesis all the PN are considered ordinary. The
reason is that both ordinary and non-ordinary PNs have the same modeling power,
the only difference is modeling efficiency or convenience [Mur89].

The graphical representation of a Petri Net N uses the following conven-
tion: a place is represented by a circle and a transition is represented by a bar
(box), and for each pair (p, t) that is defined in Pre there is an arc directed
from p to t. Similarly for each pair (t, p) that is defined in Post there is an arc
directed from t to p.

Denote X = P ∪ T . Then for x ∈ X we use the standard notations
x• = {y ∈ X | xFy}, •x = {y ∈ X | yFx} and then for X ′ ⊆ X X ′• =
{y ∈ X | ∃x ∈ X ′ s.t. y ∈ x•} and •X ′ = {y ∈ X | ∃x ∈ X ′ s.t. y ∈ •x}.

Definition 7. A marking M of a PN N is represented by a | P | -vector that
assigns to each place p of P a non-negative number of tokens M : P → N.

A PN system is a pair 〈N ,M0〉 where N is a connected graph having at least
one place and one transition and M0 is a marking of N called the initial marking.

The initial markingM0 is represented graphically by tokens (dots) drawn
inside the circle representing the place p i.e. in p draw M0(p) tokens. In the
following we treat a marking also as a multi-set comprising the places that
contain tokens. E.g. M = {(p,M(p)) | p ∈ P and M(p) 6= 0} where M(p) is
the number of tokens present in p in the marking M (M(p) stands for µ(p)
when talking about a marking seen as a multi-set of tokens).

Definition 8. Given a PN N and a marking M , a transition t ∈ T is enabled in
M if ∀p ∈ •t, M(p) ≥ Pre(p, t). Denote by ENABLED(M) the set of all the
enabled transitions in the markingM . An enabled transition t ∈ ENABLED(M)
in a marking M fires in M and produces the marking M ′ where:

M ′ = M − Pre(·, t) + Post(t, ·) (2.1)

where abusing notation Pre(·, t) and Post(t, ·) are the | P |-vectors whose element
p is Pre(p, t) respectively Post(t, p).

In the following we use the notationM
t
−→M ′ for the firing of a transition

t transforming the marking (state) of the PN fromM to the new marking M ′.

Definition 9. A legal trace τ in the PN system 〈N ,M0〉 is defined as:

τ = M0
t1−→M1

t2−→ . . .
tυ−→Mυ (2.2)

where inductively for ι = 1, 2, . . . , υ, Mι−1 ≥ Pre(·, tι). M0
τ
−→ Mυ denotes that

the enabling conditions are satisfied so that τ fires at M0 yielding Mυ.
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Definition 10 (reachable set). Given a PN system 〈N ,M0〉 the set of all legal
traces in 〈N ,M0〉 is denoted by LN (M0) while the set of reachable markings is:

RN (M0) =
{
M | ∃τ ∈ LN (M0) s.t. M0

τ
−→M

}
(2.3)

Definition 11 (reachability tree). The set of reachable markings RN (M0) can be
represented as a tree RT N (M0) where the set of nodes in RT N (M0) is represented
by the set of reachable markings RN (M0); nodeι and nodeλ in RT N (M0) (with
corresponding markingsMι and resp. Mλ) are connected by an edge (labeled t ∈ T )

that starts in nodeι and points to nodeλ if Mι
t
−→Mλ.

For each node Mι ∈ RT N (M0) denote the set of successors respectively prede-
cessors of Mι in RT N (M0) by:

Succ(Mι) =
{
Mλ ∈ RN (M0) : ∃t ∈ T s.t. Mι

t
−→Mλ

}

Pred(Mι) =
{
Mλ ∈ RN (M0) : ∃t ∈ T s.t. Mλ

t
−→Mι

}

Then denote Succ(Mι)
∗ resp. Pred(Mι)

∗ the transitive closure of the successor-
nodes resp. predecessor-nodes of a node Mι:

Succ(Mι)
∗ = Succ(Mι) ∪ Succ(Succ(Mι)) ∪ . . . ∪ Succ(. . . Succ(Mι) . . .)

Pred(Mι)
∗ = Pred(Mι) ∪ Pred(Pred(Mι)) ∪ . . . ∪ Pred(. . . P red(Mι) . . .)

A node without predecessor nodes is called a root of RT N (M0) while a node
that has no successor nodes is called a terminal node.

In Section 7.1 in Appendix we provide the pseudo-code of the Carp-
Miller algorithm for computing the reachability tree RT N (M0) (Algorithm
Reach Tree(M0)).

Consider a legal trace σ ∈ LN (M0). The Parikh vector associated with σ

is denoted
→
σ and is a | T |-vector whose element ι that corresponds with

transition tι ∈ T is given by µσ(tι) that is the number of appearances of tι in
the legal trace σ).

Lemma 1 (marking equation lemma). If M0
σ
−→ M then the following Marking

Equation holds:

M0 + F ·
→
σ = M (2.4)

(with the incidence relation F in a matrix representation)

Notice that in a general PN N , Equation 2.4 is a necessary but not suffi-
cient condition for checking if a marking M is reachable from M0 by firing a
trace σ.

However if N is acyclic then Equation 2.4 is a necessary and sufficient
condition for the reachability problem [Mur89].



2.3 Discrete Event Systems 21

t3 t9

t2

t1

t10

t11

t4 t6 t7

t5 t8

p1

p2

p3 p6

p7

p8

p4 p5

Figure 2.2:

Example 4. Consider the PN N = (P , T , F ) displayed in Fig. 2.2. The ini-
tial marking is represented by tokens (black dots) placed in some places. In this
example there are two tokens in p1 and one token in p7. The set of enabled transi-
tions in M0 is ENABLED(M0) = {t2, t3, t9, t11}. Let t2 be executed first from
M0. A token is removed from p1 and is added to p2. The resulting marking is
M ′ = {(p1, 1); (p2, 1); (p7, 1)} and the set of enabled transitions in this new state
is ENABLED(M ′) = {t1, t2, t3, t9, t11}.

Let then t11 be executed first. A token is removed from p7 and is added to p8.
The resulting marking is M ′′ = {(p1, 2), (p8, 1)} and the set of enabled transitions
in this new state is ENABLED(M ′′) = {t2, t3, t10}.

Consider a feasible sequence of transitions σ = t2t3t1t3. The Parikh vector

associated with σ is
→
σ = [1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]T .

Then the marking M that results by firing σ from M0 (M0
σ
−→M ) is calculated

from the state equation:

M = M0 + F ·
→
σ

where M0 = [2, 0, 0, 0, 0, 0, 1, 0]T ,
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F =




1 −1 −1 1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 −1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 −1 −1 0 1 0 0
0 0 0 0 0 0 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 1 −1




and M = [0, 0, 2, 0, 0, 0, 1, 0]T .

Definition 12. Given a PN N then we say that:

- if | •t |> 1 then t is an input synchronizing transition

- if | t• |> 1 then t is an output synchronizing transition

- if | p• | > 1 then p is a forward choice place and t ∈ p• is a forward choice
transition of the place p

- if | •p |> 1 then p is a backward choice place and t ∈ •p is a backward choice
transition of the place p

- a state machine is a PN N such that each transition t has exactly one input
place and exactly one output place, i.e.

∀t ∈ T , | •t | = 1 and | t• | = 1

A state machine is a PN without synchronizing transition thus tokens in a
state machine move independently; a state machine N with N tokens in a
place compactly represents N copies of an automaton having the same struc-
ture with N .

- a marked graph is a PN N such that each place has at most one output
transition, i.e.

∀p ∈ P , | p• | ≤ 1

A marked graph is a PN without choices; the temporal analysis of a marked
graph can be made using (max,+) algebra and is a lot a easier than for the
general class of PNs.

- a causal net (CN) is a PN N s.t. each place has at most one input transition
and at most one output transition, i.e.

∀p ∈ P , | p• | ≤ 1 and | •p | ≤ 1

In a causal net a token in a place p can be produced respectively removed from
p by firing unique transitions.
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Definition 13 ( [DE95]). A PN N = (P , T , F ) is free-choice if (p, t) ∈ F implies
•t× p• ⊆ F for every place p and transition t.

Equivalently N is a free-choice iff for every two transitions t1, t2 ∈ T
either •t1 ∩ •t2 = ∅ or •t1 = •t2.

Definition 14 ( [DE95]). Consider a PN N = (P , T , F ) and a node x ∈ X . The
cluster of x, denoted cluster(x), is the minimal set of nodes s.t.:

x ∈ cluster(x)

if a place p belongs to cluster(x) then p• is included in cluster(x)

if a transition t belongs to cluster(x) then •t is included in cluster(x)

We have that if x′ ∈ cluster(x) then cluster(x) = cluster(x′). Thus the
partition of a PN in clusters is unique.

Definition 15. Consider two PNs N1 = (P1, T1, F1) and N2 = (P2, T2, F2).
Then 〈N1,M01〉 is a sub-net of 〈N2,M02〉 if:

i) P1 ⊆ P2

ii) T1 ⊆ T2

iii) Pre1 = Pre2 |T1×P1

iv) Post1 = Post2 |P1×T1

v) M01 = M02 |P1

Conditions i) − iv) state that N1 is a sub-graph of N2, where conditions iii) and
iv) state that Pre1 and Post1 are the restriction of Pre2, respectively Post2 to the
domains T1 ×P1, respectively P1 ×T1. Condition v) states that the initial marking
M01 is the restriction of the marking M02 to the places P1.

If 〈N1,M01〉 is a sub-net of 〈N2,M02〉 and in addition ∀t ∈ T1, all the in-
put places and the output places of t in N2 are contained in P1 then we say that
〈N1,M01〉 is a proper sub-net of 〈N2,M02〉.

In the following, whenever we refer to N ′ as a subnet of a given PN N we
implicitly assume that N ′ is a proper subnet of N .

Definition 16 ( [Mur89]). Given a PN N = 〈P , T , F 〉 a subset of places P ′ ⊆ P
is a trap respectively a siphon if P ′• ⊆ •P ′, respectively •P ′ ⊆ P ′•.

A trap has the property that if it is marked (i.e. it has at least one token)
under some marking, then it remains marked under the successor marking.
A siphon has the property that if it is token-free (i.e. it has no token) under
some marking, then it remains token free under each successor marking.
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Definition 17. A path of a PN N is a non-empty sequence ℘ = x1 . . . xυ of nodes
that satisfies (x1, x2), . . . , (xυ−1, xυ) ∈ F . A path ℘ = x1 . . . xυ is said to lead
from x1 to xυ. A path ℘ leading from a node x to a node y is a circuit if no element
occurs more than once in it and (y, x) ∈ F . Notice that a sequence containing one
element is a path but not a circuit since (x, x) 6∈ F .

Definition 18 ( [Mur89]). A PN N = (P , T , F ) is called:

- connected if every two nodes x, y satisfy (x, y) ∈ (F ∪ F−1)∗.

- acyclic if N has no circuits.

- trap-circuit PN if the set of places in every directed circuit is a trap.

- siphon-circuit PN if the set of places in every directed circuit is a siphon.

Example 5. Consider the PN N = (P , T , F ) displayed in Fig. 2.2. ℘ = p1t3p3t6
is a path in N while ζ = p1t3p3t6p4t5 is a circuit. p1 is a choice place, and t2 and
t3 are the choice transitions of p1. N is not a free-choice net because •t4 ∩ •t6 6= ∅
and •t4 6= •t6. The clusters associated with t4, t6, t7 are equal: cluster(t4) =
cluster(t6) = cluster(t7) = {p3, p6, t4, t6, t7}.

2.3.4 Properties of PNs

Lemma 2 (monotonicity). Given 〈N ,M0〉 and 〈N ,M ′0〉 such that M0 ≤ M ′0
then:

LN (M0) ⊆ LN (M ′0) (2.5)

Definition 19. A PN 〈N ,M0〉 is bounded if for every place p ∈ P there is a natural
number k s.t. M(p) ≤ k for anyM ∈ RN (M0). 〈N ,M0〉 is k-bounded if no place
has a bound greater than k. If the bound k is equal to 1 for all places p ∈ P , then
〈N ,M0〉 is 1-safe PN.

Lemma 3 (boundedness lemma). Let 〈N ,M0〉 be bounded and M ∈ RN (M0).

If M ≤M ′ and M
τ
−→M ′ then M = M ′.

Definition 20. Given N = (P , T , F ) and T ′ ⊆ T then N is structurally bounded
w.r.t. T ′ iff for any initial marking M0 ∈ N |P| and ∀τ ∈ T ′∗ we have that:

if M0
τ
−→M and M0 ≤M then M0 = M

Definition 21. Consider a PN 〈N ,M0〉 and a labeling function l : T → Ω where
Ω is a set of labels. Then extend the definition of l to strings in the obvious manner
i.e. for τ ∈ T ∗, τ = t1t2 . . . tλ we have l(τ) = l(t1)l(t2) . . . l(tλ).

The labeled language generated by 〈N ,M0〉 is:

Ll
N (M0) = {l(τ) : τ ∈ LN (M0)}
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Definition 22. Denote by T ∗ the Kleene closure of the set T . Then let σ ∈
LN (M0) ⊆ T ∗ and T ′ ⊂ T . The projection ΠT ′ : LN (M0) → T ′∗ is defined
as:

i) ΠT ′(ǫ) = ǫ;

ii) ΠT ′(t) = t if t ∈ T ′;

iii) ΠT ′(t) = ǫ if t ∈ T \ T ′;

iv) ΠT ′(σt) = ΠT ′(σ)ΠT ′(t) for σ ∈ LN (M0) and t ∈ T .

Example 6. For the PN displayed in Fig. 2.2 consider a labeling function l : T →
{a, b} where l(tι) = a if ι is even and l(tι) = b if ι is odd. For σ = t9t2t3t1t3t6 we
have l(σ) = babbba.

Consider T ′ = {t1, t2, t3, t4, t5}. The projection of σ on to T ′ is ΠT ′(σ) =
t2t3t1t3. Then for Ω′ = {a}, the projection of l(τ) on to Ω′ is ΠΩ′(l(τ)) = aa.

Definition 23. A P-invariant of a PN N is a rational-valued solution of the equa-
tion X · F = 0 where X is a | T |-vector and 0 is a | P | vector that has all its
elements 0. We call a P-invariant X semi-positive if ∀t ∈ T , X(t) ≥ 0 and X 6= 0

while a P-invariant X is called positive if X(p) > 0 for all p ∈ P .

Proposition 1. Given 〈N ,M0〉, let X be a P-invariant of N . If M0
·
−→ M then

X ·M0 = X ·M

Definition 24. A T-invariant of a net N is a rational-valued | P |-vector solution
of the equation F ·X = 0.

Proposition 2. Let σ be a finite sequence of transitions of a PN N which is enabled

at a marking M . Then the Parikh vector
→
σ is a P-invariant if M

σ
−→ M (i.e., if the

occurrence of σ reproduces the marking M ).

Example 7. Consider the PN 〈N ,M0〉 displayed in Fig. 2.2. The Parikh vectors
→
σ ι (ι = 1, . . . , 5) of the following traces are P-invariants in 〈N ,M0〉: σ1 = t1t2;
σ2 = t3t4; σ3 = t11t10; σ4 = t9t7; σ5 = t3t9t6t5t8. Notice that the addition vector
→
σ ιλ of two vectors

→
σ ι and

→
σλ that are P-invariants (

→
σ ιλ =

→
σ ι +

→
σλ) is also a

P-invariant.

2.4 The observations and the fault representation

for PN models

As already mentioned in the introduction, our aim is to design on-line algo-
rithms for fault detection and diagnosis. Generally speaking this task com-
prises two steps: i) to derive the plant behaviour that explains the plant
observation and then ii) to check whether ”something wrong” has happened



26 Mathematical background for Petri Net models

in the plant or not. In this section we discuss how such faults are represented
in the models and how the plant observation (sensor readings) can be taken
into account in the on-line algorithms.

2.4.1 The plant observation

We consider in the following the most common way of representing the plant
observations that is event-observations (the event occurrences are reported),
although state-observation (the place marking is observed) or a combination
of observation of both places and transitions is possible.

Consider a labeling function lo : T → Ω, with Ω the set of observation-
labels lo(t) that are received by the monitoring systems when the event t is
executed. Thus lo may be interpreted as the observation mask under which
the monitoring/supervisory systems observes the occurrences of the events
in the plant. The observation and fault detection problem becomes interest-
ing because in practice sensors are attached only to some events in the plant.
Thus let T be partitioned into two disjoint sets T = To ∪ Tuo where To de-
notes the set of observable events and Tuo denotes the set of unobservable
events. Notice that the assumption we made implies that the occurrence of
an unobservable event is silent (i.e. it is not at all notified to the monitoring
system) since there is no sensor at all to do this.

Hence, to formally model this, let the observation labeling function be
defined as follows (recall that ǫ is the empty string and ǫa = a = aǫ and Ωo

does not include ǫ).

Definition 25. Given a PN N = (P , T , F ) and a partition T = To ∪ Tuo, then
lo : T → Ωo ∪ {ǫ} is the observation labeling function of N where lo(t) ∈ Ωo if
t ∈ To and lo(t) = ǫ if t ∈ Tuo.

If lo is s.t. ∀ tι, tλ ∈ To, lo(tι) = lo(tλ) ⇒ tι = tλ we say that the observation
labeling function lo is deterministic (injective in To) otherwise lo is said to be a
non-deterministic observation function.

To simplify the notation we present in this thesis only the design of the
fault detection and diagnosis algorithms for a deterministic observation of
the plant, and we only discuss briefly in some remarks what are the impli-
cations of a non-deterministic labeling on the construction of the algorithms.
Thus unless otherwise stated, lo is a deterministic observation and obviously
we chose the label that is emitted by an observable transition to be the name
of the transition.

Assumption 1. Unless otherwise stated we also make the following important as-
sumptions:

1 the observation is emitted and received correctly (no corrupted messages)

2 the observation is always received (no loss of observation)
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3 the observation is totally ordered i.e. if lo(tι) was received before lo(tλ) then
tι happened before tλ

Notice that item 2 and 3 in Assumption 1 above maybe relaxed if one
assumes a maximal bound on the number of observed events that are lost
[LZ02] respectively a maximum delay in receiving the plant observation
[DLT03]. Notice that item 1 can also be relaxed but all three relaxations are
beyond the scope of this thesis.

Formulation of the basic observation problem

Consider a PN model 〈N ,M0〉 where T = To ∪ Tuo and lo is the observa-
tion labeling function. When the feasible string of transitions τ ∈ LN (M0),
τ = t1t2 . . . tλ is executed by the plant, the observation that is received by
the monitoring system (denoted O) is O = lo(τ). If lo is deterministic (i.e.
lo(tι) = tι for toι ∈ To) we have that O = ΠTo

(τ).

Conversely given a received observation O = to1t
o
2 . . . t

o
n the set of plant

behaviours that obey (and explain) the observation O is:

LN (O) = {τ ∈ LN (M0) | ΠTo
(τ) = O} (2.6)

2.4.2 Fault representation

As stated in the introduction, the paradigm for fault detection and diagnosis
that we choose is to explicitly represent all the faults that the model-based
fault detector can and must detect.

As commonly accepted a fault is understood as any kind of malfunction
in the plant, that leads to unacceptable future behaviour of the overall plant
[Fra90].

In this work the faults in the PN models are represented as (fault)
transitions whose occurrence indicates a malfunction in the plant behav-
ior [SSL+95]. Obviously the set of fault transitions (denoted Tf ) is a subset
of the set of unobservable transitions (Tf ⊆ Tuo) since otherwise the fault
detection problem would be trivial.

The fault labeling function lf is defined on Tf taking values on the set of
fault-labels Ωf (lf : Tf → Ωf ). By lf we represent that a fault event t ∈ Tf is
of kind Fι if lf (t) = Fι. Unless otherwise stated we assume in this thesis that
lf is injective and then choose as fault-label the name of the fault transition.

Beside the fact that a fault must be unobservable, it must also be unpre-
dictable, i.e. for any state the plant can be in before the occurrence of a fault
at least one no-fault event is legal according to the plant model; otherwise
the fault would be imminent or predictable and, consequently, the model is
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regarded as incorrect (an earliest event should have been labeled as a fault).
We formalize this as follows.

Assumption 2. Given a PN model 〈N ,M0〉 and Tf (Tf ⊆ Tuo) the set of fault
transitions, then for any reachable state M ∈ RN (M0), at least one non-fault tran-
sition t, t ∈ T \ Tf is enabled, that is:

∀M ∈ RN (M0), ENABLED(M) 6⊆ Tf

The straightforward implication of Assumption 2 is that:

if t ∈ Tf then ∃t′ ∈ T \ Tf s.t. •t ∩ •t′ 6= ∅

In words Assumption 2 says that: ”a fault is the choice of the plant of not respect-
ing the good (designed) behavior”.

Remark 2. Notice that there are some other representations of a fault for Petri Net
models (and DES in general). Among others a fault may also be represented:

- by the violation of the model dynamics e.g. tokens may disappear from
places or the execution of a transition violates the firing rule [HV99] (e.g. not
producing tokens in the output places); similarly for automata models a fault
may be represented by the execution of an event that leads to a state different
than the one specified by the transition function [OW90].

- or by logical propositions defined over a set of logical variables that comprise
both places and transitions [JK04]

2.5 Occurrence Nets and Net Unfolding

Unfortunately the complexity of the PN reachability analysis has been
proven to be EXPSPACE-hard in the general case. This is because in the
standard reachability algorithm (the Carp-Miller algorithm) all the possible
interleavings of the concurrent transitions are considered.

The methods that were proposed for reducing the state-space explosion
problem are based on the observation that for reachability analysis not all
interleavings of a given set of independent transitions need to be considered.

Among others (e.g. stubborn sets [Val90] and persistent sets [GW93]) a
method that has received a lot of consideration over the past years is that
of net unfoldings [Eng91], [McM93], [Esp94].

The unfolding of a PN is an occurrence net (i.e. an ordinary Petri Net
without cycles) that is behaviorally equivalent with the original net. Unfold-
ings are usually infinite nets. However it is always possible to construct a fi-
nite initial prefix of the unfolding which captures its entire behavior [McM93].
The initial prefix of the unfolding has the property that it contains all the
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reachable states of the whole unfolding and being finite it can be stored in
a computer. Besides initial prefixes can be constructed such that they are
never larger and in general a lot smaller than the state space of the original
PN [ERV96].

Thus the net unfolding technique represents a useful technique for at-
tacking the state explosion problem since for PN models whose degree of
concurrency is high compared to their degree of (forward) branching the un-
folding method reduces the cost of the analysis from exponential in the size
of parameter to polynomial.

The second advantage of unfoldings is that they contain information
about causality, conflicts, and concurrency. As it will be presented later this
is very useful in a distributed setting to derive the causality between the
border-conditions, information that is required to be exchanged between the
local agents for achieving the consistency of their local results.

t2
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t3

t4t5

p1

p2 p4

p3

p5p6 p7

t6 t7

p9p8

Figure 2.3:

Definition 26. Given a PN N = (P , T , F ) the immediate dependence relation
�1⊂ (P × T ) ∪ (T × P) is defined as:

∀(a, b) ∈ (P × T ) ∪ (T × P) : a �1 b if F (a, b) 6= 0

Then define � as the transitive closure of �1 (�=�∗1).

Example 8. Consider the PN N = (P , T , F ) displayed in Fig. 2.3. We have that
p1 � t2 � p2 � t1.

Definition 27. Given a PN N = (P , T , F ) the immediate conflict relation ♯1 ⊂
T × T is defined as:

∀(t1, t2) ∈ T × T : t1♯1t2 if •t1 ∩
•t2 6= ∅

Then define ♯ ⊂ (P ∪ T ) × (P ∪ T ) as:
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∀(a, b) ∈ (P ∪ T ) × (P ∪ T ) : a♯b if ∃t1, t2 s.t. t1♯1t2 and t1 � a and t2 � b

Example 9. Consider the PN N = (P , T , F ) displayed in Fig. 2.3. We have that
t1♯1t5 and t4♯1t5 are in immediate conflict. t6♯t5 since t1 � t6 and t1♯1t5.

Definition 28. Given a PN N = (P , T , F ) the independence relation ‖ ⊂ (P ∪
T ) × (P ∪ T ) is defined as:

∀(a, b) ∈ (P ∪ T ) × (P ∪ T ) : a‖b⇒ ¬(a♯b) ∧ a 6� b ∧ b 6� a

Example 10. Consider the PN N = (P , T , F ) displayed in Fig. 2.3. We have that
t2 ‖ t3, p6 ‖ t4, etc.

Definition 29. Given two PNs N = (P , T , F ) and N ′ = (P ′, T ′, F ′), φ is a
homomorphism from N to N ′, denoted φ : N → N ′ where:

1. φ(P) ⊆ P ′ and φ(T ) ⊆ T ′

2. ∀t ∈ T , the restriction of φ to •t is a bijection between •t and •φ(t)

3. ∀t ∈ T , the restriction of φ to t• is a bijection between t• and φ(t)•

t’2t’1 t’3 t’4

t’5

p’1

p’2 p’4

p’3

p’5

Figure 2.4:

Example 11. Consider the PN N = (P , T , F ) displayed in Fig. 2.3 and the PN
N ′ = (P ′, T ′, F ′) displayed in Fig. 2.4. Then consider φ : N → N ′ defined as:
- φ(pι) = p′ι for ι = 1, 2, 3, 4, 5
- φ(p6) = p′1; φ(p7) = p′3; φ(p8) = p′2; φ(p9) = p′4
- φ(tι) = t′ι for ι = 1, 2, 3, 4, 5
- φ(t6) = t′2; φ(t7) = t′3;

Definition 30. An occurrence net is a net O = (B,E,�1) such that:

i) ∀a ∈ B ∪ E : ¬(a � a) (acyclic)

ii) ∀a ∈ B ∪ E : | {b : a � b} |<∞ (well-formed)
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iii) ∀b ∈ B : | •b |≤ 1 (no backward conflict)

In the following B is referred as the set of conditions while E is the set of
events. Denote by Xcon a set of pairwise concurrent nodes, by Xcon

E a set of
concurrent events, and by Xcon

B a set of concurrent conditions. A maximal
(w.r.t. set inclusion) set of concurrent conditions is called a CUT .

Example 12. The PN N = (P , T , F ) displayed in Fig. 2.3 is an occurrence net
where P stands for B, T stands for E and F =�1. CUT1 = {p1, p3}; CUT2 =
{p2, p3}; CUT3 = {p1, p9}, . . ..

Remark 3. The partial order relation � introduces the roughest notion of time. For
instance a, b ∈ E s.t. a ≺ b can be interpreted as ”a happens before b”.

Definition 31. A configuration C = (BC , EC ,�) in the occurrence net O is de-
fined as follows:

i) C is a proper sub-net of O (C ⊆ O)

ii) C is conflict free, i.e. ∀a, b ∈ (BC ∪ EC) × (BC ∪EC) ⇒¬(a♯b)

iii) C is causally upward-closed, i.e. ∀b ∈ BC ∪ EC : a ∈ B ∪ E and a �1 b⇒
a ∈ BC ∪ EC

iv) min�(C) = min�(O)

Denote by C the set of all the configurations C of the occurrence net O.

Definition 32. Consider a PN 〈N ,M0〉 s.t. ∀p ∈ P : M0(p) ∈ {0, 1}. A branch-
ing process B of a PN 〈N ,M0〉 is a pair B = (O, φ) where O is an occurrence net
and φ is a homomorphism φ : O → N s.t.:

1. the restriction of φ to min�(O) is a bijection between min�(O) and M0 (the
set of initially marked places)

2. φ(B) ⊆ P and φ(E) ⊆ T

3. ∀a, b ∈ E : ( •a = •b) ∧ (a• = b•) ⇒ a = b

For a PN N = 〈P , T , F 〉 with an initial marking M0 ∈ N|P| s.t. ∀p ∈ P ,
M0(p) ≤ 1 the branching process B = (O, φ) of 〈N ,M0〉 is constructed in the
following way (see [McM93]):

1. For each place p that contains a token in the initial marking M0 make
a condition-node b in the occurrence net and then label the condition-
nodes appropriately (φ(b) = p).

2. Choose a transition t from T .
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3. For each place p′ in N that is an input place to t (p′ ∈ •t) find a
condition-node b′ in the occurrence net whose label corresponds to p′

(φ(b′) = p′) and mark it with a token (if you can’t find a copy, go back to
step 2). For a given t, do not choose the same subset of condition-nodes
in the occurrence net twice.

4. If any of the places that are marked with tokens are not concurrent, go
to step 2. Notice that two condition-nodes b, b′ in the occurrence net
are said to be concurrent if:

(a) there is not an oriented path from b to b′ or vice-versa (no causal
relation between b and b′)

(b) and there is not third place b′′ from which are distinct oriented
paths that reach b and b′ (no conflict between b and b′)

5. Make an event-node e in the occurrence net and label it φ(e) = t. Draw
an arrow from every condition-node b′ that was marked in the occur-
rence net to e. Erase the tokens.

6. For each place p′′ that is an output place of t in N (p′′ ∈ t•) make a
condition-node b′′ in the occurrence net and label it φ(b′′) = p′′ and
draw an arc from e to b′′

7. Repeat the steps 2 − 6

Denote by C⊥ = (BC⊥ , EC⊥ ,�) the initial configuration of the occur-
rence net O where BC⊥ = {b ∈ B : •b = ∅} is the set of condition-nodes in
O that correspond with the places that contain a token in initial marking
(BC⊥ = min�(O)) and EC⊥ = ∅.

For a configuration C in O denote by CUT (C) the maximal (w.r.t. set
inclusion) set of conditions in C that have no successors in C:

CUT (C) = {e• | e ∈ EC} ∪ min�(O) \ { •e | e ∈ EC}

Then denote by mark(C) the marking in N that corresponds with
CUT (C):

mark(C) = φ(CUT (C))

Obviously we have that CUT (C⊥) = BC⊥ = min�(O) and mark(C⊥) =
φ(CUT (C⊥)) = M0 (where a marking is seen as a multi-set of tokens).

Then denote by ENABLED(C) the set of transitions that are enabled in
N from the marking mark(C).

For an enabled transition t make an event e s.t. t = φ(e) as described by
the steps 2-6 above. We say that C is extended by e and denote the configu-
ration that is obtained by C′ = C⊙e. We have that C′ = (BC′ , EC′ ,�) where
BC′ = BC ∪ {e•} and EC′ = EC ∪ {e}.
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Consider two configurations C and C′ s.t. C′ is obtained from C by ap-
pending the events e1, . . . , eq (C′ = C ⊙ e1 ⊙ . . . ⊙ eq). We have that C is a
proper sub-net of C′ and we say that C is a prefix of C′ and denote this as
C ⊏ C′.

For a PN N = (P , T , F ) with a general initial marking M0 ∈ N|P| the
branching process O of 〈N ,M0〉 is constructed as follows (see [Eng91]):

1. let N ′ = 〈P ′, T ′, F ′〉 where:

1.1 P ′ = P ∪ {Pstart}

1.2 T ′ = T ∪ {Tstart}

1.3 ∀(a, b) ∈ (P × T ) ∪ (T × P) : F ′(a, b) = F (a, b)

1.4 for each marked place p and for each token in M0(p) we have
pstart, tstart s.t. pstart

• = tstart ∧ t
•
start = p

1.5 ∀pstart ∈ Pstart,
•pstart = ∅

1.6 let M ′0(p) = 1 for p ∈ Pstart and M ′0(p) = 0 otherwise

2. construct O′

3. remove Pstart, Tstart and their corresponding arcs

Definition 33. Given a PN 〈N ,M0〉 and two branching processes B,B′ of PN
〈N ,M0〉 then B′ ⊑ B if there exists an injective homomorphism ψ : B′ → B s.t.
ϕ(min(B′)) = min(B) and φ ◦ ϕ = φ′.

There exists (up to an isomorphism) an unique maximum branch-
ing process (w.r.t. ⊑) that is the unfolding of 〈N ,M0〉 and is denoted
UN (M0) [McM93], [Esp94]. Then denote by C the set of all the configurations
in UN (M0).

Definition 34. Given the unfolding UN (M0) of a PN 〈N ,M0〉 and an event-node
e then C(e) = (BC(e), EC(e),�) is the minimal configuration that explains the
execution of e where:

1. EC(e) = {e′ ∈ E : e′ � e}

2. BC(e) =
{
b | b ∈ min�(UN ) ∨ b ∈ •e′• for some e′ ∈ EC(e)

}

As already mentioned unfoldings are usually infinite nets. As shown in
[McM93] it is always possible to construct a finite initial prefix of the unfold-
ing which captures its entire behavior by deriving the set of cut-off events.
An event e is a cut-off event in the unfolding if there exists another event
e′ s.t. i) φ(C(e)) = φ(C(e′)) and ii) C(e′) ⊏ C(e). The idea is that the
continuations of UN (M0) from C(e) and C(e′) are isomorphic. Notice that
the construction of the initial prefix as presented in [McM93] was improved
in [KTKT95] and [ERV96] where is shown that a smaller initial prefix can be
computed but this is beyond the purpose of this thesis.
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Example 13. Consider the PN displayed in Fig. 2.5. The unfolding net UN (M0)
is constructed as follows (see Fig. 2.6). First define the condition nodes that corre-
spond to the tokens in M0: b8, b0 and bb0. Notice that for the sake of simplicity in
notation we use for condition-nodes bι,bbι and for event nodes eι, eeι with upper
indexes prime and double prime to represent conditions that correspond to a place pι

respectively a transition tι.

Then we have the initial configuration C⊥ = (BC⊥ , EC⊥ ,�) where BC⊥ =
{b8, b0, bb0} and EC⊥ = ∅.

For instance by appending e8 to C⊥ we obtain the configuration C1 = C⊥⊙ e8
where C1 = (BC1 , EC1 ,�) withBC1 = BC⊥ ∪e

•
8 and EC1 = EC⊥ ∪{e8}. For C1

we have CUT (C1) = {b7, b0, bb0} and mark(C1) = φ(CUT (C1)), mark(C1) =
{(p7, 1); (p0, 2)}. Then in C1 we have the set of enabled events:

ENABLED(C1) = {t0, t1, t2, t10}

that is the set of transitions that are enabled in N in the marking mark(C1) .

If e0 is appended to C⊥ we obtain the configuration C2 = C⊥ ⊙ e0 where
C2 = (BC2 , EC2 ,�) with BC2 = BC⊥ ∪ e•0 and EC2 = EC⊥ ∪ {e0}. For C2 we
have CUT (C2) = {b8, b1, b2, bb0} and mark(C2) = φ(CUT (C2)), mark(C2) =
{(p8, 1); (p1, 1); (p2, 1); (p0, 1)}. Then in C2 we have the set of enabled events:

ENABLED(C2) = {t0, t1, t2, t4, t8, t9}
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that is the set of enabled transitions in the marking mark(C2) in N .

From CUT (C⊥) = {b8, b0, bb0} all the enabled transitions are appended, in
this example e8, e9, e0, e1, e2, ee0, ee1, ee2 as well as their output conditions.

Notice that e8♯e9, e0♯e1, e1♯e2, e0♯e2, and ee0♯ee1, ee1♯ee2, ee0♯ee2.

A prefix of the unfolding UN (M0) is displayed in Fig. 2.6 where the dotted
lines emphasize this. Consider the node e6 in UN (M0). We have that C(e6) =
(BC(e6), EC(e6),�) is the minimal configuration that explains the execution of e6
where:

1. EC(e6) = {e6, e3, e11, e10, e8, e0}

2. EB(e6) = {b8, b0, bb0, b7, b10, b9, b1, b2, b4, b6}

The set of linearizations for (EC(e6),�) is:

〈EC(e6)〉� = {e0e8e10e11e3e6; e8e0e10e11e3e6; e8e10e0e11e3e6; e8e10e11e0e3e6}
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2.6 Basics on modeling with DES

Generally speaking a DES is a system whose state changes with the occur-
rence of an event and not by the time flow. A DES model can easily be un-
derstood considering as an example the chess game. The initial state for this
example is represented by the initial position of the pieces on the board. Ac-
cording to the chess game rules we have a set of legal moves that can be
executed. Executing a legal move (event) from a position (state) results in a
new position (state). In the new position the distribution of the pieces on the
board allows in general for some new moves that were not legal previously
while some moves that could have been executed in the previous position
may become illegal in the new position.

The DES models arise from two different categories of systems. The first
category includes the sequential concurrent processes (e.g. networks of com-
puters, communication protocols, FMS, etc.) where the DES paradigm suits
perfectly with the discrete nature of the dynamics of the process under inves-
tigation. The second category is represented by hybrid systems (that cover
most of the real-world systems) where the behavior of a component is de-
scribed both by continuous variables and by discrete variables. Abstract
DES models (quantizing continuous variables to discrete variables [Lun00])
of these hybrid systems are often appropriate for designing efficient algo-
rithms for solving fault diagnosis, control or optimization problems.

To illustrate the first category of DES models consider a device Dev that
performs the following activities:

- initially Dev is IDLE (ready for operation)

- at any time while Dev is IDLE an unexpected reset event may occur
that makes Dev UNAV AILABLE for operation

- when Dev is UNAVAILABLE some repairing actions are taken and
an event recover brings back Dev in the IDLE state

- when Dev is IDLE, some conditions that are not modeled in the DES
model may provoke Dev to execute the event alert that moves the de-
vice in the ACTIV E state (the event alert will typically be synchro-
nized with an event in the model of another component of the plant)

- from the ACTIV E state, the device can return to the IDLE state (if
some conditions are fulfilled by some other plant component) or it can
operate by performing a certain action

- after operating (executing the action event), Dev moves to the PAUSE
state from where it returns to the IDLE state

The cyclic behavior of the above specified device can be represented by
the deterministic automaton G = (X,E, f, g, x0) displayed in Fig. 2.7 where:
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1. X = {UNAV AILABLE, IDLE,ACTIV E, PAUSE}

2. E = {reset, recover, return1, alert, action, return2}

3. the transition function f is a partial function defined as follows:

f(IDLE, reset) = UNAVAILABLE

f(IDLE, alert) = ACTIV E

f(UNAV AILABLE, recover) = IDLE

f(ACTIV E, return1) = IDLE

f(ACTIV E, action) = PAUSE

f(PAUSE, return2) = IDLE

not defined for the rest of domain

4. the active event function is:

(a) g(IDLE) = {reset, alert}

(b) g(UNAV AILABLE) = {recover}

(c) g(ACTIV E) = {return1, action}

(d) g(PAUSE) = {return2}

5. the initial state is x0 = IDLE

1 3 42

a : reset

b : recover

c : alert

d : return1

d : return2

e : action

IDLE
ACTIVE

UNAVAILBLE PAUSE

Figure 2.7:

Consider a labeling function l : E → {a, b, c, d}. The events in G are
deterministically labeled except for the two events return1 and return2 that
have the same label d.

Now consider the case of two identical devices, modeled by two au-
tomataG1 andG2 having the same description as the device above discussed
except the fact that when the event action is executed, it is executed but only
if it is simultaneously legal in both devices. To model this we bind up the
two events named action by a bar as displayed in Fig. 2.8. It means that
the event operation is executed jointly only if the state of both devices is
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ACTIV E. The event action is a synchronizing event and it defines an im-
portant operation on automata namely the synchronous product that allows
for modeling and analysis of large and complex systems [CL99].

Taking a better look at the example presented in Fig. 2.8 one may see that
the composition of the two automata G1 and G2 via the synchronizing event
is structurally identical with the PN model displayed in Fig. 2.2.
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Figure 2.8:

This is natural since an automaton may be seen as a PN state-machine
whose marking comprises a single place marked with one token. Thus be-
haviorally speaking the synchronous composition of G1, G2 is equivalent
with the PN N displayed in Fig. 2.2 if the initial marking would be M ′0 =
{(p1, 1), (p7, 1)} instead of M0 = {(p1, 2), (p7, 1)}.

Notice that the presence of the second token in p1 (see Fig. 2.2) makes
the representation in terms of composition of automata more difficult. The
main advantage of PNs is that it provides a more compact representation
of the state space comparing with a model that results as a composition of
automata. Notice moreover that not all Petri Nets can be translated in finite-
state automata. Some PN of interest for applications may have unbounded
markings.
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DES models may also be obtained as abstractions of hybrid systems in-
volving both continuous and discrete variables. To illustrate the modeling
of a system with a hybrid dynamic consider the case of a power distribu-
tion line where at the supplying end of the line there is a circuit-breaker (CB)
that connects and disconnects the line in case of emergency or in case that
this is required by the plant operation. Assume that the current flow is the
variable of interest. Even though the current flow is a continuous variable,
for some purposes (say diagnosis, optimization) it can be discretized into a
finite number of discrete-variable values e.g. as follows (see Fig. 2.9):

1. NORMAL - when the r.m.s value of the current is in the normal range

2. HIGH - when the r.m.s value of the current exceeds a threshold value,
that jeopardizes the safe operation of the line

3. LOW - when the line is disconnected from the network and there is no
power flow

The current flow state of the line changes discretely because of the occur-
rence of some events. E.g. when the state of the line is NORMAL the occur-
rence of a short circuit (sh sc) increases the current through the line and the
new state of the line is HIGH . Then by disconnecting the circuit-breaker the
line state changes to LOW as it is displayed in Fig. 2.9.

Notice first that in the above described example the time is not specifi-
cally considered. There is no indication how long an operation takes (e.g.
which is the time required for the CB to open). The (untimed) model pro-
vides a high level (abstract) description of the logic plant behavior (e.g. the
plant evolution can be described by a sequence of events but not the exact
time of their occurrence).

Moreover the transient phenomena that accompany an abrupt change in
the plant (a switch, a lightning strike, a short circuit, etc.) are not explicitly
considered. This is because the plant behavior that is not relevant for the
problem under consideration is not modeled. Moreover there is the assump-
tion that the model is causally closed (closed world assumption) i.e. the oc-
currence of an event may have some unknown or irrelevant causes that are
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not modeled. For instance the unpredictable occurrence of a lightning strike
that provokes a short-circuit is determined by the environment and not by
the line model.

2.7 The distributed/modular analysis of the plant

For large systems the analysis cannot practically be performed monolithi-
cally. The reason is that that overall plant calculation becomes intractable
because of the state space explosion. If we consider the plant composed by
different components (sites, sub-systems), the overall plant behaviour (his-
tory) may be represented by a collection of individual histories and the over-
all plant state space analysis decomposes in the analysis of (consistent) local
state spaces.

However the advantage of calculating local state spaces (of size a lot
smaller then the size of the overall plant) may be ”compensated” by a huge
amount of information that has to be exchanged for checking the consistency
of the local results.

Let N be the PN model of a large system. The flat overall plant model
may be seen as composed by several components where each component is
modeled by a PN Ni, i ∈ J .

There are several composition rules for assembling the PN models Ni

(i ∈ J):

- composition via common transitions [SR92]

- composition via common places [Val94], [GL03], [BFHJ03], [BJ04],
[FBHJ05], [GL05], [JB05a]

- composition via guards (logical propositions) attached to some transi-
tions, where the guards are defined over the marking of some places
on the overall plant [BJ03a], [JB06].

Consider two local PN models Ni = (Pi, Ti, Fi) and Nj = (Pj , Tj , Fj).
The composed PN model of Ni and Nj is N = (Pi ∪ Pj , Ti ∪ Tj , Fi ∪ Fj)
where Fi |(Pi∩Pj)×(Ti∩Tj)= Fj |(Pi∩Pj)×(Ti∩Tj

).

We say that Ni and Nj are:

transition-bordered if Pi ∩ Pj = ∅ and Ti ∩ Tj 6= ∅

place-bordered if Pi ∩ Pj 6= ∅ and Ti ∩ Tj = ∅

The intuitive interpretation of the shared (common) part of two PN mod-
els is that it represents the interactions between two components of the over-
all plant.
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For transition-bordered nets, the shared transitions synchronize parts of
the components i.e. the execution of a shared transition takes place simulta-
neously in both components.

On the other hand, in place-bordered nets the interaction is different since
for untimed models it is required that the number of tokens that enter a local
model (say Ni) via a border place pINi

is smaller than the number of tokens
that could leave the corresponding local PN model that has pINi

as a border
place.

Consider again the case of two PN models 〈Ni,M0i
〉 and 〈Nj ,M0j

〉 and
their composed PN model 〈N ,M0〉, i.e. N = Ni ∪ Nj and M0 = M0i

⊎M0j

(where ⊎ denotes the union with addition of two multi-sets and a marking
is considered a multi-set of tokens). Then we have that:

a feasible trace τ ∈ LN (M0) in 〈N ,M0〉 is a pair τ = (τi, τj) of local
traces τi resp. τj , where τi resp. τj are the projection of τ on to Ti

respectively Tj (ΠTi
(τ) = τi and ΠTj

(τ) = τj )

a reachable marking M ∈ RN (M0) in 〈N ,M0〉 is a pair M = (Mi,Mj)
of local markings Mi resp. Mj , where Mi resp. Mj are the subvectors
of M that correspond with the set of places Pi respectively Pj .

The key issue of a modular/distributed algorithm is that instead of a
monolithic analysis of the plant, firstly each component is analyzed in isola-
tion and then it is checked to have a consistent behaviour with all the other
components.

The analysis of each component in isolation gives rise to a major difficulty
namely the analysis of a PN (the PN model of the component) with incom-
plete knowledge on the marking of the border places (i.e. the number of the
tokens that enter a component via the common places is unknown).

For instance consider two PNs displayed in Fig. 2.10 where Ni and Nj

are place-bordered nets that model two components of a plant. The in-
teractions between the components are represented by the common places
PINi

= POUTj
and PINj

= POUTi
.

Thus we have that tokens from Ni can leave via the output places POUTi

and enter Nj via the input place PINj
and similarly tokens from Nj can leave

via the output place POUTj
and enter Ni via the input places PINi

.

Consider the analysis of component i in isolation. The main difficulty is
that via the input places PINi

=
{
p1

INi
, . . . , pm

INi

}
tokens can enter compo-

nent i from component j.

In this case we are faced with the analysis of a PN model whose initial
marking is partially unknown i.e. it is known the number of tokens that are
in the places that are in Ni and are marked in the overall initial marking M0

but via PINi
an arbitrary number of tokens can enter Ni.

Consider for Ni two initial markings M ′0i
and M ′′0i

s.t. ∀p ∈ Pi \ {PINi
}
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i

p1
INi=

p1
OUTj

pm
Ni

= pm
OUTj

pq
OUTi

= pq
INj

p1
OUTi = p1

INj

M0i j M0j

Figure 2.10:

we have that M ′0i
(p) = M ′′0i

(p) and ∀pINi
∈ PINi

, M ′0i
(pINi

) ≤M ′′0i
(pINi

).

By Proposition 2 we have that LNi
(M ′0i

) ⊆ LNi
(M ′′0i

) that intuitively may
be understood as: the more tokens enter component i PN model Ni, the more local
traces in Ni are possible.

Then denote by MNi
(M ′0i

) and MNi
(M ′′0i

) the set of markings that can
be obtained by firing the traces considered by LNi

(M ′0i
) and LNi

(M ′′0i
) re-

spectively:

MNi
(M ′0i

) =

{
M ′i | ∃τ

′
i ∈ LNi

(M ′0i
) s.t. M ′0i

τ ′i−→M ′i

}

MNi
(M ′′0i

) =

{
M ′′i | ∃τ ′′i ∈ LNi

(M ′′0i
) s.t. M ′′0i

τ ′′i−−→M ′′i

}

Since LNi
(M ′0i

) ⊆ LNi
(M ′′0i

) we have that ∀M ′ ∈ MNi
(M ′0i

), ∃M ′′ ∈
MNi

(M ′′0i
) s.t. M ′ ≤ M ′′. This result can be intuitively understood as: the

more tokens enter Ni via the input border places PINi
, the more tokens can leave Ni

via the output border places PINi
.

For M ′0i
and M ′′0i

defined above denote U ′Ni
(M ′0i

) and U ′′Ni
(M ′′0i

) the net
unfolding of 〈Ni,M

′
0i
〉 respectively the net unfolding of 〈Ni,M

′′
0i
〉. Denote

∆M0i
= M ′′0i

−M ′0i
the difference between the two initial markings. Notice

that ∆M0i
(p) 6= 0 ⇒ p ∈ PINi

.

Under a proper labeling we have that U ′′Ni
(M ′′0i

) ⊑ U ′Ni
(M ′0i

). Denote
by ∆UNi

(∆M0i
) the sub-net of U ′′Ni

(M ′′0i
) that comprises events that are not
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included in U ′Ni
(M ′0i

):

∆UNi
(∆M0i

) = U ′′Ni
(M ′′0i

) \ U ′Ni
(M ′0i

)

Denote by ∆B(INi) and ∆B(OUTi) the set of input-border conditions
respectively the set of output-border conditions in ∆UNi

(∆M0i
):

∆B(INi) = {b ∈ ∆UNi
(∆M0i

) : φ(b) ∈ PINi
}

∆B(OUTi) = {b ∈ ∆UNi
(∆M0i

) : φ(b) ∈ POUTi
}

We have that ∀bOUTi
∈ ∆B(OUTi) ⇒ ∃bINi

∈ ∆B(INi) s.t. bINi
� bOUTi

that simply says that the extra-tokens that can be produced at the output bor-
der places POUTi

are consequences (predecessors) of the extra-tokens (∆M0i
)

that are assumed in the initial marking at the input border places PINi
of

component i.

Consider in the overall model N an initial marking M0 and assume for
simplicity that the border places are not marked inM0 i.e. ∀p ∈ POUTi

∪PINi
,

M0(p) = 0. Denote by M0i
and M0j

the local initial markings of component
i, respectively component j (M0i

(p) = M0(p) for p ∈ Pi and M0j
(p) = M0(p)

for p ∈ Pj). Then consider M ′0i
s.t. M0i

< M ′0i
and M0i

(p) 6= M ′0i
(p) ⇒

p ∈ PINi
and denote by Ci(M

′
0i

) the set of configurations in the net un-
folding UNi

(M ′0i
). Similarly, for component j denote by Cj(M

′
0j

) the set of
configurations in the net unfolding UNj

(M ′0j
)

For a local configuration C′νi
∈ Ci(M

′
0i

) denote by B′C′νi

(INi) the set of

input-border conditions of configuration C′νi
, and denote byB′C′νi

(OUTi) the

set of output-border conditions of configuration C′νi
:

B′C′νi

(INi) =
{
bνi

∈ BC′νi
: φ(bνi

) ∈ PINi

}

B′C′νi

(OUTi) =
{
bνi

∈ BC′νi
: φ(bνi

) ∈ POUTi

}

Similarly for a local configurations C′νj
∈ Cj(M

′
0j

) denote by B′C′νj

(INj)

and B′C′νj

(OUTj) the set of input-border conditions, respectively the set of

output-border conditions of configuration C′νj
:

B′C′νj

(INj) =
{
bνj

∈ BC′νj
: φ(bνj

) ∈ PINj

}

B′C′νj

(OUTj) =
{
bνj

∈ BC′νj
: φ(bνj

) ∈ POUTj

}

For simplicity consider that the set of input-border places PINi
and the

set of output border places POUTi
are disjoint (PINi

∩ POUTi
= ∅).
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Given two local configurations C′νi
and C′νj

we say that C′νi
and C′νj

are
possibly consistent if:

∀p ∈ PINi
| BC′νi

(p) | ≤ | BC′νj
(p) | and

∀p ∈ PINj
| BC′νj

(p) | ≤ | BC′νi
(p) |

(2.7)

where BC′νi
(p) =

{
bν ∈ BC′νi

: φ(bνi
) = p

}
and | BC′νi

(p) | denotes the cardi-

nality of the set | BC′νi
(p) |.

In words C′νi
and C′νj

are possibly consistent (and thus their composition
may result in a global configuration) if for any place of the common bor-
der the number of input-border conditions is smaller than or equal to the
number of output border conditions, i.e. the number of tokens that enter a
component is smaller than or equal with the number of tokens that left the
component j.

Notice that we say that C′νi
and C′νj

are possibly consistent since the in-
equality 2.7 is a necessary but not sufficient condition for C′νi

and C′νj
to

make a global configuration.

Given a pair of local configurations (C′νi
, C′νj

) that are possibly consistent
denote by ψlνiνj

the interpretation function of the border conditions of C′νi

and C′νj
:

ψlνiνj
: BC′νi

(INi) ∪BC′νj
(INj) → BC′νj

(OUTj) ∪BC′νi
(OUTi)

where:

1. ψlνiνj
is injective

2. ψlνiνj
(bINi

) ∈ BC′νj
(OUTj)

3. ψlνiνj
(bINj

) ∈ BC′νi
(OUTi)

Denote by C′
lνiνj

the PN that is obtained from the local configurations

C′νi
,C′νj

by merging their border conditions according with the interpretation
function ψ

lνiνj
.

We have that if C′
lνiνj

is acyclic and every input border-conditions in C′νi

and C′νj
has one input event in C′

lνiνj

then C′νi
and C′νj

under the interpre-

tation ψC′
lνiνj

(denoted (C′νi
, C′νj

, ψνiνj
)) is a global configuration in the un-

folding UN (M0) of the overall PN 〈N ,M0〉.

Consider a global configuration Cυ ∈ C, Cυ = (BCυ
, ECυ

,�) in the net
unfolding UN (M0) of the global net 〈N ,M0〉. Denote by Bi

Cυ
respectively

Ei
Cυ

the set of conditions respectively the set of events ofCν that corresponds
with Ni:

Bi
Cυ

=
{
b ∈ Bi

Cυ
: φ(b) ∈ Pi

}
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Ei
Cυ

=
{
e ∈ Ei

Cυ
: φ(e) ∈ Ti

}

and denote by Ci
υ the subnet of Cυ that correspond with the set of conditions

Bi
Cυ

and the set of events Ei
Cυ

.

We have that if (C′νi
, C′νj

, ψlνiνj
) is consistent then there exists a global

configuration Cυ ∈ C s.t. Ci
υ = C′νi

and Cj
υ = C′νj

.

Thus given two arbitrary initial markings M ′0i
and M ′0j

we can derive
global configurations as pairs of local configurations under some interpreta-
tions.

Notice that to check the consistency of a pair of local configurations re-
quires not only the information about how many input and output border-
conditions are considered in a local configuration but also how the input
border-conditions and the output border-conditions are related in a local
configuration.

Remark 4. Beside the computational advantage of using the net unfolding tech-
nique for making the local calculations there is also the advantage that in a config-
uration the causality relations between the tokens and the transitions are explicitly
represented. This allows for an easy extraction of the causality between the tokens
that enter and leave a local model, information that is required for checking the con-
sistency between the local configurations. Notice that if we derive the local plant
behavior as a set of local traces (and not local configurations) then there is a ma-
jor difficulty to check the consistency between the local traces since inequality 2.7
(with BC′νi

(p) understood as the marking M0νi
(p)) is a necessary but not sufficient

condition for checking the consistency of two local traces.

Consider again the analysis of each component (local site) in isolation.
Intuitively to derive the set of all global configurations as pairs of local con-
figurations one should consider for a component i an initial marking M ′0i

s.t.
M ′0i

considers for each input place pINi
∈ PINi

the maximum number of to-
kens that can enter to Ni via pINi

. But this requires the calculation of all the
legal traces of the global model something we want to avoid by designing
a modular/distributed algorithm. Moreover the preliminary calculation of
a component may have the same computational complexity as the overall
plant calculation [Val94] that further requires a large amount of information
to be exchanged for discarding the local configurations that are not consis-
tent.

Notice that even if some a priori knowledge allows for deriving the max-
imum number of tokens that can enter to Ni via pINi

without making the
calculation of the global net this may not be of any help if the plant struc-
ture changes often in the sense that some components are plugged in and
removed.

Even though this method is hardly feasible for real applications it has
some advantages. In the first place the calculations are simple and require
only once to check the consistency of the local calculations that in other
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words means a single communication round between two components. Sec-
ondly before checking the global consistency the preliminary calculation of
a component is an over-approximation of its behaviour.

The second solution is to incrementally construct the overall net unfold-
ing as a composition of local net unfoldings as follows:

1. for each component i consider the known initial marking M0i
and cal-

culate UNi
(M0i

) and then repeat the following steps:

(a) derive the set all global consistent pairs (Cνi
, Cνj

)

(b) then for each global consistent pair Cν = (Cνi
, Cνj

, ψlνiνj
) calcu-

late the extensions of Cν in Ni and Nj

(c) repeat (a) and (b)

This method looks more feasible than the previous method since it does
not require a priori knowledge of the plant behaviour, basically the over-
all plant unfolding is incrementally constructed by extending in each local
model the local configurations. Moreover the information that is exchanged
is minimal in the sense that each piece of information that is exchanged is
used for deriving global consistent configurations (i.e. the agents do not ex-
change information for discarding some local configurations but to extend a
global configuration derived at the previous step).

As already mentioned one of the objectives of this thesis is to design on-
line distributed algorithms for fault detection and diagnosis. Anticipating
the presentation that follows, consider that for each component i (i ∈ J)
there is an agent Agi that makes the local calculations and there is a commu-
nication channel between the agents that allow to exchange limited informa-
tion.

Assume that each model of a component includes a non-empty set of ob-
servable transitions and consider that the local agents construct the overall
plant unfolding in an incremental manner as presented above. Moreover
consider that all the places that correspond with the PN model of compo-
nent i are not marked in the initial marking of the overall plant and that the
communication between the local sites is unavailable. In this case the local
agent Agi does not compute anything since the initial marking of the local
site i is M0i

= 0.

Then consider that Agi observes that an (observable) event (e.g. toi ∈ Toi
)

was executed in component i. Since the observation is correct it means that
some tokens entered component i via the the input places PINi

so that the
event that was observed has become possible to be executed.

Thus it looks absolutely reasonable to design a distributed algorithm s.t.
the local agent makes some calculations even though it has no knowledge
about the number of the tokens that could have entered in Ni via the input
places PINi

. The idea is simple. For the sake of presentation consider that the
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observation is deterministic (i.e. each observable transition emits a distinct
label). Since the observation of a component is correctAgi is sure that the in-
put places p ∈ •toi of the observed transition toi have been marked before the
transition toi was executed. Then by inferring backwards agent Agi can de-
rive the unobservable events that must have been executed before providing
the tokens in p ∈ •toi that made the observation of toi possible. Repeating the
same backward inference Agi can derive a set of minimal (preliminary) ex-
planations in the model of its component that explain the local observation.
A local (preliminary) explanation includes the unobservable events whose
occurrence made possible the observation as well as the assumption that
(a minimal) number of tokens have entered from the neighboring compo-
nent(s).

The main advantage of this method is that a local agent can derive a
preliminary local calculation that under some technical conditions allows
for taking local control actions when the communication between the local
agents is not possible. When the communication between the agents is al-
lowed they exchange limited information to check the consistency of their
preliminary results and also to generate the set of complete explanations.



Chapter 3

The analysis of PN models

under partial observation

In this chapter we present two methods for the state estimation of untimed
Petri Net models under partial observation.

First we present in Section 3.1 the standard algorithm for constructing
a classical observer-automaton of a given Petri Net model. The method is
similar to the construction of a classical observer for DES modeled as au-
tomata [OW90]. When analyzing large systems under partial observation the
use of a classical observer-automaton is hardly possible because of its high
spatial complexity (exponential in the number of places [OW90]). Basically
a state of an observer-automaton includes all the possible states (markings)
the plant can be in after observing a string of observable events.

To overcome this limitation we propose in Section 3.2 the construction
of a reduced (resource-aware) observer automaton that contains in a given
state fewer markings than the classical observer-automaton.

3.1 Classical observer

Consider a PN model N = (P , T , F ) with T = To ∪ Tuo. Then given an
arbitrary marking M denote by URN (M) the unobservable reach of M that
is the set of markings that can be obtained starting from M and firing only
strings of unobservable transitions:

URN (M) =
{
M ′ | ∃σuo ∈ T ∗uo s.t. M

σuo−−→M ′
}

(3.1)
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For a set of markings M, define:

URN (M) =
⋃

M∈M

URN (M) (3.2)

Recall that RN (M0) is the set of the reachable markings of 〈N ,M0〉 and
let Pwr(RN (M0)) be the set of all the subsets of RN (M0).

Consider a PN N whose initial marking M0 and the partition of the tran-
sition set T into the disjoint sub-sets of observable transitions To and unob-
servable transitions Tuo are completely known.

The classical observer-automaton CO(〈N ,M0〉) of the partial observable
PN model 〈N ,M0〉, T = To ∪ Tuo is:

CO(〈N ,M0〉) = (Xco, Eco, fco, x
co
0 , ̺co)

where:

- Xco is the set of states of CO(〈N ,M0〉)

- ̺co : Xco → Pwr(RN (M0)) is a function that associates to each state
xco ∈ Xco a set of reachable markings ̺co(xco) ∈ Pwr(RN (M0))

- Eco is the set of events of the classical observer CO(〈N ,M0〉). Eco = Ωo

if the observation is non-deterministic and Eco = To if the observation
is deterministic.

- ̺co(x
co
0 ) = URN (M0) is the set of markings in 〈N ,M0〉 estimated in the

initial state of the classical observer CO(〈N ,M0〉)

- fco : Xco × E∗co → Xco is the transition function of CO(〈N ,M0〉) that is
defined as follows:

for xco
ι ∈ Xco a state of CO(〈N ,M0〉) and a string of observable transi-

tions σ ∈ E∗co we have: fco(x
co
0 , σ) = xco

ι if ̺co(x
co
ι ) 6= ∅ where:

̺co(x
co
ι ) =

{
Mι : M0

τ
−→Mι ∧ ΠTo

(τ) = σ
}

Given the PN 〈N ,M0〉 and CO(〈N ,M0〉) its classical observer-automaton,
we have that:

LCO = ΠTo
(LN (M0)) (3.3)

if the observation is deterministic or LCO = Lℓ
N (M0) otherwise.

Example 14. Consider the PN 〈N ,M0〉 displayed in Fig. 3.1-left. The initial
marking is M0 = {M(p1) = 2;M(p2) = 2; } and the only observable transition is
t3 (To = {t3}).
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t1 t2

t4

t3

p2p1

p3 p4

p5

p6

M0=[2,2,0,0,0,0]

M5=[1,2,1,0,0,0]

M6=[1,1,1,1,0,0]

M4=[2,1,0,1,0,0]
M1=[2,0,0,2,0,0]

M3=[0,0,2,2,0,0]

M2=[0,2,2,0,0,0]

M7=[1,1,0,0,1,0]
M8=[1,0,0,1,1,0]

M10=[0,0,1,1,1,0]
M9=[0,1,1,0,1,0]

M11=[1,1,0,0,0,1]
M12=[1,0,0,1,0,1]

M14=[0,0,1,1,0,1]

M13=[0,1,1,0,0,1]

M15=[0,0,0,0,2,0]

M17=[0,0,0,0,0,2]

M16=[0,0,0,0,1,1]

xco
0

xco
1

xco

2

t
3

t
3

Figure 3.1:

For this very simple example we have in Fig. 3.1-right the classical observer
automaton CO(〈N ,M0〉) that comprises three states Xco = {xco

0 , x
co
1 , x

co
2 } and two

events both corresponding with the execution of the only observable transition t3.

Then ̺co(x
co
0 ) = URN (M0) comprises 7 markings {Mι | ι = 0, . . . 6}, ̺co(x

co
1 )

comprises 8 markings {Mι | ι = 7, . . . 14} while ̺co(x
co
2 ) comprises 3 markings

{Mι | ι = 15, . . . 17}.

We have that:

1. M ∈ ̺co(x
co
0 ) ⇔ (M0

σ
−→M ) ∧ (ΠTo

(σ′) = ǫ)

2. M ′ ∈ ̺co(x
co
1 ) ⇔ (M0

σ′
−→M ′) ∧ (ΠTo

(σ′) = t3)

3. M ′′ ∈ ̺co(x
co
2 ) ⇔ (M0

σ′
−→M ′′) ∧ (ΠTo

(σ′′) = t3t3)

3.2 Reduced observer

As mentioned above the use of the classical observer-automaton becomes
computationally unfeasible because its size grows exponentially in the num-
ber of places | P |. In order to overcome this limitation we propose in the fol-
lowing the construction of a reduced observer-automaton that represents the
same language as the classical observer-automaton but includes in a given
state fewer markings then the classical one.

To illustrate the rationale behind the construction of a reduced observer-
automaton (RO) consider a state xco

ι ∈ Xco of the classical observer-automaton
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CO(〈N ,M0〉) and then let M′(xco
ι ) be a subset of the set of markings ̺co(x

co
ι )

that is estimated by the classical observer-automaton for the state xco
ι such

that URN (M′(xco
ι )) = ̺co(x

co
ι ).

We call M′(xco
ι ) a base for ̺co(x

co
ι ) if URN (M′(xco

ι )) = ̺co(x
co
ι ) and say

that M′(xco
ι ) is a minimal base of ̺co(x

co
ι ) if:

∀M′′(xco
ι ) ⊆ M′(xco

ι ), UR(M′′(xco
ι )) = M′(xco

ι ) ⇒ M′′(xco
ι ) = M′(xco

ι ).

Example 15. Consider the classical observer automaton derived in Example 14 and
consider the initial state xco

0 in CO(〈N ,M0〉). We have that M0 is the minimal base
for ̺co(x

co
0 ) since URN (M0) = ̺co(x

co
0 ). For xco

1 we have that M7 is the minimal
base for ̺co(x

co
1 ) since URN (M7) = ̺(xco

1 ) and then for xco
2 we have that M15 is

the minimal base for ̺co(x
co
2 ) since URN (M15) = ̺co(x

co
2 ).

Definition 35. RO(〈N ,M0〉) = (Xro, Ero, fro, xro0 , ̺ro) is a reduced observer-
automaton of the PN 〈N ,M0〉 if:

Xro = Xco

Ero = Eco

fro = fco

∀xι ∈ Xro, ̺ro(xι) ⊆ ̺co(xι) ∧ URN (̺ro(xι)) = ̺co(xι)

fro(x
ro
0 , σ) = xro

ι ⇒ ∀Mι ∈ ̺ro(x
ro
ι ), ∃τ ∈ LN (M0) s.t. M0

σ
−→ Mι and

ΠTo
(τ) = σ

Thus RO(〈N ,M0〉) is an observer-automaton having the same structure as
CO(〈N ,M0〉) the only difference being that a state xι in the reduced observer-
automaton contains a set of markings ̺ro(xι) that is a base of the set of mark-
ings ̺co(x

co
ι ) that is considered by the corresponding state xco

ι in the classical
observer-automaton CO(〈N ,M0〉).

Example 16. For the PN in Fig. 3.1 the (minimal) reduced observer-automaton is
displayed in Fig. 3.2.

Assume in the following that the size of the plant under investigation
is large so that the classical observer would have almost the same size as
the PN model. Moreover assume that changes of the plant structure (i.e.
changes in To) are possible to take place with some regularity. It means that
for such plant the use of off-line derived observers is hardly possible. On
the other hand the current computational capabilities allow for fast on-line
calculations.

Consider then that the on-line observer (classical or reduced) operates as
follows:

1. the on-line (classical or reduced) observer is in the initial state x0.
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M0=[2,2,0,0,0,0]

M7=[1,1,0,0,1,0]

M15=[0,0,0,0,2,0]

xro
0

xro

1

xro

2

t
3

t
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Figure 3.2:

2. one observable event (transition to) is executed in the plant (we assume
that no two observable events are executed exactly at the same time)
and the sensor associated with to immediately informs the supervisory
system (we assume the sensor output never lost and never delayed).

3. a new state of the observer is calculated by enumerating the set of pos-
sible markings the plant can be in after observing the execution of to.

4. the on-line observer restarts at 1 with its new state (the set of new mark-
ings) as the initial state (as the initial marking).

Basically an on-line observer is obtained by deriving only the branch of
the off-line observer-automaton that explains the on-line plant observation.

In the following On = to1 . . . t
o
n denotes a string of n observable events

(On ∈ T ∗o ) that are known to have happened in the plant.

The classical on-line observer CO(〈N ,M0〉) considers for its initial state
xco

0 the set of markings given by ̺co(x
co
0 ) where:

̺co(x
co
0 ) =

{
M : M0

σuo−−→M ∧ σuo ∈ T ∗uo

}

Then inductively for Ok = to1 . . . tk, we have that the xco
k state of the on-line

classical observer considers the set of markings given by:

̺co(x
co
k ) =

{
M : M0

τ
−→M ∧ ΠTo

(τ) = Ok

}

The on-line computation of a (minimal) reduced observer RO(〈N ,M0〉)
can be performed backwards by calculating the minimal explanations of the
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received observation where a minimal explanation is a trace that considers
only transitions that must have happened prior to the execution of the re-
ceived observation.

3.2.1 Synthesis of an on-line reduced observer for PN
models using minimal explanations

Consider the PN model 〈N ,M0〉 and its net unfolding UN (M0) as defined in
Section 2.5.

Then use the definition of a minimal configuration C(e) (Definition 34)
where the event e is s.t. φ(e) = to1 and all the other event-nodes of C(e)
except e are images of unobservable transitions.

(EC(to
1),�) is the partial order relation between the events in C(to1) and

〈EC(to
1)〉 is the set of all the linearization of (EC(to

1),�) (see Definition 2).

Denote by φ(〈EC(to
1)〉) the set of all traces in 〈N ,M0〉 that correspond via

φ to strings of 〈EC(to
1)〉:

φ(〈EC(to
1)〉) =

{
τ = φ(e1) . . . φ(eν) | σ = e1 . . . eν , σ ∈ 〈EC(to

1)〉
}

We say that τ ∈ φ(〈EC(to
1)〉) is a minimal explanation of to1 since all the

events (transitions) that are considered in τ must necessarily have happened
before to1 can be executed. Formally we have:

Definition 36. Given the unfolding UN (M0) of a PN 〈N ,M0〉 and the first ob-
served event O1 = to1 then C(to1) = (BC(to

1), EC(to
1),�) is a minimal configuration

that allows for the execution of to1 if:

i) C(to1) is a configuration in UN (M0)

ii) φ(to1) = eo
1 and ∀e ∈ E if e‖eo

1 then e 6∈ EC(to
1)

iii) ∀e ∈ EC(to
1), if e 6= eo

1 then φ(e) ∈ Tuo

iv) BC(to
1) =

{
b | (b ∈ min�(UN )) ∨ (b ∈ •e• for some e ∈ EC(to

1))
}

Denote by C(O1) the set of all minimal configurations that satisfy Defini-
tion 36 for observation O1 = to1 and denote by E(O1) the set of all minimal
explanations of O1:

E(O1) =
{
σ | σ ∈ 〈EC(to

1)〉 ∧ C(O1) ∈ C(O1)
}

Denote by LN (O1) the set of traces in 〈N ,M0〉 that correspond to the mini-
mal explanations E(O1):

LN (O1) = {τ | τ = φ(σ) ∧ σ ∈ E(O1)}
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Then Definition 36 can be extended as follows. For a given a sequence of
observed events On = to1 . . . t

o
n, the minimal configuration that explains the

observation On is:

Definition 37. Given the unfolding UN (M0) of a PN 〈N ,M0〉 and a sequence of
observed events On = to1 . . . t

o
n then C(On) = (BC(On), EC(On),�) is a minimal

configuration that allows for the execution of On if:

1. C(On) is a configuration in UN (M0)

2. there are n events in EC(On) that have images via φ observable transitions

3. ∀k, 1 ≤ k ≤ n, there exists an unique eo
k ∈ EC(On) s.t. φ(eo

k) = tok

4. (∀q, k 1 ≤ q < k ≤ n) ⇒ (eo
q ≺ eo

k or eo
q‖e

o
k)

5. ∀e ∈ E, if (e‖eo
k, ∀k, 1 ≤ k ≤ n) then e 6∈ EC(On)

6. BC(On) =
{
b ∈ B | (b ∈ min�(UN )) ∨ (b ∈ •e• for some e ∈ EC(On))

}

Denote by C(On) the set of all minimal configurations that minimally explain
On and let E(On), respectively LN (On) be defined as above.

The computation of a reduced observer

The backward computation of the minimal explanations can be seen as a for-

ward search in the reverse net
←
N (obtained from N by reversing the direction

of all the arcs) using modified firing and enabling rules.

The backward search algorithm that we use for deriving the reduced ob-
server is an adaptation of the algorithm presented in [AIN00], [FRSB02] for
checking the coverability property. The problem in [AIN00] is to check (back-
wards) if, given a bad marking Mbad, there is a trace allowable from the ini-
tial marking M0 that leads to a marking greater than Mbad or equal. The
difference is that here we must calculate all the minimal traces whereas in
checking the coverability property there it suffices to prove the existence of
one single trace.

Formally we have the following way of defining the reverse net dynam-
ics. Define a⊖ b = a− b if a ≥ b, and a⊖ b = 0 otherwise and extend ”⊖ ” to
multisets in the natural manner [AIN00].

Definition 38. Backwards enabling rule: A transition t is backward enabled in a
marking M ∈ N|P| if ∃p ∈ t• s.t. M(p) ≥ 1. Backwards firing rule: A backward
enabled transition t in a marking M ∈ N|P| fires backwards from M producingM ′

(denoted M
t
 M ′) where M ′ = M ⊖ Post(t, ·) + Pre(·, t).
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A sequence of transitions τ = tν . . . t1 is backward allowable from Mν

(denoted Mν
τ
 M0 ) if for υ = ν, . . . , 0, τυ = tν . . . tυ+1, and tυ is backward

enabled in Mυ where Mν
τυ
 Mυ i.e. ∃Mν−1, . . .Mυ+1 s.t.:

Mν
tν
 Mν−1

tν−1
 Mν−2 . . .

tυ+1
 Mυ

Definition 39. Given a PN 〈N ,M0〉 and a marking M , then M is covered by M0

if ∃M ′ ≤M0 s.t M
σ
 M ′.

Definition 40. Consider a PN N = (P , T , F ) and a partition T = To∪Tuo. Then
given an initial marking M0 and a final marking Mfin denote by UCN (Mfin,M0)
the set of all markings M ≤M0 that cover Mfin by finite unobservable strings:

UCN (Mfin,M0) =
{
M ≤M0 |Mfin

σuo
 M ∧ σuo ∈ T ∗uo

}

Let ULN (Mfin,M0) be the set of unobservable strings that are backwards feasible
from Mfin and lead to a marking M ≤M0:

ULN (Mfin,M0) =
{
σuo ∈ T ∗uo | ∃M ∈ UCN (Mfin,M0) s.t. Mfin

σuo
 M

}

Proposition 3. We have that:

(a) Given a PN 〈N ,M0〉 and a marking M that is not covered by M0 then
∀M ′ > M , M ′ is not covered by M0.

(b) Given a PN N , a partition T = To ∪ Tuo, a final marking Mfin, and an
initial marking Mini then:

UCN (Mfin,M0) 6= ∅ if ∀M ′fin < Mfin,UCN (M ′fin,M0) 6= ∅ (3.4)

Proof. The proof is straightforward.

For a bounded net 〈N ,M0〉 the computation of UCN (Mfin,M0) and
ULN (Mfin,M0) is performed similarly as the forward computation of the
reachability tree. The pseudo-code for this algorithm is provided in Section
7.2 in Appendix. The main features are:

- SET is the set of markings (nodes in the tree) that have to be pro-
cessed and sort(SET ) means that the elements of SET are arranged
from HEAD to TAIL such that if mark(node) ≤ mark(node′) then
node is closer to HEAD than node′.

- in Procedure choose node cur the node (marking) node cur is chosen
from SET if:

- there are no nodes with unknown status node ∈ V ISIT UKW
s.t. mark(node) ≤ mark(node cur) (Procedure condition)
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- if the selection fails then the algorithm terminates since no solution will
be found

- if a node is chosen then for node cur the algorithm checks whether it
provides a solution or not (Procedure check sol)

- if node cur provides a solution then all the predecessors of node cur are
removed from V ISIT UKW and added to V ISIT SOL (Procedure
propagate sol)

- if node cur does not provide a solution then:

- if there are unobservable transitions that are backwards enabled
in mark(node cur) then node cur is added to V ISIT UKW

- else node cur is declared no solution and all the nodes node′ s.t.
mark(node′) > mark(node cur) are removed as well as the nodes
that remain unconnected (Procedure propagate no sol).

- in Procedure make new node, the current node is processed and new
nodes are added to SET but this is only executed if the marking of a
new node is not greater than the marking of a node that was found
without solution. Notice that two nodes with the same marking are
merged into a single one.

The condition checked by Procedure condition is based on Proposition 3,
that is a node is chosen from SET only if all the visited nodes that have a
marking smaller than mark(node) are in V ISIT SOL.

Thus a node is processed only if its marking is either i) different than the
markings of all the nodes that were visited or ii) smaller than the markings
that were visited or iii) if any marking that was visited and is smaller is con-
sidered in backward trace that leads to a marking smaller than M0 (is part
of a solution). This guarantees that the backward search algorithm termi-
nates. The proof is simple. Since 〈N ,M0〉 is bounded we have that the set of
markings V ISIT SOL that are considered in the unobservable strings that
are backwards feasible from Mfin and lead to a marking M ≤M0 is finite.

Msol = {M ′ | ∃σuo ∈ ULN (Mfin,M0) s.t. σuo = σuo1σuo2∧

Mfin

σuo1
 M ′

σuo1
 M ≤M0

}

When V ISIT SOL = Msol, that is all the markings that are part of a
solution have been derived, a node is chosen to be processed by Procedure
choose node cur only if mark(node) is different from all the markings that
were already visited. The algorithm terminates because one cannot generate
an infinite sequence of different markings that are neither smaller nor bigger
than the other markings that are considered in the sequence.

Given the received observation On = to1 . . . t
o
n the computation of a re-

duced observer RO(On) is performed recursively as follows:
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1. initialize first MN (O0) = {M0}

2. initialize the initial state in the reduced observer automaton
MN (O0) = {M0} (̺(xro

0 ) = MN (O0))

3. then for k = 1, . . . , n

(a) Mfink
= Pre(·, tok)

(b) for all Mk−1 ∈ MN (Ok−1)

i. compute UCN (Mfink
,Minik−1

) that is the set of markings
that cover unobservably Mfink

considering as initial marking
Minik−1

= Mk−1

ii. derive ULN (Mfink
,Minik−1

) that is the set of minimal unob-
servable traces that can be executed from Minik−1

s.t. the re-
sulting marking covers Mfink

iii. derive the set of minimal explanations LN (Ok) and the set of
markings MN (Ok):

LN (Ok) = {τk | τk = τk−1σuot
o
k, τk−1 ∈ LN (Ok)

∧σuo ∈ ULN (Mfink
,Minik−1

)
}

MN (Ok) =
{
Mk |M0

τk−→Mk ∧ τk ∈ LN (Ok)
}

4. create a new state xro
k in RO(Ok) and draw an arc from xro

k−1 to xro
k

labeled tok

5. ̺(xro
k ) = MN (Ok)

Algorithm 1 Reduced Obs

Require: 〈N ,M0〉, To, Tuo, On

Ensure: RO(On)
1: k = 1; MN (O0) = {M0}; ̺(xro

0 ) = {M0}
2: while k ≤ n do
3: Mfink

= Pre(·, tok)
4: for all Mk−1 ∈ MN (Ok−1) do
5: Minik−1

= Mk−1

6: compute UCN (Mfink
,Minik−1

)
7: compute ULN (Mfink

,Minik−1
)

8: compute LN (Ok)
9: compute MN (Ok)

10: end for
11: xro

k = MN (Ok)
12: ek = tok
13: f(xro

k−1, ek) = xro
k

14: k = k + 1
15: end while
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Figure 3.3:

Notice that the reduced observer RO(On) derived by running Algorithm
1 is unique since LN (On) and respectively MN (On) are uniquely defined.
Notice moreover that in general RO(On) is not a minimal reduced observer.

However this is not a drawback since in general the set of markings
MN (Ok) considered in a state xro

k of the reduced observed derived with
Algorithm 1 is a lot smaller than the set of markings considered by the state
xco

k of the classical observer.

MN (Ok) ⋐MN (Ok)

The same remark holds also in general for the set of minimal explanations
LN (Ok) and the set of explanations LN (Ok):

LN (Ok) ⋐ LN (Ok)

The main drawback of the backward search methods is that unreachable
states are visited during computation. As shown in [FRSB02], the backward
search can be driven by using place invariants (i.e. the visited markings
must not violate the P-invariants) or other heuristics. Moreover for real-
life applications, the size of the unobservable sub-net that is processed is in
general small, so that the calculation is efficient.

Remark 5. Above we have assumed that the observation is deterministic. If this
does not hold the algorithm applies to all the observable sequences τo

k s.t. lo(τ
o
k ) =

Ok. The implication of a non-deterministic observation can be intuitively under-
stood as a forward search algorithm where the initial state is given as a set of possible
initial markings.
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Example 17. To illustrate the backward calculation of minimal explanations of an
observed event consider the PN N ′ displayed in Fig. 3.3-left as a part of a PN model
N of a large plant (the dotted lines emerging out from p0, p7, p11, p12, p13, p14, p15,
p17, p18 indicate connections with the remaining of N ).

Let t1 be the only observable transition in this proper subnet N ′ of N . In Fig. 3.3
we present a part of the tree that is derived backward considering that t1 is observed.
The nodes of the tree represent the markings that cover unobservably the marking
Mfin = Pre(·, t1) = {p1, p2}.

Notice that the concurrency is not filtered out (e.g. t3t2 and t2t3 both occur-
ring in separate branches) but the markings are checked whether they are equal and
merged into a single one (e.g. M4 = {p3, p4, p5}). The node M9 = {p9, p14, p14}
is processed only after the node M5 = {p9, p14} is found that is part of a solution.
If M5 = {p9, p14} is not part of a solution then M9 is deleted and also the part that
remains unconnected to the root node after eliminating M9.

N ′ contains an unobservable circuit ζuo with choice places where Σζuo
=

t10t7t8t9. Consider the node M5 = {p9, p14}. We have t11, t9 among the unob-
servable transitions that are backward enabled in M5. If we choose t9 and then t8
a token is found in p6. Unfortunately the computation must be continued to check
how many times ζuo could have been fired because the number of full executions of
ζuo give the number of tokens in p7.

Thus after backfiring from M5 the sequence of transition t9, t8, t7, and t10 we

will obtain M ′ = {p14, p9, p10} (M5
ζuo
 M ′). Because M ′ > M5 the backward

computation from M ′ is stopped until M5 is found part of a backward trace that is
solution.

3.2.2 Backward Unfoldings

As for the forward search algorithms, the backward unfolding technique in-
creases the computational efficiency especially for PN models whose degree
of concurrency is high compared to their degree of (backward) branching.

In this section we present an algorithm that allows us to derive the set of
minimal configurations C(On) for a sequence of observed events On without
deriving first the unfolding of the net UN (M0).

Definition 41. A reverse occurrence net (RON)
←
O is a net

←
O = (

←
B,
←
E,�1) s.t.:

i) ∀a ∈
←
B ∪

←
E : ¬(a � a) (acyclic)

ii) ∀b ∈
←
B ∪

←
E : | {a : a � b} |<∞ (well-formed)

iii) ∀a ∈
←
B : | a• |≤ 1 (no-forward conflict)

iv) max(
←
O) ⊆

←
B
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Definition 42. Given a PN N and a final marking Mfin, the reverse branching

process of 〈N ,Mfin〉 is
←
B = (

←
O, φ) s.t.:

i) φ(
←
B) ⊆ P and φ(

←
E) ⊆ T

ii) Mfin ⊆ φ(max�(
←
O))

iii) ∀a, b ∈
←
E : ( •a = •b) ∧ (a• = b•) ⇒ a = b

Remark 6. Notice that condition ii) above requires that Mfin ⊆ φ(max(
←
O)) and

not Mfin = φ(max�(
←
O)) since our aim is to compute markings that cover Mfin

and not markings that reach Mfin.

Definition 43. Given a PN N the immediate backward conflict relation
←
♯ 1 ⊆

T × T is defined as follows:

∀(t1, t2) ∈ T × T : t1
←
♯ 1t2 if t•1 ∩ t

•
2 6= ∅

Then define
←
♯ ⊆ (P ∪ T ) × (P ∪ T ) as:

∀(a, b) ∈ (P ∪ T ) × (P ∪ T ) : a
←
♯ b⇒ ∃(t1, t2) ∈

←
♯ 1 s.t. a � t1 and b � t2.

In words, two transitions t1, t2 are in immediate backward conflict if their

occurrence produces tokens in the same place e.g. t1
←
♯ 1t2 ⇔ t•1 ∩ t•2 6= ∅.

The idea is that if we have a place p that contains a token and there are
two transitions t1 and t2 s.t. p ∈ t•1 ∩ t•2 then to explain how the token was
produced in p we have that either t1 or t2 have fired before but not both of
them.

Notice that our goal is to derive in the backward unfolding configura-
tions that are minimal configurations in the forward unfolding. The problem
that occurs is that a transition t is enabled backwards in the marking M if at
least one of its output places is marked in M . Thus a transition t may be ex-
ecuted backwards considering that it is enabled by any subset of its output
places that are marked in M . These different execution-modes of a transi-
tion are in auto-conflict and we represent this by the auto-conflict relation as
defined bellow:

Definition 44. Given a PN N , a final marking Mfin, and a reverse branching

process
←
B = (

←
O, φ), the immediate auto-conflict relation

←
♯ ac1

⊆
←
E ×

←
E is defined

as follows:

∀(e1, e2) ∈
←
E ×

←
E, φ(e1) = φ(e2) : e1

←

♯ ac1
e2 if e•1 ∩ e

•
2 6= ∅ ∧ e•1 6= e•2

Then define the auto-conflict relation
←

♯ ac ⊆ (
←
B ∪

←
E) × (

←
B ∪

←
E) as:
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∀(a, b) ∈ (
←
B ∪

←
E) × (

←
B ∪

←
E) : a

←
♯ acb⇒ ∃(e1, e2) ∈

←
♯ ac1

s.t. a � e1 and b � e2.

Definition 45. A configuration
←
C = (

←
B←

C
,
←
E←

C
,�1) in a reverse occurrence net

←
O

is defined as follows:

i)
←
C is a sub-net of

←
O

ii)
←
C is causally downward-closed - ∀a ∈

←
B ∪

←
E, ∀b ∈

←
B←

C
∪
←
E←

C
: b � a ⇒

a ∈
←
B←

C
∪
←
E←

C

iii)
←
C is backward conflict free - ∀(a, b) ∈ (

←
B←

C
∪
←
E←

C
)× (

←
B←

C
∪
←
E←

C
) ⇒¬(a

←
♯ b)

iv)
←
C is auto-conflict free - ∀(a, b) ∈ (

←
B←

C
∪
←
E←

C
) × (

←
B←

C
∪
←
E←

C
) ⇒ ¬(a

←
♯ acb)

v) max�(
←
C) ⊆ max�(

←
O) and Mfin ⊆ φ(max�(

←
C))

Denote by
←
C the set of all the configurations of a reverse occurrence net

←
O.

Definition 46. Given a PN N and a final markingMfin and two reverse branching

processes
←
B,
←

B′ then
←

B′ ⊑
←
B if there exists an injective homomorphism

←
ψ :

←

B′ →
←
B s.t.

←

ψ(min(
←

B′)) = min(
←
B) and

←

φ ◦
←
ϕ =

←

φ′.

Definition 47. Given a bounded PN N with an initial marking M0 and a final

marking Mfin denote by
←
UN (Mfin,M0) the maximal branching process w.r.t. set

inclusion s.t. ∀
←
C ∈

←
C , ∃

←

C′ ∈
←
C s.t. i)

←
C ⊑

←

C′, ii) φ(min�(
←

C′)) ⊆ M0 and iii)

Mfin ⊆ φ(max�(
←

C′)).

Proposition 4.
←
UN (Mfin,M0) is unique up to isomorphism.

Proof. Consider σuo ∈ ULN (Mfin,M0) an unobservable string that is back-
wards feasible from Mfin and leads to a marking M ≤ M0. Since 〈N ,M0〉
is bounded then any (forward) execution of a cycle ζ does not increase the
marking. Thus if the (forward) execution of a cycle ζ decreases the marking
there are a finite number of executions of the cycles ζ otherwise the marking
remains the same after executing the cycle ζ and then ζ is not fired the sec-
ond time. Thus ULN (Mfin,M0) and UCN (Mfin,M0) are finite sets that are

uniquely represented by
←
UN (Mfin,M0).

Denote by
←
UN (to1) the backward unfolding calculated for the first ob-

served event to1 where
←
UN (to1) is obtained by appending the event eo

1 (φ(eo
1) =

to1) to the unfolding
←
UN (Mfin,M0) where Mfin = Pre(·, to1).
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Notice that a backward configuration
←
C in the backward unfolding

←
UN (to1) is such that φ(min�(

←
C)) ⊆ M0. Denote in what follows by

←
C the

configuration obtained from
←
C by adding for each token in a place p from

the initial marking that was not ”consumed” a condition b s.t. •b = ∅ and
φ(b) = p.

Denote by
←
C (to1) the set of backward configurations that are derived for

the first observed event to1.

Proposition 5. Given a PN 〈N ,M0〉 and the first observed event in the plant to1
we have that:

1. ∀
←
C(to1) ∈

←
C (to1)⇒∃C(to1) ∈ C(to1) such that

←
C(to1) andC(to1) are isomorphic

configurations.

2. ∀C(to1) ∈ C(to1)⇒∃
←
C(to1) ∈

←
C (to1) such thatC(to1) and

←
C(to1) are isomorphic

configurations.

Proof. The proof of i) is as follows. By definition we have that any configura-

tion in the backward unfolding ∀
←
C(to1) ∈

←
C (to1),

←
C(to1) = (

←
B←

C(to
1)
,
←
E←

C(to
1)
,�)

is a causal net that is ∀b ∈
←
B←

C(to
1)

⇒ | b• |≤ 1 and | •b |≤ 1 (all the conditions

nodes have at most one input respectively at most one output event node).
Then by adding for each token from the initial marking that was not con-

sumed M0 \ φ(min�(
←
C)) we have that under an adequate labeling

←
C(to1) is a

minimal configuration in UN (M0). Then the proof of ii) is straightforward
since the backward search terminates by a fix-point when no more traces
(configurations) can be generated.

Algorithm to construct
←
UN (Mfin,M0)

Given a configuration
←
C = (

←
B←

C
,
←
E←

C
,�1) in the backward net unfolding

←
UN (Mfin,M0) denote by CUT (

←
C) the maximal (w.r.t. set inclusion) set of

concurrent conditions and then denote by mark(
←
C) the marking that corre-

sponds to CUT (
←
C).

CUT (
←
C) =

{
•e | e ∈

←
E←

C

}
∪ max(

←
C) \

{
e• | e ∈

←
E←

C

}

Denote in the following by
←
X

con
←
B a set of concurrent conditions in

←
C . A

transition t is backward enabled in
←
UN (Mfin,M0) by a configuration

←
C if
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←
X

con

B ⊆ CUT (
←
C) and 0 < φ(

←
X

con

B ) ≤ Post(t, ·).

Denote by B ENABLED(
←
C) the set of all backwards enabled transi-

tions.

B ENABLED(
←
C) =

{
(
←
X

con
←
B , t) | (

←
X

con
←
B , t) − backwards enabled

}

The backward unfolding
←
UN (Mfin) is constructed as follows: The initial

configuration
←
C
⊥

= (
←
B←

C
⊥ ,
←
E←

C
⊥ ,�)) is obtained considering a condition b in

←
B←

C
⊥ for each token in a marked place in Mfin.

Then
←
C
⊥

is recursively extended by appending (backwards) a transitions

(
←
X

con
←
B , t) ∈ B ENABLED(

←
C) that is backwards enabled in the following

way:

i) create an event-node e and label it φ(e) = t

ii) add arcs from e to each b ∈
←
X

con
←
B

iv) add conditions b s.t. φ(b) = p ∧ p ∈ t• \ φ(
←
X

con
←
B ) and draw arcs from e

to each b

iii) add conditions b s.t. φ(b) = p ∧ p ∈ •t and draw arcs from each b to e

←
UN (Mfin,M0) is generated extending each configuration by enabled

transitions the only requirement being that φ(e1) = φ(e2) ∧ e•1 = e•2 ⇒
e1 = e2 (no redundancy).

Throughout the remaining of this paper we use the notation C ⊙ e and

e ⊙
←
C to indicate that a configuration C resp.

←
C is extended forward, resp.

backwards by appending an event e.
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Example 18. To illustrate the computation of
←
UN (to) consider for the PN N dis-

played in Fig. 3.4.a that to was executed once. Fig. 3.4.b displays UN (M0) while

in Fig. 3.4.c
←
UN (to) is displayed. We have that

←
C =

{
←
C1,

←
C2

}
where for

←
C1

and
←
C2 we have

←
E←

C1

= {e′0, ee0, e1, e2, e3, e
o} and

←
E←

C2

= {e0, ee′0, e1, e2, e3, e
o}

respectively.
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Figure 3.4:

Consider the case of the first observed event in the plant O1 = to1. The

reverse occurrence net
←
UN (to1) is calculated by Algorithm 2.
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Algorithm 2 B Unfold(to)

Require: to, 〈N ,M0〉, To, Tuo

Ensure:
←
UN (to)

1:
←
UN (to) = •e ∪ e ∪ e• where φ(e) = to

2:
←
C0 =

←
UN (to);

←
C =

{
←
C0

}

3: B ENABLE =
⋃
←
C∈
←
C
B ENABLED(

←
C) ∩ Tuo

4: while B ENABLE 6= 0 do

5: pick and delete e = (
←
X

con
←
B , t) ∈ B ENABLED

6:
←
Cnew = e⊙

←
C {extend

←
UN (to)}

7:
←
C =

←
C ∪

←
Cnew

8: B ENABLED := B ENABLED∪ B ENABLED(
←
Cnew)

9: end while

Remark 7. Notice that the same technical conditions as presented for the standard
backward search guarantee that the backward unfolding algorithm B Unfold(to) ter-
minates.

For a sequence of observed transitions On = to1 . . . t
o
n the computation of

←
UN (On) and

←
C (On) is carried out recursively as follows.

Algorithm 3 B Unfold(On)

Require: Oθc
, 〈N ,M0〉, To, Tuo

Ensure:
←
UN (On)

1: k := 1; Mfin1 = Pre(·, to1); Mini1 = M0

2: B Unfold(Mfin1 ,Mini1 ) { compute
←
UN (O1)}

3:
←
C (O1) →

←
C (O1)

4: while k < n do

5: while
←
C (Ok) 6= ∅ do

6: pick and delete
←
C ∈

←
C (Ok)

7: Mfink+1
= Pre(·, tok+1); Minik+1

= mark(
←
C (Oθk

))
8: B Unfold(Mfink+1

,Minik
)

9:
←
C (Ok+1,

←
C) →

←
C (Ok+1,

←
C)

10:
←
C (Ok+1) =

←
C (Ok+1) ∪

←
C (Ok+1,

←
C)

11: end while
12: k := k + 1
13: end while
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Proposition 6. Given a PN 〈N ,M0〉 and a sequence of observed events On =
to1, . . . , t

o
n we have that:

1. ∀C(On) ∈
←
C (On) ⇒ ∃C(On) ∈ C(On) such that

←
C(On) and C(On) are

isomorphic configurations.

2. ∀C(On) ∈ C(On) ⇒ ∃
←
C(On) ∈

←
C (On) such that C(On) and

←
C(On) are

isomorphic configurations.

Proof. We prove this result by induction as follows.

O1 = to1 (base) for O1 = to1 we have Proposition 5.

Ok (induction base) C(Ok) and
←
C (Ok) contain isomorphic configurations.

Ok+1 = Okt
o
k+1 (induction step)

←
C(Ok+1) ∈

←
C (Ok+1) is obtained run-

ning B Unfold(tok+1) considering the of initial markings mark(
←
C (Ok

θc
)) for

←
C(Ok) ∈

←
C (Ok), so the proof is straightforward.

Example 19. The backward unfolding
←
UN (t6) is presented in Fig. 3.5. Consider a

configuration in the backward unfolding
←
C1(t6) = (

←
B←

C(t6)
,
←
E←

C(t6)
,�) where:

-
←
B←

C(t6)
= {b6, b4, b9, b′1, b

′
2, b8, b0}

-
←
E←

C(t6)
= {e6, e3, e9, e′0}

←
C1(t6) is obtained from

←
C1(t6) by adding to

←
B←

C(t6)
a condition node that cor-

respond with the second token that is present in M0 (
←
B←

C(t6)
=
←
B←

C(t6)
∪ {bb′0}).

For
←
C1(t6) we have:

φ(〈
←
E←

C(t6)
〉) = {t9t0t3t6, t0t9t3t6}

and LN (t6) = {t0t4t6; t1t4t6; t2t4t6; t0t9t3t6; t9t0t3t6; t0t2t5t9t13t3t6}
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Chapter 4

Diagnosis of PN models

4.1 Introduction

This chapter is devoted to presenting the diagnosis of a plant modeled as
a PN. We consider two settings namely in Section 4.2 we consider the case
of a plant monitored by a centralized agent while Section 4.3 presents a dis-
tributed diagnosis algorithm. In the distributed case the plant is modeled by
a collection of different interacting components that are locally monitored
by local diagnoser-agents. The local agents can interact by communicat-
ing among each other. Each component is modeled by a PN model while
the interactions between the components (local-sites) are represented by to-
kens that can pass from one PN model to another via common border places
( [Val94], [BFHJ03] , [GL03], [BJ04], [FBHJ05], [GL05]).

The observation in the plant detects the occurrence of some events that
are reported to the central agent in centralized setting respectively to the
local agent in distributed case. In the PN model some transitions can be
observed when they are executed i.e. whenever an observable event fires,
this event is available for use by the algorithm running in the centralized
agent respectively local agent.

The plant model represents the normal plant behavior as well as the
abnormal usually undesirable behavior that can occur after a fault has oc-
curred. The abnormal behavior is initiated by a subset of unobservable
(silent) transitions that represent the fault events that may happen in the
plant. The diagnoser(s) must use the plant model, the plant observation, and
the information exchange in the distributed setting in order to ask the fol-
lowing questions: ”Did a fault happen or not ?”(fault detection), ”Which kind of
fault happened if any ?” (fault isolation) and ”How did it happen ?”(explanations
[McI98]).

The diagnosis task should be seen in the following as part of a central-
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Figure 4.1:

ized resp. decentralized supervisory architecture where the diagnosis result
is used on-line for taking some control action that are mandatory for main-
taining the safe operation of the plant (see Fig. 4.1).

In this respect and taking into account that the plant under investigation
is assumed to have a large size it is important to have specified before design-
ing the algorithms what is desired to include in the plant diagnostic. For ex-
ample, whether the diagnostic is concerned with finding all the fault-events
that ”could have happened in the plant without contradicting the plant observation”
or only the fault events that ”necessarily must have happened for explaining the
received observation”.

Problem statement

We consider the following structural and functional assumptions:

- the overall plant PN model N = (P , T , F ) is bounded and ordinary
(the capacity of all the arcs is 1)

- the initial marking M0 is precisely known

- the plant observation is represented by a subset of observable transi-
tions To ⊆ T

- the occurrence of an observable transition t ∈ To is always reported
correctly and without delays

- the faults are represented by a subset Tf of unobservable (silent) tran-
sitions (Tf ⊆ Tuo)

- no-fault-masking i.e. the occurrence of a fault transition must have ef-
fects on the resulting marking and consequently on the future plant
behavior

- no-design error assumption
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- no-hidden interactions i.e. no unrepresented interactions (the closed
world assumption)

4.2 Centralized diagnosis

In this section we present two algorithms for the centralized diagnosis of
a large plant. We present first in Section 4.2.1 the classical diagnosis algo-
rithm based on the calculation of the complete explanations of the received
observation. We call it classical since the diagnosis is performed based on
the calculations derived by a classical observer as presented in Section 3.1.

Then in Section 4.2.2 we propose a diagnosis algorithm based on the cal-
culations of the minimal explanations of the received observation (see Sec-
tion 3.2). We show that the diagnosis result based on minimal explanations
is sufficient for detecting the faults that happened for sure in the plant.

4.2.1 Centralized diagnosis based on complete explanations

Consider the plant model given as a PN N = (P , T , F ) with given initial
marking M0. Then consider the partition of the transition set T in two dis-
junct subsets To observable and respectively Tuo unobservable transitions
and let Tf ⊂ Tuo be the subset of the unobservable transitions that model the
faults. Consider the plant observation given by On = to1 . . . t

o
n.

Since On is correct and there are no delays in receiving the observation
On, the possible plant evolutions are given by the set of all the possible traces
in the PN model N that start from the known initial marking M0 and that
obey the observation On:

LN (On) = {τ ∈ LN (M0) | ΠTo
(τ) = On}

The set of the possible states (markings) the plant can be in is:

MN (On) =
{
M | ∃τ ∈ LN (On) s.t. M0

τ
−→M

}

Consequently the plant diagnosis after observing On is obtained by pro-
jecting the set of possible evolutions onto the set of fault events Tf :

DN (On) =
{
σf | σf = ΠTf

(τ) ∧ τ ∈ LN (On)
}

(4.1)

The centralized diagnosis result is:

DRN (On) =





N if DN (On) = {ǫ}

F if ǫ 6∈ DN (On)

UF if {ǫ} ( DN (On)

(4.2)
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where N, F and UF are the diagnoser state normal (no fault has happened),
fault (a fault of kind F has happened for sure) and respectively uncertain (a
fault may have happened) [SSL+95].

4.2.2 Centralized diagnosis based on minimal explanations

The rationale behind deriving a diagnosis algorithm based on a subset of the
possible evolutions of the plant is as follows.

Assume a plant having the PN model 〈N ,M0〉 that generates the obser-
vation On. For large plants there often exists a relevant (and in general small)
part of the plant (say the one that corresponds with a proper subnet N ′ ⋐ N )
s.t. it is sufficient to analyze 〈N ′,M ′0〉 for obtaining the desired result.

For instance (see Fig. 4.2) N ′ is such that analyzing 〈N ′,M ′0〉 (where
M ′0(p) = M0(p) for p ∈ P ′) one can derive the set of feasible traces
LN ′(On) whose use for fault isolation actions (say under the control function
Φ(LN ′(On))) gives the same result as taking control actions using the set of
feasible traces LN ′(On) derived considered the overall plant model N that
is Φ(LN ′(On)) = Φ(LN (On)).

Notice that since N ′ is a proper subnet of N , any trace in 〈N ′,M ′0〉 is also
a trace in 〈N ,M0〉.

Denote by M′
N (On) the set of estimated states in N obtained based on

the traces LN ′(On) derived by analyzing 〈N ′,M ′0〉 and recall that MN (On)
is the set of estimated markings obtained by analyzing the entire plant PN
model 〈N ,M0〉.

If we have M′
N (On) such that:

URN (M′(On)) = MN (On)

it means that we have not included in our calculation some unobservable
events that could have happened concurrently with the last observed event
in On.

In the following, based on the concept of minimal explanations, we iden-
tify what the relevant part of the plant is when the plant is subject to the
diagnosis.

Consider what follows that Φ(·) gives the decisions taken when the cen-
tralized diagnoser agent is sure that a fault happened (the state {F}) and let
the received observation be On as above.

Moreover let the set of minimal explanations LN (On) and the set of esti-
mated markings of M(On) be derived as presented in Section 3.2.

The minimal plant diagnosis after observing On (denoted DN (On)) is
obtained by projecting the set of minimal explanations on the set of fault
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events Tf :

DN (On) =
{
σf | σf = ΠTf

(τ) ∧ τ ∈ LN (On)
}

(4.3)

Then the diagnosis result based on the set of minimal explanations is:

DRN (On) =





N if DN (On) = {ǫ}

F if ǫ 6∈ DN (On)

UF if ǫ ( DN (On)

(4.4)

Proposition 7. If the plant PN model N obeys Assumption 2 then we have the
following relationship between the diagnosis result DRN (O) derived based on the
set of complete explanations and the diagnosis result DRN (O) derived based on the
set of minimal explanations:
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Proof. Consider the observation event O1 = to1 . . . t
o
n, and consider then the

set of configurations C(to) in UN (On). We have that a fault tf is diagnosed
that for sure happened based on the received observation On iff ∀C ∈ C(to),
∃e ∈ EC s.t. φ(e) = tf and e � eo

q for some event eo
q ∈ EC that corresponds

with an event that was observed (φ(eo
q) = toq , 1 ≤ q ≤ n).

This is because by Assumption 2 in any reachable marking at least a non-
fault event is enabled thus the necessary condition for a fault event tf to be
diagnosed that for sure happened is that for every configuration C ∈ C(to)
there exists at least an event e that is the image of tf (φ(e) = tf ) that is a
predecessor (e � eo

q) of an observed event eo
q.

Hence by deriving only the set of minimal configuration (explanations)
C(to) all the faults that can be diagnosed that for sure have happened are
also detected. Thus DRN {F} ⇔ DRN {F}. The other relations between
DRN and DRN are trivial.

Thus the computation of LN (On) is sufficient for taking the same con-
trol decisions (via Φ(·)) as the ones that would have been taken considering
LN (On) provided one takes actions only when the fault is certain.

LN (On) is in general a lot smaller than LN (On), thus the efficiency relies
on the computational effort for enumerating backwards the set of minimal
explanations.

Even though the computational effort for deriving LN (On) is not com-
parable with the computational effort for deriving LN (On) (since the for-
ward respectively the backward search explore different state spaces), the
efficiency of the diagnosis algorithm based on the (backward) calculation of
the minimal explanations of the plant observation can be further improved
if:

- there is a priori knowledge of plant dynamics that allows the use of
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some heuristics to drive the backward search [FRSB02]

- there are no subnets N ′′ of the PN model N having a large size and
comprising only unobservable events (∀N ′′ ⊆ N , T ′′ ⊂ Tuo, then | T ′ |
is not big )

- the observation is deterministic or the maximal degree of nondeter-
minism of the observation is not very high (say there are at most m
transitions that share the same label via l and m is small)

4.2.3 The case of PNs with unobservable trap circuits

In this section we treat the case when all the unobservable circuits in the PN
model are traps (see Def. 18) showing that this class of PNs allows for fast
computations.

Theorem 1. Consider a trap circuit PN 〈N ,M0〉. Then, given a trace σ that is
legal from the initial marking M0, σ ∈ LN (M0) we have that:

σ′ ∈ LN (M0) and
→

σ′ <
→
σ together imply that

∃ σ′′ s.t. i) σ′σ′′ ∈ LN (M0) and ii)
→

σ′ +
→

σ′′ =
→
σ

(where σ′σ′′ is the trace obtained by catenation of σ′ and σ′′).

To prove Theorem 1 we need the following result that can be found as
Theorem 17 in [Mur89].

Theorem 2. ( [Mur89]) In a trap-circuit net N , Md is reachable from M0 iff:

i) there exists
→
σ a non-negative integer solution of the state-equation Eq. 2.1

ii) and 〈N→
σ
,M0→

σ
〉 has no token-free siphons

where N→
σ

denotes the sub-net of N consisting of transitions t s.t.
→
σ (t) > 0

together with their input and output places and M0→
σ

denotes the sub-vector of M0

for places in N→
σ

.

Proof. [Theorem 1] Since σ ∈ LN (M0) denote by Md the marking obtained

firing σ from M0 (M0
σ
−→Md). Then we have that ∃

→

σ′′ s.t.:

M0 + F ·
→

σ′ + F ·
→

σ′′ = Md

σ′ ∈ LN (M0) and M0
σ′
−→M ′ imply that:

M ′ + F ·
→

σ′′ = Md
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To prove that exists a legal trace σ′′ that can be executed from M ′ we
need to prove that 〈N→

σ′′
,M ′→

σ′′
〉 has no token-free siphons where N→

σ′′
is the

sub-net of N consisting of transitions that are executed in σ′′ together with
their input and output places and M ′→

σ′′
is the sub-vector marking of M ′ for

places in N→
σ′′

.

Consider the set of transitions Σ(σ) that appear at least once in σ and let
Σ(σ) be partitioned in disjoint subsets as follows:

- T1 is the set of transitions that appear in σ′ and do not appear in σ′′, i.e.

t ∈ T1 ⇒
→

σ′(t) > 0 and
→

σ′′(t) = 0

- T12 is the set of transitions that appear in both σ′ and σ′′, i.e. t ∈ T12 ⇒
→

σ′(t) > 0 and
→

σ′′(t) > 0

- T2 is the set of transitions that appear in σ′′ and do not appear in σ′, i.e.

t ∈ T2 ⇒
→

σ′′(t) > 0 and
→

σ′(t) = 0.

(obviously Σ(σ) = T1 ∪ T12 ∪ T2 and T1 ∩ T2 = T12 ∩ T1 = T12 ∩ T2 = ∅)

Consider a set of places Q in the sub-net 〈N→
σ′′
,M ′→

σ′′
〉 s.t. Q is a siphon in

〈N→
σ′′
,M ′→

σ′′
〉, i.e. •Q ∩ {T2 ∪ T12} ⊆ Q• ∩ {T2 ∪ T12}.

Assume that Q is token-free in the marking that results after firing σ′

from M0, i.e. M ′→
σ′

(Q) = 0. Then consider that there exists a place p in Q s.t. p

belongs also to 〈N→
σ′
,M0→

σ′
〉 that is p ∈ Q s.t. ∃t ∈ T1 ∪T12 s.t. p ∈ •t or p ∈ t•.

If such a place does not exist then Q is a siphon in 〈N→
σ
,M0→

σ
〉 that means

that Q is marked in the initial marking M0 otherwise it contradicts the fact
that σ ∈ LN (M0) is legal. Since the transitions that are executed in σ′ have no
input places in Q the marking M ′→

σ′
(Q) can not become 0, hence it contradicts

the assumption that Q is token-free siphon in the marking that results after
firing σ′ from M0, i.e. M ′→

σ′
(Q) = 0.

It means that there exists a place in p and a transition t ∈ T1 ∪ T12 such
that p ∈ •t or p ∈ t•.

We have that M ′→
σ′′

(p) = 0 and σ′ is legal, thus:

∑

t∈•p

→

σ′(t) +M0(p) =
∑

t∈p•

→

σ′(t) (4.5)

that in words means that the number of executions of the transitions that re-
move tokens from p in σ′ is equal with the number of tokens plus the number
of executions of transitions in σ′ that add tokens in p.
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Similarly for M0
σ
−→Md we have that Md(p) ≥ 0 and:

∑

t∈•p

→
σ (t) +M0(p) ≥

∑

t∈p•

→
σ (t) (4.6)

We have that:

1. if t ∈ T1 then σ(t) = σ′(t) and σ′′(t) = 0

2. if t ∈ T12 then σ(t) = σ′(t) + σ′′(t), σ′(t) > 0 and σ′′(t) > 0

3. if t ∈ T2 then σ(t) = σ′′(t) and σ′(t) = 0

From 4.5 and 4.6 we obtain:

∑

t∈•p

→

σ′′(t) ≥
∑

t∈p•

→

σ′′(t) (4.7)

Since p is in 〈N→
σ′
,M ′→

σ′
〉 and Q is a siphon ( •Q ∩ {T2 ∪ T12} ⊆ Q• ∩

{T2 ∪ T12}) we have that there exists at least a transition t in T2 ∪ T12 s.t.
t ∈ •p. Since Q is siphon and T2 ∪ T12 then the input places of t are in Q.

We have that 4.7 holds for any place of the sihpon p′ ∈ Q and thus in
particular for the input places of transition t. Then inductively we have that
p is a part of a circuit in Q and in N we have that any circuit is a trap.

Thus if M0(p) 6= 0 or σ′(t) > 0 for some transition t ∈ •p then the state-
ment is proved straightforward since a trap once is marked cannot become
token-free in a successor marking.

Notice that if M0(p) = 0 and σ′(t) = 0 for any transition t ∈ •p implies
that σ′(t′) = 0 for any transition t′ ∈ p• that means that p does not belong to
N→

σ′
that contradicts the assumption.

ThusQ contains tokens inM ′→
σ′′

that means that the siphonQ is not token-

free. Hence M→
σ

is reachable fromM ′→
σ′′

. This means that exists a trace σ′′ that

can be executed after σ′ and this completes the proof.

Then we have the following corollary:

Corollary 1. Consider a trap circuit PN 〈N ,M0〉. Then, given two traces σ1 and
σ2 that are legal from the initial marking M0, σ1 ∈ LN (M0) and σ2 ∈ LN (M0)
we have that:

σ1σ2 ∈ LN (M0) implies that

∃σ′1 s.t. σ2σ
′
1 ∈ LN (M0) and

→

σ′1 =
→
σ1

Proof. Straightforward applying Theorem 1.
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Assumption 3. All the unobservable circuits in the PN model of the plant are trap
circuits.

Based on Assumption 3 and Theorem 1 we have the following result:

Proposition 8. Consider a PN 〈N ,M0〉 satisfying Assumption 3. Then, given two
unobservable strings σuo1 , σuo2 ∈ T ∗uo that are both legal from the initial marking
M0 (σuo1 , σuo2 ∈ LN (M0)), if σuo1σuo2 ∈ LN (M0) then ∃σuo2σ

′
uo1

∈ LN (M0)

such that
→
σuo1 =

→

σ′uo1 .

Proof. Straightforward applying Corollary 1 to 〈Nuo,M
uo
0 〉 where Nuo de-

notes the sub-net of N comprising the unobservable transitions Tuo andMuo
0

denotes the sub-vector of M0 for places in Nuo.

The idea behind developing an efficient algorithm is to convert the initial
problem P of finding the set of minimal explanations of to into a conjunction
of subproblems of the initial problem e.g. P −→

∧
υ∈V SPυ where a sub-

problem SPυ, υ ∈ V is to find a minimal explanation of how a token gets to
an input place p of to.

Consider that •to = {p1, p2} and denote by
←
C (p1) the set of backward

configurations derived considering the final marking Mfin = p1 where a

backward configuration
←
C(p1) ∈

←
C (p1) contains only unobservable transi-

tions.

Then denote by C(p1) the set of minimal configurations that explain the
presence of one token on p1 where a minimal configuration C(p1) ∈ C(p1) is

obtained from a backward configuration
←
C(p1) ∈

←
C (p1) by adding the con-

ditions that correspond with the tokens from the initial marking that were
not used.

Denote by
←
C (p2, C(p1)) the set of backward configurations that explain

the presence of one token in p2 considering as initial marking mark(C(p1))
and then denote by C(p2, C(p1)) the set of minimal configurations that ex-
plain one token p2 provided that one token in p1 was explained by the mini-
mal configuration C(p1).

Denote by C(p1, p2) the set of all minimal configurations that explain first
one token in p1 and then one token in p2:

C(p1, p2) = {C(p2, C(p1)) | C(p1) ∈ C(p1)}

and then denote by LN (p1, p2) the set of minimal traces that explain one
token in p1 and then one token in p2:

LN (p1, p2) = {τ | τ = φ(σ) ∧ σ ∈ E(p1p2)}

where:
E(p1, p2) =

{
σ ∈ 〈EC(p1,p2)〉 | C(p1, p2) ∈ C(p1, p2)

}
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Similarly denote by C(p2, p1) the set of all minimal configurations that
explain first one token in p2 and then one token in p1:

C(p2, p1) = {C(p1, C(p2)) | C(p2) ∈ C(p2)}

and then denote by LN (p2, p1) the set of minimal traces that explain one
token in p2 and then one token in p1:

LN (p2, p1) = {τ | τ = φ(σ) ∧ σ ∈ E(p2p1)}

where:
E(p2, p1) =

{
σ ∈ 〈EC(p2,p1)〉 | C(p2, p1) ∈ C(p1, p2)

}

Based on Proposition 8 we have that:

LN (p1, p2) ≡Σµ
LN (p2, p1)

that is:

1. ∀τ ∈ LN (p1, p2) ⇒ ∃τ ′ ∈ LN (p2, p1) s.t. Σµ(τ) = Σµ(τ ′)

2. and ∀τ ′ ∈ LN (p2, p1) ⇒ ∃τ ′ ∈ LN (p1, p2) s.t. Σµ(τ ′) = Σµ(τ)

This result can be extended inductively for the case when to has an arbi-
trary number of input places and also for any order in which the input places
of an unobservable transition are chosen.

Proposition 9. Denote by X set of all possible orders of explaining the tokens in the
output places of the transitions that are considered. Then we have that for any two
arbitrary orders ∀χ, χ′ ∈ X:

LN (χ, to) ≡Σµ
LN (χ′, to)

that obviously implies that:

LN (χ, to) ≡Σµ
LN (to)

where LN (to) =
⋃

χ∈X
LN (to)

Proof. Straightforward applying Proposition 8.

Proposition 10. Consider a PN 〈N ,M0〉 satisfying Assumption 3 and the first
observed event in the plant to1. Then, given two unobservable strings σuo1 , σuo2 ∈
T ∗uo that are both legal from the initial marking M0 (σuo, σ

′
uo ∈ LN (M0)), s.t.:

M0
σ
−→M ≥ Pre(·, to1)

M0
σ′
−→ M ′ ≥ Pre(·, to1)
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and
→

σ′uo <
→
σuo

all together imply that exists an unobservable string ∃σ′′uo ∈ T ∗uo s.t. i) σ′uoσ
′′
uo ∈

LN (M0) and ii)
→

σ′uo +
→

σ′′uo =
→
σuo

Proof. Straightforward applying Theorem 1.

Consider τ ∈ LN (to) a minimal explanation of to where τ = τ1τ2 s.t.

M ′
τ2
 M ′′ with M ′ = Pre(·, to) and M ′′ ≤ M0. Based on Proposition 8 we

have that ∃τ ′ = τ2τ
′
1 s.t. τ ′ ∈ LN (to) and Σµ(τ1) = Σµ(τ ′1).

It means that when we find that a trace e.g. τ2 is a minimal explanation
for to then we do not calculate the minimal explanations τ = τ1τ2 that are
backwards extensions of τ2 since for any τ1 that extends τ2 backwards pro-
viding a minimal explanation τ for to we have that there exists a trace τ ′1 that
can be executed after τ2 (τ ′ = τ2τ

′
1) s.t. τ1 and τ ′1 have the same Parikh vector.

Thus considering an arbitrary order χ ∈ X we can calculate a subset of
minimal explanations LN (χ, to) ⊂ LN (to) s.t. URN (M(χ, to)) = M(to))
where:

M(χ, to) =
{
Mχ | ∃τχ ∈ LN (χ, to) s.t. M0

τχ

−→Mχ

}

M(to) =
{
M ′ | ∃τ ∈ LN (to) s.t. M0

τ
−→M

}
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A
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Figure 4.4:

The search algorithm is depth first, meaning that (see Fig. 4.4) for a given
case first P is converted into SP1 ∧ SP2 then the subproblem SP1 is selected
and it is converted in a similar way (SP1 → SP11 ∧ SP12) and then (SP11 →
SP111 ∧ SP112). Assume that SP111 is proven (denoted SP⊤111). Then we
backtrack to the last node (SP11) that is not proven yet and prove SP112. If
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SP112 is proven (SP⊤112) then SP11 becomes proved and we backtrack to the
last node left not proven.

A subproblem SPν is a terminal node if SPν = {token in p} and p is
marked inM0. If the marking (the multi-set of tokens) that corresponds with
the terminal nodes M⊤ is smaller thanM0 then P has a solution for this case
and the computation stops for this case (and continues for the other cases
that correspond with the backward choice that are considered). To motivate
this consider that a minimal explanation σ′uo was found. By Proposition 10
we have that for all the minimal explanations σuo of the first observed event

such that
→
σuo >

→

σ′uo there exists σ′′uo that can be executed after σ′uo and σ′′uo

contains the unobservable transitions that are considered in σuo but are not
considered in σ′uo.

This is important for the following two reasons:

1. first the consideration of all the extensions of σ′uo (e.g. σ′′uo) will not
change the set of faults that were diagnosed that for sure happened

2. secondly the marking that is reachable firing σ is reachable from the
marking that result after firing σ′uo from the initial marking.

A node SPν = {token in p} is aborted in the following two cases:

1. •p ∩ Tuo = ∅ and either p is not marked in M0 or M⊤ > M0

2. SPν = {t fired } has a predecessor subproblem SPι = {t′ fired } and
t = t′

The second condition says that SPν cannot be part of the proof of SPι if
SPν and SPι consist in the firing of the same transition. This is because the
problem to be proven becomes harder since to prove the firing of t we must
prove the firing of t′ = t and possibly something else. In other words by

firing backwards the unobservable string σuo2 fromM e.g. Mfin

σuo1
 M

σuo2
 

M ′ we have that M ′ ≥ M . If M ′ = M then σuo2 is a cycle that repeats the
marking and consequently it is not continued while if M ′ > M the marking
decreases and obviously the further calculation of σ1σuo2 is discarded. This
is because σuo2 can be executed after σuo1 .

If a node SPν is aborted the entire case is aborted.

We formalize this intuitive algorithm using the (backwards) unfolding
technique.
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Algorithm 4 Minimal explanations for one observed event

Require: 〈N ,M0〉, To, Tuo, to

Ensure: C′(χ, to)
1: ν = 1; νmax = 1; Cν = ∅; SET [ν] = ∅; Pred[ν] = ∅; tcurν

= to

2: for all p ∈ P s.t. M0(p) 6= 0 do
3: for each token in M0(p) do
4: BCν

= BCν
∪ b and φ(b) = p

5: add b to AV AILABLE[ν]
6: end for
7: end for
8: while ν ≤ νmax do
9: Min Conf(tcurν

) (see Section 7.3 in Apendix)
10: if abort[ν] 6= true then
11: C′(to) = C′(to) ∪ Cν

12: end if
13: ν = ν + 1
14: end while

p0

p1 p2
p3

p4

p7 p8 p9

p5

t1

t3
t2

t5
t6

t7

t4

p6

Figure 4.5:

Example 20. Consider the PN N ′ displayed in 4.5 and consider that t1 is the only
observable transition in N ′ (where N ′ may be viewed as a proper subnet of a larger
PN model N ). Let t1 be observed. The algorithm for computing the minimal expla-
nations described above works in the following way (see Fig. 4.6 from left to right):

first the top condition− nodes b7, b5, b8, b9 that correspond to M0 are added
to C1 and then •e1 ∪ e1 ∪ e•1 is added to C1 where φ(e1 = t1)
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- AV AILABLE[1] = {b7, b5, b8, b9}

- SET [1] = {b1, b2, b3} (in an arbitrary order)

- b1 is chosen arbitrary as HEAD(SET [1])

- e4 is appended and an arc is drawn from e4 to b1

- b4 is appended and added to SET [1] s.t. HEAD(SET [1]) = b4

- b5 is as input place of e4 and removed from AV AILABLE[1]

- then for explaining b4, e5 is appended and an arc is drawn from b7 to e5

- b7 is removed from AV AILABLE[1];

- b′5 is added to AV AILABLE[1];

- b2 = HEAD(SET [1]) and remove b2 from SET [1]

- e3 is appended

- b′5 is removed from AV AILABLE[1];

- b3 = HEAD(SET [1])

- append e2

- add b′′5 and b6 to SET [1]

- chose e7 for C1 and e4 for C2

- append e7

- b′′5 and b6 from SET [1]

- remove b9 from AV AILABLE[1]

- SET [1] = ∅ so that we obtain the solution displayed in Fig. 4.6-right

- for C2 there is not solution since t6 and t7 can not both be executed
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Figure 4.6:

For a sequence of observed events On = to1 . . . t
o
n Algorithm 4 is applied

recursively where for explaining the kth observed event the initial marking
is given by the set of markings that are obtained after firing the minimal
explanations of the first k − 1 observed events.

Algorithm 5 Minimal explanations for a sequence of observed events

Require: 〈N ,M0〉, To, Tuo, On

Ensure: C′(χn,On)
1: k = 1;
2: run Algorithm 4 for O1 = to1
3: while k ≤ n do
4: for all C ′(χk,Ok) ∈ C′(χk,Ok) do
5: run Alg.4 for tok+1 considering instead of M0

the marking mark(C ′(χk,Ok))
6: end for
7: k = k + 1
8: end while

Denote by C′(χn,On) the set of the minimal configurations derived as
presented above. Notice that C′(χn,On) does not comprise in general all the
minimal configurations of On for the reasons explained above. Thus we have
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C′(χn,On) ⊆ C(χn,On) and E ′(χn,On) ⊆ E(χn,On) where:

E ′(χn,On) =
{
〈EC′(χn,On)〉 | C(χn,On) ∈ C′(χn,On)

}

and L′N (χn,On) = {τ | ∃σ ∈ E(χn,On) ∧ φ(σ) = τ}.

Proposition 11. Given a PN 〈N ,M0〉 and the observation On let L′N (χn,On) be
the set of minimal explanations derived running the Algorithm 5 for an arbitrary
order χn ∈ Xn. We have that:

1. L′N (χn,On) ⊆ LN (χn,On)

2. ∀τ ∈ LN (χn,On) ⇒ ∃τ ′ ∈ L′N (χn,On) s.t.
→
τ
′
≤
→
τ

3. and URN (M′(On)) = M(On)

Proof. The proof is by induction as follows.

O1 = to1 (base) Let LN (χn,O1) be obtained running the Algorithm 5 for
Mfin = Pre(·, to1). The proof of i) is straightforward. Then we have by
Proposition 9 that LN (χ1,O1) ≡Σµ

LN (O1). Then L′N (χ1,O1) ⊆ LN (χ1,O1)
and as implemented in Algorithm 4 we have that σuot

o
1 ∈ L′N (χ1,O1) iff

c.i) all the markings that are considered in τ are different (∀0 ≤ q < v ≤ z
⇒Mq 6= Mv)

c.ii) and ∀q, 0 ≤ q ≤ z, M ′q ≤M0 ⇒ q = 0 where Mfin
σqz

uo
 M ′q

with Mfin = Pre(·, to1), Mz ≥Mfin and:

σuo := M0
t1−→ . . .

tq

−→Mq . . .
tv−→Mv . . .

tz−→ Mz

Then consider a trace τ ∈ LN (χ1,O1) \ L′N (χ1,O1) that is discarded by
running Algorithm 4.

If τ is discarded because of c.i) we have two cases:

1. If ∃Mq and Mv s.t. Mq = Mv then we have that σuo contains a cycle
thus ∃σ′uot

o
1 ∈ L′N (χ1,O1) s.t. Σµ(σ′uo) ≤ Σµ(σuo).

2. else if ∃Mq,Mv s.t. Mq > Mv and q < v then we have that σvz
uo =

tv+1 . . . tz can be executed from Mq thus σ′uo = t1 . . . tqtv+1 . . . tz can be
executed from M0 and Σµ(σ′uo) ≤ Σµ(σuo).

If τ is discarded because of c.ii) we have Proposition 10.

Then the proof that URN (M′(to1)) = M(to1) is straightforward by Propo-
sition 10.

Ok (induction base) L′N (χk,Ok) ⊆ LN (χk,Ok); ∀τ ∈ LN (χk,Ok) ⇒ ∃τ ′ ∈
L′N (χk,Ok) s.t. Σµ(τ ′) ⊆ Σµ(τ) and URN (M′(Ok)) = M(Ok).
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Ok+1 (induction step) The proof is straightforward since the k + 1th ob-
served event is explained considering as initial marking a marking M ∈
M′(χk,Ok).

Then we have the following result:

Proposition 12. Consider a PN model that has the property that all the unobserv-
able circuits in 〈N ,M0〉 are traps and any observation On that can be generated
by the plant. The diagnosis result DR′N (On) based on the subset of minimal ex-
planations L′N (χk,On) (derived by running Algorithm 5) and the diagnosis result
DRN (On) based on the set of all the explanations of On are equivalent w.r.t. the
detection of the faults that for sure happened, i.e.:

∀On DR′N (On) = {F} ⇔ DRN (On) = {F}

Proof. The proof is straightforward using Prop. 11 and Assumption 2.
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Figure 4.7:

Example 21. Consider the PN 〈N ,M0〉 displayed in Fig. 4.7 where the observable
transitions are t6 and t10 and the fault transitions are t1, t8. The initial marking is
M0 = {m(p0) = 2;m(p8) = 1}. Let the first observed event be O1 = t6. The set of
all the explanations of O1 is:

LN (O1) = {t0t4t6; t0t0t4t6; t0t4t6t9; t1t4t6t0; . . .}

The set of minimal explanations of O1 is:
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LN (O1) = {τ1 = t0t4t6; τ2 = t1t4t6; τ3 = t2t4t6; τ4 = t2t5t7t13t0t3t4t6;
τ5 = t0t9t3t6}

The diagnosis result DRN (On) = {UF} since DN (On) = {ǫ, t1} that is also
the case for DRN (On). The set of markings calculated based on LN (O1)M(On) =

{M1,M2,M3,M3} where M0
τι−→Mι for ι = 1, . . . , 5 and τι ∈ LN (O1):

M1 = {p0, p1, p6, p8}

M2 = {p0, p6, p8}

M3 = {p0, p3, p6, p8}

M4 = {p2, p6, p8}

M5 = {p0, p6}

Then consider the second observed event t10 (O2 = t6t10). If we consider M4 =
{p2, p6, p8} as initial marking for minimally explaining t10 we obtain two minimal
explanations for t10 e.g. ω1 = t7t10 and ω2 = t8t10.

Remark 8. Notice that a PN model free of unobservable circuits can be treated as
an acyclic PN. Thus the marking equation (Eq.2.1) is a necessary and sufficient
condition for the reachability analysis. For any explanation τ ∈ LN (to) of the first
observed event to, τ = σuot

o we have that:

M0 + F ·
→
σuo ≥ Pre(·, to)

Thus the problem of deriving the set of minimal explanations can be formulated as a
Multi Objective Integer Linear Programming Problem as follows:

Given the first observed event to1 then σuot
o is a minimal explanation if:

i)
→
σuo is a solution for 4.8

F ·
→
σuo ≥ Pre(·, to) −M0 (4.8)

ii) and for any
←

σ′uo that is solution for 4.8 then if
→

σ′uo ≤
→
σuo we have that

→

σ′uo =
→
σuo.
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4.3 Distributed diagnosis
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The work in this section is inspired by the fundamental work of S. Lafortune
and coworkers on distributed/decentralized diagnosis of DES [DLT00],
[GL03], [DLT03] and also by the work of researchers in INRIA/IRISA
Rennes [PCR01], [BFHJ03], [FBHJ05] and by R. Su and W.M. Wonham
[SW04], [Su04].

We consider the distributed plant description as follows:

1. the overall plant is composed of a collection J = {1, 2, . . . , | J |} of
components (local sites)

2. the PN model of the overall plant 〈N ,M0〉 is composed by a collection
of bordered Petri Nets 〈Ni,M0i

〉, i ∈ J (the interactions between com-
ponents are modeled by the border places that allow tokens from one
component to enter/exit the neighbouring components)

3. for each component i ∈ J there is a local agent Agi that knows the PN
model of the component i, 〈Ni,M0i

〉 and the disjoint partition of the
local set of transitions Ti in to the set of locally observable transitions
Toi

and the set of unobservable transitions Tuoi

4. Agi knows also the set of border-places of its local PN model Ni know-
ing for each border place p if p is a place that allows tokens to enter
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Ni or p is a place that allows tokens to leave Ni and moreover knows
which are the components that can put tokens to p, respectively remove
tokens from p

5. the occurrence of an observable transition toi ∈ Toi
is reported (only)

to the local agent Agi correctly and without delays. The observation of
toi includes also the time toi occurred in the plant, and this is measured
with accuracy according with a global clock

Formally, the distributed plant description is:

i) N =
⋃

i∈J Ni where N = (P , T , F ) and Ni = (Pi, Ti, Fi)

ii) P =
⋃

i∈J Pi, and ∀i ∈ J , ∃j ∈ J , i 6= j s.t. Pi ∩ Pj
△
= Pij 6= ∅

iii) T =
⋃

i∈J Ti and ∀i, j ∈ J , i 6= j ⇒ Ti ∩ Tj = ∅

iv) Fi = F |Ni

v) Pij = PINij
∪ POUTij

, PINij
∩ POUTij

= ∅

vi) PINij
= POUTji

= {p ∈ Pij | p• ⊆ Ti ∧ •p ⊆ Tj}

vii) PINji
= POUTij

= {p ∈ Pji | •p ⊆ Ti ∧ p• ⊆ Tj}

viii) N is structurally bounded w.r.t. the unobservable evolution i.e. (∀M ∈
N|P|), (∀σuo ∈ T ∗uo) we have that:

((M
σuo−−→M ′) and (M ′ ≥M)) ⇒ (M ′ = M)

For simplicity we assume at item v) above that PINij
and POUTij

are
disjunct and we consider that in the initial marking of the overall plant the
border places are not-marked that is ∀i, j ∈ J , M0(Pij) = 0. Moreover to
avoid unnecessary complications we consider that ∀p ∈ P , •p ⊆ Ti for some
i ∈ J and similarly ∀p ∈ P , p• ⊆ Tj for some j ∈ J that is only a component
can put and respectively remove tokens from any border place.

For a component i denote by PINi
and POUTi

the set of input border
places respectively output border places:

PINi
=

{
PINij

| j ∈ J, j 6= i ∧ PINij
6= ∅

}
and

POUTi
=

{
POUTij

| j ∈ J, j 6= i ∧ POUTij
6= ∅

}

Given the set of agents AG = {Agi | i ∈ J}, the knowledge an agent Agi

has KNWi = 〈Ni, Toi
, TFi

,M0i
,PINi

,POUTi
〉 considers that:
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i) the plant observation is distributed Oθcom
= ⊗gc

i∈JO
i
θcom

. Oi
θcom

=
to1i
. . . toni

is the local observation recorded at site i ∈ J , where any ob-
served event 〈toki

, θki
〉 has the time tag θtki

indicating the time event toki

happened in the plant; θtki
is measured according with a global clock

(denoted gc in short).

ii) the communication between agents is not event-driven that is the
agents are allowed to communicate at times e.g. θcom1 , θcom2 , . . . that
do not necessarily depend on the plant observation. The communi-
cation session for information exchange at the time θcomq

(q = 1, . . .)
comprises different pairwise communication rounds. A pairwise com-
munication round between two neighbouring agents Agi and Agj

consists of an instantaneously exchange of information between the
two agents. The communication session is closed when the agents
have no more information to exchange among them.

Problem formulation:

Given the setting described above, design a distributed algorithm such that:

R1 before communicating with its neighboring agents, each agent Agi

(i ∈ J) derives a local preliminary diagnosis of component i

R2 repeat for q = 1, . . . qmax: when the communication session is initiated
(e.g. at the global time θcomq

that does not necessarily depend on the
time the observable events are reported) then for achieving the con-
sistency of all the local calculations of agents Ag1, Ag2, . . . Ag|J| at the
time θcomq

:

R2.1 each local agent Agi, i ∈ J derives the (limited) information
that should be sent in a communication round to its neighboring
agents

R2.2 after each communication round, the local calculation of site i is
updated with the new information that is received

then each local agent iterates the step 2.1) and 2.2) until a stopping
criterion is achieved (the communication session at time θcomq

termi-
nates)

R3 the completion of the communication session at the communication
time θcomq

guarantees that the agents recover the diagnosis result of a
centralized agent by consistent pairs of local diagnostics

The assumption made above is that the communication exchange be-
tween two agents is simultaneous (synchronous) and takes place in different
communication rounds and that the local calculations of each component
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do not include new observations (events observed happening after θcomq
).

The consideration of asynchronous communication exchange brings noth-
ing new but some more notation.

In the following section we present a distributed algorithm that com-
prises:

i) a procedure for performing the local preliminary calculations in ab-
sence of of any external information

ii) a procedure for information exchange

iii) a procedure for updating a local calculation to incorporate the received
information

Then we prove the main result of this section that is the distributed algo-
rithm we propose terminates after finitely many communication rounds and
by the completion of the information exchange (communication protocol)
the centralized diagnosis result is recovered.

4.3.1 The distributed algorithm

We start this section by emphasizing first the difficulties in designing a dis-
tributed algorithm under the setting that we consider and then the three
steps R1, R2.1 and R2.2 aforementioned are presented in detail.

Discussion

Consider the PN displayed in Fig. 4.7. and then consider 〈N ,M0〉 de-
composed in two sub-nets 〈N1,M01〉 and 〈N2,M02〉 as shown in Fig.4.8.
〈N1,M01〉 and 〈N2,M02〉 are bordered-nets where p5 and p9 are their com-
mon border places.

Let the local observation at site 1 and site 2 be: O1
1 = t6 and O2

1 = t10
respectively (where the upper index indicates the agent and the lower index
indicates how many events were locally observed). The input and output
transitions of the border places p5 and p9 are unobservable thus Ag1 andAg2
should analyze PN models whose initial markings are uncertain, that is even
though the agents know the initial local marking M01 and resp. M02 tokens
from the neighboring component could have entered the local PN models.

Since a preliminary local calculation before communicating with the
other agents is required (see R1 above) we are in trouble because the lo-
cal agents should handle PN models with uncertain markings (due to the
unobservable interactions with the neighboring components).

Consider the case of Ag2. Via the border place p5 tokens can enter N2

and then leave unobservably via p9. The question we must answer is: ”what
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Ag2 should do before communicating with the neighboring agent Ag1 ?”. One
solution would be to consider upper bounds for the marking of the input
places of each component (e.g. p5 for N2 in Fig. 4.8), computing in this way
an over-estimate of the local site behavior that is checked for consistency by
communication. As discussed in Section 2.7 to calculate upper bounds it is
necessary to calculate the overall plant behavior. In fact, what we want to
avoid by a distributed analysis of the plant.

In the following we propose a distributed algorithm based on the concept
of minimal explanations. We illustrate the method via the following exam-
ple. Consider again the model displayed in Fig. 4.8 and analyse what Ag1
does after observing the first execution the transition t6 at the time θt6 . Ag1
infers backwards that at least one token was present in p4 before the time
θt6 . Then, there are two possibilities for the required token to have reached
p4 namely: ”t4 must have happened” or ”t3 must have happened”. For the case
”t3 must have happened”, Ag1 deduces that a token must have entered in N1

via p9, and this token must have arrived at p9 at a time before θt6 . Moreover
a token in p1 must have been also present for allowing t3 to fire. Then Ag1
deduces that a token in p1 would have been present if t0 would have been
executed before θt6 . Thus we have that if a token arrived in p9 before the time
θt6 , then τ11 = t0t3t6 provides a minimal explanation of the observed event
t6.

This minimal explanation is represented in the backward configuration
←
C11 in the backward unfolding

←
UN1(t6) (displayed in the left of Fig. 4.9)

where:

←
C11 = (

←
B←

C11

,
←
E←

C11

,�),
←
B←

C11

= {b0, b91 , b
′
1, b
′
2, b4, b6},

←
E←

C11

= {e′0, e3, e6}

On the other hand for the case ”t4 must have happened”,Ag1 derives back-
ward three possibilities for explaining how a token could have be present
in p2 namely either t0 or t1 or t2 fired before θt6 . Thus we have three more
minimal explanations for the occurrence of t6: τ21 = t0t4t6; τ31 = t1t4t6 ;
τ41 = t2t4t6 that correspond with the following backward configurations in
←
UN1(t6):

-
←
C21 = (

←
B←

C21

,
←
E←

C21

,�),
←
B←

C21

= {b′0, b
′′
1 , b
′′
2 , b4, b6},

←
E←

C21

= {e′′0 , e4, e6}

-
←
C31 = (

←
B←

C31

,
←
E←

C31

,�),
←
B←

C31

= {b′′0 , b
′′
2 , b4, b6},

←
E←

C31

= {e1, e4, e6}

-
←
C41 = (

←
B←

C41

,
←
E←

C41

,�),
←
B←

C41

= {b′′′0 , b
′′
2 , b3, b4, b6},

←
E←

C41

= {e2, e4, e6}

Then consider the analysis of what Ag2 does after observing the first ex-
ecution of t10 at the time θt10 . Ag2 infers backward that at least one token
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was present in p7 before the time θ10. Then there are two possibilities for
the required token to have reached p7: ”t9 must have happened” or ”t8 must
have happened”. For the case ”t9 must have happened” Ag2 makes the assump-
tion that a token must have arrived at p5 at a time before θt10 while the case
”t8 must have happened” is explained by the token in p8 that is present in the
initial marking.

Thus Ag2 derives two minimal explanations for the first occurrence of t10
namely:

1. if a token arrived in p5 before θt10 then τ12 = t9t10 is a minimal expla-
nation for t10

2. τ22 = t8t10 is a minimal explanation of the first occurrence of t10

that correspond with the two backward configurations in
←
UN2(t10) (see Fig.

4.9-right).

-
←
C12 = (

←
B←

C12

,
←
E←

C12

,�),
←
B←

C12

= {b52 , b11, b7, b10},
←
E←

C12

= {e9, e10}

-
←
C22 = (

←
B←

C22

,
←
E←

C22

,�),
←
B←

C22

= {b8, b7, b10},
←
E←

C22

= {e8, e10}

Notice that the
←
UN1(t6) and

←
UN2(t10) are obtained by running Algorithm

3 for component 1 and component 2 considering the marking of the input
places PINi

respectively PINj
arbitrary large.

b’’0

b’1
b’’2 b3

e2
e1e’’0

e4
e3

e6

b6

b’0

b’’’0
b0

e’0

b91

b’2

b’’1

b4

C11

e9

b52

e10

b11

b10

b8

e8

b7

C12

Figure 4.9:
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Consider the case of
←
C11 for component 1. By appending the token from

the local minimal marking M01 that was not used for explaining the local ob-
servation (e.g. bb0 that corresponds to the second token in p0) we obtain C11

that is a minimal configuration in the forward unfolding UN1(t6) that would
have been derived for N1 considering as initial markingM01∪{(p9, 1)}. Then
C11

is extended by appending only unobservable strings that can be exe-
cuted from CUT (C11

) (see Fig. 4.10-left). In this way we calculate the set of
local configurations C11(t6) that are unobservable extensions of C11

.

Consider Ag2 making the same calculations e.g. for
←
C12 it derives the

local minimal configuration C12
by adding to

←
C12 the condition b8 and then

calculates forward the set of configurations C12(t10) that are unobservable
extensions of C12

(see Fig. 4.10-right).

Notice that the extensions of a minimal local configuration are calculated
whenever the communication exchange is about to start. This is becauseAg1,
resp. Ag2 should exchange information about the tokens that are required
and the tokens that could have been provided. Consequently we refer to
C1(t6) and C2(t10) as the set of preliminary local configurations of component
i and component j respectively.

bb0

bb’2

ee’4

bb’4

bb’’2

ee’’4

bb’’4

bb2

ee4

bb4

ee5

bb51

bb3

bb1
b’1

e3

e6

b6

b0

e’0

b91
b’2

b4

e4

b’4

e14
e7

b51

C11
b8

e8

b’7

e12

b’’9

e9

b5

b7

e10

b11

b10

e11

b’9
b9

   C12

e13

Figure 4.10:

Consider for component 1 the preliminary local configuration C11 ∈
C1(t6) (Fig. 4.11-left). For C11 , Ag1 derives that a token in p9 should have
been present at a time before θt6 (see b91 in Fig. 4.9-left) and if this is true,
then two tokens can be provided to N2 via the place p5. One token could
have been provided after the time θt6 (see b51) while the second token could
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have been provided at any time after the process starts (see bb51).

Similarly consider for site 2 the preliminary local configuration C12 ∈
C2(t10) (Fig. 4.11-right). For C12 , Ag2 derives that a token in p5 should have
been present at a time before θt10 (see b52 in Fig. 4.9-right) and if this is true,
then three tokens can be provided to N1 via the place p9. One token could
have been provided after the time θt10 (see b′92

), the second token (b91) could
have been provided after the time the required token in p5 has entered N2

(b92) while the third token could have been provided to N1 at any time after
the process starts (see b′′92

).

e9
b52

b7

e10
b11

b10

b8

e12

b’’92

e11

b’92

b92

C12
b’1

e3

e6

b6

b0

e’0

b91

b’2

b4

bb0

e4

b’4

e7

b51

bb’’2

ee’’4

bb’’4

ee5

bb51

bb3

C11

e13

Figure 4.11:

The main goal of any distributed algorithm is to recover the overall plant
behaviour. It means that the local agent should check the consistency of
its preliminary results (local configurations) for deriving consistent global
configurations.

Since a local agent knows only the model of its component and its inter-
actions with the neighbouring components, it means that the consistency of
the local configurations is achieved by the local agent exchanging informa-
tion about the common border-places.

As presented in Section 2.7 to check the consistency of two local configu-
rations Cνi

and Cνj
requires thatAgi andAgj exchange not only information
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regarding the number of input and output border conditions considered in
Cνi

and Cνj
respectively but also information about how the input and out-

put border conditions are causally related in Cνi
and Cνj

respectively.

For instance to check the consistency of the local configurations C11 and
C12 that are displayed in Fig. 4.11 requires thatAg1 sends toAg2 the message
that:

- at least a token is required to arrive at p9 before the time θt6 when t6
was executed (the input border-condition b91)

- and at least two tokens can arrive at p5 namely:

- one token can arrive in p5 after the time θ6 (the output border
conditions b51)

- and one token can arrive in p5 after the process starts (the output
border condition bb51)

This message can be summarized as:

{b91 � e6} ∧ {e6 � b51} ∧ {bb51}

On the other hand Ag2 sends to Ag1 the message that:

- at least a token is required to arrive at p5 before the time θt10 when t10
was executed (the input border condition b52 )

- and three tokens can arrive at p9 namely:

- one token can arrive in p9 after the time the required token in p5

has entered in N2 (the input border condition b92 )

- one token can arrive in p9 after time θt10 (the input border condi-
tion b92)

- and one token can arrive in p9 after the process starts (the input
border condition b′′92

)

This message can be summarized as:

{b52 � e10} ∧ {b92 � b52} ∧
{
b′92

� e10
}
∧

{
b′′92

}

Based on the received information the local agents check whether there
is an interpretation function ψℓ1112

∈ Ψ1112 (ℓ1112 ∈ V1112) of the border con-
ditions (see Section 2.7) so that (C11 , C12 , ψℓ1112

) is a global configuration.
Cℓ1112

= (C11 , C12 , ψℓ1112
) is a global configuration if the PN obtained by

from C11 and C12 by merging their border-places is acyclic and there are no
input border-conditions in C11 and C12 that have no input events in Cℓ1112

.
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If not all the input border conditions of C11 and C12 have input events in
Cℓ1112

the local agents should check if Cℓ1112
can be further extended by us-

ing the ”new” tokens that become ”available” after the information exchange.
For a local agent i the ”new” tokens inCℓ1112

are the output border conditions
of C12 that were not assigned to input border-conditions of C11 .

By further (unobservable) extensions new pairs of local configurations in
two different components may become consistent. Since the overall plant
model N is bounded with respect to the unobservable evolution (see item
viii) in setting) the consistency check can be proven to terminate after a finite
number of communication rounds between the local agents.

e9
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Figure 4.12:
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Figure 4.13:

Example 22. Consider again the two local configurations C11 and C12 displayed
in Fig. 4.11. Then consider the following interpretation functions:

ψ11112
(b91) = b′92

, ψ11112
(b52) = b51 : C11112

is not consistent and is dis-



98 Diagnosis of PN models

carded since C11112
is not acyclic; see the circuit (Fig. 4.12-left):

ζ = b4e6b6e7b51e9b7e10b10e11b91e3

ψ21112
(b91) = b′92

, ψ21112
(b52) = bb51 : C21112

is consistent only if t10 fires at
a time before t6 (θt10 < θt6 ) since e10 is a predecessor of e6 (Fig. 4.12-right).

ψ31112
(b91) = b′′92

, ψ31112
(b52) = bb51 : C31112

is consistent for any order
in which t10 and t6 are executed since e10 and e6 are concurrent in C31112

(notice that the order in which t10 and t6 fired is known since a the time an
observable transition fires is measured with accuracy according with a global
clock) (Fig. 4.13-left).

ψ41112
(b91) = b′′92

, ψ41112
(b52) = b51 : C41112

is consistent only if t6 fires at a
time before t10 (θt6 < θt10) since e6 is a predecessor of e10 (Fig. 4.13-right).

ψ51112
(b91) = ε, ψ51112

(b52) = ε: C51112
is not consistent since the in-

put border-conditions are not assigned to output-border conditions. C51112

is extendable since b51 , bb51 are new tokens that can be used to unobservably
extend C51112

in component 2 and b92 , b
′
92

and b′′92
are new tokens that can

be used to unobservably extend C51112
in component 1. However further un-

observable extensions of C51112
in component 1 and 2 do not lead to global

configurations but this is not in general true. The reason why further exten-
sions of C51112

are not global configurations is that it is not possible to fire
unobservable transitions (append unobservable events) s.t. an output border
condition is produced at the border place p5 for explaining the input border
condition b52 .

The approach we follow for designing the distributed algorithm can be
outlined as follows:

i) the local preliminary computation comprises two phases: i.1) first a
backward calculation is performed for deriving the set of minimal con-
figurations that provide the minimal explanations of the local observa-
tion based on the assumption that the minimal number of tokens have
entered the local site; i.2) when the communication is allowed the min-
imal configurations are extended (forward) for finding the tokens that
could have exited from the local site.

ii) then by communicating information with its neighbors Agi checks the
consistency of its local results and also generates new local traces that
are checked for consistency in a new communication round.

iii) when a fix-point is achieved the consistent set of local results recover
the centralized diagnosis result.
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4.3.2 Formal specification and proofs of correctness

Procedure for performing local preliminary calculations (R.1)

In this subsection we present formally the preliminary calculations per-
formed by a local agent Agi (i ∈ J) prior to the time the agents are allowed
to communicate the first time θcom1 and between two communication ses-
sions (e.g. between θcomq

and θcomq+1).

Consider in the following the case of the agent Agi having received by
the time θcom, when the first communication session is allowed, the local
observation Oi

θcom
= to1i

. . . toni
. As assumed before, there are no delays in

receiving the plant observation and the execution of an observable transi-
tion is correctly reported. This implies that all the observable events that are
executed in component i ∈ J before the time θcom are included in the local
observation while no event observed executed after the time θcom when the
communication session is initiated is included in a local preliminary calcula-
tion.

Since there is no a priori knowledge of the marking of the input places
PINi

, Agi cannot make any assumption on the number of tokens that could
have entered Ni. To deal with the unknown marking of the input places
PINi

, Agi performs a backward search for finding the minimal configura-
tions (minimal explanations) of Oi

θcom
. Whenever the backward search con-

siders a token in an input place p ∈ PINi
the backward search stops with the

assumption that a token must have entered Ni via p.

As presented in Section 3.2 a local agent Agi can construct the backward

unfolding
←
UNi

(Oi
θcom

) by running the algorithm B Unfold(Oθcom
). However

some technical conditions are required to be fulfilled in order to prevent the
local agents to assume an infinite number of tokens that are required to min-
imally explain the local observation.

Given an unobservable elementary circuit ζuo, denote by Υζ the set of

limiting places of ζuo: Υζuo

△
= {p : (p 6∈ ζuo) ∧ (∃t ∈ ζuo s.t. p ∈ •t)}. A place

p ∈ Υζuo
is a limiting places of ζuo since every complete execution of ζuo

consumes tokens from p. Denote MΥζuo
the minimal marking of Υζuo

that
allows for a complete execution of ζuo.

Assumption 4. For any local model Ni and for any unobservable elementary
circuit ζuoi

, there does not exist an executable sequence of unobservable transitions
σuoi

with initial markingM that has tokens only in the input places PINi
(M(p) =

0 for p 6∈ PINi
) s.t. by firing from M , σuoi

produces a marking M ′ greater than

the limiting marking of ζuoi
, MΥζuoi

. 6 ∃σuo ∈ T ∗uoi
s.t. (MΥζuoi

σuoi
 M ) ∧

(M(p) 6= 0 ⇒ p ∈ PINi
).

Proposition 13. Given a PN model N s.t. ∀i ∈ J Assumption 4 holds true
for Ni, then, for any observation Oi

θcom
generated by component i, by running
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B Unfold(Oθcom
) (Algorithm 3) we obtain for every backward configuration

∀
←
C←

ν i
(Oi

θcom
) ∈

←
C i(Oi

θcom
) a finite set of input border-conditions, that is

|
←
B←

C←
ν i

(INi) |< +∞.

Proof. The proof is as follows. Consider that Ni is acyclic. For this case the
proof that running B Unfold(Oθcom

) we obtain a finite set of input border-

conditions
←
B←

C←
ν i

(INi) is trivial.

Then consider that Ni contains only one circuit ζuoi
. If all the transitions

in the circuit are backfired and the marking before the execution of ζuoi
e.g.

M1i
is smaller then the marking after the execution of ζuoi

(e.g. M2i
) then

M2i
is stopped until M1i

is found that is part of a minimal local explanation.
If M1i

is found as part of minimal local explanation then the transitions of
the unobservable circuit ζuoi

can be backfired from M2.

We have by assumption viii) in the setting that N is structurally bounded

w.r.t. the unobservable evolution i.e. ∀M ∈ N|P| ∧ ∀σuo ∈ T ∗uo : M
σuo−−→ M ′

and M ′ ≥ M ⇒ M ′ = M and by Assumption 4 we have that any unob-
servable circuit in component i cannot be executed only with tokens coming
from the input places PINi

.

Hence for any (finite) local marking Mi, 〈Ni,Mi〉 is bounded w.r.t. the
unobservable evolution, i.e.:

∀σuoi
∈ T ∗uoi

: Mi
σuo−−→M ′i and M ′i ≥Mi ⇒M ′i = Mi

Thus ζuoi
can be executed finitely many times. This proves the statement

since after firing the last time a transition in the circuit then only transitions
in an acyclic sub-net of Ni will be considered for backfiring.

If Ni contains an arbitrary number of circuits then the proof is similar
since the condition checked in the algorithm is if the marking repeats or in-
creases along a trace that is derived backwards.

From the set of backward configurations
←
C i(O

i
θcom

) that explain the lo-
cal observation, Agi derives the set of minimal (preliminary) configurations
Ci(O

i
θcom

).

Given a configuration Cνi
∈ Ci(O

i
θcom

) denote BCνi

(INi) the set of con-

ditions that correspond to the input places pi ∈ PINi
:

BCνi

(INi) =
{
bi | bi ∈ BCνi

∧ φ(bi) = pi ∧ pi ∈ PINi

}

Remark 9. Notice that if there is a priori knowledge about the maximum number
of tokens that can enter a component in between two communication sessions this
information can be used to discard a local configuration that considers a marking of
the input border places that is not smaller than the known upper bound or equal.
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Consider that at the time θcom when the communication with the neigh-
boring agents is the first time allowed Agi has computed the set of minimal
configurations Ci(O

i
θcom

) for the observation received up to the time Oi
θcom

.

Then Agi must also calculate the estimate of the number of tokens that
could have exited Ni via the output places POUTi

.

For doing this Agi calculates for every minimal configuration Cνi
∈

Ci(O
i
θcom

) the forward extensions by considering all the unobservable exten-
sions (sequences of unobservable transitions) that can be appended.

Denote by Ci(Oi
θcom

) the set of all the unobservable extensions of the min-
imal configurations:

Ci(Oi
θcom

) =
{
Cνi

| Cνi
= Cνi

⊙ e1i
. . .⊙ emi

∧

∧ φ(eqi
) ∈ Tuoi

, qi = 1i, . . . ,mi ∧ Cνi
∈ Ci(O

i
θcom

)
}

Denote by Ei(Oi
θcom

) the set of preliminary explanations of the local ob-

servation Oi
θcom

:

Ei(Oi
θcom

) =
{
σ | σ ∈ 〈ECνi

〉 ∧ Cνi
∈ Ci(Oi

θcom
)
}

LetLNi
(Oi

θcom
) be the set of preliminary local traces in Ni that correspond

to Ei(Oi
θcom

):

LNi
(Oi

θcom
) =

{
τi | τi = φ(σ) ∧ σ ∈ Ei(O

i
θcom

)
}

(4.9)

The local preliminary diagnosis LPDi(Oi
θcom

) is:

LPDi(O
i
θcom

) =
{
τfi

| τfi
= ΠTFi

(τi) ∧ τi ∈ LNi
(Oi

θcom
)
}

(4.10)

In the following we compare the local preliminary diagnosis LPDi(Oi
θcom

)
with the diagnosis result for component i that would have been derived by
a centralized agent (knowing the overall plant model and having the overall
plant observation).

Denote by Di(Ocom) the centralized diagnosis for site i:

Di(Ocom) =
{
σfi

| σfi
= ΠTfi

(σf ) ∧ σf ∈ DN (Ocom)
}

(4.11)

where DN (Ocom) is the centralized diagnosis (see Equation 4.3).

Proposition 14. If the PN model is such that ∀i ∈ J any oriented path ℘i in
Ni that starts in an input place p (p ∈ PINi

) and ends in an output place p′

(p′ ∈ POUTi
) contains at least one observable transition then the local preliminary

diagnosis LPDi(Oi
θcom

) is an over-diagnosis of the local site diagnosis Di(Oθcom
)

w.r.t. the detection of the faults that for sure have happened, i.e.:

(∀σf ∈ Di(Ocom), tf ∈ Σ(σf )) ⇒ (∃σ′f ∈ LPDi(Oi
θcom

) s.t. tf ∈ Σ(σ′f ))
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Proof. Consider a local preliminary configuration Cνi
∈ Ci(O

i
θcom

) that was
derived by Agi before communication with Agj . For the local configura-
tion Cνi

Agi considers the set of input-border conditions BCνi
(INi) that cor-

responds with the minimum number of tokens that is required to enter in
component i for explaining the local observation Oi

θcom
.

By the assumption that any oriented path ℘i in Ni that starts in an input
place p (p ∈ PINi

) and ends in an output place p′ (p′ ∈ POUTi
) contains at

least one observable transition we have that no more output border condi-
tions can be generated with the extra input border conditions.

This means that if there does not exist a preliminary local configuration

Cνj
∈ Cj(O

j
θcom

) derived by Agj for component j s.t. the input border condi-
tions BCνi

(INi) are satisfied by output border conditions BCνj
(OUTj), then

Cνj
is unfeasible.

If the number of tokens required can be provided then the local traces in
i have been already derived.

If there can be provided more tokens than required then the local traces
in i that have been already derived are still possible by the monotonicity (see
Lemma 2).

Moreover with the extra-tokens that could have entered there is possi-
ble to extend Cνj

by appending some unobservable events. We have that
all the unobservable events that are newly appended to extend Cνj

are con-
current with the event-nodes that correspond to the observation that means
that these events could but non-necessarily must have happened. By As-
sumption 2 we have that the diagnosis result w.r.t. the detection of the faults
that for sure happened is not modified.

Then consider that the tokens that correspond to BCνi
(INi) cannot be

provided by any preliminary local configuration Cνj
∈ Cj(O

j
θcom

) derived by
Agj for component j. It means that the consideration of an unfeasible local
configuration Cνi

leads to an over-diagnosis.

The statement is proved straightforward considering all the preliminary
local configurations.

Remark 10. If the assumption that along any oriented path ℘i in Ni that starts
in an input place p (p ∈ PINi

) and ends in an output place p′ (p′ ∈ POUTi
)

is at least an observable event is not satisfied for a local component Ni the local
preliminary diagnosis of the local component LPDi(Oi

θcom
) is not in general an

over-diagnosis of the local site diagnosis Di(Oθcom
) w.r.t. the detection of the faults

that for sure have happened. This is because fault-transitions that are situated along
unobservable paths that start in an input place (p ∈ PINi

) and ends in an output
place p′ (p′ ∈ POUTi

) may not be detected by the local agent in its preliminary
diagnosis.

This result justifies why one carries out a calculation after each observa-
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tion. If one did not have this property of over-diagnosis one could - given
an infinite fast processor - carry out all calculations at θcom. Moreover this
result is also important for distributed supervisory architectures with unre-
liable communication channels since it proves that a local agent in absence
of any external information can provide an over-diagnosis of local faults.
Communication between agents serves to refine the diagnosis result.

Algorithm 6 Preliminary Local Calculation (Agi considered)

Require: Oi
θcom

; θcom;

Ensure: LPD(Oi
θcom

)

1: calculate
←
C i(O

i
θcom

)

2: calculate Ci(O
i
θcom

)

3: calculate Ci(Oi
θcom

)

4: calculate Ei(Oi
θcom

)

5: calculate LNi
(Oi

θcom
)

6: LPD(Oi
θcom

) = ΠTf
(LNi

(Oi
θcom

))

Procedure for information exchange at θcom

In what follows we restrict the presentation considering a preliminary con-
figuration Cνi

∈ Ci(O
i
θcom

) where νi ∈ Vi is the set of indexes of the prelimi-
nary local configurations derived by Agi for the local component i.

Thus Cνi
= (BCνi

, ECνi
,�i) requires that the border conditions repre-

sented by BCνi
(INi) to be satisfied. Notice that we have ∀bINi

∈ BCνi
(INi)

implies that ∃eo
qi

∈ ECνi
s.t. φ(eo

qi
) = toqi

∧ bINi
� eo

qi
.

For bINi
∈ BCνi

(INi) denote by Eo
Cνi

(bINi
) the set of event-nodes in Cνi

that correspond to observed events that have bINi
as a predecessor:

Eo
Cνi

(bINi
) =

{
eo

qi
∈ ECνi

| bINi
≺ eo

qi
∧ φ(eo

qi
) ∈ Toi

}

The latest time bINi
”must have been satisfied” (a token must have entered

Ni via pi = φ(bINi
)) is:

θbINi
≤ mineo

qi
(θto

qi
) eqi

∈ Eo
Cνi

(bINi
) ∧ φ(eo

qi
) = toqi

(4.12)

To each border condition bINi
we can associate a temporal constraint of

the form given by (4.12). For simplifying the notation use bθINi
as shorthand

for bINi
∈ BCνi

(INi) : θbINi
≤ mineo

qi
θto

qi
:

bθINi
=

{
bINi

∈ BINi
∧ θbINi

≤ mineo
qi
θto

qi

}

When omitted, the left resp. the right timing constraints are 0 ≤ θ and
θ <∞ respectively.
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Hence the minimal requirement of Cνi
∈ Ci(O

i
θcom

) can be expressed as a
conjunction of temporal conditions on the border places:

Bθ
Cνi

(INi) =
∧

bINi
∈BCνi

(INi)

bθINi
(4.13)

The timing constraints for the output conditions BOUTi
are derived as

follows. Denote by Eo
Cνi

(bOUTi
) the set of event-nodes in Cνi

that are prede-

cessors of the output condition node bOUTi
:

Eo
Cνi

(bOUTi
) =

{
eo

qi
∈ ECνi

| eo
qi
� bOUTi

∧ φ(eo
qi

) ∈ Toi

}

Denote by BINi
(bOUTi

) the set of input border conditions that are prede-
cessors of the output border condition bOUTi

:

BINi
(bOUTi

) =
{
bINi

∈ BCνi
(INi) | bINi

� bOUTi

}

We have that:

θbOUTi
≥ max(maxeo

qi
(θeo

qi
), maxbINi

(θbINi
)) (4.14)

where eo
qi

∈ Eo
Cνi

(bOUTi
) and bINi

∈ BINi
(bOUTi

).

Notice that if Eo
Cνi

(bOUTi
) = ∅ and BINi

(bOUTi
) = ∅ then θbOUTi

≥ 0.

Similarly denote by bθOUTi
the timing constraint given by (4.14), where

θθ
bOUTi

is the global time a token could have exited Ni given that Bθ
Cνi

(INi) is

satisfied.

For the output border-conditions that could have been satisfied we derive
a conjunction of temporal constraints having the form:

Bθ
Cνi

(OUTi) =
∧

bOUTi
∈BCνi

(OUTi)

bθOUTi
(4.15)

Since a local agent does not know the models of the neighboring agents
but only the set of input and output places (PINi

,POUTi
) the message that

is sent by Agi to its neighbor Agj regarding its local configuration Cνi
∈

Ci(Oi
θcom

) comprises only information about their common border-places

MSGi→j =
{

(Bθ
Cνi

(INi), B
θ
Cνi

(OUTi)) | Cνi
∈ Ci(O

i
θcom

)
}

(4.16)
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Algorithm 7 Communication exchange (Agi considered)

Require: Ci(Oi
θcom

)
Ensure: MSGi→j

1: for all Cνi
∈ Ci(Oi

θcom
) do

2: calculate Bθ
Cνi

(INi) {see Eq. 4.13}

3: calculate Bθ
Cνi

(OUTi) {see Eq. 4.14}

4: end for
5: MSGi→j {see Eq. 4.16}

Procedure for updating the local calculation in agent Agi after receiving
message from agent Agj

This subsection describes the calculation performed by Agi after it has cal-
culated the set of preliminary local configurations Ci(Oi

θcom
) and after it has

received the message MSGj→i sent by Agj based on a similar preliminary
computation of component j.

To simplify the presentation consider the case of only two agents Agi and
Agj and then consider:

1. an arbitrary local configuration Cνi
∈ Ci(Oi

θcom
)

2. an arbitrary local configuration Cνj
∈ Cj(O

j
θcom

)

3. and the information MSGj→i sent by Agj and received by Agi regard-
ing the local configuration Cνj

: (BCνj
(INj), BCνj

(OUTj))

We have that Cνi
requires Bθ

Cνi
(INi) to be satisfied providing then

Bθ
Cνi

(OUTi) while Bθ
Cνj

(OUTj) is the set of border-conditions in Cνj
that

may be satisfied whenever Bθ
Cνj

(INj) is satisfied.

Definition 48. Given two local configurations Cνi
∈ Ci(Oi

θcom
) and Cνj

∈

Cj(O
j
θcom

) denote by Ψνiνj
the collection of interpretation functions of the border

conditions:
Ψνiνj

=
{
ψℓνiνj

| ℓνiνj
∈ Vνiνj

}

where an interpretation function ψℓνiνj
∈ Ψνiνj

associates to each input-border

condition (e.g. bINi
∈ BCνi

(INi)) either:

- an output border condition (bOUTj
∈ BCνj

(OUTj)) s.t.:

bINi
and bOUTj

correspond to the same border place

and θbOUTj
≤ θbINi

- or the symbol ε that means that bINi
remains not interpreted (not matched)
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Moreover if ψℓνiνj
(bINi

) = bOUTj
∈ BCνj

(OUTj) then ∀b′INi
∈ BCνi

(INi),

ψℓνiνj
(bINi

) = ψℓνiνj
(b′INi

)⇒ bINi
= b′INi

, i.e. ψℓνiνj
is injective inBCνj

(OUTj)

and similarly ψℓνiνj
is injective in BCνi

(OUTi).

Given two local configurations Cνi
∈ Ci(Oi

θcom
) and Cνj

∈ Cj(O
j
θcom

) and
an interpretation function of their border conditions ψℓνiνj

∈ Ψνiνj
denote

by Cℓνiνj
the configuration obtained by merging the border-conditions of

Cνi
and Cνj

according with ψℓνiνj
:

Cℓνiνj
= (Cνi

, Cνj
, ψℓνiνj

)

Denote by Bua
Cℓνiνj

(INi) respectively Bua
Cℓνiνj

(INj) the set of input-border

conditions in the configuration Cℓνiνj
that are not assigned to output border-

conditions:

Bua
Cℓνiνj

(INi) =
{
bINi

| ψℓνiνj
(bINi

) = ε
}

Bua
Cℓνiνj

(INj) =
{
bINj

| ψℓνiνj
(bINj

) = ε
}

Definition 49. Given two local configurations Cνi
∈ Ci(Oi

θcom
) and Cνj

∈

Cj(O
j
θcom

) and an interpretation function ψℓνiνj
∈ Ψνiνj

we have that Cℓνiνj
=

(Cνi
, Cνj

, ψℓνiνj
) is a consistent global configuration if:

i) Cℓνiνj
is acyclic

ii) all the input border conditions of Cνi
and respectively Cνj

are are assigned
by the interpretation function ψℓνiνj

to output border conditions that is

Bua
Cℓνiνj

(INi) = ∅ and Bua
Cℓνiνj

(INj) = ∅.

Denote by Bua
Cℓνiνj

(OUTj) respectively Bua
Cℓνiνj

(OUTi) the set of output-

border conditions in the configuration Cℓνiνj
that are not assigned to input-

border conditions:

Bua
Cℓνiνj

(OUTj) =
{
bOUTj

| ∀bINi
∈ BCνi

(INi) ψℓνiνj
(bINi

) 6= bOUTj

}

Bua
Cℓνiνj

(OUTi) =
{
bOUTi

| ∀bINj
∈ BCνj

(INj) ψℓνiνj
(bINj

) 6= bOUTi

}

Consider an output border condition bOUTj
∈ Bua

Cℓνiνj

(OUTj) of the local

configuration Cνj
that is not assigned in Cℓνiνj

to an input border condition

of the local configuration Cνi
. If bOUTj

has no predecessor in Cℓνiνj
that is an

unsigned input border condition (i.e. ∀b′INi
∈ Bua

Cℓνiνj

(INi) ⇒ b′INi
6� bOUTj

and ∀b′INj
∈ Bua

Cℓνiνj

(INj) ⇒ b′INj
6� bOUTj

) then bOUTj
is new input border

condition to component i.
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Denote byBnew
Cℓνiνj

(INi) the set of new input border conditions in compo-

nent i:

Bnew
Cℓνiνj

(INi) =
{
bOUTj

| (∀b′INi
∈ Bua

Cℓνiνj

(INi) ⇒ b′INi
6� bOUTj

) ∧

∧(∀b′INj
∈ Bua

Cℓνiνj

(INj) ⇒ b′INj
6� bOUTj

)
}

In words Bnew
Cℓνiνj

(INj) comprises the set of input-border conditions that

result after merging Cνi
and Cνj

via the interpretation function ψℓνiνj
in the

global configuration Cℓνiνj
and can be used by Agi to extend the configura-

tion in Ni.

Remark 11. Notice that an output border condition b′OUTj
∈ Bua

Cℓνiνj

(OUTj) of

the local configuration Cνj
that is not assigned in Cℓνiνj

to an input border condi-

tion of Cνi
but has as predecessor in Cℓνiνj

an input-border condition that is not yet

assigned is not used to extend Cℓνiνj
in component i until all its predecessors that

are input-border conditions are assigned.

Similarly denote by Bnew
Cℓνiνj

(INj) the set of new input border conditions

in component j:

Bnew
Cℓνiνj

(INj) =
{
bOUTi

| (∀b′INi
∈ Bua

Cℓνiνj

(INi) ⇒ b′INi
6� bOUTi

) ∧

∧ (∀b′INj
∈ Bua

Cℓνiνj

(INj) ⇒ b′INj
6� bOUTi

)
}

Definition 50. Given two local configurations Cνi
∈ Ci(Oi

θcom
) and Cνj

∈

Cj(O
j
θcom

) and an interpretation function ψℓνiνj
∈ Ψνiνj

we have that Cℓνiνj
=

(Cνi
, Cνj

, ψℓνiνj
) is an extendable configuration if there are new input-border con-

ditions that is, either Bnew
Cℓνiνj

(INi) 6= ∅ or Bnew
Cℓνiνj

(INj) 6= ∅.

Consider two local configurations Cνi
∈ Ci(Oi

θcom
) and Cνj

∈ Cj(O
j
θcom

)
and an interpretation function ψℓνiνj

∈ Ψνiνj
s.t. Cℓνiνj

= (Cνi
, Cνj

, ψℓνiνj
)

is an extendable configuration and consider that Bnew
Cℓνiνj

(INi) 6= ∅ and

Bnew
Cℓνiνj

(INj) 6= ∅.

Then Agi extends the global configuration Cℓνiνj
in its local component i

by appending unobservable events that become possible with the new input
border conditions Bnew

Cℓνiνj

(INi) 6= ∅. Cνi(ℓνiνj
) is an unobservable extensions

of the global configuration Cℓνiνj
in Ni if:

1. Cℓνiνj
⊑ Cνi(ℓνiνj

)

2. ∀e ∈ ECνi(ℓνiνj
)
\ ECℓνiνj

⇒ φ(e) ∈ Tuoi
and ∃bnew

INi
∈ Bnew

Cℓνiνj

(INi) s.t.

bnew
INi

� e
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IterativelyAgi andAgj merge the local configurations in to global config-
urations and then extend the global configurations in their local components
until a fix-point is achieved. Even though not all the global configurations
can be extended in the local components consider for convenience the trivial
extension of a local configuration by appending the empty event. The fix-
point is achieved when all the global configurations cannot be extended by
unobservable events but only by appending empty events.

Remark 12. Notice that for a global configuration Cℓνiνj
= (Cνi

, Cνj
, ψℓνiνj

)

a local agent Agi knows the local configuration Cνi
, the interpretation function

ψℓνiνj
and the name (index) of the local configuration in set of local configurations

of component j to whom Cνi
is matched namely Cνj

but not what Cνj
contains

since Agi does not know the model of the neighbouring component j. Thus for a
global configuration Cℓνiνj

= (Cνi
, Cνj

, ψℓνiνj
), Agi andAgj have the information

Cℓνiνj
= (Cνi

, νj , ψℓνiνj
) and Cℓνiνj

= (νi, Cνj
, ψℓνiνj

) respectively.

Remark 13. We consider that Agi and Agj exchange simultaneously information
at the very same time. This means that the first message sent by Agi to Agj is re-
ceived by Agj at the same time when the first message sent by Agj toAgi is received
by Agi. As already mentioned an asynchronous communication protocol where Agi

receives first the message from Agj and then sends a message to Agj derived based
on the local update of the local calculations of component i that includes what Agj

just sent as a message brings nothing new but more notation.

Denote by C1
i (Oi

θcom
) and C1

j (Oi
θcom

) the set of preliminary local config-

urations Ci(Oi
θcom

) respectively Cj(O
j
θcom

) where the upper index 1 denotes
that Agi and Agj derived the set of local configurations that are checked for
consistency in the first communication round of the first communication ses-
sion at the time θcom:

C1
i (Oi

θcom
) =

{
Cν1

i
| ν1

i ∈ V1i

}

C1
j (Oj

θcom
) =

{
Cν1

j
| ν1

j ∈ V1j

}

For Cν1
i

and Cν1
j

we have Ψν1
i ν1

j
=

{
ψℓ

ν1
i

ν1
j

| ℓν1
i ν1

j
∈ Vν1

i ν1
j

}
the collection

of interpretation functions of the local configurations Cν1
i

and Cν1
j

.

Let C1
ij(O

i
θcom

) be the set of configurations obtained after the first commu-
nication round where:

C1
ij(O

i
θcom

) =

{
Cℓ

ν1
i

ν1
j

= (Cν1
i
, Cν1

j
, ψℓ

ν1
i

ν1
j

) | ν1
i ∈ V1

i ; ν1
j ∈ V1

j ; ℓν1
i ν1

j
∈ Vν1

i ν1
j

}
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Denote by C2i

ℓ
ν1

i
ν1

j

the set of configurations that are unobservable exten-

sions of the configuration Cℓ
ν1

i
ν1

j

in the local component i:

C2i

ℓ
ν1

i
ν1

j

=

{
Cν2

i (ℓ
ν1

i
ν1

j
) | ν

2
i (ℓν1

i ν1
j
) ∈ V2i

ℓ
ν1

i
ν1

j

}

and similarly denote by C
2j

ℓ
ν1

i
ν1

j

the set of configurations that are unobservable

extensions of the configuration Cℓ
ν1

i
ν1

j

in j:

C
2j

ℓ
ν1

i
ν1

j

=

{
Cν2

j (ℓ
ν1

i
ν1

j
) | ν

2
j (ℓν1

i ν1
j
) ∈ V

2j

ℓ
ν1

i
ν1

j

}

and then denote by C2
i (Oi

θcom
) and C2

j (Oj
θcom

) the set of unobservable exten-

sions in Ni respectively Nj of the global configurations C1
ij(O

i
θcom

) derived
after the first communication round:

C2
i (Oi

θcom
) =

{
Cν2

i (ℓ
ν1

i
ν1

j
) | ν

2
i (ℓν1

i ν1
j
) ∈ V2i

ℓ
ν1

i
ν1

j

; ℓν1
i ν1

j
∈ V1

ν1
i ν1

j

}

C2
j (Oj

θcom
) =

{
Cν2

j (ℓ
ν1

i
ν1

j
) | ν

2
j (ℓν1

i ν1
j
) ∈ V

2j

ℓ
ν1

i
ν1

j

; ℓν1
i ν1

j
∈ V1

ν1
i ν1

j

}

For two local configurations Cν2
i (ℓ

ν1
i

ν1
j
) ∈ C2

i (Oi
θcom

) and Cν2
j (ℓ

ν1
i

ν1
j
) ∈

C2
j (Oj

θcom
) obtained after extending the global configurations matched in

first communication round denote by Ψν2
i ν2

i (ℓ
ν1

i
ν1

j
) the collection of interpre-

tation functions:

Ψν2
i ν2

i (ℓ
ν1

i
ν1

j
) =

{
ψℓ

ν2
i

ν2
i
(ℓ

ν1
i

ν1
j
) | ℓν2

i ν2
i
(ℓν1

i ν1
j
) ∈ Vν2

i ν2
i (ℓ

ν1
i

ν1
j
)

}

Denote by C2
ij(O

i
θcom

) the set of configurations obtained after the second
communication round:

C2
ij(O

i
θcom

) =

{
Cℓ

ν2
i

ν2
j
(ν1

i ν1
j ) | ν

2
i (ℓν1

i ν1
j
) ∈ V2i

ℓ
ν1

i
ν1

j

ν2
j (ℓν1

i ν1
j
) ∈ V

2j

ℓ
ν1

i
ν1

j

ℓν2
i ν2

j
(ℓν1

i ν1
j
) ∈ Vν2

i ν2
j (ℓ

ν1
i

ν1
j
)

}

where a global configuration is:

Cℓ
ν2

i
ν2

j
(ℓ

ν1
i

ν1
j
) = (Cν2

i (ℓ
ν1

i
ν1

j
), Cν2

j (ℓ
ν1

i
ν1

j
), ψℓ

ν2
i

ν2
i
(ℓ

ν1
i

ν1
j
))
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Denote by Ck+1
i (Oi

θcom
) and Ck+1

j (Oj
θcom

) the set of unobservable exten-

sions of the global configurations derived after the kth communication round
in component Ni and component Nj respectively:

Ck+1
i (Oi

θcom
) =

{
Cνk+1

i (ℓ
νk

i
νk

j
) | ν

k+1
i (ℓνk

i νk
j
) ∈ Vk+1i

ℓ
νk

i
νk

j

; ℓνk
i νk

j
∈ Vk+1

ℓ
νk

i
νk

j

}

Ck+1
j (Oj

θcom
) =

{
Cνk+1

j (ℓ
νk

i
νk

j
) | ν

k+1
j (ℓνk

i νk
j
) ∈ V

k+1j

ℓ
νk

i
νk

j

; ℓνk
i νk

j
∈ Vk+1

ℓ
νk

i
νk

j

}

Inductively after the kth communication round at the first communica-
tion session at the time θcom we have the set of global configurations:

Ck+1
ij =

{
Cℓ

ν
k+1
i

ν
k+1
j

(ℓ
νk

i
νk

j
) | ν

k+1
i (ℓνk

i νk
j
) ∈ Vk+1i

ℓ
νk

i
νk

j

; νk+1
j (ℓνk

i νk
j
) ∈ V

k+1j

ℓ
νk

i
νk

j

;

ℓνk+1
i νk+1

j
(ℓνk

i νk
j
) ∈ Vνk+1

i νk+1
j (ℓ

νk
i

νk
j
)

}

where a global configuration is:

Cℓ
ν

k+1
i

ν
k+1
j

(ℓ
νk

i
νk

j
) = (Cνk+1

i (ℓ
νk

i
νk

j
), Cνk+1

j (ℓ
νk

i
νk

j
), ψℓ

ν
k+1
i

ν
k+1
i

(ℓ
νk

i
νk

j
))

Algorithm 8 Update Local Calculation (Agi considered)

Require: Ck+1
ij (Oi

θcom
); MSGk+1

j→i

Ensure: Ck+1
i (Oi

θcom
)

1: for all Cℓ
ν

k+1
i

ν
k+1
j

∈ Ck+1
ij (Oi

θcom
) do

2: calculate Ck+1
νi(ℓ

ν
k+1
i

ν
k+1
j

) {the set of unobs. extensions}

3: Ck+1
i (Oi

θcom
) = Ck+1

i (Oi
θcom

)∪

{
Ck+1

νk+1
i (ℓ

ν
k+1
i

ν
k+1
j

)
| ℓνk+1

i νk+1
j

∈ Vνk+1
i νk+1

j

}

4: end for

Remark 14. Notice that the conditions for checking the execution of a cycle are not
included in the Algorithm 8. This can be implemented as follows. Consider two
local explanations that were matched in to a global configuration Cℓ

νk
i

νk
j

after the

kth communication round.

Then consider Cνk+1
i (ℓ

νk
i

νk
j
) and Cνk+1

j (ℓ
νk

i
νk

j
) two unobservable extensions of

Cℓ
νk

i
νk

j

in component i respectively in component j. If mark(Cνk+1
i (ℓ

νk
i

νk
j
)) =

mark(Cνk
i (ℓ

ν
k−1
i

ν
k−1
j

)) then it means that the marking repeats in component i. If

this is also true in component j (mark(Cνk+1
j (ℓ

νk
i

νk
j
)) = mark(Cνk

j (ℓ
ν

k−1
i

ν
k−1
j

))
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then the pair of the two local configuration (Cνk+1
i (ℓ

νk
i

νk
j
), Cνk+1

j (ℓ
νk

i
νk

j
)) is dis-

carded.

This is because the execution of the cycle repeats the marking and any unobserv-
able cycle does not contain fault events. This is a natural assumption since otherwise
the faults within the cycle are not diagnosable [SSL+95].

4.3.3 The main result

Consider the following distributed diagnosis algorithm presented for the
case of only two agents: Agi and Agj (see Algorithm 9).

Algorithm 9 DD Algo 2 for two agents: Agi,Agj (Agi considered)

Require: 〈Ni,M0i
〉, Toi

, Tuoi
, Oθ

θcom

Ensure: Cij(Oi
θcom

)
1: k = 1;
2: Preliminary Local Calculation(Oni

, θcom)
3: Communication exchange(Ck

i (Oi
θcom

)
4: repeat
5: send MSGk

i→j

6: receive MSGk
j→i

7: Update Local Calculation(Ck
i (Oi

θcom
),MSGk

j→i)

8: Communication exchange(Ck+1
ij (Oθcom

)){Update Message}

9: if MSGk+1
i→j = ∅ then

10: send MSGk+1
i→j = stop

11: end if
12: k = k + 1
13: until MSGk+1

j→i = stop

14: Cij(Oθcom
) = Ck+1

ij (Oi
θcom

)

Denote by ci℘ and cj℘ how many times an unobservable oriented path
℘ that starts in p ∈ Pi, respectively p ∈ Pj alternates places of Pi \ Pij

and places of Pj \ Pij respectively. Let c℘ = max(ci℘, c
j
℘) and denote Kc =

max℘∈N (c℘) (N = Ni ∪ Nj). If ∃℘ ∈ N s.t. ℘ is an unobservable elementary
circuit then Kc = ∞ otherwise Kc is finite.

Proposition 15. Consider a distributed description of the plant comprising two
components and two local agents and a distributed observation Oθcom

= Oi
θcom

⊗gc

Oj
θcom

. There exists a finite number k of communication rounds at the time θcom

such that after the kth communication round the algorithm DD Algo 2 stops (the
distributed calculations achieved a fix-point). We have that:

i) if Kc is infinite then ∃ Kmax ∈ N+ finite s.t. at the Kth
max communication
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round the distributed calculation achieves a fix-point (Kmax depends on the
PN topology, the initial marking M0 and the observation Oθcom

).

ii) if Kc is finite then Kmax ≤ Kc (Kc depends only on the PN topology)

Proof. First we prove i).

Consider the set of preliminary local configurations derived by the local
agents before starting to communicate at the time θcom:

C1
i (Oi

θcom
) =

{
Cν1

i
| ν1

i ∈ V1i

}

C1
j (Oj

θcom
) =

{
Cν1

j
| ν1

j ∈ V1j

}

Then consider an arbitrary pair of local configurations (Cν1
i
, Cν1

j
) ∈

C1
i (Oi

θcom
) × C1

j (Oj
θcom

).

Denote by Mν1
i
(INi) the sub-vector marking of the input places PINi

in
Cν1

i
that correspond with the set of input border conditions considered in

Cν1
i
, i.e. Mν1

i
(INi) = φ(BC

ν1
i

(INi)). Similarly denote Mν1
j
(INj) the sub-

vector marking that corresponds with the set of input border conditions con-
sidered in Cν1

j
, i.e. Mν1

j
(INj) = φ(BC

ν1
j

(INj)).

Denote by Mν1
i ν1

j
the marking obtained from the sub-vector markings

M0i
,M0j

,Mν1
i
(INi), and Mν1

j
(INj):

Mν1
i ν1

j
= M0i

⊎M0j
⊎Mν1

i
(INi) ⊎Mν1

j
(INj)

where ⊎ denotes the union with addition of two multi-sets and a marking is
considered a multi-set of tokens.

Let 〈N ,Mν1
i ν1

j
〉 be the overall plant model N with the initial marking

Mν1
i ν1

j
. By Proposition 13 we have that Mν1

i ν1
j

is finite and then by assump-

tion viii) in the setting we have that 〈N ,Mν1
i ν1

j
〉 is bounded w.r.t. the unob-

servable evolution.

Let UN (Mν1
i ν1

j
) be the net-unfolding of 〈N ,Mν1

i ν1
j
〉. Then consider the

(finite) sequence of observed events On and denote by UN (Mν1
i ν1

j
,On)

the prefix of UN (Mν1
i ν1

j
) that correspond with the observation. Denote by

C(Mν1
i ν1

j
,On) the set of configurations that obey the observation On.

Consider that all unobservable cycles in 〈N ,Mν1
i ν1

j
〉 that repeat the mark-

ing are either executed only once or are not at all executed.

Since we have a finite number of observed events we have that any con-
figuration C(Mν1

i ν1
j
,On) ∈ C(Mν1

i ν1
j
,On) contains a finite number of condi-

tion nodes and a finite number of event nodes.
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We have that for any interpretation function ψℓ
νi

i
νi

j

∈ Ψν1
i ν1

j
the global

configurationCℓ
ν1

i
ν1

j

= (Cν1
i
, Cν1

j
, ψℓ

νi
i

νi
j

) is a configuration in UN (Mν1
i ν1

j
,On).

Inductively we have that any global configuration Cℓ
ν

k+1
i

ν
k+1
j

that results

at the k + 1 communication round by merging Cνk+1
i

and Cνk+1
j

according

with the interpretation function ψℓ
ν

k+1
i

ν
k+1
j

∈ Ψk+1

νk+1
i νk+1

j

is also a configura-

tion in UN (Mν1
i ν1

j
,On).

We have that running the distributed algorithm Algorithm 9 the two
agents detect the cycles that repeat the marking.

Since any configuration C(Mν1
i ν1

j
,On) ∈ C(Mν1

i ν1
j
,On) contains a finite

number of condition nodes and a finite number of event nodes and any con-
figuration Cℓ

ν
k+1
i

ν
k+1
j

(νk
i νk

j ) that is obtained extending Cℓ
ν1

i
ν1

j

at the k+1 com-

munication is a configuration in UN (Mν1
i ν1

j
,On) we have that there exists a

Kmax finite s.t. after the Kth
max communication round the agents send the

message stop. This is trivial since otherwise the local agents would generate
configurations that contain an infinite number of condition-nodes or event-
nodes that would contradict the assumption viii) in the setting.

ii) is proved as follows. We have that there are no circuits that contain
places of Ni and Nj and Kc is the maximum number of how many times
an unobservable oriented path ℘ that starts in a place in Pi or Pj crosses
successively Nj and Ni.

Assume that the distributed algorithm terminates after Kmax commu-
nications rounds and Kmax > Kc. Since at each communication round the
agents sends a non-empty set of tokens that are newly available at the bor-
der places it means that there exists at least a configuration Cℓ

ν
Kmax
i

ν
Kmax
j

that can be obtained only after Kmax communication rounds. It means
that Cℓ

ν
Kmax
i

ν
Kmax
j

contains an unobservable path that alternates Kmax

times condition-nodes that correspond with Pi and Pj respectively. Since
Cℓ

ν
Kmax
i

ν
Kmax
j

is a configuration in UN (Mν1
i ν1

j
,On) we have that there exists

an unobservable oriented path ℘ in N s.t. c(℘) > Kc that contradicts that
Kc = max℘∈N (c℘)

We have considered an arbitrary pair of local configurations (Cν1
i
, Cν1

j
) ∈

C1
i (Oi

θcom
)× C1

j (Oj
θcom

). Thus the distributed algorithm terminates for all the

pairs in the cartesian product C1
i (Oi

θcom
) × C1

j (Oj
θcom

). This completes the
proof.

Let Ck
ij(Oθcom

) be the set of global configurations derived when the dis-
tributed algorithm DD Algo 2 achieves a fix-point.
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Denote by Cgcon
ij (Oθcom

) the set of global configuration that are consistent:

Cgcon
ij (Oi

θcom
) =

{
Cυk+1

i υk+1
j

∈ Ck+1
ij (Oi

θcom
) | Cυk+1

i υk+1
j

is consistent
}

and then denote by Cgcon
i (Oi

θcom
) the set of local configurations in component

i that are part of consistent global configurations

Cgcon
i (Oi

θcom
) =

{
Cυi

| Cυiυj
∈ Cgcon

ij (Oi
θcom

), Cυiυj
= (Cυi

, Cυj
, ψυiυj

)
}

Theorem 3. Consider the set of global configurations C(Oθcom
) in the global model

〈N ,M0〉 derived by a centralized agent having the overall plant observation Oθcom

and the set of consistent global configurations Cgcon
ij (Oi

θcom
) derived by a local agent

Agi when the distributed algorithm DD Algo 2 achieves the fix-point. We have
that:

i) for any global consistent configuration Cνiνj
∈ Cgcon

ij (Oθcom
) there exists a

global configuration Cν ∈ C(Oθcom
) s.t. Cνiνj

= Cν .

ii) for any global configuration Cν ∈ C(Oθcom
) there exists a global consis-

tent configuration Cνiνj
∈ Cgcon

ij (Oθcom
) s.t. Cν = Cνiνj

where Cνiνj
=

(Cνi
, Cνj

, ψνiνj
).

that together imply that:

C(Oθcom
) = Cgcon

ij (Oθcom
)

Proof. First we prove i).

Consider a global configuration Cνk
i νk

j
∈ Cgcon

ij (Oθcom
), that was found

consistent at the kth communication round (k ≥ 1) and let Cνk
i νk

j
be obtained

by extending a pair of preliminary local configurations (Cν1
i
, Cν1

j
).

Since Cνk
i νk

j
is consistent we have that Bua

νk
i νk

j

(INi) = ∅ and Bua
νk

j νk
j

(INj) =

∅ that is there are no border-conditions that correspond to the input places
PINi

and PINj
that have no predecessors in Cνk

i νk
j

.

We have that Cνk
i νk

j
is a configuration in UN (Mν1

i ν1
j
,Oθcom

), that is the

prefix of net unfolding of 〈N ,Mν1
i ν1

j
〉 that corresponds with the observation

Oθcom
.

Then we have that Mν1
i ν1

j
≥ M0. If Mν1

i ν1
j

= M0 the proof is trivial.

Consider thatMν1
i ν1

j
> M0. Since Cνk

i νk
j

is such that all the border-conditions

have predecessors its means that the tokens that were initially assumed on
the border places in Mν1

i ν1
j

are not used for deriving Cνk
i νk

j
. Thus Cνk

i νk
j

is a

configuration in UN (M0,Ocom) that is Cνk
i νk

j
∈ C(Oθcom

).

The proof of ii) is straightforward since we have made calculations in
UN (Mν1

i ν1
j
,Oθcom

) with Mν1
i ν1

j
≥M0.
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Theorem 4. Consider a distributed description of the plant comprising two compo-

nents and two local agents and a distributed observation Oθcom
= Oi

θcom
⊗gcOj

θcom
.

The global consistent local diagnosis LDgcon
i derived by the agent Agi at the time

θcom by running the distributed algorithm DD Algo 2 is such that:

i) if Kc is infinite then ∃ Kmax ∈ N+ finite s.t. after Kmax communication
rounds LDgcon

i (Oi
θcom

) = Di(Oθcom
) where Kmax depends on both the PN

topology and the initial marking M0.

ii) if Kc is finite then after Kmax ≤ Kc communication rounds, the consistent
local diagnosis result LDgcon

i (Oi
θcom

) recovers the centralized diagnosis re-

sult of component i, i.e. LDgcon
i (Oi

θcom
) = Di(Oθcom

)

Proof. The proof is straightforward by Theorem 3. The diagnosis is obtained
projecting equal sets on to the set of fault events.

4.3.4 A particular case - Kc = 1

In this section we make the assumption that the PN model under investiga-
tion satisfies the following additional condition.

Assumption 5. We assume in the following thatKcij
≤ 1 that is any oriented path

℘i in Ni that starts in a place p0i
∈ PINi

and terminates in a place pmi
∈ POUTi

contains at least one observable event toqi
∈ Toi

and identically for component j.

At the time θcom when the first communication session is allowed con-
sider that the local agents Agi and Agj have derived the set of local config-

urations Ci(Oi
θcom

) and respectively Cj(O
j
θcom

) (where the upper script 1 is
dropped).

Consider two local configurations Cνi
∈ Ci(Oi

θcom
), Cνj

∈ Cj(O
j
θcom

) and
the family of interpretation functions of their border-conditions:

Ψνiνj
=

{
ψℓνiνj

| ℓνiνj
∈ Vνiνj

}

Let a global configuration Cℓνiνj
be obtained merging the border condi-

tions of the local configurations Cνi
and Cνj

according with the interpretation
function ψℓνiνj

∈ Ψνiνj
:

Cℓνiνj
= (Cνi

, Cνj
, ψℓνiνj

)

Since any oriented path ℘i in Ni that starts in a place p ∈ PINi
and termi-

nates in p′ ∈ POUTi
contains at least one observable event we have that any

unobservable extension of Cℓνiνj
in component i (e.g. Cνi(ℓνiνj

)) and compo-

nent j (e.g. Cνj(ℓνiνj
)) does not ”produce” new output border conditions that

is BCνi(ℓνiνj
)
(OUTi) = BCνi

(OUTi) and BCνj(ℓνiνj
)
(OUTi) = BCνj

(OUTj).
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It means that the distributed algorithm DD Algo 2 achieves a fix-point
after one communication round. Moreover we have that there is enough to
derive the existence of an interpretation function ψℓνiνj

such that Cℓνiνj
=

(Cνi
, Cνj

, ψℓνiνj
) is a consistent global configuration that is also sufficient for

continuing to derive the future diagnosis of the plant. In other words, for
the future calculations the way the tokens on the border are matched is not
important.

Given two local configurations Cνi
∈ Ci(O

i
θcom

) and Cνj
∈ Cj(O

j
θcom

) the
existence of an interpretation function ψℓνiνj

∈ Ψνiνj
can be checked easily

as follows.

Let the observation received in component i up to the time θcom be Oi
θcom

where Oi
θcom

comprises ni observed events.

For ki = 1i, . . . , ni denote by Bki

Cνi
(INi) the set of input-border condi-

tions required to have been satisfied before the time θo
tki

when the observable

event toki
happened in the plant.

Bki

Cνi
(INi) =

{
bINi

| θbINi
≤ θo

tki

}

Denote by Bki

Cνi
(OUTi) the set of output-border conditions that can be

provided before the time θo
ki

when the observable event toki
happened in the

plant:

Bki

Cνi
(OUTi) =

{
bOUTi

| θbOUTi
≥ θo

ki

}

LetMki
νi

(INi) andMki
νi

(OUTi) be the markings that correspond via φwith

Bki

Cνi
(INi) and Bki

Cνi
(OUTi) respectively .

Similarly denote by M
kj
νj (INj) and M

kj
νj (OUTj) the markings that corre-

spond to B
kj

Cνj
(INj) and respectively B

kj

Cνj
(OUTj) via φ where B

kj

Cνj
(INj)

and respectivelyB
kj

Cνj
(OUTj) are derived considering that the local observa-

tion in component j comprises nj observed events and kj = 1j . . . nj .

Proposition 16. ∀(Cνi
, Cνj

) ∈ Ci(Oi
θcom

) × Cj(O
j
θcom

) we have that Ψij 6= ∅ iff
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all the inequalities in Eq.4.17 are satisfied:





qi=ki∑

qi=1i

M qi
νi

(INi) ≤

qj=kj∑

qj=0j

M qj
νj

(OUTj) with θkj
< θki

< θkj+1

for ki = 1i . . . ni

qj=kj∑

qj=1j

M qj
νj

(INj) ≤

qi=kj∑

qi=0i

M qi
νi

(OUTi) with θki
< θkj

< θki+1

for kj = 1j . . . nj

(4.17)

Proof. The proof is straightforward.

In words Proposition 16 says that two local configurations Cνi
and Cνj

are consistent if for any input place of Ni, resp. Nj the number of tokens
required to have entered a local site i (resp. j) for explaining the local obser-
vations to1i

, . . . toni
(resp. to1j

, . . . tonj
) is lower than the number of tokens that

could have exited component j (resp. component i).

If the inequalities in 4.17 are satisfied and moreover
∑qi=ni

qi=1i
M qi

νi
(INi) <∑qj=nj

qj=0j
M

qj
νj (OUTj) or

∑qj=nj

qj=1j
M

qj
νj (INj) <

∑qi=ni

qi=0i
M qi

νi
(OUTi) then Cνi

or
Cνj

can be extended further generating new consistent pairs.

Notice that if it is required to detect the faults that for sure have hap-
pened, then one can skip the calculation of the new generated pairs. More-
over, we can forget the timing information encoded to Bnew

νi
(INi) and

Bnew
νj

(INj) because there is required to achieve consistency at the time θcom

when the information exchange takes place.

4.3.5 The case of three or more components

As presented for the case of two agents, the information exchange comprises
information about the border-conditions of the two agents. As it will shown
in the following for more than two agents this is in general not enough.

Since the goal of the distributed algorithm is to recover the results of the
centralized agents by local results that are consistent, in the case when the
plant comprises more than two components we have two notions of consis-
tency namely local consistency and global consistency [SW04].

To illustrate this consider | J |> 2 and that each local agent Agi, i ∈ J has
derived before communicating with its neighbours the set of preliminary
configurations Ci(Oi

θcom
).

Remark 15. Notice that as in the case of two agents the set of preliminary config-
urations Ci(Oi

θcom
), i ∈ J are matched and extended. Since we have not presented
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yet a distributed algorithm for more than two agents we use the preliminary local
calculations for the following definitions and explanations.

For two components i and j consider an arbitrary pair of local configura-

tions (Cνi
, Cνj

) ∈ Ci(Oi
θcom

) × Cj(O
j
θcom

).

We say that Cνi
and Cνj

are local consistent if there exists an interpretation
function ψℓνiνj

∈ Ψνiνj
s.t. Cℓνiνj

= (Cνi
, Cνj

, ψℓνiνj
) does not contain input

border conditions that correspond with the border places of component i
and component j that have no predecessors, that is there are no input border
conditions that remain unassigned: Bua

ℓνiνj
(INij) = ∅ and Bua

ℓνiνj
(INji) = ∅.

Consider two arbitrary subsets of local preliminary configurations de-
rived for component i and component j respectively e.g. C′i(O

i
θcom

) ⊆

Ci(Oi
θcom

) and C′j(O
j
θcom

) ⊆ Ci(Oi
θcom

).

We say that C′i(O
i
θcom

) and C′j(O
i
θcom

) are local consistent if:

1. ∀Cν′i
∈ C′i(O

i
θcom

) ⇒ ∃Cν′j
∈ C′j(O

j
θcom

) such that Cν′i
and Cν′j

are local
consistent.

2. ∀Cν′
j
∈ C′j(O

j
θcom

) ⇒ ∃Cν′
i
∈ C′i(O

i
θcom

) such that Cν′
i

and Cν′
j

are local
consistent.

The subsets of local configurations C′1(O
i
θcom

), . . . , C′|J|(O
i
θcom

) are local

consistent if for any two components that have a common border (i.e. ∀i, j

s.t. Pij 6= ∅) we have that C′i(O
i
θcom

) and C′j(O
j
θcom

) are local consistent.

Consider a | J |-tuple of local configurations

(Cν′1
, . . . , Cν′

|J|
) ∈ C′1(O

1
θcom

) × . . .× C′|J|(O
|J|
θcom

)

We say that the | J |-tuple of local configurations (Cν′1
, . . . , Cν′

|J|
) is global

consistent if for any two components that have a common border (∀i, j ∈
J ,Pij 6= ∅) the local configuration C′i and C′j are local consistent.

The subsets of local configurations C′1(O
1
θcom

), . . . , C′|J|(O
|J|
θcom

) are global

consistent if ∀i ∈ J and ∀Cν′
i
∈ C′i(O

i
θcom

) there exists a | J |-tuple of local
configurations

(Cν′1
, . . . , Cν′i

, . . . , Cν′
|J|

) ∈ C′1(O
1
θcom

) × . . .× C′i(O
i
θcom

) × . . .× C′|J|(O
|J|
θcom

)

s.t. (Cν′1
, . . . , Cν′i

, . . . , Cν′
|J|

) is global consistent.

We have that it does not hold in general that if the | J |-tuple of local
configurations

CJ ∈ C′1(O
1
θcom

) × . . .× C′i(O
i
θcom

) × . . .× C′|J|(O
|J|
θcom

)
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Figure 4.14:

is local consistent then CJ it is global consistent but if CJ is global consistent
then CJ is local consistent (CJ = (Cν′1

, . . . , Cν′
i
, . . . , Cν′

|J|
)).

To illustrate this consider in Fig. 4.14 the case of 4 components having
the sub-sets of preliminary local configurations:

C′i(O
i
θcom

) = {C1i
, C2i

}, i = 1, 2, 3, 4.

We have that C′1(O
1
θcom

), C′2(O
2
θcom

), C′3(O
3
θcom

), C′4(O
4
θcom

) are local consis-
tent but not global consistent. This is because there is not any 4 − tuple of
local configurations that includes C14 . The only global consistent 4 − tuples
are (C11 , C12 , C13 , C24) and (C21 , C22 , C23 , C24).

Hence if two agents Agi and Agj exchange for a pair of local configu-

rations (Cν′i
, Cν′j

) ∈ C′i(O
i
θcom

), C′j(O
j
θcom

) only information about their local

border-places without communicating the names (codes) of the local config-
urations in the neighboring components to whom Cν′i

and Cν′j
have been

already checked consistent then the agents can achieve only the local consis-
tency of their results.

If the goal of the distributed algorithm is to recover the results of a cen-
tralized agent then two local agents Agi and Agj should exchange for a pair

of local configurations (Cν′i
, Cν′j

) ∈ C′i(O
i
θcom

), C′j(O
j
θcom

) beside the informa-
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tion about their local border-places also information about the names (codes)
of the local configurations in the neighbouring components to whomCν′

i
and

Cν′j
have been already found consistent. In this way Agi receives codes of lo-

cal configurations from components to whom it has no common border but
this is natural since otherwise the local agents cannot achieve in a distributed
way the global consistency of their results.

Notice that it does not hold in general that if a | J |-tuple of local config-
urations:

(Cν′1
, . . . , Cν′

|J|
) ∈ C′1(O

1
θcom

) × . . .× C′|J|(O
|J|
θcom

)

is global consistent then there exists a global configuration Cν ∈ C(Oθcom
)

such that Cν′1
, . . . , Cν′

|J|
are the maximal sub-nets of Cν that include condi-

tions and events that correspond with N1, . . . ,N|J|.

This is because of the circular dependencies (cycles) in the overall PN
model that cover more than two components and may be intuitively un-
derstood as follows. A | J |-tuple of local configurations (Cν′1

, . . . , Cν′
|J|

)

is global consistent if for any two components i, j ∈ J the local config-
urations Cν′i

, Cν′j
are local consistent that is there exists an interpretation

function ψℓν′
i
ν′

j

of the border-conditions of component i and j s.t. Cℓν′
i
ν′

j

=

(Cν′i
, Cν′j

, ψℓν′
i
ν′

j

) does not have input border conditions without successors

and Cℓν′
i
ν′

j

is acyclic.

Thus by exchanging only information about their local border-conditions
the local agents cannot detect the circular dependencies between the lo-
cal traces that are contained in the | J |-tuple of local configurations
(Cν′1

, . . . , Cν′
|J|

) that is found global consistent.

To illustrate this consider the case of a plant comprising 4 components as
illustrated in Fig. 4.15.

We have that:

1. p1, p2 are output places of N1 and input places of N2;

2. p3, p4 are output places of N2 and input places of N1;

3. p5 is output place of N4 and input place of N1;

4. p6 is output place of N1 and input place of N4;

5. p7 is output place of N2 and input place of N4;

6. p8 is output place of N3 and input place of N4;

7. the dotted lines represent the unobservable oriented paths that contain
transition of more than one component:

(a) ℘uo := p9 . . . p3 . . . p2 . . . p4 . . . p6 . . . p10 (unobservable path)
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Figure 4.15:

(b) ζuo := p11 . . . p5 . . . p1 . . . p7 . . . p12t1 (unobservable circuit)

Consider that the local agents Ag1, Ag2, Ag3 and Ag4 have derived the
sets of local preliminary configurations C1

1(O1
θcom

), C1
2(O2

θcom
), C1

3(O3
θcom

) and
C1
4(O4

θcom
) respectively.

Moreover consider that two local agents exchange information only
about the border conditions of their local border places and consider that
first Ag1 communicates with Ag2.

We have that Kc12 = 3 since the oriented path ℘ alternates 3 times places
of N2 and N1. Thus after 3 communications rounds and without intermedi-
ate communications with their neighbouring agents Ag1 and Ag2 stop their
information exchange. For the sake of simplicity consider in the following
that Ag1 and Ag2 achieve local consistency after one communication round.
This allows us in the following to remove the indexes that refer to the com-
munication round between two agents.

For a pair (Cν1 , Cν2 ) ∈ C1(O1
θcom

)×C2(O2
θcom

) and an interpretation func-
tion ψℓν1ν2

∈ Ψν1ν2 we have that Cℓν1ν2
= (Cν1 , Cν2 , ψν1ν2) is a sub-net of

a global configuration if Cℓν1ν2
is acyclic. This is trivial since every global

configuration is acyclic thus any sub-net of a global configuration should be
acyclic.

Consider in the following for simplicity the trivial extensions of Cℓν1ν2
in

component 1, respectively component 2 namely Cν1(ℓν1ν2) and Cν2(ℓν1ν2).

Then consider thatAg4 communicates withAg2. For a local configuration
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Cν4 ∈ C4(O
4
θcom

) let an interpretation function ψℓν4ℓν1ν2
∈ Ψν4ℓν1ν2

be such

that Cℓν4ℓν1ν2
is acyclic.

Similarly consider the trivial extensions of Cℓν4ℓν1ν2
in component 4

namely Cν4(ℓν4ℓν1ν2
).

Then consider that Ag1 communicates with Ag4 and for the pair of
local configurations (Cν1(ℓν1ν2), Cν4(ℓν4ℓν1ν2

)) and the interpretation func-

tion φℓν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2
)

∈ Ψν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2
) consider the configuration

Cℓν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2
)
.

Cℓν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2
)

may not be acyclic. This is because no any agent has

knowledge about all the border places that are contained in the cycle if they
communicate only information about their local border, i.e.

- Ag1 knows ψℓν1ν2
, ψℓν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2

)
, and ℘uo1 = p5 . . . p1

- Ag2 knows ψℓν1ν2
, ψℓν4ℓν1ν2

, and ℘uo2 = p1 . . . p7

- Ag4 knows ψℓν4ℓν1ν2
, φℓν1(ℓν1ν2 )ν4(ℓν4ℓν1ν2

)
, and ℘uo4 = p7 . . . p12t1p11

where ℘uo1 , ℘uo2 and respectively ℘uo4 denote the part of the circuit ζuo that
comprises places and transitions in N1, N2, and N4 respectively.

Thus Ag1 must send to Ag4 also ψℓν1ν2
(p1) while Ag4 must send to Ag1

also ψℓν4ℓν1ν2
(p7) where ψℓν1ν2

(p1) and ψℓν4ℓν1ν2
(p7) are the interpretation of

the border places in the local configurations that correspond with the places
p1 and p7 respectively.

It means that to achieve the global consistency of the local results all the
agents must exchange all the information that they gathered about the border
places that correspond with places of the circuit ζuo in the global model.

But this has the inconvenience that the agents exchange information
about border-conditions that correspond with places that are not included
in the plant description that they know.

We have the following result:

Proposition 17. Consider for each component i ∈ J the local preliminary con-
figurations Ci(Oi

θcom
) derived by Agi for the local observation Oi

com and consider
that for each component there exists a non-empty subset of local configurations

C′i(O
i
θcom

) ⊆ C′i(O
i
θcom

) (i ∈ J) such that C′1(O
1
θcom

), . . . , C′|J|(O
|J|
θcom

) are global

consistent. If the plant description is such that any unobservable circuit ζuo in N
contains transitions of at most two components and if a | J |-tuple:

(Cν′1
, . . . , Cν′

|J|
) ∈ C′1(O

1
θcom

) × . . .× C′|J|(O
|J|
θcom

)

is global consistent then there exists a global configuration Cν ∈ C(Oθcom
) s.t.

Cν′1
, . . . , . . . , Cν′

|J|
are the maximal sub-nets of Cν that include conditions and

events that correspond with N1, . . . ,N|J|.
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Proof. We have that (Cν′1
, . . . , Cν′

|J|
) is global consistent. Thus ∀i, j ∈ J , there

exists an interpretation function ψℓνiνj
for the local configurationCν′i

andCν′j

s.t. for Cℓν′
i
ν′

j

= (Cν′
i
, Cν′

j
, ψℓν′

i
ν′

j

) we have that:

1. there are no input border conditions that correspond with the border
places of comp. i and comp. j that have no predecessors in Cℓν′

i
ν′

j

2. Cℓν′
i
ν′

j

is acyclic

Abusing notation let ψℓ′
J

be the set of all the border interpretation functions
of the local configurations:

ψℓ′
J

=
{
ψℓν′

i
ν′

j

| i, j ∈ J and ψℓν′
i
ν′

j

∈ Ψν′iν
′
j

}

and denote by Cℓ′
J

the configuration obtained by merging the local configu-
rations according with the ψℓ′

J
.

Cℓ′
J

= (Cν′1
, . . . , Cν′

|J|
, ψℓ′

J
)

Since the plant description is such that any unobservable circuit contains
transitions of at most two components we have that Cℓ′

J
is acyclic. Then Cℓ′

J

has not input-border places that have no predecessors. Hence Cℓ′
J

is a global
configuration.

Thus if the overall PN model is such that any unobservable circuit ζuo

in N comprises places and transitions of at most two components the local
agents can derive global configurations by deriving global consistent pairs
of local configurations.

Assumption 6. Unless otherwise stated we assume in the remaining of this section
that the overall PN model is such that any unobservable circuit ζuo in N comprises
places and transitions of at most two components.

In the following we present a distributed algorithm that guarantees that
upon its completion the local agents recover the results of a centralized agent
by exchanging limited information where the information that is exchanged
between two local agents comprises only information about their local bor-
der places and the codes of how their local results where previously checked
consistent with their neighbours.

By Theorem 4 we have that two neighboring agentsAgi, Agj achieve local
consistency after finitely communication rounds.

Without affecting the generality we assume in the following a commu-
nication protocol s.t. at the time θcom when a communication session is
allowed, two neighboring agents complete a number of communication
rounds until they have become local consistent.
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Moreover we require that the information exchange is fair [FBHJ05] i.e.
any local agent is disallowed to communicate infinitely often with some
neighbors ignoring to communicate with some other neighboring agents.

The distributed algorithm presented bellow for a local agent Agi, i ∈ J
comprises two parts. First the local agents derive their preliminary results in
a similar way as presented for the case of two agents.

Denote by Neighbour(i) the set of neighbouring components of compo-
nent i. Then denote by MSGi→j the message that must be sent by Agi to
its neighbour Agj where the information that is sent comprises information
about their common border conditions for all the configurations thatAgi has
derived as well as the codes of the local configurations in the neighbouring
components to whom the local configurations of component i have been al-
ready checked consistent.

Denote by MSGi the set of messages prepared by Agi for all its neigh-
bours:

MSGto sendi
= {MSGi→j | j ∈ Neighbour(i)}

and then denote by MSGreceivei
the set of messages received by Agi that are

not yet processed:

MSGreceivedi
= {MSGj→i | j ∈ Neighbour(i)}

If for a neighbouring agent j, MSGi→j 6= ∅ there is a non-empty set
of input border conditions and output border conditions for at least a local
configuration in component i that needs to be communicated to j then Agj

can be chosen to check consistency. This is simply implemented running
the distributed algorithmDD Algo 2(Agi, Agj) presented for the case of two
agents (Algorithm 9).

The distributed algorithm DD Algo 2(Agi, Agj) is also run if Agi is cho-
sen by its neighbour Agj to check consistency of their local results. Notice
that once initiated the consistency check of the local results of Agi and Agj

can not be interrupted by the arriving of a message sent by some other neig-
bouring agents of Agi and Agj .

If the consistency check with a neighbouring agentAgi is terminated then
the set of messages that have to be sent is updated with the information that
have become newly available to Agi after the communication with Agj that
is new output border conditions and new codes for the local configurations.

If MSGto sendi
= ∅ and MSGreceivei

= ∅ then Agi emits the message that
it is in a local stop. This message is propagated to all the agents and if a local
agent receives the acknowledgment that all the local agents are in a local stop
then a message is broadcast to all the agents indicating that a fix-point was
achieved.

At the time when the distributed computation achieves a fix-point the
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local agents have derived the set of global configurations

CJ(Oθcom
) =

{
Cν = (Cν1 , . . . , Cνi

, . . . , Cν|J|) | νi ∈ Vi, i ∈ J
}

Notice that a local agent i knows only its local configurations and codes
for the configurations in all the other components:

Ci(Oθcom
) =

{
Cν = (ν1, . . . , Cνi

, . . . , ν|J|) | νj ∈ Vj , j ∈ J
}

In the second part of the algorithm the local agents discard the | J |-
tuples that contains input-border conditions that have no predecessors. For
any configuration Cν ∈ C(Oθcom

) if Cνi
has an input border condition that is

not assigned Agi sends a message to all its neighboirs to acknowledge that
any global pair that contains νi should be deleted. If Agi receives a message
from a neighbour that all the | J |-tuples that contain a certain code should be
deleted, then Agi deletes the corresponding | J |-tuples and also propagates
further this information.

When all the | J |-tuples are deleted the agents obtain the set of global
configurations Cgcon(Oθcom

).

Proposition 18. The distributed algorithm Algorithm 10 implemented to a set of
agents J terminates and the set of global configurations Cgcon(Oθcom

) that is derived
by the local agents when Algorithm10 ends is the set of configurations C(Oθcom

)
derived by a centralized agent that has the overall plant knowledge and observation.

Proof. First we prove that Algorithm 10 terminates.

For i = 1, . . . , | J | denote by Mν1
i
(INi) the marking of the input places

PINi
in Cν1

i
that correspond with the set of input border conditions con-

sidered by Agi for a preliminary local configuration Cν1
i
, i.e. Mν1

i
(INi) =

φ(BC
ν1

i

(INi)).

Denote by MJ the marking obtained from the sub-vector markings
M01 , . . . ,M0|J| , Mν1

1
(IN1), . . . ,Mν1

|J|
(IN|J|):

MJ = M01 ⊎ . . . ⊎M0|J| ⊎Mν1
1
(IN1) ⊎ . . . ⊎Mν1

|J|
(IN|J|)

where ⊎ denotes the union with addition of two multi-sets and a marking is
considered a multi-set of tokens.

Consider 〈N ,MJ〉 that is the overall plant model N with the initial mark-
ing MJ . By Proposition 13 we have that MJ is finite and then by assumption
viii) in the setting we have that 〈N ,MJ 〉 is bounded w.r.t. the unobservable
evolution.

Denote by UN (MJ) the net-unfolding of 〈N ,MJ 〉. Consider the (finite)
sequence of observed events On and denote by UN (MJ ,On) the prefix of
UN (MJ ) that correspond with the observation. Denote by C(MJ ,On) the set
of configurations that obey the observation On.



126 Diagnosis of PN models

Algorithm 10 DD Algo (Agi considered)

Require: 〈Ni; M0i〉;O
i
θcom

Ensure: Cgcon
i (Oi

θcom
)

1: while fix point=false do
2: if MSGto sendi

= ∅ and MSGreceivei
= ∅ then

3: send MSGi→j = { local stop i} to the neighbouring agents
4: else if MSGi 6= ∅ then
5: choose a neighbour Agj s.t. MSGi→j 6= ∅ or MSGj→i 6= ∅
6: run DD Algo 2 for Agi, Agj

7: update MSGto sendi

8: end if
9: if local stop for all j ∈ J then

10: send to all neighbours MSGi→j = { fix point }
11: fix point=true
12: end if
13: end while
14: CJ (Oθcom) =

˘

Cν = (ν1, . . . , Cνi , . . . , ν|J|) | νj ∈ Vj , j ∈ J
¯

15: for all Cν ∈ C(Oθcom) do
16: if Bua

Cν
(INi) 6= ∅ then

17: delete Cν from C(Oθcom)
18: send to all neighbours MSGi→j = {Cν not consistent }
19: end if
20: if MSGj→i = {C′

ν not consistent } then
21: delete C′

ν from C(Oθcom)
22: send to all the neighbours other than j: MSGi→q = {C′

ν not consistent }
23: end if
24: end for
25: Cgcon(Oθcom) = CJ(Oθcom )

All unobservable cycles in 〈N ,MJ〉 that repeats the marking are either
executed only once or are not at all executed.

Since we have a finite number of observed events we have that any con-
figuration C(MJ ,On) ∈ C(MJ ,On) contains a finite number of condition
nodes and a finite number of event nodes.

Denote by CℓJ
= (Cℓi

, . . . , Cℓ|J| , ψℓJ
) the global configuration that is ob-

tained by merging the local configurations.

We have that CℓJ
is a configuration in UN (MJ ). Since any configuration

C(MJ ,On) ∈ C(MJ ,On) contains a finite number of condition nodes and
a finite number of event nodes then the local agents cannot communicate
infinitely often.

Notice that any unobservable circuit contains transitions of at most two
components. Thus the cycles that repeat the marking are detected as in Al-
gorithm 9 for two agents.

We prove that Cgcon(Oθcom
) = C(Oθcom

) by proving that Cgcon(Oθcom
) ⊆
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C(Oθcom
) and then that Cgcon(Oθcom

) ⊇ C(Oθcom
)

(⇒) Consider a global configuration CℓJ
∈ Cgcon(Oθcom

) where for adequate
interpretation functions:

CℓJ
= (Cℓ1 , . . . , Cℓ|J|)

Since all the input border-conditions in CℓJ
have predecessors then CℓJ

is a
configuration in UN (M0).

(⇒) The proof is straightforward.

Theorem 5. Consider a distributed description of the plant and an arbitrary dis-
tributed observation Oθcom

= ⊗gc
i∈JO

i
θcom

. The algorithm DD Algo terminates in
finite time and the local diagnosis LDgcon

i (i ∈ J) derived by each local d-agentAgi

(i ∈ J) is the diagnosis a centralized agent would have obtained for component i
having the entire plant observation Oθcom

and the knowledge of the overall plant.

∀i ∈ J , Di(Oi
θcom

) = LDgcon
i (Oi

θcom
)

Proof. The proof results straightforward from Proposition 18 by projecting
two equal sets onto the set of fault events.

Remark 16. When the agents complete the communication protocol at the time
θcom they continue to locally monitor the components until a new communication
session is allowed. The only difference is that instead of a single initial markingM0i

as was the case for deriving the preliminary calculation before the first communica-
tion session, a local agent will have for a component a set of initial markings, that
are the local markings that were found consistent after the completion of the com-
munication protocol at the last communication session, i.e. instead M01 , . . . ,M0|J|

the local agents will consider the set of local markings:

M0θcom
=

{
(M0ν1

, . . . ,M0ν|J|
) | M0νi

= mark(Cνi
) ∧ Cν ∈ C(Oθcom

) ∧ i ∈ J
}

where Cν = (Cν1 , . . . , Cν|J|).

Consider in the following the case when the plant comprises a large num-
ber of components. The amount of information that is necessary to be ex-
changed between the local agents regarding indexes of configurations in all
the components may be considerably large. In what follows we show that
under normal assumption this information can be reduced.

Consider a component i ∈ J and denote by Ji the subset of components
Ji ⊆ J such that j ∈ Ji implies that there exists an unobservable oriented
path that starts in a place in component i and ends in a place of component
j. A | J1 |-tuple (Cνj1(i)

, . . . , Cνj|J1 |
(i)

) is pairwise consistent if for any two

components in J1 that have a common border, Cνju(i)
and Cνjv (i)

are local
consistent.
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Proposition 19. Consider a | J |-tuple of local configurations (Cν1 , . . . , Cν|J|).
We have that (Cν1 , . . . , Cν|J|) is global consistent iff ∀i ∈ J , the | J1 |-tuple
(Cνj1(i)

, . . . , Cνj|J1|
(i)

) is pairwise consistent

Proof. Trivial.

Based on Proposition 19 we have that a local agent i needs to know only
indexes for configurations of the subset of components Ji. Assume that ev-
ery local agent i ∈ J knows for each of its neighbours j ∈ J (Pij 6= ∅) the
sub-set Jj of components, then the information exchanged between Agi to
Agj includes codes only for configurations of the components that belong
to Ji and Jj . Thus instead of sending the codes of J components two local
agents exchange codes only for the components in the sub-set Jij = Ji ∩ Jj .



Chapter 5

Diagnosis for Time PNs

5.1 Introduction

In this chapter we extend the results of Chapter 4 by assuming that the PN
models include information on the time delay between satisfying an en-
abling condition (tokens entering a place) and executing a transition. The
PN models that we consider in the following consider the time as a quantifi-
able and continuous parameter whereas in an untimed PN model the time is
taken into account only via the partial order relation between the transitions
that are executed in the plant.

Two main time extensions of Petri Nets are Time Petri Nets [Mer74] and
Timed Petri Nets [Ram74]. The difference between the two is that in Time
Petri Nets a transition can be fired after a delay within a given time-interval.
The execution takes no time to complete. In Timed Petri Nets a transition
fires as soon as possible (without delay) but its execution requires a certain
amount of time to complete. In this thesis we have chosen Time Petri Nets
for modeling our systems since this formalism is convenient for expressing
most of the temporal constraints regarding the execution and the duration
of the events.

Thus in a Time Petri Net each transition t ∈ T has attached to it a time
interval, called the static interval Is(t) = [Ls

t , U
s
t ] that represents the set of all

the possible delays between enabling and execution associated to transition
t. Times Ls

t and Us
t are relative to the time θen

t when transition t becomes
enabled and Us

t may be infinite. If transition t becomes enabled at the time
θen

t then t cannot fire at a time before θen
t + Ls

t and is forced to be executed
at the time θen

t + Us
t unless it is disabled before by the firing of another tran-

sition. The execution of a transition takes no time to complete. A state in a
TPN at the time θ is represented by the marking (the untimed state) and by
the firing domains of the enabled transitions, i.e. the time intervals in which



130 Diagnosis for Time PNs

the enabled transitions can be executed.

As for untimed PNs all the interesting problems for the analysis of TPN
models can be reduced to reachability analysis. Since a transition in a TPN
can fire at any time in its firing domain, TPN models have in general infinite
state spaces because a state may have an infinite number of successor states.
Methods based on grouping states that are equivalent under a certain equiv-
alence relation into so called state classes were proposed in [BM83], [YR98],
[BV02] where it was shown that for bounded PNs the state class graph is
finite. Thus the potentially infinite state spaces of a TPN can be finitely rep-
resented and thus the analysis of TPN models can be reduced to a decidable
problem.

The goal of this chapter is to design an on-line model-based algorithm
that derives the plant diagnosis at time θ based on the known plant model
and on the observation received up to time θ. We assume a perfect knowl-
edge of the initial state and consider that the model is correct and there are
no delays in receiving the plant observation.

The setting that we consider assumes that the plant observation is given
via a subset of transitions (observable transitions) whose occurrence is re-
ported. Moreover we consider that the execution time of an observed event
is also reported and is measured with perfect accuracy w.r.t. a global clock.
The faults that should be detected are modeled by a subset of the unobserv-
able (silent) transitions.

In the first part of this chapter we present in Section 5.4 the centralized
analysis of TPN models under partial observation. The centralized analysis
of the plant based on state classes [BM83] is presented in Section 5.4.1. In
order to represent more accurately the plant behavior we consider the plant
analysis based on the atomic state class graph [BV02], [YR98]. The atomic
state class graph is a refinement of the linear state class graph that is based
on the observation that a state in a linear state class may contain states that
do not have successors in all the successor state classes.

The centralized on-line monitoring algorithm that we design in this sec-
tion can be briefly described as follows. When the process starts we derive
paths in the atomic state class graph up to the first observable event. If ei-
ther the observable event is not observed in the output of the plant or if
it is executed sooner than allowed by the characteristic system of the final
atomic state class, then the path is deleted. Otherwise an equality relation
is added to the characteristic system to express the fact that the observable
event occurred at the time given by the received observation. Adding equal-
ity relation destroys in general the atomicity property of the state classes and
thus it must be restored by splitting up existing state classes in subintervals
(subdomains).

Since the TPN analysis based on state-classes becomes computationally
unfeasible for models of reasonable size because of the state space explo-
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sion (due to the interleaving of the unobservable concurrent events) we pro-
pose in Section 5.5 a diagnosis algorithm based on time-configurations (time-
processes [AL97]). A time-configuration is an untimed configuration with a
valuation of the execution time for its events. A time-configuration is valid
if there is a time trace in the original TPN that can be obtained from a lin-
earization of the events of the configuration where the occurrence time of
the transitions in the trace are identical with the valuation of their images
in the time-configuration. To check whether a time-configuration is valid or
not requires to solve a (max,+) − linear system of inequalities called the
characteristic system of the configuration.

Since the number of valid time-configurations is uncountable we intro-
duce the time-interval configurations to finitely represent the set of all pos-
sible valid time-configurations. The idea is simple. The set of all solutions
of the characteristic system of a configuration (the set of all valid times) is
represented as a cover of subsets of solutions such that each sub-set of so-
lutions has the time independence property for the concurrent events in the
configuration. The time independence property of a subset of solutions of
the characteristic system of a configuration can be intuitively understood as
follows: given any set of concurrent events in the configuration and fixing the exe-
cution times of their predecessors, their executions times belong to a hyper-rectangle
in high dimensional space. The execution time-intervals for the events in the
configuration are obtained from the smallest hyperbox (of dimension equal
with number of events in the configuration) that includes a given subset of
solutions of the characteristic system.

We present an efficient algorithm to derive such a partition of the solution
set of the characteristic system of a configuration and show how the method
can handle the addition of extra inequalities (constrains) that are due to the
received observation.

Then as a preamble to Section 5.7 (were we design a distributed algorithm
for TPN models) we present in Section 5.6 the (centralized) backward anal-
ysis of Time Petri Nets. The backward analysis is needed in the distributed
algorithm in order to meet the requirement that a local agent derives a local
preliminary diagnosis of a component before communicating with its neigh-
bors, and hence without knowing how many tokens can enter the border
places.

The distributed diagnosis algorithm of TPN models is designed in Sec-
tion 5.7 considering the same setting and the same requirements that were
considered in Section 4.3 for the distributed diagnosis of untimed PN mod-
els. The differences here are that only two components are considered, that
the overall plant model is 1-safe free-choice Time Petri Net and that in or-
der to ensure that the algorithm converges in a finite number of iterations,
we must assume that any oriented path that starts in an input border-place
and ends in an output border place of the same component includes at least
one observable event. These assumptions are necessary to prove desirable
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properties of the distributed fault diagnosis. In particular in Section 5.7.5
we prove that the distributed algorithm that we design for TPN models is
such that the local agents recover the diagnosis result that would have been
derived by a centralized agent knowing the overall plant model and having
the overall plant observation.

The distributed diagnosis algorithm for TPN models comprises the same
procedures as presented for the untimed models namely a procedure for
performing the preliminary local calculation (Section 5.7.2), a procedure for
information exchange (Section 5.7.3), and a procedure for updating a local
calculation to incorporate the received information (Section 5.7.4).

5.2 Time Petri Nets

A Time Petri Net (TPN) N θ = (P , T , F, Is), consists of an (untimed) Petri Net
N = (P , T , F ) (called the untimed support of N θ) and the static time interval
function Is : T → I(Q+), Is(t) = [Ls

t , U
s
t ], Ls

t , U
s
t ∈ Q+, representing the set

of all possible time delays associated to transition t ∈ T .

In a TPN N θ we say that a transition t becomes enabled at the time θen
t

(according to a global clock [WD00]) then the clock attached to t is started
and the transition t can and must fire at some time θt ∈ [θen

t + Ls
t , θ

en
t +

Us
t ], provided t did not become disabled because of the firing of another

transition. Notice that t is forced to fire if it is still enabled at the time θen
t +Us

t .

The following definitions are borrowed from [BM83] with the difference
that here the time is counted according to a global clock relative with the
time the process starts that is assumed 0 for simplicity.

Definition 51. A state at the time θ (according to a global clock) of a TPN
〈N θ,Mθ

0 〉 is a pair Sθ = (M,FI) where:

i) M is a marking and

ii) FI is a firing interval function that associates an interval to each enabled
transition in M (FI : T → I(Q+))

We write (M,FI)
〈t,θt〉
−−−→ (M ′, F I ′) or simply S

〈t,θt〉
−−−→ S′ if θt ∈ Q+ and:

1. (M ≥ Pre(·, t) ∧ θt ≥ θen
t + Ls

t ) ∧ (∀t′ ∈ T s.t. M ≥ Pre(·, t′) ⇒
θt ≤ θen

t′ + Us
t′)

2. M ′ = M − Pre(·, t) + Post(t, ·)

3. ∀t′′ ∈ T s.t. M ′ ≥ Pre(·, t′′) we have:

(a) if t′′ 6= t and M ≥ Pre(·, t′′) then
FI(t′′) = [max(Ls

t′′ + θen
t′′ , θt), θ

en
t′′ + Us

t′′ ]
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(b) else θen
t′′ = θt and FI(t′′) = [θen

t′′ + Ls
t′′ , θ

en
t′′ + Us

t′′ ]

Condition (1) above assures that a transition t that fires at the time θt is
enabled by the marking M ≥ Pre(·, t) and that it fires in its temporal inter-
val FI(t) unless it is disabled by another enabled transition that is executed
sooner. Condition (2) represents the marking transformation rule while (3)
gives the rule how the firing intervals are modified that is:

(3.a) if a transition t′′ remains enabled after firing t then its lower limit re-
mains unaffected if θt ≤ θen

t′′ + Ls
en while if θt ≥ θen

t′′ + Ls
t′′ then the

earliest firing time becomes θt

(3.b) while for a newly enabled transition t′′ its firing interval FI(t′′) is ob-
tained by adding the time θen

t′′ transition t′′ has become enabled (θt =
θen

t′′ ) to its static interval (Ls
t′′ , U

s
t′′)

A time trace τθ is represented by a sequence that alternates the time
progress updates and the occurrence of some events. Thus starting from the
initial state S0 first the time interval (denoted ǫ, [0, θt1)) lasts until the time
θt1 when the first transition t1 fires. Notice that the occurrence of a transition
takes no time to complete that is the tokens from the input places of a tran-
sition tι are removed and added to the output places of tι instantaneously at
the time θtι

when tι fires.

τθ = S0

ǫ,[0,θt1)
−−−−−→ S′1

〈t1,θt1 〉−−−−−→ S′′1
ǫ,(θ1,θt2)
−−−−−−→ S′2

〈t2,θt2〉−−−−−→ S′′2 . . . S
′
υ

〈tυ ,θtυ 〉−−−−−→ Sυ

(5.1)

Definition 52. A time trace τθ in a TPN N θ is defined as follows:

i) τθ = S0

〈t1,θt1〉−−−−−→ S1

〈t2,θt2〉−−−−−→ . . .
〈tυ,θtυ 〉−−−−−→ Sυ

ii) ∀ι = 0, υ − 1, ∃θtι+1 s.t. Sι

〈tι+1,θtι+1
〉

−−−−−−−−→ Sι+1 according to Definition 51.

iii) τ = M0
t1−→M1

t2−→ . . .
tυ−→Mυ is the untimed support of τθ

Definition 53. Denote
∗
−→ for the reflexive and transitive closure of →. The state

graph of a TPN N θ is SG = (S,
∗
−→, S0) where:

i) S =
{
S | S0

∗
−→ S

}
is the set of reachable states from the initial state S0

ii) S0 = (M0, F I0) where FI0(t) = Is(t) for all transitions t s.t. M0 ≥
Pre(·, t) otherwise FI0(t) is not defined

Remark 17. Notice that in Definition 51 and Definition 53 above the assumption
made is that there is a start-up transition that fires only once at the time zero produc-
ing the tokens considered by the initial marking. If this is not suitable for the model
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under investigation then consider for each token in the initial marking a fictitious
transition that can fire only once and its static interval represents the date of birth
of the tokens in the initial marking [CJ05]. The time the process starts is translated
to the time when all the fictitious transitions become enabled (one token is produced
simultaneously in the input places of the fictitious transitions).

Notation 1. In the following for a time-trace τθ we use the notation τ to de-
note its untimed support. For the initial state S0 we use also the notationM θ

0 .
Denote by Lθ

N θ (M
θ
0 ) the set of all possible time-traces that can be executed

in 〈N θ ,Mθ
0 〉. We call Lθ

N θ (M
θ
0 ) the time-language of the TPN 〈N θ,Mθ

0 〉.

Then denote by LN θ (Mθ
0 ) the untimed support language of Lθ

N θ (M
θ
0 ) i.e.:

LN θ (Mθ
0 ) =

{
τ | ∃τθ ∈ Lθ

N θ (M
θ
0 )

}

For a time trace τθ we use the simplified notation τθ = θt1 . . . θtυ
and

recall that LN (M0) is the untimed language derived for the untimed support
PN 〈N ,M0〉 of the TPN 〈N θ,Mθ

0 〉.

p1

p2 p3

t1 t2
Ist1=[10,20] Ist2=[40,50]

p1

p2 p3

t3 t4
Ist3=[10,20] Ist4=[10,20]

p4

p5

t5

Ist5=[10,20]

t1

Ist1=[10,30]
t2
Ist2=[10,30]

Figure 5.1:

Example 23. Consider the TPN 〈N θ,Mθ
0 〉 displayed in Fig.5.1-left. The two tran-

sitions t1 and t2 are both enabled in the initial marking and the execution of either
one disables the execution of the other one. Since θen

t1 = θen
t2 and Us

t1 < Ls
t2 then it

means that t2 cannot be executed.

For TPN 〈N θ,Mθ
0 〉 displayed in Fig.5.1-right, if a token arrives in p1 then

transition t3 becomes enabled whereas transition t4 becomes enabled when its in-
put places p1 and p4 are both marked. Thus θen

t3 ≤ θen
t4 meaning that t4 can be

executed only if Ls
t4 ≤ Us

t3 . Moreover if t2 fires more than 10 time units after t1
(θt1 +10 < θt2) then transition t4 cannot be executed because transition t3 is forced
to fire before.

To avoid trivialities we consider in the remaining of this thesis that given
a TPN N θ for any two transitions ∀t1, t2 ∈ T we have that :

1. if •t1 = •t2 then Us
t1 = Us

t2

2. if •t1 ⊂ •t2 then Us
t2 ≤ Us

t1
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For this TPN model the following holds:

Proposition 20. Given a TPN 〈N θ,Mθ
0 〉 we have that:

LN θ (Mθ
0 ) ⊆ LN (M0)

that is the untimed support language of a TPN is included in the language of its un-
timed support PN. In other words the timing information reduces the set of possible
untimed traces in a given PN model.

Then if 〈N ,M0〉 is a free-choice PN (Def.13) we have moreover that:

LN θ (Mθ
0 ) ≡Σµ

LN (M0) (5.2)

that is for any untimed trace ∀τ ∈ LN (M0) derived in the untimed model there
exists a timed-trace τ ′θ s.t. τ and τ ′ have the same Parikh vector (Σµ(τ) = Σµ(τ ′)).

Proof. The net is free-choice thus any transition that becomes enabled can be
executed. This is true since ∀t, t ∈ T s.t. •t = •t′⇒ Us

t = Us
t′ .

In words Proposition 20 says that the timing information eliminates some
untimed traces because some transitions that are concurrent in the untimed
model are forced to be executed in a certain order in the timed model. The
timing constraints of the time model may also eliminate some choices that
would be possible without timing constraints but are made impossible by
timing constraints.

p1

p2

p3

t1 t2
Ist1=[10,20] Ist2=[30,40]

p4

p1

p2 p3

t2 t3

Ist2=[10,20] Ist3=[30,40]

Ist1=[10,30]

t1

p4 p5

Figure 5.2:

Example 24. Consider the TPN 〈N θ,Mθ
0 〉 displayed in Fig.5.2-left. The two tran-

sitions t1 and t2 are enabled in the initial marking and in the untimed PN 〈N ,M〉,
t1 and t2 are concurrent thus they can be executed in any order, i.e. τ1 = t1t2 and
τ2 = t2t1 are both legal. However this is not true in 〈N θ,Mθ

0 〉 since there is no
legal time-trace that has the untimed support τ2 = t2t1 since t2 cannot be executed
before t1. This is because both t1 and t2 become enabled at the very same time while
the earliest time when transition t2 can be executed (θen

2 + Ls
t2) is greater than the

latest time time when transition t1 must be executed (θen
1 + Us

t1). Thus θt1 < θt2 .
Similarly in Fig.5.2-right we have θt2 < θt3 .
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Consider a TPN N θ and two initial markings Mθ
0 and M ′θ0 s.t. Mθ

0 ≤M ′θ0
where all the tokens that appear in M θ

0 have the same date of birth in M ′θ0 as
in Mθ

0 .

LetLθ
N θ (M

θ
0 ) andLθ

N θ (M
′θ
0 ) be the timed languages of the TPN 〈N θ,Mθ

0 〉,
respectively 〈N θ,M ′θ0 〉. Then the following holds:

Proposition 21. If N is free-choice and M θ
0 ≤M ′θ0 then we have that:

LN θ (Mθ
0 )/≡Σν

⊑ LN θ (M ′θ0 )/≡Σν
(5.3)

that is:

1. ∀τθ ∈ Lθ
N θ (M

θ
0 ) ⇒ ∃τ ′θ ∈ Lθ

N θ (M
′θ
0 ) s.t. Σµ(τ) ⊆ Σµ(τ ′)

2. ∀τ ′θ ∈ Lθ
N θ (M

′θ
0 ) ⇒ ∃τθ ∈ Lθ

N θ (M
′θ
0 ) s.t. Σµ(τ ′) ⊇ Σµ(τ)

Proof. To prove this it is enough to examine what effect an extra token can
have in a free-choice net. We have that the presence of a token can not disable
the execution of a transition. The only effects are the firing of some extra
transitions or to speed up the execution of a transition.

Unfortunately for a general TPN we do not have any monotonicity prop-
erty because of the forcing of a transition to be executed when the time
reaches its upper limit of its firing time interval.

p1

p3

t1
Ist1=[10,20]

p2

p4

t2

Ist2=[30,40]

p1

p3

t1
Ist1=[10,20]

p2

p4

t2

Ist2=[30,40]

Figure 5.3:

Example 25. Consider in Fig.5.3 a TPN with two initial markings e.g. 〈N θ,Mθ
0 〉

(Fig.5.3-left) and 〈N θ,M ′θ0 〉 (Fig.5.3-right). As one can see in 〈N θ,Mθ
0 〉 only t2

can be executed whereas in 〈N θ,M ′θ0 〉 only t1 is possible.

Given a global time ξ denote by Lθ
N θ (M

θ
0 , ξ) the set of all time traces that

can be executed up to the time ξ that is:

Lθ
N θ (M

θ
0 , ξ) =

{
τθ
ξ = θt1 . . . θtν

| ∃τθ ∈ Lθ
N θ (M0) s.t. τθ = θt1 . . . θtν

θtν+1 . . .

∧ θtν
≤ ξ ∧ θtν+1 > ξ

}

Remark 18. In a rigorous notation we have that:

τθ
ξ := S0

[0,θt1)
−−−−→ S′1

θt1−−→ S′′1
(θt1 ,θt2 )
−−−−−→ . . .

(θtν−1
,θtν )

−−−−−−−→ S′ν
θtυ−−→ S′′ν

(θtυ ,ξ]
−−−−→ Sξ

(5.4)
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where it was assumed that θtν
< ξ otherwise θtν

= ξ, Sξ = S′′ν and
(θtν ,ξ]
−−−−→ should

be removed.

5.3 Diagnosis of TPN - general setting

We consider the following plant description:

1. the TPN model 〈N θ ,Mθ
0 〉 is untimed 1-safe i.e. the untimed PN sup-

port 〈N ,M0〉 of the TPN 〈N θ ,Mθ
0 〉 is 1-safe

2. T = To ∪ Tuo where To is the set of observable events and Tuo is the set
of unobservable (silent) events

3. lo is the observation labeling function lo : T → Ωo ∪ {ǫ} where Ωo is a
set of labels and ǫ is the empty label. lo(t) = ǫ iff t ∈ Tuo and lo(t) ∈ Ωo

iff t ∈ To. lo is not necessary injective in Ωo that is ∃t1, t2 ∈ To such that
t1 6= t2 and lo(t1) = lo(t2).

4. when an observable transition to ∈ To is executed in the plant the label
lo(t

o) is emitted together with the global time θlo(to) when this execu-
tion of to took place.

5. the observation is always correct and the execution time of an observed
event is measured with perfect accuracy according to a global clock

6. the observation is always received (there is no loss of observation) and
there are no delays in receiving the observation

7. the execution of an unobservable event does not emit anything (is
silent)

8. Tf ⊂ Tuo is the set of faulty transitions. Tf is partitioned as Tf = TF1 ∪
. . . ∪ TFυ

where Fι is the subset of fault transitions that models a fault
of kind Fι.

9. the faults are unpredictable, i.e. ∀t ∈ Tf , ∃t′ ∈ T \Tf s.t. i) •t′ ⊆ •t and
ii) Ls

t′ ≤ Us
t .

Remark 19. As for the untimed models (see Assumption 2) we assume at item 9) in
the setting that the faults are unpredictable otherwise the diagnosis algorithm must
include also a prognosis module since faults may be detected that will happen for
sure. Notice that the condition at item 9) is a sufficient condition for the faults in
the TPN to be unpredictable.
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Formal description of the problem

Given the plant model as described above design an on-line algorithm that
derives the diagnosis of plant based on the model and the received observa-
tion. The exact meaning of diagnosis is defined as follow.

Assumption 7. We make the assumption that the time diverges when an infinite
number of transitions are executed (a cycle that contains only unobservable transi-
tions that can be executed infinitely often contains at least one transition that has an
non-zero lower limit of its static interval).

Denote the observation received up to a global time ξ by:

Oθ
ξ = 〈obs1, θobs1〉, . . . , 〈obsn, θobsn

〉

where obs1, . . . , obsn ∈ Ωo are the labels that are emitted and θobs1 , . . . , θobsn

are the times at which the corresponding events occur.

Notice that by the assumptions that we have made in the setting there are
no delays in receiving the observation and there are no observations that are
lost. In other words the diagnoser agent receives the message 〈obsn, θobsn

〉
at time θobsn

for each n. Thus we have that θobsn
≤ ξ and the next observed

event, if any, will be executed at a time after ξ.

Abusing notation we denote in the remaining of this thesis by Oθ
n all the

plant observation up to the time when the nth observed event has occurred.

Lθ
N θ (M

θ
0 ,O

θ
ξ ) is the set of all time traces that are feasible in 〈N θ ,Mθ

0 〉 up

to the time ξ and that obey the received observation Oθ
ξ .

We say that a time-trace τθ obeys the observation Oθ
ξ if τθ ∈ Lθ

N θ (Mθ
0 , ξ)

and:

1. lo(τ) = Oξ (the untimed support τ of the legal trace τθ obeys the un-
timed observation support trace Oξ)

2. and for k = 1, . . . , n, θto
k

= θobsk
with lo(t

o
k) = obsk and n the number

of observed events in Oθ
ξ (the execution time θto

k
of each observable

transition tok (l(tok) = obsk) in τθ is equal with the time θobsk
that was

reported)

In the following we use for Lθ
N θ (M

θ
0 ,O

θ
ξ ) the simplified notation Lθ(Oθ

ξ )

where the lower index N θ and the index M θ
0 are dropped since it is clear

from the context that we are analyzing 〈N θ ,Mθ
0 〉. Similarly for Lθ

N θ (Mθ
0 , ξ)

(the set of time-traces derived up to ξ) we use in what follows the simplified
notation Lθ(ξ).

Denote by D(Oθ
ξ ) the plant diagnosis at time ξ based on the received ob-

servation Oθ
ξ . D(Oθ

ξ ) comprises the time-strings that are obtained from the
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projection of the time-traces contained in Lθ(Oθ
ξ ) on the set of fault transi-

tions Tf :
D(Oθ

ξ ) =
{
τθ
f | τθ

f = ΠTf
(τθ) ∧ τθ ∈ Lθ(Oθ

ξ )
}

(5.5)

Notice that the projection above applies to the untimed support τ of the
time trace τθ and the obtained string τθ

f preserves the information about the

time the fault transitions in τθ are executed.

If we have the set of fault events given by the partition Tf = TF1 ∪ . . .∪TFυ

then the detection of a fault of kind Fι is obtained by further projecting the
strings of D(Oθ

ξ ) on TFι
:

DFι
(Oθ

ξ ) =
{
τθ
Fι

| τθ
Fι

= ΠTFι (τ
θ
f ) ∧ τθ

f ∈ D(Oθ
ξ )

}
(5.6)

For a given kind of fault, say Fι, we have that the diagnosis result of the
plant w.r.t. faults of kind Fι at time ξ with received observation Oθ

ξ is:

DRFι
(Oθ

ξ ) =





FFι
iff ǫ 6∈ DFι

(Oθ
ξ )

NFι
iff {ǫ} = DFι

(Oθ
ξ )

UFFι
iff {ǫ} ( DFι

(Oθ
ξ )

(5.7)

where similarly as defined for the untimed case in [SSL+95] we have that:

1. FFι
means that a fault of kind Fι did necessarily happen in the plant:

∀τθ
f ∈ DFι

(Oθ
ξ ) ⇒ ΠTFι (τf ) 6= ǫ

2. NFι
means that a fault of kind Fι did not happen in the plant:

∀τθ
f ∈ DFι

(Oθ
ξ ) ⇒ ΠTFι (τf ) = ǫ

3. UFFι
means that it is uncertain whether a fault of kind Fι happened

or not in the plant that is, there exist two legal time-strings τθ
f , τ
′θ
f ∈

DFι
(Oθ

ξ ) s.t. ΠTFι (τf ) 6= ǫ and ΠTFι (τ
′
f ) = ǫ.

5.4 Centralized diagnosis of TPN models

The set of firing times of a transition t in a TPN is in general uncountable
since the time θt when t fires is given in general by a certain time-interval
[L(t), U(t)] where L(t) < U(t). Thus the set of time traces Lθ

N θ (M
θ
0 ) and

the set of reachable states in a TPN are uncountable sets. In order to have a
finite representation of the set of reachable states of a TPN [BM83] proposed
the analysis of the TPN models based on state classes. The state class graph
explicitly represents the untimed support language of 〈N θ,Mθ

0 〉.
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This is important since the diagnosis result at a given time ξ based on
the received observation Oθ

ξ (see Definition 5.7) requires only to calculate the

untimed support of the set of time-traces Lθ(Oθ
ξ ) that are possible in the TPN

model and obey the received observation.

5.4.1 Analysis of Time Petri Nets based on state classes

Given a state S = (M,FI) an enabled transition t may fire at any time in its
temporal interval FI(t), hence in general a state has infinitely many succes-
sors. For analyzing the system’s behavior we must find a finite representa-
tion of the set of all possible reachable states by grouping the states into sets
called state classes [BM83].

Definition 54. Consider a time trace τθ in a TPN 〈N θ,Mθ
0 〉 with τθ = S0

θt1−−→

S1

θt2−−→ . . . Sυ−1
θtυ−−→ Sυ. The times at which {t1, t2, . . . , tυ} are executed

{θt1 , θt2 , . . . θtυ
} are called the path variables and are denoted by the vector Θ. The

path variables keep track of the past evolution of the system, from the initial state S0

up to the state Sυ that is reached after the execution of the last transition in τθ .

The state variables are represented by the possible firing times (denoted ϑt) of
the enabled transitions t ∈ T ,Mυ ≥ Pre(·, t) and are represented by the vector v

where ϑt ∈ FI(t).

The path variables Θ and the state variables v are related by a system of inequal-
ities ( the characteristic system of τθ) denoted Kτ and having the shape:

1) A · Θ ≤ a

2) Θen = B · Θ

3) Θen + L ≤ v ≤ Θen + U

where: A is m ×m matrix (with m the number of transitions that were executed)
that relates the firing times of the past transitions; a is a vector of constant rational
numbers. B is a m × q matrix (with q the number of enabled transitions) that de-
termines the enabling times of the enabled transitions; Θen is a vector of dimension
q having the component ι equal to the global time θen

tι
when tι has become enabled;

L,U are vectors of dimension m with the components specifying the earliest re-
spectively and the latest global time a transition can be executed after it has become
enabled.

Notice that by the assumption that 〈N ,M0〉 is 1-safe we have that
the parents of a transition tι (the previous transitions whose occurrence
made tι enabled) are uniquely defined for any trace τθ . We have that
Θen

tι
= maxtγ∈••tι

(θtγ
) if the input places of tι are not marked by tokens

from the initial marking. If a transition tι is enabled by the tokens from the
initial marking then θen

tι
= 0 since the marking is assumed produced by a a
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fictitious transition that fires at the time 0.

Algorithm (Computing characteristic systems)

1 Kǫ = {Ls
t ≤ ϑt ≤ Us

t | t ∈ T ∧M0 ≥ Pre(·, t)}

2 assume S0
τθ

−→ Sν . Then tν+1 is fireable from Sν iff:

2.1 Mν ≥ Pre(·, tν+1)

2.2 Kτ ∧
{
ϑtν+1 ≤ ϑtι

| tι 6= tν+1 ∧ Mν ≥ Pre(·, tι)
}

is consistent
(the solution set is not empty).

3 if tν+1 is fireable then Kτtν+1 is computable from Kτ as:

3.1 the fireability constraints for tν+1 given by 2.2 above are added to
the characteristic system Kτ

3.2 the variable ϑtν+1 is renamed into a path variable θtν+1 = ϑtν+1

3.3 for each newly enabled transition tλ at Mν+1, a new variable ϑtλ

is introduced and then:

3.3.1 for all the transitions tι that remained enabled after firing tν+1

(∀tι, M − Pre(·, tν+1) ≥ Pre(·, tι)) we have that:

max(θen
tι

+ Ls
tι
, θν+1) ≤ θtι

and θtι
≤ max(θen

tι
+ Us

tι
, θν+1) remains the same.

3.3.2 for the newly enabled transitions tλ we have θen
tλ

= θtν+1 and
θen

tλ
+ Ls

tλ
≤ ϑtλ

≤ θen
tλ

+ Us
tλ

3.4 the variable ϑν+1 is eliminated

Linear state classes

Originally state classes were introduced in [BM83] for finitely representing
the state graphs of bounded TPNs. Linear state classes are constructed based
on the following fact: consider two time traces τθ and τ ′θ (having the same
untimed support) that lead the system from the initial state S0 into a mark-
ing M and the characteristic systems Kτ and Kτ ′ have equal solution sets
after projection on their state variables v (Kτ |v= Kτ ′ |v). Then the subtrees
of the state graph SG rooted in the states given by Kτ and by Kτ ′ are iso-
morphic. Linear state classes are characteristic systems considered modulo
this equivalence.

Definition 55. The linear state class graph of a TPN 〈N θ,Mθ
0 〉 is:

LSCG = (SC/∼=,
∗
−→, [{S0}]∼=)
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where SC is a cover of S (a set of subsets of S whose union includes S) inductively
defined as:

1. SC =
⋃

τ∈LN (M0) SCτ , with SCǫ = {S0},

SCτt =

{
S′ | ∃S ∈ SCτ s.t. S

〈t,θt〉
−−−→ S′

}

2. SC ∼= SC′ iff (∃S ∈ SC)(∃S′ ∈ SC′) s.t. M(S) = M(S′) and

⋃

S∈SC

FI(S) =
⋃

S′∈SC′

FI(S′)

3. SC
t
−→ SC′′ iff ∃S ∈ SC and ∃S′′ ∈ SC′′ s.t. S

t
−→ S′′

Each state class SCτ contains all states reachable from the initial state by
firing time-traces of untimed support τ . A state S may belong to more than
one state class. All the states contained in a state class have the same marking
while the firing domain of a state class is the union of the firing domains of
each state included in the state class. We use the notation FI(SC) to denote
the firing domain of a state class.

The linear state classes are obtained from the characteristic systems after
elimination of path variables Θ.

p1

p2

p3 p4

p5

p6

p7 p8

t1

t2
t3

t4
t5

t6

t7
t8

t9[3,10]

[3,10]

[3,10]

[3,10]

[4,8]

[4,8]

[4,8]

[7,8]

[4,8]

Figure 5.4:

Example 26. Consider the TPN in Fig. 5.4 were the static time intervals are:
Is(tι) = [3, 10] for ι = 1, . . . , 4; Is(tλ) = [4, 8] for λ = 6, . . . , 9 while the synchro-
nizing transition t5 has its static time interval Is(t5) = [7, 8].

The linear state class graph is constructed as follows. In the initial marking
M0 = {M(p1) = 1,M(p5) = 1} we have t1 and t6 as enabled transitions, and we
assume that the tokens arrived in p1 respectively p5 at the time 0 (the analysis starts
at the global time 0).
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SC0 Kǫ =

{
3 ≤ ϑt1 ≤ 10

4 ≤ ϑt6 ≤ 8
(5.8)

Consider now that t1 fires first. The new marking isM1 = {M(p2) = 1,M(p5) = 1},
the set of newly enabled transition is {t2, t3} while t6 remains enabled after firing
t1. The characteristic system Kt1 of the state class SC1 is:

SC1 Kt1 =





3 ≤ θt1 ≤ 10

4 ≤ ϑt6 ≤ 8

θt1 ≤ ϑt6

θt1 + 3 ≤ ϑt2 ≤ θt1 + 10

θt1 + 3 ≤ ϑt3 ≤ θt1 + 10

(5.9)

If t6 fires first then the new marking isM2 = {M(p1) = 1,M(p6) = 1} and the set
of newly enabled transition is {t7, t8} while t1 remains enabled after firing t6. The
characteristic system Kt6 of the state class SC2 is:

SC2 Kt6 =





4 ≤ θt6 ≤ 8

3 ≤ ϑt1 ≤ 10

θt6 ≤ ϑt1

θt6 + 4 ≤ ϑt7 ≤ θt6 + 8

θt6 + 4 ≤ ϑt8 ≤ θt6 + 8

(5.10)

Consider now that t1 has fired first and then t2 fires. The new marking is M3 =
{M(p3) = 1,M(p5) = 1} an the set of newly enabled transition is {t4} while t6
remains enabled after firing t2. The characteristic system Kt1t2 of the state class
SC3 is:

SC3 Kt1t2 =





3 ≤ θt1 ≤ 10

θt1 + 3 ≤ θt2 ≤ θt1 + 10

4 ≤ ϑ6 ≤ 8

θt1 ≤ ϑt6

θt2 ≤ ϑt6

θt2 + 3 ≤ ϑt4 ≤ θt2 + 10

(5.11)

Consider now that t1 has fired first and then t6 fires. The new marking is M4 =
{M(p2) = 1,M(p6) = 1} an the set of newly enabled transition is {t7, t8} while
t2, t3 remain enabled after firing t6. The characteristic system Kt1t6 of the state
class SC4 is:
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SC4 Kt1t6 =





3 ≤ θt1 ≤ 10

4 ≤ θt6 ≤ 8

θt1 ≤ θt6

θt6 ≤ ϑt2

θt6 ≤ ϑt3

θt1 + 3 ≤ ϑt2 ≤ θt1 + 10

θt1 + 3 ≤ ϑt3 ≤ θt1 + 10

θt2 + 4 ≤ ϑt7 ≤ θt2 + 8

θt2 + 4 ≤ ϑt8 ≤ θt2 + 8

(5.12)

The linear state class tree rooted in SC0 is displayed in Fig. 5.5 where for ν =
0 . . . 4 the linear state classes are SCν = (Mν ,FIν). Mν is the marking for each
of the cases described before and FI0 = Kǫ |ϑ, FI1 = Kt1 |ϑ, FI2 = Kt6 |ϑ,
FI3 = Kt1t2 |ϑ and FI4 = Kt1t6 |ϑ.

SC0

SC1 SC2

SC3 SC4
SC5

t1

t2
t3t6

t6

Figure 5.5:

Now consider that t1 fires at the time θt1 = 3 leading the plant in to the new state

S1 ∈ SC1 (S0
〈t1,3〉
−−−→ S1). It is easy to check that S1 has successors in the successor

state classes of SC1 namely S3 ∈ SC3, S4 ∈ SC4, and S5 ∈ SC5 respectively,

where for θt2 = 6, θt6 = 7 and θt3 = 6 we have S1
〈t2,6〉
−−−→ S3, S1

〈t6,7〉
−−−→ S4,

S1
〈t3,6〉
−−−→ S5.

Then if t1 fires at θt1 = 6 we obtain the state S1 ∈ SC1 that has successors only
in SC4 and not in SC3 and SC5.

Thus we have that in general not all the states within a state class have
successors in a successor state class. In order to assure the atomicity property
that all the states within a state class have successors in all the successor state
classes the linear state classes have to be split [YR98].

The procedure to refine the linear state class graph LSCG such that the
atomicity property is satisfied was proposed in [YR98] in the context of CTL*
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Model Checking and then improved in [BV02]. In the following without
going into all the details we present the concept of atomic state classes and
sketch the construction of the atomic state class graph.

Atomic state classes

Definition 56. A state class SCι is atomic if, for each state class SCλ, whenever

a state Sι ∈ SCι has a successor Sλ in SCλ (∃Sλ ∈ SCλ s.t. Sι
〈t,θt〉
−−−→ Sλ)

then all the states of SCι have successors in SCλ (∀S′ι ∈ SCι ⇒ ∃S′λ ∈ SCλ s.t.

S′λ
〈t,θ′t〉−−−→ S′λ).

In order to generate atomic state classes one must impose some linear
constraints for splitting the linear state classes until the atomicity is obtained.

Example 27. For imposing the atomicity property one must split the state classes by
adding linear constrains of the form κ and ¬κ. For instance for the LSCG derived
in Example 26 κ is expressed as θt1 ≤ Us

t6 − Ls
t2 meaning that κ,¬κ split SC1 into

SC′1 and SC
′′

1 (all the states of SC′1 obey κ and all the states of SC
′′

1 obey ¬κ).
θt1 ≤ Us

t6 −Ls
t2 means that if t2 fires at its earliest time being enabled from the time

θt1 then it can fire before t6 (where the latest time is considered).

Notice that splitting a state class may in general cause as well the splitting of
the predecessor state classes. For instance if a linear constraint κν+1 is imposed
to state class SCν+1 to determine the state class region that contains states having
successors in SCν+2 then for preserving the atomicity the predecessor state classes
SCν , SCν−1 . . . of SCν+1 must be refined as well imposing whenever necessary,
adequate linear constraints κν , κν−1, . . ..

Without going into details we assume that following the algorithm pro-
posed in [YR98] we have obtained the atomic state class graph:

ASCG = (ASC,
∗
−→, ASC0)

where ASC0 = {S0} is the initial state S0 = (M0, F I0) and ASC is the set of

atomic state classes that is ∀ASCι, ASCλ ∈ ASC we have thatASCι
t
−→ ASCλ

iff ∀Sι ∈ ASCι ⇒ ∃Sλ ∈ ASCλ s.t. Sι
〈t,θt〉
−−−→ Sλ.

Denote by ρ a path in the atomic state class graph ASCG where:

ρ := ASC0
t1−→ ASC1 . . . ASCυ−1

tυ−→ ASCυ

and denote τ(ρ) the untimed support trace that corresponds with ρ. Then
denote by Lθ(ASCG) the set of timed traces that are represented by ASCG
and denote by L(ASCG) the untimed support of Lθ(ASCG) where:

L(ASCG) = {τ(ρ) | ρ ∈ ASCG}
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Proposition 22. Given a Time Petri Net 〈N θ,Mθ
0 〉 and the atomic state class

graphASCG(〈N θ ,Mθ
0 〉) we have that Lθ

N θ (M
θ
0 ) = Lθ(ASCG) and LN θ (Mθ

0 ) =
L(ASCG).

Proof. Trivial.

5.4.2 Centralized diagnosis of TPNs based on atomic state
class graph

In this section we present an on-line algorithm that derives the plant diag-
nosis based on the calculation of the atomic state class graph. The on-line
diagnosis-algorithm that we design works as follows:

1. when the process starts set initial condition Oθ
0 = ǫ, n = 1

2. compute the atomic state class graphASCG(obsn | Oθ
n−1) whose paths

correspond with untimed traces that contain only unobservable transi-
tions except for the last transition that is observable

3. for each path ρν of ASCG(obsn | Oθ
n−1) let θ̂ν be the latest global time

when the estimated observable transition toν can be executed (θ̂ν =
Uν(toν)) where in the solution of the characteristic system Sol(Kτ(ρν))
we have that θto

ν
≤ Uν(toν).

4. with the global time progress ξ = ξ + δξ we have the following cases:

(a) if no observation is received by the time ξ and ξ > θ̂ν then delete
the path ρν

(b) if at time ξ, 〈obsn, θobsn
〉 is received (Oθ

ξ = Oθ
n−1〈obsn, θobsn

〉 and

Oθ
ξ−δξ = Oθ

n−1) then:

i. for all paths ρν s.t. lo(t
o
nν

) 6= obsn delete ρν

ii. for all paths ρν s.t. lo(t
o
nν

) = obsn ∧ θobsn
6∈ [Lν(tonν

), Uν(tonν
)]

delete ρυ

iii. for all paths ρν s.t. lo(t
o
n) = obsn ∧ θobsn

∈ [Lν(tonν
), Uν(tonν

)]

A. impose the constraint that tonν
occurred at the time θobsn

:

κ :=
{
θto

nν
= θobsn

}

B. and then restore the atomicity property

5. denote ASCG(Oθ
ξ ) the atomic state class graph obtained in this way

where ξ = θobsn

6. n := n+ 1, return to 2
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In the following we use the notation ASCG(obsk | Oθ
k−1) for the atomic

state class graph that estimates the kth event that will be observed (obsk)
given the received observation Oθ

k−1. Notice that Oθ
0 = ǫ and Oθ

k =

Oθ
k−1〈obsk, θobsk

〉.

For ξ = θobsn
consider the atomic state class graph ASCG(Oθ

ξ ) where:

ASCG(Oθ
ξ ) = (ASCξ,

∗
−→, ASC0)

with ASC0 = {S0} initial atomic state class and ASC the set of atomic state
classes derived after imposing the constrains due to the received observation
Oθ

ξ and the constraints that restore the atomicity property.

Denote by ASCξ the set of atomic state classes that are obtained at the
time ξ after the execution of the last observed event and then denote by ρν a
complete path in ASCG(Oθ

ξ ) where:

ρν = ASC0

to
1ν−−→ ASC1ν

. . . ASCq−1ν

to
qν−−→ ASCqν

(5.13)

Denote by τν = t1ν
. . . tqν

the untimed support of ρν . For τν we have that:

1. lo(τν) = Oξ

2. and for k = 1, . . . , n lo(t
o
kν

) = obsk and θto
kν

= θobsk

Let Kρν
(Oθ

ξ ) be the characteristic system associated with the path ρν in

ASCG(Oθ
ξ ) where Kρν

(Oθ
ξ ) includes the constraints due to the received ob-

servation and the constraints that were imposed for preserving the atomicity
property.

Denote by Lθ(ASCG(Oθ
ξ )) the set of time-traces up to the time ξ that

explain the received observation:

Lθ(ASCG(Oθ
ξ )) =

{
τθ
ν | ρν ∈ ASCG(Oθ

ξ ) ∧ Θν is a solution of Kρν

}

(5.14)

Let L(ASCG(Oθ
ξ )) be the untimed language that comprises the untimed

support of Lθ(ASCG(Oθ
ξ )).

Theorem 6. Given the observation generated by the plant Oθ
ξ we have that:

Lθ(ASCG(Oθ
ξ )) = Lθ

N θ (M
θ
0 ,O

θ
ξ)

where ξ is the occurrence time of the last observed event in Oθ
ξ .

Proof. (⇐) First we prove that Lθ(ASCG(Oθ
ξ )) ⊆ Lθ

N θ (M
θ
0 ,O

θ
ξ ).

Consider a state Sξ ∈ ASCnι
(ASCnι

∈ ASCξ). Thanks to the atomicity
property we have that there exists a state in the predecessor atomic state
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classes s.t. S0
τθ

−→ Sξ. Then we have that τθ obeys the observation because
of the constraints that were imposed.

⇒ By definition the union of the sets that are included in the state classes of
ASCG(Oθ

ξ ) is a cover of the set of states that can be obtained at the time ξ
given the received observation. Since each state is part of a legal time-trace
then we have that Lθ(ASCG(Oθ

ξ )) ⊇ Lθ
N θ (M

θ
0 ,O

θ
ξ ).

Th. 6 shows that the plant diagnosis can be derived using Lθ(ASCG(Oθ
ξ ))

and L(ASCG(Oθ
ξ )) instead of Lθ(Oθ

ξ ) respectively L(Oθ
ξ ) in Eq. 5.5, Eq. 5.6,

and Eq. 5.7.

The set of estimated states of the plant at the time ξ when the last ob-
served event was received is given by the union of atomic state classes that
are obtained in ASCG(Oθ

ξ ) considering the execution of the last observed
event on a path ρν :

Sξ =
{
Sξ | Sξ ∈ ASCnν

∧ASC0
ρν
−→ ASCnν

∧ ρν ∈ ASCG(Oθ
ξ )

}

Example 28. Consider again the TPN in Fig. 5.4 where To = {t4, t5, t9} and
lo(t4) = lo(t5) = lo(t9).

We illustrate the construction of ASCG(obs1 | Oθ
0) considering the untimed

support τ = t1t2t6t4. The linear state class that corresponds to τ is as follows:

Kτ =





3 ≤ θt1 ≤ 10

4 ≤ θt6 ≤ 8

θt1 + 3 ≤ θt2 ≤ θt1 + 10

θt2 + 3 ≤ θt4 ≤ θt2 + 10

θt1 ≤ θt6

θt2 ≤ θt6

θt6 ≤ θt3

θt6 + 4 ≤ ϑt7 ≤ θt6 + 8

θt6 + 4 ≤ ϑt8 ≤ θt6 + 8

θt4 ≤ ϑt7

θt4 ≤ ϑt8

(5.15)
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After simple manipulations we obtain:

Kτ =





3 ≤ θt1 ≤ 8

4 ≤ θt6 ≤ 8

6 ≤ θt2 ≤ 8

9 ≤ θt4 ≤ 16

10 ≤ ϑt7 ≤ 16

10 ≤ ϑt8 ≤ 16

θt1 ≤ θt6

θt2 ≤ θt6

θt6 ≤ θt4

θt4 ≤ ϑt7

θt4 ≤ ϑt8

(5.16)

Given the state class SCt1 the state S1 ∈ SCt1 that corresponds with the firing
of t1 at the time θt1 = 8 has no successors in SCτ since in τ , t2 is assumed executed
and t2 is executed at least 3 time units after the execution of t1.

By adding the constraints to preserve the atomicity property we have the atomic
state classes ASCτ and ASCt1 obtained from Kat

τ and respectively Kat
t1 by project-

ing the solution set on to the state variables:

Kat
t1 =





3 ≤ θt1 ≤ 5

4 ≤ ϑt6 ≤ 8

θt1 ≤ ϑt6

6 ≤ ϑt2 ≤ 8

6 ≤ ϑt3 ≤ 8

(5.17)

Kat
τ =





3 ≤ θt1 ≤ 5

6 ≤ θt6 ≤ 8

6 ≤ θt2 ≤ 8

9 ≤ θt4 ≤ 16

10 ≤ ϑt7 ≤ 16

10 ≤ ϑt8 ≤ 16

θt1 ≤ θt6

θt2 ≤ θt6

θt6 ≤ θt4

θt4 ≤ ϑt7

θt4 ≤ ϑt8

(5.18)
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For the path ρν ∈ ASCG(obs1 | Oθ
0) that corresponds to τ the expected time-

interval the first observation of t4 will be received is θt4 ∈ [9, 16].

Then we have that:

1. if no observation is received until the global clock becomes 16 then ρν is deleted
from ASCG(Oθ

1).

2. if an observation is received before time 9 then also ρν should be deleted

3. if the label lo(t4) is observed at the time θlo(t4) = 10, θt4 = 10 is added to
Kat

τ ; restore the atomicity property obtaining for t2 and t1 that 6 ≤ θ2 ≤ 7
and respectively 3 ≤ θ1 ≤ 4. We obtain ASCτ,ξ = (M,FI) where FI =
{FI(t1) = (10, 23], F I(t7) = (10, 16], F I(t8) = (10, 16]}

Notice in this example that the atomic state class graph derived before receiving
the first observation will have paths corresponding with all the untimed traces that
are legal in the untimed support PN 〈N ,M0〉 and contain only one observable event
that is executed as the last event in the trace.

In this example the time information does not reduce the number of untimed
traces that are derived before the received observation. As one can see the consider-
ation of all the possible interleaving between {t1, t2, t3} and {t6, t7, t8} leads very
quickly to state space explosion.

We conclude this section with the following remarks:

1. the diagnosis algorithm based on atomic state classes is an adapta-
tion of the state class method for TPNs where the plant behavior is
constrained so that the plant behavior obeys the received observation.
Moreover we have presented an on-line algorithm that computes the
next observation estimation and then refines the calculations based on
the received observation.

2. this approach suffers from the state space explosion due to the inter-
leaving of the concurrent transitions. Even for TPN models having a
reasonable size the plant computation becomes practically impossible.

3. this method is not suitable for distributed applications where a local
agent performs the local site analysis and exchange information with
its neighbors. The reason is twofold: first the plant calculation requires
at any time the global state and secondly there is no easy way to in-
clude the new information that is available to a local agent after the
information exchange takes place.

In order to overcome the state space explosion when the plant exhibits a
high degree of concurrency we present in the next section the analysis of
Time Petri Nets based on partial orders.



5.5 The analysis of TPNs based on time processes 151

5.5 The analysis of TPNs based on time processes

As was already illustrated in Example 28 the timing information may not re-
duce the number of the interleavings of the concurrent (unobservable) events
that are considered. The partial order reduction techniques developed for
untimed PN [McM93], [Esp94] are shown in [HB95], [SY96], [AL97], [Lil98]
applicable for TPN. Consider a configuration C in the unfolding UN (M0) of
the untimed PN support of a TPN (Section 2.5). Then consider a valuation
Θ of the execution times at which the events e ∈ EC in the configuration C
are executed that is for each e ∈ EC consider a time value θe ∈ T (T the time
axis) at which e occurs and Θ is an | EC |-tuple comprising all the values at
which all the events e ∈ EC are executed.

An untimed configuration C with a valuation Θ ∈ T|EC | of the execution
time for its events is called a time configuration (time process in [AL97]) of
the TPN model.

A time configuration is valid if the execution times of the events in the
configuration provide a solution of the system of inequalities called the char-
acteristic system of the configuration.

A valid time configuration means that there exists a legal trace τθ ∈
Lθ
N θ (M

θ
0 ) in the TPN 〈N θ,Mθ

0 〉 whose untimed τ support is a linearization
(Def. 2) of the partial order relation of the events in the configuration (i.e.
τ = φ(σ) and σ ∈ 〈EC〉) while the execution time θt of every transition t con-
sidered in the trace τθ is identical with the valuation of the event e to whom
t is its image via φ.

Consider for each event e in the configuration C the static interval of its
image transition t = φ(e) in the original TPN 〈N θ,Mθ

0 〉.

For a free-choice PN the characteristic systemKCθ of a configuration C is
the system of (max,+)−linear inequalities obtained by considering for each
event e ∈ EC in the configuration C a (max,+) linear inequality expressing
the fact that the execution time θe of each event e ∈ EC is within a delay in
its static interval Is

e (Is
e = Is

t , φ(e) = t) after the time θen
e when e has become

enabled.

Thus the characteristic system KCθ of the configuration considers for
each event e ∈ EC two inequalities regarding the execution time θe of the
event e having the form:

maxe′∈ ••e(θe′) + Ls
e ≤ θe ≤ maxe′∈ ••e(θe′ ) + Us

e ≥ θe

where e′ ∈ ••e means that e′• ∩ •e 6= ∅.

The reason why the characteristic system of a configuration in the un-
folding of a free choice TPN contains variables only for the events that are
executed in the configuration is that in a free choice PN any two transitions
that are in conflict share the same input conditions. Thus any transition that
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becomes enabled in a TPN can fire at any time within its static interval.

The characteristic systems of a configuration contains inequalities ex-
pressed using (max,+) algebra thus to check whether Θ is a solution of the
characteristic system KCθ or not and moreover to derive all the valuations
for which C is a valid time configuration requires enumeration of all the
cases for a (max,+) inequality that is for e1, e2, e3 ∈ EC and e2, e3 ∈ ••e1 the
inequalities regarding θe1 in KCθ can expressed as:





θe2 + Ls
e1

≤ θe1

θe2 + Us
e1

≥ θe1

θe3 ≤ θe2

or

θe3 + Ls
e1

≤ θe1

θe3 + Ls
e1

≥ θe1

θe2 ≤ θe3

(5.19)

If we do the same thing for all the concurrent events in configuration
C that have common immediate predecessor events, the characteristic sys-
tem KCθ is rewritten as a disjunction of systems of linear inequalities in a
conjunctive form that can be brought to a canonical form (e.g. by Floyd-
Warshall algorithm) and thus we can derive the set of all the time valuations
Θ ∈ T|EC | for which C(Θ) is a valid time configuration. Using the canonical
conjunctive form we can derive the time intervals within which the events
in the configuration are executed and thus derive valid time-interval config-
uration.

For a general TPN the characteristic system of a configuration should in-
clude some extra inequalities regarding the events in the unfolding UN (M0)
that are in conflict with events of the configuration C. An event ĕ ∈ E is a
conflicting event of a configuration C if ĕ ∈ E is not included in the configu-
ration C (ĕ 6∈ EC ), all its input conditions are contained in C (•ĕ ⊆ BC ), and
there is an event e ∈ EC to whom ĕ is in conflict.

As already mentioned in a free-choice TPN any transition t that becomes
enabled can fire at any time within its static interval. In a general TPN this
is not true anymore because even though a transition t becomes enabled it
is not guaranteed that t can be executed because some other transitions in
cluster with which it shares only a part of its input conditions may be forced
to be executed sooner than the earliest time when t can be executed thus
disabling t.

Hence we should include in the characteristic system inequalities regard-
ing the no − execution of the conflicting events. These inequalities are in
a disjunctive form expressing the fact that at least one event e ∈ EC with
which the conflicting event ĕ shares input conditions is executed before the
time the conflicting event ĕ reaches the upper limit of its static interval after



5.5 The analysis of TPNs based on time processes 153

it has become enabled, that is:

∧

ĕ∈ĔC





∨

e♯ĕ
e∈EC

{θe ≤ θen
ĕ + Us

ĕ }





(5.20)

where θen
ĕ = maxe′∈ ••ĕ(θe′) and ĔC is the set of conflicting events of config-

uration C.

The characteristic system KCθ of a configuration in a general TPN in-
cludes (max,+) inequalities regarding the occurrence times of events that
are executed in EC as well as inequalities in a disjunctive form regarding the
conflicting events that were not executed.

To derive the set of all valid time configurations we should bring the char-
acteristic system KCθ in to a form of disjunction of systems of inequalities in
conjunctive form. Let KCθ be expressed as KCθ =

∨
λ∈V(K

λ
Cθ ) where each

system of inequalities Kλ
Cθ , λ ∈ V ′ is in conjunctive form.

Each system of inequalities Kλ
Cθ , λ ∈ V ′ can be brought in a canonical

conjunctive form and then we have that Sol(KCθ) =
{
Sol(Kλ

Cθ) | λ ∈ V ′′
}

(obviously for the system of inequalities that have solutions).

As already mentioned we use time processes for designing on-line diag-
nosis algorithms for TPN models. The on-line monitoring algorithms that we
design in this chapter can be briefly described as follows. When the process
starts, time interval configurations are derived on-line up to the first discard-
ing time when in absence of any observation the time-interval configuration
can be discarded. The discarding time corresponds with the lowest upper
limit of the execution time interval among the observable events that are in-
cluded in the time interval configuration.

As in the previous section we assume for on-line monitoring that the
plant observation includes the exact time at which an observable event oc-
curs. The exact observation of the occurrence of an event is taken into ac-
count by adding to the characteristic system of a configuration an extra con-
straint (inequality) that specifies the time when the observed event was ex-
ecuted as well as adding constraints to express the fact that all the other
observable events did not happen yet. This is because we assume that the
observation is correct, there are no delays in receiving the plant observation
and the time when a transition is executed is measured precisely.

Adding inequalities after receiving an observation requires to restore the
canonical form of the characteristic system that includes the plant observa-
tion.

The on-line analysis continues by extending the time interval configura-
tions that were obtained after imposing the constraints due to the received
observation up to the next discarding time.

As presented above the on-line analysis of a TPN can be performed by
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deriving time-interval configurations translating the characteristic system of
a configuration with the received observation into a disjunction of systems
of inequalities in a conjunctive form that can be brought to a canonical form.
However this approach is inconvenient because it requires the enumeration
of the possible orders between concurrent events that have common pre-
decessors events, as well as the enumeration for the general TPN of all the
possible orders in which events of the configurations are executed before the
conflicting events reach the upper limit of their firing intervals.

The idea behind the algorithm that we propose for deriving the entire
set of solutions of the the characteristic system of a configuration is to use
the causal relation encoded in the configuration itself for propagating the
constraints among the execution times of the events in the configuration.
The disjunctive inequalities that are encountered lead to the consideration of
different cases where the main advantage is that it is not required to have an
a priori enumeration of the order in which concurrent events are executed.

The set of all solutions of the characteristic system Sol(KCθ) is obtained
as a cover of subsets of the solution set e.g. {Solν(KCθ ) | ν ∈ V} and
Sol(KCθ) =

⋃
ν∈V Solν(KCθ), where each subset of solutions Solν(KCθ),

ν ∈ V has the time independence property for the concurrent events in the
configuration. The time independence property of a subset of solutions of
the characteristic system of a configuration can be intuitively understood as
follows: given any set of concurrent events in the configuration and fixing the exe-
cution times of their predecessors, their executions times belong to a hyper-rectangle
in high dimensional space.

We have that each sub-set of solutions Sol(Kλ
Cθ), λ ∈ V ′′ of the char-

acteristic system KCθ that results as the solution set of a system of linear
inequalities in canonical conjunctive form has the time independence prop-
erty but a sub-set of solutions that we compute e.g. Solν(KCθ), ν ∈ V is not
necessarily the solution set of a single conjunctive system of linear inequali-
ties but it may be obtained as a union of different systems of inequalities in
conjunctive form.

The time independence property of a subset of solutions of the character-
istic system allows us to provide an adequate definition of the time-interval
configuration. A time interval configuration is obtained by considering for
each event e inC the execution time-intervals equal with the projection of the
sub-set of solution Solν(KCθ ) ⊆ Sol(KCθ) that has the time-independence
property on to time-axis that correspond with the occurrence time of the
events e.

For the sake of simplifying the presentation we consider in the following
an arbitrary acyclic causal TPN that may be understood as a TPN obtained
from an untimed configuration by attaching static time intervals to all its
events. By doing this we avoid to discuss formally at this stage the on-line
computation of a time interval-configuration.
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5.5.1 Preliminaries

Definition 57. A Petri Net Ñ = (P̃ , T̃ , F̃ ) is an acyclic causal net if:

i) ∀p ∈ P̃ (•p ≤ 1 and p• ≤ 1)

ii) and Ñ contains no circuits.

Moreover assume that all the transition in Ñ have non-empty sets of input places

and output places: ∀t ∈ T̃ , t• 6= ∅ ∧ •t 6= ∅.

Denote min(Ñ ) the set of places that have no input transitions:

min(Ñ ) =
{
p ∈ P̃ | •p = ∅

}

Let M̃0 be the initial marking of Ñ where M̃0(p) = 1 if p ∈ min(Ñ ) and

M̃0(p) = 0 otherwise.

Then let Is be a function that associates to each transition t ∈ T̃ its static time

interval: Is : T̃ → IQ+ , and denote Ñ θ = (P̃ , T̃ , F̃ , Is) the TPN obtained in this
way.

Notice that if Ñ is a causal net then F̃ is a partial order relation in P̃ ∪ T̃
and consequently the concurrence relation ‖ and the predecessor relation

�= F̃ are well-defined in Ñ .

Consider for Ñ θ the initial marking M̃θ
0 given by the tokens from the

untimed marking M̃0 and consider M̃θ
0 produced at the time 0.

It is easy to see that by definition 〈Ñ , M̃0〉 is 1-safe thus it results that

〈Ñ θ, M̃θ
0 〉 is also 1-safe. Since any reachable marking M̃ in 〈Ñ θ, M̃θ

0 〉 contains

at most a token in each place we can interpret M̃ as the set of places that
contain a token.

Denote by L̃ eN θ (M̃
θ
0 ) the set of all complete time-traces that can be exe-

cuted in 〈Ñ θ , M̃θ
0 〉 where a complete trace means that all transitions in Ñ θ are

executed. This is possible since Ñ is acyclic, conflict free, and 1-safe. Hence

any complete time-trace τθ contains | T̃ | transitions since each transition

t ∈ T̃ is executed exactely once.

For υ = 1, . . . , | T̃ | denote by θtυ
the time when transition tυ is executed

in 〈Ñ θ, M̃θ
0 〉. Θ̃ = (θt1 , θt2 , . . . , θt| eT |

) is the valuation of the execution times

for all the transitions in T̃ .

The following system of inequalities represents the characteristic system

of 〈Ñ θ, M̃θ
0 〉.
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K̃(〈Ñ θ, M̃θ
0 〉) =





maxtυ∈••t1(θtυ
) + Ls

t1 ≤ θt1 ≤ maxtυ∈••t1(θtυ
) + Us

t1

maxtυ∈••t2(θtυ
) + Ls

t2 ≤ θt2 ≤ maxtυ∈••t2(θtυ
) + Us

t2

...

maxtυ∈••t| eT |
(θtυ

) + Ls
t|fN|

≤ θt
|fN|

≤ maxtυ∈••t| eT |
(θtυ

) + Us
t| eT |

(5.21)
where in 5.21 ••t = ∅ implies maxtυ∈••t(θtυ

) = 0.

Denote by Sol(K̃) the set of all solutions of K̃(〈Ñ θ, M̃θ
0 〉):

Sol(K̃) =
{

Θ̃ | Θ̃ is a solution of K̃(〈Ñ , M̃0〉)
}

(5.22)

If Θ̃ is a solution of the characteristic system K̃(〈Ñ θ, M̃θ
0 〉) then there ex-

ists a complete time-trace τ̃θ ∈ L̃θ(M̃θ
0 ) s.t. the execution times of the transi-

tions in τ̃θ are given by Θ. Basically τ̃θ is obtained by ordering the execution
times θt1 , θt2 , . . . , θt| eT |

s.t. tι appears in τθ before tλ if: i) θtι
≤ θtλ

and ii) if

θtι
= θtλ

then tι is not a successor of tλ (i.e. tι‖tλ or tι � tλ where � is the

partial order relation defined by F̃ ).

Denote by Ĩ(tυ) = Projυ(Sol(K̃)) the projection of the solution set

Sol(K̃) on the time-axis υ that corresponds with the execution time θtυ

of transition tυ. In other words Ĩ(tυ) = [L(tυ), U(tυ)] is the time interval
that gives the earliest global time L(tυ) respectively the latest global time

U(tυ) during which transition tυ can be executed in 〈Ñ θ , M̃θ
0 〉. Denote by

Ĩ = Ĩ(t1) × Ĩ(t2) × . . . × Ĩ(t|eT |) the smallest | T̃ |-hyperbox that includes

Sol(K̃).

In general given a sub-set Solν(K̃) of the solution set Sol(K̃) denote Ĩν

the smallest | T̃ |-hyperbox that includes Solν(K̃).

Denote by [t]↓ the set of predecessor transitions of a transition t ∈ Ñ :

[t]↓ =
{
t′ ∈ T̃ : t′ � t and t′ 6= t

}

Denote by T CUT (Ñ ) the set of all the transition-cuts η where a transition-

cut is a set of concurrent transitions in Ñ that is maximal w.r.t. set of inclu-
sion. [η]↓ =

⋃
tι∈η [tι]

↓ is the set of all the predecessor transitions of the
transitions that are included in the transition-cut η.

Consider in the following a sub-set Solν(K̃) of the solution set (Solν(K̃) ⊆

Sol(K̃)).

Let Kη be the set of indexes that correspond to the set of transitions in [η]↓

and then denote Solν(K̃) |Kη
the projection of Solν(K̃) on to the Kη hyper-

plane that corresponds with the transitions in Kη.
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Solν(K̃) |η is the projection of Solν(K̃) on the hyper-plane that corre-
sponds with the axes of the transitions contained in η.

Given ΘKη
∈ Solν(K̃) |Kη

denote Solν(K̃) |
ΘKη
η the set of | η | −points in

Solν(K̃) |η that correspond to ΘK . For ΘKη
∈ Solν(K̃) |Kη

denote by θen
tυ

(ΘKη
)

the enabling time of transition t ∈ η given ΘKη
:

θen
t (ΘKη

) = maxt′∈••t(θt′(ΘKη
))

Denote I(t | ΘKη
) the execution time-interval of a transition t ∈ η given ΘK:

Iν(t | ΘKη
) = [max(θen

t (ΘKη
) + Ls

t , Lν(t)), min(θen
t (ΘKη

) + Us
t , Uν(t))]

Definition 58 (Time Independence). Consider a sub-set Solν(K̃) of the solution

set Sol(K̃) and a transition-cut η ∈ T CUT (Ñ ), η = (t1, . . . , t|η|). The transitions

in η are time-independent in Solν(K̃) if:

∀ΘKη
∈ Solν(K̃) |Kη

Solν(K̃) |
ΘKη
η = I(t1 | ΘKη

) × . . .× I(t|η| | ΘKη
) (5.23)

If ∀η ∈ T CUT (Ñ ) we have that the transitions in η are time-independent then

the sub-set Solν(K̃) of the solution set has the time-independence property for the
concurrent transitions.

In words we say that Solν(K̃) has the time-independence property for
the concurrent transitions if for any maximal set of concurrent transitions
say t1, . . . , t|η| we have that:

if t1, . . . , t|η| can become enabled at the time θen
t1 , . . . , θ

en
t|η|

then their firing times θt1 , . . . , θt|η| belong to an | η |-rectangle

Notice that Sol(K̃) has the time-independence property for the concur-

rent transitions since Ñ is free-choice.

Consider below a temporal constraint κtℓ
expressed as a linear inequal-

ity on some variable θtℓ
(tℓ ∈ T̃ ) (e.g. κtℓ

:= {L′(tℓ) ≤ θtℓ
≤ U ′(tℓ)}) that is

imposed to 〈Ñ θ, M̃θ
0 〉. The temporal constraint κtℓ

may be intuitively under-
stood as the observation of execution time of transition tℓ.

The plant behavior constrained by the temporal constraint κtℓ
is given by

Sol(K̃ ∧ κtℓ
) (where κtℓ

is added to K̃) and in general we have that Sol(K̃ ∧

κtℓ
) does not satisfy the time-independence property even if Sol(K̃) satisfies

time independence. Consequently we cannot use the smallest | T̃ |-hyperbox

I(κtℓ
) that includes Sol(K̃ ∧ κtℓ

) as an approximation for Sol(K̃ ∧ κtℓ
) since

the concurrent transitions are not time-independent.

Intuitively to restore time-independence property we should find e.g.

two temporal constraints κ1 and κ2 such that K̃ ∧ κtℓ
can be rewritten as:
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K̃ ∧ κtℓ
⇔ (K̃ ∧ κ1) ∨ (K̃ ∧ κ2)

such that Sol(K̃∧κ1) and Sol(K̃∧κ2) satisfy the time independence property
and:

Sol(K̃ ∧ κ) = Sol(K̃ ∧ κ1) ∪ Sol(K̃ ∧ κ2).

We need the time-independence property for the following reasons:

- Two transitions are concurrent whenever they can be executed in any
order provided they are enabled. For TPN models it may be the case
that two transitions are concurrent in the untimed case but their exe-
cution times are correlated in order to satisfy a certain temporal con-
straint.

- A configuration C in the untimed case is extended by appending the
events that are enabled in CUT (C). If the concurrent transitions are
time independent it means that we can easily extend a time configura-
tion since the tokens in CUT (C) are produced independently.

- In a distributed setting this property will allow to exchange temporal-
information only for the border-conditions of two local time configu-
rations that are checked for consistency.

Consider for a transition tℓ ∈ T̃ a temporal constraint on θtℓ
given as:

κtℓ

def
:= {L′(tℓ) ≤ θtℓ

≤ U ′(tℓ) ∧ I ′(tℓ) ⊂ I(tℓ)}

where I ′(tℓ) = [L′(tℓ), U
′(tℓ)].

We have the set of solutions that obey the temporal constraint given as

the solution set of the characteristic systems K̃ ′ = K̃ ∧ κtℓ
:

K̃ ∧ κtℓ
=





maxtγ∈••tι
(θtγ

) + Ls
tι
≤ θtι

≤ maxtγ∈••tι
(θtγ

) + Us
tι

for ι = 1, . . . , | T̃ |

L′(tℓ) ≤ θtℓ
≤ U ′(tℓ)

(5.24)

In the following we present an algorithm that given 〈Ñ θ,Mθ
0 〉 and a con-

straint κtℓ
derives a set of | T̃ |-hyperboxes Γ(κtℓ

) =
{
Ĩν(κtℓ

) | ν ∈ V(κtℓ
)
}

such that for Solν(K̃ ∧ κtℓ
)

def
= Sol(K̃ ∧ κtℓ

) ∩ Ĩν(κtℓ
) we have that:

1.
⋃

ν∈V(κtℓ
) Solν(K̃ ∧ κtℓ

) = Sol(K̃ ∧ κtℓ
)

2. ∀ν ∈ V(κtℓ
) ⇒ Solν(K̃ ∧ κtℓ

) has the time independence property
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The idea behind developing the algorithm for deriving Γ(κtℓ
) is that the

constraint κtℓ
applied to Ĩ(tℓ) is translated into a disjunction of conjunctions

of temporal constraints expressed over the input transition and output tran-
sitions of tℓ:

κtℓ
⇔

∨

νtℓ
∈Vtℓ

Kνtℓ
with Kνtℓ

=
∧

tι∈Prox′tℓ

κtι

where Prox′tℓ
is a subset of the set of input and output transitions of tℓ

(Prox′tℓ
⊆ Proxtℓ

and Proxtℓ
= ••tℓ ∪ t

••
ℓ ).

The maximum number of conjunctions of the form Kνtℓ
is given by the

maximum number of concurrent predecessor transitions of tℓ. Each con-
junction of temporal constraints Kνtℓ

is partitioned in a conjunction of con-
straints that are propagated ”forward” from tℓ (to its output transitions) and a
conjunction of constraints that are propagated ”backwards” from tℓ (to input
transitions of tℓ):

Kνtℓ
= Kf

νtℓ
∧ Kb

νtℓ

where Kf
νtℓ

=
∧

tι∈t••
ℓ
κtι

and Kb
νtℓ

=
∧

tι∈••tℓ
κtι

.

A constraint κtℓ
= I ′(tℓ)/I(tℓ) propagates backwards in the following

way:

1. the new upper limits of the input transitions of tℓ are:

U ′(tι) = max

{
(U ′(tℓ) − Ls

tℓ
), U(tι)

}
for tι ∈ ••tℓ

2. Cases(tℓ) is the set of input transitions of tℓ (tι ∈ ••tℓ) s.t. we have
L′(tℓ) − Us

tℓ
> L(tι):

Cases(tι) =
{
tι | tι ∈ ••tℓ ∧ (L(tι) < L′(tℓ) − Us

tℓ
)
}

3. then for each element tι of Cases(tℓ) we have a case (that corresponds
to a conjunction of constraints Kνtℓ

) where:

(a) the new lower limit for tι is L′(tι) = L(tℓ) − Us
tℓ

(b) while all the other input transitions of tℓ keep their lower limits

The forward propagation of κtℓ
to its successor transitions tι ∈ t••ℓ is

straightforward by imposing the new lower and upper limits: L′(tι) =
maxtγ∈••tι

(L′(tγ)) + Ls
tι

and U ′(tι) = maxtγ∈••tι
(U ′(tγ)) + Us

tι
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Ist1=[10,20]

Ist3=[10,30]

Ist0=[20,45]

Ist4=[10,20]

Ist5=[15,20]
Ist6=[10,30]

I(t1)=[10,20]

I(t3)=[20,50]

I(t0)=[20,45]

I(t4)=[35,70]

I(t5)=[50,90] I(t6)=[45,100]

Ist2=[15,20]

I(t2)=[25,40]

Figure 5.6:

Example 29. Consider the TPN 〈Ñ θ, M̃θ
0 〉 displayed in Fig. 5.6 where the static

firing interval Is
tℓ

is displayed next to each transition tℓ, ℓ = 1, . . . , 6 as well as its
execution time-interval I(tℓ).

Assume that the execution of transition t4 was observed at the time θt4 = 53.
The characteristic system constrained by κt4 := {θt4 = 53} is:

K̃ ∧ κt5 =





20 ≤ θt0 ≤ 45

10 ≤ θt1 ≤ 20

θt2 + 15 ≤ θt2 ≤ θt2 + 20

θt2 + 10 ≤ θt3 ≤ θt2 + 30

max(θt0 , θt1 , θ2) + 10 ≤ θt4 ≤ max(θt0 , θt1 , θt2) + 20

θt5 + 15 ≤ θt5 ≤ θt5 + 20

θt5 + 10 ≤ θt6 ≤ θt5 + 30

θt4 = 53

(5.25)

After simple calculation one can derive that the smallest 7-hyperbox that in-

cludes Sol(K̃ ∧ κt4) is: I(t1) = [20, 45],I(t1) = [10, 20], I(t2) = [25, 40],
I(t3) = [20, 43], I(t4) = 53, I(t5) = [68, 73], I(t6) = [63, 93].
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First we check if Sol(K̃ ∧ κt4) has the property of time-independence of the
concurrent transitions: Consider for instance η = {t0, t2, t3}. We have that t0,t2
and t3 have only a predecessor event that is [t0, t2, t3]

↓ = {t1} thus Kη = {t1}.

Let θt1 = ΘKη
= 10. We have that I(t0 | ΘKη

) = [20, 45], I(t2 | ΘKη
) =

[25, 30] and I(t3 | ΘKη
= [20, 40]. The time independence property requires that

I(t0 | ΘKη
) × I(t2 | ΘKη

) × I(t3 | ΘKη
) is the projection of Sol(K̃ ∧ κt4) on to the

hyper-plane η = (θt0 , θt1 , θt2). To see that the time independence property is not

satisfied for Sol(K̃ ∧ κt4) consider θt0 = 20, θt2 = 25 and θt3 = 20; we have that
t4 cannot be executed at the time 53.

Thus we should look for a cover
{
Solν(K̃ ∧ κt4) | ν ∈ V

}
of Sol(K̃ ∧ κt4) s.t.

∀Solν(K̃ ∧ κt4) ν ∈ V , we have that the time independence property is satisfied in

Solν(K̃ ∧ κt4).

First we should examine how κt4 constrains its input and output transitions.
Constraint κt4 propagates forward on to its output transitions t5 and t6. Thus
θt4 = 53 implies θt5 ∈ [68, 73] and θt6 ∈ [63, 93]. κt4 also propagates backwards
on to its input transitions t0, t2 and t3 as follows. Since t4 is executed at the time
53 we have that t4 becomes enabled in the time interval [33, 43] that means that:

1. neither θ0 nor θ2 nor θ3 can be executed after the time 43

2. at least one input transition of t4 is executed after 33 that is: (θt0 ≥ 33) or
(θt2 ≥ 33) or (θt33 ≥ 33)

We have three cases that correspond with splitting Sol(K̃∧κt4) on to Sol1(K̃∧

κt4), Sol2(K̃ ∧κt4), and Sol3(K̃ ∧κt4) that also correspond with re-writing κt4 as
κt4 = K1t4

∨ K2t4
∧ K3t4

where:

1. K1t4
= κ1

t0 ∧ κ
1
t2 ∧ κ

1
t3 ∧ κ

1
t5 ∧ κ

1
t6

- κ1
t0 = {33 ≤ θt0 ≤ 43};

- κ1
t2 = {25 ≤ θt2 ≤ 40};

- κ1
t3 = {20 ≤ θt3 ≤ 43};

- κ1
t5 = {68 ≤ θt5 ≤ 73};

- κ1
t6 = {73 ≤ θt5 ≤ 93}

2. K2t4
= κ2

t0 ∧ κ
2
t2 ∧ κ

2
t3 ∧ κ

2
t5 ∧ κ

2
t6

- κ2
t0 = {20 ≤ θt0 ≤ 43};

- κ2
t2 = {33 ≤ θt2 ≤ 40};

- κ2
t3 = {20 ≤ θt3 ≤ 43};

- κ2
t5 = {68 ≤ θt5 ≤ 73};

- κ2
t6 = {73 ≤ θt5 ≤ 93}
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3. K3t4
= κ3

t0 ∧ κ
3
t2 ∧ κ

3
t3 ∧ κ

3
t5 ∧ κ

3
t6

- κ3
t0 = {20 ≤ θt0 ≤ 43};

- κ3
t2 = {25 ≤ θt2 ≤ 40};

- κ3
t3 = {33 ≤ θt3 ≤ 43};

- κ3
t5 = {68 ≤ θt5 ≤ 73};

- κ3
t6 = {73 ≤ θt5 ≤ 93}

For case 2 we have that κ2
t2 = {33 ≤ θt2 ≤ 40} propagates backwards onto t1

and then we obtain κ2
t1 = {13 ≤ θt2 ≤ 20}

Thus we obtain:

I1(κt5): I0(t1) = [33, 43], I1(t1) = [10, 20], I1(t2) = [25, 40], I1(t3) =
[20, 43], I1(t4) = [53, 53], I1(t5) = [68, 73], I1(t6) = [63, 93]

I2(κt5): I0(t1) = [20, 43], I2(t1) = [13, 20], I2(t2) = [33, 40], I2(t3) =
[20, 43], I2(t4) = [53, 53], I2(t5) = [68, 73], I2(t6) = [63, 93]

I3(κt5): I0(t1) = [20, 43], I3(t1) = [10, 20], I3(t2) = [25, 40], I3(t3) =
[33, 43], I3(t4) = [53, 53], I3(t5) = [68, 73], I3(t6) = [63, 93]

Algorithm 11 (below) imposes a given constraint κtℓ
as follows:

- first we calculate the execution time intervals for the unconstrained
behaviour of the TPN 〈Ñ θ, M̃θ

0 〉

- then for a constraint κtℓ
applied to the execution time interval of tran-

sition tℓ

(a) first the upper limits of the predecessor transitions are recalcu-
lated (Algorithm 12)

(b) and then the lower limits of the predecessor transitions are recal-
culated (Algorithm 13) but this requires to split up analysis con-
sidering different cases.

We consider the following partitions of the set of transitions:

T̃ is partitioned in disjunct subsets (layers) from up to down as follows:

- Layer↓[0] =
{
tι ∈ T̃ | ••tι = ∅

}

-Layer↓[y] =
{
tι ∈ T̃ | ( ••tι ⊆

⋃y−1
z=0 Layer

↓[z]) ∧ ( ••tι ∩ Layer↓[y − 1] 6= ∅)
}

Then given a transition tℓ ∈ T̃ consider the set of its predecessor transi-

tions [t↓ℓ ] partitioned in disjunct subsets (layers) as follows:
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- Layer↑tℓ
[0] = {tℓ}

- Layer↑tℓ
[w + 1] =

{
tυ ∈ [t↓ℓ ] | t

••
υ ⊆

⋃w
z=0 Layer

↑
tℓ

[z] ∧ t••υ ∩ Layer↑tℓ
[w] 6= ∅

}

Algorithm 11 Algorithm to impose a temporal constraint

Require: 〈Ñ θ, M̃θ
0 〉, κtℓ

Ensure: Γ(κtℓ
)

1: for all tι ∈ Layer↓[0] do
2: I(tι) = Is

tι

3: end for
4: for y = 1 to ymax do
5: for all tι ∈ Layer↓[y] do
6: L(tι) = maxtλ∈••tι

(L(tλ)) + Ls
tι

7: U(tι) = maxtλ∈••tι
(U(tλ)) + Us

tι

8: I(tι) = [L(tι), U(tι)]
9: end for

10: end for
11: Propagate constraint U(κtℓ

)
12: ν = νmax = 1; Iν = I;
13: Propagate constraint L(κtℓ

)
14: Γ(κtl

) = {Iν | ν = 1, . . . , νmax}

Algorithm 12 Propagate constraint U

Require: κtℓ

Ensure: I

1: U ′(tℓ) = κtℓ
(U)

2: for w = 0 to wmax do
3: for all tι ∈ Layer↑tℓ

[w] do
4: U ′(tι) = max(U(tι), maxtλ∈t••ι

(U ′(tλ)) − Ls
tι
)

5: end for
6: end for
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Algorithm 13 Propagate constraint L backwards

Require: κtℓ

Ensure: Γ(κtℓ
)

1: Cases(Layer↑tℓ
[0]) = {κtℓ

(L)}
2: for w = 0 to wmax do
3: for all κtι

(L) ∈ Cases(Layer↑tι
[w]) do

4: for all tλ ∈ ••tι ∩ Layer
↑
tℓ

[w + 1] do
5: new constraint=false
6: if L′(tι) − Us

tι
> L(tλ) then

7: κtλ
:=

{
L′(tλ) = L′(tι) − Us

tι

}

8: add (κtλ
) to Cases(Layer↑tℓ

[w + 1]
9: new const=true

10: end if
11: end for
12: if new constraint=false then
13: add Iι to Γ(κtℓ

)
14: end if
15: end for
16: end for
17: for all ν ∈ Vℓ do
18: for all y = 0 to ymax do
19: for all tυ ∈ Layer↓[y] do
20: L′ν(tυ) = max(L′ν(tυ), maxtγ∈••tυ

(Lν(tγ) + Ls
tυ

))
21: U ′ν(tυ) = max(U ′ν(tυ), maxtγ∈••tυ

(Uν(tγ) + Us
tυ

))
22: end for
23: end for
24: end for

The maximum number of cases that can be obtained is bounded by the

maximum number of transitions in a transition-cut in Ñ . The complexity of

the algorithm is O(N2) where N is the number of transitions in Ñ .

Example 30. Consider the TPN 〈Ñ θ, M̃θ
0 〉 where the static firing intervals are

displayed attached to each transition. Then we have I = I(t1) × I(t2) × I(t3) ×
I(t4) × I(t5) × I(t6) where: I(t1) = [10, 25]; I(t2) = [50, 80]; I(t2) = [40, 90];
I(t4) = [90, 120]; I(t5) = [110, 170]; I(t6) = [130, 210].

In Fig. 5.8 we have displayed the projection of Sol(K̃) on to different axes. As

one can see the polygon that represents the projection of Sol(K̃) on to the plane of
(θtι

, θtλ
) has edges either 90◦ or 45◦.

Now consider that we are interested in deriving the behavior of 〈Ñ θ, M̃θ
0 〉 such

that t4 is executed in the interval θt4 ∈ [100, 120]. Notice that this problem may
arise in the case when the temporal constraint on t4 is the result of an observation.

Let κt4 := 100 ≤ θt4 ≤ 120 be the temporal constraint. We show how to derive a
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p1

p2 p3

p4 p5

p6

Ist1 =[10,25]

p7

p8

p9

Ist2 =[40,55] Ist3 =[30,65]

Ist4 =[20,30] Ist5 =[70,80]

Ist6 =[20,40]

Figure 5.7:

set of | T̃ |-hyperboxes Γ(κt4) s.t. ∀Iν(κt4) ∈ Γ(κt4) we have that Solν(K̃∧κt4) =

Sol(K̃ ∧ κt4) ∩ Iν(κt4) satisfies the time independence property.

Algorithm 11 works for κt4 as follows:

- I ′(t4) = [100, 120] ⇒ κt4
b

−→ κt2 ∨ κt3 where κt2 := {70 ≤ θt2 ≤ 80} and
κt3 := {70 ≤ θt3 ≤ 90}.

- for case 1: Kb
1 = κt2 we have that κt2 [1]

b
−→ κt1 [1] where κt1 [1] :=

{15 ≤ θt1 ≤ 25}. Then we have κt1 [1]
f

−→ κt3 [1] where

κt3 [1] := {45 ≤ θt3 ≤ 90} and then κt3 [1]
f

−→ κt5 [1] with κt5 [1] :=

{115 ≤ θ5 ≤ 170} and κt5 [1]
f

−→ κt6 [1] with κt6 [1] := {135 ≤ θ6 ≤ 170}

- for case 2: Kb
2 = κt3 we have that κt3 [2]

f
−→ κt5 [2] where κt5 [2] :=

{140 ≤ θt5 ≤ 170} and then we have κt5 [2]
f

−→ κt6 [2] := {160 ≤ θt6 ≤ 210}

Thus for ν = 1, 2 we have Iν(κt4) = Iν(t1)×Iν(t2)×Iν(t3)×Iν(t4)×Iν(t5)×
Iν(t6) where respectively:

1. I1(t1) = [15, 25]; I1(t2) = [70, 80]; I1(t3) = [45, 90]; I1(t4) = [100, 120];
I1(t5) = [115, 170]; I1(t6) = [135, 210];
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Figure 5.8:

2. I2(t1) = [10, 25]; I2(t2) = [50, 80]; I2(t3) = [70, 90]; I2(t4) = [100, 120];
I2(t5) = [140, 170]; I2(t6) = [170, 210];

I1(t1)=

p1

p2 p3

p4 p5

p6

[70,80]

[15,25]
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Figure 5.9:

In Fig. 5.9-left we display Ñ θ where attached to each transition tι is the time
interval when transition tι can be executed considering case 1, while in Fig. 5.9-
right there is displayed the time intervals corresponding to case 2.

5.5.2 Analysis of Time Petri Nets based on time processes -
the case of free choice TPN

In this section we consider the case of free-choice PNs as a preamble of the
next section where we treat the general case of TPNs. The reason for doing
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so is that a TPN model that has a free-choice PN support preserves the un-
timed language under the equivalence relation ≡Σµ

(see Proposition 20) and
this makes the presentation of the method for this subclass of models eas-
ier. Then, having already introduced the main concept we later generalize
the method for a general PN model. Notice that in what follows the 1-safe
assumption remains.

Definition 59. Consider a free-choice TPN model 〈N θ ,Mθ
0 〉 and then let UN (M0)

be the unfolding of its untimed PN support 〈N ,M0〉. Denote C the set of all con-
figurations in UN (M0). Consider a configuration C = (BC , EC ,�) and denote
Cθ = (BC , EC ,�, Is) the TPN that has as its untimed support C = (BC , EC ,�)
while Is : EC → I(Q+) is the function that gives the static interval for an event
e ∈ EC , where Is(e) = Is(t) with φ(e) = t.

Denote KCθ the characteristic system of Cθ :

KCθ =





maxeυ∈••e1(θeυ
) + Ls

e1
≤ θe1 ≤ maxeυ∈••e1(θeυ

) + Us
e1

maxeυ∈••e2(θeυ
) + Ls

e2
≤ θe2 ≤ maxeυ∈••e2(θeυ

) + Us
e2

...

maxeυ∈••e|EC |
(θeυ

) + Ls
e|EC |

≤ θeN
≤ maxeυ∈••eN

(θeυ
) + Us

e|EC |

(5.26)
and Sol(KCθ) denotes the set of all solutions for Cθ .

Consider Solν(KCθ) a subset of Sol(KCθ) and then denote in the following by
Iν the smallest | EC |-hyperbox that includes Solν(KCθ). If Solν(KCθ) has the
time independence property we say that C(Iν ) is a time-interval configuration of
〈N θ,Mθ

0 〉.

Given the untimed configuration C ∈ C consider its event-set EC parti-
tioned in disjunct subsets (layers) as follows:

- Layer↓[0] = {eι ∈ EC | ••e = ∅}

- Layer↓[y] =
{
eι ∈ EC | ( ••eι ⊆

⋃y−1
z=0 Layer

↓[z])∧

( ••eι ∩ Layer↓[y − 1] 6= ∅)
}

The following algorithm calculates an | ECθ |-hyperbox I for a configura-
tionC of the unfolding of the untimed support PN of a TPN model 〈N θ,Mθ

0 〉.
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Algorithm 14 Time Interval

Require: C ∈ T C
Ensure: C(I)

1: for all eι ∈ Layer↓[0] do
2: I(eι) = Is

eι

3: end for
4: for y = 1 to ymax do
5: for all eι ∈ Layer↓[y] do
6: L(eι) = maxeλ∈••eι

(L(eλ)) + Ls
eι

7: U(eι) = maxeλ∈••eι
(U(eλ)) + Us

eι

8: I(eι) = [L(eι), U(eι)]
9: end for

10: end for

Proposition 23. For a TPN 〈N θ,Mθ
0 〉 that has an untimed support N that is free

choice we have that for any untimed configuration ∀C ∈ C, C(I) is a time interval
configuration of 〈N θ,Mθ

0 〉 where I is obtained by running Algorithm 14.

Proof. The proof is straight forward since 〈N θ ,Mθ
0 〉 is untimed 1-safe and

free choice thus if a transition becomes enabled it cannot be disabled by the
execution of an untimed concurrent event.

Consider a time interval configurationCℓ(Iℓ) of an 1-safe free-choice TPN
〈N θ,Mθ

0 〉. Then denote EXT 1(Cℓ(Iℓ)) the set of extensions of Cℓ(Iℓ) by ap-
pending an event e that is enabled in CUT (Cℓ):

EXT 1(Cℓ(Iℓ)) = {Cυ(Iυ) | Cυ(Iυ) = Cℓ(Iℓ) ⊙ (e, I(e))}

where Iυ(e) = [Lυ(e), Uυ(e)] with Lυ(e) = maxe′∈••e(Lℓ(e
′))+Ls

e andUυ(e) =
maxe′∈••e(Uℓ(e

′)) + Us
e .

Notice that Cυ = Cℓ ⊙ e is an untimed configuration that extends Cℓ by e
while the vector of execution time-intervals Iυ of the events inCυ is obtained
from Iℓ by adding the element Iυ(e) that is the execution time of the event e
that was appended.

EXT ∗(Cℓ(Iℓ)) is the set of all the finite extensions of a time configuration
Cℓ(Iℓ) where recursively:

1. EXT 0(Cℓ(Iℓ)) = {Cℓ(Iℓ)}

2. EXT q(Cℓ(Iℓ)) =
{
Cυ(Iυ) | ∃Cι(Iι) ∈ EXT q−1(Cℓ(Iℓ))

∧Cυ(Iυ) ∈ EXT 1(Cι(Iι))
}

Given an 1-safe free-choice TPN 〈N θ ,Mθ
0 〉 and a time interval configura-

tion Cℓ(I) we have that ∀Cυ(Iυ) ∈ EXT ∗(Cℓ(Iℓ)), Cυ(Iυ) is a time interval
configuration.
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Denote by C⊥(I⊥) the ”initial” time-interval configuration of 〈N θ,Mθ
0 〉

where BC⊥ = min(UN ), EC⊥ = ∅ and I
⊥ = 0 (assuming that the tokens in

Mθ
0 are produced at the time 0). Then EXT ∗(C⊥(I⊥)) denotes the set of all

finite time-interval configurations of 〈N θ,Mθ
0 〉.

5.5.3 Centralized diagnosis of free choice TPN based on time
processes

In the following we design an on-line monitoring algorithm that derives the
diagnosis of the plant at the time ξ based on the observation that is received
up to the time ξ.

Consider that the plant monitoring starts at the time 0. Starting from the
initial configuration C⊥(I⊥) we derive time-interval configurations Cυ(Iυ)

up to a time (called discarding time and denoted θ̂υ) when in absence of
any received observation the time interval configuration Cυ(Iυ) is discarded
because it violates the observation, i.e.:

- starting from the initial time configuration C⊥(I⊥) derive the set of
time interval configurations that are obtained fromC⊥(I⊥) by append-
ing an event e that has the minimal upper limit U(e) among all the
events that are enabled in C⊥(I⊥).

- recursively derive further extensions by appending events having the
minimal upper limit until the event e that is appended is an observable
event eo (φ(eo) ∈ To).

- let θ̂υ = Uυ(eo) be the discarding time for the time interval config-
uration Cυ(Iυ). Then extend Cυ(Iυ) by appending events until all the
enabled events in an extensionCι(Iι) of Cυ(Iυ) have their lower bound

greater than θ̂υ (∀e′ ∈ ENABLED(Cι), Lι(e
′) > θ̂υ). Obviously all the

events e in Cι(Iι) have they lower bound Lι(e) of their execution time

interval smaller than the discarding time θ̂υ, i.e.

∀e ∈ ECι(Iι) ⇒ Lι(e) ≤ θ̂υ

In the following we use the ”hat” symbol to denote the time-interval con-

figurations that are derived w.r.t. a discarding time θ̂.

Denote by T̂ C(obs1 | Oθ
0) the set of time interval configurations derived

up to the first discarding time by running the Algorithm 15 presented below.
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Algorithm 15

Require: C⊥(I⊥)

Ensure: T̂ C(obs1 | Oθ
0)

1: SET1 =
{
C⊥(I⊥)

}

2: SET2 = ∅; T̂ C(obs1 | Oθ
0) = ∅

3: while SET1 6= ∅ do
4: pick Cℓ(Iℓ) ∈ SET1

5: Append1(Cℓ(Iℓ)) = {e | ∀e′ ∈ ENABLED(Cℓ), Uℓ(e) ≤ Uℓ(e
′)}

6: for all e ∈ Append1(Cℓ(Iℓ)) do
7: Cυ(Iυ) = Cℓ(Iℓ) ⊙ (e, Iυ(e))
8: if φ(e) ∈ To then

9: θ̂υ = Uυ(e)
10: SET2 = SET2 ∪ {Cυ(Iυ)}
11: else
12: SET1 = SET1 ∪

{
Ĉυ(Iυ)

}

13: end if
14: end for
15: remove Cℓ(Iℓ) from SET1

16: end while
17: while SET2 6= ∅ do
18: choose Cυ(Iυ) ∈ SET2

19: Append2(Cυ(Iυ)) =
{
e ∈ ENABLED(Cυ) | L(e) ≤ θ̂υ

}

20: if Append2(Cυ(Iυ)) 6= ∅ then

21: for all e ∈ Append2(Ĉυ(Iυ)) do

22: Ĉι(Iι) = Cυ(Iυ) ⊙ (e, Iι(e))

23: SET2 = SET2 ∪
{
Ĉι(Iι)

}

24: end for
25: end if
26: remove Ĉυ(Iυ) from SET2

27: end while
28: T̂ C(obs1 | Oθ

0) = SET2

Formally the set of time interval configurations derived before the first
observed event is:

T̂ C(obs1 | Oθ
0) =

{
Ĉℓ(Iℓ) | ℓ ∈ Vobs1

}

where Ĉℓ(Iℓ) ∈ T̂ C(obs1 | Oθ
0) is such that:

1. θ̂ℓ = Uℓ(e) s.t. φ(e) ∈ To and ∀e′ ∈ ECℓ
, φ(e′) ∈ To ⇒ θ̂ℓ ≤ Uℓ(e

′)

2. ∀e ∈ ENABLED(Ĉℓ) ⇒ Lℓ(e)) > θ̂ℓ
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Then we have the following cases:

case 1 if there is no observation until the time θ̂ℓ or the observed label obs1 is
such that for any observable event eo ∈ E bCℓ

we have that ℓ(φ(eo)) 6=

obs1 then discard Ĉℓ(Iℓ)

case 2 the label obs1 is observed and for all events eo ∈ E bCℓ
s.t. ℓ(φ(eo)) = obs1

we have that θobs1 < Lℓ(e
o) then discard Ĉℓ(Iℓ)

case 3 the label obs1 is observed at the time θobs1 ; then for each e′o s.t.

ℓ(φ(e′o)) = obs1 and θobs1 ∈ [Lℓ(e
′o), Uℓ(e

′o)] update Ĉℓ(Iℓ) accord-
ing with the following rule:
impose the constraints:

Ke′o = κe′o ∧Ke′′o 6=e′o

where
κe′o := {θe′o = θobs1} (5.27)

is the constraint that the observation is explained by e′o and for all the
other observable event e′′o ∈ E bCℓ

, e′′o 6= e′o we have the constraints
that e′′o ∈ E bCℓ

\ {e′o} happens after e′o:

Ke′′o 6=e′o :=
∧

e′′o∈E bCℓ
\{e′o}

{max(Lℓ(e
′′o), θobs1) ≤ θe′′o ≤ Uℓ(e

′′o)} (5.28)

If eo is the event that explains the observed label obs1 and eo corresponds

with θ̂ℓ then the time-interval configurations that result after imposing set
of constraints K(Oθ

1) given by Eq.5.27 and Eq.5.28 are extended up to a new
discarding time that corresponds with the second observation.

By running Algorithm 11 for each constraint κe of KCℓ
we obtain the set

of | ECℓ
|-hyperboxes

Γ(Kℓ) =
{
Iνℓ

| νℓ ∈ Vobs1

ℓ

}

For Ĉℓ(Iℓ) constrained by received observation Oθ
1 we obtain the set of

time-interval configurations:

T̂ Cℓ(O
θ
1) =

{
Ĉℓ(Iνℓ

) | νℓ ∈ Vℓobs1

}
(5.29)

In general given a set of time interval configurations T̂ C(obsk | Oθ
k−1)

denote by Ξ(T̂ C) the set of discarding times θ̂ℓ of the time interval configu-

rations Ĉℓ(Iℓ) ∈ T̂ C(obsk | Oθ
k−1):
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Ξ(T̂ C) =
{
θ̂ℓ | Ĉℓ(Iℓ) ∈ T̂ C(obsk | Oθ

k−1)
}

Assume that Ξ(T̂ C(obsk | Oθ
k)) is sorted by the time progress, that is

HEAD(Ξ(T̂ C)) is the smallest discarding time and θ̂ℓ is closer to HEAD(Ξ)

than θ̂υ iff θ̂ℓ ≤ θ̂υ. Let HEAD−1(Ξ(T̂ C)) be the time interval configuration

that has the discarding time θ̂ = HEAD(Ξ(T̂ C)).

The monitoring system that we design works as follows:

Algorithm 16 Monitor

Require: 〈N θ,Mθ
0 〉

Ensure: T̂ C(Oθ
ξ )

1: the plant analysis starts at a given time ξ = 0

2: compute T̂ C(obs | Oθ
ξ )) and Ξ(T̂ C(Oθ

ξ ))
3: repeat
4: ξ = ξ + δξ (time progress)

5: if ξ > HEAD(Ξ(T̂ C)) and Oθ
ξ = Oθ

ξ−δξ then

6: remove HEAD−1(Ξ) from T̂ C
7: end if
8: if Oθ

ξ+δξ = Oθ
ξ ∪ 〈obs, θobs〉 then

9: for all Ĉℓ(Iℓ) ∈ T̂ C(obs | Oθ
ξ ) do

10: if case 1 or case 2 then
11: remove Ĉℓ(Iℓ) from T̂ C(obs | Oθ

ξ )
12: end if
13: if case 3 then
14: for all eo

λ ∈ E bCℓ
s.t. lo(e

o
λ) = obs and θobs ∈ [Lℓ(e

o
λ), Uℓ(e

o
λ)] do

15: Kℓ for eo
λ (Eq.5.27, Eq.5.28)

16: T̂ Cℓ(O
θ
ξ ) =

{
Ĉℓ(Iνℓ

) | νℓ ∈ Vℓ

}

17: for all Cνℓ
(Iνℓ

) ∈ T̂ Cℓ(Oθ
ξ ) do

18: extend Cνℓ
(Iνℓ

) up the next discarding time (T̂ Cνℓ
(Oθ

ξ ))

19: T̂ C(obs | Oθ
ξ) = T̂ C(obs | Oθ

ξ ) ∪ T̂ Cνℓ
(obs | Oθ

ξ )
20: end for
21: end for
22: update the set of discarding timed Ξ(T̂ C(obs | Oθ

ξ ))
23: end if
24: end for
25: end if
26: until stop monitoring

Let T̂ C(Oθ
ξ ) be the set of time interval configurations that are derived by

running on-line the Algorithm 16 at the time ξ after the last observed event
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has occurred.

Denote in the following by T C(Oθ
ξ ) the set of time interval configurations

that are derived by Algorithm 16 at the time ξ without calculating the further
extensions that predict the next observation. Then Cℓ(Iℓ) ∈ T C(Oθ

ξ ) iff:

1. ∃Ĉυ(Iυ) ∈ T̂ C(Oθ
ξ ) and Cℓ(Iℓ) ⊑ Ĉυ(Iυ)

2. ∀e ∈ ENABLED(Cℓ)

(a) if φ(e) ∈ Tuo then Uℓ(e) > θobsn

(b) if φ(eo) ∈ To then Lℓ(e) > θobsn

3. ∀e ∈ EC , Lℓ(e) ≤ θobsn

Notice that for Cℓ(Iℓ) ∈ T C(Oθ
ξ ) we have that the last unobservable

events in Cℓ(Iℓ) can be executed before or after ξ.

Definition 60. Given a time-interval configurationCℓ(Iℓ), denote by 〈ECℓ(Iℓ)〉 the
set of time linearizations of (ECℓ(Iℓ),�) where:

〈ECℓ(Iℓ)〉 =
{
σ = e1 . . . eι . . . eλ . . . e|ECℓ

| | ι < λ⇒

⇒ (eι � eλ) ∨ ((eι‖eλ) ∧ (Lℓ(eι) ≤ Uℓ(eλ)))}

The set of untimed traces represented by the set of time interval configu-
rations T C(Oθ

ξ ) (calculated at the time ξ by running Algorithm 16) is:

E(Oθ
ξ ) =

{
σ ∈ 〈ECℓ(Iℓ)〉 | Cℓ(Iℓ) ∈ T C(Oθ

ξ )
}

Denote Lfc(Oθ
ξ ) the set of untimed support traces that are represented by

T C(Oθ
ξ ):

Lfc(Oθ
ξ ) =

{
τ = φ(σ) | σ ∈ E(Oθ

ξ )
}

Proposition 24. Given LN θ (Oθ
ξ ) (the untimed support language of Lθ

N θ (Oθ
ξ )) and

Lfc(Oθ
ξ ) we have that:

LN θ (Oθ
ξ ) ≡Σµ

Lfc(Oθ
ξ )

that is:

i) ∀τ ∈ LN θ (Oθ
ξ ) ⇒ ∃τ ′ ∈ Lfc(Oθ

ξ ) s.t. Σµ(τ) = Σµ(τ ′)

ii) and ∀τ ′ ∈ Lfc(Oθ
ξ ) ⇒ ∃τ ∈ LN θ (Oθ

ξ ) s.t. Σµ(τ) = Σµ(τ ′)

Proof. (⇒) Consider τ ∈ LN θ (Oθ
ξ ). Given the untimed unfolding UN (M0),

let Cℓ be an untimed configuration s.t. ∃σ ∈ 〈ECℓ
〉 s.t. τ = φ(σ). Denote Cθ

ℓ

the TPN obtained from Cℓ by attaching to each event e the static interval of
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its image transition t (Is
e = Is

t and φ(e) = φ(t)). Denote KCθ
ℓ

the character-

istic system of Cθ
ℓ and then denote KCθ

ℓ

∧k=n
k=1 κeo

k
the system of inequalities

obtained by adding to the characteristic system KCθ
ℓ

equalities regarding the

observed events, i.e. for k = 1, . . . , n κeo
k

:=
{
θeo

k
= θto

k
: φ(eo

k) = tok
}

.

We have that Θ(τ) ∈ Sol(KCθ
ℓ

∧k=n
k=1 κeo

k
) where for τ = t1 . . . tγ , Θ(τ) =

(θφ(t1), . . . , θφ(tγ)).

Hence there exists a time interval configuration Cℓ(Iνℓ
) such that τ =

φ(σ) with σ ∈ 〈ECℓ
〉.

Let Γ(
∧k=n

k=1 κeo
k
) = {Iνℓ

| νℓ ∈ Vℓ} be the set of | ECℓ
| rectangles that is ob-

tained running Algorithm 11 for Cθ and the set of constrains
{
κeo

1
, . . . , κeo

n

}
.

Since Sol(KCθ
ℓ

∧k=n
k=1 κeo

k
) ⊆

⋃
νℓ∈Vℓ

Iνℓ
it means that ∃νℓ ∈ Vℓ s.t. Θ(τ) ∈ Iνℓ

.

Hence ∃Cℓ(Iνℓ
) ∈ T C(Oθ

ξ ) s.t. τ = φ(σ) with σ ∈ 〈ECℓ
〉.

(⇐) The proof is straightforward.

Denote by DRfc(Oθ
ξ ) the diagnosis result for a free choice TPN derived

using Lfc(Oθ
ξ ). Then we have the following result:

Theorem 7. Given TPN model 〈N θ,Mθ
0 〉 that is 1-safe and free-choice and the

observation generated by the plant Oθ
ξ , we have that:

DR(Oθ
ξ ) = DRfc(Oθ

ξ ) (5.30)

Proof. The proof is straightforward since by Proposition 24 we have that
LN θ (Oθ

ξ ) ≡Σµ
Lfc(Oθ

ξ ).
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Example 31. Consider the TPN in Fig. 5.10 where next to each transition its static
interval is displayed. The observable transitions are To = {t3, t4, t13, t14} while all
the other transitions are unobservable (silent). The observable transitions have the
same observation label, i.e. l(t3) = l(t4) = l(t13) = l(t14). The fault transitions
are t9 and t12.

The centralized monitoring Algorithm 16, works as follows. Assume that the
plant analysis starts at the global time 0.

p4

p9

p12

p13

p10

p5

p7

p8

p6

p2

p3

p1

p11

t10t9

t6t5

t7

t2

t3

t8

t1 t12 t13

t11

t4

p14

t14
[10,20]

[10,20] [10,20]

[10,70]

[20,110]

[10,30][10,30]

[10,80]

[10,40]

[10,20] [10,20] [10,90] [30,90]

[10,30]

p15t15
[10,20]

Figure 5.10:

The set of configurations that estimate the first observed event is:

Ĉ(obs1 | O
θ
0) =

{
Ĉ1(obs1 | I1), Ĉ2(obs1 | I2)

}

Ĉ1(obs1 | I1) (Fig. 5.11) is obtained in the following way:

1. first e7 is appended since it is the enabled event with the lower upper limit of
its executions interval.

2. the observable event e13 is appended and the discarding time for the time con-

figuration Ĉ1(obs1 | I1) is is θ̂1 = U(e13) = 90

3. the unobservable event e8 is appended
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b9

e13
b10b7

b8

e7 e8

e13

b14

I1(e8)=[20,110]
I1(e7)=[10,80]

I1(e13)=[30,90]

b1

C1( obs1| I1)

Figure 5.11:

Ĉ2(obs1 | I2) is obtained similarly having its discarding time θ̂2 = U(e4) = 140
(Fig. 5.12).

b9

b13
b10b7

b8

e7 e8

b14

I2(e8)=[20,110]I2(e7)=[10,80]

e12
I2(e12)=[10,90]

b3

e15
I2(e15)=[20,110]

e4
I2(e4)=[30,140]

b5

C2(obs1|I2)

b15

Figure 5.12:

Consider that at the time ξ = 80 the first observation is received. The constraint

θe13 = 80 (I(e13) = 80) is imposed to Ĉ1(obs1 | I1) and we obtain Ĉ1(I1)
(Fig. 5.13).
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b9
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e7 e8

e13

b14

I1(e8)=[20,110]
I1(e7)=[10,80]

I1(e13)=80

b1

C1(I1)

Figure 5.13:

The constraint θe13 = 80 (I(e4) = 80) is imposed to Ĉ2(obs1 | I2) as follows:

- θe13 = 80 implies that both e15 and e7 were executed before 70

- and at least one of them was executed after the time 50.

- we obtain Ĉ12(I12 ) (Fig. 5.14) and Ĉ22(I22) (Fig. 5.15).

C12(I12)
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b13
b10b7

b8

e7 e8

b14

I12(e8)=[20,70]I12(e7)=[10,80]

e12
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e4
I12(e4)=80

b5

b15

Figure 5.14:
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C22(I22)
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e7 e8
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e4
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b5
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Figure 5.15:

After the first observation at the time 80 we obtain:

C(Oθ
1) =

{
Ĉ1(I1), Ĉ12 (I12), Ĉ22(I22)

}

Then each of the three time-interval configurations is extended up to the next dis-
carding time for estimating the next observation.

For Ĉ1(I1) we obtain Ĉ1(obs2 | Oθ
1) =

{
Ĉ11(obs2 | I11), Ĉ21(obs2 | I21)

}
.
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e7 e8

e13
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Figure 5.16:
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Figure 5.17:

For Ĉ12(I12) we obtain Ĉ12(obs2 | Oθ
1) =

{
Ĉ112

(obs2 | I112
), Ĉ212

(obs2 | I212
)
}

.
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Figure 5.18:

For Ĉ22(I22) we obtain Ĉ22(obs2 | Oθ
1) =

{
Ĉ122

(obs2 | I122
), Ĉ222

(obs2 | I222
)
}

.
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Figure 5.19:

Consider that the second observation is received at the time 135 (i.e. the second
observable event occurs at the time 135). At the time 130 the time configuration

Ĉ21(obs2 | I21) is discarded because its discarding time θ̂21 is 130. The remaining
time-configurations are refined imposing the constraint that the observation occurs
at time 135 as follows.

For Ĉ11(I11) we obtain Ĉ11(O
θ
2) (Fig. 5.20). Notice that in Ĉ11(O

θ
2), the event e8

must be executed in the interval I(e8) = [105, 110].
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Figure 5.20:

For Ĉ112
(I112

) we obtain Ĉ112
(Oθ

2) (Fig. 5.21-left) where e4 observed at the time
135 implies that the execution time-intervals of e11, e10, e6 and e8 are I112

(e11) =
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[110, 125], I112
(e10) = [100, 115], I112

(e6) = [90, 105] and I112
(e8) = [110, 210]

respectively.

For Ĉ212
(I212

) we obtain Ĉ212
(Oθ

2) (Fig. 5.21-right) where e3 observed at the time
135 implies that the execution time-interval of e9 is I212

(e3) = [100, 125].
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Figure 5.21:

For Ĉ122
(I122

) we obtain Ĉ122
(Oθ

2) (Fig. 5.22-left) where the fact that e4 is ob-
served at the time 135 implies that the execution time-intervals of e11, e10, e6 and
e8 are I122

(e11) = [110, 125], I122
(e10) = [100, 115], I122

(e6) = [90, 105] and
I122

(e8) = [110, 210] respectively.

For Ĉ222
(I222

) we obtain Ĉ222
(I222

) (Fig. 5.22-right) where the fact that e3 is
observed at the time 135 implies that the execution time-interval of e9 is I222

(e3) =
[100, 125].
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Figure 5.22:

At the time ξ = 135 we have obtained:

C(Oθ
2) =

{
Ĉ11(I11), Ĉ112

(I112
), Ĉ212

(I212
)Ĉ122

(I122
), Ĉ222

(I222
)
}

The diagnosis results after observing Oθ
2 = 〈obs, 80〉〈obs, 135〉 is uncertain that

a fault happened in the plant, i.e. DRfc(Oθ
2) = {UFt9 , UFt12} because Ĉ11 contains

no fault events whereas Ĉ112
and Ĉ122

contain the fault event e12 while Ĉ212
and

Ĉ222
contain both the two fault events e9 and e12 respectively.
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In the following we derive the plant behavior up to the time ξ in order
to compare the calculations based on time-processes with the calculations
based on atomic state classes.

Given T C(Oθ
ξ ) denote by T Cξ(Oθ

ξ ) the set of time-interval configurations

that are prefixes of Cυ(Iυ) ∈ T C(Oθ
ξ ) and have the maximum upper limit for

the execution of the last events greater than ξ.

We have that Cξ
ℓ (Iℓ) ∈ T Cξ(Oθ

ξ ) if:

1. Cξ
ℓ (Iℓ) ⊑ Cℓ(Iℓ) for Cℓ(Iℓ) ∈ T C(Oθ

ξ ) and

2. ∀e ∈ ENABLED(Cξ
ℓ ) ⇒ (Uℓ(e)) > ξ

Then for each time-interval configuration Cξ
ℓ (Iℓ) ∈ T Cξ(Oθ

ξ ) impose the
following constraints:

i) ∀eι ∈ •CUT (Cξ
ℓ ), κeι

:= {θeι
≤ ξ} (the events in ECξ

ℓ

are executed

before ξ)

ii) ∀eλ ∈ ENABLED(Cξ
ℓ ), κeλ

:= {ϑeλ
≥ ξ} (the enabled events are exe-

cuted after the global time ξ)

Denote by T Cξ(Oθ
ξ ) the set of time interval configurations obtained im-

posing the constraints mentioned at i) and ii) above by running the Algo-
rithm 11.

Given a time-interval configuration Cξ
ℓ (I) ∈ T Cξ(Oθ

ξ ) denote CSCι(Oθ
ξ )

the set of states (the state class) that correspond with the time interval con-

figuration Cξ
ℓ (Oθ

ξ ) where:

CSCξ
ℓ (Oθ

ξ ) = (Mℓ,FIℓ) (5.31)

with:

i) Mℓ = mark(Cξ
ℓ )

ii) and FIℓ =
{
Iℓ(t) | t ∈ ENABLED(Cξ

ℓ )
}

where Iℓ(t) = [Lℓ(t), Uℓ(t)] with Lℓ(t) = max(ξ, maxe∈••t(Lℓ(e)) + Ls
t and

Uℓ(t) = max(ξ, maxe∈••t(Uℓ(e)) + Us
t .

Denote by CSCξ(Oθ
ξ ) the set of all configuration state classes at the global

time ξ:

CSCξ(Oθ
ξ ) =

{
CSCξ

ℓ (Oθ
ξ ) | Cξ

ℓ ∈ T Cξ(Oθ
ξ )

}

and by Sξ(Oθ
ξ ) the set of states that is obtained by the union of all states that

are contained in the configuration state classes CSCξ
ℓ (Oθ

ξ ) ∈ CSCξ(Oθ
ξ ):
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Sξ(O
θ
ξ ) =

⋃

Cξ

ℓ
∈T Cξ(Oθ

ξ
)

CSCξ((Oθ
ξ ))

Then we have:

Theorem 8. Given a TPN 〈N θ,Mθ
0 〉 and an arbitrary observation Oθ

ξ we have that

Sξ(Oθ
ξ ) = Sξ(Oθ

ξ ).

To prove this we need the following result:

Proposition 25. Consider the atomic state class graph ASCG(Oθ
ξ ) derived given

the received observation Oθ
ξ . Then we have that ∀Cξ

ℓ (I) ∈ T Cξ(Oθ
ξ ):

CSCξ
ℓ (Oθ

ξ ) =
⋃

σ∈E(Cξ

ℓ
(Iℓ))

ASCξ,τ (Oθ
ξ ) (5.32)

where τ = φ(σ) and ASC0
τ(ρ)
−−−→ ASCξ,τ (Oθ

ξ ) for ρ ∈ ASCG(Oθ
ξ ).

Proof. The proof is straightforward.

Based on Proposition 25 we have that Sξ ⊆ Sξ. The proof that Sξ ⊇ Sξ is
immediate based on Proposition 24. This completes the proof of Theorem 8.

Example 32. Consider again the TPN in Fig. 5.4 where To = {t4, t5, t9} and
lo(t4) = lo(t5) = lo(t9). Before receiving the first observation we derive (see Fig.
5.23):

T̂ C(obs1 | O
θ
ξ ) =

{
Ĉℓ(I) | ℓ = 1, . . . , 4

}

Then consider that the first observed event occurs at the time θobs = 10. Ĉ1(I1)

and Ĉ3(I3) are discarded because I1(e9) in Ĉ1(I1) contradicts θobs = 10 6∈ [12, 24];

similarly I1(e5) in Ĉ3(I3) contradicts θobs = 10 6∈ [15, 28].

For Ĉ2(I2) we impose the temporal constraint that θe4 = 10 and obtain Ĉ2(I2)
I2(e1) = [3, 4], I2(e2) = [6, 7], I2(e4) = 10, I2(e6) = [4, 8], and I2(e7) = [8, 16].

Similarly for Ĉ4(I4) we impose the temporal constraint that θe4 = 10 and obtain
I4(e1) = [3, 4], I4(e2) = [6, 7], I4(e4) = 10, I4(e6) = [4, 8], I4(e8) = [8, 16], and
I4(e9) = [12, 24]. No constraint is imposed to e9 since L4(e9) > θobs1 = 10.

We now want to derive the plant behavior up to the time ξ = 10. From

Ĉ2(I2),Ĉ4(I4) we derive the set of prefix time interval configurations T Cξ
2(I2) ={

Cξ
21

(I21 ), C
ξ
22

(I22)
}

, respectively T Cξ
4(I4) =

{
Cξ

41
(I41), C

ξ
42

(I42)
}

displayed in

Fig. 5.24.
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Figure 5.23:

- for Cξ
21

(I21) (Cξ
42

) we impose the constraint that θe7 ≤ 10 and obtain:

Cξ
21

(I21) : I21(e1) = [3, 4], I21(e2) = [6, 7], I21(e4) = 10, I21(e6) = [4, 6],
and I21(e7) = [8, 10].

The firing domain of CSC(Cξ
21

(I)) is FI21(e1) =]10, 13].

- for Cξ
22

(I22) we impose the inequalities that ϑe7 ≥ 10 and ϑe8 ≥ 10 and
obtain:

Cξ
22

(I22) : I22(e1) = [3, 4], I22(e2) = [6, 7], I22(e4) = 10, I22(e6) = [4, 8]

The firing domain of CSC(Cξ
22

(I)22) is:

FI(Cξ
22

(I)) = {FI22 (e1) =]10, 13], F I22(e7) =]10, 16], F I22(e8) =]10, 16]}

- for Cξ
41

(I41) (Cξ
22

(I22)) we impose the constraint that θe8 ≤ 10 and obtain:
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Ise1=[3,10]

I(e1)=[3,4]

Ise2=[3,10]

I(e2)=[6,7]
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Ise7=[4,8]

I(e7)=[8,16]

Ise4=[3,10]

I(e4)=[10,10]

C21
( I )

Ise1=[3,10]
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C22
( I )
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( I )
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 ( I )
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Figure 5.24:

Cξ
41

(I41) : I41(e1) = [3, 4], I41(e2) = [6, 7], I41(e4) = 10, I41(e6) = [4, 8],

I41(e8) = [8, 10] The firing domain of CSC(Cξ
41

(I)) is:

FI(Cξ
41

(I)) = {FI41 (e1) =]10, 13], F I41(e9) = [12, 18]}

Then consider the atomic state class ASCτ,ξ derived in Ex.28 for τ = t1t2t6t4.

ASCτ,ξ = (M,FI) where:

FI(ASCτ,ξ) = {FI(t1) =]10, 23], F I(t7) =]10, 16], F I(t7) =]10, 16]}

We have that τ ∈ 〈ECξ
22

〉 and consequently FI(ASCτ,ξ) = FI(Cξ
41

(I)).
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5.5.4 Checking for redundancy

Consider a time interval configuration Cℓ(Iℓ) ∈ T C(Oθ
ξ ). The problem in

this section is to derive which inequalities can be deleted since they are re-
dundant (and hence irrelevant) for the future calculations. To illustrate this
consider a part of a fictitious time interval configuration Cℓ(Iℓ) in Fig. 5.25
where the dotted lines emerging places emphasize that e3 and e4 are the last
events in Cℓ (e3, e4 ∈ •CUT (Cℓ)).

To each event eυ, υ = 1, . . . , 4 the execution time interval Iℓ(eυ) is at-
tached; for e3 and e4 we have indicated also their static firing intervals.

e1 e2

e3 e4

I(e1)=[10,20]

I(e3)=[35,45] I(e4)=[55,60]

I(e2)=[15,30]

Ise3
=[10,40]

Ise4
=[20,40]

b1 b2

b3
b4

b5
b6

b7 b8

Figure 5.25:

Since Lℓ(e1) + Us
e3
> Uℓ(e3) and Uℓ(e1) + Ls

e3
< Lℓ(e3) it is obvious that

any temporal constraint applied to e3 cannot modify Iℓ(e1). We say that e1
is passive w.r.t. e3. We must also check if e1 is passive w.r.t. e4; if this is also
true we can remove θe1 from the set of path variables since the occurrence of
e1 can not be modified by a future observation.

For e4 we have that:

max(Lℓ(e1), Lℓ(e2)) + Us
e4

≥ Uℓ(e4)

max(Uℓ(e1), Uℓ(e2)) + Ls
e4

≤ Lℓ(e4)
(5.33)

We claim that e1 is passive w.r.t. e4. This is true because further constraints
that may be applied to e2 may only decrease Uℓ(e2) or increase Lℓ(e2). In
both cases the inequalities in 5.33 remain true. If an event-node eυ is pas-
sive w.r.t. all its predecessor event-nodes then the path variable θeυ

can be
removed from KCℓ

.

Since our calculations operate on the configuration structure, we remove
the event-node eυ from Cℓ and then remove all the event-nodes that have all
their predecessor nodes being removed from Cℓ.
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Definition 61. Consider a time-interval configurationCℓ(Iℓ) ∈ T C(Oθ
ξ ). For eυ ∈

•CUT (Cℓ) consider a temporal constraint κeυ
:= {θeυ

∈ I ′ℓ} s.t. I ′ℓ(eλ) ⊂ Iℓ(eλ).
T Cℓ(Iℓ | κeυ

) is the set of all the time-interval configurations that are obtained by
imposing κeυ

on Cℓ(Iℓ) ∈ T Cℓ(Oθ
ξ ):

T Cℓ(Iℓ | κeυ
) = {Cνℓ

(Iνℓ
) | νℓ ∈ Vℓ}

where Γℓ(κeυ
) = {Iνℓ

| νℓ ∈ Vℓ} is the set of | ECℓ
|-hyperboxes that are obtained

running the Algorithm 11 for Cℓ(Iℓ) and κeυ
.

Then we say that:

- eγ is passive w.r.t. eυ if for any κeυ
we have that:

∀Iνℓ
∈ Γℓ(κeυ

) ⇒ Iνℓ
(eγ) = Iℓ(eγ)

eγ is passive in Cℓ(Iℓ) iff ∀eυ ∈ •CUT (Cℓ), eγ is passive w.r.t. eυ

In words eγ is passive w.r.t. eυ means that constraining the occurrence of eυ

has no effect on the occurrence of eγ . Then eγ is passive in Cℓ(Iℓ) means that for
any extension ofCℓ(Iℓ) and for any further temporal constraint applied to the events
that are appended to Cℓ(Iℓ) we have that the time interval of the occurrence of the
event eγ remains unchanged.

We have the following results that are needed for formally presenting the
algorithm that eliminates the passive events within a configuration Cℓ(Iℓ).

Proposition 26. Given a time interval configuration Cℓ(Iℓ) ∈ T C(Oθ
ξ ) and two

events ∀eγ , eυ ∈ ECℓ
s.t. eγ ≺ eυ we have that: eγ is passive w.r.t. eυ if for any

event ∀eλ ∈ ECℓ
s.t. eγ ≺ eλ ≺ eυ we have that eλ is passive w.r.t. eυ.

Proof. Trivial.

Proposition 27. Given a time interval configuration Cℓ(Iℓ) ∈ T C(Oθ
ξ ) and two

events eγ , eυ ∈ ECℓ
s.t. eγ ∈ ••eυ we have that eγ is passive w.r.t. eυ if the two

inequalities in 5.34 are satisfied:

maxeλ∈••eυ
(Lℓ(eλ)) + Us

eυ
≥ Uℓ(eυ)

maxeλ∈••eυ
(Uℓ(eλ)) + Ls

eυ
≤ Lℓ(eυ)

(5.34)

Proof. Trivial.

Let in the following the event-set ofECℓ
be partitioned in disjunct subsets

(layers) as follows:

- Layer↑ℓ [0] = •CUT (Cℓ)

- Layer↑ℓ [y] =
{
eυ ∈ ECℓ

| e••υ ⊆
⋃y−1

z=0 Layer
↑
ℓ [z] ∧ e

••
υ ∩ Layer↑ℓ [y − 1] 6= ∅

}
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The number nmax of layers is finite since the number of events inCℓ(Iℓ) is
finite. The following Algorithm 17 eliminates the events from a time-interval
configuration.

Algorithm 17 Eliminate passive event-nodes

Require: Cℓ(Iℓ) ∈ T C(Oθ
ξ )

Ensure: ELIM(Cℓ(Iℓ))
1: KEEP (Cℓ(Iℓ)) = Layerℓ[0]
2: y = 1
3: while y ≤ ymax do
4: for all eυ ∈ Layer↑ℓ [y] do
5: for all eγ ∈ KEEP (Cℓ(Iℓ)) ∩ e

••
υ do

6: if ¬(eυ is passive w.r.t. eγ) then
7: KEEP (Cℓ(Iℓ)) = KEEP (Cℓ(Iℓ)) ∪ {eυ}
8: exit loop for
9: end if

10: end for
11: end for
12: y = y + 1
13: end while
14: ELIM(Cℓ(Iℓ)) = ECℓ

\KEEP (Cℓ(Iℓ))

Example 33. Consider the partial order between the events in a time-configuration
Cℓ(Iℓ) as displayed in Fig. 5.5.4-left. The layer decomposition of ECℓ

is dis-
played in Fig. 5.5.4-right. Algorithm 17 works as follows. The set of event nodes

KEEP (Cℓ(Iℓ)) is initialized with the set of events contained in Layer↑ℓ [0] since
the last events in Cℓ(Iℓ) can not be found as passive. Then the counter y is set

1 and for all the events in Layer↑ℓ [1] we check if the time-dependency between

eυ ∈ Layer↑ℓ [1] and the events in KEEP (Cℓ(Iℓ)) that are the first successors of eυ

is passive. If for eυ there exists a time-dependency that is not passive, the checking is
stop since the node eυ cannot be declared passive. If all the nodes in Layer[1] have
been checked then the set of nodes in the next layer are checked. For instance if we
have for e5 in Fig. 5.5.4-right that e5 is not passive w.r.t. e9 then e9 is added to
KEEP (Cℓ(Iℓ)), while e7 and e8 are not added to KEEP (Cℓ(Iℓ)) if we have that
their time-dependencies are passive as is graphically indicated by the two thick lines
that cross the arrow between two events.

For Layer↑ℓ [2] we do not have to check e4 since its only first successor e8 does
not belong to KEEP (Cℓ(Iℓ)). Consequently e4 is not added to KEEP (Cℓ(Iℓ)).
e6 must only be checked against e9. If e6 is passive w.r.t. e9 as is indicated
then e6 is not added to KEEP (Cℓ(Iℓ)). Finally we obtain KEEP (Cℓ(Iℓ)) =
{e1, e2, e3, e5, e9, e10, e11, e12}. The set of events that can be removed is:

ELIM(Cℓ(Iℓ)) = {e4, e6, e7, e8}
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e1

e5

e6

e9 e10 e11

e8

e7

e2

e3
e4

e12
e9 e10 e11 e12

e5 e7 e8

e6 e4

e1 e2

e3

Layer[0]

Layer[1]

Layer[2]

Layer[3]

Layer[4]

5.5.5 Time Processes for general Petri Nets

In this section we treat the general case of TPN models dropping the sim-
plifying assumption that N should be free-choice net. By removing this
assumption the analysis becomes more complicated because the firing of a
transition t does not only depend on the time the tokens have arrived in its
input places but the firing can also be pre-emptied by some other transitions
that have different enabling conditions and that are simultaneously enabled.

The fundamental difference is that in a free-choice TPN if each of the in-
put places of a transition t can become marked then no matter what time the
tokens arrive in its input places, it eventually becomes enabled and more-
over it can be fired while for a general TPN this is not true.

To illustrate this consider the TPN displayed in Fig. 5.26.

p5 p6 p7 p8

p9 p10
p11

Ist1=[5,30]

p1 p2 p3 p4

Ist2=[5,20]

Ist3=[5,20]
Ist4=[10,30]

Ist5=[10,20]

Ist6=[5,10]

Ist7=[5,20]

Figure 5.26:

We have that t1, t2, t3, t4 can be executed concurrently from the ini-
tial marking. Thus each of the places p5, p6, p7, p8 will eventually become
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marked (but notice that this does not imply that a marking M that consid-
ers tokens in p5, p6, p7, p8 is necessarily reachable in TPN). Let us calculate
when transition t5 can fire, assuming that t1 fires at the time θt1 = 30 and
t2 fires at θt2 = 5. Thus the time t5 becomes enabled would be in this case
θen

t5 = 30. However if the token from p6 would have been removed by firing
t6, t5 becomes disabled. The firing of t6 requires beside the token in p6 also
a token in p7 whose arrival time is given by the time t3 is executed. Hence
depending on the time t3 and t4 are executed (e.g. θt3 = θt4 = 10), t7 may
fire (e.g. at the time θt7 = 15) and then t6 becomes disabled; this means that
t5 becomes enabled at the time θen

t5 = 30 and fires at some time θt5 ∈ [40, 50].

Whether t5 becomes enabled or not (and consequently whether t5 can
fire or not) depends on the time when t1, t2, t3, t4 are executed, the possible
firing time ϑt6 ∈ [θen

t6 + Ls
t6 , θ

en
t6 + Us

t6 ] for executing t6, and the firing time
that is chosen for executing t7 (ϑt7 ∈ [θen

t7 + Ls
t7 , θ

en
t7 + Us

t7 ]).

Hence in a general TPN the execution of a transition t depends on the
arrival time of the tokens in the input places of cluster(t) and on the firing
times that are chosen within the firing domains of the transitions that are
enabled in cluster(t).

Given a configuration Cℓ in a net unfolding UN (M0) denote by ĔCℓ
the

set of all the events that could have been executed but were not executed in
Cℓ that is:

ĔCℓ
= {ĕ ∈ E \ ECℓ

| φ(ĕ) ⊆ BCℓ
}

A conflicting event ĕ is connected with its pre-set by dotted lines to em-
phasize that it is a pseudo-event. In other words e is an event whose occur-
rence would have disabled events in ECℓ

with which it shares some input
places.

Definition 62. Consider a general TPN model 〈N θ,Mθ
0 〉 and then let UN (M0)

be the unfolding of its untimed PN support 〈N ,M0〉. Denote by C the set of all
(untimed) configurations in UN (M0).

Then denote by Cθ
ℓ = (BCℓ

, ECℓ
,�, Is, ĔCℓ

) the TPN endowed with a set of

conflicting events ĔCℓ
where:

1. Cℓ = (BCℓ
, ECℓ

,�) is the untimed support

2. ĔCℓ
the set of conflicting events

3. Is : ECℓ
∪ĔCℓ

→ I(Q+) is the function that gives the static intervals where:

(a) for e ∈ ECℓ
, Is(e) = Is(t) where t = φ(e)

(b) for e ∈ ĔCℓ
, Is(ĕ) = Us

t where t = φ(ĕ)
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Denote by KCθ
ℓ

the characteristic system of Cθ
ℓ :

KCθ
ℓ

=





maxeγ∈••eυ
(θeγ

) + Ls
eυ

≤ θeυ
≤ maxeγ∈••eυ

(θeγ
) + Us

eυ

for eυ ∈ EC∨

eγ♯1 ĕλ

{
θeγ

≤ ϑĕλ

}
for ĕλ ∈ ĔCℓ

(5.35)

Sol(KCθ
ℓ
) is the set of solutions of Cθ

ℓ .

Consider Solν(KCθ
ℓ
) a subset of Sol(KCθ

ℓ
) and then denote Yνℓ

= (Iνℓ
, Ĭνℓ

)

the smallest | ECℓ
| + | ĔCℓ

|-hyperbox that includes Solνℓ
(KCθ ).

We have thatC(Yνℓ
) is a time interval configuration of 〈N θ,Mθ

0 〉 if Solν(KCθ
ℓ
)

has the time independence property for the concurrent events in ECℓ
.

Consider a general TPN 〈N θ,Mθ
0 〉 and let Cℓ ∈ C an untimed configura-

tion in the net unfolding UN (M0) of the untimed PN 〈N ,M0〉. For the TPN

Cθ
ℓ = (BCℓ

, ECℓ
,�, Is, ĔCℓ

) we have that in general Sol(KCθ
ℓ
) does not have

the time independence property.

In the following we present an algorithm to derive a set of subsets{
Solνℓ

(KCθ
ℓ
) | νℓ ∈ Vℓ

}
of Sol(KCθ

ℓ
) that is a cover of the entire solution

set where each sub-set Solνℓ
(KCθ

ℓ
) has the time independence property.

Basically we want to derive a set of | ECℓ
| + | ĔCℓ

|-hyperboxes
Γ = {Yνℓ

| νℓ ∈ Vℓ} s.t. Solν(KCθ
ℓ
) = Sol(KCθ

ℓ
) ∩ Yνℓ

for all νℓ ∈ Vℓ.

Consider that Sol(KCθ
ℓ
) does not have the time independence property.

Denote I(Q+) the set of all intervals with non-negative rational limits.
Then consider two intervals I1, I2 ∈ IQ where Ii = [Li, Ui] for i = 1, 2. We
say as in Allen’s algebra [All83] that:

I1 before I2 (⇔ I2 after I1 ) if U1 < L2

I1 meets I2 (⇔ I2 is met by I1 ) if U1 = L2

I1 overlaps I2 (⇔ I2 overlapped by I1 ) if L1 ≤ L2 ≤ U1 ≤ U2

I1 during I2 (⇔ I2 includes I1 ) if L2 ≤ L1 ≤ U1 ≤ U2

Given Cℓ(Yℓ) we say that the pair (e, ĕ) ∈ ECℓ
× ĔCℓ

is:

- active if {Iℓ(ĕ) overlaps Iℓ(e)} or {Iℓ(ĕ) during Iℓ(e)}

- not-active if {Iℓ(e) overlaps Iℓ(ĕ)}

- passive if {Iℓ(e) before Iℓ(ĕ)}

- canceling if {Iℓ(ĕ) before Iℓ(e)}
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We use the following notation:

- ACTIV E(Cℓ(Yℓ)) is the set of pairs (e, ĕ) that are active

- NOTACT (Cℓ(Yℓ)) is the set of pairs (e, ĕ) that are not− active

- PASSIV E(Cℓ(Yℓ)) is the set of pairs (e, ĕ) that are passive

- CANCEL(Cℓ(Yℓ)) is the set of pairs (e, ĕ) that are canceling

We have that:

- if ∃ĕ ∈ ĔC s.t. (e ∈ EC and e♯1ĕ) ⇒ ((e, ĕ) ∈ CANCEL(Cℓ(Yℓ))) then
Cℓ(Yℓ) is impossible

- if a conflicting event ĕ is such that ∃(e, ĕ) ∈ PASSIV E(Cℓ(Yℓ)) then ĕ

can be removed from Ĕℓ

Notice that a conflicting event ĕ s.t. (e, ĕ) ∈ NOTACT (Cℓ(Yℓ)) is not-
active w.r.t. e for Yℓ but (e, ĕ) may become active for Y

′
ℓ ⊂ Yℓ.

If the set of conflicting pairs in ACTIV E(Cℓ(Yℓ)) is not empty then we
need to check whether it is possible to impose temporal-constraints allowing
derivation forCℓ(Yℓ) of a finite set of time-configurations {Cℓ(Yνℓ

) | νℓ ∈ Vℓ}
such that:

1. ∀ĕ ∈ ĔCℓ
⇒ ∃ e ∈ ECℓ

such that
(e, ĕ) ∈ PASSIV E(Cℓ(Yνℓ

)) ∪NOTACT (Cℓ(Yνℓ
))

2. Solνℓ
(KCθ

ℓ
) = Sol(KCθ

ℓ
) ∩Yνℓ

has the time independence property

3. and Sol(KCθ
ℓ
) =

⋃
νℓ∈Vνℓ

Solνℓ
(KCθ

ℓ
)

p5 p6 b7 b8

b9 b11

Ise1=[5,30]

b1 b2 b3 b4

Ise2=[5,20]

Ise3=[5,20]
Ise4=[10,30]

Ise5=[10,20]

Ise6=[5,10]

Ise7=[5,20]

I(e1)=[5,30]

I(e2)=[5,20]

I(e3)=[5,20]

I(e6)=[10,30]
I(e7)=[15,50]

I(e4)=[10,30]

I(e5)=[15,50]

C1( Y1)

p5 p6 b7 b8

Ise1=[5,30]

b1 b2 b3 b4

Ise2=[5,20]

Ise3=[5,20]
Ise4=[10,30]

Ise5=[10,20]

Ise6=[5,10]

Ise7=[5,20]

I(e1)=[5,30]

I(e2)=[5,20]

I(e3)=[5,20]

I(e6)=[10,30]
I(e7)=[15,50]

I(e4)=[10,30]

I(e5)=[15,50]

b10

C2( Y2)

Figure 5.27:
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Example 34. Consider for TPN in Fig. 5.26 the two time-processes C1(Y1) and
C2(Y2) displayed in Fig. 5.27. For C(Y1) we have that ACTIV E(C(Y1)) =
{(e5, ĕ6), (e7, ĕ6)}.

Proposition 28. Cℓ(Yνℓ
) is a time-interval configuration if ∀ĕ ∈ ĔCℓ

⇒ ∃ e ∈
ECℓ

s.t. either (e, ĕ) ∈ PASSIV E(Cℓ(Yνℓ
)) or (e, ĕ) ∈ NOTACT (Cℓ(Yνℓ

)).

Proof. The proof is straightforward.

Thus given Cℓ(Yℓ) that is not a time interval configuration we should
impose additional constraints such that for each conflicting event ĕ ∈ ECℓ

there is an event e s.t. (e, ĕ) is either passive or not− active. In other words
we should impose constraints such that all the conflicting events are deacti-
vated.

Consider in the following a conflicting event ĕ s.t. (∀e ∈ EC), e♯ĕ ⇒
(e, ĕ) ∈ ACTIV E(Cℓ(Yℓ)) or (e, ĕ) ∈ CANCEL(Cℓ(Yℓ)). To deactivate ĕ
we have different policies where a policy corresponds to the selection of an
event e s.t. (e, ĕ) ∈ ACTIV E(Cℓ(Yℓ)). Denote POL(ĕ) the set of all policies
pol(ĕ) = (e, ĕ) to deactivate the conflicting event ĕ:

POL(ĕ) = {pol(ĕ) = (e, ĕ) | (e, ĕ) ∈ ACTIV E(Cℓ(Yℓ))}

Consider Yνℓ
⊆ Yℓ. We have that (e, ĕ) ∈ NOTACTIV E(Cℓ(Yνℓ

)) ∪
PASSIV E(Cℓ(Yνℓ

)) if:

{Iνℓ
(e) overlaps Iνℓ

(ĕ)} or {Iνℓ
(e) before Iνℓ

(ĕ)}

For Iνℓ
(ĕ) = [Lνℓ

(ĕ), Uνℓ
(ĕ)] and Iνℓ

= [Lνℓ
(e), Uνℓ

(e)] we have that:

(Iνℓ
(e) overlaps Iνℓ

(ĕ)) ∨ (Iνℓ
(e) before Iνℓ

(ĕ)) ⇔
⇔ (Lνℓ

(e) ≤ Lνℓ
(ĕ)) ∧ (Uνℓ

(e) ≤ Uνℓ
(ĕ))

Given a conflicting event ĕ that is active in Cℓ(Yℓ) and a policy pol(ĕ) =
(e, ĕ) to deactivate ĕ (pol(ĕ) ∈ POL(ĕ)), denote by ACT (pol(ĕ) the set of
actions to deactivate ĕ where:

ACT (pol(ĕ)) = {κLℓ
(ĕ), κUℓ

(e)}

with:

1. κLℓ(ĕ) := {L′ℓ(ĕ) = max(Lℓ(e), Lℓ(ĕ))}

2. κUℓ(e) := {U ′ℓ(e) = min(Uℓ(e), Uℓ(ĕ))}

We have that κUℓ(e) is a constraint that applies only to e whereas κLℓ(ĕ)

applies to one of the predecessor events of ĕ, that is:

κLℓ(ĕ) :=
∨

eι∈••ĕ

{L′ℓ(eι) := max(Lℓ(eι), Lℓ(ĕ) − Us
ĕ ))}
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Given a time-interval configuration Cℓ(Yℓ) that is not valid denote:

1. POL(Cℓ(Yℓ)) =
{
pol(ĕ) | ĕ ∈ ĔCℓ

∧ pol(ĕ) ∈ POL(ĕ)
}

the set of all

possible policies in Cℓ(Yℓ)

2. ACT (Cℓ(Yℓ)) = {ACT (pol(ĕ)) | pol(ĕ) ∈ POL(Cℓ(Yℓ))} and the set of
all constraint actions in Cℓ(Yℓ).

Consider κ ∈ ACT (Cℓ(Yℓ)) and then denote by T C(Yℓ | κ) the set of
time-interval configurations that are derived by imposing κ to Cℓ(Yℓ), i.e.
by running Algorithm 11 for Cℓ(Iℓ) and κ where Cℓ(Iℓ) is obtained from

Cℓ(Iℓ, Ĭℓ) omitting the conflicting events ĔCℓ
(Ĭℓ):

T C(Yℓ | κ) = {T C(Yνℓ
) | νℓ ∈ Vℓ}

For Cℓ(Yνℓ
) we have that:

- ACTIV E(Cℓ(Yℓ)) 6⊆ ACTIV E(Cℓ(Yνℓ
)) and

- (Iνℓ
, Ĭνℓ

) ⊂ (Iℓ, Ĭℓ) that is Iνℓ
⊆ Iℓ and Ĭνℓ

⊆ Ĭℓ and either Iνℓ
⊂ Iℓ or

Ĭνℓ
⊂ Ĭℓ.

Given a time-interval configuration Cℓ(Yℓ) we present in the following
a recursive algorithm to extract the set of time-interval configurations (valid
time processes). The algorithm works as follows:

1. if there does not exist a conflicting event ĕ ∈ ĔCℓ
that cancels Cℓ(Yℓ)

then:

(a) choose an arbitrary event ĕ such that ∀e ∈ EC , e♯ĕ ⇒ (e, ĕ) ∈
ACTIV E(Cℓ(Yℓ)) or (e, ĕ) ∈ CANCEL(Cℓ(Yℓ)) and then for all
policies pol(ĕ) ∈ POL(ĕ) to deactivate ĕ:

- for all constraint-actions κ ∈ ACT (pol)

- run Algorithm 11 for Cℓ(Yℓ) and κ deriving T C(Yℓ | κ)

2. then iterate the steps above for every Cℓ(Yνℓ
) ∈ T C(Yℓ | κ) until

- either ∀ĕ ∈ ĔC , ∃e ∈ EC , e♯ĕ and (e, ĕ) ∈ NOTACTIV E(Cℓ(Yνℓ
))

or (e, ĕ) ∈ PASSIV E(Cℓ(Yνℓ
))

- or ĕ cancels Cℓ(Yνℓ
)

- or κ can not be imposed
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Algorithm 18 Time-interval configurations for general TPN

Require: Cℓ(Yℓ)
Ensure: Γ(Yℓ) = {Yνℓ

| νℓ ∈ Vℓ}
1: Yℓ = {Yℓ}; Γ(Yℓ) = ∅
2: while Yℓ 6= ∅ do
3: pick up Yυ ∈ Yℓ and then delete Yυ from Yℓ

4: ACTIV E(Cℓ(Yυ)), NOTACTIV E(Cℓ(Yυ)), CANCEL(Cℓ(Yυ))
5: if ĕ ∈ ĔC cancels Cℓ(Yυ) then
6: remove Cℓ(Yυ) from Γ(Yℓ)
7: else
8: if ∀ĕ ∈ ĔC ⇒ ∃e ∈ EC ,e♯ĕ and (e, ĕ) ∈ NOTACTIV E(Cℓ(Yυ)) or

(e, ĕ) ∈ PASSIV E(Cℓ(Yυ)) then
9: Γ(Yℓ) = Γ(Yℓ) ∪ {Yυ}

10: else
11: choose ĕ ∈ ĔC s.t. ∀e ∈ EC , e♯ĕ⇒ (e, ĕ) ∈ ACTIV E(Cℓ(Yυ)) or

(e, ĕ) ∈ CANCEL(Cℓ(Yυ))
12: for all pol(ĕ) ∈ POL(ĕ) do
13: for all κ ∈ ACT (pol(ĕ)) do
14: run Algorithm 11 for C(Yυ | κ)
15: T C(Yυ | κ) = {Cℓ(Yνυ

) | νυ ∈ Vυ}
16: add {Yνυ

| νυ ∈ Vυ} to Yℓ

17: end for
18: end for
19: end if
20: end if
21: end while

Consider a run of Algorithm 18 for the time interval configurationCℓ(Yℓ)

and denote Γ(Yℓ) = {Yνℓ
| νℓ ∈ Vℓ} the set of | ECℓ

| + | ĔCℓ
|-hyperboxes.

Denote ̟νℓ
the set of choices that are made running Algorithm 18 for

deriving Yνℓ
∈ Γ(Yℓ). Let CHOICE∗(Cℓ(Yℓ)) be the abstract space of all

possible sequences of choices and let̟ be a generic sequence of choices. De-

note by Γ(Yℓ, ̟) the set of | ECℓ
| + | ĔCℓ

|-hyperboxes derived considering
the choices given by ̟.

Theorem 9. Given a time-process Cℓ(Yℓ) and an arbitrary sequence of choices
̟ ∈ CHOICE∗(Cℓ(Yℓ)) made running Algorithm 18 we have that:

(1) ̟ is of finite length

(2) ∀Yνℓ
∈ Γ(Yℓ, ̟) then C(Yνℓ

) is a time-interval configuration

(3) Sol(KCθ
ℓ
) =

⋃
Yνℓ
∈Γ(Yℓ,̟) Sol(KCθ

ℓ
) ∩ Yνℓ
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Proof. The proof of (1) is simple. Any constraint κ that is imposed to Yυ

results in a set of | ECℓ
|-hyperboxes {Yνυ

| νυ ∈ Vυ} where ∀νυ ∈ Vυ,
Yνυ

⊂ Yυ. If the constrain κ has positive integer limits the proof is straigh-
forward that is also the case when κ has rational limits (by multiplying all
the coefficients in the system). Thus ̟ is of finite length.

The proof of (2) is based on Proposition 28.

The proof of (3) is as follows. Running Algorithm 18 a conflicting event is
chosen and then all the policies to deactivate ĕ are considered one at the time,
namely for all pol(ĕ) ∈ POL(ĕ) we consider a constraint κ ∈ ACT (pol(ĕ))
that is applied to Yυ . The statement is proven straightforwardly by induc-
tion.

5.5.6 Centralized diagnosis for general Time Petri Nets based
on time processes

For a general TPN model the monitoring algorithm that we propose is a
bit different from the one presented for the case of free-choice nets. The
difference is that the diagnoser does not make calculations to anticipate the
observation but waits first to have an observed event and then it makes the
calculations to explain the received observation.

Consider the first event that was observed in the plant Oθ
1 = 〈obs1, θobs1〉.

We can calculate as for free-choice nets the set of time-interval configurations
T C(Oθ

1) where Cℓ(Iℓ) ∈ T C(Oθ
1) s.t.:

- ∃eo ∈ ECℓ
s.t. ℓ(φ(eo)) = obs1 and θobs1 ∈ I(eo)

- e ∈ ECℓ
\ {eo}, φ(e) ∈ Tuo

- ∀e ∈ ENABLED(Cℓ(Iℓ))

1. if φ(e) ∈ Tuo then Uℓ(e) > θobs1

2. if φ(eo) ∈ To then Lℓ(e) > θobs1

For each Cℓ(Iℓ) ∈ T C(Oθ
1) consider the set of conflicting events ĔCℓ

and
then let Cℓ(Yℓ) be obtained in this way. Taking into account the received
observation Oθ

1 the characteristic system KCℓ
has the form:

KCθ
ℓ

=





max
e′∈••e

(θe′) + Ls
e ≤ θe ≤ max

e′∈••e
(θe′ ) + Us

e e ∈ ECℓ

mine′♯1ĕ(θe′ ) ≤ max
e′′∈ ••ĕ

(θe′′) + Us
ĕ ĕ ∈ ĔCℓ

θeo = θobs1 for φ(eo) = to and ℓ(to) = obs1

θe′o ≥ θobs1 for all e′o ∈ ENABLED(Cℓ)

(5.36)



198 Diagnosis for Time PNs

Proposition 29. Given the observation generated by the plant Oθ
1 we have that

τθ ∈ Lθ
N θ (Oθ

1) iff:
i) τ = φ(σ), σ ∈ 〈ECℓ

〉� and Cℓ ∈ C(O1)
ii) Θ is a solution of KCθ

ℓ

iii) ∀e ∈ ECℓ
\ {eo

1} ⇒ θe ≤ θobs1

Proof. ⇒ Consider a time trace τθ ∈ Lθ
N θ (Oθ

1). τθ = 〈t1, θt1〉, . . . , 〈tλ, θtλ
〉

Clearly there is an untimed configuration Cℓ ∈ C(O1) s.t. τ = φ(σ), σ ∈
〈ECℓ

〉�. Since the TPN is untimed 1 safe we have that ECℓ
is unique up

to isomorphism and moreover we do not have transitions that are multiply
enabled.

We show that Θ = (θt1 , . . . , θtλ
) = (θe1 , . . . , θeλ

) (tι = φ(eι) for ι =
1, . . . , λ) is a solution of the characteristic system KCθ

ℓ
. Consider the first

transition t1. Since 〈t1, θt1〉 is legal we have that Ls
t1 ≤ θt1 ≤ Us

t1 and
∀t′ ∈ ENABLED(M0), θt1 ≤ Us

t′ . We have that there is an unique event
e1 ∈ EC s.t. φ(e1) = t1 and •e = ∅. Thus we have that Ls

e1
≤ θe1 ≤ Us

e1
.

Then consider an event t̆ that is enabled from the initial marking M θ
0 and

•t̆ ∩ •t1 6= ∅. Similarly there is an unique conflicting event ĕ ∈ ĔCℓ
s.t. φ(ĕ)

and •ĕ = ∅. Obviously θt1 ≤ Us
t̆

that means that θe1 ≤ Us
ĕ . Then inductively

in the length of the trace τ it is easy to prove that the inequalities in KCθ
ℓ

are

satisfied that implies that Θ is a solution of KCθ
ℓ
. iii) is trivial.

⇐ Consider Cℓ(Θ) s.t. i), ii) and iii) are satisfied. The proof that τθ is
a legal trace is straightforward by induction, proving that the enabling and
firing conditions are satisfied.

Remark 20. Condition iii) eliminates solutions Θ ∈ Sol(KCθ
ℓ
) such that Θ con-

siders unobservable events e ∈ ECℓ
, φ(e) ∈ Tuo (that are concurrent with the last

observed event eo) with execution times θe that are bigger that θobs1 . However for
practical calculations condition iii) can be dropped since the consideration of events
that will be executed after θobsn

can be seen as a prognosis. Notice that at item 9)
in the setting the faults are assumed unpredictable, thus at the time θobs1 only fault
events that are executed before θobs1 can be diagnosed that for sure happened.

For each Cℓ(Yℓ) we obtain running Algorithm 18 the set of time interval
configurations

{
Cℓ(Yνℓ

) | ν ∈ Vobs1
νℓ

}
.

By a recursive calculation we obtain the set of time-interval configura-
tions:

T C(Oθ
n) =

{
Cℓ(Yνℓ

) | νℓ ∈ Vobsn
νℓ

}

derived after receiving the observation Oθ
n.

Denote by E(Oθ
n) the set of untimed traces represented by the set of time

interval configurations T C(Oθ
n) calculated at the time θobsn

:

E(Oθ
n) =

{
E(C(Y)) | C(Y) ∈ T C(Oθ

n)
}
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and Lgen(Oθ
n) =

{
τ = φ(σ) | σ ∈ E(Oθ

n)
}

Proposition 30. Given LN θ (Oθ
n) (the untimed support language of Lθ

N θ (Oθ
n)),

and Lgen(Oθ
b ) we have that:

LN θ (Oθ
n) ≡Σµ

Lgen(Oθ
n)

that is:

i) ∀τ ∈ LN θ (Oθ
n) ⇒ ∃τ ′ ∈ Lgen(Oθ

n) s.t. Σµ(τ) = Σµ(τ ′) and

ii) ∀τ ′ ∈ Lgen(Oθ
n) ⇒ ∃τ ∈ LN θ (Oθ

n) s.t. Σµ(τ) = Σµ(τ ′)

Proof. Based on Theorem 9 we have that running Algorithm 18 ∀Yνℓ
∈

Γ(Yℓ, ̟), C(Yνℓ
) is a time-interval configuration and

Sol(KCθ
ℓ
) =

⋃

Yνℓ
∈Γ(Yℓ,̟)

Sol(KCθ
ℓ
) ∩ Yνℓ

Since the conflicting events are deactivated the proof is straightforward
based on Proposition 24.

Denote by DRgen(Oθ
n) the diagnosis result derived using Lgen(Oθ

n). Then
we have the following result:

Theorem 10. Given a general TPN model 〈N θ,Mθ
0 〉 and the observation generated

by the plant Oθ
n, we have that:

DR(Oθ
n) = DRgen(Oθ

n) (5.37)

Proof. The proof is straightforward based on Proposition 30
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5.6 Backward Time Processes for free choice TPNs

In this chapter we present for the class of free-choice Time Petri Nets an
alternative method to derive the set of time-interval configurations based on
the backward calculation of the set of minimal time-interval configurations.

As for the untimed case the backward calculation is less sensitive to un-
certainty in the knowledge of the initial marking. Thus the main purpose for
developing a method based on a backward search is to use it in a distributed
setting where the marking of a local site is uncertain because of the tokens
that can unobservably enter/exit the local site TPN model via the common
border places.

Let the first received observation be Oθ
1 = 〈obs1, θobs1〉. For each observ-

able event to s.t. l(to) = obs1 consider the set of backward untimed unfolding
←
UN (to) calculated as presented in Section 3.2.2 with the only difference that
during computation the configurations that violate the 1-safe property of the
net are discarded.

The set
←
C (to) contains all the minimal untimed configurations with the

first observed event as to = l−1(obs1).

Denote
←
UN (obs1) the set of untimed backward net unfoldings:

←
UN (obs1) =

{
←
UN (to) | to ∈ To ∧ l(to) = obs1

}

and denote by
←
C (obs1) the union of all the configurations in

←
UN (obs1):

←
C (obs1) =

{
←
C (to) | to ∈ To ∧ l(to) = obs1

}

Consider a minimal untimed configuration
←
Cℓ ∈

←
C (obs1). The follow-

ing algorithm endows the events that are executed within
←
Cℓ with timing

information.

Partition the event-set
←
E←

Cℓ

in disjunct subsets (layers) as follows:

- Layer↓[0] =

{
e ∈

←
E←

Cℓ

| •e = ∅

}

- Layer↓[y] =

{
e ∈

←
E←

Cℓ

| ••e ⊆
⋃y−1

z=0 Layer
↓[z] ∧ ••e ∩ Layer↓[y − 1] 6= ∅

}

The number of layers is finite (denoted ymax) since the number of events
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in
←
E←

Cℓ

is finite. Obviously we have that:

Layer↓[ymax] =

{
eo ∈

←
E←

Cℓ

| φ(eo) = to
}

Algorithm 19 below verifies a backward minimal configuration
←
Cℓ start-

ing from the top events (the events that have no predecessors e ∈ Layer[0]↓)

deriving the time-intervals for the execution of the events in
←
Cℓ.

If the execution time-interval of the observed event does not include the

occurrence time that was reported then
←
Cℓ is discarded. Otherwise the tem-

poral constraint that the observed event to was executed at the time θobs1 is

imposed and the set of time-interval configurations
←
C(I) ∈

←
T C(Oθ

1) is de-
rived.

Algorithm 19 Backward Time Process

Require:
←
C (Oθ

1)

Ensure:
←
T C(Oθ

1)

1: for all
←
Cℓ ∈

←
C (Oθ

1) do
2: for y = 0 to ymax do
3: for all e ∈ Layer↓ℓ [y] do
4: Lℓ(e) = maxe′∈••e(Lℓ(e

′)) + Ls
e

5: if Lℓ(e) > θobs1 then

6: abort
←
Cℓ

7: end if
8: Uℓ(e) = maxe′∈••e(Uℓ(e

′)) + Us
e

9: end for
10: end for
11: κobs1 := Lℓ(e

o) = Uℓ(e
o) = θobs1

12: run Algorithm 11 for
←
Cℓ(Iℓ) and κobs1

13:
←
T Cℓ(Oθ

1) =

{
←
Cℓ(Iνℓ

) | νℓ ∈ Vobs1

ℓ

}

14: end for

15:
←
T C(Oθ

1) =
⋃

ℓ∈V

←
T Cℓ(O

θ
1)

Consider in the following a minimal time-interval configuration
←
Cυ(Iυ) ∈

←
T C(Oθ

1). We calculate for
←
Cυ(Iυ) all its unobservable time-interval config-

uration extensions Cλ(Iλ) (
←
Cυ(Iυ) ⊏ Cλ(Iλ)) s.t. all the enabled events in

Cλ(Iλ) have their upper limits greater than θobs1 .

We have that Cλ(Iλ) ∈ T C(Oθ
1) iff:
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1. ∃
←
Cυ(Iυ) ∈

←
T C(Oθ

1) and
←
Cυ(Iυ) ⊏ Cλ(Iλ)

2. ∀e ∈ ECλ
\ E←

Cυ

⇒ φ(e) ∈ Tuo

3. ∀e ∈ ENABLED(Cλ)

(a) if φ(e) ∈ Tuo then Uλ(e) > θobs1

(b) if φ(eo) ∈ To then Lλ(e) > θobs1

To extend this result for a sequence of observed events Oθ
n = 〈obs1, θobs1〉,

. . . , 〈obsn, θobsn
〉 let

←
T C(Oθ

n) and T C(Oθ
n) be derived recursively in the

straightforward manner. Obviously T C(Oθ
n) contains the same set of time-

interval configurations that would have been derived forward by running
Algorithm 16 without calculating the extensions of the time-interval config-
urations up to the next discarding time that corresponds with the n + 1th

observed event.

5.7 Distributed diagnosis for Time Petri Nets

In this section we extend the distributed diagnosis algorithm presented in
Section 4.3 for the case when each component is modeled by a TPN. The
distributed setting and the requirements for the distributed algorithm are
similar as for the untimed models. The differences are that the overall plant
TPN model is untimed 1-safe and free-choice net, and that within each com-
ponent, every oriented path that starts in a input border place and ends in
an output border place includes at least one observable event.

5.7.1 The distributed setting

The distributed plant description is as follows:

1. 〈N ,M0〉 is 1-safe

2. N is free-choice

3. N θ =
⋃

i∈J N θ
i where N θ = (P , T , F, Is) and for i ∈ J

N θ
i = (Pi, Ti, Fi, I

s
s )

4. P =
⋃

i∈J Pi, ∀i ∈ J , ∃j ∈ J , i 6= j s.t. Pi ∩ Pj
△
= Pij 6= ∅

5. T =
⋃

i∈J Ti, ∀i, j ∈ I , i 6= j ⇒ Ti ∩ Tj = ∅

6. Fi = F |Ni

7. Pij = PINij
∪ POUTij

, PINij
∩ POUTij

= ∅
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8. PINij
= POUTji

= {p ∈ Pij | p• ⊆ Ti ∧
•p ⊆ Tj}

9. PINji
= POUTij

= {p ∈ Pji |
•p ⊆ Ti ∧ p

• ⊆ Tj}

10. in each component i ∈ J every oriented path that starts in an input
border place pINi

∈ PINi
and ends in an output border place pOUTi

∈
POUTi

includes at least one observable event

For simplicity we assume that PINij
and POUTij

are disjunct and we con-
sider M0ij

= 0 (M0ij
= M0(P12), ∀i, j ∈ J). Moreover to avoid unnecessary

complications we consider that ∀p ∈ P , •p ⊆ Ti for some i ∈ J and similarly
∀p ∈ P , p• ⊆ Tj for some j ∈ J .

Given the set of agents AG = {Agi | i ∈ J}, the knowledge an agent Agi

has KNWi = 〈N θ
i ,M

θ
0 , Toi

, TFi
,PINi

,POUTi
〉 considers that:

i) the plant observation is distributed Oθ
ξ = ⊗gc

i∈JO
θi

ξ where

Oθi

ξ = 〈obs1i
, θobs1i

〉, . . . , 〈obsni
, θobsni

〉

is the local observation recorded at site i ∈ J up to the global time ξ
and 〈obski

, θobski
〉 indicates that an observable transition toi ∈ Toi

s.t.
l(toi ) = obski

happened in component i at the time θobski
measured

with perfect accurracy according to a global clock (denoted gc).

ii) the communication between agents is not event-driven that is the
agents are allowed to communicate at time e.g. θcom1 , θcom2 . . . that do
not necessarily depend on the plant observation.

Problem formulation: Similarly as for the distributed diagnosis of the un-
timed models we have that given the setting described above, design a dis-
tributed algorithm such that:

R1) before communicating with its neighboring agents, each agent Agi (i ∈
J) derives a local preliminary diagnosis of the local site i

R2) at the global time θcom (that does not necessarily depend on the time
the observable events are reported):

2.1) each local agent derives the (limited) information that should be
sent to the neighboring agents for achieving the consistency of the
local calculations

2.2) the local calculation of site i is updated when new information is
received

R3) then each local agent iterates the step 2.1) and 2.2) until a stopping
criterion is achieved (the communication protocol terminates)
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R4) the completion of the communication protocol at the communication
time θcom guarantees that the agents recover the diagnosis result of a
centralized agent by consistent pairs of local diagnostics

The assumption made above is that the communication exchange be-
tween two neighboring agents is simultaneous (synchronous) and takes
place in different communication rounds and that the local calculations at
each site do not include new observations (events observed happening after
θcom).

In the following we present a distributed algorithm that comprises:

i) a procedure for performing the local preliminary calculations in absence
of of any external information (Section 5.7.2)

ii) a procedure for information exchange (Section 5.7.3)

iii) a procedure for updating a local calculation to incorporate the received
information (Section 5.7.4)

Then in Section 5.7.5 we prove the main result of this chapter that is the
distributed algorithm we propose terminates after finitely many communi-
cation rounds and by the completion of the information exchange (commu-
nication protocol) the local projection of the centralized diagnosis result is
recovered by each agent.

5.7.2 Procedure for performing the preliminary calculations

In this section we present the preliminary calculations that are performed by
a local agent Agi before communicating with its neighbors.

Consider in the following that Agi receives the first local observation
Oθ

1i
= 〈obs1i

, θobs1i
〉. Since the communication with its neighbors is not pos-

sible prior to θcom, Agi should derive an analysis using the local model the
local observation and the known initial marking of internal places but not
knowing the marking of the border places of its component.

Similarly as presented in Section 5.6 the local agent Agi computes the set
of minimal time-interval configurations and derives the set of minimal as-
sumptions about the tokens that entered the local site TPN model as follows:

1. firstAgi derives the set of untimed minimal configurations that explain

the first local observation
←
C i(Oθ

1i
) where for minimal untimed config-

uration
←
Cℓi

(Oθ
1i

) ∈
←
C i(O

θ
1i

) we have
←
B←

Cℓi

(INi) representing the set of
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minimal assumptions about the tokens that are required to have en-
tered the local site i via the input border places PINi

2. for
←
Cℓi

∈
←
C i(Oθ

1i
) consider for each token that entered bINi

∈
←
B←

Cℓi

(INi)

the over-approximant time-interval of the date of birth of the to-
ken in bINi

as dob(bINi
) = [0, θobs1i

) and derive the set of minimal

time-interval configurations
←
T Cℓi

(Oθ
1i

) by running Algorithm 19 for
←
Cℓi

∈
←
C i(Oθ

1i
)

3. for
←
Cℓi

(Iνℓi
) ∈

←
T Cℓi

(Oθ
1i

) we have for each border place bINℓi
the time-

interval dob(bINi
) ⊆ dob(bINi

)) that represents the time-requirement
for arriving of the token in bINi

4. then for each
←
Cℓi

(Iνℓi
) ∈

←
T Cℓi

(Oθ
1i

), Agi computes forward the set of
unobservable time-interval configurations extension that:

(a) do not violate the 1-safe property of the overall model

(b) do not violate the sensor failure-free assumption

5. denote T Ci(O
θ
1i

) the set of time-interval configurations obtained in this
way where we use the ”underline” to express that a time-interval con-
figuration Cℓi

(Iℓi
) ∈ T Ci(O

θ
1i

) is based on the minimal assumption

that tokens corresponding with bINℓi
∈
←
B←

Cℓi

(INi) have entered the

local site i in the time-interval given by dob(bINℓi
).

We have that Cυi
(Iυi

) ∈ T Ci(O
θ
1i

) iff:

1. ∃
←
Cℓ(Iℓ) ∈

←
T Ci(Oθ

1) s.t.
←
Cℓi

(Iℓi
) ⊑ Cυi

(Iυi
)

2. ∀e ∈ ECυi
\
←
E←

Cℓi

⇒ φ(e) ∈ Tuo

3. ∀b, b′ ∈ BCυi
, φ(b) = φ(b′) ⇒ (b � b′ ∨ b′ � b)

4. ∀e ∈ ENABLED(Cυi
) ⇒ Lυi

(e) > θobs1

Given the already received observation Oθ
n−1i

and the last observation
〈obsni

, θobsni
〉 we have that:

1. Agi derives the set of untimed minimal configuration that explain the

nth
i local observation

←
C i(O

θ
ni

) where for minimal untimed configura-

tion
←
Cℓi

(Iℓi
) ∈

←
C i(Oθ

ni
) we have

←
B←

Cℓi

(INi) representing the set of min-

imal assumptions about the tokens that are required that have entered
the local site i via the input border places PINi

.
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2. then for
←
Cℓi

(Iℓi
) ∈

←
C ℓi

(Oθ
ni

) consider dob(bINℓi
) = [0, θobsni

) an over-
approximant time-interval of the date of birth of the token in bINℓi

and

then derive the set of minimal time-interval configurations
←
T Cℓi

(Oθ
ni

)
by running Algorithm 19

3.
←
T Ci(Oθ

ni
) =

⋃
ℓi∈V

obsni
i

←
T Cℓi

(Oθ
ni

)

4. for each
←
Cυi

(Iυi
) ∈

←
T Ci(Oθ

ni
) compute forward the set of unobservable

time-interval configurations extension that: do not violate the sensor
failure-free assumption

5. denote T Ci(O
θ
ni

) the set of time-interval configurations obtained in this
way

For the overall PN model the 1-safe property can be alternatively ex-
pressed as follows. Consider a PN 〈N ,M0〉 that is untime 1-safe. Given
the unfolding of 〈N ,M0〉, UN (M0) and C the set of all the configurations in
UN (M0) we have that:

∀C ∈ C, ∀b, b′ ∈ EC , φ(b) = φ(b′) ⇒ (b � b′) ∨ (b′ � b)

In a distributed setting this property cannot be checked since a local agent
has no knowledge of the plant model out of its local site. However we
present bellow a set of constraints that a local agent can derive based on
its knowledge that the overall PN model has the 1-safe property.

Consider Cυi
(Iυi

) and consider moreover that ∃bi, b
′
i ∈ BCυi

such that

bi 6= b′i and φ(bi) = φ(b′i) (otherwise it is not required to check the violation of
1-safeness). Then consider that bi is concurrent with b′i in Cυi

(Iυi
) (denoted

as bi ‖i b
′
i). Since bi ‖i b

′
i in Cυi

(Iυi
) we have that in any global configuration

there will be either bi ≺ b′i or b′i ≺ bi. The idea is to impose ”artificially” the
causality that (bi ≺art

i b′i) ∨ (b′i ≺art
i bi) (the upper index ’art’ emphasizes

that b′i ≺
art
i bi is an artificial relation).

In the distributed setting for TPN we have assumed that in each compo-
nent every oriented path that starts in an input border place and ends in an
output border places contains at least one observed event. This implies that
either bi ≺ b′i or b′i ≺ bi hold true but not both relations can be true in global
configurations that includes Cυi

(Iυi
) as a sub-net.

Consider the case that the order relation that is possible is bi ≺art
i b′i.

Denote by [bi]
↑
OUTi

the set of successor condition-nodes of the node b that are
output border conditions in Cυi

(Iυi
):

[bi]
↑
OUTυi

=
{
bOUTυi

∈ BCυi
| bi � bOUTυi

}
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Denote by [b′i]
↓(INi) the set of predecessor condition-nodes of the the

node b′i that correspond with input border conditions in Cυi
(Iυi

):

[b′i]
↓
INυi

=
{
b′INυi

∈ BCυi
| b′INυi

� b′i

}

We have that:

bi ≺ b′i ⇔ ∃(bOUTυi
, b′INυi

) ∈ [bi]
↑
OUTi

× [b′i]
↓
INi

s.t. bOUTυi
≺ b′INυi

Denote in the following by eouti(bi) and louti(bi) the smallest earliest
time, respectively the smallest latest time when a token that corresponds
with a successor output-border condition of bi can leave component i:

eouti(bi) = minbOUTυi
∈[bi]

↑
OUTi

(edob(bOUTυi
))

louti(bi) = minbOUTυi
∈[bi]

↑
OUTi

(ldob(bOUTυi
))

We have for Cυi
(Iυi

) that ∃b′INυi
∈ [b′i]

↓(INi) s.t.:

edob(b′INυi
) ≥ eouti(bi) (5.38)

and

ldob(b′INυi
) ≥ louti(bi) (5.39)

Hence for all the condition-nodes in Cυi
(Iυi

) that are concurrent and that
have the same image via φwe can derive constrains of the form (5.38) and/or
(5.39) that can be imposed for refining the local preliminary calculation. No-
tice that these constrains may even force a local agent to discard unfeasible
local configurations before communicating with its neighbour.

We have that Cυi
(Iυi

) ∈ T Ci(O
θ
ni

) iff:

(1) ∃
←
Cλi

(Iλi
) ∈

←
T Ci(Oθ

ni
) s.t.

←
Cλi

(Iλi
) ⊏ Cυi

(2) ∀e ∈ ECυi
\ E←

Cλi

⇒ φ(e) ∈ Tuo

(3) ∀e ∈ ENABLED(Cυi
(Iυi

)), φ(e) ∈ Tuo ⇒ Lυi
(e) > θobsni

In words Cυi
(Iυi

) is a preliminary time-interval configuration of compo-
nent i if it is a an unobservable extension of a minimal time-interval configu-
ration (1), (2) and all the enabled events can be executed after the time when
the observation is recorded (3).
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5.7.3 Procedure for information exchange

Consider in the following that at the time θcom the communication between
the agents is allowed. θcom may be initiated by the supervisor (possibly at
the request of local agents) or may be periodic.

Let T Ci(O
θ
ni

) be the set of local minimal time-interval configurations
derived by a local agent Agi after receiving the last observation up to the
time θcom. Denote by T Ci(Oθ

θcom
) the set of all local time-interval configu-

rations calculated by agent Agi that unobservably extend the configurations
of T Ci(O

θ
ni

) until all the enabled events have their upper limit greater that
θcom.

Cℓi
(Iℓ) ∈ T Ci(Oθ

θcom
) iff:

1. ∃Cυi
(Iυi

) ∈ T Ci(O
θ
ni

) and Cυi
(Iυi

) ⊑ Cℓi
(Iℓi

)

2. ∀e ∈ ECℓi
\ ECυi

⇒ φ(e) ∈ Tuo

3. ∀e ∈ ENABLED(Cℓi
),

(a) if φ(e) ∈ Tuo then Uℓi
(e) ≥ θcom

(b) if φ(e) ∈ To then Lℓi
(e) ≥ θcom

For a local preliminary time-interval configuration Cℓi
(Iℓi

) ∈ T Ci(Oθ
θcom

)

denote by Bθ
Cℓi

(INi) the set of minimal temporal assumptions about the to-

kens that have entered to component i:

Bθ
Cℓi

(INi) =
{
(bINi

, dob(bINi
)) | bINi

∈ BCℓi
(INi)

}

Denote by Bθ
Cℓi

(OUTi) the set of tokens that could have exited compo-

nent i and entered to component j where for each token that leaves iwe have
the departure time-interval given by the date of birth interval dob(bOUTi

) of
the token in the output border place bOUTi

:

Bθ
Cℓi

(OUTi) =
{

(bOUTi
, dob(bOUTi

)) | bOUTi
∈ BCℓi

(OUTi)
}

Then at time θcom Agi sends to Agj for each local preliminary time-
interval configuration Cℓi

(Iℓi
) ∈ T Ci(Oθ

θcom
) the message:

MSGi→j(Cℓi
(Iℓi

)) = (Bθ
Cℓi

(INi), B
θ
Cℓi

(OUTi))

In other words the message that is sent by Agi to Agj at the time θcom

contains these messages for all Cℓi
(Iℓi

) ∈ T Ci(Oθ
θcom

):

MSGi→j(θcom) =
{
MSGi→j(Cℓi

(Iℓi
)) | Cℓi

(Iℓi
) ∈ T Ci(O

θ
θcom

)
}
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5.7.4 Procedure for updating the local calculations

In this section we present how the local agentAgi includes the received infor-
mation for updating the local calculations and for checking the consistency
of its results with the results of the agent Agj .

Agents i and j check the consistency of their preliminary results for each
pair of preliminary local time-interval configurations:

(Cℓi
(Iℓi

), Cℓj(Iℓj)) ∈ T Ci(O
θ
θcom

) × T Cj(O
θ
θcom

)

Both agents must check whether a global time-interval configuration exists
that explains both local configurations or not.

In a distributed way the checking is done recursively by exchanging in-
formation about the temporal border-conditions until either an agreement is
achieved and thus a global time-interval configuration is recovered or it is
found that the two local configurations are not consistent.

Fix attention for the time being to a pair (Cℓi
(Iℓi

), Cℓj(Iℓj)) of local con-
figurations in component i, resp. component j, and consider that Agi has
received the message:

MSG1
j→i(Cℓj

(Iℓj
)) = (Bθ

ℓj
(INj), B

θ
ℓj

(OUTj))

Agent Agi combines this message with its local information on Cℓi
(Iℓi

)
analyzing the pair (Cℓi

(Iℓi
), Cℓj(Iℓj)). This pair is possibly consistent if:

1. ∀bINi
∈ BCℓi

(INi), ∃bOUTj
∈ BCℓj

(OUTj) s.t. φ(bINi
) = φ(bOUTj

) and

dob(bINi
) ∩ dob(bOUTj

) 6= ∅.

2. ∀bINj
∈ BCℓj

(INj), ∃bOUTi
∈ BCℓi

(OUTi) s.t. φ(bINj
) = φ(bOUTi

) and

dob(bINj
) ∩ dob(bOUTi

) 6= ∅.

For a pair of local time-interval configurations (Cℓi
(Iℓi

), Cℓj(Iℓj)) the in-
terpretation function of the common border conditions ψℓiℓj

is uniquely de-
fined since the net is 1-safe and each oriented path that starts in an input
place and ends in an output place of the component i includes at least one
observable event.

The pair of preliminary time-interval configurations (Cℓi
(Iℓi

), Cℓj(Iℓj)) is
moved to the list of consistent pairs if:

1. | BCℓi
(INi) |=| BCℓj

(OUTj) |

2. | BCℓi
(OUTi) |=| BCℓj

(INj) |

3. ∀bINi
∈ BCℓi

(INi), ∃bOUTj
∈ BCℓj

(OUTj) s.t. φ(bINi
) = φ(bOUTj

)

and dob(bINi
) = dob(bOUTj

).
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4. ∀bINj
∈ BCℓj

(INj), ∃bOUTi
∈ BCℓi

(OUTi) s.t. φ(bINj
) = φ(bOUTi

)

and dob(bINj
) = dob(bOUTi

).

Notice that for a possibly consistent pair (Cℓi
(Iℓi

), Cℓj(Iℓj)) if either:

| BCℓi
(INi) |<| BCℓj

(OUTj) | or | BCℓi
(OUTi) |>| BCℓj

(INj) |

then it is not certain that (Cℓi
(Iℓi

), Cℓj(Iℓj)) can be expanded to a consis-
tent pair of local time-interval configurations, because the extra-input border
conditions may be forced by upper time bounds to fire an observable transi-
tion that was not locally observed. Since the observation is correct it means
that such a pair must be discarded from the list of possible consistent pairs
in Agi.

Consider the case of a possibly consistent pair (Cℓi
(Iℓi

), Cℓj(Iℓj)).

Denote by T Ci
ℓiℓj

=
{
Cℓi

(Iνi
ℓiℓj

) | νi
ℓiℓj

∈ V i
ℓiℓj

}
the set of local time-

interval configurations obtained from Cℓi
(Iℓi

) imposing all the constraints
Ki

ℓiℓj
regarding the common border places:

K1i

ℓiℓj
= Ki

ℓiℓj
(INi) ∧Ki

ℓiℓj
(OUTi)

where:

K1i

ℓiℓj
(INi) =

{
κbINi

:=
{
dob′ℓiℓj

(bINi
) = dobℓi

(bINi
) ∩ dobℓj

(bOUTj
)
}

for bINi
∈ BCℓi

(INi)
}

and:

K1i

ℓiℓj
(OUTi) =

{
κbOUTi

:=
{
dob′ℓiℓj

(bOUTi
) = dobℓi

(bOUTi
) ∩ dobℓj

(bINj
)
}

for bOUTi
∈ BCℓi

(OUTi)
}

Denote by ∆Bℓiℓj
(INi) and ∆Bℓiℓj

(INj) the set of extra border-conditions
that are provided to component i and j.

Then denote by T C1i

ℓiℓj
the set of all unobservable extensions of the time-

interval configuration Cℓi
(Iℓiℓj

) ∈ T Ci
ℓiℓj

. The extensions are derived using
the extra border-conditions ∆Bℓiℓj

(INi) appending unobservable events un-
til the time θcom imposing also the constrains that no other observable events
are executed before θcom.

We have that Cνi
ℓiℓj

(Iνℓiℓj
) ∈ T Ci

ℓiℓj
if:

1. Cℓi
⊑ Cνi

ℓiℓj

2. ∀e ∈ EC
νi

ℓiℓj

\ ECℓi
⇒ φ(e) ∈ Tuo
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3. ∀e ∈ ENABLED(ECνℓiℓj

)

(a) if φ(e) ∈ Tuo then Uνi
ℓiℓj

(e) ≥ θcom

(b) if φ(e) ∈ To then Lνi
ℓiℓj

(e) ≥ θcom

4. ∀e ∈ EC , Lνi
ℓiℓj

(e) ≤ θcom

Let T C1i

ℓiℓj
and T C

1j

ℓiℓj
be the set of all the unobservable extensions in com-

ponent i and component j respectively derived after the first communication
round:

T C1i

ℓiℓj
=

{
T Ci

νi
ℓiℓj

| νi
ℓiℓj

∈ V i
ℓiℓj

}

T C
1j

ℓiℓj
=

{
T Cj

νj

ℓjℓi

| νj
ℓjℓi

∈ Vj
ℓiℓj

}

If no agreement has been reached yet (the set of possibly consistent pairs
is non-empty) in a new communication round Agi and Agj exchange the
time intervals for common border conditions for the remaining pairs of pos-

sibly consistent time-interval configurations T C1i

ℓiℓj
and T C

1j

ℓiℓj
.

Consider in the following that:

T C1i

ℓiℓj
=

{
Cγ1i

(Iγ1i
) | γ1i

∈ V1i

ℓiℓj

}

For a local configuration Cγ1i
(Iγ1i

) ∈ T C1i

ℓiℓj
obtained by updating a pre-

liminary configuration after the first communication round,Agi sends toAgj

the message:

MSG2
i→j(Cγ1i

(Iγ1i
)) = (Bθ

γ1i
(INi), B

θ
γ1i

(OUTi))

The message that is sent by Agi to Agj regarding the time-configurations
that are derived from the pair of preliminary time-interval configurations
(Cℓi

(Iℓi
), Cℓj(Iℓj)) after the first update is:

MSG2
i→j(ℓiℓj) =

{
MSG2

i→j(Cγ1i
(Iγ1i

)) | γ1i
∈ V1i

ℓiℓj

}

Then Agi receives the message sent by Agj in the second communication

round. Let (Cγ1i
(Iγ1i

), Cγ1j
(Iγj

)) ∈ T C1i

ℓiℓj
× T C

1j

ℓiℓj
be a pair of local config-

urations obtained after the first update of the preliminary results.

The set of constrains that must be imposed by Agi to Cγ1i
(Iγ1i

) is

K2i
γ1i

γ1j
= K2i

γ1i
(INi) ∧ K2i

γ1i
γ1j

(OUTi)

where:
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K2i
γ1i

γ1j
(INi) =

{
κbINi

:=
{
dob′γ1i

(bINi
) = dobγ1i

(bINi
) ∩ dobγ1j

(bOUTj
)
}

for bINi
∈ BCγ1i

(INi)
}

and:

K2i
γ1i

γ1j
(OUTi) =

{
κbOUTi

=
{
dob′γi

(bOUTi
) = dobγ1i

(bOUTi
) ∩ dobγ1j

(bINj
)
}

for bOUTi
∈ BCγ1i

(OUTi)
}

Denote by T C2i

ℓiℓj
the set of possibly consistent time-interval configura-

tions derived by Agi after the second communication round:

T C2i

ℓiℓj
=

{
T C2i

γ1i
γ1j

| γ1i
∈ V1i

ℓiℓj
; γ1j

∈ V
1j

ℓiℓj

}

where:
T C2i

γ1i
γ1j

=
{
Cγ1i

γ1j
(Iγ2i

) | γ2i
∈ V2i

γ1i
γ1j

}

The message that is sent byAgi toAgj at the third communication regard-
ing the time-interval configurations Cγ1i

γ1j
(Iγ2i

) ∈ T C2i

ℓiℓj
comprises only

information about the output border conditions since the time-intervals of
the input border conditions remained unchanged:

MSG3
i→j(Cγ1i

γ1j
(Iγ2i

)) =

{
Bθ

Cγ1i
γ1j

(OUTi)

}

The message that is sent by Agi to Agj at the third communication round
regarding the time-interval configurations that are derived from the pair of
preliminary time-interal configurations (Cℓi

(Iℓi
), Cℓj(Iℓj)) after the second

update is:

MSG3
i→j(ℓiℓj)) =

{
MSG3

i→j(Cγ1i
γ1j

(Iγ2i
)) | γ2i

∈ V2i
γ1i

γ1j
∧ γ1i

∈ V1i

ℓiℓj

∧ γ1j
∈ V

1j

ℓiℓj

}

Let (Cγ1i
γ1j

(Iγ2i
), Cγ1i

γ1j
(Iγ2j

)) ∈ T C2i

ℓiℓj
× T C

2j

ℓiℓj
be a pair of local time-

interval configurations obtained after the first update of the preliminary re-
sults.

The set of constraints that must be imposed by Agi to Cγ1γ2((Iγ2i
)) is

K3i
γ2i

γ2j
= K3i

γ2i
γ2j

(INi)

where:

K3i
γ2i

γ2j
(INi) =

{
κbINi

:= dob′γ2i
(bINi

) = dobγ2j
(bOUTj

) | bINi
∈ BCγ2i

(INi)
}
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Denote by Cγ1γ2(Iγ2i
γ2j

) the time-interval configuration that is obtained

imposing K3i
γ2i

γ2j
to Cγ1γ2(Iγ2i

). Cγ1γ2(Iγ2i
γ2j

) is unique since constraints

imposed to the input border conditions do not require to split up a time-
interval configuration.

The two agents stop the checking procedure after (maximum) three com-
munication rounds since the time-intervals for all the border-conditions can
not be further modified.

Summarizing the checking procedure comprises three stages, each stage
including a communication round followed by a local update of the local
results:

Procedure for checking consistency

- stage 1

1.1 the two agents have the first communication round exchang-
ing information about the border-conditions of the prelimi-
nary local time-interval configurations derived prior to com-
munication.

1.2 for each pair of local preliminary time-interval configurations
(Cℓi

(Iℓi
), Cℓj

(Iℓj
)) the two agents check first if they are pos-

sibly consistent. Possibly consistent means first that the lo-
cal configurations Cℓi

, Cℓj
are untimed consistent and notice

that since the overall PN model is one safe there is a unique
interpretation function for each pair of local configurations.
Moreover for each common border condition there is a non-
empty intersection of the time-intervals with which it is con-
sidered in the local time-interval configurations. If there are
extra input border-conditions, the pairs that are possibly con-
sistent are then extended up to the time θcom by appending
unobservable events and also refined in order to include the
temporal constraints due to the common border conditions.
Consider that for the pair of local preliminary configurations
Cℓi

, Cℓj
each agent derives a set of local time-interval config-

urations T C1i

ℓiℓj
respectively T C

1j

ℓiℓj
.

- stage 2

2.1 the two agents have the second communication round ex-
changing information about the border-conditions of the local
time-interval configurations derived at the first update.

2.2 then for each pair (Cγ1i
(Iγ1i

), Cγ1j
(Iγ1j

)) ∈ T C1i

ℓiℓj
× T C

1j

ℓiℓj

constraints regarding the input and output border conditions
are imposed by Agi and Agj to Cγ1i

(Iγ1i
) and Cγ1j

(Iγ1j
) re-

spectively. Consider that for Cγ1i
(Iγ1i

) Agi derives a set of
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local time-interval configurations:

T C2i

γiγj
=

{
Cγ1i

(Iγ2i
) | γ2i

∈ Vγ1i
γ1j

}

Notice that Iγ1i
is split-up because of the constraints applied

to the output border conditions BCγ1i
(i.e. constraints that are

propagated ”backwards”).

- stage 3

3.1 the two agents have the third communication round exchang-
ing information. A local agent sends information only about
its output border-conditions of the local time-interval config-
urations derive at the first update.

3.2 then for each pair (Cγ1i
(Iγ2i

), Cγ1j
(Iγ2i

)) ∈ T C2i

γ1i
γ1j

×T C2j

γ1i
γ1j

constrains regarding the input conditions are imposed by Agi

and Agj to Cγ1i
(Iγ2i

) and Cγ1j
(Iγ2j

) respectively. The pro-

cedure stops since no further refinements of the local time
configurations are possible.

Notice that the checking procedure is completed in the worst case after
three communications rounds. It may be that for some pairs of local pre-
liminary time-interval configurations the procedure finishes after one or two
communication rounds.

The distributed algorithm for TPN models can be summarized as follows:

1. Agi monitors component i for Oθ
ni

= 〈obs1i
, θobs1i

〉, . . . , 〈obsni
, θobsni

〉

2. at the time θcom, Agi derives T Ci(O
θ
θcom

)

3. then Procedure for checking consistency

4. let T Cgcon
i (Oθcom

) and respectively T Cgcon
j (Oθcom

) be the set of local
time configurations in component i and component j respectively,
found consistent after running the distributed algorithm, i.e.:

(a) ∀Cυi
(Iυi

) ∈ T Ccon
i (Oθcom

) ⇒ ∃Cυj
(Iυj

) ∈ T Ccon
j (Oθcom

) such that
(Cυi

(Iυi
), Cυj

(Iυj
)) is consistent

(b) ∀Cυj
(Iυj

) ∈ T Ccon
j (Oθcom

) ⇒ ∃Cυi
(Iυi

) ∈ T Ccon
i (Oθcom

) such that
(Cυi

(Iυi
), Cυj

(Iυj
)) is consistent

5.7.5 The main result

Consider T Cgcon
i (Oθcom

) and T Cgcon
j (Oθcom

) derived as presented above and
considered T C(Oθcom

) the set of time-interval configurations derived at the
time θcom by a centralized agent for the overall plant model having the over-
all plant observation. Then we have the following results:
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Proposition 31. Given T Cgcon
i (Oθcom

), T Cgcon
j (Oθcom

), and T C(Oθcom
) for a

plant consisting of two components i and j we have that:

i) ∀(Cνi
(Iνi

), Cνj
(Iνj

)) ∈ T Cgcon
i (Oθcom

) × T Cgcon
j (Oθcom

)
if (Cνi

(Iνi
), Cνj

(Iνj
)) is consistent then

∃Cν(Iν) ∈ T C(Oθcom
) s.t. Cν(Iν) = (Cνi

(Iνi
), Cνj

(Iνj
))

ii) ∀Cν(Iν) ∈ T C(Oθcom
) ⇒ ∃(Cνi

(Iνi
), Cνj

(Iνj
)) ∈ T Cgcon

i (Oθcom
) ×

T Cgcon
j (Oθcom

) s.t. Cν(Iν) = (Cνi
(Iνi

), Cνj
(Iνj

))

Proof. The proof of i) is straightforward since Cνi
(Iνi

) and Cνj
(Iνj

) have the
time independence property and they consider the same time-intervals for
the common border conditions.

The proof of ii) is as follows. For each input border condition of a un-

timed configuration
←
C ℓi

(Oθ
ni

) we have considered dob(bINi
) = [0, θobsni

) and
the extra input border conditions were taken into account deriving unob-
servable extensions for the preliminary time-interval configurations.

For component i denote by Egcon
i (Oθ

θcom
) the set of local untimed traces

that are derived as linearizations of the partial order relation of the events of
time-interval configurations:

Egcon
i (Oθ

θcom
) =

{
σi ∈ 〈ECυi

(Iυi
)〉 | Cυi

(Iυi
) ∈ T Ccon

i (Oθ
θcom

)
}

Denote Lgcon
i (Oθ

θcom
) =

{
τi = φ(σi) | σi ∈ Ei(Oθ

θcom
)
}

and then denote by

LDRi(Oθ
θcom

) the local diagnosis result derived byAgi based on Lgcon
i (Oθ

θcom
).

We have:

Theorem 11. Consider the distributed plant description as in Section 5.7.1 and an
arbitrary time θcom when a communication is executed. The algorithm of Section
5.7.2, Section 5.7.3, and Section 5.7.4 guarantees that the local diagnosis result
that would have been derived by a centralized agent is recovered by the two agents
running the distributed diagnosis algorithm for TPN:

DR(Oθ
θcom

) = (LDRi(O
θ
θcom

),LDRi(O
θ
θcom

))

Proof. The proof is straightforward using Proposition 31 and the Theorem 7
for ξ = θcom.

In the following we examine what the preliminary diagnosis includes.
For a local preliminary time-interval configuration Cℓi

(Iℓi
) ∈ T Ci(Oθ

ni
) de-

note 〈Eℓi
〉 the set of linearizations of the partial order of the events inCℓi

(Iℓi
).

Denote by Lprel
i (Oθ

ni
) the set of all untimed traces obtained for Cℓi

(Iℓi
) ∈

T Ci(Oθ
ni

):

Lprel
i (Oθ

ni
) =

{
τi = φ(σi) | σi ∈ 〈Eℓi

〉 ∧ Cℓi
(Iℓi

) ∈ T Ci(O
θ
ni

)
}

(5.40)
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Let LPDi(O
θ
ni

) be the preliminary local diagnosis derived at the time

θcom based on Lprel
i (Oθ

ni
) and let Di(Oθ

n) be the diagnosis of component i
derived by a centralized agent considering the global plant observation Oθ

n.
We say that:

1. the plant observation is uncertain if ∀t ∈ To, ∃t′ ∈ Tuo s.t. •t′ = •t and
t′• = t•

2. the interactions between components are uncertain if ∀p ∈ PIN , ∃t ∈
Tuo s.t. •t = p and t• = ∅

The local preliminary diagnosis is an over-diagnosis of component iw.r.t.
the faults that would have been detected by the centralized diagnosis if for
any observation generated by the plant Oθ

n we have that:

if the centralized diagnoser detects that a fault of kind TFi happened
for sure (DR(Oθ

n) = FFi)

then the local preliminary diagnosis result of site i is either sure that a
fault of kind Fi happened or is uncertain:

{
DRi(O

θ
n) = FFi

}
⇒

{
LPDRi(O

θ
ni

) = FFi

}
∨

{
LPDRi(O

θ
ni

) = UFFi

}

Theorem 12. If either the plant observation or the interactions between the com-
ponents are uncertain then for any observation generated by the plant the local pre-
liminary diagnosis of component i, is an over-diagnosis of component i w.r.t. the
faults that would have been detected by the centralized agent that for sure happened
in component i.

Proof. The proof is straightforward.
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Figure 5.28:

Example 35. Consider TPN in Fig. 5.10 decomposed in two place-bordered TPNs
as displayed in Fig. 5.28. We have that N θ = N θ

i ∪ N θ
j with the common border

places p1, p11 and p15.

The observable transitions in component i are Toi
= {t3, t4} while all the other

transitions are unobservable (silent). The observable transitions have the same ob-
servation label, i.e. l(t3) = l(t4). The only fault transition in component i is t9.

In component j the observable transitions are Toi
= {t13, t14} while all the

other transitions are unobservable (silent). The observable transitions have the same
observation label, i.e. l(t13) = l(t14). The only fault transition in component j is
t12.

We consider for the distributed setting the following scenario:

- Agi receives the first observation at the time 135

- Agj receives the first observation at the time 80 and the second observation at
the time 200

- after the second observation in component j the communication is allowed (i.e.
θcom = θobs2j

= 200).

The preliminary analysis of Agi.

At the time 135 the first observation is generated by component i and received
by Agi. At the same time Agi computes backwards the minimal time-interval con-
figurations that explain the first observation using only its model knowledge
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Considering the case that the observation was generated by the execution of t3,

Ag1 derives
←
C1i

(I1i
) (Fig. 5.29) in the following way:

- first the untimed backward configuration
←
C1i

is derived as for untimed mod-
els.

- then for the input border condition b1, Agi considers dob1i
(b1) = [0, 135). A time

configuration is derived as for the centralized case where for e3 is imposed the con-
straint that θe3 = 135 (I1i

(e3) = 80). This implies that the input border conditions
has the date of birth time-interval dob1i

(b1) = [85, 115] while I(e8) = [105, 125]

b2

b1b7

b8

e7 e1
I1i

(e1)=[105,125]I1i
(e7)=[10,80]

C1i(I1i
)

e3
I1i

(e3)=135

dob1i
(b1)=[85,115]

Figure 5.29:

Considering on the other hand the case that the observation was generated by
the execution of t4, Ag1 derives two minimal time-interval configurations namely
←
C12i

(I12i
) (Fig. 5.30) and

←
C22i

(I22i
) (Fig. 5.31) considering that a token en-

ter component i via p15 and two minimal time-interval configurations namely
←
C13i

(I13i
) (Fig. 5.32) and

←
C23i

(I23i
) (Fig. 5.33) considering that a token enter

component i via the border place p1.
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b2

b15b9

b10

e8 e15
II12i

(e15)=[10,125]I12i
(e8)=[105,110]

C12i(I12i
)

e4
I12i

(e4)=135

dob12i
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Figure 5.30:

b2

b15b9

b10

e8 e15
I22i

(e15)=[105,125]I22i
(e8)=[10,110]

C22i(I22i
)

e4
I22i

(e4)=135

dob22i
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Figure 5.31:
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e8 e2
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(e15)=[10,125]I13i
(e8)=[105,110]
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)

e4
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Figure 5.32:
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b2

b1b9

b10

e8 e2
I23i

(e15)=[105,125]I23i
(e8)=[10,110]

C23i(I23i
)

e4
I23i

(e4)=135

dob23i
(b1)=[85,115]

Figure 5.33:

At the time θcom when the communication is allowed Agi extends the minimal
time-interval configurations appending only unobservable events and imposing the
condition that observable events must be executed only after the time 200.

For
←
C1i

(I1i
) Agi derives C11i

(I11i
) (Fig. 5.34) and C21i

(I21i
) (Fig. 5.35).

b2

b1b7

b8

e7 e8
I11i

(e1)=[105,125]I11i
(e7)=[10,80]

C11i(I11i
)

e3
I11i

(e3)=135

dob11i
(b1)=[85,115]

e5
I11i

(e5)=[145,175]

bb2

b6bb7

ee7 ee9
I11i

(ee9)=[155,195]I11i
(ee7)=[155,255]

bb8

ee3
I11i

(ee3)=[165,285]

Figure 5.34:
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dob21i
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Figure 5.35:
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For C11i
(I11i

) we have that the enabled event ee3 may be execute before the
time 200. Agi imposes the constraint that ϑee3 > 200 creating two time-interval
configurations namely C111i

(I111i
)) (5.36-l) and C211i

(I211i
)) (5.36-r).

Since at least one of ee7 and ee9 must happen after the time 170 we have
in C111i

(I111i
)) that I111i

(ee9) = [170, 195], I111i
(ee5) = [150, 175] and,

I111i
(ee7) = [160, 255] while in C211i

(I211i
)) that I211i

(ee7) = [170, 255].
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e7 e1
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Figure 5.36:

For
←
C12i

(I12i
)Agi derivesC112i

(I112i
) (Fig. 5.37-l) andC212i

(I212i
) (Fig. 5.37-r).
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Figure 5.37:
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For
←
C22i

(I22i
)Agi derivesC122i

(I122i
) (Fig. 5.38-l) andC222i

(I222i
) (Fig. 5.38-r).
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Figure 5.38:

For
←
C13i

(I13i
)Agi derivesC113i

(I113i
) (Fig. 5.39-l) andC213i

(I213i
) (Fig. 5.39-r).
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Figure 5.39:
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For
←
C23i

(I23i
)Agi derivesC123i

(I123i
) (Fig. 5.40-l) andC223i

(I223i
) (Fig. 5.40-r).
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Figure 5.40:
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The preliminary local analysis of Agj .

For the first observed event at the time 80, Agj derives two minimal time-

interval configurations
←
C1j

(I1j
) (Fig. 5.41-l) and

←
C2j

(I2j
) (Fig. 5.41-r).
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Figure 5.41:

For the second observed event at the time 200 the local calculations of Agj is as
follows.

Agj extends the configuration in Fig. 5.41-l to explain the second observation
←
C1j

(I1j
) (Fig. 5.42).
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Figure 5.42:

For
←
C2j

(I2j
) (Fig. 5.41-r),Agj derives the time-configurations

←
C12j

(I12j
) (Fig.

5.43-l) and
←
C22j

(I22j
) (Fig. 5.43-r) that also explain the second observation:
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Figure 5.43:

In
←
C12j

(I12j
) we have that φ(b15) = φ(bb15) and b15 ‖ bb15 and also φ(b1) =

φ(bb1) and b1 ‖ bb1.

Since the overall model is 1-safe,Agj must impose that constraints that b1 � bb1
and b15 � bb15. b1 � bb1 can be achieved only if b1 � b15 in component i while
b15 � bb15 can be achieved only if b15 � bb1 in component i.

This is identically made also in
←
C22j

(I22j
). The refined time configurations are

displayed in Fig. 5.44.
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The preliminary calculations of component i and component j are presented below:

component i Bθ(INi) Bθ(OUTi)
C111i

dob111i
(b1) = [85, 115] ×

C211i
dob211i

(b1) = [85, 115] ×

C21i
dob21i

(b15) = [0, 115] dob21i
(b11) = [155, 195]

C112i
dob112i

(b15) = [0, 115] ×

C212i
dob212i

(b15) = [0, 115] dob212i
(b11) = [145, 185]

C122i
dob122i

(b15) = [85, 115] ×

C222i
dob222i

(b15) = [85, 115] dob222i
(b11) = [155, 185]

C113i
dob113i

(b1) = [0, 115] ×

C213i
dob213i

(b1) = [0, 115] dob213i
(b11) = [155, 185]

C123i
dob123i

(b1) = [95, 115] ×

C223i
dob223i

(b1) = [95, 115] dob223i
(b11) = [155, 185]

component j Bθ(INj) Bθ(OUTj)
C1j

dob1j
(b11) = [110, 180] dob1j

(b1) = 80
C12j

dob12j
(b11) = [10, 60] dob1j

(b15) = [10, 60]

dob12j
(bb11) = [130, 170] dob1j

(bb15) = [130, 170]

C22j
dob22j

(b11) = [10, 60] dob2j
(b15) = [10, 60]

dob22j
(bb11) = [110, 180] dob2j

(bb15) = [90, 170]

Agi and Agj exchange information about the border conditions and to check the
consistency of their local results.

In this example the only possible consistent pair is (C213i
, C1j

).

Then Agi imposes to C213i
the constraints that dob213i

(b1) = 80 and

dob213i
(b11) = [155, 180] whileAgj imposes toC1j

the constraint that dob1j
(b11) =

[155, 180].
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Figure 5.45:

Since neither C213i
nor C1j

include fault events the diagnosis result for each site

is normal LDRi(Oθ
θcom

) = {Ni}, and LDRj(Oθ
θcom

) = {Nj}.

At the time 200 the local state of component i is:

- either M01i
=

{
M01i

(p8) = 1;M01i
(p9) = 1

}
and ENABLED(M01i

) = ∅

- or M02i
=

{
M01i

(p8) = 1;M01i
(p10) = 1

}
and ENABLED(M02i

) = {t8},
FI(t8) = [200, 275]

At the time 200 the local state of component j is:

M0j
=

{
M0j

(p13) = 1
}

and ENABLED(M0j
) = {t12, t13} and

FI(t12) = [210, 290] and FI(t12) = [230, 290]

The distributed monitoring continues in the same manner until either the plant
stops or the monitoring ends.
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Conclusions

This research is motivated by our interest in designing distributed fault di-
agnosis algorithms for large and complex systems where unobservable in-
puts are sent/received between components placed in different sites. The
diagnosis problem is viewed in this thesis as part of a broader supervisory
architecture taking into account that the diagnosis result is used for taking
control/isolation actions to prevent the deterioration of the plant after the
occurrence of a fault. The distributed setting that we considered is very
general considering that the plant comprises several components that are
supervised by local agents that perform local calculation and exchange in-
formation among them. To the best of our knowledge the consideration of
the case of unobservable interactions between place-bordered PNs is new.
In [GL03], [GL05], [BFHJ03], [FBHJ05] the assumption is that the input and
output transitions of the border places are non-deterministicly observable.
A distributed setting considering unobservable interactions between com-
ponents was considered in [BL99], [Su04] for distributed diagnosis of a plant
modeled by a network of interacting automata. However the analysis of a
component modeled as an automaton is a lot simpler that a PN with an un-
certain marking.

The lack of observation of the interactions of a component with its neigh-
bours, the unreliability of the communication channels, as well as the re-
quirement that the local agents should be able to provide the diagnosis of
their component in any situation make the diagnosis problem very difficult.

It is widely recognized in the AI community that in presence of incom-
plete knowledge a very efficient method is to reason from effect to causes
(abductive reasoning [CMS02], [Hua02]). For the analysis of PN models un-
der partial observation the abductive reasoning simply means to infer start-
ing from the received observation (assumed correct) backwards in order to
derive the minimal explanations of the received observation.

Beside its use for designing a distributed diagnosis algorithm we show
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that the backward analysis can be deployed for the centralized analysis
of large PN models. It is well known that for large plants a diagnoser-
automaton may become too large to be stored on a computer. This is because
for a given sequence of observed events the centralized analysis requires the
calculation of the entire set of complete explanations. As a novelty we pro-
posed for the centralized analysis of large PN models the construction of a
reduced observer that considers in a given state fewer markings than the
classical observer such that all the markings considered by the classical ob-
server are obtained from the markings considered by a reduced observer,
by firing unobservable transitions (Section 3.2). The size of the reduced ob-
server is in general a lot smaller than the size of the classical observer and
thus it can be stored in a computer and moreover it is possible at any time if
required to derive the set of markings estimated by the classical observer.

A fault in a PN model is represented by a choice transition and naturally
we assumed that there is no reachable marking from where only fault events
are possible to be executed.

Based on this remark we have shown that deriving backwards the set
of minimal explanations of the received observation allows one to derive
the plant diagnosis result that equals the centralized diagnosis result based
on the set of complete explanations in the detection of the faults that for
sure happened in the plant (Section 4.2). This makes possible the centralized
analysis of very large plants since the complexity of the calculations does not
depend on the entire plant size but on the largest sub-net that contains only
unobservable events. The efficiency of the method relies on the backward
calculations that in general explore unreachable states. The use of place in-
variants and other heuristics [FRSB02] were found applicable to drive the
search.

In this thesis the backward and forward calculations for untimed PN
models are performed using the unfolding technique [McM93], [AIN00]. Be-
side a more efficient calculation of the PN models, a configuration in an un-
folding also represents the causality between the events that are assumed
executed in a given trace. This allows for checking consistency of local re-
sults in the distributed setting.

The backward search is used in the distributed algorithm for deriving the
preliminary local calculation of a component (Section 4.3.2). The set of min-
imal explanations of the local observation includes, beside the sequence of
events that must have happened before the observed events, also the mini-
mum number of tokens that must have entered a local component in order
to enable the observed events. We showed that if every oriented path that
starts in an input place of a component and ends in one of its output places
includes at least one observable event then every fault that is detected by a
centralized agent to have happened for sure in a component is also detected
in the preliminary local diagnosis of the component. If this condition on the
path between input and output places is not satisfied then the local prelim-
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inary diagnosis can fail to detect some faults that would have been derived
by a centralized agent that for sure happened but these faults must be lo-
cated on the unobservable paths that link the input and the output places
of a component. Thus under normal specifications the local control actions
that are mandatory to be taken in absence of communication should not be
sensitive to this lack of detection.

In Section 4.3.3 we have designed a distributed protocol that allows the
local agents to recover the centralized diagnosis result based on local cal-
culation and information exchange. The centralized diagnosis is recovered
by consistent pairs of local diagnosis results. For the case of more than two
components we have shown that in general the global consistency of the
local results cannot be achieved if the information exchange between two
neighboring agents includes information only about their common border.
This is because they cannot detect circular dependencies between their lo-
cal results that appear due the presence of unobservable circuits that cross
more than two components. However if all the unobservable circuits in the
overall plant contain transitions of at most two components then we prove
that the distributed diagnosis algorithm terminates after a finite number of
iterations providing the centralized diagnosis result as a pair of consistent
local diagnosis results (Section 4.3.5).

The results derived for untimed PN were then extended to TPN models.
The reason is that timing information allows for more accurate models and
consequently it allows for a more accurate diagnosis. However the analysis
becomes more complicated because of the explicit consideration of the time
as a continuous parameter. Considering the analysis of TPN models based
on atomic state classes [YR98] we have presented a monitoring algorithm
were the exact plant observation is taken into account by adding extra linear
inequalities to the characteristic system of a path in the state class graph that
obey the observation (Section 5.4.2).

The timing information may reduce the number of untimed traces in the
PN model. However the total number of interleavings of the concurrent
events can still be high and the analysis based on atomic state class graph
can be intractable even for TPN models of reasonable size. To overcome
this limitation we proposed diagnosis algorithms for TPN based on time-
configurations (Section 5.5). A time configuration (time process [AL97]) is
an untimed configuration endowed with a valuation function that associates
with each event in the configuration its execution time. A time configuration
is valid if it represents a trace in the original TPN. To check the validity of a
valuation requires to check if the execution times of the events in the config-
urations satifies the characteristic system of inequalities. The characteristic
system of a configuration is a system of (max,+)-linear inequalities. Thus to
derive the set of all valid time processes requires to calculate the entire set of
solutions of a system of (max,+)-linear inequalities. Solving such a system
requires to explicitly consider the possible interleavings between concurrent
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events that have common successors exactly what was intended to avoid.

We have proposed a more efficient way to derive the set of all valid time-
interval configurations. The set of all solutions of the characteristic system
of a configuration (the set of all valid times) is obtained as a cover of subsets
of solutions such that each sub-set of solutions has the time independence
property for the concurrent events in the configuration. The time indepen-
dence property of a subset of solutions of the characteristic system of a con-
figuration says that: given any set of concurrent events in the configuration and
fixing the execution times of their predecessors, their executions times belong to a
hyper-rectangle in high dimensional space. The execution time-intervals for the
events are obtained from the smallest hyperbox (of dimension equal with
number of events in the configuration) that includes a given subset of solu-
tions of the characteristic system. The algorithm that derives such a partition
of the solution set of the characteristic system of a configuration is based on
the propagation of temporal constraints on the execution time intervals of
the events in the configuration. The partial order relation of the events in the
configuration is exploited. We have presented on-line monitoring algorithm
that can handle the addition of extra inequalities (constraints) whenever an
observation is received.

The distributed diagnosis algorithm for TPN models (Section 5.7) con-
siders a distributed setting very similar to the one that we consider for the
untimed models. However some simplifying assumptions are needed. The
overall TPN model is assumed untimed 1-safe and free-choice. These condi-
tions are required in order to meet the requirement that the preliminary local
calculations can be used for taking some control/isolation actions.

As for the untimed PN models, the preliminary local calculations of the
TPN model of a component give rise to a major difficulty namely the analysis
of a model with uncertain initial conditions. We adapted the backward un-
folding method to Time Petri Net models (Section 5.6) and then we showed
for the case of two components that the distributed algorithm recovers the
diagnosis result of a centralized agent by consistent pairs of local diagnosis
results (Section 5.7.5).

Future work

We plan to further extend the results of this thesis in the following ways:

1. to include probabilistic information in order to have a classification of
likelihood of the faults whose detection is uncertain. [Vol02], [BFH03],
[Haa03] propose probabilistic models of discrete events systems where
the concurrency is filtered out. Probabilities are assigned to transitions
in a PN, and a probabilistic measure is derived over the space of all
possible configurations in the PN model. Probabilistic methods were
proposed in [Vol02], [BFH03] for free-choice PNs, and then extended
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in [Haa03] for general PNs. The solution in [Haa03] is to decompose
the PN model in clusters and to consider a probability distribution over
the set of ”words” in the cluster. The methods consider a centralized
setting. However the distributed diagnosis of PN models that include
probabilistic information is an open problem even for a simplified set-
ting.

2. to relax the assumption made in the distributed setting for TPN that all
the components are free-choice TPNs, by finding adequate conditions
that allow for performing local preliminary calculations in absence of
communication.

3. to investigate the problem of minimization of the information ex-
changed between the local agents [BvS02], [RLL03]. When the plant
is supervised by a large number of agents the question ”to whom to
send a message ?” becomes very important. A solution for this problem
may be to incorporate some knowledge to each local agent regarding
the plant structure in its vicinity, e.g. abstract models of its neigh-
bouring components and then to investigate the trade off between the
extra knowledge of a local agent versus the reduction in the amount of
information that is exchanged.

4. to investigate the application of the distributed diagnosis in electrical
power systems considering a broader architecture that includes con-
trol/isolation modules [JB04b].

5. to consider the case of more complex interactions between the local
components (e.g. via logical guards [NAH+98], [JB06]) or via common
sub-nets with unobservable transitions.

6. to investigate the application of the Extended Linear Complementar-
ity Problem [SM95], [SM96] to derive the entire set of solutions of the
characteristic system of a configuration as an alternative of the method
that we have proposed and then to identify sub-classes of TPN models
to whom each of the two methods is appropriate.
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Chapter 7

Pseudo-code Algorithms

7.1 Algorithm for forward reachability

Algorithm 20 Reach Tree(M0) (Carp-Miller algorithm)

Require: 〈N ,M0〉
Ensure: RT N (M0)

1: initialize x0 = M0 {the root node}
2: SET = {x0}; V ISIT = ∅
3: while SET 6= ∅ do
4: pick up x ∈ SET
5: if ENABLED(x) = ∅ then
6: x is a terminal node
7: else
8: for all t ∈ ENABLED(x) do
9: create a new node x′ and draw an arc from x to x′ labeled t

10: if x′ 6∈ V ISIT then
11: SET = SET ∪ {x′}
12: draw an arc from x to x′ labeled t
13: else
14: merge x′ with x′′ ∈ V ISIT s.t. x′ = x′′

15: draw an arc from x to x′′ labeled t
16: end if
17: end for
18: V ISIT = V ISIT ∪ {x}
19: end if
20: end while
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7.2 Algorithm for backward reachability

Algorithm 21 Back Reach - (Main Program)

Require: N , Mini, Mfin

Ensure: UCN (Mfin,Mini); ULN (Mfin,Mini)
1: mark(node root) = Mfin ; Pred(node root) = ∅; Succ(node root) = nil
2: create node root = (mark, Pred, Succ)
3: SET = {node root}; TERMIAL = ∅;
4: V ISIT SOL = ∅; V ISIT NOSOL = ∅; V ISIT UKW = ∅;
5: UCN (Mfin,Mini) = ∅; ULN (Mfin,Mini) = ∅
6: while SET 6= ∅ do
7: choose node cur(SET )
8: if break = false then
9: check solution(node cur)

10: if new node = true then
11: make new nodes(node cur)
12: end if
13: sort(SET )
14: else
15: SET = ∅
16: end if
17: end while
18: for all node ter ∈ TERMINAL do
19: mark(node root)

σuo
 mark(node ter)

20: UCN (Mfin,Mini) = UCN (Mfin,Mini) ∪ {mark(node ter)}
21: ULN (Mfin,Mini) = ULN (Mfin,Mini) ∪ {σuo}
22: end for

Algorithm 22 Procedure choose node cur

Require: SET
Ensure: node cur, break

1: for all node ∈ SET do
2: condition(node)
3: if chosen = true then
4: node cur = node
5: break = false
6: exit loop for
7: else
8: break = true
9: end if

10: end for
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Algorithm 23 Procedure condition

Require: node
Ensure: chosen

1: for all node′ ∈ V ISIT UKW do
2: if mark(node′) < mark(node) then
3: chosen = false
4: exit loop for
5: end if
6: end for
7: chosen = true

Algorithm 24 Procedure check sol

Require: node cur
Ensure: new node

1: if mark(node cur) ≤M0 then
2: add node cur to TERMIAL
3: add node cur to V ISIT SOL
4: propagate sol(node cur)
5: if B ENABLE(mark(node cur)) ∩ Tuo = ∅ then
6: new node = false
7: else
8: new node = true
9: end if

10: else
11: if B ENABLE(mark(node cur)) ∩ Tuo = ∅ then
12: add node cur to V ISIT NOSOL
13: propagate no sol(node cur)
14: else
15: add node cur to V ISIT UKW
16: new node = true
17: end if
18: end if
19: remove node cur from SET
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Algorithm 25 Procedure propagate sol

Require: node cur
1: PROP SOL = {node cur}
2: while PROP SOL 6= ∅ do
3: node=HEAD(PROP SOL)
4: for all node′ ∈ Pred(node) do
5: add node′ to V ISIT SOL
6: remove node′ from V ISIT UKW
7: add node′ to PROP SOL
8: end for
9: remove node from PROP SOL

10: end while
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Algorithm 26 Procedure propagate no sol

Require: node cur
1: PROP NOSOL = {node cur}
2: while PROP NOSOL 6= ∅ do
3: node=HEAD(PROP NOSOL)
4: for all node′ ∈ V ISIT UKW do
5: if mark(node) ≤ mark(node′) then
6: add node′ to PROP NOSOL
7: end if
8: end for
9: REMOV E UP = {node}

10: while REMOV E UP 6= ∅ do
11: for all node′ ∈ Succ(node) do
12: remove node from Pred(node′)
13: if Pred(node′) = ∅ then
14: add node′ to REMOV E UP
15: end if
16: end for
17: end while
18: REMOV E DOWN = {node}
19: while REMOV E DOWN 6= ∅ do
20: for all node′ ∈ Pred(node) do
21: remove node from Succ(node′)
22: if Succ = ∅ then
23: add node′ to REMOV E DOWN
24: end if
25: end for
26: remove node from REMOV E DOWN
27: end while
28: remove node from PROP NOSOL
29: end while
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Algorithm 27 Procedure make new node

Require: node cur
1: for all t ∈ B Enabled(mark(node curr)) ∩ Tuo do
2: mark new = mark(node cur) ⊖ Post(t, ·) + Pre(·, t)
3: fail = false
4: for all node ∈ V ISIT NOSOL do
5: if mark(node new) > mark(node) then
6: fail = true
7: exit loop for
8: end if
9: end for

10: for all node ∈ V ISIT UKW do
11: if mark(node new) = mark(node) then
12: add node cur to Pred(node)
13: add node to Succ(node cur)
14: fail = true
15: exit loop for
16: end if
17: end for
18: if fail = false then
19: create node new
20: mark(node new) = mark new
21: Succ(node cur) = node new
22: Pred(node new) = node cur
23: add node new to SET
24: end if
25: end for
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7.3 Minimal explanations for PNs with unobserv-

able trap circuits

Algorithm 28 Procedure Min Conf

Require: tcurν

Ensure: Cν(to)
1: create an event e = φ(tcurν )
2: Cν = Cν ∪ e ∪ {e•}
3: for all p ∈ {•φ(e)} do
4: if ∃b ∈ AV AILABLE[ν] s.t. φ(b) = p then
5: create arc from b to e and remove b from AV AILABLE[ν]
6: else
7: add b (φ(b) = p) to SET [ν] s.t. b = HEAD(SET [ν])
8: end if
9: end for

10: while SET [ν] 6= ∅ and abort[ν] 6= true do
11: b = HEAD(SET [ν])
12: for all t′ ∈ •φ(b) ∩ Tuo s.t. t′ 6∈ φ(Pred[ν]) do
13: add t′ to B BRANCH

14: end for
15: if B BRANCH = ∅ then
16: abort = true

17: else
18: choose t ∈ B BRANCH remove t from B BRANCH and make tcurν = t

19: while B BRANCH 6= ∅ do
20: νmax = νmax+1; choose t′ ∈ B BRANCH ; tcurνmax

= t′; remove t′

21: Cνmax
= Cν ; SET [νmax] = SET [ν];

22: AV AILABLE[νmax] = AV AILABLE[ν]; Pred[νmax] = Pred[ν];
23: end while
24: create an event e = φ(tcurν )
25: Cν = Cν ∪ e

26: find the largest subset Xcon
BCν

⊂ SET [ν] s.t. φ(Xcon
BCν

) ⊂ t• and b ∈ Xcon
BCν

27: draw an arc from e to each b ∈ Xcon
BCν

28: remove Xcon
BCν

from SET [ν]

29: for all p ∈ t• \ φ(Xcon
BCν

) do

30: b′ = φ(p), Cν = Cν ∪ {b′}
31: draw an arc from e to b′ and add b′ to AV AILABLE[ν]
32: end for
33: for all p ∈ φ(•e) do
34: if ∃ b ∈ AV AILABLE[ν] s.t. φ(b) = p and •b 6∈ PRED[ν] then
35: draw an arc from b to e and remove b from AV AILABLE[ν]
36: else
37: add b to SET [ν] s.t. HEAD(SET [ν]) = b

38: NEW = true

39: end if
40: end for
41: if AV AILABLE[ν] = ∅ then
42: abort[ν] = true

43: else
44: if NEW = false then
45: remove φ(e) from Pred[ν]
46: end if
47: end if
48: end if

49: end while
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