

DOUBLE Ph.D. DEGREE IN

Economics and Business (University of Cagliari)

and

Control Theory and Control Engineering (Xidian University)

Cycle XXXIV

TITLE OF THE Ph.D. THESIS

State Estimation of Timed Discrete Event Systems and Its Applications

Scientific Disciplinary Sector(s)

ING-INF/04 AUTOMATICA

Ph.D. Student: Chao Gao

Supervisor (UniCa) Prof. Alessandro GIUA

Supervisor (Xidian) Prof. Zhiwu LI

 Final exam. Academic Year 2020/2021

Thesis defence: May 2023 Session

Á�

Á�

lÑ¯�XÚ´�ad¯�°ÄÚåXÚG�Cz�XÚ"3y�ó�¥§l

Ñ¯�XÚkX2��A^�µ"ÃX�EXÚ!O�Å�äXÚ!�U�ÏXÚ

�þ�¦^lÑ¯�XÚ5ï�"�m(��Ú\¦�lÑ¯�XÚ�ï�9��

O\
���Ý§��¢�XÚ�ï�Ú��¯KJø
ïÄÄ:"é�aXÚ?

1ï�Ú©Û´
)TXÚ¢Só��ª�1�Ú"

�©�Ñ
üaÄuü�¨��mlÑ¯�XÚ�.§=�mk�gÄ

Å(Timed Finite Automaton, TFA)�2Â�mk�gÄÅ(Generalized Timed Finite

Automaton, GTFA)"3TFA�GTFA��.¥§O�¼ê£Timing Function¤òXÚ

�z��C[N����#NTC[u)��¨«m"éTFA5`§�¨¬3zg

C[u)���"§¿�XÚØ#N3��lÑG�[È5Ê3"3GTFA��

.¥§�¨�¼ê£Clock Resetting Function¤éz��C[�½Ùu)�´Ä

��¨!±9��¨��"�©b�TFA�GTFA¤£ã��mlÑ¯�XÚ´Ü

©�*ÿ�§Ù¤�)�k�m&E�*ÿ(J£Timed Observation¤d�X��*

ÿ¯��Ù*ÿ�m���|L«"3XÚÜ6(���m(�®��^�e§�

©©OïÄ
ùüa�.�G�*ÿì�O¯K"Ó�§�©©OÐm?Ø
�m

lÑ¯�XÚ��æ�ä!õ�¨�mlÑ¯�XÚ�G�*ÿ!±9�äS�¯

K�ôÂuÿïÄ��mlÑ¯�XÚG��O�A^"�©�Ì��zXeµ

1. �©©OéTFAÚGTFAJÑ
«�gÄÅ(Zone Automaton)�Vg"«�gÄ

Å´��(½k�gÄÅ£Deterministic Finite Automaton, DFA¤§§�z�G

�´d����mlÑ¯�XÚ�lÑG�����O�¨�����m«m

¤�¤���|"�é{`§ù���|¥�lÑG��'é��m«mJø

éTlÑG�e�¨��oÑ�O§«�gÄÅ«�C[Kò�mlÑ¯�

XÚL����m�lÑ¯�XÚ"�©JÑ§Ü©�*ÿ�TFA/GTFA��

�5©Û¯K�{z�Ù«�gÄÅ���5©Û¯K"

2. Äu3þ©¥J��«�gÄÅ§�©©OéTFAÚGTFAJÑ
�«G��

O�{§T�{¤���k�G�*ÿìU
£ã��mlÑ¯�XÚ¥¤k

�U�G��Oüz"�½��k�m&E�*ÿ(J§T�{U
�Ñ�c

�U�XÚG��O±9�¨���O��"�©y²§�T*ÿ(J���

lÑG��Ù'é��¨�U
ÏLO�«�gÄÅ¤�)�S�5íä"�

©JÑ�G��O�{�^u�ïl�ó��G�*ÿì"�yk�3�G�

I

Doctoral Dissertation of Università degli Studi di Cagliari

�O�{�'§�l�ó��G�*ÿì�?�ÚïÄXÚÙ¦�Ä�á5J

ø
Ä:"�©JÑ§õ�¨�lÑ¯�XÚG��OU
3GTFA��.e

?1ïÄ"õ�¨GTFA�O�¼ê��¨�¼êÿÐ�
õ��¨§z�

�¨e�GTFAG�üCÚ��5©Û�±ÏLT�¨e�«�gÄÅ¤�)

�S�5?1ïÄ"

3. ��G��O�{�A^§�©ïÄ
TFA��æ�ä¯K"�©^k�m&

E�C[��æ1�ï�§¿�ï
�æ�äì£Fault Recognizer¤^5£O

�æ1�"äN5ù§�©kò�æiÿì£Fault Monitor¤ï�¤=�¹ü

�G�£ü�G�©O��æ�u)��æ®u)¤�ü�¯�£ü�¯�©

O��æ¯����æ¯�¤�DFA,�æ�äìKÏLO��XÚ�«�gÄ

Å��æiÿì��¿1|Ü5¢y"�½��TFA)¤�*ÿ(J§�æ�

äìU
�ÑT*ÿ(Je�lÑG�G��O§¿�ä´Ä�U®k�æu

)"

4. �©ïÄ
lÑ¯�XÚ�ôÂuÿ¯K"b�lÑ¯�XÚ�UÉ�õ

«U
»�XÚ*ÿ(J�ôÂ§z«ôÂÑdÙgC�ôÂi;£Attack

Dictionary¤£ã"d	§·�«©
ëYôÂ£Constant Attacks¤Ú��ôÂ

£Switching Attacks¤"cö=¦^��ôÂc;5ëY»�*ÿ(J§�öK

�U3zgôÂ�¦^ØÓ�ôÂc;"�©©O)û
��mlÑ¯�XÚ

3ùüaôÂe�ôÂuÿ¯K"äN5ù§�ézaôÂ§�©�ï
��

�(½5k�gÄÅ£Nondeterministic Finite Automata, NFA¤5£ãÉ�ôÂ

�XÚ¤�)�*ÿ(J"�©JÑ§ùüaôÂ�uÿ¯K�©O{z�¤

�ï�NFA�G��O��æ�ä�²;¯K"�©é�mlÑ¯�XÚ�ù

üaôÂ©O?1
/ªz£ã§¿?Ø
XÛ|^XÚ��m(��*ÿ&

E)û�mlÑ¯�XÚ�ôÂuÿ¯K"

'''���cccµµµlÑ¯�XÚ, �mlÑ¯�XÚ, G��O, �æ�ä, ôÂuÿ

II

ABSTRACT

ABSTRACT

Many industrial control systems can be described as discrete event systems (DES), whose

state space is a discrete set where event occurrences cause transitions from one state to

another. Timing introduces an additional dimension to DES modeling and control. This

dissertation provides two models of timed DES endowed with a single clock, namely timed

finite automata (TFA) and generalized timed finite automata (GTFA). In addition, a timing

function is defined to associate each transition with a time interval specifying at which clock

values it may occur. While the clock of a TFA is reset to zero after each event occurs and

the time semantics constrain the dwell time at each discrete state, there is an additional clock

resetting function associated with a GTFA to denote whether the clock is reset to a value

in a given closed time interval. We assume that the logical and time structure of a partially

observable TFA/GTFA is known. This dissertation is dedicated to the state estimation of

such timed systems based on a timed observation, i.e., a succession of pairs of an observable

event and the time at which the event occurred. The main results are summarized as follows.

1. The notion of a zone automaton is introduced as a finite automaton providing a purely

discrete event description of the behaviour of a TFA/GTFA of interest. Each state

of a zone automaton contains a discrete state of the timed DES and a zone that is a

time interval denoting a range of possible clock values. We investigate the dynamics

of a zone automaton and show that one can reduce the problem of investigating the

reachability of a given timed DES to the reachability analysis of a zone automaton.

2. We present a formal approach that allows one to construct offline an observer for

TFA/GTFA, i.e., a finite structure that describes the state estimation for all possible

evolutions. During the online phase to estimate the current discrete state according

to each measurement of an observable event, one can determine which is the state of

the observer reached by the current observation and check to which interval (among a

finite number of time intervals) the time elapsed since the last observed event occur-

rence belongs. We prove that the discrete states consistent with a timed observation

and the range of clock values associated with each estimated discrete state can be

inferred following a certain number of runs in the zone automaton. In particular,

the state estimation of timed DES under multiple clocks can be investigated in the

framework of GTFA. We model such a system as a GTFA with multiple clocks, which

generalizes the timing function and the clock resetting function to multiple clocks. We

III

Doctoral Dissertation of Università degli Studi di Cagliari

show that multiple GTFA with a single clock and the associated zone automata can

assist in the analysis of dynamics and reachability under each clock.

3. As an application of the state estimation approach for TFA, we assume that a given

TFA may be affected by a set of faults described using timed transitions and aim

at diagnosing a fault behaviour based on a timed observation. The problem of fault

diagnosis is solved by constructing a zone automaton of the TFA with faults and a

fault recognizer as the parallel composition of the zone automaton and a fault monitor

that recognizes the occurrence of faults. We conclude that the occurrence of faults can

be analyzed by exploring runs in the fault recognizer that are consistent with a given

timed observation.

4. We also study the problem of attack detection in the context of DESs, assuming that a

system may be subject to multiple types of attacks, each described by its own attack

dictionary. Furthermore, we distinguish between constant attacks, which corrupt

observations using only one of the attack dictionaries, and switching attacks, which

may use different attack dictionaries at different steps. The problem we address is

detecting whether a system has been attacked and, if so, which attack dictionaries have

been used. To solve it in the framework of untimed DES, we construct a new structure

that describes the observations generated by a system under attack. We show that the

attack detection problem can be transformed into a classical state estimation/diagnosis

problem for these new structures. We also present a formalization of the corruption

of timed observations, considering attacks over a set of attack dictionaries, as a basis

for investigating how knowledge of the timing structure and the time instants at which

observable events occur can be exploited for the attack detection problem.

Keywords: Discrete event system, timed discrete event systems, state estimation, fault

diagnosis, attack detection

IV

List of Figures

List of Figures

2.1 DFA Q = (X,E, δ, x0).. 10

2.2 NFA Qnd = (X,E ∪ {ε},∆, x0). 12

2.3 Parallel composition of two DFA. 12

2.4 DFA equivalent to Qnd in Fig. 2.2. 13

2.5 Sketch of the state estimation for a partially-observed plant. 14

2.6 Plant Q with a set of unobservable fault events Ef = {εf}. 16

2.7 Sketch of the fault diagnosis for a partially-observed plant. 16

2.8 Diagnoser Diag(Q), where Q in Fig 2.6. 18

2.9 State evolution of the DFA Q in Example. 2.1 with time elapses. 19

2.10 Evolution of clocks θ1 and θ2 associated with the DFA Q in Example. 2.1. 20

3.1 TFA G. 23

3.2 Region automaton of G in Fig. 3.1. 29

3.3 TFA G. 31

3.4 Zone automaton Gz of the TFA G in Fig. 3.3. 33

3.5 Sketch of the state estimation problem.. 37

3.6 TFA G, where fault transitions are shown in red. 46

3.7 Canonical plant Gf associated with the TFA G in Fig. 3.6 as described in

Example 3. 47

3.8 Zone automaton ZA(Gf) of Gf in Fig. 3.7. 48

3.9 Fault monitor M for diagnosing event f . 48

3.10 Fault recognizer Rec(Gf) of Gf in Fig. 3.7. 49

4.1 GTFA G. 57

4.2 Zone automaton Gz of the GTFA G in Fig. 4.1. 65

4.3 GTFA G′ with two clocks θ1 and θ2. 76

4.4 GTFA G′ in Fig. 4.3 and its zone automaton with each single clock. 77

5.1 Plant under attack. 81

5.2 Automaton Q. 84

5.3 NFA Qc
A resulting from Algorithm 9 when Q is the DFA in Fig. 5.2. 85

5.4 Observer of Qc
A. 87

V

Doctoral Dissertation of Università degli Studi di Cagliari

5.5 NFA Qs
A resulting from Algorithm 10 when Q is the DFA in Fig. 5.2. . . . 89

5.6 Diagnosers of Qs
A in Fig. 5.5. 91

VI

List of Tables

List of Tables

2.1 Transition function corresponds to the DFA in Fig. 2.1. 10

2.2 Physical meaning of states and events in Fig. 2.1. 11

2.3 Dε(x), Da(x), and Db(x) for each state x of Qnd in Fig. 2.2. 13

2.4 Details for each state of Diag(Q) = (Y,Eo, δy, y0) in Fig. 2.8. 18

3.1 The timing function of the TFA G in Fig. 3.1. 23

3.2 Sets of active transitions at (x0, θ) for the TFA G in Fig. 3.3, where θ ∈ zi,
i ∈ {0, 1, 2, 3}. 31

3.3 State estimation of the TFA G in Fig. 3.3 under no observation.. 40

3.4 State estimation of the TFA G in Fig. 3.3 with X̄0 = X0, t0 = 0 and

(σo, t), t ∈ [0, 4]. 44

3.5 Sets of active transitions at (x0, θ) for the TFA G in Fig. 3.6, where θ ∈ zi,
i ∈ {0, 1, 2, 3}. 47

3.6 Diagnosis of the TFA G in Fig. 3.6 with Ef = {c, d} and (σo, t), t ∈ [0, 4]. 52

4.1 Timing function and clock resetting function of the GTFA G in Fig. 4.1. . . . 57

4.2 Sets of output and input transitions at (x0, θ) for the GTFA G in Fig. 4.1,

where θ ∈ [0,+∞). 62

4.3 Sets of output and input transitions at (x1, θ) for the GTFA G in Fig. 4.1,

where θ ∈ [0,+∞). 62

4.4 State estimation of the GTFA G in Fig. 4.1 under no observation for t ∈ [0, 3]. 71

4.5 State estimation of the GTFA G in Fig. 4.1 with X̄0 = X0, t0 = 0 and

(σo, t), t ∈ [0, 4]. 75

4.6 Transition relation ∆, timing function Γ and the clock resetting function

Reset of the GTFA G′ in Fig. 4.3. 78

5.1 Effect of the constant and switching attack in Example 5.2. 84

VII

Doctoral Dissertation of Università degli Studi di Cagliari

VIII

List of Symbols

List of Symbols

R≥0 The set of non-negative real numbers
N The set of non-negative integers
I The set of all closed time intervals
Ic The set of all time intervals
Q An untimed deterministic finite automaton Q = (X,E, δ, x0)

Qnd An untimed nondeterministic finite automaton
Qnd = (X,E ∪ {ε},∆, X0)

G A timed finite automaton G = (X,E,∆,Γ, X0) or generalized
timed finite automaton G = (X,E,∆,Γ, Reset,X0)

X The set of states of an automaton
E The set of events of an automaton
E∗ The set of all finite sequences defined over E
Eo The set of observable events of an automaton
Euo The set of unobservable events of an automaton
Ef The set of fault events of an automaton
x0 The initial state of an automaton
X0 The set of initial states of an automaton
δ The transition function of an automaton
∆ The transition relation of an automaton
Γ The timing function of a timed automaton
Reset The clock resetting function of a timed automaton
L(Q) The generated language of an untimed automaton Q
E(G, t) The timed evolutions of a timed automaton G to time instant t
R(G) The set of timed runs generated by a timed automaton G
Gr The region automaton of a timed automaton G
Gz The zone automaton of a timed automaton G
Rz(Gz) The set of runs generated by Gz

Gf The canonical plant for a timed automaton G with a fault f
A An attack dictionary
F cA The set of constant attacks for an untimed automaton over an

attack dictionary A
F sA The set of switching attacks for an untimed automaton over an

attack dictionary A
Qc
A An automaton generating the corrupted observations of an

IX

Doctoral Dissertation of Università degli Studi di Cagliari

untimed automaton under F cA
Qs
A An automaton generating the corrupted observations of an

untimed automaton under F sA

X

List of Abbreviations

List of Abbreviations

DES Discrete Event Systems

CPS Cyber Physical Systems

HS Hybrid Systems

DFA Deterministic Finite Automaton

NFA Nondeterministic Finite Automaton

TFA Timed Finite Automaton

GTFA Generalized Timed Finite Automaton

RO Reinitialized Observations

XI

Doctoral Dissertation of Università degli Studi di Cagliari

XII

Content

Content

Á� . I

ABSTRACT . III

List of Figures . V

List of Tables . VII

List of Symbols . IX

List of Abbreviations . XI

Chapter 1 Introduction . 1

1.1 Overview . 3

1.1.1 State Estimation of Timed Discrete Event Systems 3

1.1.2 A Cyber Security Problem: Attack Detection . 5

1.2 Thesis Organization . 6

Chapter 2 Preliminaries . 9

2.1 Automata . 9

2.2 State Estimation of Automata . 14

2.3 Fault Diagnosis of Automata . 15

2.4 Sketch of Timed DES . 18

Chapter 3 State Estimation of Timed Finite Automata. 21

3.1 Timed Finite Automata . 22

3.2 Region Automaton and Zone Automaton . 25

3.2.1 Region Automaton. 26

3.2.2 Zone Automaton . 28

3.2.3 Dynamics of Zone Automaton . 34

3.3 State Estimation of Timed Finite Automata . 36

3.3.1 State Estimation with No Observation . 37

3.3.2 State Estimation with Partial Observation . 41

3.4 Fault Diagnosis of Timed Finite Automata . 45

3.4.1 Fault Recognizer . 45

3.4.2 Fault Diagnosis Approach . 48

3.5 Conclusions . 52

Chapter 4 State Estimation of Generalized Timed Finite Automata 55

4.1 Generalized Timed Finite Automata. 55

XIII

Doctoral Dissertation of Università degli Studi di Cagliari

4.2 Zone Automaton and its dynamics . 59

4.2.1 Zone Automaton . 60

4.2.2 Dynamics of Zone Automaton . 64

4.3 State Estimation of Generalized Timed Finite Automata 67

4.3.1 State Estimation with No Observation . 68

4.3.2 State Estimation with Partial Observation . 71

4.4 Application to State Estimation of Timed Discrete Event Systems under

multiple clocks . 75

4.5 Conclusions . 78

Chapter 5 A Cyber Security Problem: Attack Detection . 81

5.1 Models of Attacks on Deterministic Finite Automata . 82

5.2 Constant Attacks Detection on Deterministic Finite Automata 85

5.3 Switching Attacks Detection on Deterministic Finite Automata 88

5.4 Application to Multiple Attacks Detection on Timed Finite Automata. 91

5.5 Conclusions . 93

Chapter 6 Conclusions and Future Works . 95

References . 99

Acknowledgement . 106

Biography . 109

XIV

Chapter 1 Introduction

Chapter 1 Introduction

In control theory and engineering, a system refers to a collection of components or

elements that work together to achieve a specific objective. While a system is a physical

object, a model is a mathematical description of the behaviour of a system. The goal of

systems theory is to develop a common uniform formalism for modeling, analyzing, and

controlling systems of interest. Modelling and analyzing a class of systems is the first step

in understanding how an existing system actually works.

Unlike a static system, which remains in a fixed state and performs a specific function

until an external force is applied to it, such as storage tanks and pressure vessels, the

behaviour of a dynamic system can evolve over time. Dynamic systems can be classified

as time driven [1] and event-driven [2]. The former changes state over time, while the latter

changes state in response to the occurrence of certain events. Discrete-event systems (DES)

[3–7] are event-driven systems whose state space is a discrete set and transitions from one

state to another are triggered by the occurrence of a event. The state of such a system may

have logical or symbolic rather than numerical values that change in response to events that

can also be described in non-numerical terms.

In a logical DES, the model does not specify the timing of event occurrences, and a

common simplifying assumption is to consider only the order in which they occur. This

simplification is justified when the model is to be used to study the properties of the event

dynamics that are independent of specific timing assumptions, such as identifying legal

sequences of operations, absence of deadlock states, etc. A number of industrial control

systems can be modeled using logical DES, e.g., manufacturing system [8, 9], networked

system [10–12], queueing system [13, 14], etc. Different models can be used to describe

DES, including automata and Petri nets.

In the DES community, the problem of state estimation has received a lot of attention

considering different observation structures, e.g., assuming that only a subset of event oc-

currences, or possibly also a function of the state, can be measured. Contributions to state

estimation have been proposed in different formalisms, in particular automata [15–18] and

Petri nets [19–24]. Most of these works are based on the notion of observer, namely a useful

tool defined as a deterministic automaton that contains all the information to reconstruct

the set of current states consistent with an observation. It allows one to move most of the

burdensome parts of the computation offline and can be used efficiently for online state

1

Doctoral Dissertation of Università degli Studi di Cagliari

estimation.

The notion of observer is fundamental and can be used as a key step to address problems

of supervisory control [25], diagnosis [23, 26–28], diagnosability [29–34], in addition to

characterizing a large set of dynamical properties, such as detectability [35–38], opacity [39–

43] and resilience to cyber-attack [44, 45]. Some of these approaches have been extended to

probabilistic settings in [46–50].

However, DESs are not inherently different from time-driven systems: a physical sys-

tem that allows for a time-driven model can also be described by a DES in which the

time-driven dynamics are ignored. This procedure of deriving a simpler model in a way

that preserves the properties of interest while hiding the details of no interest is called

abstraction. In turn, time-driven dynamics can be modeled by adjoining one or more clocks

to a logical DES. Timing introduces a new dimension of DES modeling and control.

Over the last fifteen years, cyber-physical systems (CPS) have emerged as a key tech-

nology for developing autonomous distributed control systems [51–54]. However, one

of their undesirable side effects is the fact that they are particularly exposed to cyber at-

tacks carried out by malicious intruders. Therefore, efficient strategies for cyber security

in industrial control systems are greatly needed. Attack detection, supervisory design,

and investigation of how the attacks corrupt the signals are the main cyber-security issues

addressed in the context of the supervisory control theory of DES. Timed DES provides a

convenient framework for appropriately representing and efficiently reasoning about cyber-

physical systems(CPS) subject to real-time constraints. In addition, it is also worthy of

investigating how the knowledge of the timing structure and the time instants at which

observable events occur can be exploited for the attack detection problem.

In this dissertation, we consider timed DESs whose timing structure is treated as a

set of additional constraints that the system’s evolution needs to satisfy. We provide two

models of such timed DES with a single clock and different types of time semantics. One

model constrains the dwell time at each discrete state, while the other model is generalized

so that it can remain in a discrete state forever. We also assume that only a subset of the

events is observable, i.e., a sensor is associated with such an event, while the other events

are unobservable since no sensors are deployed in the system to reveal their occurrences. We

assume that the logical and timed structure of a partially observable timed DES is known.

Our main interest is to show how the knowledge of the timing structure and the time instants

at which observable events occur can be exploited to estimate the current state of a partially

observable timed DES. For both models of considered timed DES, we present a formal

2

Chapter 1 Introduction

approach that allows one to construct an offline observer.

As an application of the state estimation of timed DES, we assume that a timed DES

may be affected by a set of faults described by timed transitions and aim at diagnosing a

fault behaviour based on a timed observation. In addition, we investigate a cyber-security

problem — attack detection in the framework of DESs, assuming that a plant may be subject

to an attack using one or more attack dictionaries which map an observable event into a set

of corrupted strings. We present a formalization of the corruption of timed observation

considering attacks over a set of attack dictionaries, and a discussion on multiple attack

detection of timed DES.

In the remaining part of this chapter, we first engage in an overview and motivation of

the state estimation of timed DES and the attack detection of DES. After that, the organiza-

tion of the dissertation and the contributions are outlined.

1.1 Overview

1.1.1 State Estimation of Timed Discrete Event Systems

In the context of DES, the notion of time has been integrated by associating a timing

structure to a purely logical model. Brave and Heymann [55] introduced a time interval

during which an activating event may occur, compared to the time of entry into the present

state. It presents how temporal and logical behavioral features can be separated as indepen-

dent treatments. Kozak [56] specifies the minimum positive time delay between occurrences

of events, which requires the overall history of the event occurrences. A classic framework

of the timed DES comes from Brandin and Wonham [57], where events may occur within

specified time bounds, relative to the times when the events were first activated. The notion

of preemptivity is proposed by introducing forcible events that can preempt clocks and other

competitive events. The timed DES model allows one to characterize its performance and

solve related optimization problems [3, 57–62].

From the aspect of state estimation of timed DES, the mechanism of communication

delays in observations is investigated, and an algorithm to obtain state estimation under

partial observation is proposed via constructing an augmented automaton that illustrates

all the possible observed trajectories [63]. Observers are designed for a particular class of

weighted automata, presented by Max-plus automata, which are strongly related to timed

automata if a timed interpretation, i.e., the minimal time required by the process to fire the

transitions, is given to weights [64]. In [65], state-based opacity of real-time automata is

3

Doctoral Dissertation of Università degli Studi di Cagliari

investigated, and an observer (resp., a reverse observer) is proposed to concatenate current

state estimates along timed output sequences generated by the real-time automata and to

verify current-state opacity (resp., to verify initial-state opacity). However, the observer

may not be unique (in general) due to various selections of the set of events in the observer.

A class of timed and labeled finite automata called constant-time labeled automata is consid-

ered in [66], where the time information provided by time stamps can be used to refine the

outcome of state estimation in various situations. In [66], events occur according to a single

clock at constant times under certain time semantics. The state estimation of timed DES has

also been considered in [67, 68], but no general approach concerning the construction of an

observer for timed DES of models exists.

Another active area of research is that of hybrid systems (HS) [69–71], characterized

by the interplay between discrete event and time-driven dynamics. These systems can be

modeled by hybrid automata, a very general formalism for which, however, many properties

of interest are undecidable. This has motivated several authors working in this domain to

explore several subclasses of models with restricted continuous dynamics, such as the class

of timed automata proposed by Alur and Dill [72]. The Alur-Dill timed automata are a basic

event-based model endowed with a finite set of clock variables that can be updated by the

occurrence of events; the occurrence of events, in turn, depends on the current values of

the clocks. This model provides a convenient framework for appropriately representing and

efficiently reasoning about cyber-physical systems subject to real-time constraints. While

some other problems are known to be undecidable for timed automata [73–75], tractable

subclasses with a restricted number of clocks [76–79] have been identified.

State estimation of timed automata has also been studied in the HS literature. In the

work [72], region equivalence is defined over the set of all clock interpretations and the

reachability of locations can be analysed by searching the finite quotient of a timed automa-

ton with respect to the region equivalence. However, reachability is analyzed regardless of

any observations. Tripakis studies the problem of fault diagnosis and proposes a method

to check diagnosability in [80], where an online diagnoser can be implemented utilizing an

online state estimator that keeps track of all the possible discrete states and the associated

clock constraints after each event is measured after a delay. Thereby, the state estimation

problem is theoretically solvable.

State estimation of timed automata with a single clock is explored in [81] using timed

markings that represent the closure under silent transitions. It is shown that such closure can

be performed as a series of subtractions between an associated interval and a regular union

4

Chapter 1 Introduction

of intervals that can be precomputed, and the precomputation leads the proposed approach

to be more efficient compared with the online approach in [80]. Based on [81], the work

[82] provides some insights to state estimation of timed automata with multiple clocks.

We mention that while the state estimation of labeled timed automata has been studied

in the HS literature [80–82], only online estimators have been proposed, and no general

approach concerning the construction of an observer is known. This motivates us to explore

the problem of state estimation of timed automata under partial observation.

1.1.2 A Cyber Security Problem: Attack Detection

CPS are intelligent interconnected systems that are particularly exposed to attacks from

malicious intruders, which may pose serious threats to critical infrastructures and even

lead to a system-wide standstill. In recent years, the cyber security problem of CPS has

been a topic that has generated a lot of interest in various information and communication

technology communities, including automatic control [83, 84].

In the domain of automatic control, the security of dynamic systems has also been

approached either in time-driven systems or in DES. From the aspect of time-driven systems,

security problems concerning attacks are explored considering both continuous time [85, 86]

and discrete time [87, 88].

In the context of supervisory control theory of DES, the cyber security problems have

been addressed in investigation of how the attacks corrupt the signals [45, 89], attack detec-

tion [44, 90–93], and supervisory control under attacks [94–103].

From the aspect of investigating the behaviour of attacks, a stealthy attack structure is

proposed in [89] to select attacks that prevent the operator observing the plant from noticing

when an unsafe state is reached. The concept of attackability is presented in [45], while

from the perspective of the attacker, the attack under bounded sensor reading changes can

be modeled as a finite state automaton.

From the aspect of attack detection, [90] investigates low rate transmission control

protocol attack and presents a detection scheme using failure diagnosis of stochastic discrete

event systems. [91] detects intrusions and prevents damages caused by an attacker that can

hide, create or replace information. In [92] two types of deception attacks, namely replay and

covert attacks, are defined and analyzed using interpreted Petri nets. In [44], a mechanism

is provided to detect certain classes of attacks online so that a mitigation policy consisting

in disabling all controllable events can be adopted. In [93], the notions of detectable and

undetectable network attack security are proposed. The former can be recognized by the

5

Doctoral Dissertation of Università degli Studi di Cagliari

existence of an unsafe state while the latter cannot.

Plenty of works address supervisory design for systems under attacks. A language

measure method is proposed in [94] to assess the damage caused by the failure of a particular

set of controllers and to determine the optimal behavior of the controlled system in the

presence of an intrusion. A bipartite transition structure introduced in [95] aims to capture

the game-like interaction between a supervisor and a system under attack. The notion of P-

observable language is introduced in [96] and is used to characterize supervisors that are able

to enforce a given specification even when multiple adversaries attack the communication

channel between a plant and a supervisor. [97] models attacks on DES as inputs and

outputs, and studies the supervisory control problem considering attacks on both sensors

and actuators. [98] develops a method for modeling event insertion and removal attacks

and presents a detection method based on the supervisory control theory framework. [99]

considers the scenario where the system is subject to an actuator enablement attack and

designs an attack mitigation strategy to prevent serious damage from the attack. [100]

investigates the robust control problem of discrete event systems under the assumption

that substitution attacks may occur. [101] investigates joint sensor-actuator cyber attacks

in discrete event systems and the supervisory control problem under such attacks. [102] and

[103] consider malicious attacks on sensors/actuators and present a solution methodology

for synthesizing a supervisor that is robust against such attacks.

In this dissertation, inspired by the attack model of [96], we deal with the attack detec-

tion problem considering a general attack model based on the notion of attack dictionary,

which maps an observable event into a set of corrupted strings. This attack model provides

the possibility to investigate how the knowledge of the timing structure and the time instants

at which observable events occur can be exploited for the attack detection problem.

1.2 Thesis Organization

This dissertation is dedicated to the state estimation of timed DES and its applications.

Chapter 2 introduces the notions related to automata, state estimation of automata, and fault

diagnosis of automata. The rest of the dissertation is organized as follows, accompanied by

its contributions.

In Chapter 3, we provide a model of timed DES, namely timed finite automata (TFA),

characterized by a single clock that is reset to zero after each event occurrence. Each transi-

tion is associated with a time interval to specify when it may occur. In addition, we consider a

type of time semantics that specifies the maximal dwell time at a discrete state. This chapter

6

Chapter 1 Introduction

considers state estimation of partially observed TFA that produces timed observations as

a succession of pairs of an observable event and the time instant at which the event has

occurred. We present a formal approach that allows one to construct offline an observer

of TFA, i.e., a finite structure that describes the state estimation for all possible evolutions.

The proposed solution is based on a purely discrete event description of the behaviour of

the TFA, associating a finite state automaton called a zone automaton. We present that the

problem of state reachability of the TFA can be reduced to the state reachability analysis in

the associated zone automaton. An algorithm is formulated to update the state estimation of

the timed automaton based on the observation of events and on the current time instant. As

an application of the proposed state estimation approach, we deal with the problem of fault

diagnosis in the function of measured timed observations, assuming that faulty behaviours

are described by means of timed transitions.

In Chapter 4, we provide a model of timed DES generalized from TFA, called gen-

eralized timed finite automata (GTFA). A GTFA is characterized by a single clock and a

clock resetting function to denote whether the clock is reset to a value in a given closed

time interval. The time semantics of this model allows a system to remain in a discrete

state forever. When dealing with the state estimation problem, we then assume that ob-

servable transitions should be reset to zero to guarantee the applicability of the proposed

state estimation approach, which is based on the notion of zones. We present a formal

approach to construct an offline observer of this generalized model. The solution is based on

determining T -reachability, which takes into account the discrete states that can be reached

with an evolution producing a given observation and has a duration equal to T . The problem

of T -reachability in the GTFA is reduced to the reachability analysis of the associated zone

automaton. We present a discussion on the state estimation of timed DES with multiple

clocks, which can be explored by extending the state estimation approach of the single-clock

GTFA.

In Chapter 5, we assume that a system may be subject to multiple types of attacks, each

of which is described by its own attack dictionary. Furthermore, we distinguish between

constant attacks, which corrupt observations by using only one of the attack dictionaries,

and switching attacks, which may use different attack dictionaries at different steps. The

problem we address is that of detecting if a system has been attacked and, if so, which

attack dictionaries have been used. To solve this problem, we construct a new structure

that describes the observations generated by a system under attack: in particular different

structures correspond to a system subject to a constant and to a switching attack. We show

7

Doctoral Dissertation of Università degli Studi di Cagliari

that the problem of attack detection can be reduced to a classical problem of state estimation

or fault diagnosis for these new structures. We note that it is worth investigating how the

knowledge of the timing structure and the time instants in which observable events occur can

be exploited for the attack detection problem. We present a formalization of the corruption

of timed observation considering attacks over a set of attack dictionaries and discuss the

perspective of attack detection of timed DES.

In Chapter 6, conclusions of this dissertation are drawn while potential future directions

are suggested.

8

Chapter 2 Preliminaries

Chapter 2 Preliminaries

This chapter recalls some basic notions that will be used in this dissertation. First, we

introduce the notions related to automata. After that, we present the classic approaches for

state estimation and diagnosis of automata, respectively. Finally, we provide a sketch of

timed DES by introducing the concepts of clocks, timing structure, and time intervals.

2.1 Automata

The state space of DES is a discrete set and transitions from one state to another are

caused by event occurrences. Given an alphabet E representing a set of events, we denote

byE∗ the set of all finite strings onE, including the empty word ε. A string of events s ∈ E∗

is also called a word on E.

The concatenation of two words s1 ∈ E∗ and s2 ∈ E∗ is a new word s = s1 · s2 ∈ E∗

composed by the sequence of symbols in s1 followed by the sequence of symbols in s2.

Automata is a type of formalism of DES.

Definition 2.1 A deterministic finite automaton (DFA) is a four-tuple Q = (X,E, δ, x0),

where

• X is a finite set of states;

• E is an alphabet of events;

• δ : X × E → X is a transition function;

• x0 ∈ X is an initial state. �

The transition function δ is considered as a partial function, namely there may exist

pairs (x, e) ∈ X × E such that δ(x, e) is not defined in Q. We write δ(x, e)! to denote that

function δ is defined for the pair (x, e) in Q.

Definition 2.2 Given a DFA Q = (X,E, δ, x0), we define the transitive and reflexive clo-

sure of the transition function δ as a function δ∗ : X × E∗ → X such that δ∗(x, s) = xk if

there exists a path in Q:

x
e1−→ x1

e2−→ x2 · · ·
ek−→ xk,

9

Doctoral Dissertation of Università degli Studi di Cagliari

where ei ∈ E(i ∈ {1, 2, · · · , k}) and s = e1e2 . . . ek is a set of events. Specifically, we write

δ∗(x, ε) = x for all x ∈ X . We use δ∗(x, s)! (i.e., δ∗(x, s) is defined) to denote that from

state x there is a sequence of events s such that δ∗(x, s) = x′ ∈ X holds. �

Definition 2.3 Given a DFA Q = (X,E, δ, x0), the language of Q is defined as the set of

all generated words L(Q) = {s ∈ E∗|δ∗(x, s)! ∈ ∆∗} ⊆ E∗. �

The number of events that form a word s is called its length and is denoted by |s|, while

|s|e denotes the number of occurrence of events e ∈ E in s.

Definition 2.4 Given a string s ∈ L(Q), the support of s is defined as ||s|| = {e ∈ E |
|s|e > 0} ⊆ E, which consists of the set of events that appear at least once in the string. �

Example 2.1 A DFA Q with X = {x0, x1, x2}, E = {a, b, c, d}, and the initial state x0 is

graphically shown in Fig. 2.1. The transition function corresponds to Q is depicted in Table

2.1. For instance, the value x1 at the intersection between row x0 and column a denotes that

δ(x0, a) = x1. The symbol “-” represents that the corresponding transition is not defined.

The DFA Q can model a robot that loads parts. The physical meaning corresponding to each

state/event is depicted in Table 2.2. For instance, δ∗(x0, ab) = x0 implies that after the robot

grasps a part and loads it correctly, it returns to the idle state. Denoting s = ab, it is |s| = 2,

|s|a = 1, and |s|b = 1. The support of s is ||s|| = {a, b}. �

Fig. 2.1 DFA Q = (X,E, δ, x0).

Table 2.1 Transition function corresponds to the DFA in Fig. 2.1.

δ a b c d
x0 x1 - - -
x1 - x0 x2 -
x2 - - - x0

10

Chapter 2 Preliminaries

Table 2.2 Physical meaning of states and events in Fig. 2.1.

x0 Idle state.
x1 Loading state.
x2 Error state.
a Robot grasps one part.
b One part is correctly loaded.
c One part is incorrectly positioned.
d One part is repositioned.

Definition 2.5 A nondeterministic finite automaton (NFA) is a four-tuple Qnd = (X,E ∪
{ε},∆, X0), where

• X is a finite set of states;

• E ∪ {ε} is an alphabet of events;

• ∆ ⊆ X × (E ∪ {ε})×X is the transition relation;

• X0 ⊆ X is the set of initial states, which may include more than one state in X . �

Definition 2.6 Given an NFA Qnd = (X,E ∪ {ε},∆, X0), the transitive and reflexive

closure of the transition relation ∆ is the relation ∆∗ ⊆ X×E∗×X such that (x,w, xk) ∈ ∆∗

if there exists a path in Q:

x
e1−→ x1

e2−→ x2 · · ·
ek−→ xk,

where ei ∈ E(i ∈ {1, 2, · · · , k}) and w = e1e2 . . . ek is a set of events. By convention,

(x, ε, x) ∈ ∆∗ for all x ∈ X , i.e., starting from a state and generating the empty word (which

may corresponds to an ε-transition or not) the automaton remains in the same state. �

Definition 2.7 Given an NFA Qnd = (X,E ∪ {ε},∆, X0), the language of Q is defined as

the set of all generated words L(Q) = {w ∈ E∗|(∃x ∈ X)(x0, w, x) ∈ ∆∗} ⊆ E∗. �

Example 2.2 Fig. 2.2 shows an NFA Qnd = (X,E ∪ {ε},∆, x0), where X = {x0, x1,

x2, x3}, E = {a, b}, X0 = {x0}, and rhe transition relation is given by ∆ = {(x0, ε, x2),

(x1, a, x1), (x1, b, x0), (x1, b, x2), (x2, a, x3), (x3, a, x1), (x3, a, x3)}. The transition relation

∆ introduces two different nondeterministic primitives:

• The transition labeled with the empty word ε describes an event that occurs without

being observed, namely (x0, ε, x2);

• Two or more transitions outgoing from the same state and having the same label

describe indistinguishable events: (x1, b, x0) and (x1, b, x2), (x3, a, x1) and (x3, a, x3).

11

Doctoral Dissertation of Università degli Studi di Cagliari

Fig. 2.2 NFA Qnd = (X,E ∪ {ε},∆, x0).

In addition, it is (x0, εaab, x2) ∈ ∆∗. �

Definition 2.8 Given two automata Q1 = (X1, E1, δ1, x01) and Q2 = (X2, E2, δ2, x02), the

parallel composition ofQ1 andQ2 is denoted byQ1‖Q2 = (X1×X2, E1∪E2, δ, (x01, x02)),

where

δ((x1, x2), e) =

(δ1(x1, e), x2) if e ∈ E1 \ E2

(x1, (δ2(x2, e)) if e ∈ E2 \ E1

(δ1(x1, e), (δ2(x2, e)) if e ∈ E1 ∩ E2

undefined otherwise

�

Example 2.3 Consider DFA Q1 and Q2 shown in Fig. 2.3(a) and Fig. 2.3(b), respectively.

The parallel composition of Q1 and Q2 is depicted in Fig. 2.3(c). �

(a) DFA Q1. (b) DFA Q2.

(c) Parallel composition Q1||Q2.

Fig. 2.3 Parallel composition of two DFA.

An NFA Qnd can always be transformed into a language-equivalent DFA, which gen-

erates the same languages as the original NFA. We denote

Dε(x) = {x̄ ∈ X | (x, ε, x̄) ∈ ∆∗}

12

Chapter 2 Preliminaries

as the states reachable from x executing zero or more ε-transitions, and

De(x) = {x̄ ∈ X | (x, e, x̄) ∈ ∆}

as the states reachable from x executing exactly one e-transition. The procedure for trans-

forming an NFA to an equivalent DFA is provided by the following algorithm.

Algorithm 1 Construction of a DFA equivalent to an NFA
Input: An NFA Q = (X,E ∪ {ε},∆, x0)
Output: A DFA Q = (X ′, E, δ′, x′0) with L(Q) = L(Q′)
1: let x′0 = D∗ε(x0), X ′ = ∅, and X ′new = {x′0}
2: while X ′new 6= ∅ do
3: select a state x′ ∈ X ′new
4: for each e ∈ E do
5: define α(x′, e) =

⋃
x∈x′

De(x) and β(x′, e) =
⋃

x∈α(x′,e)

Dε (x)

6: let x̄′ = β(x′, e) and δ′(x′, e) = x̄′

7: if x̄′ /∈ X ′ ∪X ′new then
8: let X ′new = X ′new ∪ {x̄′}
9: end if

10: end for
11: let X ′ = X ′ ∪ {x′} and X ′new = X ′new \ {x′}
12: end while
13: return Q = (X ′, E, δ′, x′0).

Example 2.4 Consider again the NFA Qnd = (X,E ∪ {ε},∆, x0) in Fig. 2.2. The sets

Dε(x), Da(x), and Db(x) for each state x ∈ X are reported in Table 2.3. According to

Algorithm 1, the DFA equivalent to Qnd is depicted in Fig. 2.4. �

Table 2.3 Dε(x), Da(x), and Db(x) for each state x of Qnd in Fig. 2.2.

x Dε(x) Da(x) Db(x)
x0 {x0, x2} ∅ ∅
x1 {x1} {x1} {x0, x2}
x2 {x2} {x3} ∅
x3 {x3} {x1, x3} ∅

Fig. 2.4 DFA equivalent to Qnd in Fig. 2.2.

13

Doctoral Dissertation of Università degli Studi di Cagliari

2.2 State Estimation of Automata

In this section, we are interested in a different interpretation of the equivalence between

DFAs and NFA that originates from systems theory. We consider partially-observed DES

with an alphabet E partitioned into two disjoint subsets Eo and Euo, where Eo is the set of

observable events and Euo is the set of unobservable events. Motivated by the notion of ε-

transitions in an NFA as events that occur in the system but cannot be observed by an outside

observer of the system behavior, an NFA can be seen as a model of partially-observed plant

and its equivalent DFA is an observer, that allows one to estimate the state of plant.

Definition 2.9 Given a word in E∗, the observation is defined via the projection operator

P : E∗ −→ E∗o defined as P (ε) = ε, and for all w ∈ E∗ and e ∈ E,

P (we) =

{
P (w)e if e ∈ Eo
P (w) if e ∈ Euo.

�

Definition 2.10 The set of states of Q consistent with a given observation w is defined as

X (w) = {x ∈ X|(∃s ∈ L(Q))P (s) = w, δ(x0, s) = x}.

�

The sketch of the state estimation problem is depicted in Fig. 2.5. A partially-observed

plantQ produces a string s ∈ L(Q), and the mask projects s to an observation w. In plantQ,

the same observation w may be generated by different runs, all starting from the initial state

but possibly leading to different states. Thus there is an uncertainty on the current state of

Q reached after w has been generated. State estimation aims to obtain the observer Obs(Q)

that computes for each word w the set of consistent states X (w).

Fig. 2.5 Sketch of the state estimation for a partially-observed plant.

Remark 2.1 Given an NFA Qnd = (X,E ∪ {ε},∆, x0) we can use the DFA equivalent to

Qnd as observer, i.e., Obs(Qnd) = Q′ = (X ′, E, δ′, x′0). In fact:

• the language generated by Qnd and Q′ are identical, i.e., L(Qnd) = L(Q′);

14

Chapter 2 Preliminaries

• for all w ∈ L(Q) it holds that X (w) = δ′∗(x′0, w), i.e., if the word w leads to x′ =

δ′∗(x′0, w) ⊆ X in Q′, then X (w) = x′. �

Example 2.5 Consider again Qnd = (X,E ∪ {ε},∆, x0) shown in Fig. 2.2. The equivalent

DFA shown in Fig. 2.4 is the observer for the partially observable plant Qnd by treating

observable events Eo = E and unobservable events Euo = ε, denoted by Obs(Qnd) =

(Xobs, E, δobs, x0,obs). The state space of the Obs(Qnd) is a subset of the power set of the

state space of Qnd. Considering the alphabet of Qnd is E ∪ {ε}, the observer Obs(Qnd)

keeps track of the estimate of the state ofQnd upon transitions labeled by events in E. Given

an observation w = aaa, it is X (w) = {x1, x3} according to δobs(x0,obs, aaa) = {x1, x3}. �

2.3 Fault Diagnosis of Automata

In many applications where the model of the system contains events that are unobserv-

able, we may be interested in determining whether some of those unobservable events have

occurred in the strings generated by the system. By modelling those unobservable events of

interest as faults of a system, the problem of fault diagnosis aims to determining if one of

these faults has occurred.

Consider an automaton Q that models both the normal and the faulty behavior, the

alphabet can be partitioned as E = Eo ∪Euo. The set of unobservable events can be further

partitioned as Euo = Ef ∪ Ereg, where Ef is the set of fault events and Ereg is the set

of regular events that do not describe a faulty behavior. Assume that Q does not contain

cycles of unobservable events. The diagnosis problem consists in determining if a fault has

occurred based on the observed word w ∈ E∗o , i.e., if an evolution containing a transition

labeled with a fault in Ef has produced the observation w.

Definition 2.11 Given a plant Q with alphabet E = Eo ∪ Euo and set of fault events Ef ⊆
Euo, a diagnosis function φ : E∗o → {N,F, U} associates to each observed word w ∈ E∗o a

diagnosis state φ(w) ∈ {N,F, U}, where

• φ(w) = N if ||s|| ∩ Ef = ∅ holds for all s ∈ P−1(w), namely no string s containing

a fault event is consistent with w, hence no fault has occurred.

• φ(w) = F if ||s|| ∩ Ef 6= ∅ holds for all s ∈ P−1(w), namely all strings consistent

with w contains a fault event, hence a fault has occurred certainly.

• φ(w) = U if there exists s′, s′′ ∈ P−1(w) such that ||s′|| ∩ Ef = ∅ and ||s′′|| ∩ Ef 6=
∅. That is to say, there exists two strings s′, s′′ consistent with the w: s′ contains a

15

Doctoral Dissertation of Università degli Studi di Cagliari

fault event and s′′ does not contain a fault event. Hence a fault may or may not have

occurred. �

Example 2.6 Consider the automaton in Fig. 2.6. The set of observable events is Eo =

{a, b, c}, while the set of unobservable events is Euo = {ε1, εf}. In particular, the set of

unobservable regular events is Ereg = {ε1}, and set of unobservable fault events is Ef =

{εf}. Given three observations w1 = a, w2 = b, and w3 = aa, it can be inferred that:

• P−1(w1) = {a, aεf}, X (w1) = {x0, x2}, and φ(w) = U ;

• P−1(w2) = {b, bε1}, X (w2) = {x0, x1}, and φ(w) = N ;

• P−1(w3) = {aεfa, aεfaεf}, X (w3) = {x0, x2}, and φ(w) = F . �

Fig. 2.6 Plant Q with a set of unobservable fault events Ef = {εf}.

Concerning n(n ≥ 1) different fault classes Ef,1, Ef,2, · · · , Ef,n, one can separately

determine if a fault in Ef,i(1 ≤ i ≤ n) has occurred. The fault diagnosis for Ef,1, Ef,2, · · · ,
Ef,n can be done by solving n diagnosis problems, i.e., constructing n diagnosis functions

φi for i = 1, · · · , n. As shown in Fig. 2.7, given a partially observable plant Q with a set

of fault events Ef , a diagnoser Diag(Q) can be used to track the behavior of a plant and

diagnosis prior occurrence of fault events in Ef .

Fig. 2.7 Sketch of the fault diagnosis for a partially-observed plant.

Definition 2.12 Given an alphabet E and a set of fault events Ef ⊆ E, a fault monitor is

defined as a DFA M = (XM , E, δM , xM,0), where

• the set of states is XM = {N,F};

16

Chapter 2 Preliminaries

• the initial state is xM,0 = N ;

• the transition function is δM : XM ×E → XM such that δM(N, e) = N if e ∈ E \Ef ,

δM(N, e) = F if e ∈ Ef , and δM(F, e) = F for all e ∈ E. �

Given a string s ∈ E∗, it holds that δM(N, e) = N if and only if ||s|| ∩ Ef = ∅, i.e.,

strings involving no a fault event lead to state N in the fault monitor, while strings involving

one or more fault event lead to state F .

Definition 2.13 Given DFA Q = (X,E, δ, x0) with alphabet E and a set of fault events

Ef ⊆ E, let M = (XM , E, δM , xM,0) be its fault monitor. The fault recognizer for Q is

defined as the DFA Rec(Q) = Q ‖M = (XR, E, δR, xR,0), where

• the set of states is XR ⊆ X × {N,F};

• the initial state is xR,0 = (x0, N);

• the transition function is δR : XR × E → XR. Given a string s ∈ L(Q) such that

δ(x0, s) = x, it is δR((x0, N), s) = (x,N) if ||s||∩Ef = ∅; otherwise, δR((x0, N), s) =

(x, F). �

Definition 2.14 Given a DFA Q with alphabet E and a set of fault events Ef ⊆ E, let

Rec(Q) be its fault recognizer. The diagnoser of Q is the DFA Diag(Q) = Obs(Rec(Q)) =

(Y,Eo, δy, y0), where

• Y ⊆ (X × {N}) ∪ (X × {F}), i.e., each state of the diagnoser is a set of pairs

y = {(x1, γ1), · · · , (xk, γk)} such that xi ∈ X and γi ∈ {N,F} for i = 1, 2, · · · , k.

•
δ∗y(y0, w) = {(x,N) | (∃s ∈ P−1(w))δ∗(x0, s) = x, ||s|| ∩ Ef = ∅}

∪{(x, F) | (∃s ∈ P−1(w))δ∗(x0, s) = x, ||s|| ∩ Ef 6= ∅},

i.e., starting from y0 the string w leads to state containing: (a) all pairs (x,N) where

x can be reached in Q executing a string consistent with w that does not contain a

fault event; and (b) all pairs (x, F) where x can be reached in Q executing a string

consistent with w that contains a fault event. �

Diagnosers are similar to observers with the difference that labelsN and F are attached

to the states of Q in the states of Diag(Q), where N implies a fault event has occurred and

N implies a fault event has not occurred. We associate a diagnosis value φ(y) to each state

y = {(x1, γ1), · · · , (xk, γk)} of Diag(Q) such that

17

Doctoral Dissertation of Università degli Studi di Cagliari

• φ(y) = N if γi = N for i = 1, · · · , k;

• φ(y) = F if γi = F for i = 1, · · · , k;

• φ(y) = U if there exist i, j ∈ {1, · · · , k} such that γi = N and γj = F .

Example 2.7 Consider again the automaton Q in Fig 2.6 with Euo = {ε1, εf} and Ef =

{εf}. The diagnoser of Q is shown in Fig. 2.8, denoted by Diag(Q) = (Y,Eo, δy, y0). The

details for each state y ∈ Y is reported in Table 2.4. �

Fig. 2.8 Diagnoser Diag(Q), where Q in Fig 2.6.

Table 2.4 Details for each state of Diag(Q) = (Y,Eo, δy, y0) in Fig. 2.8.

y ∈ Y φ(y)
y0 = {(x0, N)} N

y1 = {(x2, N), (x0, F)} U
y2 = {(x0, F), (x2, F)} F
y3 = {(x0, N), (x1, N)} N
y4 = {(x0, F), (x1, F)} F

2.4 Sketch of Timed DES

In this section, we concentrate on timed models of DES. The most straightforward

instance of time-driven dynamics is the case of adjoining one or more clocks to the untimed

DES model, resulting in a timed model. The modelling framework for timed DES can be

created by associating untimed DES with a timing structure that determines when the clocks

would have to be reset and describes the timing constraints associated with the occurrences

of each event. A timing structure can be provided by introducing the notion of the time

semantics, which specify: (a) the enabled events at each discrete state, and (b) if the system

can stay at a discrete state forever.

18

Chapter 2 Preliminaries

The production of a timed DES consists of event sequences associated with a certain

form of timing information rather than sequences of untimed events in the case of untimed

DES. For instance, let tk, where k = 1, 2, · · · , denote the time instant when the k-th event

occurs, then a production of a timed DES can be described by the sequence (e1, t1)(e2,

t2) · · · (ek, tk). Note that t1, · · · , tk are absolute time, namely t1 ≤ t2 ≤ · · · ≤ tk. The

evolution of a timed DES is illustrated via the following example.

Example 2.8 Consider the DFA Q = (X,E, δ, x0) in Example. 2.1 endowed with clocks θ1

and θ2, where θ1 records the time dwelled at each discrete state and θ2 records the time for

a robot positioning a part correctly. Given a production (a, t1)(c, t2)(d, t3)(a, t4)(b, t5), Fig.

2.9 and Fig. 2.10 report the evolution of Q and the evolution of clocks with time elapses,

respectively. In more detail, it evolves from the initial state x0 to x1 with the occurrence of

event a at t1. Meanwhile, clock θ1 is reset to 0 and clock θ2 continues the previous value at

t1. Next, events c and d occurs at t2 and t3, respectively. Both clocks θ1 and θ2 are reset to 0

at t3. �

Fig. 2.9 State evolution of the DFA Q in Example. 2.1 with time elapses.

In this dissertation, we consider two types of timed DES models in Chapter 3 and

Chapter 4, respectively. The time semantics in Chapter 3 constrains the dwell time at each

discrete state, while the time semantics in Chapter 4 allows the system stays at a discrete state

forever. Both of the models are endowed with a single clock, and their timing structures

specify timing constraints of event occurrences using time intervals. We introduce the

following notions related to time intervals and used throughout this dissertation.

By denoting the sets of non-negative real numbers and natural numbers as R≥0 and N,

respectively, the set of real numbers in R≥0 lying between a lower bound Il ∈ N and an

upper bound Iu ∈ N∪ {+∞} is said to be a time interval. A closed time interval is denoted

by [Il, Iu]. In addition, an open segment (Il, Iu) and a semi-open segment [Il, Iu) or (Il, Iu]

can also be time intervals. We denote the set of all time intervals and the set of all closed

time intervals as I and Ic, respectively, where Ic ⊆ I.

19

Doctoral Dissertation of Università degli Studi di Cagliari

(a) Evolution of clock θ1.

(b) Evolution of clock θ2.

Fig. 2.10 Evolution of clocks θ1 and θ2 associated with the DFA Q in Example. 2.1.

Definition 2.15 The addition operation on two time intervals I1, I2 ∈ I is defined as I1

⊕
I2

= {t1 + t2 ∈ R≥0 | t1 ∈ I1, t2 ∈ I2}. That is to say, given Ii = [Il,i, Iu,i], i = 1, 2, we have

I1

⊕
I2 = [Il,1 + Il,2, Iu,1 + Iu,2]. The addition operation can be extended to n (n > 1) time

intervals in a set {I1, · · · , In}, i.e., I1

⊕
· · ·
⊕

In = ((I1

⊕
I2)
⊕
· · ·)

⊕
In, denoted as

n⊕
i=1

Ii. �

Definition 2.16 The distance range between two time intervals I1, I2 ∈ I is defined as

D(I1, I2) = {|t1 − t2| | t1 ∈ I1, t2 ∈ I2}. �

Example 2.9 Given two time intervals I1 = [0, 1) and I2 = [3, 4], it holds that I1

⊕
I2 =

[3, 5) and D(I1, I2) = (2, 4]. �

20

Chapter 3 State Estimation of Timed Finite Automata

Chapter 3 State Estimation of Timed Finite Automata

In this chapter, we introduce a model of timed DES, called timed finite automata (TFA),

characterized by a single clock that is reset to zero after each event occurrence. Each

transition is associated with a time interval to specify when it may occur. In addition, we

consider a type of time semantics that specifies the maximal dwell time at a discrete state.

This chapter considers partially observed TFA, where some of the event occurrences are

observable, and others are unobservable.

We consider the information coming from the observation of observable events at

certain time instants, and aim at estimating and updating the set of states consistent with

the whole observation. The proposed solution is based on a purely discrete event description

of the behaviour of the TFA, associating a finite state automaton called a zone automaton.

We present that the problem of state reachability of the TFA can be reduced to the state

reachability analysis in the associated zone automaton. An algorithm is formulated to update

the state estimation of the timed automaton based on the observation of events and on the

current time instant. As an application of the proposed state estimation approach, we address

the problem of fault diagnosis in the function of measured timed observations, assuming that

faulty behaviours are described by means of timed transitions.

This chapter is divided into five sections. The first section introduces the TFA model

and related notions. The second section introduces the notions of region automaton and

zone automaton, which are NFA that provide a purely discrete event description of the

behaviour of a TFA of interest. Compared to the region automaton, the zone automaton is

more compact and thus more efficient in practical cases; consequently, the state estimation

approach is based on the zone automaton. We then study the dynamics of a zone automaton

and show that the problem of investigating the reachability of a TFA can be reduced to the

reachability analysis of a zone automaton.

In the third section, we deal with the state estimation problem, considering two sub-

problems: (a) state estimation as time passes without receiving any new observation; (b)

state estimation based on the observation of events and the current time. An algorithm

summarizes our proposed approach to compute the set of states consistent with a timed

observation. In the fourth section, we assume that the timed system may be affected by a

set of faults described by timed transitions, the occurrence of which changes the state of the

plant and resets the clock. We present an approach to construct a fault recognizer that not

21

Doctoral Dissertation of Università degli Studi di Cagliari

only provides the estimated discrete states associated with a range of clock values, but also

detects the occurrence of faults. The fault diagnosis problem is solved by investigating the

reachability of the fault recognizer. The fifth section concludes this chapter.

3.1 Timed Finite Automata

This section provides preliminary notions used throughout this chapter.

Definition 3.1 A timed finite automaton (TFA) is a 5-tuple G = (X,E,∆,Γ, X0), where

• X is a finite set of states,

• E is a finite set of events,

• ∆ ⊆ X × E ×X is a transition relation,

• Γ : ∆→ I is a timing function,

• X0 ⊆ X is the set of initial state. �

We assume that the automaton operates under a single clock, which is reset at each

event occurrence, i.e., each time the system enters in a state. The transition relation and the

timing function specify the dynamics of the TFA. In more detail, given two states x, x′ ∈ X
and an event e ∈ E, (x, e, x′) ∈ ∆ denotes that the occurrence of event e leads to state x′

when the TFA is in state x. The timing function Γ maps the transition (x, e, x′) to a time

interval, which specifies a range of clock values at which the event e may occur. We further

define Γl : ∆→ N (resp., Γu : ∆→ N∪ {+∞}) as the lower (resp., upper) timing function

associating a transition in ∆ to the left (resp., right) bound of the time interval associated

with it. Therefore Γ((x, e, x′)) = [Γl((x, e, x
′)),Γu((x, e, x

′))]. In simple words, a TFA

G = (X,E,∆,Γ, X0) is a NFA G = (X,E,∆, X0) endowed with a time structure Γ that

associates with each transition in ∆ a time interval in Ic.
A TFA G = (X,E,∆,Γ, X0) can be represented by a graph, where a state x ∈ X

corresponds to a node, and each initial state in X0 is marked by an input arrow. For each

transition (x, e, x′) ∈ ∆ with Γ((x, e, x′)) = I , there exists a directed edge from x to x′

labeled with the symbol e and the time interval I .

Example 3.1 Consider the TFAG = (X,E,∆,Γ, X0) withX = {x0, x1, x2},E = {a, b, c},
∆ = {(x0, a, x1), (x0, a, x2), (x1, b, x2), (x2, c, x0)} and X0 = {x0}. Let the timing function

Γ be defined as in Table 3.1. The graphical representation of G is visualized in Fig. 3.1. �

22

Chapter 3 State Estimation of Timed Finite Automata

Table 3.1 The timing function of the TFA G in Fig. 3.1.

δ ∈ ∆ (x0, a, x1) (x0, a, x2) (x1, b, x2) (x1, b, x2)
Γ(δ) [0, 1] [1, 2] [1, 2] [0, 1]
Γu(δ) 1 2 2 1

Fig. 3.1 TFA G.

Definition 3.2 Given a TFA G = (X,E,∆,Γ, x0), a timed run p of length k is a sequence

of k + 1 states x(i) ∈ X , i = 0, · · · , k, and k pairs (ei, ti) ∈ E × R≥0, i = 1, · · · , k,

represented as

ρ : x(0)
(e1,t1)−−−→x(1)

(e2,t2)−−−→x(2)
(e3,t3)−−−→· · · (ek,tk)−−−→x(k)

such that the following two conditions are satisfied for all i = 1, · · · , k:

(x(i−1), ei, x(i)) ∈ ∆, (3-1)

ti − ti−1 ∈ Γ((x(i−1), ei, x(i))), (3-2)

where t0 = 0. The set of timed runs generated by G is denoted asR(G). �

In addition, the following notations are used in this chapter:

• σ(ρ) = (e1, t1)(e2, t2) · · · (ek, tk) ∈ (E×R≥0)∗ is the timed word generated by run ρ;

• S(σ(ρ)) = e1e2 · · · ek is the logical word generated by timed run ρ, where S : (E ×
R≥0)∗ → E∗;

• xst(ρ) = x(0) is the starting state of a timed run ρ;

• xen(ρ) = x(k) is the ending state of a timed run ρ;

• ten(ρ) = tk is the ending time of run ρ.

• T (ρ) = tk is the duration of ρ. According to Definition 2.15, it clearly implies T (ρ) ∈
k−1⊕
i=0

Γ(x(i), ei+1, x(i+1)).

23

Doctoral Dissertation of Università degli Studi di Cagliari

Given a timed run ρ of length 0 that only contains the starting state x(0) and no tran-

sition, the logical word and the timed word generated by ρ are denoted respectively as

S(σ(ρ)) = ε and σ(ρ) = λ, where λ denotes the empty timed word in E × R≥0. For the

timed word σ(ρ) generated from an arbitrary timed run ρ, it is λ · σ(ρ) = σ(ρ) = σ(ρ) · λ.

Example 3.2 Consider a possible run of the TFA in Fig. 3.1. A timed run ρ : x0
(a,0.5)−→

x1
(b,2)−→ x2

(c,2)−→ x0 has length 3: it starts from x0 at the initial time t0 = 0 and produces

the logical word S(σ(ρ)) = abc leading to state xen(ρ) = x0. The timed word σ(ρ) =

(a, 0.5)(b, 2)(c, 2) corresponds to events a, b, and c occurring at time instants t1 = 0.5,

t2 = 2, and t3 = 2, respectively. The final time of the run is ten(ρ) = 2. The production

involves 3 transitions, namely (x0, a, x1), (x1, b, x2), and (x2, c, x0). �

Different types of semantics pose additional constraints on how long a TFA dwells at

each state while generating a timed run. In this paper we consider a type of time semantics

that specifies the maximal dwell time at a state.

Definition 3.3 Given a TFA G = (X,E,∆,Γ, X0), the maximal dwell time at state x ∈ X
is defined as dmax(x) = max{Γu((x, e, x′))|(x, e, x′) ∈ ∆} if there exist x′ ∈ X and e ∈ E
such that (x, e, x′) ∈ ∆; otherwise dmax(x) =∞. �

A TFA cannot stay in x ∈ X if the clock takes a value larger than the maximal dwell

time at x, i.e., dmax(x). If there exists no enabled transition at x ∈ X , then dmax(x) = ∞,

implying that G can stay at x indefinitely. Meanwhile, if there exists one or more enabled

transitions at x, the maximal dwell time at x is equal to the maximum upper bound of the

intervals of such transitions. It implies that all such transitions are candidates to occur.

However, a transition has to be fired once the clock at x reaches the maximal dwell time at

x.

Example 3.3 For the TFA in Fig. 3.1, it is dmax(x0) = 2, which implies that the TFA G

cannot remain in state x0 while the clock value is larger than 2. Analogously, it is dmax(x1) =

2 and dmax(x2) = 1. �

Definition 3.4 Given a TFA G = (X,E,∆,Γ, X0), a timed run ρ of length k ≥ 0 and a

time instant t ∈ R≥0, a timed evolution of G from 0 to t is defined by a pair (σ(ρ), t) ∈
(E × R≥0)∗ × R≥0, where 0 ≤ t− ten(ρ) ≤ dmax(xen(ρ)). Furthermore, we denote as

E(G, t) = {(σ(ρ), t) | (∃ρ ∈ R(G)) xst(ρ) ∈ X0,
0 ≤ t− ten(ρ) ≤ dmax(xen(ρ))}

the timed language of G from 0 to t. �

24

Chapter 3 State Estimation of Timed Finite Automata

In other words, a timed evolution of G from 0 to t is defined as a pair whose first entry

is a timed word σ(ρ), where ρ starts at 0 from an initial state in X0, and whose second entry

is the time instant t, where the time semantics constrains the time that the system may stay

in the ending state xen(ρ), namely t − ten(ρ), to be less than or equal to the maximal dwell

time of xen(ρ). The timed language of G from 0 to t contains all possible timed evolutions

of G from 0 to t.

Definition 3.5 Given a TFA G = (X,E,∆,Γ, x0) and a timed run p, a timed word σ(ρ) ∈
(E × R≥0)∗ generated by run ρ can be written as

σ(ρ) = σ(ρ1) · σ(ρ2)

where ρ1 and ρ2 are runs that can be generated by G such that xf (ρ1) = xini(ρ2), then σ(ρ1)

is called a prefix of σ(ρ), denoted as σ(ρ1) � σ(ρ). �

3.2 Region Automaton and Zone Automaton

In this section, we introduce two models, namely region automaton and zone automa-

ton, that are NFA providing a purely discrete event description of the behaviour of a TFA

of interest. Each state of the region (resp., zone) automaton consists of a pair whose first

element is a discrete state of the TFA and whose second element is a region (resp., zone),

specifying a range of clock values. In other words, each state of the region (resp., zone)

automaton is associated with a single discrete state but provides only a coarse estimate of

the clock value.

In detail, a region automaton is constructed based on the equal partitioning of the

time dwell at each state into time regions. In contrast, a zone automaton is proposed by

partitioning the time spent at each state into zones, which can be determined by analysing the

firability of transitions from that state; consequently, the zone automaton is more compact

and thus more efficient in practical cases. After that, we investigate the dynamics of a zone

automaton and show that the problem of investigating the reachability of a TFA can be

reduced to the reachability analysis of a zone automaton.

This section is divided into three subsections. The first and second subsections intro-

duce the notions of region automaton and zone automaton, respectively. The third subsection

analyses the dynamics of a zone automaton.

25

Doctoral Dissertation of Università degli Studi di Cagliari

3.2.1 Region Automaton

In this section we introduce a region automaton, which is based on partitioning the time

intervals into regions according to the following definition.

Definition 3.6 The set of regions of a time interval [h, k] ∈ I is defined as

R[h,k] = {[h, h], (h, h+ 1), [h+ 1, h+ 1], · · · , [k, k]} (3-3)

and the successive region of r ∈ R[h,k] is defined as

φ(r) =

{
[j, j] if r = (j − 1, j)

(j − 1, j) if r = [j − 1, j − 1]
(3-4)

where h < j ≤ k. �

In more detail, a generic time interval [h, k] ∈ I is divided into 2(k − h) + 1 regions

consisting in the integer points belonging to the interval and the open segments between

them. The successive region of a closed region is an open region and vice versa. Given a

region r ∈ R[h,k] \ {[k, k]}, it is obvious that φ(r) ∈ R[h,k]. Given t ∈ r and t′ ∈ φ(r),

τ = t′− t ∈ (0, 1) is referred to as a time transfer unit which leads a time instant in a region

to another time instant in its successive region.

Based on the regions, we explore the time evolution of a state in a TFA by the following

definition.

Definition 3.7 Given a TFA G = (X,E,∆,Γ, x0),

R(x) =

{
R[0,dmax(x)] if dmax(x) 6= +∞,

{[0, 0], (0,+∞)} if dmax(x) = +∞. (3-5)

is defined by the set of regions of a state x ∈ X . �

When entering a state x ∈ X , the clock is reset. If the maximal dwell time at x is not

+∞, which implies that there exists an output transition from x, then the set of regions of

state x includes all regions in the interval [0, dmax(x)], i.e., the regions to which the clock

may belong while the system is in a state x. While the system is in state x with a clock value

t ∈ r, an elapsed time τ leads the clock to t′ ∈ φ(r) if it is φ(r) ∈ R(x). If the maximal

dwell time at x equals to +∞, indicating that the system may stay at x forever, then the set

of regions of x is composed of two regions, namely [0, 0] and (0,+∞). An elapsed time

τ leads the clock from t ∈ [0, 0] to t′ ∈ (0,+∞). To study the time evolution and state

evolution of a TFA, we introduce the notion of region automaton as follows.

26

Chapter 3 State Estimation of Timed Finite Automata

Definition 3.8 Given a TFA G = (X,E,∆,Γ, X0), the region automaton of G is an au-

tomaton Gr = (V,Eτ ,∆r, V0), where

• V ⊆ X ×
⋃
x∈X

R(x) is a finite set of states,

• Eτ = E ∪ {τ} is an alphabet,

• ∆r ⊆ V × Eτ × V is a transition relation, and

• V0 = {(x, [0, 0]) | x ∈ X0} ⊆ V is the initial state. �

We use a region automaton to describe the time evolution and state evolution of a TFA.

Each state of a region automaton is the Cartesian product of a state x ∈ X and a region

r ∈ R(x); the alphabet contains the symbol τ (which corresponds to time evolution) and

a finite set of events E (which cause state evolution). The transition function specifies the

dynamics of the automaton: if δ(v, e, v̄) ∈ ∆r then the occurrence of event e ∈ E leads to

state v̄ from v; if δ(v, τ, v′) ∈ ∆r then a transition labeled with a time transfer unit leads to

state v′ from v. The initial state is the pair (x0, [0, 0]) denoting that the initial state of G is

x0 and the clock is initialized at 0.

Given a TFA G = (X,E,∆,Γ, X0), Algorithm 2 is proposed to construct the region

automaton Gr = (V,Eτ ,∆r, v0). It works as follows. We first initialize V and V0 as

{(x, [0, 0]) | x ∈ X0}, the alphabet Eτ as the union of E and {τ}, and a set Vnew containing

only v0. A loop is iterated while the condition Vnew 6= ∅ holds. A state v = (x, r) in the set

Vnew is selected. If the maximal dwell time at the state x equals to +∞ and r = [0, 0], we

define a state v̄ = (x, (0,+∞)) and a transition (v, τ, v̄) ∈ ∆r. If the maximal dwell time at

the state x is not equal to +∞ and the successive region of r is a region in R(x), we define

a state v̄ = (x, φ(r)) and a transition (v, τ, v̄) ∈ ∆r. We finally add the state v̄ to the set

Vnew. For each e ∈ E, if there exists a transition (x, e, x′) which can fire when the value of

the timer belongs to r, a transition (v, e, v′) ∈ ∆r is defined with v′ = (x′, [0, 0]). State v′

is added to Vnew if it is not already in V ∪ Vnew. At the end of each while loop, we add the

selected state v to V and delete it from Vnew. The while loop stops once Vnew is empty, i.e.,

all states in Vnew have been explored. The algorithm returns Gr = (V,Eτ ,∆r, V0), which

is the region automaton of G = (X,E,∆,Γ, X0). Like any automaton, a region automaton

can be represented as a graph. In particular, here we represent nodes as squares.

Example 3.4 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.1, the region automaton

Gr = (V,Eτ ,∆r, V0) constructed according to Algorithm 2 is shown in Fig. 3.2. The set of

27

Doctoral Dissertation of Università degli Studi di Cagliari

Algorithm 2 Construction of the region automaton associated with a TFA
Input: A TFA G = (X,E,∆,Γ, X0)
Output: The region automaton Gr = (V,Eτ ,∆r, V0) of G
1: let V = V0 = {(x, [0, 0]) | x ∈ X0}, Eτ = E ∪ {τ}, ∆r = ∅, and Vnew = V0

2: while Vnew 6= ∅ do
3: select a v = (x, r) ∈ Vnew
4: if (dmax(x) = +∞) ∧ (r = [0, 0]) then
5: let v̄ = (x, (0,+∞)) and ∆r = ∆r ∪ {(v, τ, v̄)}
6: end if
7: if (dmax(x) 6= +∞) ∧ (φ(r) ∈ R(x)) then
8: let v̄ = (x, φ(r)) and ∆r = ∆r ∪ {(v, τ, v̄)}
9: let Vnew = Vnew ∪ {v̄}

10: end if
11: for each e ∈ E do
12: if ∃x′ ∈ X s.t. ((x, e, x′) ∈ ∆) ∧ (r ∈ Γ(x, e, x′)) then
13: let v̄ = (x′, [0, 0]) and ∆r = ∆r ∪ {(v, e, v̄)}
14: end if
15: if v̄ /∈ V ∪ Vnew then
16: let Vnew = Vnew ∪ {v̄}
17: end if
18: end for
19: let V = V ∪ {v} and Vnew = Vnew \ {v}
20: end while
21: return Gr = (V,Eτ ,∆r, V0).

states is equal to

V = {(x0, [0, 0]), (x0, (0, 1)), (x0, [1, 1]), (x0, (1, 2)), (x0, [2, 2]), (x1, [0, 0]),

(x1, (0, 1)), (x1, [1, 1]), (x1, (1, 2)), (x1, [2, 2]), (x2, [0, 0]), (x2, (0, 1)), (x2, [1, 1])}.

It describes all the possible states in whichG can be with the corresponding possible regions

to which the clock may belong. In particular, V0 = {(x0, [0, 0])} is the initial state. The

alphabet is Eτ = {a, b, c, τ}. For instance, Gr starts from v0 = (x0, [0, 0]), it moves to

v1 = (x0, (0, 1)) by transition (v0, τ, v1), and to v2 = (x1, [0, 0]) by transition (v0, a, v2). �

3.2.2 Zone Automaton

Consider the case of a single transition (x, e, x′) ∈ ∆ going out from a discrete state x ∈
X such that Γ((x, e, x′)) = [99, 100]. The maximal dwell time of x is dmax(x) = 100, and

the set of regions of x isR(x) = [0, 0], (0, 1), [1, 1], (1, 2), · · · , [99, 99], (99, 100), [100, 100],

which includes 101 partitioned regions and leads a large amount of states in the region

automaton. This section proposes zone automaton, which is significantly compact compared

28

Chapter 3 State Estimation of Timed Finite Automata

(0,1) [1,1][0,0]

[0,0] (0,1) [1,1]

(0,1) [1,1][0,0]

(1,2) [2,2]

(1,2) [2,2]

Fig. 3.2 Region automaton of G in Fig. 3.1.

with the region automaton.

In this subsection, we introduce the notion of timed states and propose a method to

partition the dwell time at a discrete state into a set of zones depending on the firability

of transitions. After that, we provide the definition and approach to construct the zone

automaton of a given TFA.

Definition 3.9 Given a TFA G, an timed state is defined as a pair (x, θ), where x is a state

of G and θ ∈ [0, dmax(x)] is the current value of the clock. �

In other words1, a timed state (x, θ) keeps the track of the current clock assignment θ

while G dwells at state x.

Definition 3.10 Given a TFA G = (X,E,∆,Γ, X0), the set of active transitions at a timed

state (x, θ) ∈ X × R≥0 is defined as A(x, θ) = {(x, e, x′) ∈ ∆ | (∃e ∈ E)(∃x′ ∈ X) θ ∈
Γ((x, e, x′))}. �

In simple words, the set of active transitions at a timed state (x, θ) includes all the

transitions that may fire from x with a clock value θ. Note that clearly it is θ ∈ [0, dmax(x)].

The set of active transitions at (x, θ) may vary for different values of θ in [0, dmax(x)]. This

leads to the definition of clock zones associated with a given state x ∈ X .

Definition 3.11 Given a TFA G = (X,E,∆,Γ, X0), the set of zones of x ∈ X is defined

as Z(x) = {[0,+∞)} if dmax(x) = ∞; otherwise it is defined as a set of time intervals

Z(x) = {z0, · · · zn} ⊆ I, n ≥ 0, where the following conditions hold:

1According to the usual terminology in hybrid systems community, the timed state (x, θ) is the hybrid state of the timed
automaton, while x and θ are the discrete and the continuous states of the timed automaton, respectively.

29

Doctoral Dissertation of Università degli Studi di Cagliari

• z0 = [0, 0];

•
n⋃
i=0

zi = [0, dmax(x)];

• θ < θ′ holds for all θ ∈ zi−1 and for all θ′ ∈ zi, where i ∈ {1, · · · , n};

• A(x, θ) = A(x, θ′) holds for all θ, θ′ ∈ zi, where i ∈ {0, · · · , n};

• A(x, θ) 6= A(x, θ′) holds for all θ ∈ zi−1 and for all θ′ ∈ zi, where i ∈ {2, · · · , n}.

In addition, prec(zi) = zi−1 (resp., succ(zi) = zi+1) is said to be the preceding zone (resp.,

succeeding zone) of zi ∈ Z(x), where i ∈ {1, · · · , n} (resp., i ∈ {0, · · · , n− 1}). �

If there exists no transition originating from x, G stays at x indefinitely: in such a case

the set of zones of x is a singleton {[0,+∞)}. Otherwise, the set of zones of a state x follows

from the partitioning of the dwell time at x into several time intervals to which the clock may

belong. The union of all zones in Z(x) covers the interval [0, dmax(x)]. Any two zones of

x are disjoint. If θ ∈ zi and θ′ ∈ zi, where i ∈ {1, · · · , n}, the sets of active transitions

at two timed states (x, θ) and (x, θ′) are identical. In addition, the firability of transitions

differs between (x, θ) and (x, θ′) if θ ∈ zi−1 and θ′ ∈ zi, where i ∈ {2, · · · , n}. Particularly,

z0 = [0, 0] is defined to be a zone associated with each state of G, apart from the case of

dmax(x) = +∞. This originates from the considered time semantics, according to whom

the clock is reset whenever G arrives at a state in X . Then the clock evolves discretely from

a time instant θ ∈ zi−1 to another time instant θ′ ∈ zi, where i ∈ {1, · · · , n}.

Example 3.5 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.3. Let us focus on the

initial state x0. There exist two transitions originating from x0, namely (x0, b, x2) ∈ ∆

with Γ((x0, b, x2)) = [0, 1] and (x0, c, x1) ∈ ∆ with Γ((x0, c, x1)) = [1, 3]. The maximal

dwell time at x0 is dmax(x0) = 3. Consequently, the set of zones of x0 is Z(x0) =

{[0, 0], (0, 1), [1, 1], (1, 3]}. The set of active transitions at (x0, θ), where θ is a time instant

in z ∈ Z(x0), are reported in Table 3.2. As for the set of zones of other states in X , we have

Z(x1) = {[0, 0], (0, 1), [1, 3]}, Z(x2) = {[0, 0], (0, 1), [1, 2]}, Z(x3) = {[0, 0], (0, 2]} and

Z(x4) = {[0, 0], (0, 1]}. �

Given a discrete state x ∈ X and two zones z, succ(z) ∈ Z(x), we let a new event τ

denotes that in a state x the clock value may evolve from any θ ∈ z to any θ′ ∈ succ(z) as

time elapses. Note that τ is not a specific value of time but is an abstract representation of

the time-driven evolution. We now formalize the definition of zone automaton.

30

Chapter 3 State Estimation of Timed Finite Automata

Fig. 3.3 TFA G.

Table 3.2 Sets of active transitions at (x0, θ) for the TFA G in Fig. 3.3, where θ ∈ zi, i ∈ {0, 1, 2, 3}.

i zi A(x0, θ), θ ∈ zi
0 [0, 0] {(x0, b, x2)}
1 (0, 1) {(x0, b, x2)}
2 [1, 1] {(x0, b, x2), (x0, c, x1)}
3 (1, 3] {(x0, c, x1)}

Definition 3.12 Given a TFA G = (X,E,∆,Γ, X0), the zone automaton of G is an NFA

Gz = (V,Eτ ,∆z, V0), where

• V ⊆ X ×
⋃
x∈X

Z(x) is the finite set of states,

• Eτ ⊆ E ∪ {τ} is the alphabet,

• ∆z ⊆ V × Eτ × V is the transition relation, where the transitions in ∆z are defined

by the following rules:

– ((x, z), τ, (x, succ(z))) ∈ ∆z if z, succ(z) ∈ Z(x);

– ((x, z), e, (x′, z0)) ∈ ∆z if z ∈ Z(x), z0 ∈ Z(x′), (x, e, x′) ∈ A(x, θ) for all

θ ∈ z,

• V0 = {(x, z0) | x ∈ X0} ⊆ V is the set of initial states. �

We use the zone automaton to describe the time-driven and event-driven evolution of

a TFA G = (X,E,∆,Γ, X0). Each state in a zone automaton is a pair (x, z) with x ∈ X
and z ∈ Z(x). The alphabet is composed of the events in E and event τ . The transition

relation specifies the dynamics of the automaton: starting from a state (x, z), a transition

((x, z), τ, (x, succ(z))) ∈ ∆z corresponds to a time-driven evolution ofG from a clock value

in z to another clock value in succ(z) while G is at x; a transition ((x, z), e, (x′, z0)) ∈ ∆z

31

Doctoral Dissertation of Università degli Studi di Cagliari

goes from state (x, z) to state (x′, z0), indicating that the occurrence of event e yields state

x′ when the current state of the system is x and the current clock is in z. The set of initial

states is the set of pairs of a state x ∈ X0 and z0 ∈ Z(x).

Given a TFA G = (X,E,∆,Γ, X0), the zone automaton Gz = (V,Eτ ,∆z, V0) can be

constructed by Algorithm 3. A temporary set of states Vnew is introduced, containing all

states that still need to be explored in order to compute their output transitions. A while loop

is repeated until Vnew = ∅. A transition ((x, z), τ, (x, succ(z))) is set in ∆z if succ(z) is a

zone at x. For each transition (x, e, x′) ∈ ∆ satisfying z ⊆ Γ((x, e, x′)), a transition labeled

with e is set from v = (x, z). Note that if the maximal dwell time of x′ is +∞ (resp., if it is

not), the transition labeled with e would lead to state (x′, [0,+∞)) (resp., state (x′, z0)). To

avoid redundant repetitions of the while loop, the state v′ is included in Vnew if v′ is neither

in V nor in Vnew. The while loop stops once all states in Vnew have been explored.

Algorithm 3 Construction of the zone automaton associated with a TFA
Input: A TFA G = (X,E,∆,Γ, X0)
Output: The zone automaton Gz = (V,Eτ ,∆z, V0)
1: let V = ∅, Eτ = E ∪ {τ}, ∆z = ∅, V0 = {(x, z0) | x ∈ X0}, and Vnew = V0

2: while Vnew 6= ∅ do
3: select a v = (x, z) ∈ Vnew
4: if succ(z) ∈ Z(x) then
5: let v̄ = (x, succ(z)), ∆z = ∆z ∪ {(v, τ, v̄)}, and Vnew = Vnew ∪ {v̄}
6: end if
7: for each (x, e, x′) ∈ ∆ do
8: if z ⊆ Γ((x, e, x′)) then
9: if dmax(x′) 6= +∞ then

10: let v′ = (x′, z0)
11: else
12: let v′ = (x′, [0,+∞))
13: end if
14: let ∆z = ∆z ∪ {(v, e, v′)}
15: if v′ /∈ V ∪ Vnew then
16: let Vnew = Vnew ∪ {v′}
17: end if
18: end if
19: end for
20: let V = V ∪ {v} and Vnew = Vnew \ {v}
21: end while
22: return Gz = (V,Eτ ,∆z, V0).

Next we discuss the computational complexity of Algorithm 3. Let Qx = {(x, e, x′) ∈
∆ | e ∈ E, x′ ∈ X} be the set of output transitions of state x ∈ X . Our approach partitions

the dwell interval of a state x ∈ X into a set of zones Z(x) which depends on set Qx.

32

Chapter 3 State Estimation of Timed Finite Automata

When Qx 6= ∅, a simple analysis shows that the maximum number of zones is bounded by

2|Qx| + 1. This bound is also correct for Qx = ∅ due to Z(x) = [0,+∞). As a result,

by letting q = max
x∈X
|Qx|, the maximal number of states of Gz is |V | ≤ (2q + 1)|X|. In

Algorithm 3, the while loop at Step 2 is executed |V | times, while the for loop at Step 7 is

executed at most q times; consequently, the time complexity is O(q2|X|).

Example 3.6 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.3. The zone automaton

Gz = (V,Eτ ,∆z, V0) is shown in Fig. 3.4. The initial state is V0 = {(x0, [0, 0])}, implying

that G starts from x0 at clock value 0. A transition labeled with an event τ implies a time-

driven evolution of G. For instance, a transition ((x0, [0, 0]), τ, (x0, (0, 1))) represents that

the clock may evolve from the value in [0, 0] to any value in (0, 1) if G is at x0. Meanwhile,

a transition labeled with an event in E implies an event-driven evolution of G. For instance,

a transition labeled with b goes from (x0, (0, 1)) to (x2, [0, 0]). It represents a state evolution

from x0 to x2 under the occurrence of an event b, upon which the clock is reset.

Compared with the set of regions at x1, namely R(x1) = {[0, 0], (0, 1), [1, 1], (1, 2),

[2, 2], (2, 3), [3, 3]}, the zones at x1 is Z(x) = [0, 1), [1, 1], and (1, 3], which leads the zone

automaton to be more compact. �

[0,0] (0,1) [1,1] (1,3]

[0,0] (0,1)

[0,0] (0,2]

[1,3]

[0,0] (0,1) [1,2]

[0,0] (0,1]

Fig. 3.4 Zone automaton Gz of the TFA G in Fig. 3.3.

33

Doctoral Dissertation of Università degli Studi di Cagliari

3.2.3 Dynamics of Zone Automaton

In this subsection, we explore the dynamics of a zone automaton Gz = (V,Eτ ,∆z, V0)

associated with a TFA G = (X,E,∆,Γ, X0) and discuss how the timed evolutions of G are

related to the evolutions of its zone automaton Gz. We first introduce the notion of τ -run at

a state x ∈ X that corresponds to the elapsing of time with no event occurrence. Next, a run

inGz is considered, including also the occurrence of discrete events, to show the time-driven

evolution and the event-driven evolution of G. We show that the problem of investigating

the reachability of a state in G can be reduced to the reachability analysis of a state in Gz.

Definition 3.13 Consider a TFA G = (X,E,∆,Γ, X0) and a state x ∈ X with Z(x) =

{z0, · · · , zn} (n ≥ 0). Let the zone automaton of G be Gz = (V,Eτ ,∆z, V0). A τ -run at x

of length k (0 ≤ k ≤ n) is defined as a sequence of k + 1 states (x, zi) ∈ V (i = 0, · · · , k),

and event τ ∈ Eτ , represented as

ρτ (x) : (x, z0)
τ−→ (x, z1)

τ−→ · · · τ−→ (x, zk)

such that ((x, zi−1), τ, (x, zi)) ∈ ∆z holds for i ∈ {1, · · · , k}. The starting state and

the ending state of ρτ (x) are denoted as vst(ρτ (x)) = (x, z0) and ven(ρτ (x)) = (x, zk),

respectively. The duration range of ρτ (x) is denoted as d(ρτ (x)) = zk. �

A τ -run at x represents a series of state evolutions in Gz involving the states associated

with x and event τ . It essentially represents the time elapsing discretely while G is at x.

The duration range d(ρτ (x)) = zk is an interval describing the possible duration of the run.

Next we define the notion of a run of a zone automaton to represent a hybrid evolution of

the associated TFA.

Definition 3.14 Given a TFA G = (X,E,∆,Γ, X0) and its zone automaton Gz = (V,Eτ ,

∆z, V0), a run of length k ≥ 0 in Gz is a sequence of k+ 1 τ -runs ρτ (x(i)) (i = 0, · · · , k) at

x(i) ∈ X , and k events ei ∈ E (i = 1, · · · , k), represented as

ρ̄ : ρτ (x(0))
e1−→ ρτ (x(1)) · · ·

ek−→ ρτ (x(k)),

such that (ven(ρτ (x(i−1))), ei, vst(ρτ (x(i)))) ∈ ∆z holds for i ∈ {1, · · · , k}. In addition, the

starting state and the ending state of ρ̄ are defined as vst(ρ̄) = vst(ρτ (x(0))) and ven(ρ̄) =

ven(ρτ (x(k))), respectively. The duration range of ρ̄ is defined as d(ρ̄) =
k⊕
i=1

d(ρτ (xi)).

The logical word generated by ρ̄ is denoted as s(ρ̄) = e1 · · · ek via a function defined as

s : E∗τ → E∗. The set of runs generated by Gz is defined asRz(Gz). �

34

Chapter 3 State Estimation of Timed Finite Automata

The dynamics of a zone automaton Gz can be represented by a run in Gz; in addition,

such a run corresponds to an evolution of the TFA G. In simple words, any two consecutive

τ -runs ρτ (x(i−1)) and ρτ (x(i)) are connected by a state evolution caused by an event ei ∈ E.

The logical word of ρ̄ is the sequence of events in E that have been involved in ρ̄. The

duration range of ρ̄ is evaluated by summing up the duration ranges of all the involved τ -

runs.

Definition 3.15 A state x is said to be reachable from state x′ within t ∈ R≥0, if there exists

a timed evolution (σ(ρ), t) ∈ (E × R≥0)∗ × R≥0 of G from 0 to t such that xst(ρ) = x′ and

xen(ρ) = x. In addition, x is said to be unobservable-reachable from x′ within t if there

exists a timed evolution (σ(ρ), t) from 0 to t such that S(σ(ρ)) ∈ E∗uo. �

Theorem 3.1 Given a TFAG = (X,E,∆,Γ, X0) and its zone automatonGz = (V,Eτ , ∆z,

V0), a state x ∈ X is reachable from x′ ∈ X within t ∈ R≥0, if and only if there exists a

run ρ̄ in Gz such that t ∈ d(ρ̄), vst(ρ̄) = (x′, z0), and ven(ρ̄) = (x, z), where z0 ∈ Z(x′) and

z ∈ Z(x). �

Proof : (if) Let a run ρ̄ : ρτ (x
′)
e′−→· · · ē−→ρτ (x) and a time instant t̄ ∈ R≥0 such that

e′, · · · , ē ∈ E, t ∈ d(ρ̄) and t − t̄ ∈ d(ρτ (x)). Accordingly, by denoting a timed run from

0 to t̄ as ρ : x′
(e′,t′)−−−→· · · (ē,t̄)−−→x such that t′ ∈ dmax(x′), t − t̄ ∈ dmax(x) and d(ρ) = t̄, there

exists a timed evolution (σ(ρ), t) ∈ (E × R≥0)∗ × R≥0 of G from 0 to t, where xst(ρ) = x′

and xen(ρ) = x. Thus, x is reachable from x′ within t.

(only if) Let (σ(ρ), t) ∈ (E × R≥0)∗ × R≥0 be a timed evolution of G from 0 to t such

that xst(ρ) = x′ and xen(ρ) = x. The proof is made by induction on the length k of the

timed run ρ generated by G = (X,E,∆,Γ, X0) from 0 to t. The base case is for the timed

run ρ of length 0 that involves only state x′ and no transition in G. We have σ(ρ) = λ and

xst(ρ) = xen(ρ) = x′ = x. There exists a run in Gz as ρ̄ : (x′, [0, 0])
τ−→ · · · τ−→ (x′, z),

where t ∈ d(ρ̄). Thus the base case holds.

The induction hypothesis is that the existence of a timed run ρ : x(0)
(e1,t1)−−−→x(1) · · ·x(k−1)

(ek,tk)−−−→x(k) of length k ≥ 1, where x(i) ∈ X and ei ∈ E for all i ∈ {1, · · · , k}, implies the

existence of a run ρ̄ : ρτ (x(0))
e1−→ρτ (x(1)) · · · ρτ (x(k−1))

ek−→ρτ (x(k)) in Gz such that vst(ρ̄) =

(x′, z0) and ven(ρ̄) = (x, z), where z ∈ Z(x). We now prove that the same implication

holds for a timed run ρ′ : x(0)
(e1,t1)−−−→x(1) · · · x(k−1)

(ek,tk)−−−→x(k)
(ek+1,tk+1)−−−−−−→x(k+1) of length k+1.

According to ρ′, we have (x(k), ek+1, xjk+1
) ∈ ∆ and tk+1 ∈ Γ((x(k), ek+1, xjk+1

)); conse-

quently, there exists a run ρ̄′ : ρτ (x(0))
e1−→ρτ (x(1)) · · · ρτ (x(k−1))

ek−→ρτ (x(k))
ek+1−−→ρτ (x(k+1))

in Gz such that tk+1 − tk ∈ d(ρτ (x(k+1))) and t − tk+1 ∈ fz(ven(ρτ (x(k+1)))), where

35

Doctoral Dissertation of Università degli Studi di Cagliari

the function fz : V →
⋃
x∈X

Z(x) maps a state in Xz to a zone. Therefore, we have

vst(ρ̄
′) = vst(ρ̄) = (x′, z0) and t ∈ d(ρ̄′). �

Theorem 3.1 provides a necessary and sufficient condition to determine the reachability

of a state x from x′ within t. Given a TFA G = (X,E,∆,Γ, X0), if a state x ∈ X is

reachable from x′ ∈ X within t, then in its zone automaton there exists a run that originates

from (x′, z0) and reaches (x, z), where z ∈ Z(x). In addition, t belongs to the duration

range of that run. In turn, given a run ρ̄ in Gz such that t ∈ d(ρ̄), it can be concluded that

the state associated with ven(ρ̄) is reachable from the state associated with vst(ρ̄) within t.

In simple words, the reachability of a state x from x′ within t can be analyzed by exploring

an appropriate run in Gz.

Example 3.7 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.3 and its zone automaton

Gz = (V,Eτ ,∆z, V0) in Fig. 3.4. There exists a timed evolution ((c, 1.5)(a, 3), 4) of G

from 0 to 4 such that x4 is reachable from x0 within 4. Accordingly, there exists a run

ρ̄ : ρτ (x0)
c−→ ρτ (x1)

a−→ ρτ (x4), where ρτ (x0) : (x0, [0, 0])
τ−→ (x0, (0, 1))

τ−→
(x0, [1, 1])

τ−→ (x0, (1, 3]), ρτ (x1) : (x1, [0, 0])
τ−→ (x1, (0, 1))

τ−→ (x1, [1, 3]) and ρτ (x4) :

(x4, [0, 0])
τ−→ (x4, (0, 1]). �

3.3 State Estimation of Timed Finite Automata

In this section, we consider partially observed TFA, where some of the event occur-

rences are observable and others are unobservable. We formally present the definition of a

projection function as follows before clarifying the state estimation problem.

Definition 3.16 Given a TFA G with E = Eo ∪ Euo, a projection function P : (E ×
R≥0)∗ −→ (Eo × R≥0)∗ is defined as P (λ) = λ, and

P (σ(ρ) · (e, t)) =

{
P (σ(ρ)) if e ∈ Euo

P (σ(ρ)) · (e, t) if e ∈ Eo

for the timed word σ(ρ) ∈ (E × R≥0)∗ generated from any timed run ρ ∈ R(G) and for all

(e, t) ∈ E × R≥0. �

In other words, the projection operator P simply erases the pairs consisting of an

unobservable event and the time of its occurrence in a timed word. As shown in Fig. 3.5,

given a TFA G and a timed run ρ ∈ R(G), the projection function P always maps the timed

word σ(ρ) to an observed word σo ∈ (Eo × R≥0)∗. The pair (σo, t) = (P (σ(ρ)), t) is the

timed observation related to (σ(ρ), t).

36

Chapter 3 State Estimation of Timed Finite Automata

Definition 3.17 Given a TFA G with E = Eo ∪ Euo, and a timed observation (σo, t),

S(σo, t) = {(σ(ρ), t) ∈ E(G, t)|P (σ(ρ)) = σo} is said to be the set of timed evolutions

consistent with (σo, t), i.e., the set of timed evolutions that can be generated by G from 0 to

t producing the timed observation (σo, t); meanwhile X (σo, t) = {xen(ρ) ∈ X|(σ(ρ), t) ∈
S(σo, t)} is said to be the set of states consistent with (σo, t), i.e., the set of states in which

G may be, after (σo, t) is observed. �

This section aims at calculating the set X (σo, t), which includes the states reached

by the timed evolution (σ(ρ), t) consistent with (σo, t). Looking again at Fig. 3.5, the set

X (σo, t) is indeed the output of the state estimation process.

Fig. 3.5 Sketch of the state estimation problem.

Note that, in general, two different sub-problems must be solved in this setting: (a)

Update the current estimate as time elapses without any new observation being received; (b)

Update the current estimate when a new observation is received, based on the observed event

label and the occurrence time. Accordingly, we partition this section into two subsections. In

the first subsection, we consider the case where G produces no observation, and prove that

we can estimate the set of possible current states as time elapses without any observation

looking at appropriate runs in the associated zone automaton Gz. This is an intermediate

step towards the solution of the state estimation problem under partial observation. In the

second subsection, we take into account the information coming from the observation of

new events at certain time instants, and prove that the set of states consistent with a timed

observation (σo, t) can be inferred following a certain number of runs in the zone automaton

Gz. In more detail, the main steps to do that in a systematic way are summarized in an

algorithm.

3.3.1 State Estimation with No Observation

Definition 3.18 Given a TFAG = (X,E,∆,Γ, X0) with the set of unobservable eventsEuo

and its zone automaton Gz = (V,Eτ ,∆z, V0), the following set of states of Gz

Vλ(x
′, t) = {ven(ρ̄) ∈ V | ρ̄ ∈ Rτ (Gz), vst(ρ̄) = (x′, z0),

s(ρ̄) ∈ E∗uo, t ∈ d(ρ̄)}

is said to be λ-estimation from x′ ∈ X within t ∈ R≥0. �

37

Doctoral Dissertation of Università degli Studi di Cagliari

Given a zone automaton, the λ-estimation from x′ within t ∈ R≥0 is the set of states

of the zone automaton Gz that can be reached following a run of duration t, originating at

(x′, z0) and producing no observation. If (x, z) belongs to the λ-estimation from x′ within t,

then the zone z associated with x specifies how long the TFA G could be in x. As a special

case, if Vλ(x′, t) = ∅, it means that G cannot stay in state x′ from time 0 to t producing no

observation.

Given a TFA G with a set of states X , a set of unobservable events Euo and its zone

automatonGz = (V,Eτ ,∆z, V0), Algorithm 4 computes the λ-estimation from a state x ∈ X
within t ∈ R≥0. It first initializes a setR as the singleton {(x, [0, 0])}. The while loop selects

an element r = (x̄, Ī) in R at each iteration. For all zones of state x̄, we check if there exists

a transition ((x̄, z), e, (x′, [0, 0])) ∈ ∆z with e ∈ Euo. If so, we add to R the pair (x′, z
⊕

Ī).

Note that x′ is the state reached by unobservable transitions and z
⊕

Ī is the range of time

it takes to reach x′. In addition, if t belongs to z
⊕

Ī , it can be inferred that x̄ can be

reached from x within t; consequently, the set Vλ is updated by including (x̄, z). At the end

of each while loop, the explored r ∈ R is deleted from R. Finally, the algorithm returns

Vλ(x, t) = Vλ.

Next we analysis the computational complexity of Algorithm 4. The while loop at Step

2 is executed at most |V | times; the for loop at Step 4 is executed at most 2q + 1 times,

and for loop at Step 5 is executed at most q times. The complexity of Algorithm 4 is thus

O(q(2q + 1)|V |) = O(q3|X|).

Algorithm 4 Computation of the λ-estimation from a state of a TFA within a time instant
Input: A TFA G with a set of states X and a set of unobservable events Euo, a zone

automaton Gz = (V,Eτ ,∆z, V0), a state x ∈ X , and a time instant t ∈ R≥0

Output: λ-estimation Vλ(x, t)
1: let R = {(x, [0, 0])} and Vλ = ∅
2: while R 6= ∅ do
3: select r = (x̄, Ī) ∈ R
4: for each z ∈ Z(x̄) do
5: for each ((x̄, z), e, (x′, [0, 0])) ∈ ∆z with e ∈ Euo do
6: let R = R ∪ {(x′, z

⊕
Ī)}

7: end for
8: if t ∈ z

⊕
Ī then

9: let Vλ = Vλ ∪ {(x̄, z)}
10: end if
11: end for
12: let R = R \ {r}
13: end while
14: return Vλ(x, t) = Vλ.

38

Chapter 3 State Estimation of Timed Finite Automata

Theorem 3.2 Given a TFA G = (X,E,∆,Γ, X0) with set of unobservable events Euo and

its zone automaton Gz = (V,Eτ ,∆z, V0), state x ∈ X is unobservable-reachable from

x′ ∈ X within t ∈ R≥0 if and only if there exists (x, z) ∈ Vλ(x′, t), where z ∈ Z(x). �

Proof : (if) Let us suppose that there exists (x, z) ∈ Vλ(x′, t), where z ∈ Z(x). Then there

exists a run ρ̄ in Gz such that vst(ρ̄) = (x′, z0), s(ρ̄) ∈ E∗uo and t ∈ d(ρ̄). This implies that x

is unobservable-reachable from x′ within t.

(only if) Let x be unobservable-reachable from x′ within t. Then, there exists a timed

evolution (σ(ρ), t) from 0 to t such that xst(ρ) = x′, xen(ρ) = x and s(ρ̄) ∈ E∗uo. Accord-

ingly, there exists a run ρ̄ in Gz such that vst(ρ̄) = (x′, z0), fx(ven(ρ̄)) = x, s(ρ̄) ∈ E∗uo

and t ∈ d(ρ̄), where fx : V → X maps a state in V to a state in X . Thus, there exists

(x, z) ∈ Vλ(x′, t), where z ∈ Z(x). �

Given a state of the TFA, Theorem 3.2 provides a criterion to estimate the set of states

in which the zone automaton can be when no observation is received within a given time

instant t ∈ R≥0. In other words, the λ-estimation from x′ within t reveals the unobservable-

reachable states from x′ within t, i.e., the set of states of G when it starts its evolution from

state x′, and produces no observation from 0 to the time instant t.

Note that the state estimation under no observation can be seen as a full-fledged prob-

lem by itself: consider, as an example the case of a system where the state can be directly

measured but only with a (possibly asynchronous) sampling period T . When T is large,

between two consecutive measurements it may be necessary to estimate the current state in

absence of any observation and this estimate may actually be used to optimally choose the

next sampling instant. A related problem, in a decentralized setting, was studied in [104]

where the asynchronous polling of distributed sub-systems was called synchronization.

Example 3.8 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.3 with Eo = {a}, Euo =

{b, c}, and its zone automaton Gz = (V,Eτ ,∆z, V0) in Fig. 3.4. We have Vλ(x0, 1) =

{(x0, [1, 1]),(x1, [0, 0]),(x2, [0, 0]),(x2, (0, 1)),(x2, [1, 2]),(x3, [0, 0])}. This results from the

exhaustive enumeration of all the runs in Gz of duration 1 starting from (x0, [0, 0]) and

involving no observable event:

1. ρ̄1 : ρτ (x0), where ρτ (x0) : (x0, [0, 0])
τ−→ (x0, (0, 1))

τ−→ (x0, [1, 1]);

2. ρ̄2 : ρτ (x0)
c−→ ρτ (x1), where ρτ (x0) : (x0, [0, 0])

τ−→ (x0, (0, 1))
τ−→ (x0, [1, 1])

and ρτ (x1) : (x1, [0, 0]);

39

Doctoral Dissertation of Università degli Studi di Cagliari

3. ρ̄3 : ρτ (x0)
b−→ ρτ (x2), where ρτ (x0) : (x0, [0, 0])

τ−→ (x0, (0, 1))
τ−→ (x0, [1, 1])

and ρτ (x2) : (x2, [0, 0]);

4. ρ̄4 : ρτ (x0)
b−→ ρτ (x2), where ρτ (x0) : (x0, [0, 0]))

τ−→ (x0, (0, 1)) and ρτ (x2) :

(x2, [0, 0])
τ−→ (x2, (0, 1));

5. ρ̄5 : ρτ (x0)
b−→ ρτ (x2), where ρτ (x0) : (x0, [0, 0]) and ρτ (x2) : (x2, [0, 0])

τ−→
(x2, (0, 1))

τ−→ (x2, [1, 2]);

6. ρ̄6 : ρτ (x0)
b−→ ρτ (x2)

c−→ ρτ (x3), where ρτ (x0) : (x0, [0, 0]), ρτ (x2) : (x2, [0, 0])
τ−→

(x2, (0, 1))
τ−→ (x2, [1, 2]) and ρτ (x3) : (x3, [0, 0]).

Now, let us focus on (x2, [1, 2]) ∈ Vλ(x0, 1). That is to say, if G starts its evolution

from x0 at time 0 and produces no observation during the whole time interval [0, 1], G can

be in state x2 at time 1 with clock value in the zone [1, 2]. Table 3.3 summarizes the λ-

estimation and the set of states consistent with (λ, t), where t belongs to a time interval

in {[0, 0], (0, 1), [1, 1], (1, 2), [2, 2], (2, 3), [3, 3], (3, 4),[4, 4],(4, 5), [5, 5],(5, 6),[6, 6],(6, 7)}.
Note that Vλ(x0, t) = ∅ and X (λ, t) = ∅ for t ∈ (6, 7). In other words, it is not possible that

G enters state x0 at time 0 and no observation occurs for more than 6 time units. �

Table 3.3 State estimation of the TFA G in Fig. 3.3 under no observation.

k Time interval Ik λ-estimation Vλ(x0, t), where t ∈ Ik X (λ, t), t ∈ Ik
0 [0,0] (x0, [0, 0]), (x2, [0, 0]) {x0, x2}
1 (0,1) (x0, (0, 1)), (x2, [0, 0]), (x2, (0, 1)) {x0, x2}

2 [1,1]
(x0, [1, 1]), (x1, [0, 0]), (x2, [0, 0]),
(x2, (0, 1)), (x2, [1, 2]), (x3, [0, 0])

{x0, x1, x2, x3}

3 (1,2)
(x0, (1, 3]), (x1, [0, 0]), (x1, (0, 1)), (x2, (0, 1)),

(x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2])
{x0, x1, x2, x3}

4 [2,2]
(x0, (1, 3]), (x1, [0, 0]), (x1, (0, 1)), (x1, [1, 3)),

(x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2])
{x0, x1, x2, x3}

5 (2,3)
(x0, (1, 3]), (x1, [0, 0]), (x1, (0, 1)), (x1, [1, 3]),

(x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2])
{x0, x1, x2, x3}

6 [3,3]
(x0, (1, 3]), (x1, [0, 0]), (x1, (0, 1)), (x1, [1, 3]),

(x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2])
{x0, x1, x2, x3}

7 (3,4) (x1, (0, 1)), (x1, [1, 3]), (x3, (0, 2]) {x1, x3}
8 [4,4] (x1, [1, 3]), (x3, (0, 2]) {x1, x3}
9 (4,5) (x1, [1, 3]), (x3, (0, 2]) {x1, x3}
10 [5,5] (x1, [1, 3]), (x3, (0, 2]) {x1, x3}
11 (5,6) (x1, [1, 3]) {x1}
12 [6,6] (x1, [1, 3]) {x1}
13 (6,7) ∅ ∅

40

Chapter 3 State Estimation of Timed Finite Automata

3.3.2 State Estimation with Partial Observation

In this subsection we focus on the state estimation problem when a timed observation

is received as a pair of a non-empty timed word and a time instant. We first propose a result

as follows.

Theorem 3.3 Consider a TFA G = (X,E,∆,Γ, X0) with the set of observable events Eo

and zone automaton Gz = (V,Eτ ,∆z, V0). Given a timed observation (σo, t) ∈ (Eo ×
R≥0)∗ × R≥0, a state x ∈ X is consistent with (σo, t) if and only if there exists a run ρ̄

in Gz such that fx(vst(ρ̄)) ∈ X0, fx(ven(ρ̄)) = x, t ∈ d(ρ̄) and Pl(s(ρ̄)) = S(σo), where

fx : V → X and Pl : E∗ → E∗o . �

Proof : (if) In the case that no observation is contained in σo, let ρ̄ : ρτ (x0) be a run in

Gz, where x0 ∈ X0. We have fx(ven(ρ̄)) = x0, t ∈ d(ρ̄) and σo = λ. In this case there

exists only one timed evolution (λ, t) ∈ E(G, t) such that x0 ∈ X (λ, t). In the case that

there exist one or more event occurrences, let ρ̄ : ρτ (x(0))
e1−→· · · ek−→ρτ (x(k)) be a run in Gz,

where x(i) ∈ X and i ∈ {0, · · · , k}, such that ei ∈ E, d(ρτ (x(i−1))) ⊆ Γ((x(i−1), ei, x(i)))

and d(ρτ (x(i))) ⊆ [0, dmax(x(i))] for i ∈ {1, · · · , k}. Let us suppose that x(0) ∈ X0 and

x(k) = x. It can be inferred that d(ρ̄) ⊆
k⊕
i=1

Γ((x(i−1), ei, x(i)))
⊕

[0, dmax(x(k))] and t− tk ∈

d(ρτ (x(k))) hold. For each i ∈ {1, · · · , k}, let ti ∈ d(ρτ (x(i−1))) be a time instant. Then,

there exists a timed run defined in G as ρ : x(0)
(e1,t1)−−−→· · · (ek,tk)−−−→x(k). Consequently, there

is a timed evolution (σ(ρ), t) ∈ E(G, t), where σ(ρ) = (e1, t1) · · · (ek, tk). According to

Pl(s̄(ρ̄)) = S(σo), it is (σ(ρ), t) ∈ S(σo, t). Obviously, x ∈ X (σo, t) holds.

(only if) In the case that σo = λ, x ∈ X (λ, t) holds. There exists a run ρ̄ inGz such that

x is unobservable-reachable from a state x0 ∈ X0 within t. Consequently, fx(ven(ρ̄)) = x,

t ∈ d(ρ̄) and s̄(ρ̄) = ε hold. In the case that σo = (eo1, t1) · · · (eok, tk), where k ≥ 1,

0 ≤ t1 < · · · < tk ≤ t and eoi ∈ Eo (i ∈ {1, · · · , k}), it is x ∈ X (σo, t), implying that x

is reachable from a state x0 ∈ X0 within t. Consequently, there exists a run ρ̄ in Gz such

that t ∈ d(ρ̄), fx(vst(ρ̄)) = x0 and fx(ven(ρ̄)) = x. Let ρ̄ be a sequence of k runs ρ̄i and

k events eoi, where i ∈ {1, · · · , k}, as ρ̄ : ρ̄0
eo1−→· · · eok−−→ρ̄k. Obviously, s̄(ρ̄) = eo1 · · · eon,

t− tk ∈ d(ρ̄k) and ti − ti−1 ∈ d(ρ̄i−1) hold for each i ∈ {1, · · · , k}. �

Consider a timed observation (σo, t) produced by a TFA G = (X,E,∆,Γ, X0); a state

x ∈ X is consistent with (σo, t) when there exists a run ρ̄ in Gz that produces the same

logical observation as σo from a state in X0 at 0 and reaches x at t. In turn, x ∈ X (σo, t) can

be concluded according to the run ρ̄ in Gz. In more detail, the run ρ̄ contains no observable

event if σo = λ. This clearly implies that x ∈ X (λ, t). If σo 6= λ, the run ρ̄ is a sequence

41

Doctoral Dissertation of Università degli Studi di Cagliari

of k + 1 runs ρ̄i, i ∈ {0, · · · , k}, and k observable events eoi ∈ Eo, i ∈ {1, · · · , k}, as

ρ̄ : ρ̄0
eo1−→· · · eok−−→ρ̄k. For each i ∈ {0, · · · , k}, we have s(ρ̄i) = ε, implying that ρ̄i produces

no observation. For each i ∈ {1, · · · , k}, an observable event eoi ∈ Eo leads the state

evolution from ven(ρ̄i−1) to vst(ρ̄i).

Algorithm 5 summarizes the approach that we propose, based on the previous results,

to compute the set of states consistent with a timed observation (σo, t). It can be explained

as follows. Consider a timed observation (σo, t) with σo = (eo1, t1) · · · (eon, tn) (n ≥ 1),

where eo1, · · · , eon ∈ Eo. The timed observation (σo, t) is updated whenever an observable

event eoi occurs at a time instant ti, where i ∈ {1, · · · , n}. The algorithm provides a set of

estimated states while time elapses in [ti−1, ti] with no event being observed, in addition to

a set of states X̄i ⊆ X consistent with each new observation (eoi, ti), where i ∈ {1, · · · , n}
and t0 = 0. Initially, it is imposed X̄0 = X0 and X̄i = ∅ for all i ∈ {1, · · · , n}. Then,

for each i ∈ {1, · · · , n}, the algorithm computes the λ-estimation from each state x ∈ X̄i−1

within ti−ti−1 implying the states unobservable-reachable from X̄i−1 within ti−ti−1, and the

set X̄i is updated with the states reached by transitions labeled with eoi from the estimated

states satisfying their timing functions. After the set X̄n is determined, we compute the set

of states unobservable-reachable from X̄n within t − tn, and return it as the set of states

consistent with (σo, t).

In other words, during the online phase to estimate the current discrete state, one just

has to determine which is the state of the observer reached by the current observation and

check to which interval (among a finite number of time intervals) the time elapsed between

the last observed event occurrence belongs. This approach allows one to construct offline an

observer, i.e., a finite structure that describes the state estimation for all possible evolutions.

We believe that this approach has a major advantage over existing online approaches for state

estimations: it paves the way to address a vast range of fundamental properties (detectability,

opacity, etc.) that have so far mostly been studied in the context of logical DES.

Given a timed observation σo = (eo1, t1) · · · (eon, tn) (n ≥ 1) generated by G, the

complexity of Algorithm 5 depends on the number n of pairs (event, time instant at which

the event occurs). For each pair (eoi, ti), two for loops are executed.

• The first for loop at Step 4 is executed at most |X| times, calling Algorithm 4 whose

complexity is O(q3|X|). Thus the complexity of this loop is O(q3|X|2).

• The second for loop at Step 8 is executed at most |V | times; hence its complexity is

O(q|X|).

42

Chapter 3 State Estimation of Timed Finite Automata

Finally, the for loop at Step 15, analogously to the for loop at Step 4, has complexity

O(q3|X|2). Overall, the complexity of Algorithm 5 is O(n(q3|X|2 + q|X|) + q3|X|2) =

O(nq3|X|2).

Algorithm 5 State estimation of a TFA
Input: A TFA G with a set of initial states X0, a set of observable events Eo ⊆ E, a zone

automaton Gz = (V,Eτ ,∆z, V0), and a timed observation (σo, t) from 0 to t ∈ R≥0,
where σo = (eo1, t1) · · · (eon, tn) (n ≥ 1) and t1, · · · , tn ∈ R≥0

Output: The set of states X (σo, t)
1: let X̄0 = X0, t0 = 0 and Xλ = ∅
2: for each i ∈ {1, · · · , n} do
3: let e = eoi, X̄i = ∅ and Vλ = ∅
4: for each x̄ ∈ X̄i−1 do
5: compute Vλ(x̄, ti − ti−1)
6: let Vλ = Vλ ∪ Vλ(x̄, ti − ti−1)
7: end for
8: for each v ∈ Vλ do
9: let x = fx(v) and z = fz(v)

10: if ∃x′ ∈ X s.t. z ⊆ Γ((x, e, x′)) then
11: let X̄i = X̄i ∪ {x′}
12: end if
13: end for
14: end for
15: for each x̄ ∈ X̄n do
16: compute Vλ(x̄, t− tn) and let

Xλ = Xλ ∪ {x ∈ X | (∃z ∈ Z(x))(x, z) ∈ Vλ(x̄, t− tn)};

17: end for
18: return X (σo, t) = Xλ.

Example 3.9 Consider the partially observed TFA G = (X,E,∆,Γ, X0) in Fig. 3.3 with

Eo = {a}, Euo = {b, c} and a timed observation (σo, 4), where σo = (a, 1)(a, 3.5). It

implies that the observable event a has been measured twice at t1 = 1 and t2 = 3.5,

respectively, while the current time instant is t = 4.

Table 3.4 summarizes the state estimation of the TFA G in Fig. 3.3 given the timed

observation ((a, 1)(a, 3.5), 4) according to Algorithm 5. It additionally shows how the state

estimation is updated while time elapses in the time interval [0, 4] taking into account the

two observations of event a. In particular, the state estimation process is progressively

updated as follows. We explain the process of state estimation while the observation (σo, t)

is progressively updated over time as follows.

43

Doctoral Dissertation of Università degli Studi di Cagliari

• Step k = 1: The TFA G produces observation (σo, t) = (λ, t) for t ∈ [0, 1]. We com-

pute the set of unobservable-reachable states from X̄0 within 1 as {x0, x1, x2, x3}, ac-

cording to
⋃

x∈X̄0

Vλ(x, 1) = {(x0, [1, 1]), (x1, [0, 0]), (x2, [0, 0]), (x2, (0, 1)), (x2, [1, 1]),

(x3, [0, 0])}. After the pair (a, 1) is received, Algorithm 5 provides the set of states

reached by a at t1 = 1, denoted as X̄1 = {x2}, according to (x3, [0, 0]) ∈
⋃

x∈X̄0

Vλ(x, 1)

and [0, 0] ∈ Γ((x3, a, x2)).

• Step k = 2: The TFA G produces observation (σo, t) = ((a, 1), t) for t ∈ [1, 3.5].

We compute the set of unobservable-reachable states from X̄1 within 2.5 as {x3},
according to

⋃
x∈X̄1

Vλ(x, 2.5) = {(x3, (0, 2])}. After the pair (a, 3.5) is received,

Algorithm 5 provides the set of states reached by a at t2 = 3.5, denoted as X̄2 = {x2},
according to (x3, (0, 2]) ∈

⋃
x∈X̄1

Vλ(x, 2.5) and (0, 2] ∈ Γ((x3, a, x2)).

• Step k = 3: The TFA G produces observation (σo, t) = ((a, 1)(a, 3.5), t), t ∈ [3.5, 4].

We compute the set of unobservable-reachable states from X̄2 within 0.5 as {x2},
according to

⋃
x∈X̄2

Vλ(x, 0.5) = {(x2, (0, 1))}. No more pair is received and the

observation ends with (σo, t) = ((a, 1)(a, 3.5), 4). Algorithm 5 provides the set of

states consistent with (σo, t) = ((a, 1)(a, 3.5), 4) that is equal to X (σo, t) = {x2}. �

Table 3.4 State estimation of the TFA G in Fig. 3.3 with X̄0 = X0, t0 = 0 and (σo, t), t ∈ [0, 4].

k σo
Time interval I

(t ∈ I) Vλ =
⋃

x∈X̄k−1

Vλ(x, t− tk−1), t ∈ I X (σo, t) X̄k

1 λ
[0,0] (x0, [0, 0]), (x2, [0, 0]) {x0, x2}

{x2}(0,1) (x0, (0, 1)), (x2, [0, 0]), (x2, (0, 1)) {x0, x2}

[1,1]
(x0, [1, 1]), (x1, [0, 0]), (x2, [0, 0]),
(x2, (0, 1)), (x2, [1, 2]), (x3, [0, 0])

{x0, x1, x2, x3}

2 (a, 1)

[1,1] (x2, [0, 0]) {x2}

{x2}

(1,2) (x2, (0, 1)) {x2}
[2,2] (x2, [1, 2]), (x3, [0, 0]) {x2, x3}
(2,3) (x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2]) {x2, x3}
[3,3] (x2, [1, 2]), (x3, [0, 0]), (x3, (0, 2]) {x2, x3}
(3,4) (x3, (0, 2]) {x3}

3 (a, 1)(a, 3.5)
(3,4) (x2, [0, 0]) {x2} -[4,4] (x2, (0, 1)) {x2}

44

Chapter 3 State Estimation of Timed Finite Automata

3.4 Fault Diagnosis of Timed Finite Automata

In this section, we assume that the timed system may be affected by a set of faults

described by timed transitions whose occurrence changes the state of the plant and resets the

clock. Two types of fault transitions are considered in this paper: observable fault transitions

labeled with a symbol in Eo, and unobservable fault transitions labeled with a symbol in

Euo. The set of transitions modeling a regular behaviour is denoted as ∆reg, while the set of

transitions modeling a fault behaviour is denoted as ∆fault. Clearly, it is ∆ = ∆reg ∪∆fault.

We define a diagnosis function for a set of fault transitions ∆fault as φ : (Eo×R≥0)∗×
R≥0 → {F,N, U} associated to each timed observation (σo, t) a diagnosis state φ((σo, t)),

where φ((σo, t)) = F (resp., φ((σo, t)) = N) denotes that a fault transition in ∆fault has

(resp., not) been executed while producing (σo, t), and φ((σo, t)) = U denotes that a fault

transition may or may not have been executed.

In this section, we utilize the proposed state estimation approach and deal with diag-

nosing a fault behaviour based on a timed observation (σo, t), namely computing φ((σo, t)).

Note that we are not distinguishing among different fault transitions. According to the

notation used in most of the literature on fault diagnosis of discrete event systems ([30],

[29]), this means that we assume that all faults belong to the same class.

This section is divided into two subsections: the first subsection constructs a fault rec-

ognizer and investigates the dynamics of a timed DES with faults, and the second subsection

deals with the diagnosis problem of TFA in analyzing the reachability of the fault recognizer.

3.4.1 Fault Recognizer

In this subsection, we construct a fault recognizer that recognizes the occurrence of

faults. We first transform the model G of the plant with faults into a canonical plant

Gf with faults. For the canonical plant Gf , the zone automaton ZA(Gf) is constructed.

The particular structure of the canonical plant allows us to construct a fault recognizer by

synchronizingZA(Gf) with a fault monitor that recognizes the occurrence of a fault denoted

by a symbol f .

Definition 3.19 Consider a partially observed TFA G = (X,E,∆,Γ, X0) with E = Eo ∪
Euo. The canonical plant is modeled as a TFA Gf = (X ∪Xf , E ∪{f},∆f ,Γf , X0), where

f is an additional unobservable event used to model the occurrence of a fault transition. The

set of additional states Xf , the transition relation ∆f , and the timing function Γf are defined

according to each δ = (x, e, x′′) ∈ ∆ as follows:

45

Doctoral Dissertation of Università degli Studi di Cagliari

• if δ ∈ ∆fault and e ∈ Euo, we define δf = (x, f, x′′) ∈ ∆f and Γf (δf) = Γ(δ);

• if δ ∈ ∆fault and e ∈ Eo, we define {δ1, δ2} ⊆ ∆f , Γf (δ1) = Γ(δ), and Γf (δ2) =

[0, 0], where δ1 = (x, f, x′), δ2 = (x′, e, x′′), and x′ ∈ Xf ;

• if δ ∈ ∆reg, we define δ ∈ ∆f and Γf (δ) = Γ(δ). �

In the canonical plant Gf , the new fault event f is introduced: this will allow construct

the fault recognizer by synchronization with the fault monitor. Given a transition δ =

(x, e, x′′) ∈ ∆, G can generate a timed run from initial time 0 ending with x
(e,t)−−→x′′,

where t ∈ Γ(δ). If e is associated with an observable fault transition, Gf can generate

a timed run ending with x
(f,t)−−→x′ (e,t)−−→x′′, implying that δ is replaced by δ1 = (x, f, x′)

satisfying Γf (δ1) = Γ(δ) and following by δ2 = (x′, e, x′′) that occurs immediately, i.e.,

Γf (δ2) = [0, 0]. In other words, considering an observable fault transition, Gf keeps track

of both the occurrence of the fault f and the observation of e.

On the contrary, it is not necessary to keep track of the occurrence of the unobservable

event. If e is associated with an unobservable fault transition, a new unobservable symbol f

is labeled with the transition δ = (x, f, x′′) ∈ ∆f of Gf . If δ ∈ ∆reg, we let δ ∈ ∆f and

Γf (δ) = Γ(δ). Note that in Gf , the set of unobservable events is extended to Euo ∪ {f}.

Example 3.10 Consider the TFAG in Fig. 3.6 withEo = {a, b, c} and ∆fault = {(x0, c, x2),

(x1, d, x3)}. A canonical plant Gf = (X ∪ {xf}, E ∪ {f},∆f ,Γf , X0) is depicted in Fig.

3.7, where fault transitions are shown in red. The transition (x1, d, x3) ∈ ∆fault with an

unobservable fault d is replaced by (x1, f, x3) ∈ ∆f in Gf , and (x0, c, x2) ∈ ∆fault with an

observable fault c is replaced by two consecutive transitions in Gf , namely (x0, f, xf) and

(xf , c, x2) satisfying that Γ((x0, f, xf)) = [1, 2] and Γ((xf , c, x2)) = [0, 0].

Fig. 3.6 TFA G, where fault transitions are shown in red.

Next we consider the zones of each discrete state of Gf . For x0, from which there

exist two transitions originating, namely (x0, c, x2) ∈ ∆ with Γ((x0, c, x2)) = [1, 2] and

(x0, c, x1) ∈ ∆ with Γ((x0, c, x1)) = [1, 2], the maximal dwell time at x0 is dmax(x0) = 2.

46

Chapter 3 State Estimation of Timed Finite Automata

Fig. 3.7 Canonical plant Gf associated with the TFA G in Fig. 3.6 as described in Example 3.

Consequently, the set of zones of x0 is Z(x0) = {[0, 0], (0, 1), [1, 1], (1, 2]}. The set of

active transitions at (x0, θ), where θ is a time instant in z ∈ Z(x0), are reported in Table

3.5. As for the set of zones of other states of Gf , we have Z(x1) = {[0, 0], (0, 1), [1, 2]},
Z(x2) = {[0, 0], (0, 1), [1, 1], (1, 2]}, Z(x3) = {[0, 0], (0, 1), [1, 2]} and Z(xf) = {[0, 0]}.

Table 3.5 Sets of active transitions at (x0, θ) for the TFA G in Fig. 3.6, where θ ∈ zi, i ∈ {0, 1, 2, 3}.

i zi A(x0, θ), θ ∈ zi
0 [0, 0] {(x0, c, x1)}
1 (0, 1) {(x0, c, x1)}
2 [1, 1] {(x0, c, x1), (x0, b, x2)}
3 (1, 2] {(x0, b, x2)}

The zone automaton ZA(Gf) = (V,Eτ ,∆z, V0) is shown in Fig. 3.8. The initial state is

(x0, [0, 0]), implying thatG starts from x0 at clock value 0. A transition labeled with an event

τ implies a time-driven evolution of G. For instance, a transition ((x0, [0, 0]), τ, (x0, (0, 1)))

represents that the clock may evolve from the value in [0, 0] to any value in (0, 1) if G is

at x0. Meanwhile, a transition labeled with an event in E ∪ {f} implies an event-driven

evolution of G. For instance, a transition labeled with c goes from (x0, [1, 1]) to (x2, [0, 0]).

It represents a state evolution from x0 to x2 under the occurrence of an event c, upon which

the clock is reset. �

We now introduce a deterministic untimed automaton called fault monitor and denote

it as M = ({N ,F}, {f}, {(N ,f ,F), (F ,f ,F)}, N) shown in Fig. 3.9, where state N (resp.,

F) denotes that no fault (resp., a fault) has occurred, and the state always evolves from N

and F to F upon each occurrence of f . To deal with fault diagnosis, we construct a fault

recognizerRec(Gf) by composing ZA(Gf) withM by parallel composition such that labels

N and F are attached to states of Rec(Gf) to recognize the occurrence of faults.

Definition 3.20 Consider a timed DES with faults modeled by a TFA Gf = (X ∪Xf , E ∪
{f},∆f ,Γf , X0). Given zone automaton ZA(Gf) = (V,E ∪ {f, τ},∆z, v0) and a fault

47

Doctoral Dissertation of Università degli Studi di Cagliari

Fig. 3.8 Zone automaton ZA(Gf) of Gf in Fig. 3.7.

Fig. 3.9 Fault monitor M for diagnosing event f .

monitor M = ({N,F}, {f}, {(N, f, F), (F, f, F)}, N), the fault recognizer is the automa-

ton Rec(Gf) = (Xrec,Erec, ∆rec,Xrec0), where Xrec ⊆ V × {N,F}, Erec = E ∪ {f, τ},
Xrec0 = V0 × {N}, and a transition δrec ∈ ∆rec satisfies the following conditions:

• if e = f , {((v,N), f, (v′, F)), ((v, F), f, (v′, F))} ⊆ ∆rec holds for each (v, f, v′) ∈
∆z;

• if e ∈ E ∪ {τ}, ((v,N), e, (v′, N)) ∈ ∆rec holds for each (v, e, v′) ∈ ∆z. �

Example 3.11 For instance, the fault recognizer Rec(Gf) is depicted in Fig. 3.10, where

Gf is shown in Fig. 3.7. �

3.4.2 Fault Diagnosis Approach

In this subsection, we deal with fault diagnosis of timed DES with faults modeled by a

TFAGf = (X∪Xf , E∪{f},∆f ,Γf , X0). We first study the dynamics of its fault recognizer

Rec(Gf) = (Xrec,Erec,∆rec,Xrec0) via the following definitions.

Definition 3.21 A τ -run at x ∈ X is defined as a sequence of k+ 1 states in (x, zi, sfault) ∈
Xrec (0 ≤ i ≤ k) and the event τ , represented as ρτ (x) : (x, z0, sfault)

τ−→ · · · τ−→
(x, zk, sfault), such that ((x, zi−1, sfault), τ, (x, zi, sfault)) ∈ ∆rec holds for i ∈ {1, · · · , k}.
We denote the starting state (resp., the ending state) of ρτ (x) as qst(ρτ (x)) = (x, z0, sfault)

48

Chapter 3 State Estimation of Timed Finite Automata

Fig. 3.10 Fault recognizer Rec(Gf) of Gf in Fig. 3.7.

(resp., qen(ρτ (x)) = (x, zk, sfault)). The duration range of ρτ (x) is denoted as d(ρτ (x)) =

zk. The fault label of ρτ (x) is denoted as flabel(ρτ (x)) = sfault. �

In other words, a τ -run at x essentially represents the time elapsing discretely while Gf

is at x ∈ X . The zone zi ∈ Z(x) (0 ≤ i ≤ k) (resp., sfault ∈ {N,F}) provides the range of

the possible clock values (resp., the fault label) associated with x.

Definition 3.22 A run in Rec(Gf) = (Xrec,Erec,∆rec,Xrec0) of length k is defined as a

sequence of τ -runs ρτ (x(i)) (i ∈ {0, · · · , k}) at x(i) ∈ X , and k events ei ∈ E (i ∈
{1, · · · , k}), represented as

ρ̄ : ρτ (x(0))
e1−→ ρτ (x(1)) · · ·

ek−→ ρτ (x(k)),

such that (qen(ρτ (x(i−1))), ei, qst(ρτ (x(i)))) ∈ ∆rec holds for i ∈ {1, · · · , k}. In addition, it

is flabel(ρτ (x(j))) = F if ei = f for i ≤ j ≤ k.

We denote the starting state (resp., the ending state) of ρ̄ as qst(ρ̄) = qst(ρτ (x(0)))

(resp., qen(ρ̄) = qen(ρτ (x(k)))). The fault label of ρ̄ is denoted as flabel(ρ̄) = flabel(ρτ (xk)).

The duration range of ρ̄ is denoted as d(ρ̄) =
k⊕
i=0

d(ρτ (x(i))). The logical word generated

by ρ̄ is denoted as s(ρ̄) = e1 · · · ek via a function defined as s : E∗τ → E∗. The set of runs

generated by Gz is defined asR(Rec(Gf)). �

The τ -runs involving an elapsed time τ with no executed events essentially represent

the time elapsing discretely. A run in Rec(Gf) represents the evolutions of Gf that involve

49

Doctoral Dissertation of Università degli Studi di Cagliari

both time elapsing and events occurrence. After an event ei, i ∈ {1, · · · , k} is executed, the

state of Gf evolves from x(i−1) to x(i). The fault label is ρ̄ = F once a fault has occurred.

The logical word of ρ̄ is the sequence of events in E ∪ {f} that have been involved

in ρ̄. The duration range of ρ̄ is evaluated by summing up the duration of each τ -run at

x(i), i ∈ {0, · · · , k}.

Next we focus on the fault diagnosis problem when a timed observation is received as

a pair of a non-empty timed word and a time instant. We propose and prove the following

theorem as follows.

Theorem 3.4 Consider a TFA G = (X,E,∆,Γ, X0) with a set of fault transitions, its

canonical plant Gf = (X ∪Xf , E ∪ {f},∆f ,Γf , X0), and its fault recognizer Rec(Gf) =

(Xrec,Erec,∆rec,Xrec0). Given a timed observation (σo, t) ∈ (Eo × R≥0)∗ × R≥0, where

σo = (eo1, t1) · · · (eon, tn), n ≥ 1, and 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ t, then there exists a timed

run ρ̄ ∈ R(Rec(Gf)), defined as ρ̄ : ρ̄(0)
eo1−→ ρ̄(1) · · ·

eon−→ ρ̄(n), such that the following

conditions are satisfied:

(a) t ∈ d(ρ̄), t− tn ∈ d(ρ̄(n)) and ti − ti−1 ∈ d(ρ̄(i−1)) for i ∈ {1, · · · , n};

(b) Pl(s(ρ̄)) = eo1 · · · eon, Pl(s(ρ̄(i))) = ε for i ∈ {1, · · · , n}, where Pl : (E ∪ {f})∗ →
E∗o ;

(c) flabel(ρ̄) = N if |s(ρ̄)|f = 0; else, flabel(ρ̄) = F . �

Proof : Given a timed observation (σo, t) ∈ (Eo × R≥0)∗ × R≥0, there exists a timed

run of G defined as ρ : ρ0
(eo1,t1)−→ · · · (eon,tn)−→ ρn, such that S(σ(ρi)) = ε for i ∈ {0, · · · , n},

(xen(ρi−1), ei, xst(ρi)) ∈ ∆, T (ρi−1) = ti − ti−1 for i ∈ {1, · · · , n}, and T (ρn) = t− tn.

If a fault transition labeled with an observable event has been executed, there exists

an associated timed run of Gf defined as ρf : ρ0
(eo1,t1)−→ · · · (eoi−1,ti−1)−→ ρi−1

(f,ti)−→ xf
(eoi,ti)−→

· · · (eon,tn)−→ ρn. Based on that, there exists a run of Rec(Gf) defined as ρ̄ : ρ̄0
eo1−→ · · · eoi−1−→

ρ̄i−1
f−→ (xf , [0, 0], F)

eoi−→ ρ̄i · · ·
eon−→ ρ̄n such that (qen(ρ̄p−1), eop, qst(ρ̄p)) ∈ ∆rec and

tp − tp−1 ∈ d(ρ̄p−1) hold for 1 ≤ p ≤ n. Conditions (a), (b), and (c) can be inferred

accordingly.

If a fault transition labeled with an unobservable event has been executed, we have a

timed run of Gf defined as ρf : ρ0
(eo1,t1)−→ · · · (eoi,ti)−→ ρi · · ·

(eon,tn)−→ ρn, where ρi : x(i0)
(ei1,ti1)−→

· · · (f,tij)−→ x(ij)
(eij+1,tij+1)−→ x(ij+1) · · ·

(eim,tim)−→ x(im)(m ≥ 1, 0 ≤ i ≤ n) and eij = f(1 ≤
j ≤ m). Accordingly, there exists an associated run of Rec(Gf) defined as ρ̄ : ρ̄0

eo1−→

50

Chapter 3 State Estimation of Timed Finite Automata

· · · eoi−→ ρ̄i · · ·
eon−→ ρ̄n, where ρ̄i : ρτ (x(i0))

ei1−→ · · · f−→ ρτ (x(ij)) · · ·
eim−→ ρτ (x(im)). Thus,

conditions (a), (b), and (c) can be inferred. �

In other words, taking into account the information coming from the observation of new

events at certain time instants, the occurrence of faults can be analysed by exploring all the

runs in Rec(Gf) consistent with the given observation. The fault label flabel(ρ̄) associated

with ρ̄ denoted whether the run contains a fault (flabel(ρ̄) = F) or not (flabel(ρ̄) = N). By

denoting the set of runs consistent with (σo, t) asR(Rec(Gf), (σo, t)), an approach for fault

diagnosis can be generated by the following rules:

• φ((σo, t)) = N (resp., φ((σo, t)) = F) if flabel(ρ̄) = N (resp., flabel(ρ̄) = F) holds for

each ρ̄ ∈ R(Rec(Gf), (σo, t));

• otherwise, it is φ((σo, t)) = U .

In simple words, the fault diagnosis of the faulty behaviour f can be done via exploring

all the runs in Rec(Gf). If the fault label of each run ρ̄ ∈ R(Rec(Gf), (σo, t)) is flabel(ρ̄) =

F (resp., flabel(ρ̄) = N), we may conclude that f has (resp., has not) been occurred for sure;

otherwise, f may or may not have been occurred.

Example 3.12 Consider the TFA G = (X,E,∆,Γ, X0) in Fig. 3.6 with Eo = {a, b, c}
and ∆fault = {(x0, c, x2), (x1, d, x3)}. Given a timed observation (σo, 4), where σo =

(c, 1)(b, 2)(c, 3.5), the diagnosis procedures from t = 0 to t = 4 is summarized in Table 3.6.

We explain the process of diagnosis while the observation (σo, t) is progressively updated

over time as follows.

• The TFA G produces observation (σo, t) = (λ, t) for t ∈ [0, 1]. The union of ending

states of all runs inR(Rec(λ, 1)) is {(x0, [1, 1], N), (xf , [0, 0], F)} at t ∈ [1, 1]. Thus

it is φ(λ, 1) = U .

• The TFA G produces observation (σo, t) = ((c, 1), t) for t ∈ [1, 2]. The union

of ending states of all runs in R(Rec((c, 1), 2)) is {(x1, [1, 2], N), (x2, [1, 1], F), (x3,

[1, 2], F)} at t ∈ (2, 3). Thus it is φ(((c, 1), 2)) = U .

• The TFA G produces observation (σo, t) = ((c, 1)(b, 2), t) for t ∈ [2, 3.5]. The union

of ending state of all runs in R(Rec((c, 1)(b, 2), 3.5)) is {(x0, (1, 2], N), (xf , [0, 0],

F), (x1, [1, 2], F), (x3, [1, 2], F)} at t ∈ (3, 4). Thus it is φ(((c, 1)(b, 2), 3.5)) = U .

51

Doctoral Dissertation of Università degli Studi di Cagliari

• The TFA G produces observation (σo, t) = ((c, 1)(b, 2) (c, 3.5), t) for t ∈ [3.5, 4].

The union of ending state of all runs in R(Rec(Gf), (σo, t)) is {(x2, (0, 1), F)} at

t ∈ [4, 4]. Thus it is φ(((c, 1)(b, 2)(c, 3.5), 4)) = F . �

Table 3.6 Diagnosis of the TFA G in Fig. 3.6 with Ef = {c, d} and (σo, t), t ∈ [0, 4].

σo I(t ∈ I)
⋃

ρ̄∈R(Rec(Gf),(σo,t))

qen(ρ̄) φ((σo, t))

λ
[0,0] {(x0, [0, 0], N)} N
(0,1) {(x0, (0, 1), N)} N
[1,1] {(x0, [1, 1], N), (xf , [0, 0], F)} U

(c, 1)
[1,1] {(x1, [0, 0], N), (x2, [0, 0], F), (x3, [0, 0], F)} U
(1,2) {(x1, (0, 1), N), (x2, (0, 1), F), (x3, (0, 1), F)} U
[2,2] {(x1, [1, 2], N), (x2, [1, 1], F), (x3, [1, 2], F)} U

(c, 1)(b, 2)

[2,2] {(x0, [0, 0], N), (x1, [0, 0], F), (x3, [0, 0], F)} U
(2,3) {(x0, (0, 1), N), (x1, (0, 1), F), (x3, (0, 1), F)} U
[3,3] {(x0, [1, 1], N), (xf , [0, 0], F), (x1, [1, 2], F), (x3, [1, 2], F)} U
(3,4) {(x0, (1, 2], N), (xf , [0, 0], F), (x1, [1, 2], F), (x3, [1, 2], F)} U

(c, 1)(b, 2)(c, 3.5)
(3,4) {(x2, [0, 0], F), (x2, (0, 1), F)} F
[4,4] {(x2, (0, 1), F)} F

3.5 Conclusions

In this section, we summarize the conclusions of this chapter as follows:

• First, we present a model of timed DES endowed with a single clock that is reset upon

each event occurrence. A time interval is associated with each transition specifying at

which clock values it may occur. We consider a type of time semantics that imposes

constraints on the dwell time spent at each state of a TFA. A timed word generated by

a TFA is defined as a sequence of pairs (event, time instant at which the event occurs).

Assuming that certain events are unobservable, namely their occurrences are silent,

we deal with the problem of estimating the current state of the system in function of

measured timed observations.

• The proposed solution is based on partitioning the clock values at a state into zones.

We construct a zone automaton that provides a purely discrete description of the

considered TFA. We show that the problem of investigating the reachability of a

discrete state of a TFA can be reduced to the reachability analysis of a state in its

zone automaton. This result provides the basis for the observer design.

52

Chapter 3 State Estimation of Timed Finite Automata

• We deal with the state estimation problem considering two sub-problems: state esti-

mation with no observation and state estimation with partial observation. For the case

where a TFA produces no observation, we introduce the notion of λ-estimation from

x within t as the set of states of the zone automaton that can be reached following a

run of duration t, originating at (x, [0, 0]) and producing no observation. An algorithm

for calculating the λ-estimation is provided. We prove that the set of possible current

states as time elapses without any observation can be obtained by calculating the λ-

estimation, i.e., looking at appropriate runs in the associated zone automaton. For the

case that a timed observation is received as a pair of a non-empty timed word and a

time instant, we prove that the set of states consistent with a timed observation can be

inferred following a certain number of runs in the zone automaton. An algorithm

summarizes our proposed approach to compute the set of states consistent with a

timed observation. According to the approach, during the online phase to estimate

the current discrete state, one can determine which is the state of the observer reached

by the current observation and check to which interval (among a finite number of time

intervals) the time elapsed since the last observed event occurrence belongs.

• As an application of the state estimation approach, we assume that TFA may be

affected by a set of faults described by timed transitions and aim at diagnosing a fault

behaviour based on a timed observation. We first transform the timed plant with faults

into a canonical plant and then construct the zone automaton of the canonical plant.

By synchronising the zone automaton with a fault monitor that detects the occurrence

of a fault, a fault recognizer that detects the occurrence of a fault can be constructed.

We conclude that the occurrence of faults can be analyzed by exploring all runs in the

fault recognizer that are consistent with a given timed observation.

53

Doctoral Dissertation of Università degli Studi di Cagliari

54

Chapter 4 State Estimation of Generalized Timed Finite Automata

Chapter 4 State Estimation of Generalized Timed Finite Automata

In this chapter, we introduce a model of timed DES, called generalized timed finite

automata (GTFA), characterized by a single clock. Recall that in a TFA, the clock is reset

to zero after each event occurrence, and the time semantics constrain the dwell time at each

discrete state. In a GTFA, a clock resetting function associated with each transition specifies

how the clock value is updated upon its occurrence; consequently, the time semantics of a

GTFA allows a system to remain in a discrete state forever. The behaviour of a GTFA can

be described via its timed runs.

This chapter considers partially observed GTFA that produces timed observations as

a succession of pairs of an observable event and the time instant at which the event has

occurred. Our objective is to estimate the current discrete state of the automaton as a function

of the current observation and the current time. When dealing with the state estimation

problem, we assume that observable transitions should be reset to zero in order to guarantee

the applicability of the proposed state estimation approach, which is based on the notion

of zones. The solution is based on determining T -reachability, which takes into account

the discrete states that can be reached with an evolution producing a given observation

and a duration equal to T . The problem of T -reachability in the GTFA is reduced to the

reachability analysis of the associated zone automaton.

This chapter is divided into five sections. The first section introduces the model of the

GTFA and related notions used throughout the chapter. The second section proposes the

zone automaton of a given GTFA and investigates the dynamics of the zone automaton. We

provide a necessary and sufficient condition for the T -reachability of a discrete state in a

GTFA and explain the correlation between the dynamics of a GTFA and that of its zone

automaton. In the third section, we deal with the state estimation problem by considering

first the case under no observation and then the case under partial observation. In the fourth

section, we present a discussion on the state estimation of multi-clock timed DES, which

can be explored by extending the state estimation approach of GTFA with a single clock.

The fifth section concludes this chapter.

4.1 Generalized Timed Finite Automata

This section provides preliminary notions used throughout this chapter.

55

Doctoral Dissertation of Università degli Studi di Cagliari

Definition 4.1 A generalized timed finite automaton (GTFA) is a six-tuple G = (X , E, ∆,

Γ, Reset, X0) that operates under a single clock, where

• X is a finite set of discrete states,

• E is an alphabet,

• ∆ ⊆ X × E ×X is a transition relation,

• Γ : ∆→ Ic is a timing function,

• Reset : ∆ → Ic ∪ {id} is a clock resetting function such that for δ ∈ ∆, the clock is

reset to be a value in a time interval I ∈ Ic (Reset(δ) = I), or the clock is not reset

(Reset(δ) = id), and

• X0 ⊆ X is the set of initial discrete states. �

For the sake of simplicity, we assume that the clock is set to be 0 initially in this

paper. In other words, a GTFA G = (X,E,∆,Γ, Reset,X0) is an NFA G = (X,E,∆, X0)

endowed with a time structure represented by the timing function Γ, and the clock resetting

function Reset. The transition relation, the timing function, and the clock resetting function

specify the dynamics of the GTFA. In more detail, given two discrete states x, x′ ∈ X and

an event e ∈ E, (x, e, x′) ∈ ∆ denotes that the occurrence of event e leads to x′ when the

GTFA is at x. The timing function Γ maps the transition (x, e, x′) to a closed time interval

in Ic, which specifies a range of clock values at which the event e may occur. The clock

resetting function Reset associates with (x, e, x′) a closed time interval in Ic denoting the

range of the clock values that are reset to be or renders that the clock is not reset upon the

occurrence of the transition by associating id with (x, e, x′).

A GTFA G = (X,E,∆,Γ, Reset,X0) can be represented by a graph, where a discrete

state x ∈ X corresponds to a node, and each initial discrete state inX0 is marked by an input

arrow. For any transition (x, e, x′) ∈ ∆, there exists a directed edge from x to x′ labeled

with the symbol e. The information given by the timing function Γ and the clock resetting

function Reset can be presented graphically. Given an edge denoting a transition δ ∈ ∆, the

label θ ∈ Γ(δ)? on the edge specifies if δ is enabled with respect to θ; the label θ :∈ Reset(δ)
(resp., θ := id) on the edge specifies to which range θ belongs (resp., specifies that the clock

is not reset) after the transition is fired.

Example 4.1 Consider the GTFA G = (X , E, ∆, Γ, Reset, X0) with X = {x0, x1,

x2, x3, x4}, E = {a, b, c}, ∆ = {(x0, c, x1), (x0, b, x2), (x1, a, x4), (x2, c, x3), (x3, a, x2),

56

Chapter 4 State Estimation of Generalized Timed Finite Automata

(x4, b, x3)} andX0 = {x0}. Let the timing function Γ and the clock resetting functionReset

be defined as in Table 4.1. The graphical representation of G is visualized in Fig. 4.1. �

Table 4.1 Timing function and clock resetting function of the GTFA G in Fig. 4.1.

δ ∈ ∆ Γ(δ) Reset(δ)
(x0, c, x1) [1, 3] [1, 1]
(x0, b, x2) [0, 1] id
(x1, a, x4) [1, 3] [0, 1]
(x2, c, x3) [1, 2] id
(x3, a, x2) [0, 2] [0, 0]
(x4, b, x3) [0, 1] [0, 0]

Fig. 4.1 GTFA G.

Definition 4.2 Given G = (X,E,∆,Γ, Reset,X0), a timed (or hybrid) state is defined as

a pair (x, θ) ∈ X × R≥0, where θ is the current value of the clock. In other words, a timed

state (x, θ) keeps the track of the current clock assignment θ while G stays at state x. �

Definition 4.3 A timed run ρ of length k ≥ 0 from t0 ∈ R≥0 to tk ∈ R≥0 is a sequence of

k+ 1 timed states (x(i), θ(i)) ∈ X ×R≥0 (i = 0, · · · , k), and k pairs (ei, ti) ∈ E×R≥0 (i =

1, · · · , k), represented as

ρ : (x(0), θ(0))
(e1,t1)−−−→· · · (x(k−1), θ(k−1))

(ek,tk)−−−→(x(k), θ(k))

such that the following conditions are satisfied for all i = 1, · · · , k:

(x(i−1), ei, x(i)) ∈ ∆, (4-1)

57

Doctoral Dissertation of Università degli Studi di Cagliari

θ(i) ∈ Reset((x(i−1), ei, x(i))), (4-2)

θ(i−1) + ti − ti−1 ∈ Γ((x(i−1), ei, x(i))). (4-3)

We define the timed word generated by ρ as σ(ρ) = (e1, t1)(e2, t2) · · · (ek, tk) ∈ (E ×
R≥0)∗. We also define the logical word generated by ρ as S(σ(ρ)) = e1e2 · · · ek via a

function defined as S : (E × R≥0)∗ → E∗. Given a timed run ρ of length 0 that only

contains the starting discrete state x(0) with the starting clock θ(0) and no transition, the

logical word and the timed word generated by ρ are denoted respectively as S(σ(ρ)) = ε

and σ(ρ) = λ, where λ denotes the empty timed word in E × R≥0. For the timed word

σ(ρ) generated from an arbitrary timed run ρ, it is λ · σ(ρ) = σ(ρ) = σ(ρ) · λ. The starting

discrete state and the ending discrete state of a timed run ρ are denoted by xst(ρ) = x(0)

and xen(ρ) = x(k), respectively. The starting time and the ending time of ρ are denoted

by tst(ρ) = t0 and ten(ρ) = tk, respectively. In addition, the duration of ρ is denoted as

T (ρ) = tk − t0. The set of timed runs generated by G is denoted asR(G). �

Example 4.2 Given the GTFA in Fig. 4.1, ρ : (x0, 0)
(c,1.5)−→ (x1, 1)

(a,3)−→ (x4, 0.6) is a

timed run of length 3 from time 0 to 3. The timed word σ(ρ) = (c, 1.5)(a, 3) corresponds

to events c and a occurring at time instants t1 = 1.5 and t2 = 3, respectively. It starts

from xst(ρ) = x0 at the starting time 0 and terminates in xen(ρ) = x4 at the ending time

3. The logical word generated by ρ is S(σ(ρ)) = ca. It involves two transitions, namely

(x0, c, x1) and (x1, a, x4), leading the clock reset to be 1 ∈ Reset((x0, c, x1)) at x1 and

to be 0.6 ∈ Reset((x1, a, x4)) at x4, respectively. In addition, according to Eq. (4-3),

we have 0 + t1 ∈ Γ((x0, c, x1)) and 1 + t2 − t1 ∈ Γ((x1, a, x4)). Consider another run

ρ′ : (x0, 0)
(b,0.5)−→ (x2, 0.5)

(c,2)−→ (x3, 2)
(a,2)−→ (x2, 0), where three transitions (x0, b, x2),

(x2, c, x3), and (x3, a, x2) are involved. The transitions (x0, b, x2) and (x2, c, x3) do not lead

the clock to be reset, while (x3, a, x2) resets the clock to 0. �

Definition 4.4 Given a GTFA G = (X,E,∆,Γ, Reset,X0), a timed evolution of G from

t0 ∈ R≥0 to t ∈ R≥0 is defined by a pair (σ(ρ), t) ∈ (E × R≥0)∗ × R≥0, where tst(ρ) = t0

and ten(ρ) ≤ t. Furthermore, we denote as

E(G, t) = {(σ(ρ), t) | (∃ρ ∈ R(G)) xst(ρ) ∈ X0, tst(ρ) = 0, ten(ρ) ≤ t}

the timed language of G from 0 to t ∈ R≥0.

58

Chapter 4 State Estimation of Generalized Timed Finite Automata

In other words, a timed evolution of G from t0 to t is defined as a pair whose first entry

is a timed word σ(ρ), where ρ is a timed run starts at t0 from an initial state X0 and ends at

ten(ρ) (ten(ρ) ≤ t), and whose second entry is the time instant t. Note that t− ten(ρ) is the

time that the system stays at the ending discrete state xen(ρ). In addition, the timed language

of G from 0 to t contains all possible timed evolutions of G from 0 to t.

Definition 4.5 Given a GTFA G = (X,E,∆,Γ, Reset,X0) and a time instant T ∈ R≥0, a

discrete state x′ ∈ X is said to be T -reachable from x ∈ X if there exists a timed evolution

(σ(ρ), t) ∈ (E × R≥0)∗ × R≥0 of G such that t− tst(ρ) = T , xst(ρ) = x, and xen(ρ) = x′.

In addition, x′ is said to be unobservably T -reachable from x if x′ is T -reachable from x

with a timed evolution (σ(ρ), t) such that S(σ(ρ)) ∈ E∗uo. �

In simple words, a discrete state x′ is T -reachable from x if a timed evolution leads

the system from x to x′ with an elapsed time T . If there exists such a timed evolution that

produces no observation further, x′ is unobservably T -reachable from x.

Example 4.3 Consider the GTFA G in Fig. 4.1 and a timed evolution (σ(ρ), 2), where

ρ : (x0, 0)
(b,0.5)−→ (x2, 0.5)

(c,2)−→ (x3, 2) and tst(ρ) = 0. It follows that x3 is 2-reachable from

x0. �

4.2 Zone Automaton and its dynamics

This section proposes the notion of zone automaton associated with a GTFA. The zone

automaton provides a purely discrete event description of the behaviour of the GTFA of

interest. In detail, each state of a zone automaton is a pair (x, z) whose first element x is

a discrete state of the GTFA and whose second element z is a time interval (called a zone)

specifying the range of the clock values.

Given a zone automaton, its state evolves because of either the elapsed time or the

occurrence of a discrete event. The first case is a time-driven evolution; the second case

is an event-driven evolution. In the former, the state evolves whenever a certain amount of

time has elapsed as detailed in the following, leading to another state where only the zone is

changed while the discrete state associated with the GTFA remains the same. In the latter,

i.e., during an event-driven evolution, the clock evolves according to the clock resetting

function of the GTFA; thus, a new state of the zone automaton is reached, where the discrete

state of the GTFA is typically different (it may be the same only in the case of self-loops in

the given GTFA).

59

Doctoral Dissertation of Università degli Studi di Cagliari

This section is divided into two subsections. In the first subsection, we define the

zones of a discrete state, and the zone automaton associated with a GTFA, respectively.

An algorithm is presented to construct the zone automaton. In the second subsection, we

explore the dynamics of a zone automaton and discuss how the timed evolutions of a GTFA

are related to the evolutions of its zone automaton.

4.2.1 Zone Automaton

Definition 4.6 Given a GTFA G = (X,E,∆,Γ, Reset,X0), the set of output transitions at

a timed state (x, θ) ∈ X × R≥0 is defined as O(x, θ) = {(x, e, x′) ∈ ∆ | (∃e ∈ E)(∃x′ ∈
X) θ ∈ Γ((x, e, x′))}, and the set of input transitions at (x, θ) is defined as I(x, θ) =

{(x′, e, x) ∈ ∆ | (∃e ∈ E)(∃x′ ∈ X) θ ∈ Reset((x′, e, x))}. �

In simple words, the set of output transitions at a timed state (x, θ) includes all the

transitions that may fire from x with a clock value θ, the set of input transitions at (x, θ)

includes all the transitions that may reach x with a reset clock value θ. This leads to the

definition of clock zones associated with a given discrete state x ∈ X .

Definition 4.7 Given a GTFA G = (X,E,∆,Γ, Reset,X0), the set of zones of x ∈ X is

defined as a set of time intervals Z(x) = {z1, · · · , zn} ⊆ I, n ≥ 11 such that
n⋃
i=1

zi =

[0,+∞). In addition, the following conditions hold:

• θ < θ′ holds for all θ ∈ zi−1 and for all θ′ ∈ zi, where i ∈ {2, · · · , n};

• z1 = [0, 0] if x ∈ X0;

• O(x, θ) = O(x, θ′) and I(x, θ) = I(x, θ′) hold for all θ, θ′ ∈ zi, where i ∈ {1, · · · , n};

• for each δ ∈ ∆ originating from x or leading to x such that Reset(δ) = id, we have

{[m,m], (m,m+ 1), [m+ 1,m+ 1], · · · , [n, n]} ⊆ Z(x) by denoting Γ(δ) = [m,n];

• O(x, θ) 6= O(x, θ′) or I(x, θ) 6= I(x, θ′) holds for all θ ∈ zi−1 and θ′ ∈ zi, where

i ∈ {2, · · · , n}, if none of the following cases holds: (a) x /∈ X0 and θ 6= 0; (b) there

exists no δ ∈ ∆ originating from x or leading to x such that Reset(δ) = id.

In addition, prec(zi) = zi−1 (resp., succ(zi) = zi+1) is said to be the preceding (resp.,

succeeding) zone of zi ∈ Z(x), where i ∈ {2, · · · , n} (resp., i ∈ {1, · · · , n− 1}). �

1Note that the number of the zones may be different for different discrete states.

60

Chapter 4 State Estimation of Generalized Timed Finite Automata

The set of zones of a discrete state x follows from the partitioning of the range of the

clock values at x into several time intervals to which the clock may belong. The union of all

zones in Z(x) covers the interval [0,+∞). For i ∈ {2, · · · , n}, any value in zi−1 is less than

any value in zi, implying that any two zones of x are disjoint. Note that the first zone of an

initial discrete state x ∈ X0 is set to be [0, 0]. If θ ∈ zi and θ′ ∈ zi, where i ∈ {1, · · · , n},
the sets of output and input transitions at two timed states (x, θ) and (x, θ′) are identical.

Suppose there exists a transition δ going from x (or leading to x) such that the clock is not

reset upon its occurrence. In that case, the time interval Γ(δ) is partitioned into a series

of time intervals consisting of the integer points belonging to Γ(δ) and the open segments

between them. If x /∈ X0, θ 6= 0, and there exists no such transition δ, the firability of

transitions differs between (x, θ) and (x, θ′), where θ ∈ zi−1 and θ′ ∈ zi for i ∈ {2, · · · , n}.

Example 4.4 Consider again the GTFA G = (X , E, ∆, Γ, Reset, X0) in Fig. 4.1. In

addition, the sets of output and input transitions at (x0, θ), where θ is a time instant in

z ∈ Z(x0), are reported in Table 4.2, where the condition ∗ denotes that there exists δ ∈
O(x0, θ) ∪ I(x0, θ) such that Reset(δ) = id holds for each θ ∈ z and z ∈ Z(x0). The

set of zones Z(x0) can be obtained as {[0, 0], (0, 1), [1, 1], (1, 3], (3,+∞)}. In detail, we

have [0, 0] ∈ Z(x0) due to x0 ∈ X0, the time interval Γ((x0, b, x2)) = [0, 1] is partitioned

into three zones [0, 0], (0, 1), and [1, 1] because the condition ∗ holds due to the transition

(x0, b, x2) ∈ ∆. Accordingly, we have {[0, 0], (0, 1), [1, 1]} ⊆ Z(x0). We can include

(1, 3] ∈ Z(x0) (resp., (3,+∞) ∈ Z(x0)) because O(x0, θ) differs from θ in the zones [1, 1]

and (1, 3] (resp., in the zones (1, 3] and (3,+∞)).

Analogously, we can obtain Z(x1) = {[0, 1),[1, 1], (1, 3],(3,+∞)}. The sets of output

and input transitions at (x1, θ) are reported in Table 4.3 for θ ∈ z and z ∈ Z(x1). Both

sets of output and input transitions differ from each two consecutive zones z ∈ Z(x1) and

succ(z) ∈ Z(x1). As for other discrete states in X , we have Z(x2) = {[0, 0], (0, 1), [1, 1],

(1, 2), [2, 2], (2,+∞)}, Z(x3) = {[0, 0], (0, 1), [1, 1], (1, 2), [2, 2], (2,+∞)} and Z(x4) =

{[0, 1], (1,+∞)}. �

Given a discrete state x and two zones z, succ(z) ∈ Z(x), let an event τ denote that at

a discrete state x the clock value may evolve from any θ ∈ z to any θ′ ∈ succ(z) as time

elapses. In other words, the occurrence of τ implies the time-driven evolution ofG that stays

at a discrete state x.

Definition 4.8 Given a GTFA G = (X,E,∆,Γ, Reset,X0), the zone automaton of G is an

NFA Gz = (V,Eτ ,∆z, V0), where

61

Doctoral Dissertation of Università degli Studi di Cagliari

Table 4.2 Sets of output and input transitions at (x0, θ) for the GTFA G in Fig. 4.1, where θ ∈ [0,+∞).

z O(x0, θ), θ ∈ z I(x0, θ), θ ∈ z Condition ∗
[0, 0] {(x0, b, x2)} − Yes
(0, 1) {(x0, b, x2)} − Yes
[1, 1] {(x0, b, x2), (x0, c, x1)} − Yes
(1, 3] {(x0, c, x1)} − No

(3,+∞) − − No

Table 4.3 Sets of output and input transitions at (x1, θ) for the GTFA G in Fig. 4.1, where θ ∈ [0,+∞).

z O(x1, θ), θ ∈ z I(x1, θ), θ ∈ z Condition ∗
[0, 1) − − No
[1, 1] {(x1, a, x4)} {(x0, c, x1)} No
(1, 3] {(x1, a, x4)} − No

(3,+∞) − − No

• V ⊆ X ×
⋃
x∈X

Z(x) is the finite set of states,

• Eτ ⊆ E ∪ {τ} is the alphabet,

• ∆z ⊆ V × Eτ × V is the transition relation, where the transitions in ∆z are defined

by the following rules:

– ((x, z), τ, (x, succ(z))) ∈ ∆z if z, succ(z) ∈ Z(x);

– ((x, z), e, (x′, z′)) ∈ ∆z if z ∈ Z(x), z′ ∈ Z(x′), (x, e, x′) ∈ O(x, θ) for all

θ ∈ z, and (x, e, x′) ∈ I(x′, θ′) for all θ′ ∈ z′;

• V0 = {(x, [0, 0]) | x ∈ X0} is the set of initial states.

We further define the function fx : V → X (resp., fz : V →
⋃
x∈X

Z(x)) mapping a state in

V to a discrete state in X (resp., a zone of the associated discrete state). �

We use the zone automaton to describe the time-driven and event-driven evolutions of a

GTFAG = (X,E,∆,Γ, Reset,X0). Each state in a zone automaton is a pair (x, z) with x ∈
X and z ∈ Z(x). The alphabet is composed of the events in E and event τ . The transition

relation specifies the dynamics of the automaton: starting from a state (x, z), a transition

((x, z), τ, (x, succ(z))) ∈ ∆z corresponds to a time-driven evolution ofG from a clock value

in z to another clock value in succ(z) while G is at x; a transition ((x, z), e, (x′, z′)) ∈ ∆z

62

Chapter 4 State Estimation of Generalized Timed Finite Automata

goes from (x, z) to (x′, z′), indicating that the occurrence of event e yields discrete state x′

with a clock value in z′ when the current discrete state of the system is x and the current

clock is in z. The set of initial states is the set of pairs of a discrete state x ∈ X0 and a time

interval [0, 0]. A zone automaton can be represented as a graph. In particular, we represent

the nodes as rectangular boxes in the graph.

Given a GTFAG = (X,E,∆,Γ, Reset,X0), the zone automatonGz = (V,Eτ ,∆z, V0)

can be constructed by Algorithm 6. A temporary set of states Vnew is introduced, containing

all states in V that still need to be explored in order to compute their output transitions.

A while loop is repeated until Vnew = ∅. After selecting an element (x, z) ∈ Vnew, a

transition ((x, z), τ, (x, succ(z))) is set in ∆z if succ(z) is a zone at x. For each transition

(x, e, x′) ∈ ∆, if the transition satisfies z ⊆ Γ((x, e, x′)), then for each zone z′ ∈ Z(x′), if

Reset((x, e, x′)) 6= id and z′ ⊆ Reset((x, e, x′)), or if Reset((x, e, x′)) = id and z = z′, a

transition labeled with e is set from v = (x, z) to v′ = (x′, z′). To avoid redundant repetitions

of the while loop, the state v′ is included in Vnew if v′ is neither in V nor in Vnew. The while

loop stops once all states in Vnew have been explored.

We discuss the computational complexity of Algorithm 6 as follows. Let Qx = {(x, e,

x′) ∈ ∆ | e ∈ E, x′ ∈ X} ∪ {(x′, e, x) ∈ ∆ | e ∈ E, x′ ∈ X} be the set of output and

input transitions of discrete state x ∈ X . Our approach partitions the range of clock values

[0,+∞) at x ∈ X into a set of zones Z(x) which depends on set Qx. A simple analysis

shows that the maximum number of zones is bounded by 2|Qx| + 1. As a result, by letting

q = max
x∈X
|Qx|, the maximal number of states ofGz satisfies |V | ≤ (2q+1)|X|. In Algorithm

6, the while loop at Step 2 is executed |V | times, the for loop at Step 7 is executed at most

q times, and the for loop at Step 9 is executed at most 2q + 1 times; consequently, the time

complexity is O(q3|X|).

Example 4.5 Consider the GTFA G = (X , E, ∆, Γ, Reset, X0) in Fig. 4.1. The zone

automatonGz = (V,Eτ ,∆z, V0) is shown in Fig. 4.2. The initial state (x0, [0, 0]) implies that

G starts from x0 at clock value 0. A transition labeled with an event τ implies a time-driven

evolution of G. For instance, a transition ((x0, [0, 0], τ, (x0, (0, 1))) represents that the clock

may evolve from the value in [0, 0] to any value in (0, 1) ifG is at x0. Meanwhile, a transition

labeled with an event in E implies an event-driven evolution of G. For instance, three

transitions labeled with b go from (x0, [0, 0]) to (x2, [0, 0]), from (x0, (0, 1)) to (x2, (0, 1)),

and from (x0, [1, 1]) to (x2, [1, 1]), respectively. It represents an event-driven evolution from

x0 to x2 under the occurrence of a transition (x0, b, x2). Note that the pair (x1, [0, 1)) is not

a state in V because it cannot be reached by any transition. �

63

Doctoral Dissertation of Università degli Studi di Cagliari

Algorithm 6 Construction of the zone automaton associated with a GTFA
Input: A GTFA G = (X,E,∆,Γ, Reset,X0)
Output: The zone automaton Gz = (V,Eτ ,∆z, V0)
1: V = ∅, Eτ = E ∪ {τ}, ∆z = ∅, V0 = {(x, [0, 0]) | x ∈ X0}, and Vnew = V0

2: while Vnew 6= ∅ do
3: select a v = (x, z) ∈ Vnew
4: if succ(z) ∈ Z(x) then
5: let v̄ = (x, succ(z)), ∆z = ∆z ∪ {(v, τ, v̄)}, and Vnew = Vnew ∪ {v̄}
6: end if
7: for each (x, e, x′) ∈ ∆ do
8: if z ⊆ Γ((x, e, x′)) then
9: for each z′ ∈ Z(x′) do

10: if Reset((x, e, x′)) 6= id∧ z′ ⊆ Γ((x, e, x′))∨Reset((x, e, x′)) = id∧ z = z′

then
11: let v′ = (x′, z′) and ∆z = ∆z ∪ {(v, e, v′)}
12: if v′ /∈ V ∪ Vnew then
13: Vnew = Vnew ∪ {v′}
14: end if
15: end if
16: end for
17: end if
18: end for
19: let V = V ∪ {v} and Vnew = Vnew \ {v}
20: end while
21: return Gz = (V,Eτ ,∆z, V0).

4.2.2 Dynamics of Zone Automaton

In this subsection, we first introduce the notion of τ -run at a discrete state x ∈ X that

corresponds to the elapse of time with no event occurrence. Next, a run in Gz is considered,

including also the occurrence of discrete events, to show the time-driven evolution and the

event-driven evolution of G. We show that the problem of investigating the reachability of a

discrete state inG can be reduced to the reachability analysis of a state in the zone automaton

Gz.

Definition 4.9 Consider a GTFA G = (X , E, ∆, Γ, Reset, X0) and a discrete state x ∈ X ,

where the number of the zones in Z(x) is n ≥ 1. Let Gz = (V,Eτ ,∆z, V0) be the zone

automaton of G. A τ -run at x of length k (1 ≤ k ≤ n) is defined as a sequence of k states

(x, z(i)) ∈ V (i = 1, · · · , k), and event τ ∈ Eτ , represented as

ρτ (x) : (x, z(1))
τ−→ · · · τ−→ (x, z(k))

such that ((x, z(i)), τ, (x, z(i+1))) ∈ ∆z holds for i ∈ {1, · · · , k − 1}. The starting state and

64

Chapter 4 State Estimation of Generalized Timed Finite Automata

[1,1] (1,3]

[0,0] (0,1)

(1,3]

[0,0] (0,1) [1,1]

[0,1]

(1,2)

[1,1]

[1,1]

(0,1)[0,0]

[2,2]

(1,2) [2,2]

(3,)

(3,)

(2,)

(2,)

(1,)

Fig. 4.2 Zone automaton Gz of the GTFA G in Fig. 4.1.

the ending state of ρτ (x) are denoted as vst(ρτ (x)) = (x, z(1)) and ven(ρτ (x)) = (x, z(k)),

respectively. The duration range of ρτ (x) is the time distance of z(1) and z(k), denoted as

d(ρτ (x)) = D(z(1), z(k)). �

A τ -run at x represents a series of evolutions of states in Gz involving the states

associated with x and event τ . It essentially represents the time elapsing discretely while

G is at x. The duration range d(ρτ (x)) is an interval describing the possible duration of the

run. Next we define the notion of a run of a zone automaton to represent a hybrid evolution

of the associated GTFA.

Definition 4.10 Given a GTFA G = (X,E,∆,Γ, Reset,X0) and its zone automaton Gz =

(V,Eτ ,∆z, V0), a run of length k ≥ 0 in Gz is a sequence of k + 1 τ -runs ρτ (x(i)) (i =

0, · · · , k) at x(i) ∈ X , and k events ei ∈ E (i = 1, · · · , k), represented as

ρ̄ : ρτ (x(0))
e1−→ ρτ (x(1)) · · ·

ek−→ ρτ (x(k)),

such that (ven(ρτ (x(i−1))), ei, vst(ρτ (x(i)))) ∈ ∆z holds for i ∈ {1, · · · , k}. In addition, the

starting state and the ending state of ρ̄ are defined as vst(ρ̄) = vst(ρτ (x(0))) and ven(ρ̄) =

ven(ρτ (x(k))), respectively. The duration range of ρ̄ is defined as d(ρ̄) =
k⊕
i=1

d(ρτ (xi)).

65

Doctoral Dissertation of Università degli Studi di Cagliari

The logical word generated by ρ̄ is denoted as s(ρ̄) = e1 · · · ek via a function defined as

s : E∗τ → E∗. The set of runs generated by Gz is defined asRz(Gz). �

The dynamics of a zone automatonGz can be represented by the runs inGz; in addition,

such runs correspond to an evolution of the GTFA G. In simple words, any two consecutive

τ -runs ρτ (x(i−1)) and ρτ (x(i)) are connected by an evolution of states of Gz caused by an

event ei ∈ E. The logical word of ρ̄ is the sequence of events in E that have been involved

in ρ̄. The duration range of ρ̄ is evaluated by summing up the duration ranges of all the

involved τ -runs.

Recall that given a GTFA G = (X,E,∆,Γ, Reset,X0) and a time instant T ∈ R≥0, a

discrete state x′ ∈ X is T -reachable from x ∈ X if there exists a timed evolution (σ(ρ), t)

such that xst(ρ) = x, xen(ρ) = x′, and t − tst(ρ) = T . We next formalize a result

that provides a sufficient and necessary condition for the reachability of a discrete state

in a GTFA and explains the correlation of the dynamics of a GTFA and that of its zone

automaton.

Theorem 4.1 Given a GTFA G = (X,E,∆,Γ, Reset,X0), its zone automaton Gz =

(V,Eτ ,∆z, V0) and a time instant T ∈ R≥0, x′ ∈ X is T -reachable from x ∈ X if and

only if there exists a run ρ̄ in Gz such that T ∈ d(ρ̄), vst(ρ̄) = (x, z), and ven(ρ̄) = (x′, z′),

where z ∈ Z(x) and z′ ∈ Z(x′). �

Proof : (if) Let x = x(0), x′ = x(k), t0, t1, · · · , tk ∈ R≥0 and ρ̄ : ρτ (x(0))
e1−→· · · ek−→ρτ (x(k))

be a run such that ei ∈ E, ti− ti−1 ∈ d(ρτ (x(i−1))) for i ∈ {1, · · · , k}, t− tk ∈ d(ρτ (x(k))),

and T = t − t0 ∈ d(ρ̄). It can be inferred that (ven(ρτ (x(i−1))), ei, vst(ρτ (x(i)))) ∈ ∆z

holds for i ∈ {1, · · · , k}. Accordingly, for i ∈ {1, · · · , k}, there exist θ(i−1) + ti − ti−1 ∈
fz(ven(ρτ (x(i−1)))) and θ(i) ∈ fz(vst(ρτ (x(i)))) such that (x(i−1), ei, x(i)) ∈ O(x(i−1), θ(i−1)+

ti − ti−1) and (x(i−1), ei, x(i)) ∈ I(x(i), θ(i)). It is obvious that there exists a timed evolution

(σ(ρ), t), where the timed run ρ:(x(0), θ(0))
(e1,t1)−−−→· · · (ek,tk)−−−→(x(k), θ(k)) satisfies that T (ρ) =

tk − t0. Thus, x′ is T -reachable from x.

(only if) Let (σ(ρ), t) ∈ (E × R≥0)∗ × R≥0 be a timed evolution of G from t0 ∈ R≥0

to t ∈ R≥0 such that xst(ρ) = x and xen(ρ) = x′. The proof is made by induction on the

length k of the timed run ρ generated by G from t0 to t. The base case is for the timed run ρ

of length 0 that involves only the discrete state x and no transition in G. We have σ(ρ) = λ

and xst(ρ) = xen(ρ) = x = x′. There exists a run ρ̄ : (x, z̄)
τ−→ · · · τ−→ (x, z) in Gz, where

T = t− t0 ∈ d(ρ̄). Thus the base case holds.

66

Chapter 4 State Estimation of Generalized Timed Finite Automata

By denoting x = x(0) and x′ = x(k), the induction hypothesis is that the existence of a

timed evolution (σ(ρ), t) generating from t0, where ρ : (x(0), θ(0))
(e1,t1)−−−→· · · (ek,tk)−−−→(x(k), θ(k))

of length k ≥ 1 with x(i) ∈ X and ei ∈ E for all i ∈ {1, · · · , k}, implies the existence of

a run ρ̄ : ρτ (x(0))
e1−→· · · ek−→ρτ (x(k)) in Gz such that t − t0 ∈ d(ρ̄), t − tk ∈ d(ρτ (x(k))),

ti− ti−1 ∈ d(ρτ (x(i−1))) for i ∈ {1, · · · , k}, vst(ρ̄) = (x(0), z) and ven(ρ̄) = (x(k), z̄), where

z ∈ Z(x(0)), and z̄ ∈ Z(x(k)).

We now prove that the same implication holds for a timed evolution (σ(ρ′), t′), where

ρ′: ρ
(ek+1,t)−−−−→(x(k+1), θ(k+1)). According to ρ′, we have θ(k+1) ∈ Reset((x(k), ek+1, x(k+1)))

and θ(k) + t− tk ∈ Γ((x(k), ek+1, x(k+1))), which implies that (x(k), ek+1, x(k+1)) ∈ O(x(k),

θ(k) + t − tk) and (x(k), ek+1, x(k+1)) ∈ I(x(k+1), θ(k+1)); consequently, there exists a run

ρ̄′ : ρ̄
ek+1−−→ρτ (x(k+1)) in Gz such that θ(k+1) ∈ fz(vst(ρτ (x(k+1)))) and θ(k+1) + t′ − t ∈

fz(ven(ρτ (x(k+1)))). Therefore, we have t′ − t0 ∈ d(ρ̄′) according to t′ − t ∈ d(ρτ (x(k+1))))

and t− t0 ∈ d(ρ̄). �

Given a time instant T ∈ R≥0, Theorem 4.1 provides a necessary and sufficient condi-

tion to determine the T -reachability of a discrete state x′ from x. According to Theorem 4.1,

given a GTFA G = (X , E, ∆, Γ, Reset, X0), if x′ ∈ X is T -reachable from x ∈ X , then in

its zone automaton there exists a run that originates from (x, z) and reaches (x′, z′), where

z ∈ Z(x) and z′ ∈ Z(x′). In addition, T belongs to the duration range of that run. In turn,

given a run ρ̄ in Gz such that T ∈ d(ρ̄), it can be concluded that the discrete state associated

with ven(ρ̄) is T -reachable from the discrete state associated with vst(ρ̄). In simple words,

the T -reachability of x′ from x can be analyzed by exploring an appropriate run in Gz.

Example 4.6 Consider the GTFA G = (X , E, ∆, Γ, Reset, X0) in Fig. 4.1 and its zone

automatonGz = (V,Eτ ,∆z, V0) in Fig. 4.2. There exists a timed evolution ((c, 1.5)(a, 3), 4)

of G from 0 to 4 such that x4 is 4-reachable from x0. Accordingly, there exists a run

ρ̄ : ρτ (x0)
c−→ ρτ (x1)

a−→ ρτ (x4), where ρτ (x0) : (x0, [0, 0]))
τ−→ (x0, (0, 1))

τ−→
(x0, [1, 1])

τ−→ (x0, (1, 3]), ρτ (x1) : (x1, [1, 1])
τ−→ (x1, (1, 3]) and ρτ (x4) : (x4, [0, 1]). �

4.3 State Estimation of Generalized Timed Finite Automata

Given a partially observed GTFA G = (X , E, ∆, Γ, Reset, X0) with a partition of

alphabet E = Eo ∪ Euo, in this section we develop an approach for state estimation based

on the zone automaton Gz, given a timed observation (σo, t) ∈ (Eo × R≥0)∗ × R≥0.

This section aims at calculating the set X (σo, t) according to Eq. 3.17, which includes

the states reached by the timed evolution (σ(ρ), t) consistent with (σo, t) and is the output

67

Doctoral Dissertation of Università degli Studi di Cagliari

of the state estimation process shown in Fig. 3.5.

Assumption 4.1 (RO: Reinitialized observations) The clock is reset upon the occurrence

of any observable event, i.e.,

(x, e, x′) ∈ ∆, e ∈ Eo =⇒ Reset(x, e, x′) 6= id.

�

This assumption is necessary to ensure that the defined zone automaton contains all

relevant information to estimate the discrete state. Consider a scenario where an observable

event occurs without resetting the clock. In such a case, for future estimations one may need

to keep track of this exact value adding new states to the zone automaton: thus, the state

space of the zone automaton could grow indefinitely as new events are observed.

We partition this section into two subsections. In the first subsection, we consider the

case where G produces no observation, and prove that we can estimate the possible current

discrete states with the range of clock values as time elapses without any observation by

looking at appropriate runs in Gz. This is an intermediate step towards the solution of the

state estimation problem under partial observation. In the second subsection, we take into

account the information coming from the observation of new events at certain time instants,

and prove that the discrete states consistent with a timed observation (σo, t) and the range of

clock value associated with each estimated discrete state can be inferred following a certain

number of runs in the zone automaton Gz.

4.3.1 State Estimation with No Observation

Given a state of a zone automaton, which refers to a discrete state of the associated

GTFA and a range of the possible clock value, Theorem 4.2 provides a criterion to estimate

the set of states in which the zone automaton can be when no observation is received for

a given time instant t ∈ R≥0. To formalize this we preliminarily propose the following

definition.

Definition 4.11 Given a GTFA G = (X , E, ∆, Γ, Reset, X0) with the set of unobservable

events Euo and its zone automaton Gz = (V,Eτ ,∆z, V0), the following set of states of Gz

Vλ(x, z, t) = {ven(ρ̄) ∈ V | (∃ρ̄ ∈ Rτ (Gz))t ∈ d(ρ̄), vst(ρ̄) = (x, z), s(ρ̄) ∈ E∗uo}

is said to be λ-estimation from (x, z) ∈ V within t ∈ R≥0. �

68

Chapter 4 State Estimation of Generalized Timed Finite Automata

Given a zone automaton, the λ-estimation from (x, z) ∈ V within t ∈ R≥0 is the set

of states of Gz that can be reached following a run of duration t, originating at (x, z) and

producing no observation. If (x′, z′) belongs to the λ-estimation from (x, z) ∈ V within

t ∈ R≥0, then the zone z′ associated with x′ specifies the range of the value of the clock.

Given a GTFA G with a set of discrete states X , a set of unobservable events Euo

and its zone automaton Gz = (V,Eτ ,∆z, V0), Algorithm 7 computes the λ-estimation from

(x, z) ∈ V within t ∈ R≥0. It first initializes a set R as the singleton {(x, z, [0, 0])}. The

while loop selects an element r = (x̄, z̄, Ī) inR at each iteration. For all zones of the discrete

state x̄, we check if there exists a transition ((x̄, ¯̄z), e, (x′, z′)) ∈ ∆z with e ∈ Euo. If so,

let I ′ = Ī
⊕

D(z̄, ¯̄z) and add to R the pair (x′, z′, I ′). Note that (x′, z′) is the state of Gz

reached by unobservable transitions and I ′ is the range of time taken to reach (x′, z′). In

addition, if t belongs to I ′, it can be inferred that (x̄, ¯̄z) and (x′, z′) can be reached from

(x, z) within t; consequently, the set Vλ(x, z, t) is updated by including (x̄, ¯̄z) and (x′, z′).

At the end of each while loop, the explored r ∈ R is deleted from R. Finally, the algorithm

returns Vλ(x, z, t).

Next we discuss the computational complexity of Algorithm 7. The while loop at Step

2 is executed at most |V | times; the for loop at Step 4 is executed at most 2q + 1 times, and

the for loop at Step 5 is executed at most q times. The complexity of Algorithm 7 is thus

O(q(2q + 1)|V |) = O(q3|X|).

Algorithm 7 Computation of the λ-estimation from a state of a zone automaton within a
time instant
Input: A TFA G with a set of discrete states X and a set of unobservable events Euo, a

zone automaton Gz = (V,Eτ ,∆z, V0), a state (x, z) ∈ V , and a time instant t ∈ R≥0

Output: λ-estimation Vλ(x, z, t)
1: let R = {(x, z, [0, 0])} and Vλ = ∅
2: while R 6= ∅ do
3: select r = (x̄, z̄, Ī) ∈ R
4: for each ¯̄z ∈ Z(x̄) do
5: for each ((x̄, ¯̄z), e, (x′, z′)) ∈ ∆z with e ∈ Euo do
6: let I ′ = Ī

⊕
D(z̄, ¯̄z) and R = R ∪ {(x′, z

⊕
Ī)}

7: end for
8: if t ∈ I ′ then
9: let Vλ(x, z, t) = Vλ(x, z, t) ∪ {(x̄, ¯̄z), (x′, z′)}

10: end if
11: end for
12: let R = R \ {r}
13: end while
14: return Vλ(x, z, t).

69

Doctoral Dissertation of Università degli Studi di Cagliari

Theorem 4.2 Given a GTFA G = (X,E,∆,Γ, Reset,X0) with set of unobservable events

Euo and its zone automaton Gz = (V,Eτ ,∆z, V0), x′ ∈ X is unobservably T -reachable

from x ∈ X , where T ∈ R≥0, if and only if there exist z ∈ Z(x) and z′ ∈ Z(x′) such that

(x′, z′) ∈ Vλ(x, z, T). �

Proof : (if) Let us suppose that there exist z ∈ Z(x) and z′ ∈ Z(x′) such that (x′, z′) ∈
Vλ(x, z, t). Then, there exists a run ρ̄ in Gz such that vst(ρ̄) = (x, z), ven(ρ̄) = (x′, z′),

s(ρ̄) ∈ E∗uo and T ∈ d(ρ̄). According to Theorem 4.1, it implies that x′ is unobservably

T -reachable from x.

(only if) Let x′ be unobservably T -reachable from x. Then, there exists a timed evo-

lution (σ(ρ), t) from t0 such that xst(ρ) = x, xen(ρ) = x′, T = t − t0, and s(ρ̄) ∈ E∗uo.

Accordingly, there exists a run ρ̄ in Gz such that vst(ρ̄) = (x, z), ven(ρ̄) = (x′, z′), s(ρ̄) ∈
E∗uo and T ∈ d(ρ̄), where z ∈ Z(x) and z′ ∈ Z(x′). Thus, there exists (x′, z′) ∈ Vλ(x, z, t).

�

According to Theorem 4.2, the λ-estimation from (x, z) within T reveals the unobserv-

ably T -reachable discrete states from xwith a clock value θ ∈ z, i.e., the set of discrete states

of G when it starts its timed evolution from (x, θ) with θ ∈ z and produces no observation

for time T .

Example 4.7 Consider the GTFA G = (X , E, ∆, Γ, Reset, X0) in Fig. 4.1 with Eo = {a},
Euo = {b, c}, and its zone automaton Gz = (V,Eτ ,∆z, V0) in Fig. 4.2. We have

Vλ(x0, [0, 0], 1) = {(x0, [1, 1]), (x1, [1, 1]), (x2, [1, 1]), (x3, [1, 1])}.

This results from the exhaustive enumeration of all the runs inGz of duration 1 starting from

(x0, [0, 0]) and involving no observable event:

1. ρ̄1 : ρτ (x0),

2. ρ̄2 : ρτ (x0)
c−→ ρτ (x1),

3. ρ̄3 : ρτ (x0)
b−→ ρτ (x2),

4. ρ̄4 : ρτ (x0)
b−→ ρτ (x2)

c−→ ρτ (x3),

where ρτ (x0) : (x0, [0, 0])
τ−→ (x0, (0, 1))

τ−→ (x0, [1, 1]), ρτ (x1) : (x1, [1, 1]), ρτ (x2) :

(x2, [1, 1]), and ρτ (x3) : (x3, [1, 1]).

Now, let us focus on (x3, [1, 1]) ∈ Vλ(x0, [0, 0], 1). That is to say, ifG starts its evolution

from x0 at time 0 and produces no observation during the whole time interval [0, 1], G can

70

Chapter 4 State Estimation of Generalized Timed Finite Automata

Table 4.4 State estimation of the GTFA G in Fig. 4.1 under no observation for t ∈ [0, 3].

k Time interval Ik λ-estimation Vλ(x0, [0, 0], t), where t ∈ Ik X (λ, t), t ∈ Ik
0 [0,0] (x0, [0, 0]), (x2, [0, 0]) {x0, x2}
1 (0,1) (x0, (0, 1)), (x2, (0, 1)) {x0, x2}
2 [1,1] (x0, [1, 1]), (x1, [1, 1]), (x2, [1, 1]), (x3, [1, 1]) {x0, x1, x2, x3}
3 (1,2) (x0, (1, 3]), (x1, [1, 1]), (x1, (1, 3]), (x2, (1, 2)), (x3, (1, 2)) {x0, x1, x2, x3}
4 [2,2] (x0, (1, 3]), (x1, [1, 1]), (x1, (1, 3]), (x2, [2, 2]), (x3, [2, 2]) {x0, x1, x2, x3}
5 (2,3) (x0, (1, 3]), (x1, [1, 1]), (x1, (1, 3]), (x2, (2,+∞)), (x3, (2,+∞)) {x0, x1, x2, x3}
6 [3,3] (x0, (1, 3]), (x1, [1, 1]), (x1, (1, 3]), (x2, (2,+∞)), (x3, (2,+∞)) {x0, x1, x2, x3}

be at x3 at time 1 with clock value in the zone [1, 1]. Table 4.4 summarizes the λ-estimation

and the set of discrete states consistent with (λ, t), where t belongs to a time interval in the

set {[0, 0], (0, 1), [1, 1], (1, 2), [2, 2], (2, 3), [3, 3]}. �

4.3.2 State Estimation with Partial Observation

In this subsection we focus on the most general state estimation problem when a timed

observation is received as a pair of a non-empty timed word and a time instant. We first

propose a general result that characterizes the set of discrete states of a GTFA consistent

with a given timed observations, by means of the states reachable in its zone automaton.

Theorem 4.3 Consider a GTFA G = (X , E, ∆, Γ, Reset, X0) with the set of observable

events Eo and zone automaton Gz = (V,Eτ ,∆z, V0). Given a timed observation (σo, t) ∈
(Eo×R≥0)∗×R≥0, a discrete state x ∈ X is consistent with (σo, t) if and only if there exists

a run ρ̄ in Gz such that fx(vst(ρ̄)) ∈ X0, fx(ven(ρ̄)) = x, t ∈ d(ρ̄) and Pl(s(ρ̄)) = S(σo),

where Pl : E∗ → E∗o is the natural projection. �

Proof : (if) In the case that no observation is contained in σo, let ρ̄ : ρτ (x0) be a run

in Gz, where x0 ∈ X0. We have fx(ven(ρ̄)) = x0, t ∈ d(ρ̄) and σo = λ. In this case

there exists only one timed evolution (λ, t) ∈ E(G, t) such that x0 ∈ X (λ, t). In the case

that there exists one or more event occurrences, let us suppose that x(0) ∈ X0, x(k) =

x, and a run in Gz as ρ̄ : ρτ (x(0))
e1−→· · · ek−→ρτ (x(k)) such that t ∈ d(ρ̄), x(i) ∈ X and

ei ∈ E for i ∈ {0, · · · , k}. According to Algorithm 7, it can be inferred that there exists

a timed evolution (σ(ρ), t) such that x(k) is t-reachable from x(0), where the timed run ρ :

(x(0), θ(0))
(e1,t1)−−−→· · · (ek,tk)−−−→(x(k), θ(k)) satisfies t−tk ∈ d(ρτ (x(k))), ti−ti−1 ∈ d(ρτ (x(i−1))),

θ(i) ∈ Reset((x(i−1), ei, x(i))) and θ(i−1) + ti− ti−1 ∈ Γ((x(i−1), ei, x(i))) for i ∈ {1, · · · , k}.
According to Pl(s̄(ρ̄)) = S(σo), we have (σ(ρ), t) ∈ S(σo, t). Obviously, x ∈ X (σo, t)

holds.

71

Doctoral Dissertation of Università degli Studi di Cagliari

(only if) In the case that σo = λ, x ∈ X (λ, t) holds. There exists a run ρ̄ in Gz

such that x is unobservably t-reachable from x0 ∈ X0. Consequently, fx(ven(ρ̄)) = x,

t ∈ d(ρ̄) and s̄(ρ̄) = ε hold. In the case that σo = (eo1, t1) · · · (eok, tk), where k ≥ 1,

0 ≤ t1 ≤ · · · ≤ tk ≤ t and eoi ∈ Eo (i ∈ {1, · · · , k}), it is x ∈ X (σo, t), implying that x

is t-reachable from x0 ∈ X0. Consequently, there exists a run ρ̄ in Gz such that t ∈ d(ρ̄),

fx(vst(ρ̄)) = x0 and fx(ven(ρ̄)) = x. Let ρ̄ be a sequence of k runs ρ̄i and k observable

events eoi, where i ∈ {1, · · · , k}, as ρ̄ : ρ̄0
eo1−→· · · eok−−→ρ̄k. Obviously, s̄(ρ̄) = eo1 · · · eok,

t− tk ∈ d(ρ̄k) and ti − ti−1 ∈ d(ρ̄i−1) hold for each i ∈ {1, · · · , k}. �

Consider a timed observation (σo, t) produced by a GTFAG = (X,E,∆,Γ, Reset,X0);

x ∈ X is consistent with (σo, t) when there exists a run ρ̄ in Gz that produces the same

logical observation as σo from a discrete state in X0 at 0 and reaches x at t. In turn,

x ∈ X (σo, t) can be concluded according to the run ρ̄ in Gz. In more detail, the run

ρ̄ contains no observable event if σo = λ. This naturally implies that x ∈ X (λ, t). If

σo 6= λ, the run ρ̄ is a sequence of k + 1 runs ρ̄i, i ∈ {0, · · · , k}, and k observable events

eoi ∈ Eo, i ∈ {1, · · · , k}, as ρ̄ : ρ̄0
eo1−→· · · eok−−→ρ̄k. For each i ∈ {0, · · · , k}, we have

s(ρ̄i) = ε, implying that ρ̄i produces no observation. For each i ∈ {1, · · · , k}, an observable

event eoi ∈ Eo leads the state evolution from ven(ρ̄i−1) to vst(ρ̄i).

Proposition 4.1 Consider a GTFA G with set of observable events Eo that produces two

timed observations (σo, ti), (σo, t) ∈ (Eo × R≥0)∗ × R≥0, where σo = (eo1, t1) · · · (eoi, ti)
and t1 ≤ · · · ≤ ti ≤ t for i ≥ 1. For each timed state (x, θ) reached by a timed evolution

in S(σo, ti), and for each v ∈ Vλ(x, z, t − ti), where z ∈ Z(x) and θ ∈ z, it holds fx(v) ∈
X (σo, t) if Assumption RO holds. �

Proof : Let a timed run ρ : (x0, 0)
(e1,t1)−−−→ (x(1), θ(1)) · · ·

(ek,tk)−−−→ (x(k), θ(k))
(eoi,ti)−−−−→ (x, θ),

where x(1), · · · , x(k) ∈ X , e1, · · · , ek ∈ E, and P (σ(ρ)) = σo, the timed state (x, θ) is

reached by the timed evolution (σ(ρ), ti) ∈ S(σo, ti). According to Theorem 4.3, it can

be inferred that there exists a run in Gz as ρ̄ : (x0, [0, 0]) → · · · → (x, z), where θ ∈ z.

If Assumption RO holds, it implies that there exists z ∈ Z(x) such that θ ∈ z and z ⊆
Reset((x(k), eoi, x)). Given v ∈ Vλ(x, z, t−ti), there exists a run ρ̄′ : (x, z)→ · · · → v such

that Pl(s(ρ̄′)) = ε and t− ti ∈ d(ρ̄′). Given ρ̄ and ρ̄′, it can be inferred that fx(v) ∈ X (σo, t)

according to Theorem 4.3. �

The previous proposition shows that the state estimation can be updated by computing

associated λ-estimations under Assumption RO. In more detail, given a timed state (x, θ)

reached by a timed evolution consistent with a timed observation (σo, ti), the λ-estimation

72

Chapter 4 State Estimation of Generalized Timed Finite Automata

Vλ(x, z, t − ti), where t ≥ ti, θ ∈ z and z ∈ Z(x), provides the discrete states consistent

with the observation (σo, t).

Based on the previous results, Algorithm 8 summarizes the proposed approach to com-

pute the set of discrete states consistent with a timed observation (σo, t). It can be explained

as follows. Consider a timed observation (σo, t) with σo = (eo1, t1) · · · (eon, tn) (n ≥ 1),

where eo1, · · · , eon ∈ Eo. The timed observation (σo, t) is updated whenever an observable

event eoi occurs at a time instant ti, where i ∈ {1, · · · , n}. The algorithm provides a set of

states Vλ ⊆ V while time elapses in [ti−1, ti] with no event being observed, in addition

to a set of states V̄i ⊆ V of Gz consistent with each new observation (eoi, ti), where

i ∈ {1, · · · , n} and t0 = 0. Initially, it is imposed V̄0 = V0 and V̄i = ∅ for all i ∈ {1, · · · , n}.
Then, for any i ∈ {1, · · · , n}, the algorithm computes the λ-estimation from a state (x̄, z̄) ∈
V̄i−1 within ti − ti−1 implying the discrete states unobservably (ti − ti−1)-reachable from

x̄ with a clock value in z̄, and the set V̄i is updated with the states reached by transitions

labeled with eoi from the states in Vλ. After the set V̄n is determined, we initialize Vλ to

be empty and update Vλ by including the λ-estimation for each (x̄, z̄) ∈ V̄n within t − tn.

Eventually, we return the set of discrete states of G associated with Vλ as the set of discrete

states consistent with (σo, t).

The complexity of Algorithm 8 depends on the size n of the timed observation. For

each pair (eoi, ti), two for loops are executed.

• The first for loop at Step 4 is executed at most |V | times, calling Algorithm 7 whose

complexity is O(q3|X|). Thus the complexity of this loop is O(q4|X|2).

• The second for loop at Step 8 is executed at most |V | times, and the for loop at Step

11 is executed at most 2q + 1 times; hence its complexity is O(q2|X|).

Finally, the for loop at Step 18, analogously to the for loop at Step 4, has complexity

O(q4|X|2). Overall, the complexity of Algorithm 8 is O(n(q4|X|2 + q2|X|) + q4|X|2) =

O(nq4|X|2).

Example 4.8 Consider the partially observed GTFA G = (X,E,∆,Γ, Reset,X0) in Fig.

4.1 with Eo = {a}, Euo = {b, c} and a timed observation (σo, 4), where σo = (a, 1)(a, 3).

It implies that the observable event a has been measured twice at t1 = 1 and t2 = 3,

respectively, while the current time instant is t = 4.

Table 4.5 summarizes the state estimation of the GTFA G in Fig. 4.1 given the timed

observation ((a, 1)(a, 3), 4) according to Algorithm 8. It additionally shows how the state

73

Doctoral Dissertation of Università degli Studi di Cagliari

Algorithm 8 State estimation of a GTFA
Input: A GTFA G with a set of initial discrete states X0, a set of observable events Eo ⊆

E, a zone automaton Gz = (V,Eτ ,∆z, V0), and a timed observation (σo, t) from 0 to
t ∈ R≥0, where σo = (eo1, t1) · · · (eon, tn) (n ≥ 1) and t1, · · · , tn ∈ R≥0

Output: The set of states X (σo, t)
1: let V̄0 = V0, t0 = 0 and Xλ = ∅
2: for each i ∈ {1, · · · , n} do
3: let e = eoi, V̄i = ∅ and Vλ = ∅
4: for each (x̄, z̄) ∈ V̄i−1 do
5: compute Vλ(x̄, z̄, ti − ti−1) with Algorithm 7
6: let Vλ = Vλ ∪ Vλ(x̄, z̄, ti − ti−1)
7: end for
8: for each v ∈ Vλ do
9: let x = fx(v) and z = fz(v)

10: if ∃x′ ∈ X s.t. z ⊆ Γ((x, e, x′)) then
11: for each z′ ∈ Z(x′) s.t. z′ ⊆ Reset((x, e, x′)) do
12: let V̄i = V̄i ∪ {(x′, z′)}
13: end for
14: end if
15: end for
16: end for
17: let Vλ = ∅
18: for each (x̄, z̄) ∈ V̄n do
19: compute Vλ(x̄, z̄, t− tn) with Algorithm 7 and let Vλ = Vλ ∪ Vλ(x̄, z̄, t− tn)
20: end for
21: return X (σo, t) = {x ∈ X | (∃z ∈ Z(x))(x, z) ∈ Vλ}.

estimation is updated while time elapses in the time interval [0, 4] taking into account the two

observations of event a. In particular, the state estimation process is progressively updated

from V̄0 = {(x0, [0, 0]), (x2, [0, 0])}. We explain the process of state estimation while the

observation (σo, t) is progressively updated over time as follows.

• Step k = 1: The GTFAG produces observation (σo, t) = (λ, t) for t ∈ [0, 1]. We com-

pute the set of unobservably 1-reachable discrete states from X̄0 as {x0, x1, x2, x3}, ac-

cording to
⋃
v∈V̄0

Vλ(fx(v), fz(v), 1) = {(x0, [1, 1]), (x1, [1, 1]), (x2, [1, 1]), (x3, [1, 1])}.

After the pair (a, 1) is received, Algorithm 8 provides the state estimates as V̄1 =

{(x2, [0, 0]), (x4, [0, 1])}, according to the two elements (x1, [1, 1]) and (x3, [1, 1]) in⋃
v∈V̄0

Vλ(fx(v), fz(v), 1), which imply ((x1, [1, 1]), a, (x4, [0, 1])) ∈ ∆z and ((x3, [1, 1]),

a, (x2, [0, 0])) ∈ ∆z.

• Step k = 2: The GTFA G produces observation (σo, t) = ((a, 1), t) for t ∈ [1, 3]. We

compute the state estimates from V̄1 within 2 as {x2, x3}, according to
⋃
v∈V̄1

Vλ(fx(v),

74

Chapter 4 State Estimation of Generalized Timed Finite Automata

Table 4.5 State estimation of the GTFA G in Fig. 4.1 with X̄0 = X0, t0 = 0 and (σo, t), t ∈ [0, 4].

k σo
Time interval I

(t ∈ I)
Vλ =

⋃
v∈V̄k−1

Vλ(fx(v), fz(v), t− tk−1) X (σo, t) V̄k

1 λ
[0,0] {(x0, [0, 0]), (x2, [0, 0])} {x0, x2} {(x2, [0, 0]),

(x4, [0, 1])}(0,1) {(x0, (0, 1)), (x2, (0, 1))} {x0, x2}
[1,1] {(x0, [1, 1]), (x1, [1, 1]), (x2, [1, 1]), (x3, [1, 1])} {x0, x1, x2, x3}

2 (a, 1)

[1,1] {(x2, [0, 0]), (x3, [0, 0]), (x4, [0, 1])} {x2, x3, x4}

{(x2, [0, 0])}

(1,2) {(x2, (0, 1)), (x3, [0, 0]), (x3, (0, 1)), (x4, [0, 1])} {x2, x3, x4}

[2,2]
{(x2, [1, 1]), (x3, [0, 0]), (x3, (0, 1)),

(x3, [1, 1]), (x4, [0, 1])} {x2, x3, x4}

(2,3)
{(x2, (1, 2)), (x3, (0, 1)), (x3, [1, 1]),

(x3, (1, 2)), (x4, (1,+∞))} {x2, x3, x4}

[3,3]
{(x2, [2, 2]), (x3, [1, 1]), (x3, (1, 2)),

(x3, [2, 2]), (x4, (1,+∞))} {x2, x3, x4}

3 (a, 1)(a, 3)
[3,3] {(x2, [0, 0])} {x2} -(3,4) {(x2, (0, 1))} {x2}
[4,4] {(x2, [1, 1]), (x3, [1, 1])} {x2, x3}

fz(v), 2) = {(x2, [2, 2]), (x3, [1, 1]), (x3, (1, 2)), (x3, [2, 2]), (x4, (1,+∞))}. After the

pair (a, 3) is received, Algorithm 8 provides the state estimation as V̄2 = {(x2, [0, 0])},
according to ((x3, [1, 1]), a, (x2, [0, 0])) ∈ ∆z.

• Step k = 3: The GTFA G produces observation (σo, t) = ((a, 1)(a, 3), t), t ∈ [3, 4].

We compute the set of unobservably 1-reachable discrete states from X̄2 as {x2, x3},
according to

⋃
v∈V̄2

Vλ(fx(v), fz(v), 1) = {(x2, [1, 1]), (x3, [1, 1])}. No more pair is re-

ceived and the observation ends with (σo, t) = ((a, 1)(a, 3), 4). Algorithm 8 provides

the set of discrete states consistent with (σo, t) = ((a, 1)(a, 3), 4) that is equal to

X (σo, t) = {x2, x3}. �

4.4 Application to State Estimation of Timed Discrete Event
Systems under multiple clocks

This section presents a short discussion on state estimation of timed DES with multiple

clocks, which can be explored by extending the state estimation approach of GTFA with a

single clock. We first introduce the following definition to model timed DES with multiple

clocks as GTFA with a set of clocks.

Definition 4.12 A GTFA with k ≥ 1 clocks is a six-tuple G = (X,E,∆,Γ, Reset,X0) that

operates under k clocks θ1, · · · , θk, where

• X , E, ∆ and X0 refer to the definition of GTFA,

75

Doctoral Dissertation of Università degli Studi di Cagliari

• Γ : ∆→ Ikc is a timing function,

• Reset : ∆→ {Ic ∪ {id}}k is a clock resetting function. �

A GTFA with k ≥ 1 clocks generalizes the timing function Γ (resp., the clock resetting

function Reset). The firability of a transition (x, e, x′) ∈ ∆ and range of the clock value at

which the transition fires may involve k clocks θ1, · · · , θk. To analyse the dynamics of the

GTFA G operates under each single clock θi(1 = 1, · · · , k), a GTFA Gθi can be obtained by

retaining the timing structure provided by θi and eliminating that of other k−1 clocks. After

that, the zone automaton ofGθi can be constructed. According to Theorem 4.1 and Theorem

4.2, the reachability of Gθi can be analysed by exploring runs in its zone automaton.

Example 4.9 Consider a system that triggers an alarm after a problem occurred at a certain

time and repairs the problem in a while. Its behavior is described by a partially observed

GTFA G′ = (X,E,∆,Γ, Reset,X0) with two clocks θ1 and θ2, where X = {x0, x1, x2},
X0 = {x0}, E = {a, b, c, d}, and the set of observable events is Eo = {b, d}. The clock

θ1 is to record and control the elapsed time taken to repair the occurred problem, and θ2 is

to record and control the time dwelling at each discrete state. The discrete states x0, x1, x2,

and x3 accordingly denote a safe state, an alarm state, a repairing state, and a failsafe state.

In addition, each event in E has a specific physical meaning: a means that a problem occurs,

b means that repair is processing, c means a delay, d means that the problem is repaired. Let

∆, Γ and Reset be defined as in Table 4.6. The graphical representation of G′ is visualized

in Fig. 4.3.

According to Table 4.6, we can obtain the GTFA G′θ1 and G′θ2 , depicted in Fig. 4.4(a)

and Fig. 4.4(b), that operate under a single clock θ1 and a single clock θ2, respectively. The

zone automaton of G′θ1 (resp., G′θ2) is reported in Fig. 4.4(c) (resp., Fig. 4.4(d)). �

Fig. 4.3 GTFA G′ with two clocks θ1 and θ2.

As a future work, the state estimation of GTFA with multiple clocks θ1, · · · , θk can be

explored by constructing the concurrent composition of Gθ1 , · · · , Gθk such that

76

Chapter 4 State Estimation of Generalized Timed Finite Automata

(a) GTFA G′θ1 . (b) GTFA G′θ2 .

[1,1](0,1)[0,0] [2,2](1,2)

[1,1](0,1)[0,0] [2,2](1,2)

[1,1](0,1)[0,0] [2,2](1,2) (2,3]

[0,0] (0,)

(3,)

(2,)

(2,)

(c) Zone automaton of G′θ1 .

(0,2][0,0]

[0,0]

[1,3](0,1)[0,0]

[2,4](0,2)[0,0]

(0,)

(2,)

(3,)

(4,)

(d) Zone automaton of G′θ2 .

Fig. 4.4 GTFA G′ in Fig. 4.3 and its zone automaton with each single clock.

77

Doctoral Dissertation of Università degli Studi di Cagliari

Table 4.6 Transition relation ∆, timing function Γ and the clock resetting function Reset of the GTFA
G′ in Fig. 4.3.

δ ∈ ∆ Γ(δ) Reset(δ)

(x0, a, x1)
θ1 : [0, 2] θ1 : id
θ2 : [0, 2] θ2 : [0, 0]

(x1, b, x2)
θ1 : [0, 1] θ1 : [0, 0]

θ2 : [0,+∞) θ2 : [0, 0]

(x1, c, x3)
θ1 : [0, 2] θ1 : id

θ2 : [0,+∞) θ2 : [0, 0]

(x3, b, x2)
θ1 : [0, 3] θ1 : [0, 0]
θ2 : [1, 3] θ2 : [0, 0]

(x2, d, x0)
θ1 : [0,+∞) θ1 : [0, 0]
θ2 : [2, 4] θ2 : [0, 0]

• events associated to more than one clock must be synchronized, and

• each state is characterized by k time intervals (one for each clock).

Given a timed observation (σo, t), the state estimation of G with multiple clocks θ1, · · · , θk
can be realized by analysing the reachability of the composed automaton.

4.5 Conclusions

In this section, we summarize the conclusions of this chapter as follows:

• We present a model of timed DES, called generalized timed finite automata (GTFA),

characterized by a single clock. In contrast to the TFA, the clock of the GTFA does

not have to be reset to 0 each time an event occurs. Particularly, a clock resetting

function is associated with a GTFA to denote whether the clock is reset to a value in

a given closed time interval. Consequently, the time semantics now permits a system

to remain in a discrete state forever. The timed structure of a GTFA specifies the set

of clock values that allow an event to occur and how the clock is reset upon the event

occurrence.

• We consider partially observed GTFA that produces timed observations as a suc-

cession of pairs of an observable event and the time instant at which the event has

occurred. Our objective is to estimate the current discrete state of the automaton as a

function of the current observation and the current time. When dealing with the state

estimation problem, we assume that observable transitions should be reset to zero to

78

Chapter 4 State Estimation of Generalized Timed Finite Automata

guarantee the applicability of the proposed state estimation approach, which is based

on the notion of zones.

• The state estimation problem is solved by considering two sub-problems: state esti-

mation with no observation and state estimation with partial observation. The solution

is based on determining the T -reachability of a GTFA, which takes into account the

discrete states that can be reached with an evolution producing a given observation

and a duration equal to T . The problem of T -reachability in the GTFA is reduced to

the reachability analysis of the associated zone automaton.

• We present a discussion on the state estimation of timed DES with multiple clocks,

which can be explored by extending the state estimation approach of GTFA with a

single clock. We model a multi-clock timed DES as a GTFA with multiple clocks,

which generalizes the timing function and the clock resetting function to multiple

clocks. Given a GTFA G with k ≥ 1 multiple clocks, the dynamics under each

clock can be analyzed by k GTFA Gθi(i = 1, · · · , k) with the single i-th clock. The

zone automaton associated with Gθi can be constructed to explore the reachability

of G under the i-th clock. In future work, the state estimation of GTFA G with

multiple clocks can be explored by exploring the concurrent composition of the GTFA

Gθ1 , · · · , Gθk .

79

Doctoral Dissertation of Università degli Studi di Cagliari

80

Chapter 5 A Cyber Security Problem: Attack Detection

Chapter 5 A Cyber Security Problem: Attack Detection

Cyber-physical systems have emerged as a key technology in developing distributed

and autonomous large-scale systems. However, one of their undesirable side effects is that

they are exposed to cyber attacks carried out by malicious intruders. Therefore, efficient

strategies for cyber security are in high demand.

In this chapter, we consider a plant modelled as a DES that is partially observed through

a communication channel by an operator which monitors its evolution, as shown in Fig. 5.1.

After the plant generates a production, the mask projects the production to an observation.

The occurrence of unobservable events produces no observable symbols such that only

observable events can be measured. In the absence of an attack, the operator receives the

observation through a communication channel. However, the communication channel may

be subject to cyber attacks which corrupt the observation by replacing, erasing and inserting

symbols and lead to false state estimation of the operator.

Productions Observations
Corrupted

observations

Communication channel

Fig. 5.1 Plant under attack.

Inspired by the attack model of [96], we assume that the observation produced by a

plant can be corrupted by an intruder, which can change an observable event into different

strings of observable events through one or more attack dictionaries defined as follows.

Definition 5.1 An attack dictionary on a plant Q is a set-valued function A : Eo −→ 2E
∗
o \

{∅}, which maps an observable event into a non-empty set of strings. �

An attack dictionary on a plant Q describes all possible ways in which an attacker can

corrupt an observable event. In this chapter, we assume that the observation produced by a

plant can be corrupted by an intruder which, through one or more attack dictionaries, can

change events into different strings. In detail, a system may be subject to multiple types of

attacks, each described by its own attack dictionary. Furthermore, we distinguish between

constant attacks, which corrupt observations by using only one of the attack dictionaries,

and switching attacks, which may use different attack dictionaries at different steps. Given a

81

Doctoral Dissertation of Università degli Studi di Cagliari

system subject to attacks, suppose that one knows the possible dictionaries that the intruder

may use to corrupt the observation. Our goal is to provide a method for detecting whether

an attack has occurred and also the nature of the attack, i.e. which dictionaries were used by

the attacker.

We divide this chapter into five sections. The previous three sections deal with the

attack detection problem in the framework of untimed DES, modeled by DFA. In more

detail, the first section models how constant and switching attacks corrupt the observations

produced by DFA using an attack dictionary. The second and third sections deal with the

detection of constant and switching attacks, respectively. In both cases, we compute an NFA

that describes the observations produced by the original system under attack: in particular,

different structures correspond to a system under constant and switching attacks. We show

that the detection of a constant (or switching) attack can be reduced to a classical state

estimation (or fault diagnosis) problem for the obtained NFA.

Consider the scenario where a system is embedded with a timing structure that is hidden

from an intruder. The cyber security of the system can benefit from the timing information.

This motivates us to discuss the aforementioned attacks on timed DES modelled as TFA. The

fourth section presents a discussion of this future work. Finally, the fifth section concludes

this chapter.

5.1 Models of Attacks on Deterministic Finite Automata

This section first provides the model of attacks and then introduces the notions of

constant and switching attacks, respectively.

Definition 5.2 Given an attack dictionary A : Eo −→ 2E
∗
o , the set of attacks over A is

defined by

FA = {fA : E∗o −→ E∗o |(∀w ∈ E∗o)(∀e ∈ Eo)fA(ε) = ε, fA(we) ∈ fA(w)A(e)}.

�

In other words, an attack is a function such that every event e ∈ Eo in observation w

is mapped into a string in A(e). We notice that, as a special case, A(e) may contain e and

this attack may not corrupt the observation. Note that if two attack dictionaries A′ and A are

such that for all e ∈ Eo, it holds that A(e) ⊆ A′(e), then FA ⊆ FA′ .

Example 5.1 Given attack dictionariesA andA′ with E = {a, b, c} and Eo = {a, c}, where

A(a) = {a, ε}, A(c) = {a}, A′(a) = {a, ε} and A′(c) = {a, c}, consider attacks f1 ∈ FA
82

Chapter 5 A Cyber Security Problem: Attack Detection

and f2 ∈ FA′ such that for all w ∈ E∗o ,

f1(ε) = ε; f1(wc) = f1(w)a;

f1(wa) =

{
f1(w)a if |w|a is even
f1(w) if |w|a is odd;

f2(ε) = ε; f2(wa) = f2(w);

f2(wc) =

{
f2(w)a if |w|c is even
f2(w)c if |w|c is odd.

The attacks f1 and f2 satisfy Definition 5.2 according toA andA′ separately. The observable

events a and c are always mapped to events in A(a) and A(c) by f1, respectively. In

any observation corrupted by f2, a and c are replaced by the elements in A′(a) and A′(c)

respectively. �

The notion of cyber attacks can be generalized by assuming that a system may be

subject to multiple types of attacks, each of which is described by its own attack dictionary.

To keep into account the case of no attack, a new attack dictionary A0 is introduced in A.

For all e ∈ E0, it holds thatA0(e) = {e}. As a result, the set of attack dictionaries is updated

to be A = {A0, A1, · · · , An}.

Definition 5.3 Given a set of attack dictionaries A = {A0, · · · , An} with Ai : Eo −→
2E
∗
o \ {∅}, where i ∈ {0, · · · , n}, the set of constant attacks over A is defined by

F cA = {fA : E∗o −→ E∗o |(∃i ∈ {0, · · · , n}) fA ∈ FAi}.

�

Being subject to a constant attack over A = {A0, · · · , An}, the system could only be

corrupted by one of the attack dictionaries in A, which implies that fA ∈
⋃

Ai∈A
FAi always

holds for an attack function in the set of constant attacks.

Definition 5.4 Given a set of attack dictionaries A = {A1, · · · , An} with Ai : Eo −→ 2E
∗
o ,

i ∈ {0, · · · , n}, the set of switching attacks over A is defined by

F sA = {fA : E∗o −→ E∗o |(∀w ∈ E∗o)(∀e ∈ Eo)(∃i ∈ {0, · · · , n})

fA(ε) = ε, fA(we) ∈ fA(w)Ai(e)}.

�

In other words, if a system is under a switching attack over A = {A0, · · · , An}, the

same observable event at different steps could be attacked using different attack dictionaries

83

Doctoral Dissertation of Università degli Studi di Cagliari

amongA0, · · · , An. Obviously, a constant attack can be seen as a special case of a switching

attack where always the same attack dictionary is selected. As a consequence, for any setA,

it holds that F cA ⊆ F sA.

Example 5.2 Given a set of attack dictionaries A = {A0, A1, A2}, where A0(a) = {a},
A0(c) = {c}, A1(a) = {ε}, A1(c) = {a}, A2(a) = {c} and A2(c) = {ac, c}, consider the

attacks f1 ∈ F cA and f2 ∈ F sA such that for all w ∈ E∗o ,

f1(ε) = ε; f1(wa) ∈ f1(w)A1(a); f1(wc) ∈ f1(w)A1(c);

f2(ε) = ε; f2(wa) ∈ f2(w)A1(a);

f2(wc) ∈
{
f2(w)A1(c) if |w|c is even
f2(w)A2(c) if |w|c is odd.

Now we consider the plant Q in Fig. 5.2 with E = {a, b, c} and Eo = {a, c} which may be

subject to f1 or f2. The corruption of f1 and f2 to the observations of Q is shown in Table

5.1. Attack f1 always corrupts the events in the observation with the attack dictionary A1.

On the contrary, f2 either uses the attack dictionary A1 or the attack dictionary A2. �

Fig. 5.2 Automaton Q.

Table 5.1 Effect of the constant and switching attack in Example 5.2.

s ∈ L(Q) w = P (s) f1(w) f2(w)
ε ε ε ε

a, ab a ε ε
aba, abab aa ε ε
abc ac a a

ababa, ababab aaa ε ε
abca, abcab aca a a
abcabc acac aa aac

abababa, abababab aaaa ε ε
· · · · · · · · · · · ·

84

Chapter 5 A Cyber Security Problem: Attack Detection

5.2 Constant Attacks Detection on Deterministic Finite Automata

This section deals with detection of constant attacks. The solution is based on construct-

ing an NFA that describes the observations generated by the DFA under constant attacks. We

show that the detection of a constant attack can be reduced to the state estimation problem

for the obtained NFA.

In the case of a constant attack, Algorithm 9 shows how to construct the NFA generating

the corrupted observations. A new set of events is introduced, denoted as Ea = {a0, ..., an}.
The occurrence of event ai, i ∈ {1, ..., n}, corresponds to the fact that the attack Ai is active.

The occurrence of a0 corresponds to no attack on the system, or equivalently to attack A0.

Algorithm 9 works as follows. We first initialize the set of states with the initial state

x̂0, and define the set of attack labels and the observation partition of Qc
A. Then for each

attack dictionary Ai, we define a new set of states {xi0, ..., xim} and the transition function

δ̂ is updated as δ̂(x̂0, ai) = xi0. Then, the transition function δ̂ is updated. In particular, for

each k ∈ {0, ...,m} and for each observable event that is enabled at xk, if x′k = δ(xk, e),

then for all w ∈ Ai(e), it is δ̂(xik, w) = xik′ .

Example 5.3 Given the plant in Fig. 5.2, suppose that Q may be attacked using the set of

attack dictionaries A = {A0, A1, A2} of the previous example. The model of Q under a

constant attack generated by Algorithm 9 is shown in Fig. 5.3. �

Fig. 5.3 NFA Qc
A resulting from Algorithm 9 when Q is the DFA in Fig. 5.2.

Theorem 5.1 Given a DFA Q = (X,E, δ, xo) with a mask P : E −→ Eo and a set of

attack dictionaries A = {A0, · · · , An}, let Qc
A = (X̂, Ê, δ̂, x̂0) be the NFA constructed

85

Doctoral Dissertation of Università degli Studi di Cagliari

Algorithm 9 Construction of the NFA generating the corrupted observations under a
constant attack
Input: A DFA Q = (X,E, δ, x0) with set of states X = {x0, · · · , xm} and observation

partition E = Eo ∪ Euo; a set of attack dictionaries A = {A0, A1, · · · , An}
Output: An NFA Qc

A = (X̂, Ê, δ̂, x̂0) with observation partition Ê = Êo ∪ Êuo
1: let X̂ = {x̂0}
2: let Ea = {a0, · · · , an}
3: let Êo = Eo, Êuo = Euo ∪ Ea, and Ê = E ∪ Ea
4: for all i ∈ {0, · · · , n} do
5: let X̂ = X̂ ∪ {xi0, · · · , xim}
6: let δ̂(x̂0, ai) = xi0
7: for all k ∈ {0, · · · ,m} do
8: for all e ∈ Eo ∩ enab(xk) do
9: let xk′ = δ(xk, e)

10: for all w = e1e2 · · · ep ∈ Ai(e), p ≥ 1 do
11: if p = 1 then
12: let δ̂(xik, w) = xik′
13: end if
14: if p > 1 then
15: let δ̂(xik, e1) := xik′1

, δ̂(xik′1 , e2) := xik′2
, · · · , and δ̂(xik′p−1

, ep) := xik′

16: end if
17: end for
18: end for
19: end for
20: end for
21: return Qc

A = (X̂, Ê, δ̂, x̂0).

using Algorithm 9. It holds that P̂ (L(Qc
A)) =

⋃
f∈F cA

f(P (L(Q))), where P̂ : Ê∗ −→ Ê∗o is

the projection over alphabet Ê. �

Proof : The inclusion relationship P̂ (L(Qc
A)) ⊆

⋃
f∈F cA

f(P (L(Q))) trivially follows from the

way the NFA Qc
A is constructed according to Algorithm 9. To prove

⋃
f∈F cA

f(P (L(Q))) ⊆

P̂ (L(Qc
A)), we consider a string s ∈ L(Q) and the observation w = P (s) = e1e2 · · · ep, p ≥

1. Let ŵ = w1w2 · · ·wp be a corrupted observation of w resulting from a certain dictionary

in A, namely let ŵ ∈
⋃

f∈F cA
f(P (L(Q))). By F cA =

n⋃
i=0

FAi , there exists i ∈ {0, · · · , n}

such that w1 = Ai(e1), · · · , wp = Ai(ep). According to Algorithm 9, for all e such that

δ(xk, e) = x′k where xk, x′k ∈ X , there exists i ∈ {0, · · · , n} such that δ̂(xik, w) = xik′ has

been defined in Qc
A, where xik, x

i
k′ ∈ X̂ and w ∈ Ai(e). By Êo = Eo and Êuo = Euo ∪ Ea,

it follows that ŵ ∈ P̂ (L(Qc
A)). This implies that

⋃
f∈F cA

f(P (L(Q))) ⊆ P̂ (L(Qc
A)). �

Theorem 5.1 provides a characterization of the language of the NFA Qc
A. In simple

86

Chapter 5 A Cyber Security Problem: Attack Detection

words, the observable projection of the language generated by Qc
A is equal to the union of

all the possible corrupted words that can be generated with a constant attack in A acting on

Q.

Once an NFA Qc
A = (X̂, Ê, δ̂, x̂0) is built according to Algorithm 9, one can use clas-

sical notions of state estimation to detect the attack. Suppose that a DFA Q with set of states

X = {x0, · · · , xm} is attacked using a set of attack dictionaries A = {A0, A1, · · · , An}.
The state reached by the observer of Qc

A executing an observation w represents the set C(w)

of states of Q consistent with observation w (see Definition 2.10).

Thus let Xi = {xik ∈ X̂|k ∈ {1, · · · ,m}} for all i ∈ {0, · · · , n}. Given an observation

w we can conclude that:

• the system is not under attack if C(w) ⊆ X0;

• the system is under attack if X0 ∩ C(w) = ∅;

• the system is under the attack with dictionary Ai(i > 0) if C(w) ⊆ Xi;

• the system is not under the attack with dictionary Ai(i > 0) if Xi ∩ C(w) = ∅.

Example 5.4 Consider again the plant Q in Fig. 5.2 with E = {a, b, c} and Eo = {a, c}
under attack as described in Example 5.2. Consider the NFA Qc

A in Fig. 5.3. The observer

of Qc
A can be obtained as shown in Fig. 5.4. For instance, if the received observation is cc,

we can conclude that a constant attack of A2 happens; if the observation is aca, no attack

happens; if the observation is aaaa, a constant attack of A1 could happen. �

Fig. 5.4 Observer of Qc
A.

87

Doctoral Dissertation of Università degli Studi di Cagliari

5.3 Switching Attacks Detection on Deterministic Finite Automata

Let us now focus on the case of switching attacks in this section. We first provide

Algorithm 10 to construct an NFA generating a language whose observable projection is

equal to the union of all the possible corrupted words that can be generated with a switching

attack in A acting on a certain DFA Q. After that, we show that the detection of a switching

attack can be reduced to the fault diagnosis problem of the obtained NFA.

Algorithm 10 Construction of the NFA generating the corrupted observations under a
switching attack
Input: A DFA Q = (X,E, δ, x0) with set of states X = {x0, · · · , xm} and observation

partition E = Eo ∪ Euo; a set of attack dictionaries A = {A1, · · · , An}
Output: An NFA Qs

A = (X̂, Ê, δ̂, x0) with observation partition Ê = Êo ∪ Êuo; a set of
attack labels Ea = {a1, · · · , an}

1: let X̂ = X , and δ̂ = δ
2: let Ea = {a1, · · · , an}
3: let Êo = Eo, Êuo = Euo ∪ Ea, and Ê = E ∪ Ea
4: for all k ∈ {0, · · · ,m} do
5: for all e ∈ Eo ∩ enab(xk) do
6: for all i = {1, · · · , n} do
7: if Ai(e) 6= {ε} then
8: X̂ = X̂ ∪ {xik} and δ̂(xk, ai) = xik
9: for all w = e1e2 · · · ep ∈ Ai(e), p ≥ 1 do

10: if p = 1 then
11: let δ̂(xik, w) = δ(xk, e)
12: end if
13: if p > 1 then
14: δ̂(xik, e1) := xik1 , δ̂(xik1 , e2) := xik2 , · · · , and δ̂(xikp−1

, ep) := δ(xk, e)
15: end if
16: end for
17: end if
18: if Ai(e) = {ε} then
19: let δ̂(xk, ai) = δ(xk, e)
20: end if
21: end for
22: end for
23: end for

Algorithm 10 works as follows. We first initialize the set of states X̂ as X and define

the set of attack labels Ea = {a0, ..., an} with the observation partition Ê = Êo∪ Êuo. Then

we explore all states xk ∈ X and all the events e ∈ Eo that are enabled at xk. We consider

all possible attack dictionaries Ai that may occur on event e and distinguish two cases: (1)

Ai(e) 6= ε and (2) Ai(e) = ε. In Case (1), we add a new state to X̂ , denoted as xik and let

88

Chapter 5 A Cyber Security Problem: Attack Detection

δ̂(xk, ai) = xik. Then for all w ∈ Ai(e), we define δ̂(xik, w) = δ(xk, e). In Case (2), no new

state is added to X̂ , but δ̂ is updated to δ̂(xk, ai) = δ(xk, e).

Example 5.5 Continuing with plant Q and A = {A1, A2} in Example 5.2, the model of Q

under a switching attack over A is generated as shown in Fig. 5.5 according to Algorithm

10. �

Fig. 5.5 NFA Qs
A resulting from Algorithm 10 when Q is the DFA in Fig. 5.2.

The following theorem provides a characterization of the language of the NFA Qs
A. In

simple words, the observable projection of the language generated by Qs
A is equal to the

union of all the possible corrupted words that can be generated with a switching attack in A
acting on Q.

Theorem 5.2 Given a DFA Q = (X,E, δ, xo) with a mask P : E −→ Eo and a set of

attack dictionaries A = {A0, · · · , An}, let Qs
A = (X̂, Ê, δ̂, x0) be the NFA constructed

using Algorithm 10. It holds that P̂ (L(Qs
A)) =

⋃
f∈F sA

f(P (L(Q))), where P̂ : Ê∗ −→ Ê∗o is

the projection over alphabet Ê. �

Proof : We first prove that
⋃

f∈F sA
f(P (L(Q))) ⊆ P̂ (L(Qs

A)). We prove this by induction

on the length of the corrupted observation ŵ ∈
⋃

f∈F sA
f(P (L(Q))). To prove the basis step,

we consider a word ŵ of null length, namely ŵ = ε. Clearly it is ε ∈
⋃

f∈F sA
f(P (L(Q)))

according to Definition 5.7 and ε ∈ P̂ (L(Qs
A)). To prove the induction step, assume that,

if a word ŵ ∈
⋃

f∈F sA
f(P (L(Q))), |ŵ| ≤ n, then it also holds ŵ ∈ P̂ (L(Qs

A)). We show

that this implies that, if for a certain e ∈ Eo, and a certain i ∈ {0, · · · , n}, it is ŵAi(e) ∈⋃
f∈F sA

f(P (L(Q))), then ŵAi(e) = f(w)Ai(e) for a certain w ∈ P (L(Q)) and f(w)Ai(e) =

f(w)P̂ (aiAi(e)) ∈ f(w) ·P̂ (L(Qs
A)), which in turn implies that ŵAi(e) ∈ P̂ (L(Qs

A)). Thus⋃
f∈F sA

f(P (L(Q))) ⊆ P̂ (L(Qs
A)) holds.

89

Doctoral Dissertation of Università degli Studi di Cagliari

To prove the reverse inclusion, namely P̂ (L(Qs
A)) ⊆

⋃
f∈F sA

f(P (L(Q))), we notice

that, by Algorithm 10, it is L(Qs
A) = {ŝ ∈ E∗ : δ̂(x0, ŝ) is defined}, let us consider an

observation ŵw′ ∈ P̂ (L(Qs
A)). It is obvious that for all i ∈ {0, · · · , n}, there exists Ai(e) =

w′ such that ŵw′ = f(w)Ai(e) ∈
⋃

f∈F sA
f(P (L(Q))). Thus P̂ (L(Qs

A)) ⊆
⋃

f∈F sA
f(P (L(Q))).

As a result, P (L(QA)) =
⋃

f∈F sA
f(P (L(Q))) holds. �

In the case of switching attacks, we can perform attack detection constructing suitable

diagnosers for Qs
A = (X̂, Ê, δ̂, x0). The attack labels Ea = {a1, . . . , an} can be seen as

the set of fault events whose occurrence should be reconstructed based on the corrupted

observations. Assuming that each attack label belongs to a different fault class, one can

construct n diagnosersDiagi (for i = 1, . . . , n) each one devoted to detecting the occurrence

of ai. By considering all attack labels in the same fault class, one can construct a global

diagnoser, whose purpose it that of detecting if the system is under attack.

Algorithm 11 shows how these diagnosers can be constructed following the approach

described in [3]. We first build a label automaton for each attack label and then construct a

diagnoser for each attack label by building an observer for the parallel composition between

Qs
A and each Qlabel(i). A global diagnoser can be similarly constructed.

Algorithm 11 Construction of diagnoser for switching attacks

Input: An NFA Qs
A = (X̂, Ê, δ̂, x0) with A = {A1, · · · , An}, set of fault events Ea =

{a1, . . . , an}
Output: Diagnosers Diagi(Qs

A) = (Yi, Eo, δy,i, y0) for i = 1, . . . , n and global diagnoser
Diagg(Q

s
A) = (Y,Eo, δy, y0).

1: for all i ∈ {1, · · · , n} do
2: δli(N, ai) = Y , δli(Y, ai) = Y
3: Qlabel(i) = ({N, Y }, {ai}, δli , N)
4: Diagi(Q

s
A) = Obs(Qs

A ‖ Qlabel(i))
5: end for
6: for all i ∈ {1, · · · , n} do
7: δl(N, ai) = Y, δl(Y, ai) = Y
8: end for
9: Qlabel = ({N, Y }, Ea, δl, N)

10: return Diagg(Qs
A) = Obs(Qs

A ‖ Qlabel).

Example 5.6 Consider again the plant Q in Fig. 5.2 with E = {a, b, c} and Eo = {a, c}
under attack as described in Example 5.2. The NFA Qs

A is depicted in Fig. 5.5. The

diagnosers for each attack dictionary and global diagnoser can be constructed by Algorithm

11.

90

Chapter 5 A Cyber Security Problem: Attack Detection

The global diagnoser are given in Fig. 5.6(a) , and the diagonser for A1 and A2 are

given in Fig. 5.6(b) and Fig. 5.6(c). Note that in the diagnoser we use a simplified notation

for describing the states of Qs
A: xk is denoted by k, xik is denoted by ki, and xikp is denoted

by k(p)i, where k ∈ {0, 1, 2}, i ∈ {0, 1, 2}, p ≥ 1. For instance, x1
2 with attack label Y is

denoted by 21Y in Fig. 5.6. �

{0N,1Y,02Y,2Y,21Y,22Y}

{1Y,02Y,0Y,2Y,

21Y,22Y}

{1N,1Y,02Y,0Y,2N,2Y

,2(1)2Y,21Y,22Y}

{0N,1Y,02Y,0Y,

2Y,21Y,22Y}

{1Y,02Y,0Y,2Y,

2(1)2Y,21Y,22Y}

(a) The global diagnoser Diagg(QsA).

{0N,02N,1Y,2Y,21Y,22Y}

{1N,1Y,0Y,02Y,

2N,2Y,22N,21Y,

22Y}

{1N,1Y,0Y,02Y,

2N,2Y,2(1)2Y,

22N,21Y,22Y}

{1N,1Y,0Y,02Y,2N,2

Y,2(1)2N,2(1)2Y,22

N,21Y,22Y}

{0N,1N,02N,1Y,

0Y,02Y,2N,2Y,

22N,21Y,22Y}

(b) The diagnoser Diag1(QsA).

{0N,1N,02Y,

2N,22Y,21N}

{0N,1N,02Y,0Y,

1Y,2N,2Y,22Y,

21N,21Y}
{0N,1N,02Y,2N,

2(1)2Y,22Y,21N}

{0N,1N,02Y,0Y,

1Y,2N,2Y,2(1)2Y,

22Y,21N,21Y}

(c) The diagnoser Diag2(QsA).

Fig. 5.6 Diagnosers of Qs
A in Fig. 5.5.

5.4 Application to Multiple Attacks Detection on Timed Finite
Automata

This section presents a discussion on the detection of constant and switching attacks

for timed DES modeled as TFA. We first formalize the corruption of timed observation

considering attacks over a set of attack dictionaries as follows.

Definition 5.5 Given an attack dictionary A : Eo −→ 2E
∗
o , the set of attacks over A for a

91

Doctoral Dissertation of Università degli Studi di Cagliari

timed DES is defined by

FA = {fA : (Eo × R≥0)∗ −→ (Eo × R≥0)∗|(∀σo ∈ (Eo × R≥0)∗)(∀e ∈ Eo)(∃n ≥ 1)

e1 · · · en ∈ A(e), fA(λ) = λ,

fA(σo · (e, t)) = fA(σo) · (e1, t) · · · (en, t)}.�

In other words, an attack for a TFA is a function such that every pair (e, t) ∈ Eo×R≥0

following with a timed observation σo is mapped into a pair (e1, t) · · · (en, t)(n ≥ 1), where

e1 · · · en is a string in A(e). Note that the attack may not corrupt the observation if e ∈ A(e).

Assume that a TFA may be subject to constant attacks that can corrupt observations by

using only one of the attack dictionaries, and switching attacks that may use different attack

dictionaries at different steps. The attack dictionary A0 is introduced inA to denote the case

of no attack. Next we propose the formalization for TFA of constant and switching attacks

over a set of attack dictionaries A = {A0, A1, · · · , An}, respectively.

Definition 5.6 Given a set of attack dictionaries A = {A0, · · · , An} with Ai : Eo −→
2E
∗
o \ {∅}, where i ∈ {0, · · · , n}, the set of constant attacks over A is defined by

F cA = {fA : (Eo × R≥0)∗ −→ (Eo × R≥0)∗|(∃i ∈ {0, · · · , n}) fA ∈ FAi}. �

Definition 5.7 Given a set of attack dictionaries A = {A0, · · · , An} with Ai : Eo −→ 2E
∗
o ,

i ∈ {0, · · · , n}, the set of switching attacks over A is defined by

F sA = {fA : (Eo × R≥0)∗ −→ (Eo × R≥0)∗|(∀σo ∈ (Eo × R≥0)∗)(∃i ∈ {0, · · · , n})

(∀e ∈ Eo)(∃e1 · · · em ∈ Ai(e))fA(λ) = λ,

fA(σo · (e, t)) = fA(σo)(e1, t) · · · (em, t)}.�

For a TFA, a constant attack over A = {A0, · · · , An} corrupt the timed observation

by one of the attack dictionaries in A. In contrast, the same observable event at different

steps could be attacked by a switching attack overA = {A0, · · · , An} using different attack

dictionaries among A0, · · · , An. For timed DES, it still holds that F cA ⊆ F sA.

A perspective of future works is constructing a TFA to describe the corruption of

constant/switching attacks on the timed observations. The attack detection problem for the

original TFA can be further explored by dealing with the issue of state estimation or fault

diagnosis for the constructed TFA. It is worth investigating how the knowledge of the timing

structure and the knowledge of the time instants in which observable events occur can be

exploited for the cyber security of a system.

92

Chapter 5 A Cyber Security Problem: Attack Detection

5.5 Conclusions

In this section, we summarize the conclusions of this chapter as follows:

• We consider a plant modelled as untimed DES that is partially observed through a

communication channel by an operator which monitors its evolution. We assume that

the communication channel may be subject to multiple attacks, each described by

its own attack dictionary. An attack is modelled by a function that maps events to

different strings according to one or more attack dictionaries. We distinguish between

constant attacks, which corrupt observations using only one of the attack dictionaries,

and switching attacks, which may use different attack dictionaries at different steps.

• Suppose that one knows the possible dictionaries that the intruder may use to corrupt

the observation. Our goal is to provide a procedure to detect whether an attack has

occurred and also to detect the nature of the attack, i.e., which dictionaries were

used by the attacker. The solution for a constant (resp., switching) attack is based

on constructing an NFA that describes the observations generated by the original

system under a constant (resp., switching) attack. We show that the detection of a

constant attack (resp., a switching attack) can be reduced to a classical problem of

state estimation (resp., fault diagnosis) for the obtained NFA.

• It is worth investigating how the knowledge of the timing structure and the time

instants at which observable events occur can be exploited for the cyber security

of a system. We briefly discuss the detection of constant and switching attacks for

timed DES modelled as TFA. The corruption of timed observation considering attacks

over a set of attack dictionaries is formalized. A perspective of future work is to

construct a TFA to describe the corruption of constant/switching attacks on the timed

observations. The problem of attack detection for the original TFA can be further

explored by addressing the problem of state estimation or fault diagnosis for the

constructed TFA.

93

Doctoral Dissertation of Università degli Studi di Cagliari

94

Chapter 6 Conclusions and Future Works

Chapter 6 Conclusions and Future Works

In this dissertation, we consider partially observable timed DES endowed with a single

clock. Assuming that the logical and timed structure of a partially observable timed DES is

known, this dissertation investigates the state estimation of such timed DES. The conclusions

and perspectives are presented as follows.

(1) Models of Timed Discrete Event Systems

We present two models of timed DES, namely TFA and GTFA. Both TFA and GTFA

are endowed with a single clock. In addition, a timing function is defined to associate a time

interval to each transition specifying at which clock values it may occur. The difference

between TFA and GTFA is that: for a TFA, the clock is reset to zero after each event occurs,

and the time semantics constrain the dwell time at each discrete state; for a GTFA, there is

a clock resetting function associated with each transition specifying how the clock value is

updated upon its occurrence; consequently, the time semantics of a GTFA allows a system

to remain in a discrete state forever. Both models with partial observation produce a timed

observation as a succession of pairs of an observable event and the time instant at which the

event has occurred.

(2) Discrete Description of Timed Discrete Event Systems

We provide a purely discrete event description of the behaviour of a TFA/GTFA by

associating it with a finite state automaton called a zone automaton. Each state of the zone

automaton consists of a pair whose first element is a discrete state of the TFA/GTFA and

whose second element is a time interval, called a zone, specifying a range of clock values.

Each state of a zone automaton is associated with a single discrete state and provides a coarse

estimate of the clock value. The problem of state reachability in the TFA/GTFA is reduced

to the reachability analysis of the associated zone automaton.

(3) State Estimation of Timed Discrete Event Systems

State estimation is solved by dealing with two different sub-problems: (a) updating

the current estimate as time elapses without receiving any new observation; (b) updating

the current estimate when a new observation, namely an observed event and the occurrence

time of it, is received. We present a formal approach that allows one to construct offline

an observer of TFA/GTFA, i.e., a finite structure that describes the state estimation for all

possible evolutions. During the online phase to estimate the current discrete state, one can

determine which is the state of the observer reached by the current observation and check to

95

Doctoral Dissertation of Università degli Studi di Cagliari

which interval (among a finite number of time intervals) the time elapsed between the last

observed event occurrence belongs. We believe that our approach in this work has a major

advantage over existing online approaches for state estimations: it paves the way to address

a wide range of fundamental properties (detectability, opacity, etc.) that have mostly been

studied in the context of logical DES.

In particular, the state estimation of timed DES under multiple clocks can be inves-

tigated in the framework of GTFA. We model such a system as a multiple-clock GTFA,

which generalizes the timing function and the clock resetting function to multiple clocks.

Multiple GTFA with a single clock and the associated zone automata can assist in analyzing

the dynamics and reachability under each clock. In future work, it is of great interest to

investigate a structure, for instance, a product of zone automata of multiple clocks, that can

provide state estimation of multiple-clock GTFA by checking its reachability.

(4) Applications of Timed Discrete Event Systems

As an application of the state estimation approach for TFA, we assume that TFA may

be affected by a set of faults described by timed transitions and aim at diagnosing a fault

behaviour based on a timed observation. The proposed solution is based on constructing a

fault recognizer that recognizes the occurrence of faults. We conclude that the occurrence

of faults can be analyzed by exploring runs in the fault recognizer that are consistent with

a given timed observation. Future work includes exploring the diagnosability of TFA, i.e.,

investigating whether one can certainly detect a fault in a given time interval, which could

be of great interest for real-time systems.

We study the problem of attack detection in the context of DESs, assuming that a

system can be attacked using one or more attack dictionaries, which map an observable

event to a set of corrupted strings. We distinguish between constant attacks, which corrupt

observations using only one of the attack dictionaries, and switching attacks, which may

use different attack dictionaries at different steps. The problem we address is to determine

whether a system has been attacked by a constant (resp., switching) attack and, if so, which

attack dictionaries have been used. To solve it in the context of untimed DES, we construct

an NFA that produces all the observations generated by a system under a constant (resp.,

switching) attack. We show that the attack detection problem can be transformed into a

classical state estimation (resp., fault diagnosis) problem for the constructed NFA. We note

that it is worth investigating how the knowledge of the timing structure can be exploited

for the attack detection problem. We present a formalization of the corruption of timed

observation considering attacks over a set of attack dictionaries. A perspective of future

96

Chapter 6 Conclusions and Future Works

work is to construct a TFA that describes the corruption of constant (resp., switching)

attacks on the timed observations. The attack detection problem for the original TFA can be

further explored by addressing the state estimation (resp., fault diagnosis) problem for the

constructed TFA.

97

Doctoral Dissertation of Università degli Studi di Cagliari

98

References

References

[1] JENSEN E D, LOCKE C D, TOKUDA H. A time-driven scheduling model for real-time operating

systems[C] // In Proceedings of the Real-Time Systems Symposium Conference. 1985 : 112 – 122.

[2] CASSANDRAS C G. The event-driven paradigm for control, communication and optimization[J].

Journal of Control and Decision, 2014, 1(1) : 3 – 17.

[3] CASSANDRAS C G, LAFORTUNE S. Introduction to Discrete Event Systems[M]. Cham :

Springer, 2021.

[4] LAFORTUNE S. Discrete event systems: Modeling, observation, and control[J]. Annual Review

of Control, Robotics, and Autonomous Systems, 2019, 2 : 141 – 159.

[5] RAMADGE P J, WONHAM W M. Supervisory control of a class of discrete event processes[J].

SIAM Journal on Control and Optimization, 1987, 25(1) : 206 – 230.

[6] RAMADGE P J, WONHAM W M. The control of discrete event systems[J]. Proceedings of the

IEEE, 1989, 77(1) : 81 – 98.

[7] WONHAM W M, CAI K. Supervisory Control of Discrete-Event Systems[M]. Cham : Springer,

2019.

[8] ZHOU M, DICESARE F. Petri Net Synthesis for Discrete Event Control of Manufacturing

Systems[M]. Boston, MA : Springer, 1993.

[9] OMOGBAI O, SALONITIS K. Manufacturing system lean improvement design using discrete

event simulation[J]. Procedia CIRP, 2016, 57 : 195 – 200.

[10] SHU S, LIN F. Decentralized control of networked discrete event systems with communication

delays[J]. Automatica, 2014, 50(8) : 2108 – 2112.

[11] LIN F. Control of networked discrete event systems: dealing with communication delays and

losses[J]. SIAM Journal on Control and Optimization, 2014, 52(2) : 1276 – 1298.

[12] ZHAO B, LIN F, WANG C, et al. Supervisory control of networked timed discrete event systems

and its applications to power distribution networks[J]. IEEE Transactions on Control of Network

Systems, 2015, 4(2) : 146 – 158.

[13] CAO X-R, HO Y-C. Models of discrete event dynamic systems[J]. IEEE Control Systems

Magazine, 1990, 10(4) : 69 – 76.

[14] VAN TENDELOO Y, VANGHELUWE H. Discrete event system specification modeling and

simulation[C] // In Proceedings of the 2018 Winter Simulation Conference (WSC). 2018 : 162 –

176.

[15] RAMADGE P J. Observability of discrete event systems[C] // 1986 25th IEEE conference on

99

Doctoral Dissertation of Università degli Studi di Cagliari

decision and control. 1986 : 1108 – 1112.

[16] OZVEREN C, WILLSKY A. Observability of discrete event dynamic systems[J/OL]. IEEE

Transactions on Automatic Control, 1990, 35(7) : 797 – 806. http://dx.doi.org/10.1109/9.57018.

[17] KUMAR R, GARG V, MARCUS S I. Predicates and predicate transformers for supervisory

control of discrete event dynamical systems[J]. IEEE Transactions on Automatic Control, 1993,

38(2) : 232 – 247.

[18] HADJICOSTIS C. Estimation and Inference in Discrete Event Systems[M]. [S.l.] : Springer, 2020.

[19] GIUA A, SEATZU C. Observability of place/transition nets[J]. IEEE Transactions on Automatic

Control, 2002, 47(9) : 1424 – 1437.

[20] GIUA A, SEATZU C, CORONA D. Marking estimation of Petri nets with silent transitions[J].

IEEE Transactions on Automatic Control, 2007, 52(9) : 1695 – 1699.

[21] JIROVEANU G, BOEL R K, BORDBAR B. Online monitoring of large Petri net models under

partial observation[J]. Discrete Event Dynamic Systems, 2008, 18(3) : 323 – 354.

[22] RU Y, HADJICOSTIS C N. Bounds on the number of markings consistent with label observations

in Petri nets[J]. IEEE Transactions on Automation Science and Engineering, 2009, 6(2) : 334 –

344.

[23] CABASINO M P, GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets

with unobservable transitions[J]. Automatica, 2010, 46(9) : 1531 – 1539.

[24] TONG Y, LI Z, GIUA A. On the equivalence of observation structures for Petri net generators[J].

IEEE Transactions on Automatic Control, 2015, 61(9) : 2448 – 2462.

[25] YIN X, LAFORTUNE S. A uniform approach for synthesizing property-enforcing supervisors

for partially-observed discrete-event systems[J]. IEEE Transactions on Automatic Control, 2015,

61(8) : 2140 – 2154.

[26] ZAYTOON J, LAFORTUNE S. Overview of fault diagnosis methods for discrete event systems[J].

Annual Reviews in Control, 2013, 37(2) : 308 – 320.

[27] ZAD S H, KWONG R H, WONHAM W M. Fault diagnosis in discrete-event systems: Framework

and model reduction[J]. IEEE Transactions on Automatic Control, 2003, 48(7) : 1199 – 1212.

[28] LEFEBVRE D, DELHERM C. Diagnosis of DES with Petri net models[J]. IEEE Transactions on

Automation Science and Engineering, 2007, 4(1) : 114 – 118.

[29] SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Diagnosability of discrete-event systems[J].

IEEE Transactions on automatic control, 1995, 40(9) : 1555 – 1575.

[30] SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Failure diagnosis using discrete-event

models[J]. IEEE Transactions on Control Systems Technology, 1996, 4(2) : 105 – 124.

[31] BASILE F, CHIACCHIO P, DE TOMMASI G. On K-diagnosability of Petri nets via integer linear

100

http://dx.doi.org/10.1109/9.57018

References

programming[J]. Automatica, 2012, 48(9) : 2047 – 2058.

[32] CABASINO M P, GIUA A, LAFORTUNE S, et al. A new approach for diagnosability analysis of

Petri nets using verifier nets[J]. IEEE Transactions on Automatic Control, 2012, 57(12) : 3104 –

3117.

[33] CABASINO M P, GIUA A, SEATZU C. Diagnosability of discrete-event systems using labeled

Petri nets[J]. IEEE Transactions on Automation Science and Engineering, 2013, 11(1) : 144 – 153.

[34] RAMIREZ-TREVINO A, RUIZ-BELTRAN E, ARAMBURO-LIZARRAGA J, et al. Structural

diagnosability of DES and design of reduced Petri net diagnosers[J]. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, 2011, 42(2) : 416 – 429.

[35] SHU S, LIN F, YING H. Detectability of discrete event systems[J]. IEEE Transactions on

Automatic Control, 2007, 52(12) : 2356 – 2359.

[36] SHU S, LIN F. I-detectability of discrete-event systems[J]. IEEE Transactions on Automation

Science and Engineering, 2012, 10(1) : 187 – 196.

[37] SHU S, LIN F. Generalized detectability for discrete event systems[J]. Systems & control letters,

2011, 60(5) : 310 – 317.

[38] SASI Y, LIN F. Detectability of networked discrete event systems[J]. Discrete Event Dynamic

Systems, 2018, 28 : 449 – 470.

[39] SABOORI A, HADJICOSTIS C N. Notions of security and opacity in discrete event systems[C]

// 2007 46th IEEE Conference on Decision and Control. 2007 : 5056 – 5061.

[40] LIN F. Opacity of discrete event systems and its applications[J]. Automatica, 2011, 47(3) : 496 –

503.

[41] DUBREIL J, DARONDEAU P, MARCHAND H. Supervisory control for opacity[J]. IEEE

Transactions on Automatic Control, 2010, 55(5) : 1089 – 1100.

[42] BEN-KALEFA M, LIN F. Supervisory control for opacity of discrete event systems[C] // 2011

49th Annual Allerton Conference on Communication, Control, and Computing (Allerton). 2011 :

1113 – 1119.

[43] KEROGLOU C, HADJICOSTIS C N. Probabilistic system opacity in discrete event systems[J].

Discrete Event Dynamic Systems, 2018, 28 : 289 – 314.

[44] CARVALHO L K, WU Y-C, KWONG R, et al. Detection and mitigation of classes of attacks in

supervisory control systems[J]. Automatica, 2018, 97 : 121 – 133.

[45] SU R. Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations[J].

Automatica, 2018, 94 : 35 – 44.

[46] LAWFORD M, WONHAM W M. Supervisory control of probabilistic discrete event systems[C]

// Proceedings of 36th Midwest Symposium on Circuits and Systems. 1993 : 327 – 331.

101

Doctoral Dissertation of Università degli Studi di Cagliari

[47] BERTRAND N, HADDAD S, LEFAUCHEUX E. Foundation of diagnosis and predictability in

probabilistic systems[C] // IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS’14) : Vol 29. 2014 : 417 – 429.

[48] SHU S, LIN F, YING H, et al. State estimation and detectability of probabilistic discrete event

systems[J]. Automatica, 2008, 44(12) : 3054 – 3060.

[49] PANTELIC V, POSTMA S M, LAWFORD M. Probabilistic supervisory control of probabilistic

discrete event systems[J]. IEEE Transactions on Automatic Control, 2009, 54(8) : 2013 – 2018.

[50] LEFEBVRE D, HADJICOSTIS C N. Privacy and safety analysis of timed stochastic discrete event

systems using Markovian trajectory-observers[J]. Discrete Event Dynamic Systems, 2020, 30(3) :

413 – 440.

[51] HUMAYED A, LIN J, LI F, et al. Cyber-physical systems security)A survey[J]. IEEE Internet of

Things Journal, 2017, 4(6) : 1802 – 1831.

[52] ALGULIYEV R, IMAMVERDIYEV Y, SUKHOSTAT L. Cyber-physical systems and their

security issues[J]. Computers in Industry, 2018, 100 : 212 – 223.

[53] ASHIBANI Y, MAHMOUD Q H. Cyber physical systems security: Analysis, challenges and

solutions[J]. Computers & Security, 2017, 68 : 81 – 97.

[54] BASILIO J C, HADJICOSTIS C N, SU R, et al. Analysis and control for resilience of discrete event

systems: Fault diagnosis, opacity and cyber security[J]. Foundations and Trends R© in Systems and

Control, 2021, 8(4) : 285 – 443.

[55] BRAVE Y, HEYMANN M. Formulation and control of real time discrete event processes[C]

// Proceedings of the 27th IEEE Conference on Decision and Control. 1988 : 1131 – 1132.

[56] KOZAK P. Supervisory control of discrete event processes: A real-time extension[J]. Inst. Inform.

Theory Automat., Czechoslovak Acad. Sci., Prague, Tech. Rep, 1991 : 26.

[57] BRANDIN B A, WONHAM W M. Supervisory control of timed discrete-event systems[J]. IEEE

Transactions on Automatic control, 1994, 39(2) : 329 – 342.

[58] WONG-TOI H, HOFFMANN G. The control of dense real-time discrete event systems[R]. [S.l.] :

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1992.

[59] LIN F, WONHAM W M. Supervisory control of timed discrete-event systems under partial

observation[J]. IEEE Transactions on Automatic Control, 1995, 40(3) : 558 – 562.

[60] KATZ R D. Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems[J].

IEEE Transactions on Automatic Control, 2007, 52(2) : 229 – 241.

[61] ZHANG R, CAI K, GAN Y, et al. Supervision localization of timed discrete-event systems[J].

Automatica, 2013, 49(9) : 2786 – 2794.

[62] RASHIDINEJAD A, RENIERS M, FENG L. Supervisory control of timed discrete-event systems

102

References

subject to communication delays and non-fifo observations[J]. IFAC-PapersOnLine, 2018, 51(7) :

456 – 463.

[63] MIAO C, SHU S, LIN F. State estimation for timed discrete event systems with communication

delays[C] // 2017 Chinese Automation Congress (CAC). 2017 : 2721 – 2726.

[64] LAI A, LAHAYE S, GIUA A. State estimation of max-plus automata with unobservable events[J].

Automatica, 2019, 105 : 36 – 42.

[65] ZHANG K. State-based opacity of real-time automata[C] // 27th IFIP WG 1.5 International

Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021) : Vol 12.

2021 : 1 – 15.

[66] LI J, LEFEBVRE D, HADJICOSTIS C N, et al. Observers for a class of timed automata based on

elapsed time graphs[J]. IEEE Transactions on Automatic Control, 2021, 67(2) : 767 – 779.

[67] BASILE F, CABASINO M P, SEATZU C. Diagnosability analysis of labeled time Petri net

systems[J]. IEEE Transactions on Automatic Control, 2016, 62(3) : 1384 – 1396.

[68] HE Z, LI Z, GIUA A, et al. Some remarks on/State Estimation and Fault Diagnosis of Labeled

Time Petri Net Systems with Unobservable Transitions0[J]. IEEE Transactions on Automatic

Control, 2019, 64(12) : 5253 – 5259.

[69] ALUR R, COURCOUBETIS C, HALBWACHS N, et al. The algorithmic analysis of hybrid

systems[J]. Theoretical computer science, 1995, 138(1) : 3 – 34.

[70] ALUR R, COURCOUBETIS C, HENZINGER T A, et al. Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems[R]. [S.l.] : Cornell University,

1993.

[71] HENZINGER T A. The theory of hybrid automata[M]. [S.l.] : Springer, 2000.

[72] ALUR R, DILL D. The theory of timed automata[C] // Real-Time: Theory in Practice: REX

Workshop Mook, The Netherlands, June 3–7, 1991 Proceedings. 1992 : 45 – 73.

[73] ALUR R, PARTHASARATHY M. Decision problems for timed automata: A survey[J].

Departmental Papers (CIS), 2004 : 93.

[74] FINKEL O. Undecidable problems about timed automata[C] // Formal Modeling and Analysis of

Timed Systems: 4th International Conference, FORMATS 2006, Paris, France, September 25-27,

2006. Proceedings 4. 2006 : 187 – 199.

[75] BOUYER P, HADDAD S, REYNIER P-A. Undecidability results for timed automata with silent

transitions[J]. Fundamenta Informaticae, 2009, 92(1-2) : 1 – 25.

[76] VAN HUNG D, JI W. On the design of hybrid control systems using automata models[C]

// Foundations of Software Technology and Theoretical Computer Science: 16th Conference

Hyderabad, India, December 18–20, 1996 Proceedings 16. 1996 : 156 – 167.

103

Doctoral Dissertation of Università degli Studi di Cagliari

[77] ALUR R, FIX L, HENZINGER T A. Event-clock automata: A determinizable class of timed

automata[J]. Theoretical Computer Science, 1999, 211(1-2) : 253 – 273.

[78] LAROUSSINIE F, MARKEY N, SCHNOEBELEN P. Model checking timed automata with one

or two clocks[C] // CONCUR 2004-Concurrency Theory: 15th International Conference, London,

UK, August 31-September 3, 2004. Proceedings 15. 2004 : 387 – 401.

[79] DIMA C. Real-time automata[J]. Journal of Automata, Languages and Combinatorics, 2001, 6(1) :

3 – 24.

[80] TRIPAKIS S. Fault diagnosis for timed automata[C] // Formal Techniques in Real-Time and Fault-

Tolerant Systems: 7th International Symposium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2

Oldenburg, Germany, September 9–12, 2002 Proceedings 7. 2002 : 205 – 224.

[81] BOUYER P, JAZIRI S, MARKEY N. Efficient timed diagnosis using automata with timed

domains[C] // Runtime Verification: 18th International Conference, RV 2018, Limassol, Cyprus,

November 10–13, 2018, Proceedings 18. 2018 : 205 – 221.

[82] BOUYER P, HENRY L, JAZIRI S, et al. Diagnosing timed automata using timed markings[J].

International Journal on Software Tools for Technology Transfer, 2021, 23 : 229 – 253.

[83] ZHANG D, FENG G, SHI Y, et al. Physical safety and cyber security analysis of multi-agent

systems: A survey of recent advances[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2) :

319 – 333.

[84] RASHIDINEJAD A, WETZELS B, RENIERS M, et al. Supervisory control of discrete-event

systems under attacks: An overview and outlook[C] // 2019 18th European Control Conference

(ECC). 2019 : 1732 – 1739.

[85] HUANG X, DONG J. Reliable control policy of cyber-physical systems against a class of

frequency-constrained sensor and actuator attacks[J]. IEEE Transactions on Cybernetics, 2018,

48(12) : 3432 – 3439.

[86] RABEHI D, MESLEM N, RAMDANI N. Secure interval observer for linear continuous-time

systems with discrete measurements subject to cyber-attacks[C] // 2019 4th Conference on Control

and Fault Tolerant Systems (SysTol). 2019 : 336 – 341.

[87] LIU H, NIU B, QIN J. Reachability analysis for linear discrete-time systems under stealthy cyber

attacks[J]. IEEE Transactions on Automatic Control, 2021, 66(9) : 4444 – 4451.

[88] ZHANG W, MAO S, HUANG J, et al. Data-driven resilient control for linear discrete-time multi-

agent networks under unconfined cyber-attacks[J]. IEEE Transactions on Circuits and Systems I:

Regular Papers, 2020, 68(2) : 776 – 785.

[89] ZHANG Q, LI Z, SEATZU C, et al. Stealthy attacks for partially-observed discrete event

systems[C] // 2018 IEEE 23rd International Conference on Emerging Technologies and Factory

104

References

Automation (ETFA) : Vol 1. 2018 : 1161 – 1164.

[90] BARBHUIYA F, AGARWAL M, PURWAR S, et al. Application of stochastic discrete event

system framework for detection of induced low rate TCP attack[J]. Isa Transactions, 2015, 58 :

474 – 492.

[91] LIMA P M, ALVES M V, CARVALHO L K, et al. Security against network attacks in supervisory

control systems[J]. IFAC-PapersOnLine, 2017, 50(1) : 12333 – 12338.

[92] FRITZ R, ZHANG P. Modeling and detection of cyber attacks on discrete event systems[J]. IFAC-

PapersOnLine, 2018, 51(7) : 285 – 290.

[93] LIMA P M, CARVALHO L K, MOREIRA M V. Detectable and undetectable network attack

security of cyber-physical systems[J]. IFAC-PapersOnLine, 2018, 51(7) : 179 – 185.

[94] THORSLEY D, TENEKETZIS D. Intrusion detection in controlled discrete event systems[C]

// Proceedings of the 45th IEEE Conference on Decision and Control. 2006 : 6047 – 6054.

[95] GÓES R M, KANG E, KWONG R, et al. Stealthy deception attacks for cyber-physical systems[C]

// 2017 IEEE 56th Annual Conference on Decision and Control (CDC). 2017 : 4224 – 4230.

[96] WAKAIKI M, TABUADA P, HESPANHA J P. Supervisory control of discrete-event systems

under attacks[J]. Dynamic Games and Applications, 2019, 9 : 965 – 983.

[97] WANG Y, PAJIC M. Supervisory control of discrete event systems in the presence of sensor and

actuator attacks[C] // 2019 IEEE 58th Conference on Decision and Control (CDC). 2019 : 5350 –

5355.

[98] JAKOVLJEVIC Z, LESI V, PAJIC M. Attacks on distributed sequential control in manufacturing

automation[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2) : 775 – 786.

[99] YAO J, YIN X, LI S. On attack mitigation in supervisory control systems: A tolerant control

approach[C] // 2020 59th IEEE Conference on Decision and Control (CDC). 2020 : 4504 – 4510.

[100] YOU D, WANG S, ZHOU M, et al. Supervisory control of Petri nets in the presence of replacement

attacks[J]. IEEE Transactions on Automatic Control, 2021, 67(3) : 1466 – 1473.

[101] ZHENG S, SHU S, LIN F. Modeling and control of discrete event systems under joint sensor-

actuator cyber attacks[C] // 2021 6th International Conference on Automation, Control and

Robotics Engineering (CACRE). 2021 : 216 – 220.

[102] LIN L, SU R. Synthesis of covert actuator and sensor attackers[J]. Automatica, 2021, 130 : 109714.

[103] MEIRA-GÓES R, LAFORTUNE S, MARCHAND H. Synthesis of supervisors robust against

sensor deception attacks[J]. IEEE Transactions on Automatic Control, 2021, 66(10) : 4990 – 4997.

[104] GIUA A, MAHULEA C, SEATZU C. Decentralized observability of discrete event systems with

synchronizations[J]. Automatica, 2017, 85 : 468 – 476.

105

Doctoral Dissertation of Università degli Studi di Cagliari

106

Acknowledgement

Acknowledgement

First of all, I would like to express my gratitude to my supervisors, Prof. Dr. Zhiwu

Li and Prof. Dr. Alessandro Giua. I sincerely appreciate their guidance throughout my

Ph.D. in analysing problems, writing scientific papers and giving academic presentations. I

am honoured to have benefited from their outstanding professionalism and insightful view

of research, which I will cherish throughout my life. Their great patience and constant

encouragement have supported me from the very first day of my Ph.D. studies.

I would also like to acknowledge the generous support of Prof. Carla Seatzu (University

of Cagliari, Italy), whose professional academic suggestions and inspiring encouragement

have given me much insight into my career. I am grateful to Prof. Dimitri Lefebvre

(University of Normandy, France) for his constructive suggestions and writing guidance

on all my papers.

I received a lot of help and kindness during my studies at the University of Cagliari.

Thanks again to Prof. Alessandro Giua and Prof. Carla Seatzu for all their help and support

in my life in Italy. I appreciate Dr. Yin Tong for helping me to settle down when I first

came to Italy. I am grateful to Dr. Yihui Hu, Dr. Nan Du and Dr. Hao Lan for their

help in my research and the great experience we shared at the University of Cagliari. I

would also like to thank Dr. Zohreh Alzahra Sanai Dashti, Dr. Milad Gholami, Dr. Mauro

Franceschelli, Dr. Diego Deplano and Dr. Alessandro Pilloni for helping me to integrate

into the Automatica research group. Special thanks to Ing. Federica Di Prima for her kind

administrative assistance.

I would also like to thank Prof. Kai Cai (Osaka Mertopolitan University, Japan) for the

opportunity to visit and work with him at Osaka Mertopolitan University. I benefited greatly

from his helpful suggestions during our discussions.

I am also grateful to all members of the System Control & Automation Group in Xidian

University during the lab time my PhD: Dr. Ding Liu, Dr. Jiafeng Zhang, Dr. Yufeng Chen,

Dr. Gaiyun Liu, Dr. Yifan Hou, Dr. Jinwei Guo, Dr. Xubin Ping, Dr. Meng Qin, Dr. Anrong

Wang, Dr. Xi Wang, Dr. Xiuyan Zhang, Dr. Xiubin Zhu, Dr. Lan Yang, Dr. Guanghui Zhu,

Dr. Zhou He, Dr. Xuya Cong, and Dr. Zhenzhen Hao, Dr. Cong Wang, Dr. Peng Nie, Dr.

Tailong Jing, Dr. Jiazhong Zhou, Dr. Xiaoyan Li, Ms. Ye Liang, Mr. JunjunYang, Mr. Qinrui

Chen, Mr. Wei Duan, Mr. Yanjun Zhou, Mr. Dajiang Sun, Mr. Jun Li, Mr. Xiaoyu Han, Mr.

Ziliang Zhang, Mr. Shaopeng Hu, Ms. Yao Lu, Ms. Menghuan Hu, Mr. Tianyu Liu, Ms.

107

Doctoral Dissertation of Università degli Studi di Cagliari

Wenjie Zhao, Ms. Yulin Zhao, Mr. Kun Peng, Ms. Dan Zhao, Ms. Yanan Zhang, Ms. Yuling

Zhang.

I would like to express my gratefulness to my family. My dear parents Ms. Junyan Zhao

and Mr. Ruimin Gao offer their unfailing love and unwavering support, which encourages

me all the time. My parents-in-law have got my back at all times. I am grateful for the love

of my grandparents in my whole life.

I would like to thank my husband, Dr. Chao Gu. He is not only an excellent colleague

during my Ph.D., but also a great life partner, sharing a caring and loving bond that has

created a lot of growth for me. Thank you for being there with me all the time.

Finally, many thanks to all those who took the time to read this dissertation and gave

me a lot of advice that will help me in my future career.

108

Biography

Biography

1. Basic Information

Chao GAO (female) was born in Baoding (Hebei Province, China) in August 3rd, 1992.

She received the B.S. degree in communication engineering from Science and technology

college, North China Electronic Power University, Baoding, China, in 2014, and the M.S.

degree in electronics and communication engineering from North China Electronic Power

University, Baoding, China, in 2017. Since 2017 she has been a Ph.D candidate in cotutor-

ship between School of Electro-Mechanical Engineering (SEME) of Xidian University and

Department of Electrical and Electronic Engineering (DIEE) of University of Cagliari (U-

NICA), co-supervised by Prof. Dr. Zhiwu Li (Xidian University) and Prof. Dr. Alessandro

Giua (UNICA).

2. Educational Background

2010.09* 2014.07, Science and technology college, North China Electronic Power

University, B.S. Degree in Communication Engineering

2014.09* 2017.07, North China Electric Power University, M.S. Degree in Electronics

and Communication Engineering

2017.09* Present, in Ph.D cotutorship between University of Cagliari (Electronics and

Computer Engineering) and Xidian University (Control Theory and Control Engineer-

ing)

3. Academic Publications

[1] C. Gao, D. Lefebvre, C. Seatzu, Z. Li, and A. Giua, “Fault Diagnosis of Timed

Discrete Event Systems,” The 22nd IFAC World Congress 2023, 2023. Accepted.

[2] C. Gao, D. Lefebvre, C. Seatzu, Z. Li, and A. Giua, “A region-based approach

for state estimation of timed automata under no event observation,” In 25th IEEE

International Conference on Emerging Technologies and Factory Automation (ET-

FA), vol. 1, pp. 799–804, 2020.

[3] C. Gao, C. Seatzu, Z. Li, and A. Giua, “Multiple Attacks Detection on Discrete

109

Doctoral Dissertation of Università degli Studi di Cagliari

Event Systems,” In IEEE International Conference on Systems, Man and Cyber-

netics (SMC), pp. 2352–2357, 2019.

4. ACADEMIC ACTIVITIES

[1] Sep. 2021, AUTOMATICA.IT 2021 Workshop, Virtual Edition, Catania, Italy.

(Oral presentation)

[2] Sep. 2020, 2020 IEEE International Conference on Emerging Technology and

Factory Automation, Vienna, Austria. (Oral presentation)

[3] Jun. 2020, 2020 DRIEI Ph.D. Program in Electronic and Computer Engineering,

Cagliari, Italy. (Oral presentation)

[4] Oct. 2019, 2019 IEEE International Conference on Systems, Man, and Cybernet-

ics, Bari, Italy. (Oral presentation)

[5] Jun. 2019, 2019 DRIEI Ph.D. Program in Electronic and Computer Engineering,

Cagliari, Italy. (Oral presentation)

5. ACADEMIC SERVICES

Reviewer for Journal: Automatica; IEEE Transactions on Automatic Control; Interna-

tional Journal of applied mathematics and computer science.

Reviewer for Conference: IEEE International Conference on Systems, Man, and Cy-

bernetics; IFAC Workshop on Discrete Event Systems; European Control Conference;

IFAC Symposium on Fault Detection, Supervision and Safety for Technical Process.

6. ACADEMIC PROGRAMS

Host (1/1), 2021.5-2022.4,

Fundamental Research Funds for the Central Universities and the Innovation Fund of

Xidian University.

Participant (2/4), 2020.7-2021.6,

Shaanxi Province Natural Science Fundamental Research Program.

110

	PhD_Thesis_Cover_MAY_2023_XXXIV_cotutelle_Chao Gao
	GAOChao_PhD_Thesis(UniCA)
	摘要
	ABSTRACT
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Chapter 1 Introduction
	1.1Overview
	1.1.1State Estimation of Timed Discrete Event Systems
	1.1.2A Cyber Security Problem: Attack Detection

	1.2Thesis Organization

	Chapter 2 Preliminaries
	2.1Automata
	2.2State Estimation of Automata
	2.3Fault Diagnosis of Automata
	2.4Sketch of Timed DES

	Chapter 3 State Estimation of Timed Finite Automata
	3.1Timed Finite Automata
	3.2Region Automaton and Zone Automaton
	3.2.1Region Automaton
	3.2.2Zone Automaton
	3.2.3Dynamics of Zone Automaton

	3.3State Estimation of Timed Finite Automata
	3.3.1State Estimation with No Observation
	3.3.2State Estimation with Partial Observation

	3.4Fault Diagnosis of Timed Finite Automata
	3.4.1Fault Recognizer
	3.4.2Fault Diagnosis Approach

	3.5Conclusions

	Chapter 4 State Estimation of Generalized Timed Finite Automata
	4.1Generalized Timed Finite Automata
	4.2Zone Automaton and its dynamics
	4.2.1Zone Automaton
	4.2.2Dynamics of Zone Automaton

	4.3State Estimation of Generalized Timed Finite Automata
	4.3.1State Estimation with No Observation
	4.3.2State Estimation with Partial Observation

	4.4Application to State Estimation of Timed Discrete Event Systems under multiple clocks
	4.5Conclusions

	Chapter 5 A Cyber Security Problem: Attack Detection
	5.1Models of Attacks on Deterministic Finite Automata
	5.2Constant Attacks Detection on Deterministic Finite Automata
	5.3Switching Attacks Detection on Deterministic Finite Automata
	5.4Application to Multiple Attacks Detection on Timed Finite Automata
	5.5Conclusions

	Chapter 6 Conclusions and Future Works
	References
	Acknowledgement
	Biography

