27,812 research outputs found

    Action Observation for Neurorehabilitation in Apraxia

    Get PDF
    Neurorehabilitation and brain stimulation studies of post-stroke patients suggest that action-observation effects can lead to rapid improvements in the recovery of motor functions and long-term motor cortical reorganization. Apraxia is a clinically important disorder characterized by marked impairment in representing and performing skillful movements [gestures], which limits many daily activities and impedes independent functioning. Recent clinical research has revealed errors of visuo-motor integration in patients with apraxia. This paper presents a rehabilitative perspective focusing on the possibility of action observation as a therapeutic treatment for patients with apraxia. This perspective also outlines impacts on neurorehabilitation and brain repair following the reinforcement of the perceptual-motor coupling. To date, interventions based primarily on action observation in apraxia have not been undertaken

    A Systematic Review of International Clinical Guidelines for Rehabilitation of People With Neurological Conditions: What Recommendations Are Made for Upper Limb Assessment?

    Get PDF
    Conclusions: We present a comprehensive, critical, and original summary of current recommendations. Defining a core set of measures and agreed protocols requires international consensus between experts representing the diverse and multi-disciplinary field of neurorehabilitation including clinical researchers and practitioners, rehabilitation technology researchers, and commercial developers. Current lack of guidance may hold-back progress in understanding function and recovery. Together with a Delphi consensus study and an overview of systematic reviews of outcome measures it will contribute to the development of international guidelines for upper limb assessment in neurological conditions.This review formed part of the COST Action TD 1006A European Network on Robotics for Neurorehabilitation. It was an interdisciplinary EU-funded research network concentrating on the coordination of European research in the area of rehabilitation robotics

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    Outcome of rehabilitation for neurobehavioural disorders

    Get PDF
    <p>BACKGROUND: The evidence base on neurobehavioural disorders and their rehabilitation has been growing for four decades. Over that time understanding of the need for effective interventions for a range of handicaps in personal, interpersonal and employment spheres has developed. There is a continuing need to demonstrate whether interventions, are effective and cost-sensitive. Moreover, in pursuing effectiveness, clinicians need to be able to predict which individuals are likely to benefit from a programme and here, clinical experience needs to be informed by research evidence.</p> <p>OBJECTIVE: To review the outcome of rehabilitation for neurobehavioural disorders.</p> <p>METHODS: This review initially considers the background to neurobehavioural rehabilitation and discusses methodological issues. It reviews the evidence for neurobehavioural interventions for severe head injury with emphasis on holistic models of care, behavioural treatments, interventions in non-specialist settings and for emotion perception and self-awareness.</p> <p>RESULTS: In general, there is a need for further high quality studies with longer follow-ups and evidence for generalisation in the community. However, there is a growing consensus that intensive holistic rehabilitation programmes can improve community reintegration and self-efficacy. For behaviour disturbance the evidence base largely comprises studies with weaker (single group or single case) designs. Overall studies here provide limited evidence in support of behavioural approaches for externalised behaviour such as aggression. Further RCT or group comparison studies are needed. In terms of negative behaviours such as apathy, there are few studies on head injury and conclusions cannot be made with confidence. Self awareness is a key issue associated with good outcome in general and research to date supports use of interventions that focus in on-task behaviour and education. The correct perception of emotions in others is a precursor to successful social interaction, and here there is very little evidence although early studies are encouraging.</p> <p>CONCLUSION: There is mounting evidence to support the effectiveness of non-pharmacological interventions for neurobehavioural disorders. Successful outcomes are often associated with intensive and prolonged interventions involving multidisciplinary working.</p&gt

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    Effects of Wrist Tendon Vibration on Targeted Upper-Arm Movements in Poststroke Hemiparesis

    Get PDF
    Background. Impaired motor control of the upper extremity after stroke may be related to lost sensory, motor, and integrative functions of the brain. Artificial activation of sensory afferents might improve control of movement by adding excitatory drive to sensorimotor control structures. The authors evaluated the effect of wrist tendon vibration (TV) on paretic upper-arm stability during point-to-point planar movements. Methods. TV (70 Hz) was applied to the forearm wrist musculature of 10 hemiparetic stroke patients as they made center-out planar arm movements. End-point stability, muscle activity, and grip pressure were compared as patients stabilized at the target position for trials completed before, during, and after the application of the vibratory stimulus. Results. Prior to vibration, hand position fluctuated as participants attempted to maintain the hand at the target after movement termination. TV improved arm stability, as evidenced by decreased magnitude of hand tangential velocity at the target. Improved stability was accompanied by a decrease in muscle activity throughout the arm as well as a mean decrease in grip pressure. Conclusions. These results suggest that vibratory stimulation of the distal wrist musculature enhances stability of the proximal arm and can be studied further as a mode for improving end-point stability during reaching in hemiparetic patients

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration
    • …
    corecore