488 research outputs found

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    DMRN+16: Digital Music Research Network One-day Workshop 2021

    Get PDF
    DMRN+16: Digital Music Research Network One-day Workshop 2021 Queen Mary University of London Tuesday 21st December 2021 Keynote speakers Keynote 1. Prof. Sophie Scott -Director, Institute of Cognitive Neuroscience, UCL. Title: "Sound on the brain - insights from functional neuroimaging and neuroanatomy" Abstract In this talk I will use functional imaging and models of primate neuroanatomy to explore how sound is processed in the human brain. I will demonstrate that sound is represented cortically in different parallel streams. I will expand this to show how this can impact on the concept of auditory perception, which arguably incorporates multiple kinds of distinct perceptual processes. I will address the roles that subcortical processes play in this, and also the contributions from hemispheric asymmetries. Keynote 2: Prof. Gus Xia - Assistant Professor at NYU Shanghai Title: "Learning interpretable music representations: from human stupidity to artificial intelligence" Abstract Gus has been leading the Music X Lab in developing intelligent systems that help people better compose and learn music. In this talk, he will show us the importance of music representation for both humans and machines, and how to learn better music representations via the design of inductive bias. Once we got interpretable music representations, the potential applications are limitless

    Predicting performance difficulty from piano sheet music images

    Full text link
    Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility

    The DeepScoresV2 dataset and benchmark for music object detection

    Get PDF
    The dataset, code and pre-trained models, as well as user instructions, are publicly available at https://zenodo.org/record/4012193.In this paper, we present DeepScoresV2, an extended version of the DeepScores dataset for optical music recognition (OMR). We improve upon the original DeepScores dataset by providing much more detailed annotations, namely (a) annotations for 135 classes including fundamental symbols of non-fixed size and shape, increasing the number of annotated symbols by 23%; (b) oriented bounding boxes; (c) higher-level rhythm and pitch information (onset beat for all symbols and line position for noteheads); and (d) a compatibility mode for easy use in conjunction with the MUSCIMA++ dataset for OMR on handwritten documents. These additions open up the potential for future advancement in OMR research. Additionally, we release two state-of-the-art baselines for DeepScoresV2 based on Faster R-CNN and the Deep Watershed Detector. An analysis of the baselines shows that regular orthogonal bounding boxes are unsuitable for objects which are long, small, and potentially rotated, such as ties and beams, which demonstrates the need for detection algorithms that naturally incorporate object angles

    Music Encoding Conference Proceedings

    Get PDF
    UIDB/00693/2020 UIDP/00693/2020publishersversionpublishe
    corecore