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Programme  
 
10:00 Welcome, Simon Dixon (Queen Mary University of London) 

10:10 

KEYNOTE 
 
"Sound on the Brain - Insights from Functional Neuroimaging and Neuroanatomy", Prof Sophie Scott - 
(Institute of Cognitive Neuroscience - UCL) 
 
 

10:50 Building Style-aware Neural MIDI Synthesizers Using Simplified Differentiable DSP Approach, Sergey 
Grechin and Ryan Groves (Infinite Album) 

11:00 Completing Audio Drum Loops with Transformer Neural Networks, Teresa Pelinski (Queen Mary 
University of London), Behzad Haki and Sergi Jordà (Pompeu Fabra University) 

11:10 Evaluation of GPT-2-based Symbolic Music Generation, Berker Banar and Simon Colton (Queen 
Mary University of London) 

11:20 NASH: the Neural Audio Synthesis Hackathon, Ben Hayes, Cyrus Vahidi and Charalampos Saitis 
(Queen Mary University of London) 

11:30 5 min break 

11:35 Designing a Synthesiser to Elicit a Feeling of Perceived Tension, Connor Welham, Bruno Fazenda, 
and Duncan Williams (Acoustic Department, University of Salford) 

11:45 Is Automatically Transcribed Data Reliable Enough for Expressive Piano Performance Research?, Huan 
Zhang, Simon Dixon (Queen Mary University of London) 

11:55 CAMAT: Computer Assisted Music Analysis Toolkit, Egor Poliakov (IHMT Leipzig) and Christon R. 
Nadar (Semantic Music Technologies, Fraunhofer IDMT) 

12:05 
An Investigation on Pitch-Based Features on Selected Music Generation Systems, Yuqiang Li, 
Shengchen Li (Xi’an Jiaotong-Liverpool University) and George Fazekas (Queen Mary University 
of London) 

12:15 
 
Lunch break 
 

13:15 

KEYNOTE 
 
"Learning Interpretable Music Representations: From Human Stupidity to Artificial Intelligence", 
Assistant Prof Gus Xia - (NYU Shanghai) 
 

13:55 Announcements and Intro to Gather Town 

14:00 

POSTER SESSION 
 
An open poster session where the participants will be able to view the posters and chat with authors. 
 

16:00 Close * 

* - There will be an opportunity to continue discussions after the Workshop in a nearby Pub/Restaurant for those in London. 
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Posters  
 
1 Sketching Sounds: Using Sound-shape Associations to Build a Sketch-based Sound Synthesizer, Sebastian   

Löbbers and George Fazekas (Queen Mary University of London) 
2 Everyday Sound Recognition with Limited Annotations, Jinhua Liang, Huy Phan and Emmanouil Benetos 

(Queen Mary University of London) 
3 Generating Comments from Music and Lyrics, Yixiao Zhang and Simon Dixon (Queen Mary University of 

London) 
4 AI-Assisted FM Synthesis, Franco Caspe, Andrew McPherson and Mark Sandler (Queen Mary 

University of London) 
5 Algorithmic Music Composition for the Environment, Rosa Park (San Francisco State University) 
6 The Vienna Philharmonic's New Year's Concert Series: A Corpus for Digital Musicology and Performance 

Science, David M. Weigl and Werner Goebl (University of Music and Performing Arts Vienna, Austria) 
7 An Interactive Tool for Visualising Musical Performance Subtleties, Yucong Jiang (University of 

Richmond) 
8 A Benchmark Dataset to Study Microphone Mismatch Conditions for Piano Multipitch Estimation on Mobile 

Devices, Jakob Abeßer, Franca Bittner, Maike Richter, Marcel Gonzalez and Hanna Lukashevich 
(Fraunhofer IDMT) 

9 Looking at the Future of Data-Driven Procedural Audio, Adrián Barahona-Ríos (University of York) 
10 Making Graphical Scores Accessible to Visually Impaired People: A Haptic Interactive Installation, Christina 

Karpodini 
11 Acoustic Representations for Perceptual Timbre Similarity, Cyrus Vahidi, Ben Hayes, Charalampos Saitis 

and George Fazekas (Queen Mary University of London) 
12 Investigating a Computational Methodology for Quantitive Analysis of Singing Performance Style, Yukun Li, 

Polina Proutskova, Zhaoxin Yu and Simon Dixon (Queen Mary University of London) 
13 Variational Auto Encoding and Cycle-Consistent Adversarial Networks for Timbre Transfer, Russell Sammut 

Bonnici, Martin Benning and Charalampos Saitis (Queen Mary University of London) 
14 Characterizing Texture for Symbolic Piano Music, Louis Couturier (Universite de Picardie Jules Verne), 

Louis Bigo (Universite de Lille) and Florence Leve (Universite de Picardie Jules Verne and Universite de 
Lille) 

15 Beat-Based Audio-to-Score Transcription for Monophonic Instruments, Jingyan Xu (Music X Lab, NYU 
Shanghai) 

16 Predicting Hit Songs: Multimodal and Data-driven Approach, Katarzyna Adamska, Joshua Reiss (Queen 
Mary University of London) 

17 Character-based Adaptive Generative Music for Film and Video Games, Sara Cardinale and Simon Colton  
(Queen Mary University of London) 

18 Physically-inspired Modelling with Neural Networks, Carlos De La Vega Martin and Mark Sandler 
(Queen Mary University of London) 

19 Hearing a Volumetric Drum, Rodrigo Diaz and Mark Sandler (Queen Mary University of London) 
20 Computational Modelling of Jazz Piano via Large-Scale Automatic Transcription, Drew Edwards and Simon 

Dixon (Queen Mary University of London) 
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21 Music Emotion Mood Modelling using Graph and Neural Nets, Maryam Torshizi, George Fazekas, and 
Charalampos Saitis (Queen Mary University of London) 

22 Virtual Placement of Objects in Acoustic Scenes, Yazhou Li, Lin Wang and Joshua Reiss (Queen Mary 
University of London) 

23 Real Time Timbre Transfer with a Smart Acoustic Guitar, Jack Loth and Mathieu Barthet (Queen Mary 
University of London) 

24 Music Interestingness in the Brain, Chris Winnard (Queen Mary University of London), Preben Kidmose 
(Aarhus University), Kaare Mikkelsen (Aarhus University) and Huy Phan (Queen Mary University of 
London) 

25 Intelligent music production, Soumya Vanka (Queen Mary University of London), Jean Baptiste Roland 
(Steinberg) and George Fazekas (Queen Mary University of London)  

26 Composition-aware music recommendation for music production, Xiaowan Yi and Mathieu Barthet (Queen 
Mary University of London)  

27 Dynamic Mood Recognition in Film Music, Ruby Crocker and George Fazekas; (Queen Mary University 
of London) 

28 The Sound of Care: Researching the Use of Deep Learning and Sonification for the Daily Support of People 
with Chronic Pain, Bleiz Del Sette and Charalampos Saitis (Queen Mary University of London)  

29 Embodiment in Intelligent Musical Systems, Oluremi Falowo and Charalampos Saitis (Queen Mary 
University of London)  

 
 
 

Keynote Talks 

Keynote 1: By Prof. Sophie Scott -Director, Institute of Cognitive Neuroscience, UCL. 

Title: "Sound on the Brain - Insights from Functional Neuroimaging and Neuroanatomy" 

Abstract: In this talk I will use functional imaging and models of primate neuroanatomy to explore how sound is 
processed in the human brain. I will demonstrate that sound is represented cortically in different parallel streams. I 
will expand this to show how this can impact on the concept of auditory perception, which arguably incorporates 
multiple kinds of distinct perceptual processes. I will address the roles that subcortical processes play in this, and 
also the contributions from hemispheric asymmetries. 

Keynote 2: By Prof. Gus Xia - Assistant Professor at NYU Shanghai 

Title: "Learning Interpretable Music Representations: From Human Stupidity to Artificial Intelligence" 

Abstract: Gus has been leading the Music X Lab in developing intelligent systems that help people better 
compose and learn music. In this talk, he will show us the importance of music representation for both humans 
and machines, and how to learn better music representations via the design of inductive bias. Once we got 
interpretable music representations, the potential applications are limitless. 
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Building style-aware neural MIDI synthesizers using simplified

differentiable DSP approach

Sergey Grechin1 and Ryan Groves2

1Infinite Album, grechin.sergey@gmail.com
2Infinite Album, ryan@infinitealbum.io

Abstract— We explore how simplified differentiable

DSP approach can be used to build realistic sounding

MIDI-controllable monophonic synthesizers. The sim-

plification involves directly using MIDI data as input to

the DDSP decoder rather than continuous F0 and loud-

ness curves. On top of that, we show how incorporat-

ing additional style-based and temporal channels can be

used to imitate various aspects of performance and im-

prove realism. We demonstrate the results by applying

the approach to the task of modelling the sound of elec-

tric guitar. The presented results were obtained with a

model trained on less than 12 minutes of manually MIDI-

annotated audio. The source code is released along with

the prepared dataset.

Index Terms— Deep Learning, DDSP, virtual synthesiz-
ers, MIDI

I. MODEL ARCHITECTURE AND INPUTS

The model was built on top of [1] which in turn is a sim-
plified version of original DDSP design [2]. In contrast to
the original implementation, in our model audio is not di-
rectly used to produce inputs to the decoder. Instead, we use
MIDI annotations to generate fundamental frequency curve
(F0), loudness, additional timing signals (“distance from on-
set” , “distance to offset”), proposed in [3], and arbitrary CC
(continuous controller) values. CC values are used to capture
various performance characteristics such as “openness” - the
degree of how muted the guitar string is when plucked. Ad-
ditional inputs are passed through dedicated stacks of dense
layers.

II. DATASET AND RESULTS

For training, 12 minutes of playing chromatic scales on
an electric guitar were recorded. MIDI annotations were
made manually with CC55 used to represent open (127) and
muted (1) sound. For training, velocity values were obtained
using the A-weighted loudness-based approach proposed in
[3]. At the inference stage velocity was taken from the source
MIDI.

We encourage the reader to visit the online supplement
page [4] to listen to the generated examples and access addi-

Figure 1: Componets of the model. The white blocks represent the com-
ponents of original DDSP design [2]. MLP - Multilayer perceptron, DFO -
distance from onset, DTO - distance to offset, CC - continuous controller

Figure 2: Waveforms generated on C-5 for two MIDI notes with closed
and open sound. This example demonstrates that the model has succeeded
in learning temporal characteristics of the guitar sound, including the mod-
elling of initial transient.

tional resources such as the source code and the dataset.

III. FUTURE RESEARCH

We plan to research if other aspects of playing style can
be captured using this approach, such as playing chords. For
that, we plan to add additional harmonic synth stacks with
independently learnable parameters.

IV. REFERENCES

[1] DDSP simplified repository. [Online]. Available: https://github.com/
raraz15/ddsp simplified

[2] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts,
“DDSP: Differentiable digital signal processing,” in ICLR, 2020.

[3] Nicolas Jonason, Bob Sturm, and Carl Thom, “The control-synthesis
approach for making expressive and controllable neural music synthe-
sizers,” in Joint Conference on AI Music Creativity, 2020.

[4] Online supplement. [Online]. Available: https://grechin.org/neural
synthesizers with simplified ddsp.html
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Completing Audio Drum Loops with Transformer Neural Networks

Teresa Pelinski⇤1, Behzad Haki2 and Sergi Jordà2

1Centre for Digital Music, Queen Mary University of London, UK, t.pelinskiramos@qmul.ac.uk
2Music Technology Group, Pompeu Fabra University, Barcelona, Spain

Abstract— Infilling drum loops refers to complement-

ing a drum pattern with additional drum events that

are stylistically consistent with the loop. We present

the Transformer Groove Infilling (TGI), a Transformer

based approach to the infilling task. Until now, the in-

filling of drum beats has been implemented using Re-

current Neural Network (RNN) architectures, in partic-

ular, sequence-to-sequence models that employ LSTM

cells. However, in such architectures, as a consequence

of sequential computation, proximity is emphasised when

dealing with dependencies in the input sequence. Fur-

thermore, those models receive the audio loops as sym-

bolic input sequences. In contrast, the TGI is based on the

Transformer architecture, which relies entirely on self-

attention mechanisms to represent the input sequences,

allowing for faster training as a result of parallelisation.

In addition, we present a novel direct audio representa-

tion that enables the TGI to receive the input drum loops

in the audio domain, avoiding their transcription and to-

kenisation.

Index Terms— Infilling, Drum generation, Transformer

I. RELATED WORK

An infilling model can be used for computer assisted
composition; for instance, the composer can sketch some in-
strument parts of a drum beat and obtain the system’s sug-
gestions for additional parts. So far, the GrooVAE model
by Gillick et al. [1] is the only model in the literature. In
particular, this system adds the hi-hat part to a drum MIDI
performance and is based on LSTMs. The GrooVAE model
deals with symbolic musical representations both in the input
loop and the output infilled pattern. To our knowledge, the
Transformer Groove Infilling model (TGI) is the first model
of its kind that tackles the infilling task for drums with an
audio input and a Transformer architecture.

II. METHODOLOGY

We trained the TGI1 for three different tasks: infilling
closed hi-hats, jointly infilling kicks and snares, and infilling
a pattern without an instrument specification. The datasets

⇤This research was conducted as T. Pelinski’s Sound and Music Comput-
ing MSc thesis, under the supervision of B. Haki and S. Jordà at the Pompeu
Fabra University.

1Standalone code and datasets available at https://zenodo.org/
record/5347908, with contributions by B. Haki and M. Nieto.

were obtained after processing the Groove MIDI Dataset [1].
The TGI model is based on the Transformer Encoder block
from the original Vaswani et al.’s [2] Transformer architec-
ture. The model receives a 2 bar audio loop as input and
outputs a symbolic representation of the infilled instrument
parts. The numerical representation of the input audio corre-
sponds to a novel reduced representation of an onset spectro-
gram, both in the time and audio domain. The output sym-
bolic representation captures hit, velocity and offsets for each
drum kit instrument, which is then easily converted into the
MIDI format and synthesised with a given soundfont.

III. EVALUATION

For the task of infilling closed hi-hats, we obtain a mod-
erately good accuracy (75.4%). In order to evaluate the per-
formance of the input audio representation, we train an iden-
tical model with a symbolic input, and find that the audio
representation only entails a 4.3% decrease in hit prediction
accuracy. In the task of infilling kicks and snares, we find
that the accuracy improves to 83.4%. We assume that this
improvement is caused by two main factors: a larger train-
ing dataset (4 times larger) and the benefit of learning to in-
fill two instruments jointly. However, we observed a large
gap between validation and training loss, likely caused by an
overly specific training dataset. Finally, in the infilling ran-
dom experiment we infill drum events without attending to
the instrument they belong to. We train two different ver-
sions of the model, one that removes between 10% and 30%
of the initial hits and one that removes between 40% and
70%. Both experiments achieve very high accuracies, 97.7%
and 94.7% respectively. These are likely due to the size of the
dataset (4 times larger than in the closed hi-hat task). How-
ever, since the training datasets are generated by removing
random hits of the score, the musical relevance of this task
remains questionable.

IV. REFERENCES

[1] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bamman, “Learning to
groove with inverse sequence transformations,” in Proceedings of the
36th International Conference on Machine Learning. Long Beach,
California, USA: PMLR, May 2019, pp. 2269–2279, iSSN: 2640-3498.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, vol. 2017-
Decem, 2017, pp. 5999–6009, iSSN: 10495258. [Online]. Available:
https://arxiv.org/abs/1706.03762
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Evaluation of GPT-2-based Symbolic Music Generation

Berker Banar ⇤1 and Simon Colton1

1School of EECS, Queen Mary University of London, UK, b.banar@qmul.ac.uk

Abstract— In this study, we evaluate the performance of two

different GPT-2 models, which are pre-trained on natural lan-

guage and utilised in symbolic music generation. Our evaluation

is based on statistical methods and musical metrics. We also ad-

dress anomalies that we have found in our initial experiments

and suggest some future directions for the analysis.

Index Terms— Generative Music, Transformers, GPT-2, Music
Generation Evaluation, Transfer Learning

I. INTRODUCTION

Transformers [1] are attention-based models originally designed
for NLP tasks, which are widely used in AI-based symbolic music
generators due to their proven success [2]. One typical generative
music practice involves taking a transformer model pre-trained on
a natural language corpus and fine-tuning it using a symbolic music
dataset [3]. While there are transformer architectures specifically tai-
lored for music generation and trained on a symbolic music dataset
from scratch [4], transformer models pre-trained on natural language
data, e.g. GPT-2 [5], are still useful for music generation as the fine-
tuning process requires less data and lower computational resources.
However, using pre-trained models in a cross-domain setting brings
its own challenges, as there might be some limitations to transferred
knowledge [6]. Evaluation of the generative models provides better
insight for practitioners and helps them to choose a method accord-
ing to their application needs, and is useful for improving the model
architecture and training procedure. Transfer learning approaches
make the evaluation in target data modality (in this case symbolic
music) even more crucial [6].

II. EXPERIMENTS

In this study, we use a GPT-2 small architecture with 124m pa-
rameters [5] and evaluate the performance of two models, which are
fine-tuned to different loss values; one model is well trained (loss
value = 0.17) and the other is poorly trained (loss value = 0.70),
where the fine-tuning process starts from the loss value of 1.40,
roughly. To fine-tune GPT-2, we use the GiantMIDI-Piano dataset
[7], which has 10854 classical piano music pieces, and curate a sub-
set of the dataset with 300 pieces, which follows similar statistics to
the whole corpus in terms of our musical metrics. We represent our
music data in text format, by using note number, velocity, start time
and end time values and process our music in roughly 5 bars format
for the fine-tuning corpus and generated material.

We use 6 different musical metrics in the analysis, namely pitch
count (number of different note numbers used), pitch range (max-
imum note number - minimum note number), average note dura-
tion, average velocity, chroma metric (ratio of number of least used
5 pitches to number of most used 7 pitches, given that the seven
note scales are common in Western classical music), and a chords
metric (ratio of number of augmented triad, major, minor, dominant,
half-diminished and diminished seventh chords to number of major,
minor and diminished triad chords, given the occurrences in Western
classical music).

For the evaluation, we generate 750 samples from each of our
GPT-2 models and calculate the musical metrics for each of the gen-

⇤Berker Banar is a research student at the UKRI Centre for Doctoral
Training in Artificial Intelligence and Music, supported jointly by UK Re-
search and Innovation [grant number EP/S022694/1] and Queen Mary Uni-
versity of London.

erated sets and also for the fine-tuning corpus. Then, we generate
histograms of the musical metric values per each set and metric.
As in [8], we convert these histograms into continuous probability
density functions (pdf) using kernel density estimation. Finally, we
calculate KL distance and overlapping area between the pdfs of the
fine-tuning corpus and each of the generated sets [8].

In an ideal learning setting, generated material from the well-
trained model should be statistically closer to the fine-tuning corpus,
which means that we expect to see lower KL distance and higher
overlapping area in the well trained case for each of the musical
metrics.

Well Trained Poorly Trained
KLD OA KLD OA

Chroma Metric 0.1246 0.1126 0.0798 0.4398
Chords Metric 0.1621 0.5831 0.2479 0.3371

Pitch Count 0.0278 0.2072 0.8252 0.0818
Pitch Range 0.0448 0.0047 0.0485 0.0273

Avg. Duration 0.0097 0.7801 0.0154 0.5841
Avg. Velocity 0.0074 0.8076 0.0046 0.7990

Table 1: Analysis of generated music by well / poorly trained models
As shown in Table 1, for the chords metric, pitch count and av-

erage note duration, the results are as expected, but for the chroma
metric, we have higher KL distance and lower overlapping area in
the well trained case, which is unexpected and an anomaly. Ar-
guably, this might suggest that the model fails to learn chroma/scale
properties. For the pitch range and average velocity, the results are
inconclusive as KL distance and overlapping area suggest oppositely
since the smaller KL distance and overlapping area happen at the
same training case, which is an observed phenomenon with these
distance measures in [8].

For future work, we would like to verify the validity of these
distance measures and experiment with others since it is challenging
to determine whether a distance measure is meaningful in the music
generation context. Also, to further investigate the effect of training
level, we will sample from more models with various loss values.
Moreover, data representation, fine-tuning corpus and model archi-
tecture play important roles in this learning setting and we would
like to deepen our analysis by also introducing these parameters to
our experiments.

III. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[2] S. Ji, J. Luo, and X. Yang, “A comprehensive survey on deep music gen-
eration: Multi-level representations, algorithms, evaluations, and future
directions,” 2020.

[3] C. Payne, “Musenet,” https://openai.com/blog/musenet/, 2019.
[4] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon,

C. Hawthorne, A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck,
“Music transformer,” 2018.

[5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[6] Z. Wu, N. F. Liu, and C. Potts, “Identifying the limits of cross-domain
knowledge transfer for pretrained models,” 2021.

[7] Q. Kong, B. Li, J. Chen, and Y. Wang, “Giantmidi-piano: A large-scale
midi dataset for classical piano music,” 2020.

[8] L.-C. Yang and A. Lerch, “On the evaluation of generative models in
music,” Neural Computing and Applications, vol. 32, 05 2020.
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NASH: the Neural Audio Synthesis Hackathon

Ben Hayes⇤, Cyrus Vahidi, and Charalampos Saitis

Centre for Digital Music, Queen Mary University of London, United Kingdom, b.j.hayes@qmul.ac.uk

Abstract— The field of neural audio synthesis aims to

produce audio using neural networks. A recent surge

in its popularity has led to several high profile works

achieving impressive feats of speech and music synthe-

sis. The development of broadly accessible neural au-

dio synthesis tools, conversely, has been limited, and cre-

ative applications of these technologies are mostly under-

taken by those with technical know-how. Research has fo-

cused largely on tasks such as realistic speech and musical

instrument synthesis, whereas investigations into high-

level control, esoteric sound design capabilities, and inter-

pretability have received less attention. To encourage in-

novative work addressing these gaps, C4DM’s Special In-

terest Group on Neural Audio Synthesis (SIGNAS) pro-

pose to host our first Neural Audio Synthesis Hackathon:

a two day event, with results to be presented in a session

at DMRN+16.

Index Terms— hackathon, neural audio synthesis

I. INTRODUCTION

In the field of image generation, the creative capabil-
ities of generative models, such as generative adversarial
networks (GANs) and vector quantized variational autoen-
coders (VQ-VAEs), have been extensively explored by an
active community of creators, hackers, researchers, and com-
putational artists. Comparatively, the creative capabilities of
neural audio synthesis models, which draw on a breadth of
deep learning techniques ranging from generative modelling
[1] to differentiable rendering [2], have received consider-
ably less attention. The capabilities of these models beyond
their performance on well established benchmark tasks are
thus poorly understood. Whilst certain prominent commu-
nity members, such as Dadabots

1, Holly Herndon
2, and Hex-

orcismos
3, have applied neural audio synthesis models cre-

atively, the technical barrier to entry remains high, and this is
compounded by a lack of tools and interfaces for would-be
users of neural audio synthesis technology.

II. AIMS

NASH (the Neural Audio Synthesis Hackathon) aims
to encourage cross-disciplinary collaboration in neural au-

⇤This work was supported by UK Research and Innovation [grant num-
ber EP/S022694/1]

1https://dadabots.com/
2https://www.hollyherndon.com/
3https://twitter.com/hexorcismos

dio synthesis by encouraging the development of new tech-
niques, tools, and interfaces for neural audio synthesis, with
a particular focus on creative musical applications. We thus
propose four main topic areas for the hackathon:

1. Interfaces and instruments
2. Novel techniques and models
3. Synthesis control
4. Creative applications

Participants are encouraged to consider these when se-
lecting their project, although this list should not be consid-
ered exhaustive — we welcome all hacks that participants
believe will be valuable to the neural audio synthesis com-
munity.

III. RULES

To be considered, all teams must submit (1) a demonstra-
tion video of length two minutes or less, (2) a public source
code repository, or steps to replicate the technical portion in
the case of creative applications. Submitting an interactive
demo is also encouraged where appropriate, although this is
not a requirement for entry.

The hackathon will take place over a 24 hour period on
the weekend of 18th–19th December UTC, and submissions
must be made within this time window. When submissions
close, an online voting platform will be made available to
hackathon participants and DMRN attendees.

IV. FURTHER INFORMATION

More detailed information, including links to register and
join teams, can be found on the hackathon’s website4. Links
to demonstration videos and voting information will also be
displayed on this page.

V. REFERENCES
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AEVWUDFW² THQVLRQ LV DQ HPRWLRQ ZKLFK RIWHQ KDV D QHJDWLYH 
FRQQRWDWLRQ. HRZHYHU, WHQVLRQ FDQ DOVR EH DQ LPSRUWDQW 
FRPSRQHQW LQ WKH GRPDLQ RI HQWHUWDLQPHQW, IRU H[DPSOH 
ZDWFKLQJ D KRUURU PRYLH. TKLV UHVHDUFK GHVFULEHV WKH GHVLJQ RI 
D V\QWKHVLVHU LQWHQGHG WR LQGXFH RU H[DJJHUDWH IHHOLQJV RI 
SHUFHLYHG WHQVLRQ. A VWXG\ ZDV FRQGXFWHG ZLWK D JURXS RI 
SDUWLFLSDQWV (Q=23), LQ ZKLFK VHYHUDO VDPSOHV FUHDWHG XVLQJ D 
V\QWKHVLVHU (Q=50) ZHUH WHVWHG DJDLQVW D UHIHUHQFH VRXQG. A 
LLNHUW-VFDOH ZDV XVHG WR UDQN LQGLYLGXDO VDPSOHV EDVHG RQ WKHLU 
UHODWLYH OHYHO RI SHUFHLYHG WHQVLRQ. A OLQHDU UHJUHVVLRQ DQG 
SULQFLSDO FRPSRQHQW DQDO\VLV (PCA) ZHUH FRQGXFWHG. TKH PCA 
GHPRQVWUDWHG WKDW VHYHUDO DFRXVWLF IHDWXUHV FRUUHODWHG ZLWK 
WHQVLRQ.  

I. DEFINITIONS 

The APA defineV WenViRn aV a "feeling Rf Sh\Vical and 
SV\chRlRgical VWUain accRmSanied b\ diVcRmfRUW, XneaVineVV, 
and SUeVVXUe WR Veek Uelief WhURXgh Walk RU acWiRn".  

II. CONTEXT AND PURPOSE 

ThiV UeVeaUch aimV WR beWWeU XndeUVWand SeUceiYed WenViRn 
and hRZ iW ma\ be indXced Yia a V\nWheViVed mXVical Vignal. 
The gRal Rf Whe UeVeaUch iV WR allRZ fRU a cRUUelaWiRn WR be 
dUaZn beWZeen Whe acRXVWic feaWXUeV Rf a giYen Vignal and iWV 
leYel Rf SeUceiYed WenViRn.  

III. SYNTHESISER DESIGN 

The V\nWheViVeU ZaV deVigned XVing an FM mRdel [1]. The 
SaUameWeUV XVed ZeUe aV fRllRZV: ADSR fRU bRWh RVcillaWRUV, 
UaWiR, bUighWneVV, and a WhUee-band EQ ZiWh adjXVWable gain. 

All VamSleV fRU WeVWing ZeUe geneUaWed XVing UandRm 
nXmbeUV ZiWhin a giYen Uange fRU each SaUameWeU. Each VamSle 
XVed Whe Vame nRWe YalXe (F3) and dXUaWiRn. 

IV. METHODOLOGY 

PaUWiciSanWV (N=23) eYalXaWed VamSleV XVing a LikeUW Vcale 
(1-7) Rf SeUceiYed WenViRn in cRmSaUiVRn WR a UefeUence. TheUe 
ZeUe WhUee VeSaUaWe WeVWV UXn, each ZiWh Whe Vame nXmbeU Rf 
WRWal VamSleV (N=50). The Vcale Uanged fURm ³mXch leVV WenVe´ 
WR ³mXch mRUe WenVe´.  

V. RESULTS 

An iniWial leaVW VTXaUeV a lineaU UegUeVViRn mRdel ZaV fiWWed 
WR eVWabliVh a cRUUelaWiRn beWZeen acRXVWic feaWXUeV in Whe 
Vignal ZiWh WenViRn leYel. HRZeYeU, mRdel fiWWing failed VeYeUal 
ke\ aVVXmSWiRnV fRU Whe XndeUl\ing daWa.  

 
*ReVeaUch VXSSRUWed b\ Whe UniYeUViW\ Of SalfRUd. 

A PUinciSal CRmSRnenW Anal\ViV (PCA) ZaV UXn WR 
idenWif\ VeYeUal SUinciSal cRmSRnenWV (PCV) UeSUeVenWing Whe 
acRXVWic feaWXUe VSace. The PCA idenWified bRWh fUeTXenc\-
baVed (VaU e[Slained = 51.48%) and Wime-baVed (VaU 
e[Slained = 16.14%) feaWXUeV aV Whe dimenViRnV XndeU Zhich 
mRVW YaUiance Rf Whe daWa can be eVWabliVhed. SeUceiYed WenViRn 
VcRUeV aSSeaU WR be almRVW e[clXViYel\ cRUUelaWed WR VSecWUal 
baVed feaWXUeV in dimenViRn 1, VXch WhaW WenViRn incUeaVeV ZiWh 
BUighWneVV, SSecWUal CenWURid, and RRll Off. See figXUe 1.  

 
FigXUe 1.  PUinciSal CRmSRnenW Anal\ViV SlRW, VhRZing aVVRciaWiRnV 

beWZeen Whe fiUVW WZR SUinciSal cRmSRnenWV.  

A fXUWheU aWWemSW WR mRdel a lineaU UegUeVViRn beWZeen Whe 
fiUVW WZR PCV and SeUceiYed WenViRn ZaV UXn bXW failed dXe WR 
YiRlaWing XndeUl\ing aVVXmSWiRnV Rn Whe acRXVWic feaWXUe daWa. 
PUimaUil\ Whe aVVXmSWiRn Rf nRUmaliW\ and hRmRVcedaVWiciW\.  

ACKNOWLEDGMENT 
ThankV WR Whe UniYeUViW\ Rf SalfRUd fRU faciliWaWing WhiV 
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hWWSV://dicWiRnaU\.aSa.RUg/WenViRn 
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Abstract— In this extended abstract, we discussed a
new perspective of obtaining data for piano performance
research through deep learning based Automatic Tran-
scription models, and proposed methods for evaluating
the reliability of such transcription.

I. CONTEXT

To study expressive piano performance with computa-
tional models, the most widely used format for representing
a performance is expressive MIDI, with events carried with
control attributes such as velocity and timestamps. Recent
advancement of automatic music transcription (AMT) pro-
vides new perspective of generating expressive MIDI from
audio recordings. With fine-grained transcription as well as
symbolic score, we can analyze the piece of piano perfor-
mance as close as note level. Another motivation to investi-
gate automatic expressive transcription is large-scale dataset
curation. As summarized in Table 1, we can observe that the
scale of existing datasets is far from enough to distinguish
pianistic styles and composition genres.

II. RELATED WORK AND LIMITATIONS

Most recent models of piano transcription involves the
high-resolution piano transcription system [1] and the onsets-
and-frame system [2]. Their training dataset Maestro, how-
ever, is limited to an alignment resolution of 3ms [3]. Both
of the systems claimed an F1 score greater than 90% (with
50ms tolerance), but the testing set accuracy is not equivalent
to reliability in capturing perceptual expressiveness. Another
limitation of existing transcription models is the ability to
process historical virtuoso recordings. Given that the training
data are obtained from a clean acoustic environment, noisy
or live recording of performances can result in poor perfor-
mance.

name tot. duration #. composer #. pianist
Maestro [3] ⇠172h 28 -

Crestmuse [4] ⇠50h 6 12
Mazurka [5] ⇠140h 1 45

Table 1: Comparison of major datasets in expressive performance

⇤H. Zhang is a research student at the UKRI Centre for Doctoral Training
in Artificial Intelligence and Music, supported jointly by UK Research and
Innovation and Queen Mary University of London.

Figure 1: Left: distribution of timestamp differences; Right: Correlation of
velocity & dynamics

III. PROPOSED METHODOLOGY

Cross-datasets Comparison We cross-compared the ex-
pressive attributes of beat timestamps and velocity with the
MazurkaBL [5] dataset. The mazurka pieces were tran-
scribed and their timestamps were compared with the per-
ceptually annotated and audio aligned beat timestamp from
MazurkaBL, and Figure 1 left showing that the majority of
differences lie within ⇠50ms range. Figure 1 right also
demonstrates a high correlation between the transcribed ve-
locity and audio loudness in Sone.

Listening Experiment To examine how well expressive
transcription works on a perceptual scale, we will first ren-
der the transcribed MIDI on a reproducible piano such as
a Yamaha Disklavier, and ask participants who know the
piece to rate the reproduction deviation from the original per-
formance. Another experimental design involves iterative
transcription, where a series of transcription-reproduction-
transcription will amplify the inaccuracies.
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Abstract— We introduce CAMAT, a python-based sheet-
music parsing and analysis tool based on the auditory model.
The toolkit aims to provide computer-assisted analytical meth-
ods for musicological research, especially for statistical investi-
gations on larger databases with an educational focus.

Index Terms— sheet music, analysis, python, pandas, auditory
model

I. INTRODUCTION

Despite a wide integration of music software in music perfor-
mance and production, there is still a noticeable gap in the adop-
tion of software tools in various fields of music education. During
the one-year scientific and educational project ”Computer-assisted
Music Analysis” at Hochschule für Musik FRANZ LISZT Weimar
(HfM) Weimar, CAMAT was developed, tested, and evaluated sev-
eral flexibly applicable teaching modules based entirely on open-
source software with a goal of providing powerful tools for integra-
tion in ongoing musicology and music theory courses. The teaching
modules are dedicated, among other things, to the computer-based
annotation and visualization of sheet music texts and audio files, the
statistical analysis of music corpora, the search for musical patterns
(rhythms, melodies, harmony connections, etc.), and the compari-
son of interpretation. Most of the learning modules are designed as
Jupyter Notebooks. In addition, they are available online on a wiki-
based resource which also includes a large data bank (over 4800
entries) of MusicXML scores 1.

II. CAMAT

CAMAT (Computer Assisted Music Analysis Tool) was de-
veloped as a dedicated tool for parsing and analyzing MusicXML
scores. Although there exist various tools like humdrum2 [1] and
music213 [2], CAMAT tries to solve some particular design prob-
lems that appeared during the conception and realization of certain
learning modules. Here is a quick overview of the problem fields we
encountered during this process described in the following sections.

II.1. HANDLING OF TIED CHORDS

Analysis of choral and piano music was one of the main top-
ics of developed teaching modules. Therefore, we had to deal with
scores that consisted of many tied notes (which is very usual in any
polyphonic music). Because the MusicXML is by design a dedi-
cated notation format which is built mainly for engraving purposes,
a lot of crucial information about the actual duration of a note is
handled as optional information (because it’s not an engraved note,
but simply an optional character that was added to previous note),

1https://analyse.hfm-weimar.de
2https://www.humdrum.org/Humdrum/
3https://web.mit.edu/music21/

that in some cases cannot be easily extracted and allocated. That led
to severe problems while trying to parse the exact duration of every
single tied note and especially note groups in dense chord and poly-
phonic structures. In CAMAT, we reconsider the weight of ties and
handle them on a top priority level as crucial information besides
the pitch and duration. This decision also led to the idea of stor-
ing all the parsed information in pandas data-frames to preserve the
exact duration of every tied note in a persistent rhythmical grid.

II.2. PARSING OF POLYRHYTHM, POLYMETRIC AND UPBEAT
STRUCTURES

The tool can parse polyrhythm, polymetric, and upbeat struc-
tures while maintaining the unique metric profiling values. Because
of the persistent rhythmical grid structure inside the pandas data-
frame, we could now correctly parse and synchronize even very
complex polyrhythm and polymetric structures while maintaining
the unique metric profiling for every given part even if different
time signatures are defined. Parsing of various metric positions of
upbeats or repeat signs could also be fully integrated. Overall, the
way we designed the storage of notation-based data within the pan-
das data frame, which includes combining and synchronizing all
events along a fixed timeline, is very similar to an auditory model,
cause the exact pitch-duration information of the actual perceivable
musical events can be extracted.

II.3. APPROPRIATE INFRASTRUCTURE FOR NOTE SHEET
BASED CORPUS ANALYSIS

Due to the scalability of pandas dataframes we found an easy
solution to parse and store the information of multiple scores, that
led to efficient integration of corpus based analysis in the learning
modules.

III. CONCLUSION

The goal of the CAMAT is to provide a computer-based anal-
ysis tool for music analysis. CAMAT also provides parsing, vi-
sualizing musical texts, statistical analysis of music corpora, and
searching for musical patterns such as melodies and rhythms.

IV. ACKNOWLEDGMENTS

The project Computergestützte Musikanalyse in der digi-
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Abstract— Pitch-based features are important factors for
the evaluation of generated music. This paper investigates the
distribution of pitch-based features of melodies generated by
selected systems. Based on the CSMT 2020 Data Challenge
dataset, three types of pitch-based features are investigated: in-
terval mean (IM), interval standard deviation (ISD) and tonal
standard deviation (TSD). Results show that IM tends to be bet-
ter learned by CNN-GAN systems while ISD and TSD could
be better learned by transformer networks than other systems,
which suggests that different systems are good at modelling dif-
ferent pitch-based features of music.

I. INTRODUCTION

Automatic music generation has been a popular research topic
in recent years. GAN (Generative Adversarial Network), VAE (Va-
rational Auto-Encoder) and Transformer are considered as com-
monly used network architectures for music generation. However,
the evaluation of generated music still remains a challenging task.
This paper investigates a certain range of pitch-related features in
generated music.

The proposed pitch-based features are extracted from melodies,
named Interval Mean (IM), Interval Standard Deviation (ISD) and
Tonal Standard Deviation (TSD).

Figure 1: Approximated Probability Density Functions of the 3 Features

Suppose a melody is represented as X = [p0, p1, . . . ]. The
intervals of every two neighbour notes, denoted as �X , are the
first-order (forward) difference of the pitch sequence X . We de-
fine TP(X) as the tonal probability function of X which yields 12
values [c0, c1, . . . , c11], where ci indicates the number of notes in
X belonging to the i-th key. The vector is then normalised such thatP

TP(X) = 1. IM, ISD and TSD can be written as the following
functions of X ,

IM(X) := E[�X],
ISD(X) := SD[�X],
TSD(X) := SD[TP(X)].

The dataset for CSMT 2020 data challenge[1] is used for this
investigation. In this dataset, 2000 melodies are composed by hu-
man and the rest 8000 pitch sequences are generated by the selected
music generation systems: Music VAE (VAE-based), MidiNet
(DCGAN-based) and a Music Transformer (transformer-based).

II. RESULTS

Figure 1 shows the Probability Density Functions(PDF)s of the
proposed features for each system as well as human composers.
PDFs are estimated by a Gaussian kernel with 0.2 bandwidth. Table
1 lists the 1-Wasserstein distances of the feature distributions from
systems to human.

Features VAE-based GAN-based Transformer-based

IM 0.184 0.029 0.061
ISD 6.008 4.084 2.218

TSD (10�3) 6.397 5.051 1.789

Table 1: Distances of Feature Distributions from Systems to Human

Results show that MidiNet (GAN) approximates IM better than
Music VAE and Music Transformer, whereas Music Transformer
outperforms the other two systems in ISD and TSD. This reveals
that different types of music generation system are good at learning
different types of pitch-related features.

A possible explanation of GAN outperforming in IM can be the
CNN architecture of MidiNet and the pixel-level pianoroll repre-
sentation. The IM is close to zero (like human as displayed in the
first plot), meaning that the pitch sequence has similar pitches in
the beginning and at the end. The long tail shown in the ISD dis-
tribution of human composed melodies indicates that most intervals
in a melody are within 12 semitones. As to TSD, human show a
single-peak distribution while candidate systems learned two peaks
instead. In general, the Transformer-based model shows a better
approximation of these two characteristics than the VAE-based and
GAN-based.
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Abstract² Digital synthesisers are an integral part of modern 
music, but their complex controls can make it difficult to realise 
sound ideas in a straightforward way. This extended abstract 
gives an overview of a research project that aims to harness 
research into cross-modal associations between musical timbre 
and shapes to develop an intuitive control interface that can 
produce sound from a visual sketch input.   

I. BACKGROUND 

Cross-modal associations between shapes and sounds have 
been researched extensively in a theoretical context [1], but 
only little research has been conducted on how they could be 
used for sound synthesis or retrieval. Recent advancements in 
deep learning for sketch recognition, in particular GRRgle¶V 
QuickDraw! project [2], can inspire new mapping 
architectures for sketch-driven sound applications as 
demonstrated by Engeln et al. [3].  

II. RESEARCH OVERVIEW 

This research is centred around human participant studies 
and can broadly be divided into two parts that contribute to the 
development of a sketch-based sound synthesiser. On one side, 
perceptual studies are conducted to find out the different ways 
in which humans represent timbre through simple visual 
sketches and, on the other side, interface design and system 
usability studies are needed to investigate how this synthesis 
system could be incorporated into music production.   

A first study [4], where twenty-eight participants were 
asked to sketch their associations with ten different sounds, 
showed that a mixture of abstract (lines, shapes etc.) and 
realistic (objects like musical instruments or scenes like ocean 
waves) representations can be expected if no restrictions are 
imposed. Quantitative analysis produced significant 
correlations between visual and audio features mainly in 
abstract sketches that align with existing sound-shape 
association research. A second evaluation study showed that 
participants matched these sketches to their related sound 
significantly higher than the random baseline, suggesting that 
at least some sound characterises can be communicated 
through simple visual representations.  

These findings informed a series of three interface design 
studies with the purpose of finding a setup that guides users 
towards simple, abstract sketches while maintaining a high 
level of perceived expressivity.  The resulting interface was 
used to collect sketch representations of a synthesiser dataset 
by Hayes and Saitis [5] from eighty-eight participants. These 
sketches were fed into a deep learning (DL) classifier that was 
 

 

pre-trained on abstract sketches1 from the QuickDraw! dataset 
to distinguish noisy from calm sketches. The model was then 
in-cooperated into a first functional prototype seen in Figure 1.  

 
Figure 1.  Screenshot of the SketchSynth prototype implemented to run in 
a browser. See https://youtu.be/ca1LYn8Yy-g for a demonstration video. 

III. FUTURE WORK 

In the next step, the ability of the prototype to produce 
appropriate sounds from a sketch input will be evaluated 
through a user study while continuing to refine and extend the 
DL architecture and further explore correlations between 
visual and audio features. A key point of this research is to 
find out to what extend general sound-shape association can 
inform the cross-modal mapping and how this system could 
adapt to individual representational styles to become more 
robust and nuanced in a music production context.   
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I. BACKGROUND AND MOTIVATION

Everyday sound recognition aims to detect and classify
the types of everyday sounds in a recording or online stream-
ing. As a core technology in machine listening, it has many
potential applications, including hearing aids, smart devices,
and audio retrieval. However, it has been hard to be tack-
led in the past decades due to the large variety of sound
sources, highly different acoustic characteristics, and the
complex sound context. Nowadays the quantum leap of ma-
chine learning makes it possible to recognise the occurrence
of various everyday sounds by mapping raw audio to a la-
tent feature representation. This project thus intends to take
everyday sound recognition as the research object.

II. RELATED WORK

Several existing research approaches [1, 2, 3] were ded-
icated to adopting a series of deep learning methods into
everyday-sound tasks. For instance, Kong et al. [1] pro-
posed a stacked convolutional neural network (CNN) to ex-
tract spectral information in input spectrograms. Lezhenin et
al. [2] designed a long short-term memory network to model
long-term temporal dependencies between frames. Gong et
al. [3] adopted a self-attention model to address audio classi-
fication tasks. Subsequent work attempted to propose a vari-
ant or a combination of the existing models. Despite their
state-of-the-art results, these techniques usually require large
amounts of annotated data, which is especially difficult to get
in sound recognition tasks as it takes great effort for annota-
tors to label recordings frame by frame.

III. METHODOLOGIES

The goal of this project is to investigate and propose ad-
vanced everyday sound recognition algorithms using limited
annotations. The term “limited annotations” refers to (i) the
amount of development samples is small, or (ii) the available
development samples are not annotated at the frame level.
This project intends to address this problem by embracing
the progress in self-supervised learning and model design,
which are unfolded in the following.

Self-supervised learning is proposed to obtain feature
representations that are semantically meaningful via pretext

tasks where it is easy to access large amounts of unlabelled
training data. There already exist many works related to self-
supervised learning in audio related domains [4], but most
of them focus on speech- or music- related fields. Since the
characteristics of everyday sounds are quite different from
the counterpart of speech and music (e.g., everyday sounds
do not have as clearly defined units as speech and music
do), it is of importance to investigate how to devise appropri-
ate pretext tasks for optimal acoustic representation in sound
recognition tasks.

Model design mainly focuses on improving the system
performance by modifying its structure. The nature of model
design is adding some constraints or inductive biases to exist-
ing models. This calls for a priori knowledge in the targeted
domain. The duration and the frequency range of everyday
sounds are more variable than speech and music. Therefore,
it is promising to design a multi-resolution network that cap-
tures acoustic features with highly different characteristics.
In addition, existing works [5] have indicated the importance
of a proper receptive field in CNN design, but few of them
tried to investigate the underlying reason. Thus, it is also
interesting to investigate how appropriate model design can
affect sound recognition performance.
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Generating Comments from Music and Lyrics
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Abstract— Generating comments based on music is a
fairly new topic in the MIR field. In this paper, we pro-
pose a deep generative model based on contrastive learn-
ing and BART to generate music comments based on mu-
sic and lyrics.

Index Terms— Deep Generative Model, BART, Multi-
modal Representation Learning

I. INTRODUCTION

In recent years, research related to cross-modal genera-
tion of music and text has gradually developed, such as gen-
erating lyrics from music [1] and generating music from de-
scriptions [2]; [3] uses audio thumbnails to summarise lyrics.
However, the work of generating subjective interpretations of
music is relatively limited. In order to do so, the model must
integrate multimodal and multiclass information to under-
stand music and be able to generate text with high relevance
and natural flow. In this paper, we propose a cross-modal
deep learning model to generate high quality comments from
music and lyrics.

II. METHOD

Our proposed model takes the lyrics and the music spec-
trogram as input and outputs a comment on this music. The
model is divided into two parts, the encoder-decoder mod-
ule based on BART [4], and the condition module based on
multimodal contrastive learning. The whole training process
is divided into two stages: in the first stage, the conditional
model and BART are pre-trained separately; in the second
stage, the two models are trained jointly.

Condition Module. We expect the model can capture
global features such as emotion and style from the music.
Considering that music metadata can help to interpret mu-
sic to some extent, we use a multimodal approach based on
[5], to incorporate information from music metadata into the
music encoding. In the pre-training stage, the music spec-
trogram and music labels are encoded using FCN and Trans-
former respectively, and the two representations are made to
fuse in a contrastive learning manner; in the joint training
stage, the conditional model uses only the music spectrogram
as the only input.

⇤Yixiao Zhang is a research student at the UKRI Centre for Doctoral
Training in Artificial Intelligence and Music, supported jointly by the China
Scholarship Council and Queen Mary University of London, with additional
support from Apple.

Figure 1: The diagram of our proposed model.

BART Encoder-Decoder. After a preliminary analysis
we found that there is a close correspondence between the
comments and the lyrics. Therefore we finetune a seq2seq
model from lyrics to comments based on a pretrained BART
model, making the model understand lyrics and generate in-
terpretations. In the joint training phase, the conditioning is
added to the decoder following [6], therefore the decoder can
get knowledge both from music and lyrics.

Dataset. We create a new dataset with song titles and
metadata from the Music4All Dataset [7] and the correspond-
ing comments for the songs from SongMeanings.com 1. Af-
ter processing, we obtain 27,834 songs and the correspond-
ing approximately 490,000 comments.
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AI-Assisted FM Synthesis
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Abstract— Frequency Modulation (FM) synthesis is

a well-known technique that is used to create interesting

timbres at a low computational cost. Recent FM commer-

cial products have seen a resurgence, due to FM’s great

timbral possibilities, but they still rely on dated and com-

plex sound design paradigms. Scaling up the architecture

to improve it seems to be unfeasible due to the increase in

complexity it would entail. On the other end of the spec-

trum, Deep Neural Networks (DNNs), widely employed

as classifiers, have been recently used on different genera-

tive schemes to classify or to produce musical instrument

samples. Moreover, recent works exploit their descriptive

power in order to directly control oscillators and filters.

In our project, we aim to develop a DNN that can de-

scribe natural-sounding spectra in terms of the parame-

ters of an FM synthesizer. Obtaining such a decomposi-

tion can pave the way to develop novel gestural control

strategies or even musical instrument transformations.

Index Terms— Sound matching, FM synthesis, Deep
Neural Networks, Instrument Augmentation

I. PROJECT DESCRIPTION

Frequency Modulation (FM) synthesis, firstly presented
by John Chowning [1], is an economical mean of gen-
erating complex time-varying spectra, by routing simple
parametrized signal generators, called operators, under dif-
ferent modulator-carrier composition schemes called algo-
rithms. Popular throughout the 1980s and ’90s, the method
fell out of use due to the lack of fine control over the sound
and it’s sometimes undesirable sonic characteristics [2]. To
cope with this, several tools and modifications have been
proposed, such as strategies to improve the FM spectra [3]
[4], models for gestural control mapping [5] [6], and sound
matching techniques [7, 8, 9].

FM has lately regained a fair quote of attention in the mu-
sic community, with new synthesizers and emulators being
released, to name a few: Korg OpSix, Yamaha DX Reface,
Elektron Digitone, Korg Volca FM and Dexed. However,
their architecture and sound design approach remained simi-
lar to that of the Yamaha DX7, a classic six operators archi-
tecture from 1983.

Pairing a Deep Neural Network with a synthesizer to de-
⇤The author is funded by EPSRC and UKRI under the Centre for Doc-

toral Training in Artificial Intelligence and Music at Queen Mary University
of London (Grant EP/S022694/1).

scribe sounds in terms of its parameters provides a frame-
work for creative control strategies. First, it allows a sound
designer to approximate a target sound, being able to con-
tinue the workflow with manual fine-tuning if desired [10].
Another interesting possibility is the distillation of mapped
meta-controls [11] that can manipulate multiple parameters
at the same time in a sonically meaningful way [9]. Finally,
we believe that a real-time implementation of such a solution
could become an interesting tool for instrument retargeting
or intelligent augmentation strategies.
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Abstract— “Algorithmic Music Composition for The 
Environment” is an interactive sound performance that 
represents scientific data of global warming and climate change. 
Playing along with the MIDI-equipped interactive interface, 
“Algorithmic Music Composition for The Environment” aims to 
reflect the impacts of the climate crisis through sound by 
representing the alarming records of diverse environmental 
sectors, such as global land-ocean temperature, Sea Level 
change, Antarctic Ice mass variation, atmospheric carbon 
dioxide (CO2) levels, and more. There have been several 
ongoing collaborative projects among scientists, artists, and 
musicians in the Bay Area to combat climate change and bring 
the urgency of this pressing issue to inspire people to take 
meaningful action through music [1]. Thus, the development of 
this project is aligned with those endeavors to strengthen 
collaborative efforts and interdisciplinary solutions, seeking 
new methods and techniques of experimental music that can 
raise awareness of environmental challenges. 

I. DESCRIPTION OF THE MUSICAL WORK 
The main interface for the music composition of the 

project has been built in Pure Data (Pd, https://puredata.info/), 
a data flow programming language for electronic music. The 
Pd interface of the work is composed of various types of 
Graphical User Interface (GUI) objects in which the scientific 
data is stored in the form of tables. These tables contain the 
information of a growing number of weather-related 
catastrophes, including Land-Ocean Temperature from 1880 
to 2020, Global Mean Sea Level (GMSL) variations data 
between 1993 and 2021, the monthly records of ocean heat 
from 1957 to 2020, Antarctic Sea Ice Extent from 1978 to 
2020, and CO2 emission trends from 1958 to 2021 measured 
by five different scientific research organizations that are 
NASA, NOAA Climate.gov, United States Environmental 
Protection Agency (US EPA), and the U.S. National Climate 
Assessment [2][3][4][5].  

Values stored in the tables within Pd draw line graphs. 
Each table expresses unique sound qualities and textural 
complexities, reflecting regional and seasonal temperature 
extremes for each year and month since 1880. Figure 1. below 
shows the examples of the table compositions used in Pd.  

II. THE COMPOSITIONAL PROCESS 
Sounds generated algorithmically from the table arrays are 

played through the main Pd interface. The performer controls 
and improvises on the generated sounds through the GUI 
modules (Fig. 2) to respond to the trends of the latest climate 
data, interpreting a sense of urgency about the climate crisis. 

 
 

 

Figure 1.  Table compositions and line graphs with the values implemented 
and the datasheet of Territorial emissions in MtCO₂ (MtCO₂: 1 million tons 

of CO2). 

The key indicators of the GUI modules affect and change 
the sonic textures, such as tempo, pitch, note, and octave 
dramatically to provoke more compelling experiences of the 
increasing effects of climate change and ultimately portray its 
catastrophic consequences in the future.  

The sonification process allows the performer to add the 
conceptual domain to the soundscape by enhancing or 
revealing several notable troubling trends in the data through 
the main interface system (Fig. 3), which constantly plays 
sound based on the numbers implemented in the table arrays. 
By turning data into sound, the project aims to bring a message 
that climate change is far more than an environmental issue; it 
is the cry of the Earth, and the consequences of climate change 
are already here. 

Algorithmic Music Composition for The Environment 
Rosa Park1*  

 
1* School of Cinema, San Francisco State University, United States, rosapark@sfsu.edu 
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Figure 2.  The GUI modules for “Arctic Sea Ice Extent.” 

 

Figure 3. The main Pd interface design for “Algorithmic Music Composition 
for The Environment.” 
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The Vienna Philharmonic’s New Year’s Concert Series: A Corpus
for Digital Musicology and Performance Science

David M. Weigl and Werner Goebl⇤
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Abstract— We present Signature Sound Vienna,1 an
ongoing project to collect, interrelate, and analyse per-
formance recordings pertaining to the Vienna Phil-
harmonic’s New Year’s Concert series, combining ap-
proaches from historical musicology, performance sci-
ence, music informatics, and Web science.

Index Terms— Digital Musicology, Performance Sci-
ence, Linked Data, Music Encoding

I. VIENNA’S NEW YEAR’S CONCERTS

The Vienna Philharmonic Orchestra (VPO)’s yearly New
Year’s Concert broadcast provides listening enjoyment to
tens of millions in nearly 100 countries. The series has fea-
tured a variety of conductors, compositions, and composers,
but incorporates the same favourites–most notably, An der
schönen blauen Donau (Blue Danube Waltz; Johann Strauss
II) and Radetzkymarsch (Radetzky March; Johann Strauss I)–
year after year. The ever-repeating, ever-changing nature of
these concerts make them appealing for musicological anal-
ysis: How have the performances evolved over time? Are
changes explicable using historical factors, e.g., based on the
conductor or concert master? Can we find signatures of the
VPO, compared to other orchestras’ performances of these
compositions? How about other Viennese, versus interna-
tional, orchestras–does Vienna really have a signature sound?

II. REPERTOIRE: COMPOSITIONS AND RECORDINGS

We have restructured data from the VPO concert archive2

to determine the most frequently performed works in the
series (Fig. 1). We are engaging in a media-purchasing
campaign incorporating online and physical record stores,
second-hand media and auction websites, as well as Vienna’s
music flea-markets to acquire commercial recordings of the
VPO New Year’s Concerts, alongside recordings of other or-
chestras performing (some of) this pertinent material.

⇤This research was funded in whole, or in part, by the Austrian Sci-
ence Fund (FWF) P 34664-G. For the purpose of open access, the authors
have applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

1https://iwk.mdw.ac.at/signature-sound-vienna
2https://www.wienerphilharmoniker.at/en/

konzert-archiv

Figure 1: New Year’s Concert: Most frequently performed compositions

III. CORPUS HYPERSTRUCTURE AND ANALYSES

We will establish a richly interlinked corpus describ-
ing salient aspects of our repertoire, by: i) quantifying our
performance recordings using audio feature extractors; ii)
encoding the corresponding music scores, and performing
audio-to-score and audio-to-audio alignments to interlink the
timelines of our recordings with score elements at the note
level; and iii) identifying historical data relating to the or-
chestras, the performers, and the reception of the perfor-
mances from catalogue sources, blog postings and newspaper
archives, in order to contextualise the recordings within their
performance events. These diverse data will be represented
using established vocabularies, interrelated with online mu-
sic authorities including MusicBrainz and AcousticBrainz,3
and published as Linked Open Data, making the data re-
producible, reusable, and reinterpretable beyond the imme-
diate scope of our project. We will engage in musicolog-
ical scholarship to interrogate and characterise this corpus,
formulating hypotheses which will drive the development of
score- and audio-feature-informed analyses. We will report
our findings within hypermedia narratives published as Web
apps tying together scholarly arguments with multimedia re-
sources providing their empirical basis. This approach builds
on recent trends in Digital Musicology, applied for the first
time to an extensive but focused collection of performances.

IV. ACKNOWLEDGMENTS
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3https://musicbrainz.org
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An Interactive Tool for Visualising Musical Performance Subtleties
Yucong Jiang
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Abstract— I introduce a tool that visualises key as-
pects of a performance (such as the tempo), built on Sonic
Visualiser and utilizing audio-to-score alignment tech-
niques. I describe an application scenario of this tool in
piano education.

Index Terms— Sonic Visualiser, audio-to-score align-
ment, piano education, musical performance

I. PERFORMANCE VISUALISATION

One of the most popular tools for studying musical per-
formance recordings is Sonic Visualiser [1], with which users
can visualise features of an audio recording. The scope of
the features is largely defined by existing audio analysis plu-
gins: e.g., various low-level signal features or fundamental
frequency estimation [2]. I introduce a prototype tool built
on Sonic Visualiser, with modifications to the layout of the
main window and an additional plugin for automatic analy-
sis. This tool aims to visualise subtleties of a musical perfor-
mance (e.g., tempo control, loudness, or articulation). Given
a digital score and a performance recording of this score, this
tool first automatically aligns the audio to the score (based
on [3]), and then displays key aspects of the performance,
while highlighting the corresponding score positions in the
sheet music as the user navigates different sections of the
recording. Fig. 1 depicts the main window of this tool. The
upper pane shows the spectrogram and the onsets of each
chord, and the lower pane displays one essential aspect of
the performance—in this prototype, the tempo fluctuation of
the performance. The next section describes an application
scenario of this tool useful in piano education.

Figure 1: The main window of this tool.

II. AN APPLICATION EXAMPLE: PIANO EDUCATION

Making music is about much more than playing the cor-
rect notes. The purpose, as applied here, is to help learners
reflect on the quality of their playing, and evaluate it criti-
cally by examining their practice recordings in greater de-
tail. Through this process, students should gradually improve
their self-reflection skills. There are three steps (Fig. 2) in-
volved. The user first chooses the score to practice, which
then appears in the left pane of the main window. The user
then clicks the “record” button and starts to play. After each
recording, the performance is automatically analysed and vi-
sualised in the two panes on the right. At this point, the user
may wish to reflect on the past performance by playing back
the recording (perhaps multiple times) and observing the vi-
sual feedback in the lower pane (in this instance, tempo). The
user may keep practicing this score by repeating Step 2 and
Step 3, working to improve the quality of play through in-
sights gained from previous takes. After any take, the user
may switch to a different score by going back to Step 1.

Figure 2: Three steps to this application of the tool. The dashed arrow
represents an automatic process.

This tool can also be used to collect and analyse student
practice data. The results of this analysis could be used to
support a data-driven approach to studying musical learning,
and facilitate new pedagogical techniques. In addition, this
tool may also contribute to musicology research by making
it easier to analyse large-scale performance data sets.

III. REFERENCES
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Abstract— In this paper, we present the

IDMT-PIANO-MM dataset, which allows to evalu-

ate piano transcription algorithms under microphone

mismatch conditions. In particular, we discuss specific

constraints that these algorithms need to face when being

used in music learning applications on mobile devices.

Then, we describe the dataset w.r.t. recording locations

and devices as well as the recorded music pieces. We

intend this dataset to be a public benchmark to evaluate

the robustness of AI-based MPE models within realistic

microphone-mismatch conditions, which are to be ex-

pected with the large number of potential users of music

learning applications.

Index Terms— Multipitch estimation, piano transcrip-
tion, microphone mismatch, mobile devices

I. INTRODUCTION

In the field of Music Information Retrieval (MIR), the
pitch detection of multiple simultaneous tones (multipitch
estimation, MPE) is a challenging research task. MPE is
commonly approached by recognizing characteristic patterns
such as fundamental frequencies and their corresponding
overtones in spectrogram representations. Traditional meth-
ods use decomposition techniques such as Non-Negative Ma-
trix Factorization (NMF) whereas recent methods solely fo-
cus on deep learning models such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) [1].

A particularly interesting application scenario for multi-
pitch estimation algorithms are music learning applications.
Here, audio recordings of musical performances need to be
transcribed and compared to a given reference notation with
near real-time latency in order to assess the user’s perfor-
mance. Furthermore, music learning applications need to
run on mobile devices, which have limited computational
resources and microphones of very different quality. As a
consequence, these constraints limit the complexity of the
applied MPE algorithm. Finally, the applied MPE algorithm
needs to be robust to acoustic parameters such as reflection
times in the users’ practice rooms. It has been widely ob-
served that AI-based audio analysis algorithms exhibit a per-
formance drop in domain shift scenarios, which are caused
for instance by a microphone mismatch between the initial
training data and the test data.

II. DATASET

Established evaluation datasets for piano transcription in-
clude audio files from YouTube videos1, recordings of acous-
tic grand pianos such as the Yamaha Disklavier2, or synthe-
sized using professional sample libraries3. These datasets
mostly lack the required variety of instrument models as
well as metadata details about the spatial parameters of the
recording locations. As the main contribution of this work,
we present the IDMT-PIANO-MM dataset4, which allows
to study microphone mismatch conditions for piano multi-
pitch estimation recorded with mobile phones. The dataset
includes a total of 432 piano recordings (around four hours),
which cover nine music pieces recorded in eight different
rooms using six different recording devices. The pieces cover
classical music (B. Bartók, W. A. Mozart, J. Pachelbel, and
L. v. Beethoven) as well as jazz (S. Joplin as well as own
compositions) and range from simple to medium difficulty.
All music pieces are in the public domain. The recording lo-
cations range from small rooms to a large lecture hall. Infor-
mation about the room geometries, piano position within the
room, as well as wall materials are documented. The rooms
include four different grand pianos, three upright pianos, and
one stage-piano. At each location, audio recordings were
made with three mobile phones (iPhone 6S Plus, Redmi Note
8, LG G6), two tablets (iPad Air 2, Amazon Fire tablet), and
one stereo setup using two high-quality Oktava MK 012 mi-
crophones in an AB recording setup. In our presentation, we
will show the results of an initial data inspection focusing
on properties such as the dynamic range of the recordings.
Also, we compare the different microphone characteristics
using the spectrum correction method proposed in [2].

III. REFERENCES

[1] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic Music Tran-
scription: An Overview,” IEEE Signal Processing Magazine, vol. 36,
no. 1, pp. 20–30, 2019.

[2] M. Kośmider, “Calibrating Neural Networks for Secondary Recording
Devices,” DCASE2019 Challenge, Tech. Rep., 2019.

1e. g., Giant-MIDI Piano, https://github.com/bytedance/
GiantMIDI-Piano

2e. g., MAESTRO, https://magenta.tensorflow.org/
datasets/maestro, MAPS https://hal.inria.fr/
inria-00544155/en

3e. g., SMD-Synth https://zenodo.org/record/4637908
4https://www.idmt.fraunhofer.de/en/publications/

datasets.html
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Looking at the Future of Data-Driven Procedural Audio
Adrián Barahona-Rı́os⇤

Department of Computer Science, University of York, UK, ajbr501@york.ac.uk

Abstract— Data-driven methods can be seen as an
alternative to pure digital signal processing (DSP) ap-
proaches for the sound synthesis of sound effects. We
present an overview of some of the advancements in ma-
chine learning for this task, hinting at what the future of
data-driven procedural audio could sound like.

Index Terms— Procedural Audio, Sound Synthesis,
Game Audio, Sound Design, Neural Synthesis

I. DATA-DRIVEN PROCEDURAL AUDIO

While procedural audio systems are usually built upon
DSP-based synthesisers running in real-time [1], creating
bespoke procedural audio models in a timely manner with
the sound quality required by the video game and interac-
tive media industries still remains a challenge. Data-driven
approaches could help to overcome this issue by generat-
ing sounds directly, in combination with DSP methods or by
helping with aspects of the creative process.

One option can be the neural synthesis of one-shot sound
effects, where a generative deep learning model trained on a
corpus of sounds directly produces novel assets on demand.
The sound synthesis can be driven by categorical descriptors
of the training dataset, such as in the case of emotions in
knocking sound effects [2] or surfaces in footsteps [3]. It is
also possible to condition the synthesis with high-level audio
attributes such as timbral features [4]. Training the models
on a single sound is an option as well (especially convenient
when the category of sound effects is rare), such as in Spec-
SinGAN [5] for generating arbitrary one-shot variations and
Catch-A-Waveform [6] for synthesising longer sequences.

Another approach could be the combination of DSP
with deep learning techniques. Among others, differentiable
spectral modeling synthesisers have been used for pitch-
conditioned sound synthesis [7] or engine sounds condi-
tioned on the revolutions per minute [8]. Other DSP methods
such as waveshaping synthesis have been explored in a mu-
sical context too [9]. Deep modal synthesis has also been
considered, with the possibility of generating real-time im-
pact sounds from arbitrary 3D shapes with different materi-
als [10]. Tangentially, yet another option could be to use deep
learning to automatically program a synthesiser to produce a

⇤Research supported by the EPSRC Centre for Doctoral Training in In-
telligent Games & Game Intelligence (IGGI) [EP/L015846/1] and Sony In-
teractive Entertainment Europe.

target sound from a provided audio asset [11].

Regarding alternative ways of interacting with neural au-
dio synthesisers, sound designers could discover new sounds
by inpainting (masking and automatically reconstructing)
spectrograms [12], providing an onomatopoeic word [13] or
even a set of frames from a video [14]. High-quality timbre
transfer can be performed as well [7][9][15], such as trans-
forming speech into violin sounds.

There are however multiple challenges still to be ad-
dressed, such as interfacing, co-creativity, interactivity, ef-
ficiency, evaluation metrics or the overall quality and flexi-
bility of the models to name a few.
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Variation Synthesis Using Single-Image GANs,” arXiv preprint
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I. ABSTRACT 
          Graphic scores have always been a liberating way of 
composing, combining a score that is free from the traditional 
ways of writing music and while also constituting a visual art 
piece with independent artistic value. However, Both 
traditional and experimental notation systems have been 
unhelpful to people with low vision. The traditional notation 
system has been made inclusive through the braille system 
only in the 20th century in contrast to graphic scores that seem 
in many cases to be failing to be accessible to those people.  In 
this work, I present a project that aims to fill this crucial gap 
and offer visually impaired participants a new experience of 
composing and performing with an alternative notation 
system. With the development of an interactive installation I 
am proposing the idea of making alternative notation tactile 
to enable this accessibility. Physical objects can act both as a 
notation system and as a tactile transformation of the 
artfulness of a graphic score. With the help of computer vision 
technology these new objects/notation will be interpreted into 
sound through an algorithmic process that will map their 
position in space to score properties.  This tool could be used 
in the context of the work of specific composers that were 
pioneers in the field of graphical scoring such as Anestis 
Logothetis. Previous research has provided significant 
amount of analysis of his work that could be used in relation 
to this project. [1],[2] Using characteristic graphical patterns 
as individual notation we can create a series of 3D printed 
objects that can be used to make his work tactile and 
interactive thus accessible to visually impaired people.  
 
          A primary stage installation design of this project, 
Block’s sound, has been exhibited in London and feedback 
forms selected by participants with focus on the effect of 
haptic notation and interactive composition to their perception 
of sound and interactivity. These feedback forms constitute 
the first evaluation of the tactile interactive scoring 
installation idea and give the floor to further development.   

 
 

II. REFERENCES 
[1] Michael McInerney, 2015. New Notational Strategies for New 

Interpretative Paradigms: Revisiting the Scores of Anestis 

Logothetis (1921-1994). Perspectives of New Music, 53(1), pp.99-

120. 

[2] Baveli, M. and Georgaki, A., 2008. Towards a decodification of 

the graphical scores of Anestis Logothetis (1921-1994) . The 

graphical space of Odysee(1963). In: SMC-5th Sound and Music 
Computing Conference, 2008. 
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Acoustic Representations for Perceptual Timbre Similarity

Cyrus Vahidi, Ben Hayes, Charalampos Saitis, George Fazekas⇤
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Abstract— In this work, we outline initial steps to-

wards modelling perceptual timbre dissimilarity. We use

stimuli from 17 distinct subjective timbre studies and

compute pairwise distances in the spaces of MFCCs, joint

time-frequency scattering coefficients and Open-L3 em-

beddings. We analyze agreement of distances in these

spaces with human dissimilarity ratings and highlight

challenges of this task.

Index Terms— timbre, acoustic representations, psy-
choacoustics

I. METHOD

We used 17 timbre dissimilarity datasets that were com-
piled in a previous meta-analysis publication [1]. We share
an open-source repository containing 17 dissimilarity matri-
ces and corresponding audio sampled at 44.1 kHz1.

We extracted temporally averaged mel-frequency cep-
stral coefficients (MFCCs), joint time-frequency scattering
coefficients (jTFS) [2] and OpenL3 embeddings [3] for
1000ms of audio of each stimulus. We consider jTFS as
it characterises spectrotemporal modulations, analogously to
the model used in [1]. We used a window length of 25ms for
MFCCs with 40 coefficients. jTFS coefficients were com-
puted using Kymatio2 with maximum scale J = 8, Q = 12
filters per octave, temporal averaging of T = 1000ms and
frequential averaging of F = 1 octave, yielding 869 coeffi-
cients. 512-dimensional OpenL3 embeddings were extracted
using an open-source Python package3.

Pairwise euclidean distances of the form in Eqn. (1) were
computed between all embeddings within each dataset.

De(xi, xj) =
q
(Ixi � Ixj)T (Ixi � Ixj) (1)

II. RESULTS

We collected all triplets (a, i, j) from a dissimilarity ma-
trix, where i and j belong to the k-nearest neighborhood of an
anchor a and satisfy the triplet inequality D(a, i) < D(a, j).

⇤This work was supported by UK Research and Innovation [grant num-
ber EP/S022694/1]. Cyrus Vahidi is supported jointly by the UKRI and
Music Tribe.

1https://github.com/ben-hayes/timbre-dissimilarity-metrics/
2https://github.com/kymatio/kymatio
3https://openl3.readthedocs.io/en/latest/index.html

Table 1: Mean triplet agreement using a k = 5 nearest neighborhood

Dataset MFCC OpenL3 jTFS

Barthet2010 0.71 0.77 0.88
Grey1977 0.57 0.64 0.61
Grey1978 0.41 0.48 0.45

Iverson1993 Onset 0.59 0.59 0.56
Iverson1993 Remainder 0.57 0.54 0.54

Iverson1993 Whole 0.59 0.66 0.64
Lakatos2000 Comb 0.55 0.53 0.55
Lakatos2000 Harm 0.64 0.73 0.61
Lakatos2000 Perc 0.53 0.55 0.48

McAdams1995 0.62 0.63 0.58
Patil2012 A3 0.65 0.65 0.65

Patil2012 DX4 0.48 0.6 0.54
Patil2012 GD4 0.58 0.64 0.45

Siedenburg2015 e2set1 0.73 0.71 0.65
Siedenburg2015 e2set2 0.68 0.69 0.61

Siedenburg2015 e3 0.58 0.56 0.5

Triplet agreement is the average number of triplets that sat-
isfy De(a, i) < De(a, j), i.e the distance ranking is re-
spected in acoustic feature space e. Table 1 shows the mean
triplet agreements per dataset using 5 nearest neighbors.

III. CONCLUSION

Initial experiments indicate that acoustic features alone
are not sufficient to match perceptual distances. We high-
light that the only dataset containing a homogeneous cate-
gory for all stimuli, Barthet2010, produces a considerably
higher figure than other datasets, which may suggest that
its timbre space only encodes acoustical cues. Otherwise,
we observe no clear differences between the representations.
Further experiments will aim to learn a unified metric to ap-
proximate timbre space distances across datasets, consider-
ing specificity and categorical cues. This may give a clearer
indication of the suitability of the proposed representations.

IV. REFERENCES

[1] E. Thoret, B. Caramiaux, P. Depalle, and S. Mcadams, “Learning met-
rics on spectrotemporal modulations reveals the perception of musical
instrument timbre,” Nature Human Behaviour, vol. 5, no. 3, pp. 369–
377, 2021.

[2] J. Andén, V. Lostanlen, and S. Mallat, “Joint time–frequency scatter-
ing,” IEEE Transactions on Signal Processing, vol. 67, no. 14, pp.
3704–3718, 2019.

[3] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello, “Look, listen, and
learn more: Design choices for deep audio embeddings,” in ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2019, pp. 3852–3856.
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Investigating a computational methodology for quantitive analysis of
singing performance style

Yukun Li1 ⇤, Polina Proutskova1, Zhaoxin Yu2 † and Simon Dixon1

1Centre for Digital Music, Queen Mary University of London, UK, yukun.li@qmul.ac.uk
2Shandong College Of Arts, China

Abstract— As an aspect of high-level cognition, style
analysis is subjective and tends to be performed quali-
tatively. Quantitative computational analysis of singing
performance can provide an objective view of style. The
question is how to implement a systematic analysis, espe-
cially on a large scale of data. This talk proposes a com-
putational methodology and lists several research ques-
tions we seek to answer: what computational framework
is appropriate for the task; how to extract pitch from the
audio and segment it; how to formalise the characteris-
tics of a performance style; how the musical content af-
fects the performance style; how to model and measure
musical features such as pitch contour or dynamics. The
exploration so far is summarised into some assumptions,
possible solutions and preliminary experimental results,
which we explain in this talk.

Index Terms— Computational musicology, Singing per-
formance style, Note segmentation, Pitch modelling

Our research involves the analysis of recordings containing
mixtures of vocals and instruments. We utilize automatic
source separation to extract the monophonic vocal track.
Then we extract features such as f0, amplitude, spectral flux
and phonemes. An HMM note tracker is applied to output
note segments, which consist of sub-regions labelled with
their state (attack, sustain, release or transition). Based on the
estimated notes, the following aspects of performance style
can be investigated: how the singer begins or ends a note,
how subsequent notes are connected, and how notes are sus-
tained by the singer.

Note is a very fundamental conception to help us under-
stand music. However, note segmentation is difficult because
the vocal pitch trace is continuous and unstable [1], which
leads to disagreements among human judgements. Different
purposes or musical backgrounds of annotators result in dif-
ferent segmentations. Currently, automatic vocal transcrip-
tion systems are much less robust to different styles and less
precise than human annotations [2]. We propose ideas to
build a controllable model which could potentially improve
the performance of note segmentation in terms of generality

⇤YL is supported by a China Scholarship Council and Queen Mary Uni-
versity of London joint Ph.D. Scholarship. and the 2021 Chinese National
Social Science Funding in Art Project No. 21BD061.

†ZY is supported by the 2021 Chinese National Social Science Funding
in Art Project No. 21BD061.

and accuracy.

Then vocal style can be investigated based on notes. Up
to now, we have found two examples of vocal style which we
plan to analyse on a larger scale. The first concerns the tim-
ing of note boundaries. In the pop music from the NUS-48E
dataset [3] there are many intra-vowel glides and pitch sus-
pensions beyond the syllable boundaries. As a result, pitch
change boundaries and phoneme change boundaries, which
usually jointly indicate note boundaries, do not align (they
can differ by more than 50ms). We hypothesise that the dis-
crepancy between them are larger for some vocal styles than
for others. For example, we investigated Children’s songs
included in Molina et al.’s dataset. To verify the hypothesis,
we plan to implement more analysis of those changes. The
other example is concerned with note transitions in Zhangqiu
Bangzi. Bangzi is a Chinese folk music genre and Zhangqiu
is a region where a style of Bangzi is formed. Zhangqiu
Bangzi is characterized by large pitch jumps of more than an
octave between pairs of notes. Two features were observed:
loudness is increased almost synchronously with pitch; pitch
overshoots the target pitch. The hypothesise is that the first
feature is shared across styles of Bangzi, while the second
feature is specified by the local accent. To demonstrate that
this is the case, comparison across different Bangzi styles
will be applied by automatically analysing the note transi-
tions for these features.

I. REFERENCES

[1] M. Mauch, K. Frieler, and S. Dixon, “Intonation in unaccompanied
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P. Proutskova, E. Sakai, H. Kondo, H. Fukatsu, et al., “Agreement
among human and automated transcriptions of global songs,” 2021.

[3] Z. Duan, H. Fang, B. Li, K. C. Sim, and Y. Wang, “The NUS sung and
spoken lyrics corpus: A quantitative comparison of singing and speech,”
in Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference. IEEE, 2013, pp. 1–9.
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Variational Auto Encoding and Cycle-Consistent Adversarial
Networks for Timbre Transfer

Russell Sammut Bonnici⇤, Martin Benning, & Charalampos Saitis
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Abstract— The combination of Variational Autoen-
coders (VAE) with Generative Adversarial Networks
(GAN) motivates meaningful representations of audio in
the context of timbre transfer. This was applied to differ-
ent datasets for transferring vocal timbre between speak-
ers and musical timbre between instruments. Varia-
tions of the approach were trained and generalised per-
formance was compared using the Structural Similar-
ity Index and Frechét Audio Distance. Many-to-many
style transfer was found to improve reconstructive per-
formance over one-to-one style transfer.

Index Terms— Deep learning, Audio, Generative Ad-
versarial Networks, Auto-encoders, Style Transfer, Timbre

I. INTRODUCTION

Timbre transfer is a task concerned with modifying audio
signals such that their timbre is reformed while their seman-
tic content is persisted. Through this, utterances of a speaker
can be changed such that they sound like they were spoken
by another speaker. Recordings of a source instrument can
be manipulated in a similar way such that they sound like an-
other target instrument played them. The challenge in mak-
ing the modification take place first lies in how exactly tim-
bral features can be captured.

II. METHOD

The approach adopted follows a UNIT inspired architec-
ture that was initially proposed for voice conversion [1]. It
uses a VAE for motivating content persistence that is embed-
ded in a GAN for motivating timbre transfer. By applying
this to the URMP dataset [2] for musical instruments, the
generalisibility of the approach was challenged. An ablation
study was also carried out on URMP and the Flickr 8k Audio
dataset [3] for insight on what makes the architecture effec-
tive. Variations of the model included; a version with no
Kullback–Leibler divergence (KLD) cyclic component for
the VAE, a version where bottleneck residual blocks were
used in place of basic residual blocks, and a version where
the same model was trained for multiple style transfers at
once (many-to-many) rather than one transfer (one-to-one).

⇤Research supported by ENDEAVOUR Scholarships Scheme (Malta)

III. RESULTS
Table 1: Structural Similarity Index of Cyclic Reconstructions

Target Initial No KLD Bottleneck Many to
Cyclic Residual many

Female 1 0.73 0.74 0.73 0.77
Male 1 0.80 0.78 0.68 0.82
Trumpet 0.83 0.83 0.78 0.89
Violin 0.81 0.81 0.78 0.88

Table 2: Frechét Audio Distance (General Vocoding)

Target Initial No KLD Bottleneck Many to
Cyclic Residual many

Female 1 2.96 2.77 9.10 4.31
Male 1 1.65 2.48 6.97 1.40
Trumpet 5.26 5.52 6.06 5.85
Violin 4.50 5.52 12.68 4.99

The VAE-GAN approach was found general enough for
applicability to instrument timbre transfer [4]. Basic resid-
ual blocks superseded bottleneck residual blocks around the
latent space of the VAE for enriching content information.
The presence of KLD for the cyclic loss component did not
significantly impact performance. The many-to-many exten-
sion outperformed the initial one-to-one version in terms of
reconstructive capabilities due to the increased variation of
data passed through the universal encoder, yet improvements
on the adversarial translation aspect were inconclusive. More
clarity may be produced by training the utilised vocoder fur-
ther.

IV. REFERENCES
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Characterizing Texture for Symbolic Piano Music
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Abstract— Musical texture describes how sounding
components are organized, individually or with each
other. In this work, we propose a new syntax to charac-
terize symbolic texture in classical piano music and thus
allow its automated analysis. We annotated the score of
9 movements of W.A. Mozart’s sonatas (totalling 1164
bars), on which tested binary classification models show
promising results for automatic texture retrieval.

Index Terms— Texture, symbolic music, piano, model-
ing, machine learning

I. MUSICAL SYMBOLIC TEXTURE

Symbolic texture is a high-level feature of music which
strongly relates to musical style and form. Huron [1] links
the term texture with the density, the diversity or the overall
quality of sound. In this work, we set aside the physical tim-
bre to focus on what Hérold [2] calls the “textural factors of
timbre” 1. Ultimately, a textural configuration can be defined
by grouping threads (voices or instrumental parts) into sev-
eral layers (textural units) [3]. In 2014, Giraud et al. [4] pro-
posed a first syntax of texture annotation for classical string
quartets. We aim at broadening this definition and apply it to
piano music. Improving the global understanding of musical
texture can also open new perspectives in style analysis or
texture control in music generation.

II. MODELING PIANISTIC TEXTURE

The number of threads and their mutual relationships can
vary during a piece of music. Piano scores do not explicitly
separate musical threads, in contrast to ensemble music. This
challenge needs to be addressed by proposing a more general
model of texture.

Hence, we model the separation of vertical layers,
their thickness (number of threads in each) and functions
(melodic, harmonic and/or static support). Other attributes
were added to characterize the content of certain layers (sus-
tained or repeated notes, arpeggios etc.) or link them to-
gether (like homorhythmy or parallel motions). This model
was defined syntactically and semantically, and resulted in
an object-oriented implementation in Python.

1In the original paper: “les facteurs texturaux du timbre”.

III. ANNOTATED DATASET

In order to evaluate this syntax through supervised ma-
chine learning tasks, we built a minimal dataset from the
9 movements of Mozart’s piano sonatas 1, 2 and 5 (K.
278/189d, 279/189e, 283/189h), for a total of 1164 annotated
measures. Selected movements all share sonata form but fea-
ture various time signatures and tonalities. Scores are taken
from the Mozart Annotated Sonatas [5], based on the Neue
Mozart-Ausgabe. Furthermore, 62 high-level descriptors of
symbolic music were implemented and computed on each
measure of the corpus, adding expert knowledge in the pro-
cess. For each bar, we retrieve 15 textural elements from the
annotation. They indicate the presence of certain functions or
attributes in the textural layers (melodic layer, homorhythmy,
arpeggios...).

IV. PREDICTING TEXTURAL ELEMENTS

A Logistic Regression model is trained to predict the
presence of each of the 15 textural elements in a bar given
its associated 62 computed high-level features. The model is
cross-validated with a leave-one-piece-out strategy: the pre-
diction on the bars in one movement is performed by a model
trained on the other 8 movements in the dataset. Other mod-
els including Support-Vector Machine and Decision Trees
showed no significant improvements. Although the identi-
fication of melodic layers or homorhythmy showed reason-
able results – with F1-scores of respectively 96% and 85% –,
scale motives or non-melodic functions remain challenging
elements to predict.
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[3] D. Moreira de Sousa, “Textural Design: A Compositional Theory for
the Organization of Musical Texture,” Ph.D. dissertation, Universidade
Federal Do Rio de Janeiro, 2019.
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Abstract— We propose a model to generate readable
scores from audios for monophonic instruments in clas-
sical music. Firstly, we obtain the beats from the tran-
scribed MIDI. Secondly, we analyze the most likely tone
combinations and pitches according to the beats. Thirdly,
we do the recreation to refine the potential mistakes in
pitches and rhythms to make the musical semantics more
reasonable. The generated scores are subjected to the
performers’ intentions and are meaningful in musicology.

Index Terms— audio-to-score, beat tracking, music gen-
eration

I. INTRODUCTION

Audio-to-score is to estimate the human-readable score
from the input audio signal. For instruments with stable
rhythms and fixed pitches like piano, there exist decent meth-
ods to obtain accurate scores [1]. However, for monophonic
instruments, the unstable rhythms and the constantly chang-
ing pitches make the score difficult to obtain. As the per-
formers add their own improvised recreations in real perfor-
mances, the original scores and the recreated scores might be
different. We want to stress this problem in our work.

We try to recover the performers’ intentions into human-
readable scores. To acquire the performance scores, people
first estimate the tones, beats, rhythms, and pitches by re-
peatedly listening to the recording. The ambiguity makes it
impossible to obtain the rhythms and pitches accurately. In
face of this problem, people may add their own recreations
to make the score be reasonable in musicology. Our model
does a similar job by stretching MIDI notes based on the ex-
tracted beats. After that, the model performs recreation based
on music semantics.

Our model can generate scores as long as the transcribed
information meets the minimum requirement [2]. With the
common information in the part scores, a further recreation
could lead to a readable full score for a band or an orchestra
in the future.

II. METHODOLOGY

We primarily consider 8-measure music segments in 4/4
time signature. The tones are transposed to C major or A
minor , and there are no off-key notes.

Figure 1: The possible combinations in one quarter note

Step 1: We extract beats from the MIDI, and MIDI are ac-
quired from a transcription model.

Step 2: We jointly estimate the most possible tone value com-
binations, pitches, onsets and offsets.

We suppose that one beat is a quarter note. Therefore,
the possible tone combinations for a quarter note are finite as
Figure1 illustrates.

To distinguish between different note durations, we also
need to label the onsets and offsets of the notes.

Step 3: We jointly refine the potential mistakes in pitches
according to a music language model and fix the notes.

We use a public score editing software MuseScore 3 for
score typesetting and generate the readable scores in the Mu-
sicXML format. For baselines, scores are generated by the
MIDI data from Step 1 or Step 2, but not both. For evalu-
ation, we use the mean of the 5 error rates in [3] to evalu-
ate the quality of our generated scores. As there are some
recreations in our results, the subjective evaluations are also
indispensable.
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