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Music gives a soul to the universe, wings to the mind, flight to the imagination and life to everything.

Plato





Abstract

For centuries, music has been shared and remembered by two traditions: aural transmission, common

to folk and popular musical genres, and in the form of written documents normally called musical

scores. Prior to music typographical systems, all music was copied manually including large scores

and each and every part for the players and singers. Publishers have typeset a large body of historical

musical scores, principally from what is known as classical music. However, there remains a substan-

tial and important corpus of works that exist as original hand-written manuscripts (or facsimiles of

these manuscripts such as photocopies). The problem is not restricted to historical documents: many

contemporary compositions also exist in hand-written or facsimile format. These important cultural

artifacts are in danger of being lost through the normal ravages of time. To preserve the music (rather

than the documents themselves) requires some form of typesetting or, ideally, a computer system that

can automatically decode the symbolic images and create new scores. Meaning, the documents must

be digitized and transformed into machine-readable format. Programs analogous to optical character

recognition systems called optical music recognition (OMR) systems have been under intensive devel-

opment for many years. However, the results to date are far from ideal. Each of the proposed methods

emphasizes different properties and therefore makes it difficult to effectively evaluate its competitive

advantages. This thesis provides a study and an overview of the literature concerning the automatic

analysis of images of printed and handwritten musical score including an introduction to OMR pro-

cessing systems.

After an image preprocessing stage, an OMR system is typical divided into three modules: (1)

music symbol recognition, (2) musical notation reconstruction and (3) final representation construction.

For the binarization operation, several options have already been proposed in the past. However, in

OMR, researchers still prefer using standard binarization procedures, such the Otsu’s method. No goal-

directed studies for music sheets have been carried out. In this thesis, a novel binarization algorithm

is presented. The process is based in the knowledge of the content of the image. The method uses the

estimation of the staff line thickness and the vertical distance between two staff lines extracted directly

from the gray level music score to guide the binarization process.

The next operation in the OMR is the detection and subsequent removal of staff lines. In this work,

a general-purpose, knowledge-free method for the automatic detection of music staff lines based on

stable paths approach is proposed.

One of the final steps of an OMR system encompasses the segmentation and classification of the

music symbols. For the detection of these various objects, two procedures are discussed: the first

music symbols segmentation’s method is based in contextual information and music rules; the score

is first split by staffs and the symbols are divided considering their graphical position and geometric

features; the second method performs simultaneously the segmentation and the classification. In the

music symbol classification, a comparative analyses divided into three distinct studies is described.

Five different pattern recognition procedures are examined. In the first study, the database of scores

is augmented with replicas of the existing patterns, transformed according to an elastic deformation
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technique. Such transformations aim to introduce invariances in the prediction with respect to the

known variability in the symbols, particularly relevant on handwritten works. In the second study,

the classifiers are tested for three different situations: separation of composers, gradual increase of

deformations and union of real and printed scores. In the third study, a distance metric learning is

applied to k-NN classifier to recognize music symbols.

Syntactic and semantic music rules are also incorporated after the segmentation and classification

of the music symbols as prior knowledge. Global constraints about musical rules are included as an

optimization problem. The idea is to detect the best combination of symbols in order to give the

indicated measure.

In this thesis the reader will find work in many stages of an OMR system with important and

significant advances. Open issues and future trends will also be addressed.



Resumo

Durante séculos, a música tem sido transmitida e relembrada através de duas tradições: transmissão

oral, comum ao género musical popular, e na forma de documentos escritos normalmente chamados

de partituras musicais. Antes dos sistemas tipográficos musicais, toda a música era copiada manual-

mente até mesmo grandes partituras com toda a parte relativa à letra da canção. Os editores criaram

um grande corpo de partituras musicais históricas, principalmente a partir do que é conhecido como

música clássica. No entanto, há ainda um substancial e significativo acervo de obras importantes que

existem como manuscritos originais (ou como fac-símile). O problema não está restringido a docu-

mentos históricos: muitas composições contemporâneas também existem em formato manuscrito ou

fotocópia. Estes importantes artefactos culturais estão em perigo de se perder pelos estragos normais

do tempo. Para preservar a música (até mais do que os documentos em si) é necessário alguma forma

de escrever ou, idealmente, um sistema de computador que possa automaticamente codificar as images

simbólicas e criar novas partituras. Por outras palavras, os documentos devem ser digitalizados e trans-

formados num formato legível por computador. Programas análogos aos sistemas de reconhecimento

ótico de carateres chamados de sistemas de reconhecimento ótico de música (OMR) têm estado em

desenvolvimento intensivo por muitos anos. Contudo, os resultados até à data estão longe do ideal.

Cada método proposto enfatiza diferentes propriedades e, portanto, torna difícil avaliar de forma eficaz

as suas vantagens competitivas. Esta tese promove um estudo e uma análise da literatura ligada ao

processamento automáticao de imagens impressas e manuscritas de partituras musicais incluindo uma

introdução aos sistemas de processamento de OMR.

Após uma fase de pré-processamento de imagem, um sistema de OMR é normalmente divido em

três módulos: (1) reconhecimento dos símbolos musicais, (2) reconstrução da notação musical e (3)

construção da representação final.

No passado já foram propostas várias opções para a operação de binarização. Contudo, em OMR,

os investigadores continuam a preferir usar procedimentos de binarização standard, tal como o método

de Otsu. Não foram ainda realizados nenhuns estudos diretos com partituras. Nesta tese é apresentado

um novo algoritmo de binarização. O processo é baseado no conhecimento do conteúdo da imagem. O

método usa as estimativas da espessura da linha e do distanciamento vertical entre duas linhas extraídas

diretamente da partitura em gama de cinzentos.

A operação que se segue num sistema de OMR é a deteção e remoção das linhas de pauta. Neste

trabalho é proposto um método de uso geral e conhecimento livre para a deteção automática das linhas

de música baseado na aproximação do caminho estável.

Uma das etapas finais de um sistema de OMR aborda a segmentação e classificação dos símbolos

musicais. Para a deteção destes vários objetos dois procedimentos são discutidos: o primeiro método de

segmentação dos símbolos musicais é baseado na informação contextual e regras musicais; a partitura

é primeiro dividida por pautas e os símbolos são divididos considerando as suas posições gráficas e

caraterísticas geometricas; o segundo método executa simultaneamente a segmentação e a classificação.

Uma análise comparativa dividida em três estudos distintos é descrita na classificação dos símbolos
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musicais. São examinados cinco procedimentos diferentes de reconhecimento de padrões. No primeiro

estudo, a base de dados das partituras é aumentada com replicas de padrões existentes, transformados

de acordo com a técnica de deformação elástica. Tais transformações pretendem introduzir invariâncias

na previsão em relação à variabilidade conhecida nos símbolos, particularmente relevantes em trabalhos

manuscritos. No segundo estudo, os classificadores são testados em três situações diferentes: separação

de compositores, aumento gradual de deformações e junção de partituras reais e impressas. No terceiro

estudo, uma aprendizagem da distância da métrica é aplicada num classificador k-NN para reconhecer

os símbolos musicais.

Regras sintáticas e semânticas de música também são incorporados após a segmentação e classifi-

cação dos símbolos musicais como conhecimento prévio. Restrições globais sobre as regras musicais

são incluídos como um problema de otimização. A ideia é detetar a melhor combinação de símbolos, a

fim de dar a medida indicada.

Nesta tese, o leitor encontrará trabalho em várias etapas de um sistema de OMR com avanços

importantes e significativos. Também serão abordadas questões em aberto e tendências futuras.
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CHAPTER 1

Introduction

Music is an art form whose medium is sound. The word derives from Greek µυσική (τ έχνη), “(art)

of the Muses”1.

Music notation, the visual manifestation of the interrelated properties of musical sound – pitch,

intensity, time, timbre and pace – is a combination and prolonged efforts of hundreds of musicians.

They all hoped to express by written symbols the essence of their musical ideas. The final notation was

a kind of alphabet, shaped by a general consensus of opinion to serve as a general expressive technique.

Over the years, music has been an important part of the culture of all societies. In the beginning of

the Eras, the scholars claimed that the ancient music had its existence based on findings from a range

of paleolithic sites, such as bones in which lateral holes have been pierced (flutes). India has one of the

oldest musical traditions in the world. Its origins can be found in the oldest of scriptures, part of the

Hindu tradition, the Vedas. The Indian classical music appears as a meditation tool for attaining self

realization and has one of the most complex and complete musical systems ever developed. Bharat’s

Natyashastra was the first treatise laying down fundamental principles of dance, music and drama.

The earliest and largest collection of prehistoric musical instruments was found in China and dates

back to between 7000 and 6600 BC. In the 9th century, the Arab scholar al-Farabi, who played and

invented a variety of musical instruments, devised the Arab tone system of pitch organisation, which is

still used in Arabic music. In ancient Greece, music was used for entertainment (theater), celebration

and spiritual ceremonies. Music was an important part of education in ancient Greece, and boys were

taught music starting at age six.

During the Medieval music period (500–1400), the only European repertory which has survived

from before about 800 is the monophonic liturgical plainsong of the Roman Catholic Church, currently

called Gregorian chant. From the Renaissance music Era (1400–1600), much of the surviving mu-

sic of 14th century Europe is secular. The Era of Baroque music (1600–1750) began when the first

operas were written and when contrapuntal music became prevalent. A fabulous composer from this

time was Johann Sebastian Bach. The music of the Classical period (1750–1800) is characterized by

homophonic texture, often featuring a prominent melody with accompaniment. Here a new musical

form was incorporated to sonata and concerto, the symphony. Joseph Haydn and Wolfgang Amadeus

Mozart are among the central figures of this Classical period. In 1800 – Romantic Era (1800–1890s) –

Ludwig van Beethoven and Franz Schubert introduced a more dramatic and expressive style to music.

During this time, existing genres, forms, and functions of music were developed, and the emotional

and expressive qualities of music came to take precedence over technique and tradition. The melody

became the most significant compositional unit.

The radio, in the 20th century, contributed to the increase of the expansion of music. The music

focus was characterized by exploration of new rhythms, styles, and sounds – jazz, blues, soul, and

country. Igor Stravinsky was one of the composers that influenced the art music in this century. The

advent of the Internet has transformed the experience of music, partly through the increased ease of ac-

1http://en.wikipedia.org/wiki/Music
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4 Chapter 1. Introduction

cess to music and the increased choice. Online communities like YouTube and MySpace are examples

of these facilities in the distribution of music.

Music has expanded in many several music styles and for many different purposes, even educational

or therapy. The centrality of music in the cultural heritage of any society and the importance of cultural

diversity, as necessary for humankind as biodiversity is for nature, makes policies to promote and

protect cultural diversity an integral part of sustainable development2.

1.1 OMR System Project

Printed documents and handwritten manuscripts deteriorate over time, causing a significant amount

of information to be permanently lost. Among such perishable documents, musical scores are espe-

cially problematic. Across the world, there are many dedicated national and international programs and

projects which have been focused on the preservation of huge volumes of such documents. Digitization

has been commonly used as a possible tool for preservation, offering easy duplications, distribution,

and digital processing. However, a machine-readable symbolic format from the music scores is needed

to facilitate operations such as search, retrieval and analysis. The manual transcription of music scores

into an appropriate digital format is very time consuming. The development of general image process-

ing methods for object recognition has contributed to the development of several important algorithms

for optical music recognition. These algorithms have been central to the development of systems to rec-

ognize and encode music symbols for a direct transformation of sheet music into a machine-readable

symbolic format.

The work developed in this thesis encompasses detection and recognition of musical symbols in

handwritten scores. It aims to overcome the inherent problems of this type of scores using the most

recent techniques of machine learning and artificial intelligence. This thesis is incorporated in an OMR

project founded at Instituto de Engenharia de Sistemas e Computadores do Porto (INESC Porto) with a

partnership with Escola Superior de Música e das Artes do Espectáculo (ESMAE). One of the project

objectives is the creation of a web-based system providing generalized access to a wide corpus of

handwritten and unpublished music encoded in digital format – see Figure 1.1.

Figure 1.1: Web-based system interface.

2http://www.unesco.org/bpi/eng/unescopress/2001/01-112e.shtml

http://www.unesco.org/bpi/eng/unescopress/2001/01-112e.shtml
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A database that centralizes as much information as possible can serve to preserve the musical

heritage in an innovative way [19, 20]. The architecture for the proposed system is represented in

Figure 1.2.

Figure 1.2: Generic system architecture.

The system is composed by three different entities: repository, web server and web browser. Briefly,

the Repository module stores the original scanned score, the digital counterpart in MusicXML and all

the descriptive metadata inserted by the user. All the remaining system contents, such as the user

information, are also stored in this entity. The Web Server is the user access point to the system as well

as to all of its processing modules run on the server, encompassing the search engine and the optical

recognition engine for the musical scores. The Web Server interacts with the Repository and with the

Web Browser, which establishes the interface between the user and the system. The user interface on a

Web Browser allows the complete management of the musical scores and associated metadata, as well

as carrying out the system administration tasks.

This thesis is part of this longer project to bring innovation in an area that needs algorithms to rec-

ognize handwritten scores and improvements in the performance of existing ones. It has the ambition

to develop a formal model that covers the bidimensional structure of the musical notation, in a consis-

tency and robust way. Moreover, the research of the potential of the machine learning techniques and

artificial intelligence in order to merge knowledge and make decisions is a further goal of this thesis.

The digitization and preservation of a wide corpus of handwritten scores in a way never before explored

is also a target in mind.

1.2 OMR Architecture

Breaking down the problem of transforming a music score into a graphical music-publishing file in

simpler operations is a common but complex task. This is consensual among most authors that work in

the field.

The main objectives of an OMR system are the recognition, the representation and the storage of

musical scores in a machine-readable format. An OMR program should thus be able to recognize the

musical content and make the semantic analysis of each musical symbol of a music work. In the end,

all the musical information should be saved in an output format that is easily readable by a computer.

A typical framework for the automatic recognition of a set of music sheets encompasses four main

stages (see Figure 1.3):
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1. image preprocessing;

2. recognition of musical symbols;

3. reconstruction of the musical information in order to build a logical description of musical nota-

tion;

4. construction of a musical notation model to be represented as a symbolic description of the

musical sheet.

For each of the stages described above, different methods exist to perform the respective task.

In the image preprocessing stage, several techniques – e.g. enhancement, binarization, noise re-

moval, blurring, de-skewing – can be applied to the music score in order to make the recognition

process more robust and efficient. The reference lengths staff line thickness (staffline_height) and ver-

tical line distance within the same staff (staffspace_height) are often computed, providing the basic

scale for relative size comparisons (Figure 2.3).

The output of the image preprocessing stage constitutes the input for the next stage, the recognition

of musical symbols. This is typically further subdivided into three parts: (1) staff line detection and

removal, to obtain an image containing only the musical symbols; (2) symbol primitive segmentation;

and (3) symbol recognition. In this last stage the classifiers usually receive raw pixels as input features.

However, some works also consider higher-level features, such as information about the connected

components or the orientation of the symbol. Classifiers are built by taking a set of labeled examples of

music symbols and randomly split them into training and test sets. The best parameterization for each

model is normally found based on a cross validation scheme conducted on the training set.

The third and fourth stages (musical notation reconstruction and final representation construction)

can be intrinsically intertwined. In the stage of musical notation reconstruction, the symbol primitives

are merged to form musical symbols. In this step, graphical and syntactic rules are used to introduce

context information to validate and solve ambiguities from the previous module (music symbol recog-

nition). Detected symbols are interpreted and assigned a musical meaning. In the fourth and final stage

(final representation construction), a format of musical description is created with the previously pro-

duced information. The system output is a graphical music-publishing file, like MIDI or MusicXML.

Some authors use several algorithms to perform different tasks in each stage, such as using an

algorithm for detecting noteheads and a different one for detecting the stems. For example, Byrd and

Schindele [18] and Knopke and Byrd [73] use a voting system with a comparison algorithm in order to

merge the best features of several OMR algorithms in order to produce better results.

1.3 Objectives

This thesis has the ambition to achieve better results from the ones presented in the actual state-of-the-

art methods that are incapable to deal in a robust way with the inconsistencies of the writing music.

Hence, this work will encompass the research of new procedures for OMR for handwritten and printed

scores. The study presupposes the comprehension of image processing processes, pattern recognition

techniques, and machine learning. The proposed methodology wants to include in a natural way con-

textual information and music writing rules in the music symbols recognition. Moreover, the inclusion

of syntactic and semantic musical rules as prior knowledge in the process is also an aim. The explo-
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ration of global constraints associated to musical rules should allow to overcome the existing problems

in the current algorithms.

1.4 Contributions and Related Publications

This dissertation presents the following contributions for the preservation and the general access to

musical and cultural heritage:

1. The creation of a database of real scores with its segmented references: binary images, detection

and removal of the staff lines and classes and positions of the music symbols.

2. Analysis and study of different binarization methods applied to music scores, which has never

been done.

3. The introduction to the music analysis community of a robust method to estimate the staff line

thickness and spacing in binary and gray-level music scores.

4. The introduction to the music analysis community of the Binarization algorithm based in LIne

Spacing and Thickness (BLIST) to binarize the music scores.

5. The introduction to the music analysis community of the algorithm for staff lines detection based

in the Stable Path approach.

6. Integration of graphical and syntactic rules in the automatic extraction algorithm of the music

symbols.

7. New studies and analysis conducted in the phase of musical symbols classification.

The work related with this thesis already resulted in the publication of the followings journals:

• “Optical music recognition - state-of-the-art and open issues for handwritten music scores”, Ana

Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, Andre R. S. Marcal, Carlos Guedes, and Jaime S.

Cardoso, in International Journal of Multimedia Information Retrieval, 2012.

• “Optical Recognition of Music Symbols: a comparative study”, Ana Rebelo, Artur Capela and

Jaime S. Cardoso, in International Journal on Document Analysis and Recognition, volume 13,

pages 19–31, 2010.

• “Staff Detection with Stable Paths”, Jaime S. Cardoso, Artur Capela, Ana Rebelo, Carlos Guedes,

Joaquim Pinto da Costa, in IEEE Transaction on Pattern Analysis and Machine Intelligence, vol-

ume 31, pages 1134–1139, 2009.

And the following conference papers:

• “Music score binarization based on domain knowledge”, Telmo Pinto, Ana Rebelo, Gilson Gi-

raldi and Jaime S. Cardoso, in In Proceedings of 5th Iberian Conference on Pattern Recognition

and Image Analysis (IbPRIA), 2011.

• “A Method for Music Symbols Extraction based on Musical Rules”, Ana Rebelo, Filipe Paszkiewicz,

Carlos Guedes, Andre R. S. Marcal, and Jaime S. Cardoso, in In Bridges: Mathematical Con-

nections in Art, Music, and Science (BRIDGES), 2011.
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• “Metric Learning for Music Symbols Recognition”, Ana Rebelo, Jakub Tkaczuk, Ricardo Sousa

and Jaime S. Cardoso, in In Proceedings of 10th International Conference on Machine Learning

and Applications (ICMLA), 2011.

• “Robust staffline thickness and distance estimation in binary and gray-level music scores”, Jaime

S. Cardoso and Ana Rebelo, In Proceedings of The Twentieth International Conference on Pat-

tern Recognition, pages 1856–1859, 2010.

I also participated in the following portuguese scientific encounters:

• “Music Symbols Extraction Based on Domain Knowledge”, Ana Rebelo and Jaime S. Cardoso,

in RECPAD, 2011.

• “Content aware music score pre-processing”, Ana Rebelo and Jaime S. Cardoso, in Proceedings

of 16th Portuguese Conference on Pattern Recognition (RECPAD), 2010.

The following paper will also be submitted:

• “Global constraints for syntactic consistency in OMR”, Ana Rebelo, Andre R. S. Marcal and

Jaime S. Cardoso, in In Proceedings of 6th Iberian Conference on Pattern Recognition and Image

Analysis (IbPRIA), 2013.

1.5 Thesis’ Structure

This thesis is organized in 9 chapters that describe the work developed over a period of four years.

After the Introduction, the description of the works related with this thesis will be made in Chapter 2.

In Chapter 3 the database used is presented, while in Chapter 4 the techniques that were used in

this thesis are given.

The image preprocessing stage starts in the Chapter 5. Most OMR algorithms rely on an estimation

of the staffline thickness and the vertical line distance within the same staff. Subsequent operation

can use these values as references, dismissing the need for some predetermined threshold values. In

this work an improvement on previous conventional estimates for these two reference lengths is pre-

sented. A new method for binarized music scores extending the approach for gray-level music scores

is proposed.

In Chapter 6, a description of the proposed binarization algorithm is described. The applied error

metrics to test the algorithm and the obtained results are also presented.

A method for the automatic detection of staff lines is proposed in Chapter 7. This Chapter describes

the first step of the music symbol recognition module. The proposed paradigm uses the image as a

graph, where the staff lines are considered as connected paths between the two margins of the image.

Firstly, the concept of stable path is introduced in order to improve the computational performance

of the method. Secondly, the design of the weights on the graph resulting from the music score is

generalized to differentiate black pixels belonging to the staff lines from black pixels resulting from

the music symbols. Finally, the post processing is refined, improving the overall performance. A

further development is the study of new staff removal algorithms, by incorporating the proposed staff

line detection on standard staff removal algorithms. The experimental work reported at the end of the
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chapter includes a thorough testing on synthetic and real scores, with the latter manually processed to

be used as ground truth.

In Chapter 8 the algorithms for detection of the musical symbols are addressed. This phase consist

in localizing and isolating the musical objects in order to identify them. In section 8.1 the music sym-

bol recognition was composed by two main steps: first the image was segmented in order to detect and

isolate the primitives elements and then the symbols were classified. In section 8.2 the music symbols

were simultaneously segmented and recognized. A comparative study of the most common classifica-

tion algorithms applied to music symbols, extending and updating previous comparative works [106]

is provided in Section 8.1.2. The performances of HMMs, RVMs, SVMs, NNs and k-NNs methods are

compared using both real and synthetic scores. The work presented here can open new research paths

towards a novel automatic musical symbols recognition module for handwritten scores.

This thesis finishes with Chapter 9 where conclusions are presented and future work is discussed.



CHAPTER 2

State-of-the-art∗

The musical score is the primary artifact for the transmission of musical expression for non-aural tra-

ditions. Over the centuries, musical scores have evolved dramatically in both symbolic content and

quality of presentation. The appearance of musical typographical systems in the late 19th century and,

more recently, the emergence of very sophisticated computer music manuscript editing and page-layout

systems, illustrate the continuous absorption of new technologies into systems for the creation of mu-

sical scores and parts. Until quite recently, most composers of all genres – film, theater, concert, sacred

music – continued to use the traditional “pen and paper” finding manual input to be the most efficient.

Early computer music typesetting software developed in the 1970’s and 1980’s produced excellent out-

put but was awkward to use. Even the introduction of data entry from musical keyboard (MIDI piano

for example) provided only a partial solution to the rather slow keyboard and mouse GUI’s. There are

many scores and parts still being “hand written”. Thus, the demand for a robust and accurate Optical

Music Recognition (OMR) system remains.

The research field of OMR began with Pruslin [98] and Prerau [96] and, since then, has undergone

many important advancements. Several surveys and summaries have been presented to the scientific

community: Kassler [70] reviewed two of the first dissertations on OMR, Blostein and Baird [13]

published an overview of OMR systems developed between 1966 and 1992, Bainbridge and Bell [4]

published a generic framework for OMR (subsequently adopted by many researchers in this field),

and both Homenda [60] and Rebelo et al. [106] presented pattern recognition studies applied to music

notation. Jones et al. [66] presented a study in music imaging, which included digitization, recognition

and restoration, and also provided a well detailed list of hardware and software in OMR together with

an evaluation of three OMR systems.

Access to low-cost flat-bed digitizers during the late 1980’s contributed to an expansion of OMR

research activities. Several commercial OMR software have appeared, but none with a satisfactory

performance in terms of precision and robustness, in particular for handwritten music scores [9]. Until

now, even the most advanced recognition products including Notescan in Nightingale2, Midiscan in

Finale3, Photoscore in Sibelius4 and others such as Smartscore5 and Sharpeye6, cannot identify ev-

ery musical symbol. Furthermore, these products are focused primarily on recognition of typeset and

printed music documents and while they can produce quite good results for these documents, they do

not perform very well with hand-written music. The bi-dimensional structure of musical notation, re-

vealed by the presence of the staff lines alongside the existence of several combined symbols organized

around the noteheads, poses a high level of complexity in the OMR task.

In this chapter, we survey the relevant methods and models in the literature for the optical recogni-

tion of musical scores.

∗Some portions of this chapter appears in [107]
2http://www.ngale.com/.
3http://www.finalemusic.com/.
4http://www.neuratron.com/photoscore.htm.
5http://www.musitek.com/.
6http://www.music-scanning.com/.

11
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2.1 Image Pre-processing

The music scores processed by the state-of-art algorithms, described in the following sections, are

mostly written in a standard modern notation (from the 20th century). However, there are also some

methods proposed for 16th and 17th century printed music. Figure 2.1 shows typical music scores used

for the development and testing of algorithms in the scientific literature. In most of the proposed works

the music sheets were scanned at a resolution of 300 dpi [57, 85, 48, 114, 73, 34, 22, 106, 47], but

other resolutions were also considered: 600 dpi [112, 75] or 400dpi [99, 124]. No studies have been

carried out in order to evaluate the dependency of the proposed methods on other resolution values, thus

restricting the quality of the objects presented in the music scores, and consequently the performance

of OMR algorithms.

(a) Modern music notation. (b) Early music notation.

Figure 2.1: Some examples of music scores used in the state-of-art algorithms. (a) from Rebelo [104,
Fig.4.4a)].)

In digital image processing, as in all signal processing systems, different techniques can be applied

to the input, making it ready for the detection steps. The motivation is to obtain a more robust and

efficient recognition process. Enhancement [57], binarization (e.g. [53, 57, 85, 48, 22, 55, 126]), noise

removal (e.g. [53, 57, 124, 126]), blurring [57], de-skewing (e.g. [53, 57, 85, 48, 126]) and morpholog-

ical operations [57] are the most common techniques for preprocessing music scores.

2.1.1 Binarization

Almost all OMR systems start with a binarization process. This means that the digitized image must

be analyzed, in order to determine what is useful (the objects, being the music symbols and staves) and

what is not (the background, noise). To make binarization an automatic process, many algorithms have

been proposed in the past, with different success rates, depending on the problem at hand. Binarization

has the big virtue in OMR of facilitating the following tasks by reducing the amount of information

that needs to be processed. In turn, this results in higher computational efficiency (more important in

the past than nowadays) and eases the design of models to tackle the OMR task. It has been easier

to propose algorithm for line detection, symbol segmentation and recognition in binary images than

in grayscale or colour images. This approach is also supported by the typical binary nature of music

scores. Usually, the author does not aim to portray information in different shades of gray; it is more a
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consequence of the writing or of the digitization process. However, since binarization often introduces

artifacts, the advantages of binarization in the complete OMR process are not clear.

Burgoyne et al. [17] and Pugin et al. [100] presented a comparative evaluation of image binarization

algorithms applied to 16th-century music scores. Both works used Aruspix, a software application for

OMR which provides symbol-level recall and precision rate to measure the performance of different bi-

narization procedures. In [17] they worked with a set of 8000 images. The best result was obtained with

the Brink and Pendock [15]’s method. The adaptive algorithm with the highest ranking was Gatos et

al. [54]. Nonetheless, the binarization of the music score still need attention with researchers invariably

using standard binarization procedures, such as the Otsu’s method (e.g. [57, 99, 22, 106]). The devel-

opment of binarization methods specific to music scores could potentially provides better performances

than the generic counterparts’, and leverages the performance of subsequent operations [95].

The fine-grained categorization of existing techniques presented in Figure 2.2 follows the survey

in [119], where the classes were chosen according to the information extracted from the image pixels.

Despite this labelling, the categories are essentially organized into two main topics: global and adaptive

thresholds.

Thresholding
Methods Entropy

[69],
[116],

[37], . . .

Clustering [92],
[111],

[95], . . .

Histogram
analysis

[118],
[133],

[72] . . .

Locally
adapted

threshold

[90],
[11],

[141],
. . .

Pixel
correlation

[93],
[51], . . .

Objects
attributes [25],

[63], . . .

Figure 2.2: Landscape of automated thresholding methods. From Pinto et al [95, Fig.1].

Global thresholding methods apply one threshold to the entire image. Ng and Boyle [86] and Ng

et al. [88] have adopted the technique developed by Ridler and Calvard [111]. This iterative method

achieves the final threshold through an average of two sample means (T = (µb + µf )/2). Initially, a

global threshold value is selected for the entire image and then a mean is computed for the background

pixels (µb) and for the foreground pixels (µf ). The process is repeated based on the new threshold

computed from µb and µf , until the threshold value does not change any more. According to [131, 132],

Otsu’s procedure is ranked as the best and the fastest of these methods [92]. In the OMR field, several

research works have used this technique [57, 99, 22, 106, 126].

In adaptive binarization methods, a threshold is assigned to each pixel using local information from

the image. Consequently, the global thresholding techniques can extract objects from uniform back-

grounds at a high speed, whereas the local thresholding methods can eliminate dynamic backgrounds
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although with a longer processing time. One of the most used method is Niblack [90]’s method which

uses the mean and the standard deviation of the pixel’s vicinity as local information for the threshold

decision. The research work carried out by [124, 46, 47] applied this technique to their OMR proce-

dures.

Only recently the domain knowledge has been used at the binarization stage in the OMR area. The

work presented in [95] proposes a new binarization method which not only uses the raw pixel infor-

mation, but also considers the image content. The process extracts content related information from

the grayscale image, the staff line thickness (staff- line_height) and the vertical line distance within

the same staff (staffspace_height), to guide the binarization procedure. The binarization algorithm

was designed to maximize the number of pairs of consecutive runs summing staffline_height + staffs-

pace_height. The authors suggest that this maximization increases the quality of the binarized lines and

consequently the subsequent operations in the OMR system.

Until now Pinto et al. [95] seems to be the only threshold method that uses content of gray-level

images of music scores deliberately to perform the binarization.

2.1.2 Reference Lengths

In the presence of a binary image most OMR algorithms rely on an estimation of the staff line thickness

and the distance that separates two consecutive staff lines – see Figure 2.3.

Figure 2.3: The characteristic page dimensions of staffline_height and staffspace_height. From Car-
doso and Rebelo [23].

Further processing can be performed based on these values and be independent of some predeter-

mined magic numbers. The use of fixed threshold numbers, as found in other areas, causes systems to

become inflexible, making it more difficult for them to adapt to new and unexpected situations.

The well-known run-length encoding (RLE), which is a very simple form of data compression in

which runs of data are represented as a single data value and count, is often used to determine these

reference values (e.g. [53, 114, 34, 22, 41]) – another technique can be found in [126]. By encoding

each column of a digitized score using RLE, the most common black-run represents the staffline_height

and the most common white-run represents the staffspace_height.

Nonetheless, there are music scores with high levels of noise, not only because of the low quality of

the original paper in which it is written, but also because of the artifacts introduced during digitization

and binarization. These aspects make the results unsatisfactory, impairing the quality of subsequent

operations. Figure 2.4 illustrates this problem. For this music score, we have pale staff lines that broke

up during binarization providing the conventional estimation staffline_height = 1 and staffspace_height

= 1 (the true values are staffline_height = 5 and staffspace_height = 19).
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(a) Original music score #17.

(b) Score binarized with Otsu’s method.

Figure 2.4: Example of an image where the estimation of staffline_height and staffspace_height by
vertical runs fails. From Cardoso and Rebelo [23, Fig.2].

The work suggested by Cardoso and Rebelo [23], which encouraged the work proposed in [95],

presents a more robust estimation of the sum of staffline_height and staffspace_-_height by finding the

most common sum of two consecutive vertical runs (either black run followed by white run or the re-

verse). In this manner, to reliably estimate staffline_height and staffspace_height values, the algorithm

starts by computing the 2D histogram of the pairs of consecutive vertical runs and afterwards it selects

the most common pair for which the sum of the runs equals staffline_height + staffspace_height.

2.2 Staff Line Detection and Removal

Staff line detection and removal are fundamental stages in many optical music recognition systems. The

reason to detect and remove the staff lines lies on the need to isolate the musical symbols for a more

efficient and correct detection of each symbol present in the score. Notwithstanding, there are authors

who suggested algorithms without the need to remove the staff lines [88, 8, 78, 57, 121, 99, 10]. In

here, the decision is between simplification to facilitate the following tasks with the risk of introducing

noise. For instance, symbols are often broken in this process, or bits of lines that are not removed are

interpreted as part of symbols or new symbols. The issue will always be related to the preservation of

as much information as possible for the next task, with the risk of increasing computational demand

and the difficulty of modelling the data.

Staff detection is complicated due to a variety of reasons. Although the task of detecting and

removing staff lines is completed fairly accurately in some OMR systems, it still represents a challenge.
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The distorted staff lines are a common problem in both printed and handwritten scores. Staff lines are

often not straight or horizontal (due to wrinkles or poor digitization), and in some cases hardly parallel

to each other. Moreover, most of these works are old, which means that the quality of the paper and ink

has decreased severely. Another interesting setting is the common modern case where music notation

is handwritten on paper with preprinted staff lines.

The simplest approach consists of finding local maxima on the horizontal projection of the black

pixels of the image [53, 102]. Assuming straight and horizontal lines, these local maxima represent line

positions. Several horizontal projections can be made with different image rotation angles, keeping the

image where the local maximum is higher. This eliminates the assumption that the lines are always

horizontal. Miyao and Nakano [83] uses Hough Transform to detect staff lines. An alternative strategy

for identifying staff lines is to use vertical scan lines [24]. This process is based on a Line Adjacency

Graph (LAG). LAG searches for potential sections of lines: sections that satisfy criteria related to

aspect ratio, connectedness and curvature. More recent works present a sophisticated use of projection

techniques combined in order to improve the basic approach [3, 8, 114, 10].

Fujinaga [53] incorporates a set of image processing techniques in the algorithm, including run-

length coding (RLC), connected-component analysis, and projections. After applying the RLC to find

the thickness of staff lines and the space between the staff lines, any vertical black run that is more than

twice the staff line height is removed from the original. Then, the connected components are scanned

in order to eliminate any component whose width is less than the staff space height. After a global

de-skewing, taller components, such as slurs and dynamic wedges are removed.

Other techniques for finding staff lines include the grouping of vertical columns based on their

spacing, thickness and vertical position on the image [110], rule-based classification of thin horizontal

line segments [80], and line tracing [96, 113, 126]. The methods proposed in [84, 123] operate on a

set of staff segments, with methods for linking two segments horizontally and vertically and merging

two overlapped segments. Dutta et al. [41] proposed a similar but simpler procedure than previous

ones. The authors considered a staff line segment as an horizontal connection of vertical black runs

with uniform height, and validating it using neighboring properties. The work by Dalitz et al. [34] is

an improvement on the methods of [84, 123].

In spite of the variety of methods available for staff lines detection, they all have some limitations.

In particular, lines with some curvature or discontinuities are inadequately resolved. The dash detec-

tor [77] is one of a few works that try to handle discontinuities. The dash detector is an algorithm

that searches the image, pixel by pixel, finding black pixel regions that it classifies as stains or dashes.

Then, it tries to unite the dashes to create lines.

A common problem to all the above mentioned techniques is that they try to build staff lines from

local information, without properly incorporating global information in the detection process. None

of the methods tries to define a reasonable process from the intrinsic properties of staff lines, namely

the fact that they are the only extensive black objects on the music score. Usually, the most interest-

ing techniques arise when one defines the detection process as the result of optimizing some global

function. In [22], the authors proposed a graph-theoretic framework where the staff line is the result

of a global optimization problem. The new staff line detection algorithm suggests using the image as

a graph, where the staff lines result as connected paths between the two lateral margins of the image.

A staff line can be considered a connected path from the left side to the right side of the music score.

As staff lines are almost the only extensive black objects on the music score, the path to look for is the
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shortest path between the two margins if paths (almost) entirely through black pixels are favoured. The

performance was experimentally supported on two test sets adopted for the qualitative evaluation of

the proposed method: the test set of 32 synthetic scores from [34], where several known deformations

were applied, and a set of 40 real handwritten scores, with ground truth obtained manually.

2.3 Symbol Segmentation and Recognition

The extraction of music symbols is the operation following the staff line detection and removal. The

segmentation process consists of locating and isolating the musical objects in order to identify them.

In this stage, the major problems in obtaining individual meaningful objects are caused by printing and

digitization, as well as paper degradation over time. The complexity of this operation concerns not only

the distortions inherent to staff lines, but also broken and overlapping symbols, differences in sizes and

shapes and zones of high density of symbols. The segmentation and classification process has been the

object of study in the research community (e.g. [26, 8, 114, 130]).

The most usual approach for symbol segmentation is an hierarchical decomposition of the music

image. A music sheet is first analyzed and split by staffs and then the elementary graphic symbols are

extracted: noteheads, rests, dots, stems, flags, etc. (e.g. [86, 110, 83, 26, 39, 57, 106, 126]). Although

in some approaches [106] noteheads are joined with stems and also with flags for the classification

phase, in the segmentation step these symbols are considered to be separate objects. In this manner,

different methods use equivalent concepts for primitive symbols.

Usually, the primitive segmentation step is made along with the classification task [114, 130];

however there are exceptions [53, 8, 10]. Mahoney [80] builds a set of candidates to one or more

symbol types and then uses descriptors to select the matching candidates. Carter [24] and Dan [36]

use a LAG to extract symbols. The objects resulting from this operation are classified according to the

bounding box size, the number and organization of their constituent sections. Reed and Parker [110]

also uses LAGs to detect lines and curves. However, accidentals, rests and clefs are detected by a

character profile method, which is a function that measures the perpendicular distance of the object’s

contour to reference axis, and noteheads are recognized by template matching. Other authors have

chosen to apply projections to detect primitive symbols [97, 53, 8, 10]. The recognition is done using

features extracted from the projection profiles. In [53], the k-nearest neighbor (kNN) rule is used in the

classification phase, while neural networks (NNs) is the classifier selected in [86, 83, 8, 10]. Choudhury

et al. [26] proposed the extraction of symbol features, such as width, height, area, number of holes and

low-order central moments, whereas Taubman [127] preferred to extract standard moments, centralized

moments, normalized moments and Hu moments. Both systems classify the music primitives using the

kNN method.

Randriamahefa et al. [102] proposed a structural method based on the construction of graphs for

each symbol. These are isolated by using a region growing method and thinning. In [114] a fuzzy model

supported on a robust symbol detection and template matching was developed. This method is set to

deal with uncertainty, flexibility and fuzziness at the level of the symbol. The segmentation process is

addressed in two steps: individual analysis of musical symbols and fuzzy model. In the first step, the

vertical segments are detected by a region growing method and template matching. The beams are then

detected by a region growing algorithm and a modified Hough Transform. The remaining symbols are
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extracted again by template matching. As a result of this first step, three recognition hypotheses occur,

and the fuzzy model is then used to make a consistent decision.

Other techniques for extracting and classifying musical symbols include rule-based systems to rep-

resent the musical information, a collection of processing modules that communicate by a common

working memory [113] and pixel tracking with template matching [130]. Toyama et al. [130] check

for coherence in the primitive symbols detected by estimating overlapping positions. This evalua-

tion is carried out using music writing rules. Coüasnon [29, 27] proposed a recognition process en-

tirely controlled by grammar which formalizes the musical knowledge. Bainbridge [3] uses PRIMELA

(PRIMitive Expression LAnguage) language, which was created for the CANTOR (CANTerbury Op-

tical music Recognition) system, in order to recognise primitive objects. In [110] the segmentation

process involves three stages: line and curves detection by LAGs, accidentals, rests and clefs detection

by a character profile method and noteheads recognition by template matching. Fornés et al. [45] pro-

posed a classifier procedure for handwritten symbols using the Adaboost method with a Blurred Shape

Model descriptor.

It is worth mentioning that in some works, we assist to a new line of approaches that avoid the prior

segmentation phase in favour of methods that simultaneously segment and recognize, thus segmenting

through recognition. In [99, 101] the segmentation task is based on Hidden Markov Models (HMMs).

This process performs segmentation and classification simultaneously. The extraction of features di-

rectly from the image frames has advantages. Particularly, it avoids the need to segment and track the

objects of interest, a process with a high degree of difficulty and prone to errors. However, this work

applied this technique only in very simple scores, that is, scores without slurs or more than one symbol

in the same column and staff.

In [88] a framework based on a mathematical morphological approach commonly used in document

imaging is proposed. The authors applied a skeletonization technique with an edge detection algorithm

and a stroke direction operation to segment the music score. Goecke [57] applies template matching to

extract musical symbols. In [127] the symbols are recognized using statistical moments. This way, the

proposed OMR system is trained with strokes of musical symbols and a statistical moment is calculated

for each one of them; the class for an unknown symbol is assigned based on the closest match. In [48]

the authors start by using median filters with a vertical structuring element to detect vertical lines.

Then they apply a morphological opening using an elliptical structuring element to detect noteheads.

The bar lines are detected considering its height and the absence of noteheads in its extremities. Clef

symbols are extracted using Zernike moments and Zoning, which code shapes based on the statistical

distribution of points. Although a good performance was verified in the detection of these specific

symbols, the authors did not extract the other symbols that were also present on a music score and

are indispensable for a complete optical music recognition. In [106] the segmentation of the objects

is based on an hierarchical decomposition of a music image. A music sheet is first analyzed and split

by staffs. Subsequently, the connected components are identified. To extract only the symbols with

appropriate size, the connected components detected in the previous step are selected. Since a bounding

box of a connected component can contain multiple connected components, care is taken in order to

avoid duplicate detections or failure to detect any connected component. In the end, all music symbols

are extracted based on their shape. In [126] the symbols are extracted using a connected components

process and small elements are removed based on their size and position on the score. The classifiers

adopted were the kNN, the Mahalanobis distance and the Fisher discriminant.
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Some studies were conducted in the music symbols classification phase, more precisely the compar-

ison of results between different recognition algorithms. Homenda and Luckner [61] studied decision

trees and clustering methods. The symbols were distorted by noise, printing defects, different fonts,

skew and curvature of scanning. The study starts with the extraction of some symbols features. Five

classes of music symbols were considered. Each class had 300 symbols extracted from 90 scores. This

investigation encompassed two different classification approaches: classification with and without re-

jection. In the later case, every symbol belongs to one of the given classes, while in the classification

with rejection, not every symbol belongs to a class. Thus, the classifier should decide if the symbol

belongs to a given class or if it is an extraneous symbol and should not be classified. Rebelo et al [106]

carried out an investigation on four classification methods, namely Support Vector Machines (SVMs),

NNs, kNN and HMMs. The performances of these methods were compared using both real and syn-

thetic scores. In [109] the authors proposed a method to learn a Mahalanobis distance for the kNN and

extended it to SVMs. The idea was to take advantage of distance learning to improve the classifica-

tion accuracy. The learnt distance metric was directly connected with the application domain and the

adopted symbol representation.

A more recent procedure for pattern recognition is the use of classifiers with a reject option [32, 58,

122]. The method integrates a confidence measure in the classification model in order to reject uncertain

patterns, namely broken and touching symbols. The advantage of this approach is the minimization of

misclassification errors in the sense that it chooses not to classify certain symbols (which are then

manually processed).

Lyrics recognition is also an important issue in the OMR field, since lyrics make the music docu-

ment even more complex. In [16] techniques for lyric editor and lyric lines extraction were developed.

After staff lines removal, the authors computed baselines for both lyrics and notes, stressing that base-

lines for lyrics would be highly curved and undulating. The baselines are extracted based on local

minima of the connected components of the foreground pixels. This technique was tested on a set of 40

images from the Digital Image Archive of Medieval Music. In [56] an overview of existing solutions to

recognize the lyrics in Christian music sheets is described. The authors stress the importance of asso-

ciating the lyrics with notes and melodic parts in order to provide more information to the recognition

process. Resolutions for page segmentation, character recognition and final representation of symbols

are presented.

Despite the number of techniques already available in the literature, research on improving symbol

segmentation and recognition is still important and necessary. All OMR systems depend on this step.

2.4 Musical Notation Construction and Final Representation

The final stage in a music notation construction engine is to extract the musical semantics from the

graphically recognised shapes, and store them in a musical data structure. Essentially, this involves

combining the graphically recognized musical features with the staff systems to produce a musical

data structure representing the meaning of the scanned image. This is accomplished by interpret-

ing the spatial relationships between the detected primitives found in the score. If we are dealing

with optical character recognition (OCR) this is a simple task, because the layout is predominantly

one-dimensional. However, in music recognition, the layout is much more complex. The music is

essentially two-dimensional, with pitch represented vertically and time horizontally. Consequently,
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positional information is extremely important. The same graphical shape can mean different things in

different situations. For instance, to determine if a curved line between two notes is a slur or a tie, it

is necessary to consider the pitch of the two notes. Moreover, musical rules involve a large number of

symbols that can be spatially far from each other in the score.

Several research works have suggested the introduction of the musical context in the OMR process

by a formalization of musical knowledge using a grammar (e.g. [97, 96, 28, 6, 110, 10]). The grammar

rules can play an important role in music creation. They specify how the primitives are processed, how

a valid musical event should be made, and even how graphical shapes should be segmented. Andronico

and Ciampa [1] and Prerau [97] were pioneers in this area. One of Fujinaga’s first works focused on the

characterization of music notation by means of a context-free and LL(k) grammar. Coüasnon [28, 30]

also based their works on a grammar, which is essentially a description of the relations between the

graphical objects and a parser, which is the introduction of musical context with syntactic or semantic

information. The author claims that this approach will reduce the risk of generating errors imposed dur-

ing the symbols extraction, using only very local information. The proposed grammar is implemented

in λProlog, a higher dialect of Prolog with more expressive power, with semantic attributes connected

to C libraries for pattern recognition and decomposition. The grammar is directly implemented in

λProlog using Definite Clause Grammars (DCG’s) techniques. It has two levels of parsing: a graphical

one corresponding to the physical level and a syntactic one corresponding to the logical level. The

parser structure is a list composed of segments (non-labeled) and connected components, which do not

necessarily represent a symbol. The first step of the parser is the labeling process, the second is the

error detection. Both operations are supported by the context introduced in the grammar. However, no

statistical results are available for this system.

Bainbridge [3] also implemented a grammar-based approach using DCG’s to specify the relation-

ships between the recognized musical shapes. This work describes the CANTOR system, which has

been designed to be as general as possible by allowing the user to define the rules that describe the

music notation. Consequently, the system is readily adaptable to different publishing styles in Com-

mon Music Notation (CMN). The authors argue that their method overcame the complexity imposed

in the parser development operation proposed in [28, 30]. CANTOR avoids such drawbacks by using a

bag7 of tokens instead of using a list of tokens. For instance, instead of getting a unique next symbol,

the grammar can “request” a token, e.g. a notehead, from the bag, and if its position does not fit in

with the current musical feature that is being parsed, then the grammar can backtrack and request the

“next” notehead from the bag. To deal with complexity time, the process uses derivation trees of the

assembled musical features during the parse execution. In a more recent work Bainbridge and Bell [6]

incorporated a basic graph in CANTOR system according to each musical feature’s position (x, y). The

result is a lattice-like structure of musical feature nodes that are linked horizontally and vertically. This

final structure is the musical interpretation of the scanned image. Consequently, additional routines

can be incorporated in the system to convert this graph into audio application files (such as MIDI and

CSound) or music editor application files (such as Tilia or NIFF).

Prerau [96] makes a distinction between notational grammars and higher-level grammars for music.

While notation grammars allow the computer to recognize important music relationships between the

symbols, the higher-level grammars deal with phrases and larger units of music.

7A bag is a one-dimensional data structure which is a cross between a list and a set; it is implemented in Prolog as a
predicate that extracts elements from a list, with unrestricted backtracking.
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Other techniques to construct the musical notation are based on fusion of musical rules and heuris-

tics (e.g. [36, 88, 39, 114]) and common parts on the row and column histograms for each pair of

symbols [126]. Rossant and Bloch [114] proposed an optical music recognition (OMR) system with

two stages: detection of the isolated objects and computation of hypotheses, both using low-level pre-

processing, and final correct decision based on high-level processing which includes contextual infor-

mation and music writing rules. In the graphical consistency (low-level processing) stage, the purpose

is to compute the compatibility degree between each object and all the surrounding objects, according

to their classes. The graphical rules used by the authors were:

• Accidentals and notehead: an accidental is placed before a notehead and at same height.

• Noteheads and dots: the dot is placed after or above a notehead in a variable distance.

• Between any other pair of symbols: they cannot overlapped.

In the syntactic consistency (high-level processing) stage, the aim is to introduce rules related to tonal-

ity, accidentals, and meter. Here, the key signature is a relevant parameter. This group of symbols

is placed in the score as an ordered sequence of accidentals placed just after the clef. In the end, the

score meter (number of beats per bar) is checked. In [85, 87, 88] the process is also based on a low-

and high-level approaches to recognize music scores. Once again, the reconstruction of primitives is

done using basic musical syntax. Therefore, extensive heuristics and musical rules are applied to re-

confirm the recognition. After this operation, the correct detection of key and time signature becomes

crucial. They provide a global information about the music score that can be used to detect and correct

possible recognition errors. The developed system also incorporates a module to output the result into

a expMIDI (expressive MIDI) format. This was an attempt to surmount the limitations of MIDI for

expressive symbols and other notations details, such as slurs and beaming information.

More research works produced in the past use Abductive Constraint Logic Programming (ACLP) [43]

and sorted lists that connect all inter-related symbols [26]. In [43] an ACLP system, which integrates

into a single framework Abductive Logic Programming (ALP) and Constraint Logic programming

(CLP), is proposed. This system allows feedback between the high-level phase (musical symbols in-

terpretation) and the low-level phase (musical symbols recognition). The recognition module is carried

out through object feature analysis and graphical primitive analysis, while the interpretation module is

composed of music notation rules in order to reconstruct the music semantics. The system output is

a graphical music-publishing file, such as MIDI. No practical results are known for this architecture’s

implementation.

Other procedures try to automatically synchronize sheet music scanned with a corresponding CD

audio recording [75, 35, 50] by using a matching between OMR algorithms and digital signal process-

ing. Based on an automated mapping procedure, the authors identify scanned pages of music score by

means of a given audio collection. Both scanned score and audio recording are turned into a common

mid-level representation – chroma-based features, where the chroma corresponds to the twelve tradi-

tional pitch classes of the equal-tempered scale – whose sequences are time-aligned using algorithms

based on dynamic time warping (DTW). In the end, a combination of this alignment with OMR results

is performed in order to connect spatial positions within audio recording to regions within scanned

images.
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2.4.1 Summary

Most notation systems make it possible to import and export the final representation of a musical score

for MIDI. However, several other music encoding formats for music have been developed over the

years – see Table 2.1. The OMR systems used are non-adaptive and consequently they do not im-

prove their performance through usage. Studies have been carried out to overcome this limitation by

merging multiple OMR systems [18, 73]. Nonetheless, this remains a challenge. Furthermore, the

results of most OMR systems are only for the recognition of printed music scores. This is the major

gap in state-of-the-art frameworks. With the exception for PhotoScore, which works with handwritten

scores, most OMR systems fail when the input image is highly degraded such as photocopies or doc-

uments with low-quality paper. The work developed in [19] is the beginning of a web-based system

that will provide broad access to a wide corpus of handwritten unpublished music encoded in digital

format. The system includes an OMR engine integrated with an archiving system and a user-friendly

interface for searching, browsing and editing. The output of digitized scores is stored in MusicXML

which is a recent and expanding music interchange format designed for notation, analysis, retrieval,

and performance applications.

Software and Program Output File
SmartScore a Finale, MIDI, NIFF, PDF
SharpEye b MIDI, MusicXML, NIFF
PhotoScore c MIDI, MusicXML, NIFF, Pho-

toScore, WAVE
Capella-Scan d Capella, MIDI, MusicXML
ScoreMaker e MusicXML
Vivaldi Scan f Vivaldi, XML, MIDI
Audiveris g MusicXML
Gamera h XML files

a http://www.musitek.com/
b http://www.music-scanning.com/
c http://www.neuratron.com/photoscore.htm
d http://www.capella-software.com/capella-scan.cfm
e http://www.music-notation.info/en/software/SCOREMAKER.html
f http://www.vivaldistudio.com/Eng/VivaldiScan.asp
g http://audiveris.kenai.com/
h http://gamera.informatik.hsnr.de/

Table 2.1: The most relevant OMR software and programs.

2.5 Available Datasets and Performance Evaluation

There are some available datasets that can be used by OMR researchers to test the different steps of an

OMR processing system. Pinto et al. [95] made available the code and the database8 they created to

estimate the results of binarization procedures in the preprocessing stage. This database is composed of

65 handwritten scores, from 6 different authors. All the scores in the dataset were reduced to gray-level
8http://www.inescporto.pt/˜jsc/ReproducibleResearch.html.
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information. An average value for the best possible global threshold for each image was obtained using

five different people. A subset of 10 scores was manually segmented to be used as ground truth for the

evaluation procedure9. For global thresholding processes, the authors chose three different measures:

Difference from Reference Threshold (DRT); Misclassification Error (ME); and comparison between

results of staff finder algorithms applied to each binarized image. For the adaptive binarization, two

new error rates were included: the Missed Object Pixel rate and the False Object Pixel, dealing with

loss in object pixels and excess noise, respectively.

Three datasets are accessible to evaluate the algorithms for staff lines detection and removal: the

Synthetic Score Database by Christoph Dalitz10, the CVC-MUSCIMA Database by Alicia Fornés11 and

the Handwritten Score Database by Jaime Cardoso12[22]. The first consists of 32 ideal music scores

where different deformations were applied covering a wide range of music types and music fonts. The

deformations and the ground truth information for these syntactic images are accessible through the

MusicStaves toolkit from the Gamera (Generalized Algorithms and Methods for Enhancement and

Restoration of Archives) framework13. Dalitz et al. [34] put their database available together with their

source code. Three error metrics based on individual pixels, staff-segment regions and staff interruption

location were created to measure the performance of the algorithms for staff lines removal. The CVC-

MUSCIMA Database contains 1000 music sheets of the same 20 music scores which were written by

50 different musicians, using the same pen and the same kind of music paper with printed staff lines.

The images of this database were distorted using the algorithms from Dalitz et al. [34]. In total, the

dataset has 12000 images with ground truth for the staff removal task and for writer identification. The

database created by Cardoso is comprised by 50 real scores with real positions of the staff lines and

music symbols obtained manually.

Two datasets are available to train a classifier for the music symbols recognition step. Desaedeleer [38]14,

in his open source project to perform OMR, has created 15 classes of printed music symbols with a total

of 725 objects. Rebelo et al. [106] have created a dataset with 14 classes of printed and handwritten

music symbols, each of them with 2521 and 3222 symbols, respectively15.

As already mentioned in this chapter, there are several commercial OMR systems available16 and

their recognition accuracy, as claimed by the distributor, is about 90 percent [9, 66]. However, this is

not a reliable value. It is not specified what music score database were used and how this value was

estimated. The measurement and comparison in terms of performance of different OMR algorithms

is an issue that has already been widely considered and discussed (e.g. [82, 9, 125, 66]). As referred

in [9] the meaning of music recognition depends on the goal in mind. For instance, some applications

aim to produce an audio record from a music score through document analysis, while others only want

to transcode a score into interchange data formats. These different objectives hinder the creation of a

common methodology to compare the results of an OMR process. Having a way of quantifying the

9The process to create ground-truths is to binarize images by hand, cleaning all the noise and background, making sure
nothing more than the objects remains. This process is extremely time-consuming and for this reason only 10 scores were
chosen from the entire dataset.

10http://music-staves.sourceforge.net
11http://www.cvc.uab.es/cvcmuscima/.
12The database is available upon request to the authors.
13http://gamera.sourceforge.net.
14http://sourceforge.net/projects/openomr/.
15The database is available upon request to the authors.
16http://www.informatics.indiana.edu/donbyrd/OMRSystemsTable.html.
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achievement of OMR systems would be truly significant for the scientific community. On the one hand,

by knowing the OMR’s accuracy rate, we can predict production costs and make decisions on the whole

recognition process. On the other hand, quantitative measures brings progress to the OMR field, thus

making it a reference for researchers [9].

Jones et al. [66] address several important shortcomings to take into consideration when comparing

different OMR systems: (1) each available commercial OMR systems has its own output interface

– for instance, PhotoScore works with Sibelius, a music notation software – becoming very difficult

to assess the performance of the OMR system alone, (2) the input images are not exactly the same,

having differences in input format, resolution and image-depth, (3) the input and output have different

format representations – for instance .mus format is used in the Finale software and not in Sibelius

software, and (4) the differences in the results can be induced by semantic errors. In order to measure

the performance of the OMR systems, Jones et al. [66] also suggest an evaluation approach with the

following aspects: (1) a standard dataset for OMR or a set of standard terminology is needed in order

to objectively and automatically evaluate the entire music score recognition system, (2) a definition of

a set of rules and metrics, encompassing the key points to be considered in the evaluation process, and

(3) the definition of different ratios for each kind of error.

Similarly, Bellini et al. [9] proposed two assessment models focused on basic and composite sym-

bols to measure the results of the OMR algorithms. The motivation for these models was the result of

opinions from copyists and OMR system builders. The former give much importance to details such as

changes in primitive symbols or annotation symbols. The latter, in contrast with the copyists, give more

relevance to the capability of the system to recognize the most frequently used objects. The authors

defined a set of metrics to count the recognized, missed and confused music symbols in order to reach

the recognition rate of basic symbols. Furthermore, since a proper identification of a primitive symbol

does not mean that its composition is correct, the characterization of the relationships with other sym-

bols is also analysed. Therefore, a set of metrics has been defined to count categories of recognized,

faulty and missed composite symbols.

Szwoch [125] proposed a strategy to evaluate the result of an OMR process based on the comparison

of MusicXML files from the music scores. One of the shortcomings of this methodology is in the output

format of the application. Even though MusicXML is becoming more and more a standard music

interchange format, it is not yet used in all music recognition software. Another concern is related to

the comparison between the MusicXML files. The same score can be correctly represented by different

MusicXML codes, making the one-to-one comparison difficult. Miyao and Haralick [82] proposed

data formats for primitive symbols, music symbols and hierarchical score representations. The authors

stress that when using these specific configurations the researchers can objectively and automatically

measure the symbol extraction results and the final music output from an OMR application. Hence, the

primitive symbols must include the size and position for each element, the music symbols must have

the possible combinations of primitive symbols, and the hierarchical score representation must include

the music interpretation. Notwithstanding, this is a difficult approach for comparisons between OMR

software since most of them will not allow the implementation of these models in their algorithms.
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2.6 Open Issues

This section surveyed several techniques currently available in the OMR field. Figure 2.5 summarizes

the various approaches used in each stage of an OMR system. The most important open issues are

related to

• the lack of robust methodologies to recognize handwritten music scores,

• a web-based system providing broad access to a wide corpus of handwritten unpublished music

encoded in digital format,

• a master music dataset with different deformations to test OMR systems,

• a framework with appropriate metrics to measure the accuracy of different OMR systems.
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CHAPTER 3

Data Sets of Music Scores

Music notation emerged from the combined and prolonged efforts of many musicians. They all hoped

to express the essence of their musical ideas by written symbols [103]. Music notation is a kind of

alphabet, shaped by a general consensus of opinion, used to express ways of interpreting a musical

passage. It is the visual manifestation of interrelated properties of musical sound such as pitch, dy-

namics, time, and timbre. Symbols indicating the choice of tones, their duration, and the way they are

performed, are important because they form this written language that we call music notation [104]. In

Table 3.1, we present some common Western music notation symbols that were adopted in this thesis.

Improvements and variations in existing symbols, or the creation on new ones, came about as

it was found necessary to introduce a new instrumental technique, expression or articulation. New

musical symbols are still being introduced in modern music scores, to specify a certain technique or

gesture. Other symbols, especially those that emerged from extended techniques, are already accepted

and known by many musicians (e.g. microtonal notation) but are still not available in common music

notation software. Musical notation is thus very extensive if we consider all the existing possibilities

and their variations.

Moreover, the wider variability of the objects (in size and shape), found on handwritten music

scores, makes the operation of music symbols extraction one of the most complex and difficult in an

OMR system. Publishing variability in handwritten scores is illustrated in Figure 3.1. In this example,

we can see that for the same clef symbol and beam symbol we may have different thicknesses and

shapes.

Figure 3.1: Variability in handwritten music scores.

In this chapter the data sets used to test all the proposed procedures are described. Besides, the way

we obtained the ground-truth information will also be presented.

3.1 Database of Music Scores

The data set adopted for the various developed methods consists in a total of 65 real handwritten scores

of 6 different composers – see Figure 3.5(b) –, 9 printed scores that were scanned (hereafter termed

27
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Symbols Description

Staff: An arrangement of parallel lines, together with the spaces be-
tween them.

Treble, Alto and Bass clef: The first symbols that appear at the begin-
ning of every music staff and tell us which note is found on each line or
space.

Sharp, Flat and Natural: The signs that are placed before the note to
designate changes in sounding pitch.

Beams: Used to connect notes in note-groups; they demonstrate the
metrical and the rhythmic divisions.

Staccato, Staccatissimo, Dynamic, Tenuto, Marcato, Stopped note,
Harmonic and Fermata: Symbols for special or exaggerated stress
upon any beat, or portion of a beat.

Quarter, Half, Eighth, Sixteenth, Thirty-second and Sixty-fourth
notes: The Quarter note (closed notehead) and Half note (open note-
head) symbols indicate a pitch and the relative time duration of the musi-
cal sound. Flags (e.g. Eighth note) are employed to indicate the relative
time values of the notes with closed noteheads.

Quarter, Eighth, Sixteenth, Thirty-second and Sixty-fourth rests:
These indicate the exact duration of silence in the music; each note value
has its corresponding rest sign; the written position of a rest between two
barlines is determined by its location in the meter.

Ties and Slurs: Ties are a notational device used to prolong the time
value of a written note into the following beat. The tie appears to be
identical to slur, however, while tie almost touches the notehead centre,
the slur is set somewhat above or below the notehead. Ties are normally
employed to join the time value of two notes of identical pitch; Slurs af-
fect note-groups as entities indicating that the two notes are to be played
in one physical stroke, without a break between them.

Mordent and Turn: Ornaments symbols that modify the pitch pattern
of individual notes.

Table 3.1: Music notation.

digitized scores) – see Figure 3.4(c) – and 19 synthetic scores, to which distortions were applied – see

Figure 3.5(a). This set consists on the fraction of the dataset available from [34] written on the standard

notation. In total, 2688 images were generated from these 19 perfect scores.

According with the experiences planned the portion of the data set changed as following:
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Stage of OMR system Database Description
Staff line thickness and
distance estimation

50 handwritten scores. The objective was to test the preci-
sion and the robustness of the proposed
method in the presence of irregular-
ities in the illumination and musical
works degraded, thus the synthetic and
printed scores were not considered in
this stage.

Binarization algorithm 65 handwritten scores. The data set of handwritten scores was
increased and the synthetic scores were
not considered. This type of music
sheets are already binary images. Be-
sides, they do not have some important
characteristics, such as heterogeneous
light distribution, noise or back to front
interference. The digitized scores were
also not used because of the lack of
manual references of the global thresh-
old.

Staff line detection and
removal

40 handwritten scores and
2688 images generated
from 32 perfect scores.

The objective was to test the perfor-
mance of the stable path based ap-
proach in detecting staff lines with sev-
eral distortions. A total of 40 handwrit-
ten scores with reference of the staff
lines outlined are available.

Music symbols segmenta-
tion

9 digitized scores, 26
handwritten scores and
882 images generated
from 18 perfect scores.

Only the deformations that cause dis-
tortions in the music symbols were
considered: rotation, curvature and
typeset emulation. A total of 26 hand-
written scores and 9 digitized scores
with reference of the positions of the
music symbols are available.

Music symbols segmenta-
tion and classification

9 digitized scores, 6 hand-
written scores and 132
images generated from 12
perfect scores.

The number of music scores and defor-
mations were restricted to the number
of manual references of the positions of
the musical symbols with their classes.

Table 3.2: Data set adopted in the different stages of the OMR procedure.
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3.2 Deformations in the Synthetic Scores1

As music scores may suffer from deformations, the staff lines may have discontinuities, be curved or

inclined. These problems will influence the success to achieve a correct detection of lines contained

on the score to recognize. Moreover, the detection of the music symbols will also be compromised.

In order to simulate feasible problems of handwritten musical scores, not only to test and evaluate

the algorithms, but also to increase the data set, several distortions were applied to the original set of

synthetic scores. These distortions adopted from [34] can be classified in two categories:

1. Deterministic deformations, which depend of certain parameters, as for instance the rotation.

2. Random defects, which use various parameters about the deformation and a pseudo-random

number generator.

In both cases it is necessary to apply the deformation in parallel with the original score and the ground-

truth staff image.

Despite some deformations that are easy to understand by their name, there are others where this is not

true (the defects resolution, rotation and line interruption are self explanatory). A brief explanation

of these distortions will be done. In Table 3.3 the deformations considered, which are available in the

MusicStaves toolkit2, are listed. In Figure 3.2 the effects caused in the images is possible to see.

Deformation Type Parameter description

Rotation Deterministic Rotation angle
Curvature Deterministic Height ratio: width of sine curve
Typeset Emulation Both Range width, maximal height

and variance of vertical shift
Staff Line Interruptions Random Interruption frequency, maximal width

and variance of range width
Staff Line Thickness Variations Random Markov chain stacionary

distribution and inertia factor
Staff Line y-variation Random Markov chain stacionary

distribution and inertia factor
Degradation After Kanungo Random (η, α0, α, β0, β, κ), see [68]
White speckles Random Speckles frequency, randow walk

length and smoothing factor

Table 3.3: Deformations in the images.

Curvature The curvature is obtained through a half sine wave over the entire score area. The intensity

of the resulting curvature can be measure as the ratio of amplitude (height) and the width of the

wave.

1Some portions of this section appears in [104].
2http://gamera.informatik.hsnr.de/



3.2. Deformations in the Synthetic Scores 31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Some examples of applied deformations from the original image: a) Original; b) Curvature
c) Degradation after Kanungo; d) Staff line thickness variation; e) Staff line y-variation; f) Typeset
emulation; g) Rotation; h) White Speckles; i) Staff line Interruptions.

Typeset emulation This deformation tries to reproduce the 16th-century prints, which are similar, in

some ways, to typewriters, causing, therefore, interruptions in the lines between the symbols and

a random vertical shift in each portion containing a symbol.

Staff line thickness variation and staff line y-variation Staff line thickness variation and staff line

y-variation are obtained by a Markov chain describing the evolution of the staff line thickness

from left to right. These deformations are achieved by that process because, usually, the thickness

at a particular x-position depends on the thickness at the previous x-position. The parameter

is the transition probability matrix P with pij = probability of transition from thickness or y-

deviation i to thickness or y-deviation j. The thickness or y-deviation can be of n different values

(states). To the stationary distribution of the individual states a symmetric binomial distribution

is assumed, that is:

πi =

(
n− 1

i− 1

)
1

2n−1

The mean value (n − 1)/2 of this distribution is associated with the original value in the image

without the deformation (staffline_height for the thickness or zero for the deviation from the

original y-position). The Markov chain is generated with the Metropolis-Hastings algorithm [59].

The transition probability matrix Q, to obtain candidate transition points, is chosen to be:

qij =


c for j = i

1− c/2 for j = i± 1

0 otherwise

where the probability c can be considered as an inertia factor that allows smooth transitions: the

closer c is to one, the slower is the state variation.
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Deformation Parameter range

Rotation angle = −5 : 2.5 : 5

Curvature amplitude/staffwidth = 0.02 : 0.02 : 0.10

Typeset Emulation n_gap = 1 : 3 : 13, n_shift = 1 : 3 : 13, p_gap = 0.5

Staff Line Interruptions frequency α = 0.01 : 0.02 : 0.10,
binomial parameter for width: n = 6, p = 0.5

Staff Line Thickness Variation inertia c = 0.8, maximum deviation = 2 : 1 : 6

Staff Line y-variation inertia c = 0.8, maximum deviation = 2 : 1 : 6

Degradation After Kanungo η = 0, α0 = 0.5, α = 0.25 : 0.3 : 1.5,
β0 = 0.5, β = 0.25 : 0.3 : 1.5, κ = 2

White Speckles smoothing factor k = 2,
random walk length n = 10,
speckle frequency p = 0.03 : 0.02 : 0.11

Table 3.4: Ranges of deformation parameters used in the tests: min:step:max.

Degradation after Kanungo This deformation tries to imitate the local distortions caused during

printing and scanning. The model has six parameters (η, α0, α, β0, β, κ) with different mean-

ings:

• Each black pixel in the original image is flipped with probability α0 exp−αd
2

+η, where d

is the distance to the closest background pixel.

• Each background pixel is flipped with probability β0 exp−βd
2

+η, where d is the distance

to the closest foreground pixel.

• κ is the diameter of a disk of a morphological closing operation.

White speckles This degradation model has three parameters (p, n, k) with the following meaning:

• Each black pixel in the original image is taken with probability p as a starting point for a

random walk of length n.

• k is a rectangle of a morphological closing operation that will smooth an image containing

the random walk.

• The image with the random walks is subtracted from the original: an image with white

speckles at the random walk positions is obtained.

Therefore, p can be interpreted as the speckle frequency, n as a measure for the speckle and k as

a smoothing factor.

The range of deformations parameters in our test set is given in Table 3.4. The values were restricted

with the aim of obtaining realistic deformations. Even so, when real scores are treated, generally,

the deformations do not occur in its pure form; a combination of several deformations is more prone

to happen. However, because the evaluation of the detection algorithms is our objective it is more

adequate to research the performance in each isolated deformation.
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3.3 Deformations applied to each Music Symbol

The full set of training patterns extracted from the database of scores was augmented with replicas of

the existing patterns, transformed according to the elastic deformation technique detailed next. Such

transformations try to introduce robustness in the prediction with respect to the known variability in the

symbols.

The research in deformable template fields applied on handwritten digits and printed characters

recognition is well established (e.g. [76, 136, 91, 65]). Lam [76], one of the first works in this area,

proposed a method of recognition in two-stages. The images are first recognized by a tree classifier;

those that cannot be satisfactory assigned to a class are passed to a matching algorithm, which de-

forms the image to match with a template. In [91] a grammar-like model for applying deformations in

primitive strokes was developed, while Wakahara [136] proposed a shape-matching approach to recog-

nize number manuscripts. The method uses successive local affine transformation (LAT) operations to

gradually deform the image. The aim is to yield the best match to an input binary image. LAT on each

point at one location is optimized using locations of other points by means of least-squares data fitting

using Gaussian window functions. In document degradation models, Baird [7] presented an overview

in techniques that parameterized models of image defects that occur during printing, photocopying,

and scanning processes. In this same line, Kanungo [67, 68] also proposed a statistical methodology of

these deterioration processes in order to validate local degradation models.

The deformation technique used to deform the musical symbols is based in Jain [64, 65]. In this

approach, the image is mapped on a unit square S = [0, 1]×[0, 1]. The points in this square are mapped

by the function (x, y)→ (x, y) +D(x, y). The space of displacement functions are given by

exmn(x, y) = (2 sin(πnx) cos(πmy), 0) (3.1)

eymn(x, y) = (0, 2 sin(πny) cos(πmx)) (3.2)

Specifically, the deformation function is chosen as follows:

D(x, y) =
M∑
m=1

N∑
n=1

ξxmnexmn + ξymneymn
λmn

(3.3)

where ξ = {(ξxmn, ξ
y
mn),m, n = 1, 2, . . .} are the projections of the deformation function on the or-

thogonal basis. Because D(x, y) can represent complex deformations by choosing different coeffi-

cients of ξmn and different values of M and N, it is important to impose a probability density on

D(x, y). We assume that the ξmn’s are independent of each other and the x and y directions are in-

dependent, identically-distributed Gaussian distributions with mean zero and variance σ2. Figure 3.3

shows examples for several deformations using different higher-order terms. Note that the deformation

is stronger when M, N and σ are increased.

3.4 Ground-truth Information

Lengths of staff line height and staff line space The reference for the staffline_height value and staffs-

pace_height value were manually measured by three independent individuals.
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Figure 3.3: Example of deformations on a musical symbol. From Rebelo [106, Fig.6)].

Binarization A binarization ground truth of the images was also obtained manually. Since this is

very time consuming, only 10 scores from different authors, chosen randomly from the complete

dataset, were selected. The process consist in cleaning all the noise and background for each

image, making sure nothing more than the objects remains – see figure 3.4. A supervised global

Figure 3.4: Some examples of binarization music scores.

threshold value was also selected for each of the 65 handwritten music scores. The reference

thresholds were supervised independently by five different people. The threshold was chosen

according with staff lines structure, the noise presence and distortion and occlusion of objects.

Staff lines positions To establish a qualitative comparison between the various staff lines detection

and removal algorithms a ground-truth information is necessary. Consequently, the black pixels

of the images need to be labelled as being staff lines or otherwise. The manual process has two
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disadvantages: it is very time consuming and it is prone to the occurrence of errors (e.g. the

existence of dubious pixels that may belong to the line or to the symbol that crosses the staff

line). Therefore, ground-truth information of the syntactic images released by the authors of the

MusicStaves toolkit was used. For handwritten music sheets we can only achieve the ground-

truth information manually. Hence, the symbols present in the scores were deleted in order to

retain just the staff lines segments.

Positions of the musical symbols For each music symbol present in the score its bounding box con-

taining its position on the score and its class was extracted and saved.

(a) Synthetic scores.

(b) Handwritten scores.
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(c) Printed Scores.

Figure 3.4: Some examples of music scores used in this thesis.



CHAPTER 4

Background Knowledge∗

Optical Music Recognition involves many research areas. The processing of handwritten musical

scores is not yet fully explored largely due to the poor results of the existing methods. One of the

stages in the OMR process is the recognition of musical symbols. The efforts made to find robust

symbol representations and learning methodologies have not found a similar quality in the learning of

the dissimilarity concept. Simple Euclidean distances are often used to measure dissimilarity between

different examples. However, such distances do not necessarily yield the best performance. In this

thesis a comparative study of recognition algorithms applied to music symbols was carried out. In this

chapter the various techniques used are presented, as well as the experimental testing.

4.1 Recognition Process

Towards a comparative study between classification procedures, five different approaches were evalu-

ated: Hidden Markov Models (HMMs), Supprot Vector Machines (SVMs), Relevance Vector Machines

(RVMs), Neural Networks (NNs) and k-Nearest Neighbor (kNN).

Classifiers are built by taking a set of labeled examples that are used to construct a rule that will

assign a label to any new example. In other words, if we consider a general situation, we will have a

training data set (xi, yi); where xi is a feature vector for an object i, and yi is the label associated with

the object class. The relative costs of mislabeling each xi are known and must be used to generate a

decision criterion that can take any new observation vector (xj) and assign it the correct class label

(yj).

Hidden Markov Model

Hidden Markov Models (HMMs) have been used in OMR by [74, 81, 99]. The application of this

technique to musical symbol classification had its origins on optical character recognition. One of the

reasons for the use of HMMs lies in its capability to perform segmentation and recognition at the same

time.

A HMM is a doubly stochastic process that generates sequence symbols, with an underlying

stochastic process that is hidden and can only be detected through another process whose realiza-

tions are observable [14]. The hidden process consists of a set of states connected to each other by a

transition probability. Transitions probabilities from a state i to another state j are given by A = {aij},
where aij = P [qt+1 = Sj |qt = Si] , 1 ≤ i, j ≤ N . The observed process consists of a set of outputs

or observations. Each observation is contained in a state with some probability density function. The

set of observations probabilities is given by B = bj(k), where bj(k) = P [ot = xk|qt = Sj ] , 1 ≤
k ≤ M, j = 1, 2, ..., N . bj(k) represents the probability of the observation xk in state Sj , oj denotes

the observation in time t and qt represents the state in time t. HMM can now be concisely formulated

as λ = (A;B;π), where π is a set of initial probabilities of states [137].
∗Some portions of this chapter appears in [106, 109].

37



38 Chapter 4. Background Knowledge

A left-right, model discriminant HMM was adopted to construct a model for each class [2]. The

learning of the models parameters (λ = (A;B;π)) was accomplished with the Baum-Welch algorithm.

The goal of classification is to decide which class the unknown sequence belongs to, based on the model

obtained in the training phase. These symbols were classified on the basis of the maximum likelihood

ratio obtained by the Viterbi algorithm.

Support Vector Machine

One of the most widely adopted techniques by the pattern recognition community is the Support Vector

Machines (SVM). This procedure has as its main idea the maximization of the separation margin be-

tween positive and negative examples having an hyperplane as the decision surface [135]. In a formal

manner, given the training set {xi, yi}Ni=1 with input data xi ∈ Rp and corresponding binary class

labels di ∈ {−1, 1}, the maximum-margin hyperplane is defined by g(x) = wtϕ(x) + b where ϕ(x)

denotes a fixed-feature space transformation and b a bias parameter; x is assigned to class 1 if g(x) > 0

or to −1 if g(x) < 0. The maximization of the margin is equivalent to solving

min
w,b,C,ξi

1

2
wtw + C

N∑
i=1

ξi

s.t
yi[w

tϕ(x) + b] ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0

(4.1)

where parameter C > 0 controls the trade-off between the classification errors and the margin. The

slack variables ξi, i = 1, . . . , N are introduced to penalyze incorrectly classified data points. The

dual formulation in (8.1) leads to a dependence on the data only through inner-products φ(xi)
tφ(xj).

Mercer’s theorem allows us to express those inner products as a continuous, symmetric, positive semi-

definite kernel function k(xi,xj) defined in the input space. In this work, a radial-basis function kernel

was used, given by k(x,xi) = exp(−γ||x− xi||2), γ ≥ 0

The binary SVM classifier can be extended to multiclass scenarios. Of the multiple extensions

available in the literature [62], we used the one against one methodology.

Relevance Vector Machine

A sparse kernel technique, similar to SVM but avoiding its principal limitations2, is the Relevance

Vector Machine (RVM). This is based on a Bayesian approach and provides posterior probabilistic

outputs [129]. For a two-class classification, the method predicts the posterior probability for being

one of the classes, given the input x. Formally, the logistic sigmoid function σ(y) = 1/(1 + e−y) is

applied to the linear model y(x) =
∑N

n=1wnK(x, xn) + w0, where {wn} are the model weights and

k(., .) is a kernel function. The procedure follows a Bernoulli distribution for P (t|x), so the likelihood

is given by

P (t|w) =

N∏
n=1

σ {y(xn)}tn [1− σ {y(xn)}]1−tn (4.2)

where the targets tn ∈ {0, 1}. The marginal likelihood, P (t|α), for the hyperparameters is analytically

obtained using the Laplace approximation procedure:
2The predictions of an SVM are not probabilistic, the kernel function must satisfy Mercer’s condition and the error/margin

trade-off C parameter needs to be estimated in the training stage.
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1. For the current values of α, the most probable weights wMP are calculated using the following

equation

log{P (t|w)p(w|α)} =∑N
n=1 [tn log yn + (1− tn) log(1− yn)]− 1

2w
TAw

(4.3)

with yn = σ{y(xn;w)}.

2. The Hessian matrix at wMP is computed from

∇∇ log p(t, w|α)|wMP = −(ΦTBΦ +A) (4.4)

where B = diag(β1, β2, . . . , βN ) is a diagonal matrix with

βN = σ{y(xn)} [1− σ {y(xn)}] .

Neural Networks

A neural network is a parametric approximation technique that has found several applications in diverse

fields, including pattern recognition and signal processing. The process typically approximates a vector

function f of some input x with a series of layers. Each layer forms a vector of outputs, each of which

is obtained by applying the same non-linear function to different affine functions of the inputs [49].

A multi-layer perceptron (MLP), one type of a feed-forward network, was used in our evaluation.

A MLP is a layered structure consisting of nodes or units (called neurons) and one-way connections

or links between the nodes of successive layers. The training of the networks was carried out under

Matlab© and was done using back-propagation together with the Levenberg-Marquardt algorithm. We

used a network with K outputs, one corresponding to each class, and target values of 1 for the correct

class and 0 otherwise. The network had one hidden layer and sigmoid functions as activation functions.

K-Nearest Neighbor

The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms [31, 40].

This method belongs to a set of techniques called Instance-based Learning. It requires no training

effort and critically depends on the quality of the distances measures among each instances. It uses the

heuristic that sample points near an unclassified point should indicate the class of that point. In this

manner, a k-nearest neighbor classifier finds the k data points from the training set closest to the point

being considered, and classifies the object with the most frequent class amongst its k-nearest neighbors.

4.2 Metric Learning

Recently, the distance metric problem has received much attention in the machine learning commu-

nity [142, 140, 138]. The performance of all machine learning algorithms depend critically on the

metric that is used over input space. Some learning algorithms, such as K-means and k-nearest neigh-

bors, require a metric that will reflect important relationships between each classes in data and will

allow to discriminate instances belonging to one class from others. Depending on the availability of

training examples, distance metric learning algorithms can be divided into two main categories: super-

vised distance metric learning and unsupervised distance metric learning. Supervised distance metric

learning can be further divided into global distance metric learning and local distance metric learning.
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In global case constrains are applied to all pairwise of examples, while in local approach only local

pairwise are taken into consideration.

4.2.1 Metric Learning for k-NN

As already mentioned previously, in the k-nearest neighbor algorithm the decision about classifying a

new query is determined by the labels of the k training examples with shortest distance. Convention-

ally those distances are defined by the Euclidean distance between examples. Decision rule classifies

unlabeled inputs by the majority label of their k-nearest neighbor in the training set.

Our approach is based on work conducted by [138]. The authors proposed a distance metric learn-

ing algorithm for Large Margin Nearest Neighbor classification (LMNN). The main idea behind is to

learn a Mahalanobis distance function by minimizing an objective function that is set up with local and

global constraints. This optimization results in bringing k-nearest neighbors from the same class closer

(i.e. shrinks the distances between nearby examples from the same class) and to separate examples

from other classes by a large margin (expands the distances between examples from different classes).

The idea of LMNN can be introduced as follows:

Let the {xi, yi}Ni=1 denotes a training set of N labeled examples with inputs xi ∈ Rp and discrete

class labels yi. The Authors also introduced a binary matrix τij ∈ {0, 1}, which indicates wherever or

not the labels yi and yj match. The main goal is to learn a linear transformation L, which will optimize

k-NN classification: L : Rd → Rd. Transformation L is used to calculate squared distances as:

D(xi,xj) = ‖L(xi − xj)‖2 (4.5)

For each input xi authors introduced k other inputs, called target neighbors, that share the same

label yi. These target neighbors after transformation will have minimal distance to xi. In the situation

where any prior knowledge is not available, target inputs can be identified as k-nearest neighbor, deter-

mined by the well known Euclidean distance. Authors also introduced ηij ∈ {0, 1} in order to indicate

whether xj is a target neighbor of xi. Both matrices τij and ηij are fixed during the learning stage.

Formally, the cost function is defined as:

ε(L) =
∑
ij

ηij‖L(xi − xj)‖2 + c
∑
ijl

ηij(1− τil)

[
1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2

]
+

(4.6)

where [z]+ = max(z, 0) denotes the standard hinge loss and c > 0 is a positive constant. There are

two competing terms in this equation. The first one penalizes large distances between each input and

its target neighbors. The second term penalizes small distances between each input and all other inputs

that do not share the same label. For each input xi, the hinge loss in incurred by differently labeled

inputs by one absolute unit of distance. The learning idea behind this approach is presented on Fig. 4.1.

The Equation (4.6) can be reformulated as an instance of semidefinite programming (SDP). As

SDP are convex (linear costs and constraints are replaced by convex costs and constraints) the global

minimum can be efficiently computed [134]. In order to obtain SDP Equation (4.5) needs to be

rewritten as:

D(xi,xj) = (xi − xj)
TM(xi − xj) (4.7)
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Figure 4.1: Schematic illustration idea behind LMNN. Left side shows traditional approach, under
Euclidean distance, where xi has three target neighbors. Right image shows the new discriminator
after the Mahalanobis distance being learnt. From [139, Fig.1].

where the matrix M = LTL parametrizes the Mahalanobis distance induced by the linear transform L.

In order to mimick the hinge loss, slack variables ξij were introduced for all pairs of differently labeled

inputs (i.e. ∀(i, j) s.t. yij = 0). Finally, the resulting SDP is given by:

min
∑
ij

ηij(xi − xj)
TM(xi − xj) + c

∑
ijl

ηij(1− τil)ξijl

s.t


z ≥ 1− ξijl ∀(i, j, l) ∈ T

ξijl ≥ 0 ∀(i, j, l) ∈ T

M � 0

(4.8)

where z = (xi−xl)TM(xi−xl)−(xi−xj)TM(xi−xj) and T = {(i, j, l)|i, j, l ∈ {1, . . . , n} , j  i, yi 6= yl}.

4.2.2 Metric Learning for SVM

An intuitive extension of the metric learning on k-NN previous described is its application to SVMs.

The kernel trick, i.e., the mapping of patterns of the input feature space to a higher dimensional space,

can be considered as a (dis)similarity measure. Thus, kernels can be seen as a way of a general metric

learning approach [117, 89].

In this thesis we apply the concept introduced in [139] in order to assess the benefit of LMNN to

SVMs on OMR. Our approach consisted on the one-against-one strategy where a matrix L is learnt for

each discriminant. We used a kernel derived from the RBF presented in Equation (4.5) which resulted

in D(x,xi) = exp(−γ‖L(x− xi)‖2), γ ≥ 0, dRBF.
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CHAPTER 5

Staffline Thickness and Distance Estimation∗

In this Chapter two main contributions are introduced: a robust method to estimate the staffline thick-

ness (staffline_height) and the distance between stafflines (staffspace_height) on binarized music scores

and the generalization to gray-level music scores.

5.1 Conventional estimation of staffline thickness and distance

Run-length encoding (RLE) is a very simple form of data compression in which runs of data (that is,

sequences in which the same data value occurs in consecutive data elements) are represented as a single

data value and count. In a binary image, used as input for the recognition process here, there are only

two values: one and zero. In such a case, the run-length coding is even more compact, because only

the lengths of the runs are needed. For example, the sequence {1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1

1 1 1 1 0 0 1 1 1 1 1 1} can be coded as 2, 1, 3, 2, 4, 2, 4, 1, 5, 2, 6, assuming 1 starts a sequence (if

a sequence starts with a 0, the length of zero is used at start). By encoding each column of a digitized

score using RLE, the most common black-runs represents the staffline_height and the most common

white-runs represents the staffspace_height – see Figure 5.1. Even in music scores with different staff

sizes, there will be prominent peaks at the most frequent staffspaces. These estimates are also immune

to severe rotation of the image [71, 53].

Figure 5.1: Illustration of the estimation of the reference values staffline_height and
staffspace_height using a single column.

5.2 Robust estimation of staffline thickness and spacing

Although the performance of this conventional method is excellent in printed music scores and very

good in handwritten scores, the estimation fails under severe degradation of the scores, as illustrated
∗Some portions of this chapter appears in [23].
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in Figure 5.2. For this score the conventional estimation provides staffline_height = 1 and staffs-

pace_height = 1 (the true values are staffline_height = 5 and staffspace_height = 19).

(a) Original music score #17.

(b) Score binarized with Otsu’ method.

Figure 5.2: Unsuccessful estimation of staffline_height and staffspace_height by vertical runs.

Isolated black pixels and fluctuations in the thickness and distance between lines pose challenging

difficulties. Two observations are decisive for an improved estimation of the reference lengths: firstly,

the length of the run of white pixels before and after the isolated black pixels will vary a lot, ‘randomly’;

secondly, a local fluctuation in the thickness of the staffline (due to noise) is often compensated by a

variation with an opposite sign of the local distance between lines–this effect is visible in Figure 2.3.

Therefore, it seems that the estimation of the sum of staffline_height and staffspace_height can be

done much more robustly by finding the most common sum of two consecutive vertical runs (either

black run followed by white run or the reverse) – see Figure 5.3. This is illustrated in Figure 5.4,

with the histograms of the black runs, white runs and the sum of two consecutive runs. The prominent

peak at the black and white runs histograms is at run = 1, due to the noise on the binarization process.

Nevertheless, the prominent peak at the sum two consecutive runs is at 24, consistent with the true

values of staffline_height and staffspace_height.

We propose that, when possible, any subsequent operation should be based on this new reference

length, staffline_space_height. Nevertheless, robust estimates of staffline_height and staffspace_height

can now be obtained knowing that their sum should equal staffline_space_height. To reliably estimate

these values the process starts by computing the 2D histogram of the pairs of consecutive vertical runs.

Next, it selects the most common pair for which the sum of the runs equals staffline_space_height.

Figure 5.5 shows the 2D histogram for the music score in Figure 5.2. As visible, restricting our-

selves to the pairs summing 24 (the estimated value for the sum), the procedure is able to recover the
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rle=(6,2,4,2,4,1,5,2,6)

sum consecutive 

pairs=(8,6,6,5,6,7,8)
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Figure 5.3: Illustration of the estimation of the reference value line_thickness+spacing using a
single column. In practice, sums of consecutive runs are accumulated over the whole image.

(a) Histogram of black runs. (b) Histogram of white runs. (c) Histogram of the sum of two con-
secutive runs.

Figure 5.4: Histogram for the music score of Figure 5.2 (score #17).

correct value for the line thickness and space.

5.3 Staffline thickness and spacing estimation in gray-level images

In some binarized images, the noise level is such that even the new method is unable to correctly

estimate staffline_height and staffspace_height. An example is presented in Figure 5.6 (original image).

Figure 5.7 shows the result for this score. Even though the sum of staffline_height and staffspace_height

is correctly estimated, the individual values for staffline height and space are not.

A source of difficulties is the binarization algorithm itself. State-of-the-art methods fail to correctly

binarize the score under conditions such as low paper quality, gradient effect on the illumination, etc.

It seems that better results could be achieved directly on the gray-level score.

Instead of computing the histogram of the runs for a single binarized score, using a threshold

computed by a state-of-the-art binarization method, a procedure to compute the histogram of the runs

for ‘every’ possible binary image by varying the threshold from a low to a high limit are proposed.

The rationale is that, although binarization algorithms have difficulties in finding a proper threshold,

there is an interval of values that produce a proper binarized image and that will contribute to a robust

histogram; threshold values outside this interval will likely produce ‘random’ runs that will disperse
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(a) Complete histogram.

(b) Histogram of the pairs summing 24 (the peak
value observed in Figure 5.4(c)).

Figure 5.5: Histogram of the pairs (black run, white run) for score #17 in Figure 5.2.

Figure 5.6: Original music score #01.

over the histogram. Figure 5.8 shows the histograms accumulating the runs for threshold from 1 to the

median value of the image (it is assumed that in a music score most of the pixels are background and

therefore the median pixel value is background).

Now, the algorithm is able to correctly estimate not only the sum of staffline_height and staffs-

pace_height but also the individual values. Moreover, the histogram for the sum shows a much more

prominent peak, suggesting a more robust estimate of this length.



5.3. Staffline thickness and spacing estimation in gray-level images 49

(a) Histogram of the sum of two con-
secutive runs. The most frequent value
is 24.

(b) Histogram of the pairs (b_run,
w_run).

(c) Histogram of the pairs summing
24.

Figure 5.7: Histograms for binarized music score #01.

(a) Histogram of the sum of two con-
secutive runs. The most frequent value
is 24.

(b) Histogram of the pairs (b_run,
w_run).

(c) Histogram of the pairs summing
24.

Figure 5.8: Histograms for gray-level music score #01.
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5.4 Experimental Assessment

The proposed methodology was tested on a modern set of 50 handwritten music scores from 5 different

authors, as mentioned in section 3.1. The reference values of staffline_height and staffspace_height

were manually measured as referred in section 3.4. The performance obtained over the dataset is

summarized in Table 5.1.

Table 5.1: Mean and maximum value of errors (in pixels) in the reference lengths.

Length Error
conventional proposed proposed
estimation in estimation in estimation in
binary images binary images gray-level images

staffline mean 1.6 1.3 0.9
max 4 3 2

staffspace mean 2.7 1.3 1.0
max 21 3 2

staffline+ mean 2.4 0.4 0.4
staffspace max 24 2 2

We see an improvement in the estimation of both parameters when adopting the novel approach in

binary images. When applying the approach for gray-level images a further improvement is achieved.

We also notice that the sum of of staffline_height and staffspace_height is the most reliable estimation.

5.5 Synthesis

Studies on music recognition are under way to build up music databases and automatic performance.

Since staffs are crucial elements to determine the position or size of other music symbols, almost all

methods extract theirs position in initial recognition. Before the stave candidate point is extracted, the

line width and interval of the staff is usually estimated to work as reference lengths for the subsequent

operations.

We presented a robust method to reliably estimate the thickness of the lines and the interline dis-

tance. We assumed that the initial image is converted, column by column, in the run-length coding.

Next, we introduced the estimation of the sum of the two lengths as a more reliable estimation than the

independent estimation of the two lengths. The individual lengths are then estimated as the most likely

combination of runs summing to the pre-estimated total. To overcome the difficulties of binarization

algorithms with low quality music scores, we propose to integrate the estimation over every possible

binarization threshold.

The basic idea of estimating first the sum of quantities of interest, and then estimating the individual

quantities of interest with the constraint that they sum to the estimated value, may apply in other areas

of document image analysis, or in general image analysis.



CHAPTER 6

Binarization Algorithm∗

The work presented in Chapter 5 on the estimation of the staff line thickness and distance without

binarizing the music score, working directly in the gray-scale image, opens the door to a content aware

image binarization scheme applied to music scores, which we explore in this Chapter.

6.1 Content aware music score binarization

As stated in the introduction, an OMR system typically encompasses, as one of its first steps, the de-

tection of the staff lines to facilitate the subsequent operations. An image binarization method that

maximizes the ‘presence’ of the lines in the binarized image may contribute significantly to the im-

provement of the following operations.

A binarization method designed to maximize the number of the pairs of consecutive runs summing

line_thickness+spacing (the peak computed over the gray-level image) will likely maximize the

quality of the binarized lines. However, the direct maximization of the count of pairs of consecutive

runs summing line_thickness+spacing could lead to a threshold value producing many, ‘noisy’,

runs, and as a side effect, many runs at line_thickness+spacing. The use of relative histograms is

also prone to problems since now one may end up choosing a threshold with a very low absolute count

of runs in line_thickness+spacing but that, by chance, could be the highest relative count.

Therefore, we restrict the candidate thresholds to those producing a histogram of runs with the

mode at line_thickness+spacing. If no threshold is found with this condition (note that even

if the integration over all thresholds does have a mode at line_thickness+spacing, it is possi-

ble that no individual threshold produces a histogram with mode at line_thickness+spacing),

we consider the minimum integer i for which there are threshold values with histogram mode at

line_thickness+spacing ±i. From the set of candidate thresholds, the proposed binarization

method for music scores simply selects the threshold that maximizes the count of consecutive runs

pairs on the mode.

6.1.1 Using other reference lengths to guide the binarization

The same rationale used to motivate the estimation of the sum of pair of consecutive lengths, can be

used to work with sets of three or more consecutive runs. However, two problems arise when proceed-

ing that way: there is the underlying assumption that each staff have enough lines to give meaning to the

consecutive runs and one starts getting less and less values to accumulate in the histogram, potentially

leading to less accurate estimations.

A potentially interesting balance is estimating the sum of two times the line thickness plus the

spacing, line_2thickness+spacing, by working with the frequencies of triplets (black run, white

run, black run). This only assumes that each staff has at least two lines, but does impact the number

∗Some portions of this chapter appears in [95, 94].
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of accumulated values, roughly halving it. The proposed content aware binarization method does

not suffer any adaptation, besides the change of the reference length, line_thickness+spacing

by line_2thickness+spacing. Further on we will compare the two options.2 In Figure 6.2 we

illustrate the results obtained with the proposed approach, using the two aforementioned reference

lengths (see the original score in Figure 6.1). One can observe that the resulting staff lines have good

quality, with minor differences between the two results.

Figure 6.1: Original music score (detail).

(a) Reference length: line_thickness+spacing. (b) Reference length:
line_2thickness+spacing.

Figure 6.2: Result of binarizing the music score in Figure 6.1.

Nevertheless, the original music score in this particular example is not correctly binarized with a

global threshold. The digitization of bound documents, such as books, either performed by flatbed

scanners or digital cameras often yields images that exhibit a gradient-like distortion in the average

colour in the region close to the book spine. In these cases, adaptive methods can show better perfor-

mance.

6.1.2 Adaptive content aware music score binarization

Despite having been presented as a global thresholding method and having been applied it to the whole

image, nothing prevents the application of the ideas developed to a sampling window around a pixel p,

effectively converting the proposed method to a local method.
2Any subsequent operation relying on the estimates of the individual lengths line thickness or line

spacing can compute them trivially from the (robust) estimates of line_2thickness+spacing
and line_thickness+spacing: the difference of the two gives the thickness estimate and
2×line_thickness+spacing-line_2thickness+spacing provides the spacing. This procedure
could be used in alternative to the method proposed in [23].
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As with other adaptive methods, the size of the sampling window is a key parameter. With our

approach, the sampling window should be big enough to accumulate enough information (runs) to

provide a proper solution. Since the typical distortions in this kind of documents are usually vertically

oriented, the local threshold should be constant along a column of the image. Therefore we suggest

computing a single threshold per column, using as window a vertical strip with height equal to the

height of the image and width defined by the user.

One major barrier in the application of adaptive and local models is their high computational cost.

Usually, these models require the estimation of several statistical variables for each pixel of the input

image (in our case for each column of the image). Depending on the size of the sampling window,

the computational cost can be very high. Traditional solutions to this problem have been interpolating

techniques, in which the threshold value is computed on a set of sampled columns, and then, for the

rest of the columns, the threshold value is calculated by interpolating on the sampled columns.

In Figure 6.3 we illustrate the results obtained with the proposed approach, using a window width

and step size of 2% of the width of the image, and cubic polynomial interpolation.

(a) Reference length: line_thickness+spacing. (b) Reference length:
line_2thickness+spacing.

Figure 6.3: Result of binarizing the music score in Figure 6.1 with the adaptive method.

In this example, the adaptive method using the line_thickness+spacing reference length pro-

vided the best results, with a better staff line definition.

6.2 Binarization Procedures

The proposed method was tested against 11 state-of-art algorithms. The procedures chosen try to en-

compass different categories of thresholding operations: Niblack [90] Bernsen [11] and Yanowitz [141]

are locally adapted threshold method, Kapur [69], Sahoo [116] and Tsallis [37] are entropy methods,

Huang [63] and Chen [25] is based on object attributes, Otsu [92] is a clustering method, Tsai’s mo-

ment preserving [133] and Khashman’s luminance [72] are histogram based methods.

Niblack’s Method
The method is based on the calculation of the local mean and of local standard deviation. The threshold

is decided by the formula:

T (x, y) = m(x, y) + k ∗ s(x, y) (6.1)

where m(x, y) and s(x, y) are the average of a local area and standard deviation values, respectively.

The value of k is used to adjust how much of the total print object boundary is taken as a part of the
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given object.

Bernsen’s Method
The method computes the local minimum and maximum for a neighborhood around each pixel f(x, y) ∈
[0, L− 1], and uses the mean of the two as the threshold for the pixel in consideration:

g(x, y) = (Fmax(x, y) + Fmin(x, y))/2 (6.2)

b(x, y) =

{
1, f(x, y) < g(x, y)

0, otherwise
(6.3)

Fmax(x, y) and Fmin(x, y) are the maximal and minimal values in a local neighborhood centered at

pixel (x, y).

Yanowitz’s Method
The essential steps of this binarization method are the following [12]:

1. Find the support points {pi} of the image I(x, y), where the image gradient is higher then some

threshold value Gth
{pi} = {(xi, yi) : |∇I(xi, yi)| > Gth} (6.4)

2. Find the threshold surface T (x, y) that equals to the image values at the support points {pi} and

satisfies the Laplace equation at the rest of the image points:

T (pi) = I(pi)

∇2T (x, y) = 0 if (x, y) ∈ pi
(6.5)

3. Determine the binarized image B(x, y) according to (1), i.e. by comparing I(x, y) with T (x, y).

Kapur’s Method
A threshold method based on the maximization of the entropy of the binarized image. The optimal

threshold would be the one that assured the greater sum of the entropies of both classes:

topt = max[E1(t) + E2(t)] (6.6)

The entropy functions for each class would be:

E1(t) = −
t∑

g=0

p(g)

P (t)
log

p(g)

P (t)
(6.7)

for the objects and

E2(t) = −
t∑

g=t+1

gmax
P (t)

log
p(g)

1− P (t)
(6.8)

for the background, where p(g) is the probability of histogram point g and P (t) is the sum of all the

probabilities up to threshold t.

Sahoo’s Method
This process is based in the Kapur’s Method [69], explained above. The correlation method is a
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weighted average of three different entropy sums, each generated with a different parameterization.

The entropy function used is Renyi’s entropy, defined as:

REα1 =
1

1− α
ln

t∑
g=0

[p(g)/P (t)]α (6.9)

for the objects and

REα2 =
1

1− α
ln

gmax∑
g=t+1

[p(g)/(1− P (t))]α (6.10)

for the background, where p(g) and P (t) are the same as above. This method finds three different

thresholds, t1, t2 and t3 for a < α < 1, α = 1 and α > 1, respectively. The optimum threshold is

determined as the weighted average of these three values.

Tsallis’ Method
This method use Tsallis entropy for the binarization process, defined as following

TEq1 =
1−

∑t
g=0[p(g)/P (t)]q

q − 1
(6.11)

for the objects and

TEq2 =
1−

∑gmax
g=t+1[p(g)/1− P (t)]q

q − 1
(6.12)

for the background, where the real number q is the entropy index which should depend on the problem.

Arguing that a pseudo-additive entropy sum function works better with the presence of non-additive

information in some classes of images than the purely additive entropy sum function presented by [69],

the authors presented the following decision criterion:

TEq(t) = TEq1(t) + TEq2(t) + (1− q).TEq1(t).TEq2(t) (6.13)

which should lead to the optimum threshold that maximizes the function.

Huang’s Method
The process uses the distance from the gray-scale image to its binarization representing each pixel as a

pair of attributes:

F = {I(x, y), µ[I(x, y)]}, 0 ≤ µ[I(x, y)] ≤ 1 (6.14)

where I(x, y) is the position of a pixel in a two-dimensional array that is the image and µ[I(x, y)]

represents its fuzzy membership to the object class. Given the fuzzy memberships of all the pixels in

an image, one can generate a fuzziness index FI for the whole image, using Shannon’s entropy [120]

in a two-dimensional space, simplifying it, with the histogram h(g):

FI(g) =
1

gmaxln(2)

gmax∑
g=0

S(µ(g)).h(g) (6.15)

The optimum threshold will be the one that minimizes this fuzziness index.

Chen’s Method
The principal steps of this algorithm are:
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1. Generate the edge image using Canny edge detector.
2. Remove the noise of the original image using the Gaussian filter, and for each edge

point of the edge image, take the lowest intensity point within its 8-neighborhood
as a seed.

3. Determine the low and high intensity points: for each edge point with large gra-
dient magnitude, choose the lowest and the highest intensity points within its 8-
neighborhood as the low and the high intensity points, respectively. Take the mean
of the high intensity points as the high threshold, and take the mean of the low in-
tensity points as the low threshold. If there is obviously non-uniform illumination
in the original image, the high threshold is divided by a weight lm ∈ (0, 1] and the
low threshold is multiplied by lm.

4. Close the edge image generated in Step 1 by using an edge connection algorithm.
5. Binarize the original image with the high threshold, and partition the binarized

image with the closed edge image: in the high-threshold binary image generated
set the pixels that belong to the edge pixels in the closed edge image as background
pixels.

6. Use the seeds to fill the partitioned high-threshold binary image generated in Step
5 with a seed-growth algorithm.

7. Combine the primary binarized result with the low-threshold binary image: set the
pixels that belong to the object regions in the low-threshold binary image as object
pixels.

8. Remove the small object region as noise where the number of pixels is less than a
given threshold and obtain the final binarized image.

Otsu’s Method
The method is based on homogeneous clusters from the gray-level histogram of the image. An homo-

geneity characteristic is the less variance between their pixels. In this manner, the optimal threshold

will be the one that assures the lesser sum of the weighted variances of all the pixels in each cluster.

However, because minimize the variance inside clusters is the same as maximizing the variance be-

tween them, the method computes σ2
between to each different intensity and it uses as optimal threshold

the one that assures its maximization:

σ2
between(t) = σ2 − σ2

inside = p1(t).p2(t).[µ1(t)− µ2(t)]2 (6.16)

where

σ2
inside(t) = p1(t)σ2

1(t) + p2(t)σ2
2(t) (6.17)

µi is the mean of the cluster, pi is the probability and σ2
i is the variance of cluster i with i = 1 for

intensities below chosen threshold and i = 2 for intensities above.

Tsai’s Method
The method considers the gray-level as a blurred version of the optimal binarization. Defining moment

m(k) for the gray-scale image as:

m(k) =

gmax∑
g=0

p(g).gk (6.18)

where p(g) is the probability of histogram point g and for the binarization:

b(k) = p1.m1(k)k + p2.m2(k)k (6.19)
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where p1 and p2 are the probabilities and m1 and m2 the separate moments of each one of the classes

(object and background). The method finds a threshold that guarantees moment preserving, that is, the

first three moments (for k = 1, 2, 3) of the gray-scale are equal to the corresponding moments of the

binarization.

Khashman’s luminance Method
The method finds the optimum threshold t using the maximum intensity found and the mean intensity

of the histogram:

t = |m− (gmax −m)| (6.20)

where m and gmax are the mean and maximum intensities, respectively.

6.3 Evaluation Metrics and Results

The data set adopted to support the comparison between the different binarization procedures chosen

in this work was composed by 65 handwritten scores, from 6 different authors – see section 3.1. All

the music scores in this quantitative evaluation were reduced to gray level images using the rgb2gray

function from MATLAB©. A binarization ground truth of the images was also obtained manually –

see section 3.4.

The error metrics used to evaluated the performance of the proposed Binarization based in LIne

Spacing and Thickness (BLIST) algorithm for the binarization of the music scores were Difference

from Reference Threshold (DFT), Misclassification Error (ME) and the evaluation of the results of

staff finder algorithms.

Staff Finder Algorithms
This metric consist on applying staff finding algorithms to the binarizations images and measuring the

percentage of false positive staff lines and the percentage of staff lines not detected. Two algorithms

were tested: Stable Path algorithm3 and Dalitz algorithm [34].

The process for staff lines detection and removal usually follows the preprocessing stage in OMR

systems. It was already seen in Chapter 2 that these symbols are very important for the music sym-

bol recognition. The best binarization algorithm can be indirectly chosen showing which binarization

method produce complete and non degraded staff lines.

Misclassification Error
The Misclassification Error is defined as the difference rate between the ground truth images and the

resulting images from each binarization as following:

ME = 1− #(Bbin ∩Bgt) + #(Fbin ∩ Fgt)
#Bbin + #Fbin

(6.21)

In Equation 6.21, Bo and Fo represents the background and foreground pixels of the original image,

and Bt and Ft the background and foreground pixels in the test image, respectivelly. # is the number

of elements in the specific set. This evaluation method was only adopted to the scores from the original

3Already introduced in Chapter 7.
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dataset where ground truth is available. Nevertheless, it can be applied to global and adaptive binariza-

tions allowing a comparison between both types of procedures.

In spite of that, for the adaptive thresholding techniques the ME results were all very similar4. In order

to overcome this issue, further analysis was conducted based in two error rates: the Missed Object Pixel

(MOPx) rate and the False Object Pixel (FOPx), dealing with loss in object pixels and excess noise,

respectively:

MOPx =
#Fgt −#(Fbin ∩ Fgt)

#Fgt
(6.22)

FOPx =
#Fbin −#(Fbin ∩ Fgt)

#Fbin
(6.23)

Difference from Reference Threshold
This metric consist in comparing a supervised global threshold value with the global threshold value

given by the binarization methods. The absolute difference value between the reference and tested

method output values are given by

DRT (score) = |ref_value(score)−method_threshold(score)| (6.24)

The DRT score indicates of how many intensity levels the two values are apart. It is important to stress

that this error metric can only be applied to global thresholding methods, because adaptive methods do

not use a single thresholding value for the whole image.

A frequency problem of this technique is the accuracy. This can be seen in Figure 6.4 were there

is a small range of acceptable thresholds for score #02 and a wide range of possible thresholds for this

score. This means that in some images if the method had a DRT value of 100 it could still produce a

good binarization. In this manner, the average of the multiple supervised values was used in order to

have an acceptable optimal threshold for the scores and to avoid possible outliers.

Results
Some of the algorithms tested required the input of different parameters. Table 6.1 indicates the values

chosen for each method based in experimental results.

Tsallis [37] q = 2
Sahoo [116] α1 = 0.4 ; α3 = 3
Niblack [90] window = 200; k = −1
Bernsen [11] window = 10; contrast = 20

Chen [25] σ = 3; nSeedsConnected = 15; noiseRemoval = 30; radius = 10
Ad BLIST, Ad Otsu windowWidth = 2

Table 6.1: Values for the input parameters of the binarization algorithms.

The analysis will start with the results for the global methods presented in Table 6.2.

Both versions of the Binarization based in LIne Spacing and Thickness (BLIST) method, proposed

in this work, performed above average. Even so, the version that uses pairs of runs instead of triplets

did better in the tests. Only this version will be considered on all the following comparisons.

Entropy based binarizations and Khashman’s algorithms got fairly similar results to each other.

Huang and Tsai managed to top these results, with acceptable line detection rates and misclassification
4As will be seen on the results later in presented.



6.3. Evaluation Metrics and Results 59

(a) Binarization of dataset image #02 with
t=210.

(b) Binarization of dataset image #02 with
t=220.

(c) Binarization of dataset image #47 with
t=110.

(d) Binarization of dataset image #47 with
t=230.

Figure 6.4: Binarization problems with DRT.

Huang [63] Khashman [72] Kapur[69] Sahoo [116] Tsai [133] Tsallis [37] Otsu [92] BLIST pairs BLIST triplets
DRT: avg 48 33 50 50 29 50 19 19 29

ME: avg % 6.2 3.8 4.9 7.6 4.7 5.7 4.6 4.8 5.1
SP False: avg(std) % 2.6(5.5) 2.1(4.0) 1.4(3.4) 3.5(10.2) 2.1(4.1) 3.3(7.4) 2.0(3.4) 1.3(2.7) 1.7(3.7)

SP Missed: avg(std) % 18.0(34.5) 30.2(42.3) 27.1(42.3) 25.7(40.1) 17.0(30.3) 21.0(36.4) 8.6(20.5) 1.5(2.8) 2.8(6.3)
Dal False: avg(std) % 21.6(41.1) 3.2(7.8) 1.8(4.2) 5.4(25.6) 4.4(8.1) 2.4(6.0) 3.6(5.4) 3.2(5.0) 3.8(6.5)

Dal Missed: avg(std) % 39.6(36.9) 32.7(41.4) 31.2(42.0) 35.4(42.5) 25.4(35.0) 31.5(41.8) 18.8(31.0) 14.8(28.6) 14.9(27.4)

Table 6.2: Test results for various global thresholding methods, using different evaluations: difference
from reference thresholds values, misclassification error (in percentage), staff detection error rates for
missed and false staffs (in percentage) with Stable Path and Dalitz.

error. There are, however, two binarization techniques that get consistently better results than the

others: the Otsu’s and BLIST methods. The only major difference is the higher missed staff detection

rate for the Otsu’s algorithm.

A visual analysis of the binarizations resulting from both methods shows that the BLIST process

consistently results in binarized images with more connected staff lines (Figure 6.5). Although a little

more noise was produced, there was not a significant loss in the connectivity of staves in any image,

which can explain why BLIST also assures better results in the staff finding steps.

Global methods can generally produce good outputs. Even so, for some of the scores, like those

with heterogenous light distribution resulting from the digitization process, there is no perfect thresh-
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(a) Otsu (b) BLIST

Figure 6.5: Binarization with Otsu and BLIST methods.

old. In these scores, it is not possible to find a single threshold value that produces both perfectly

connected staves and no occlusion of data with noise. Although staves can be correctly found in global

thresholding procedures, adaptive methods can produce results with little or no loss of information.

The adaptive version of the BLIST method was implemented as described previously. The window

width used was a fixed percentage of the total image width. The interpolation of the threshold values

obtained was generated with a third degree polynomial regression. Otsu’s method, having good results

among global methods was also implemented as adaptive, using the same reasoning.

As already mentioned, when testing local thresholding methods, the DRT evaluation cannot be per-

formed, as there is no single threshold value for each image. In addition, because the Misclassification

Errors were all very similar, the MOPx and FOPx were found for each method. The results for the

adaptive methods are presented in table 6.3.

Bernsen [11] Chen [25] Ad BLIST Niblack [90] Ad Otsu YB [141]
ME: avg % 4.3 3.2 4.2 4.3 4.2 3.5

MOPx: avg % 24.6 22.5 15.6 22.5 21.7 12.4
FOPx: avg % 13.2 4.3 18.5 13.8 16.5 14.7

SP False: avg(std) % 1.3(3.0) 9.9(9.7) 2.1(5.6) 3.2(4.6) 2.7(5.9) 4.2(7.6)
SP Missed: avg(std) % 1.9(4.4) 33.0(32.8) 2.3(5.5) 14.2(23.2) 10.7(23.6) 7.9(13.8)
Dal False: avg(std) % 3.9(12.9) 3.4(5.6) 3.8(6.2) 3.1(5.1) 3.2(4.9) 3.5(6.1)

Dal Missed: avg(std) % 9.0(16.2) 17.3(27.0) 8.4(14.6) 10.2(14.1) 10.7(18.9) 7.7(10.1)

Table 6.3: Test results for various local thresholding methods, using different evaluations (in percent-
age): misclassification error, Missed Object Pixels, False Object Pixels, staff detection error rates for
missed and false staffs with Stable Path and Dalitz.

Ad BLIST and YB show the lowest MOPx, meaning these are the methods that find most of the

correct pixels, which translates into lower missed staves rates. Even so, Ad BLIST also has a FOPx

rate slightly higher than the other methods. This higher noise also translates into a slightly higher false

staves rate with Dalitz method. Bernsen’s binarizations, although presenting the highest missed pixel

rate, seem to perform well in the staff finding steps, having both the lowest missed and false staves

rates.

Comparison between global and local thresholding suggests similar results between the best of each

class of techniques. Even with the increase in computational cost for adaptive methods, no significant

improvement in the staff finding steps is shown.

These local methods, however, may be proven useful with further testing. In some cases where

both methods were capable of correctly finding the music staves, the noise produced with the global
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thresholding occludes some relevant information, as illustrated in Figure 6.6. This may prove critical

in the symbol recognition steps that follow the staff line detection.

(a) BLIST. (b) Adaptive BLIST.

Figure 6.6: Binarization with BLIST and Adaptive BLIST methods.

6.4 Synthesis

Many binarization techniques have been proposed for digital images in the past. These methods can be

applied to music scores with different rates of success, although none is based on the knowledge of the

content of a music score. The main contribution of this chapter is the introduction of a content aware

binarization method for music scores. The method, based on the knowledge of the staff line thickness

and spacing, extracted directly from the gray-level image, tries to find the threshold that maximizes the

information content of the image, as measured by these values.
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Music Symbols Recognition

63





CHAPTER 7

Staff Lines Detection and Removal∗

Staff line detection and removal are one of the fundamental stages in many systems of optical music

recognition. The reason for detecting and removing the staff lines lies on the need to isolate the musical

symbols for a more efficient and correct detection of each symbol presented on the score.

The detection of staves is complicated due to a variety of reasons – see Chapter 2 Section 2.2.

Although the problem of detecting staff lines is exacerbated with old and handwritten works, it is also

present in recent printed scores. Despite the multitude of attempts to treat the problem of staff lines

detection the results are not completely satisfactory yet.

In this thesis a new conceptualization to detect the staff lines is presented. The proposed paradigm

begins with the work done in [105]. The main idea is to consider the staff lines as the result of the

shortest path between the two margins of the music sheet, giving preference to black pixels.

7.1 A Stable Path Approach for Staff Line Detection

In the work to be detailed, the image grid is considered as a graph with pixels as nodes and arcs

connecting neighbouring pixels. The weight of each arc, w(p, q), is a function of pixels values and

pixels relative positions. A path from vertex (pixel) v1 to vertex (pixel) vn is a list of unique vertices

v1, v2, . . . , vn, with vi and vi+1 corresponding to neighbour pixels. The total cost of a path is the sum

of each arc weight in the path
∑n

i=2w(vi−1, vi).

A path from a source vertex v to a target vertex u is said to be a shortest path if its total cost is

minimum among all v-to-u paths. The distance between a source vertex v and a target vertex u on a

graph, d(v, u), is the total cost of a shortest path between v and u.

A path from a source vertex v to a sub-graph Ω is said to be a shortest path between v and Ω if

its total cost is minimum among all v-to-u ∈ Ω paths. The distance from a node v to a sub-graph Ω,

d(v,Ω), is the total cost of a shortest path between v and Ω:

d(v,Ω) = min
u∈Ω

d(v, u). (7.1)

A path from a sub-graph Ω1 to a sub-graph Ω2 is said to be a shortest path between Ω1 and Ω2 if

its total cost is minimum among all v ∈ Ω1-to-u ∈ Ω2 paths. The distance from a sub-graph Ω1 to a

sub-graph Ω2, d(Ω1,Ω2), is the total cost of a shortest path between Ω1 and Ω2:

d(Ω1,Ω2) = min
v∈Ω1,u∈Ω2

d(v, u). (7.2)

7.1.1 Algorithm outline

To a first approximation, staff lines can be considered as the only extensive objects made from black

pixels in the music score, connected paths of black pixels from the left side to the right side of the

music score. Assuming that paths through black pixels are preferred over paths through white pixels,
∗Some portions of this chapter appears in [22, 21, 104].
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staff lines can then be found among the shortest paths from the left to the right margin of the music

score. Staff lines are then best modelled as paths between two regions Ω1 and Ω2, the left and right

margins of the score.

One may assume that staff lines do not zigzag back and forth, left and right. Therefore, one may

restrict the search among connected paths containing one, and only one, pixel in each column of the

image2. Formally, let I be an N1 ×N2 image and define an admissible staff to be

s = {(x, y(x))}N1
x=1 , s.t. ∀x |y(x)− y(x− 1)| ≤ 1,

where y is a mapping y : [1, · · · , N1] → [1, · · · , N2]. That is, a staff line is an 8-connected path of

pixels in the image from left to right, containing one, and only one, pixel in each column of the image.

Given the weight function w(p, q), the cost of a staff can be defined as C(s) =
∑N1

i=2w(vi−1, vi).

The optimal staff line that minimizes this cost can be found using dynamic programming 3. The first

step is to traverse the image from the second column to the last column and compute the cumulative

minimum cost C for all possible connected staff lines for each entry (i, j):

C(i, j) = min


C(i− 1, j − 1) + w(pi−1,j−1; pi,j)

C(i− 1, j) + w(pi−1,j ; pi,j)

C(i− 1, j + 1) + w(pi−1,j+1; pi,j)

,

where w(pi,j ; pl,m) represents the weight of the edge incident with pixels at positions (i, j) and (l,m).

At the end of this process,

min
j∈{1,··· ,N2}

C(N1, j)

indicates the end of the minimal connected staff. Hence, in the second step, one backtrack from this

minimum entry on C to find the path of the optimal staff.

Assume one wants to find all staff lines present in a score. This can be approached by successively

finding and erasing the shortest path from the left to the right margin of the score. The erase operation

is required to ensure that a staff is not detected multiple times .

Consider the music score presented in Figure 7.1(a); in Figure 7.1(b) the first 11 shortest paths are

traced. This example shows that music symbols placed on top of staff lines do not interfere with the

detection of the staff lines. Moreover, the example also makes clear that slightly skewed scores do not

pose any problem to the proposed approach.

Before presenting the complete algorithm, we introduce here for the first time the concept of a

stable path in a graph, which will allow computing multiple staff lines in a single iteration, instead of

sequentially computing them one at a time.

7.1.2 Stable paths on a graph

Before moving to the formal definition of a stable path on a graph, it is instructive to motivate the

concept by considering a hypothetical, simplified music score, with four staff lines (rows 1, 4, 6, and

8) in a 8 × 9 image. The staff lines are comprised of mostly black elements; the discontinuities on

some of the staff lines try to simulate the presence of noise. The graph corresponding to such score
2These assumptions, 8-connectivity and one pixel per column, impose a maximum detectable 45 rotation degree.
3See Appendix A Section A.1 for details about dynamic programming.
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(a) Skewed staff lines with music symbols. (b) The first 11 shortest paths between left and right mar-
gins.

Figure 7.1: An illustrative example of the methodology.

Figure 7.2: Stable paths on a toy example.

is represented in Figure 7.2. The design of the weight function will be considered next; for now, it

suffices to know that it was constructed to favour paths through black pixels.

The shortest path between the left and right margins (sub-graphs Ω1 and Ω2) is the path corre-

sponding to the first row, entirely through black pixels. By following the strategy just delineated, one

could find the four staff lines in four iterations, sequentially. Nonetheless, although only one staff line

corresponds to the shortest path, they all constitute a sort of (almost) optimal paths. The stable path

concept provides a means to find all of such paths simultaneously.

Definition. A path Ps,t is a stable path between regions Ω1 and Ω2 if Ps,t is the shortest path between

s ∈ Ω1 and the whole region Ω2, and Ps,t is the shortest path between t ∈ Ω2 and the whole region

Ω1.
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The naming of stable path has its roots in dynamical systems, as it resembles stable fixed points. If

one considers the function FΩ1→Ω2 (), mapping a node s ∈ Ω1 to a node t ∈ Ω2 by finding the shortest

path Ps,t between s ∈ Ω1 and Ω2, with t = FΩ1→Ω2 (s) as the end node of such shortest path, then

GΩ1→Ω1 (s) = FΩ2→Ω1 (FΩ1→Ω2 (s)) = s

if and only if Ps,t is a stable path. Note that the concept of stable path is valid for any graph and

any two sub-graphs in general. The computation of the stable paths on the toy example of Figure 7.2

provides the three paths yellow-highlighted in the figure.

As a second example, in Figure 7.3(a) the shortest paths between each point on the left margin and

the whole right margin are traced for the score in Figure 7.1(a). As seen, the paths got attracted by the

staff lines. Likewise, Figure 7.3(b) shows the shortest paths between each point on the right margin and

the whole left margin. The set of stable paths between both margins result as the set of paths present in

both figures.

(a) Shortest paths from each pixel in the left column and the
whole right column, superimposed on the original image.

(b) Shortest paths from each pixel in the right column and
the whole left column, superimposed on the original image.

Figure 7.3: Illustration of stable paths for Figure 7.1(a).

Although the computation of the stable paths may be expensive in general graphs, the computation

in the graph derived from an image under the setting adopted in Section 7.1.1 has only roughly twice the

complexity of the shortest path computation presented in the same Section. Noticing that the procedure

delineated in Section 7.1.1 actually gives the shortest path between the whole left margin Ω1 and each

point on the right margin Ω2, the first step on the computation of the stable path corresponds verbatim

to the computation of the shortest path presented on Section 7.1.1. In a second step one repeats the

same procedure, traversing now the graph from the right column to the left. At the end of this process,

if the two endpoints of a direct and reverse path coincide, we are in the presence of a stable path.

The stable paths on the toy example of Figure 7.2 provide only three out of the four staff lines, with

the last stable path following partially through a segment of the third staff line and a segment of the

fourth staff line4. Therefore, the computation of the stable paths is not guarantee to find all paths of

interest. The application of the stable path procedure a second time, after erasing the paths found on

the first iteration, yields a new set of paths containing a path joining the remaining segments of the 3rd

and 4th staff lines. The advantage of this search based on stable paths over the sequential search of the

shortest paths depends on the number of stable paths found simultaneously. While a score with 60 staff

lines would require 60 iterations of the shortest path algorithm, it requires a few (typically between 4 to
4Note that the sequential search of the shortest path would suffer from the same limitations.
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6) iterations with the stable path method. Next, the complete proposed algorithm for staff line detection

is detailed.

7.1.3 Proposed Algorithm

The proposed algorithm can be implemented as a sequence of a few high-level operations, as presented

in Listing 1.

BEGIN PreProcessing
compute staffspaceheight and stafflineheight
compute weights of the graph

END PreProcessing
CYCLE

compute stable paths
validate paths with blackness and shape
remove valid paths from image
add valid paths to list of stafflines

END OF CYCLE if no valid path is found

BEGIN PostProcessing
uncross stafflines
organize stafflines in staves
smooth and trim stafflines

END PostProcessing

Listing 1: Main operations of the proposed method.

Preprocessing

To detect the staff lines, the proposed algorithm starts by estimating the staff space height, staffspaceheight,

and staff line height, stafflineheight. These lengths are used as reference lengths on subsequent

operations. Robust estimators are already in common use as described in Chapter 5. After estimating

the reference lengths, the edges’ weights are estimated as explained in the next section.

Main Cycle

The preprocessing is followed by the main cycle of the methodology, by successively finding the stable

paths between the left and right margins, adding the paths found to the list of staff lines, and eras-

ing them from the image. The erase operation sets to white the pixels on a vertical strip centred on

the detected staff line. The erase operation is necessary to ensure that a line is not detected multi-

ple times, even if its height is more than one pixel. The height of the strip was empirically fixed at

staffspaceheight.

Stopping Rule

To stop the iterative staff line search, a sequence of (arguably) sensible rules is used to validate the

stable paths found; if none of them passes the checking, the iterative search is stopped. Two validation

rules were applied, both assessing features with respect to the median values obtained during the first

iteration. A path is discarded if it does not have a percentage of black pixels above a fixed threshold.
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The median percentage of blackness of all lines found in the first iteration of the main cycle provides

the necessary reference (a threshold of 80% of the median value was empirically selected). Likewise,

a path is discarded if its shape differs too much from the shape of the line with median blackness. A

dissimilarity—measured as the average y-distance between both paths, after removing the means—

above shapediff = 4×staffspaceheight was selected as threshold.

PostProcessing

After the main search step, valid staff lines are post-processed. Although true staff lines never intersect,

the above algorithm may occasionally create intersecting lines, detected on different iterations. Local

discontinuities can induce a stable path to zigzag back and forth between consecutive lines; on the next

iteration, the detected path is likely to connect the remaining segments, and therefore intersect with the

path detected in first place. To preclude such final, undesired state, lines are post-processed to remove

intersections: for each image column, sort on y the pixels of the detected lines and assign the i-pixel to

the i-line. After this simple process, lines may touch but they do not intersect.

It is now possible to eliminate spurious lines and to cluster them in staves. Because lines are or-

dered, these operations require only iterating through the list of lines and starting a new staff whenever

the distance between two consecutive lines is above a fixed threshold (= 2× staffspaceheight).

Next, spurious staves can be eliminated. Although more robust rules can be designed, we are simply

discarding sets with a single line.

Finally, lines are smoothed and trimmed. As noticeable in the example of Figure 7.1(b), before

meeting with a staff line, a path travels through a sequence of white pixels. Likewise, after the end of

the staff line, the path goes again through a sequence of white pixels until it meets the right margin

of the image. In order to eliminate the undesirable segments, the trimming operation works per staff.

For each staff, a sequence of median colours is computed as follows: for each column, the median

of the colours (black and white values, as we are working with binary images) of the lines is added

to the sequence. Next, the trimming points are found on this sequence: starting on the centre, we

traverse the sequence to the left and right until a run of whiterun = 2×staffspaceheight white

pixels is found. The pixels between the left and right runs are kept in the staff lines. At the end, lines

are smoothed with a standard average low-pass filter. Considering a staff line as a sequence y(x) of

y-positions, a one-dimensional averaging filter is applied. A window size of 2×staffspaceheight
was selected empirically.

7.1.4 Design of the Weight Function

An immediate approach is to support the design of the weight function solely on the values of the

incident nodes: if any of the corresponding pixels are black then a low cost is assigned to the edge;

otherwise the edge assumes a high cost. In [21] we followed this straightforward approach, with already

significant results. We call this the baseWeight in Listing 2. Now the weight function is generalized

to account for other factors. To incorporate some prior knowledge about a music score into the shortest

path process, we consider different alternatives to modify the weight function of the graph.

We considered two more attributes of a pixel to influence the main contribution to the edge’s weight

resulting from the values of the incident pixels. The prime intention of these additional features is to
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discriminate black pixels in the staff lines from black pixels in the music symbols, penalizing the latter

and favouring the former.

If a black pixel is part of a short vertical run of black pixels, then it is more likely to be part of a

staff line rather than of a symbol. Therefore, a term benefiting such edges is included in the weight

function. Another prior knowledge is that a staff line is likely to have another staff line at roughly

staffspaceheight pixels (assuming that staves have at least two lines). As such, if the nearest

vertical run of black pixels on the same column is excessively far from the vertical run of black pixels

containing the current black pixel, then this pixel is more likely to belong to a symbol (probably a

ligature) rather than to staff line. Consequently, a penalising term is incorporated in the weight function

for these cases. The pseudo-code for the weight function is provided in Listing 2.

WeightFunction(pixelValue1, pixelValue2, vRun1,
vRun2, nearestVRun1, nearestVRun2,
NeighbourhoodType)

{
value = min(pixelValue1, pixelValue2);
weight = baseWeight(value, NeighbourhoodType);
if( (vRun1<=STAFFLINEHEIGHT)

OR(vRun2<=STAFFLINEHEIGHT))
weight = weight - delta;

if( (nearestVRun1>=STAFFSPACEHEIGHT+STAFFLINEHEIGHT)
OR(nearestVRun2>=STAFFSPACEHEIGHT+STAFFLINEHEIGHT))
weight = weight + delta;

return weight;
}

Listing 2: Pseudo-code for the weight Function. The base weight was set to 4 on black pixels and 8
on white pixels for 4-neighbourhoods and to 6 and 12 on for 8-neighbourhoods. The delta penalizing
term in the weight function was set to 1. For efficiency, weights were designed with integer values.

7.2 Dalitz’s Algorithm

Another staff line detection method used in this thesis is Dalitz’algorithm. This is implemented in

the MusicStaves plug-in that is incorporated in GAMERA framework5 (Generalized Algorithms and

Methods for Enhancement and Restoration of Archives) which is a toolkit for building document image

recognition systems.

Dalitz’ algorithm is a generalization of the method described in [84]. It stars by estimating the val-

ues for the staff line thickness and the staff space height. These values are estimated by the technique

used in Fujinaga [53]: the most frequent black-runs represents the staff line height (staffline_height)

and the most common white-runs represents the vertical line distance within the same staff

(staffspace_height). This technique starts by computing the vertical run-lengths representation of

the image.

The process of Dalitz for finding the staff lines operates on a set of “staffsegments” and requires

methods not only for linking two of those “staffsegments” horizontally and vertically, but also for

5See http://ldp.library.jhu.edu/vhost-base/gamera and [19] for more details.
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merging two segments with overlapping positions into one. The algorithm will be described in the

following steps :

1. Add vertical links between “staffsegments” with a vertical distance around

staffline_height+staffspace_height.

2. Add horizontal links between adjacent “staffsegments” possibly belonging to the same staff line.

3. Partition the resulting graph into connected subgraphs; each subgraph that is wide and high

enough corresponds to a staff.

4. All “staffsegments” within a system are labelled as belonging to a certain staff line. Segments of

the same line at the same horizontal position are merged into one segment.

5. Due to ledger lines, ties and beams, some subgraphs will contain too many staff lines. To re-

duce them to a predefined number of lines per staff (typically five for modern notation, four for

chant and six for tablature), the outer staff lines of each staff are subsequently removed until the

predefined number of staff lines remains.

Dalitz developed the following algorithm to find the “staffsegments”:

1. Extract horizontal runs with more than 60 percent black pixels within a window of width

staffspace_height.

2. The resulting filaments are vertically thinned by replacing each vertical black run with its mid-

dle pixel. For black runs higher than 2*stafline_height, more than one skeleton point is

extracted.

3. The resulting skeleton segments wider than 2*stafline_height are the “staffsegments”.

7.3 Evaluation Metrics and Results

Although the assessment of a new staff detection algorithm can be done by visually inspecting the

output on a set of scores—as adopted on [105]—, here the comparison is supported on quantitative

measures. In section 3.1 the adopted database was presented. To conveniently measure the performance

of a staff line detection algorithm, two different error metrics are considered: the percentage of staff

lines falsely detected and the percentage of staff lines missed to detect.

To evaluate these metrics, the process starts by computing the average Euclidian distance between

each reference staff line – see section 3.4 for ground-truth information – and each staff line actually

detected. Then, the matching problem on the resulting bipartite graph is solved by minimizing the

assignment cost (= distance). Only pairs with average error-distance below stafflineheight are

assumed to be correctly matched (the other pairs were assumed to originate from a false positive staff

line being matched to an undetected true staff line and were therefore unmatched). Now the two metrics

are the number of unmatched detected staff lines (false positive) and unmatched reference staff lines

(failed to detect). It should be noted that these metrics only measure whether staff lines are found, not

how good the match is.

The proposed algorithm was compared with the three methods considered in [34] for staff line

detection. As Dalitz’s algorithm performed significantly better than the others two methods evaluated

in [34], we have only considered Dalitz’s results in subsequent analysis. This performance of the staff

line detection algorithms agrees with the relative performance for staff line removal reported in [34].
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The parameters of the stable path algorithm were preliminary tuned with an independent set of images,

yielding the thresholds already presented in the method description.

The effects of the different deformations over the respective parameter ranges are shown in Ta-

ble 7.1; the shortest path method relates to the version presented in [21], including the weight function

and post-processing. The curvature deformation is done with a half sine wave; the line y-variation

generates random defects on the y-position of the staff line; the typeset emulation tries to imitate

sixteenth-century prints with staff lines interruptions between symbols and random vertical shifts [34].

With respect to the distortions considered, the stable path based approach (and the shortest path ap-

proach) outperforms the Dalitz algorithm6. In fact, the performance of the proposed approach is almost

independent of intensity of the deformation, for the range of values considered. This performance gain

is even more noteworthy as the Dalitz algorithm is receiving as input the correct number of lines per

staff. Had not this been the case, the difference between both would have been much larger. The current

implementation of the stable path algorithm runs as fast as the Dalitz algorithm (and about five times

faster than the shortest path version), as available in the MusicStaves Toolkit [33]. By generalizing the

design of the weight function and enhancing the postprocessing, we were able to improve the detection

performance on our initial results in [21]. The use of the stable paths improved the detection speed.

In a simple sensitivity analysis of the approach to the selected parameters, the experiments were

repeated with values for stafflineheight and staffspaceheight one pixel above and below the

true estimated values. Note that all the method parameters are scaled by one of these two estimates.

In both cases, the stable path method presented a good performance and continued to yield the best

results (the strongest degradation occurred for the rotation degradation, with angle= 5 ◦, where both

error rates increased to 1.7%).

In a second experiment we evaluated the staff line detection methods on a set of 40 real music

scores – see section 3.1 –, for which reference staff lines were manually outlined – see section 3.4.

Images were previously binarized with the Otsu threshold algorithm, as implemented in the Gamera

project7. The evaluation of the detection algorithms yielded the results presented in Table 7.2. Again,

and although the correct number of staff lines per staff was inputted to the Dalitz’ algorithm, the stable

path approach obtained the best performance.

6For the deformations not shown, the stable path is not significantly better than Dalitz.
7http://gamera.sourceforge.net

http://gamera.sourceforge.net
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False detection rate Miss detection rate Runtime
Dalitz 5.2% (10.4) 5.9% (11.3) 112 sec.

Shortest path 1.4% (3.5) 2.5% (7.3) 612 sec.
Stable path 1.3% (5.7) 1.4% (6.4) 115 sec.

Table 7.2: Detection performance on real music scores in percentage: average (standard deviation).

7.3.1 Staff line removal

Staff line detection algorithms can be used as a first step in many staff removal algorithms. To under-

stand the potential of our algorithm to leverage the performance of existing staff removal algorithms,

we conducted a series of experiments, comparing existing versions of staff line removal algorithms

with modified versions of them, making use of the stable path algorithm at the staff line detection

step8. The quantitative comparison of the different algorithms is totally in line with the comparison

presented in [34]. Adopting the naming convention from [34], the following algorithms were adapted:

LineTrack Height, LineTrack Chord, Roach/Tatem. The original version of the algorithms were con-

sidered as available in [33], making use of the Dalitz’ algorithm in the detection phase; the modified

versions use instead the stable path for detecting lines. We also adopted the same error metrics (individ-

ual pixels, staff-segment regions and staff interruption location) and conducted the comparative study

on the same test set9. It turned out that the effects of the deformations and the insertion of the stable

path as the detection algorithm are similar for all three error metrics. Hence, in Tables 7.3 and 7.4, we

just present the results for the pixel error rate and for the Line Track Height algorithm (original and

modified), plus the Skeleton algorithm, which exhibited a competitive performance in [34]. The Line

Track Height (LTH) checks whether the vertical black run through the staff line point is longer than

(= 2× stafflineheight).

A first observation is that, overall, the replacement of the Dalitz method by the stable path approach

as the staff detection step improved the results in the algorithms under comparison. Additionally,

the LineTrack Height algorithm with the stable path consistently outperformed the other algorithms.

Nevertheless, the skeleton method [34], which does not have a clear line detection step, continues to

present a competitive performance. It is worth to finalize by noticing that the skeleton algorithm is

about two times slower than the modified Line Tracking Height algorithm.

7.4 Staff Removal Competition

In this thesis, we participated in a staff removal competition promoted by International Conference

on Document Analysis and Recognition (ICDAR)10. This was a competition with focus in the recog-

nition of handwritten music scores and in the identification of the authorship of an anonymous mu-

sic score. The database used was the CVC-MUSCIMA by Alicia Fornés, available to download in

http://www.cvc.uab.es/cvcmuscima/index_database.html. As already mentioned

in section 2.5 this is a database containing 1000 music sheets written by 50 different musicians. Each

8See Appendix A Section A.2 for more details about the staff lines removal algorithms adopted in this thesis.
9See Appendix A Section A.3 for the description of the error metrics.

10http://www.cvc.uab.es/cvcmuscima/competition/index.htm

http://www.cvc.uab.es/cvcmuscima/index_database.html
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rotation
Angle -5 -2.5 0 2.5 5

Stable path + LTH 1.7 (0.7) 1.5 (0.7) 1.4 (0.7) 1.4 (0.7) 1.6 (0.7)
Dalitz + LTH 19.4 (18.4) 5.2 (8.7) 1.4 (0.8) 4.4 (8.8) 17.5 (18.9)

Skeleton 1.9 (0.9) 1.7 (0.8) 1.5 (0.7) 1.6 (0.7) 1.7 (0.8)
curvature

Amplitude/staffwidth 0.02 0.04 0.06 0.08 0.10
Stable path + LTH 1.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.5 (0.7) 1.6 (0.7)

Dalitz + LTH 3.8 (5.8) 14.0 (12.2) 22.8 (13.7) 31.1 (11.0) 35.0 (10.6)
Skeleton 2.6 (2.4) 5.2 (5.1) 8.1 (7.2) 11.9 (8.6) 15.4 (10.4)

white speckle
Rate whitened pixels 0.03 0.05 0.07 0.09 0.11
Stable path + LTH 11.9 (3.1) 17.2 (4.9) 21.1 (5.9) 24.0 (6.7) 26.1 (7.2)

Dalitz + LTH 11.5 (3.2) 16.8 (4.9) 26.7 (8.0) 53.3 (14.9) 73.3 (14.6)
Skeleton 14.6 (3.2) 21.5 (4.6) 27.1 (5.6) 35.2 (12.8) 46.9 (18.7)

line y-variation
Max deviation, n 2 3 4 5 6
Stable path + LTH 1.2 (0.7) 1.3 (0.7) 1.3 (0.6) 1.4 (0.6) 1.4 (0.6)

Dalitz + LTH 9.0 (13.2) 10.4 (14.1) 10.9 (14.5) 10.9 (14.5) 11.0 (14.6)
Skeleton 1.5 (0.8) 1.7 (0.8) 2.2 (0.9) 3.7 (1.7) 5.2 (2.2)

typeset emulation I
Max gap width, ngap 1 4 7 10 13

Stable path + LTH 1.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.4 (0.7)
Dalitz + LTH 2.6 (1.8) 2.9 (2.0) 3.2 (1.7) 2.9 (1.7) 3.0 (1.8)

Skeleton 26.4 (9.8) 27.3 (10.1) 27.2 (11.3) 25.5 (9.8) 26.4 (10.3)
typeset emulation II

Max vert. shift, nshift 1 4 7 10 13
Stable path + LTH 1.4 (0.7) 1.4 (0.7) 1.4 (0.7) 1.5 (0.7) 1.6 (0.7)

Dalitz + LTH 1.5 (0.8) 2.8 (1.6) 3.3 (2.5) 3.8 (2.4) 4.7 (3.7)
Skeleton 7.9 (8.9) 24.1 (9.1) 26.7 (11.0) 26.1 (9.6) 29.1 (10.7)

Table 7.3: Effect of different deformations on the overall staff removal error rates in percentage: aver-
age (standard deviation).

Stable path + LTH Dalitz + LTH Skeleton
Pixel Error Rate 2.8 (1.2) 3.8 (2.6) 6.5 (8.2)

Table 7.4: Removal performance on real music scores (in percentage): average (standard deviation).

writer wrote the same 20 scores, using the same pen and the same kind of music paper with printed

staff lines. Moreover, each music page was distorted using the algorithms from Dalitz et al.[34], yield

a total of 12000 images – see Figure 7.4 – with ground truth for the staff removal task.

Figure 7.4: Some examples of music scores from CVC-MUSCIMA database.

For the staff removal competition, the entire database was equally divided into two parts: the first
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50% of the images were used as training set and the other 50% were used as testing set [44]. The

algorithms that competed were the following:

1. ISI01 with variants ISI01-Rob and ISI01-HA: the thinned images are analysed and grouped as

(1) straight staff line or (2) non-straight or curved staff lines. The straight staff lines are further

divided into horizontal staff lines and non-horizontal straight lines. The staff lines are detected

based on features of each group.

2. INP02 with variants INP02-SP and INP02-SPTrim: the proposed stable path algorithm in this

chapter.

3. NUS03: The method uses the staff height and staff space to predict the lines’ direction and to fit

an approximate staff line curve for each image. This curve is used to identify the location of staff

lines. The staff lines are assumed to be parallel.

4. NUG04 with variants NUG04-Fuji, NUG04-LTr and NUG04-Skel: see [53, 34] for more details.

Figure 7.5 presents the results for the competition where it is possible to see that our method

(INP02-SP) is ranked in third, with a good overall error rate (2.83%).

Figure 7.5: Staff removal results. Error Rate (E.R.) in % for each one of the 12 distortions. We show
the Error Rate with and without rejection. In case of the Error rate without rejection (No Rej.), we also
show the number # of rejected images. From Fornés et al. [44, Table I].
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7.5 Synthesis

This chapter presented a robust algorithm for the automatic detection of staff lines in music scores.

The proposed method uses a very simple but fundamental principle to assist detection and avoid the

difficulties typically posed by symbols superimposed on staff lines. The stable path approach for staff

line detection algorithm is adaptable to a wide range of image conditions, thanks to its intrinsic ro-

bustness to skewed images, discontinuities, and curved staff lines. The proposed approach is robust to

discontinuities in staff lines (due to low-quality digitization or low-quality originals) or staff lines as

thin as one pixel.

In order to take full advantage of the method, existing staff line removal algorithms were enhanced

by using the stable path method as their first processing step.



CHAPTER 8

Musical Symbols Segmentation and Classification∗

The musical symbols detection is a stage on an OMR system where operations to localize and to isolate

musical objects are applied. The proposed algorithms must be robust to several problems imposed by

music symbols. The complexity of this phase, caused by printing and digitization, as well as the paper

degradation over time, is directly related, not only to the distortions inherent in staff lines, but also

to broken, connected and overlapping symbols (see Figure 8.1), differences in sizes and shapes (see

Figure 8.2 ), noise, and zones of high density of symbols (see Figure 8.3).

(a) Broken minim symbols. (b) Connected notes in a chord. (c) A slur that overlapped a beam.

Figure 8.1: Broken, connected and overlapping symbols.

(a) (b) (c)

(d) (e) (f)

Figure 8.2: Variability in sizes and shapes between handwritten and printed scores.

(a) Music scores with noise. (b) An high density of symbols.

Figure 8.3: Noise and zones of high density of symbols.

As already mentioned in chapter 2 there are a lot of strategies to detect and extract the music sym-

bols. From our point of view, some of them such as projections, descriptors and template matching
∗Some portions of this chapter appears in [108, 109].
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could not be suitable for handwritten music scores due to the wider variability of the objects. Other

methods, such as grammars and graphs are complex because they need to cover all possible combina-

tions of symbols. In this thesis, we choose to implement and test two processes to detect the music

symbols: (1) music symbols segmentation and (2) music symbols segmentation through recognition.

In both methods, information related to context, geometric features and music rules are used. The main

difference between the two processes is in the segmentation step, where in the latter, machine learning

techniques are used to aid the segmentation process, as we will describe.

8.1 Music Symbols Segmentation

In this section, the music symbols segmentation will first be presented and then the classification

method used to classify the extracted objects will be explicated next.

The process to segment the objects was based on an hierarchical decomposition of a music image

and in contextual information and music writing rules. This hierarchical decomposition choice aims

the disintegration of a complex problem towards various simple problems. Hence, a music sheet is first

analyzed and splitting by its staffs, as yielded by the staff lines removal step – see Figure 8.4. The

processing continues with the segmentation process, which is schematized in Figure 8.5. For each staff

(set of staff lines) a clef detection process (step I) is applied. If this symbol exists, the process to detect

key (step II) and time signatures (step III) is performed. If a clef symbol does not exist (for instance,

the current music sheet can be the second sheet of that music work) the algorithm searches for stored

information about the last analyzed music sheet. After step III (Time Signature Detection) a procedure

to find stems is made (step IV). If these objects are present in the staff then the algorithm searches

for the existence of closed note heads (step V) – crotchet –, otherwise the algorithm goes to breves

and semibreves detection (step IXb). For each closed note head a beams detection (step VI) process is

applied. The closed note heads with beams cannot have flags. For the other cases a flag detection step

(step VII) is needed. If the algorithm does not detect any closed note head, then it goes directly to step

IXa (Minim Detection). The remaining stages are accidentals detection (step X), dots detection (step

XI), accents detection (step XII), rests detection (step XIII) and bar lines detection (step XIV).

During the execution of the segmentation process the symbols were divided considering their graph-

ical position and geometric features:

1. symbols that are characterized by a vertical segment (stem) and an oval note head: crotchet (e.g.
ˇ “), notes with flags (e.g. ˇ “( ) and minim (e.g. ˘ “).

2. symbols that link the notes: beams (e.g. ˇ “ ˇ “
====

).

3. the remaining symbols connected to staff lines: clefs, rests (e.g. @ ), accidentals (e.g. [, ], \) and

time signature (e.g. R ).

4. symbols above and under staff lines: ties, slurs (e.g. a) and accents (e.g. >).

All music scores must have a clef. In this manner, the first module in the hierarchical decomposition

of the music score is the clef detection. After this symbol, we can have a set of accidentals symbols

composing the key signature. The time signature is placed after the clef symbol and any key signature,
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(a) Music score with staff lines. (b) Music score without staff lines.

(c) The first four staffs of the music score.

Figure 8.4: First step in the segmentation procedure: split the score by staffs (set of staff lines).

defining the meter of the music. Time signatures establish the number of beats in each bar line and

which note value constitutes one beat.

Note heads are usually the object that appears with higher frequency in a score. Hence, it is natural

the option of detecting stems after module III (Time Signature detection) in order to detect, after that,

the note heads. Besides, almost all musical rules are dependent on these objects. For instance, beams

only exist connecting eighth notes or smaller rhythmic values. A similar dependency can be established

for the remaining symbols: accidentals only exist before each note head and at the same height, accents

exist over or under a note head and dots are placed after note heads.
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Figure 8.5: Diagram of the musical symbols extraction algorithm.

The multiple steps of the segmentation process use a common technique that is the connected

components technique with a possible threshold for the distance between objects. This freedom degree

for the neighboring pixels is due to the existence of broken symbols – see Figure 8.1(a). The contextual

information and music rules are also used in all modules. To detect key and time signatures, the

algorithm searches for connected components that are placed a certain number of pixels away from the

previous detected symbol. For the key signature, distances between accidentals are also considered.

Another important issue that is taken into account is the maximum number of accidentals allowed per

key. Flags are symbols that are always placed to the right of the stem. As opposed to these signs,

accidentals exist before each notehead and at same height. In this manner, the connected components

process is only applied on these areas. It is worth noting that all the threshold values used were obtained

experimentally.

Clefs detection

The clefs detection process starts by computing the connected components using a threshold for the

distance between objects of spaceHeight/2. This value increases until the algorithm finds an object

with a width of 3 × spaceHeight. Once again this degree for the neighboring pixels is due to the

existence of broken symbols, as previously mentioned. However, in some cases when the threshold is

increased, to incorporate symbols with a big distance between its segments, it finishes encompassing

the symbols after the clef. In order to overcome this issue, when this procedure fails to find the clef

sign and the main algorithm detects notes, other clef detection process is applied.

Matrices with 10 rows and 5 columns are created for each of the three possible clefs (treble, bass
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and alto), containing in each cell the number of black pixels – see Table 8.1. These masks are used to

calculate correlation degrees. This procedure starts with an image from the beginning of the staff with

a certain height and width; the three masks are used. While the correlation is below a threshold the

width of the image is increased – see Figure 8.6. The stop criterion, when no match symbol is found,

is the maximum number of iterations. If a clef symbol is not detected the algorithm searches for the

stored information about the last analyzed music sheet. It is important to stress that, since the masks

were created through counting the number of black pixels and not using the exactly position of the

black pixels we only used a symbol of each type of clef to compute the matrices. We believe as a result

of our experiences that this technique captures the differences in the writing style in handwritten music

scores.

0 0 35 1 0

0 16 45 28 0

0 26 24 28 0

0 7 64 1 0

0 40 41 6 0

5 57 70 63 9

17 47 24 41 6

0 27 11 34 0

0 56 12 15 0

0 34 0 0 0

Figure 8.6: Correlation process.

In Figure 8.7 an example of a possible result after the clef detection step is presented.

Key and Time Signatures Detection

The key signature is a set of accidentals symbols that appears after the clef sign. The algorithm searches

for connected components that are placed 3 × spaceHeight pixels away from clef symbol with an

height of 4×spaceHeight+2× lineHeight and a width of 2×spaceHeight. These thresholds were

obtained experimentally. The distance allowed between each accidental is below spaceHeight/2. A

key signature can have between 0 and a maximum of 5 accidentals – see Figure 8.8(c).

There are several possible symbols for the representation of time signatures. This type of sign

is sometimes represented by two figures where the numerator occupies the two top space and the
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(a) The third staff from the score 8.4(a).

(b) The score without clef symbol.

Figure 8.7: The result after the clef detection step.

denominator occupies the two bottom space, or simply it is represented by a S used to indicate 4
4 or

a R used to indicate 2
2. The time signature is placed after the clef symbol and any key signature. The

process starts to search for connected components that are a 2 × spaceHeight distance from the last

object detected discarding the ones with a width above 3× spaceHeight – see Figure 8.8(d).

Note heads detection

For the note heads detection, the algorithm starts with the stems removal procedure where each vertical

run of black pixels above 2× spaceHeight− lineHeight is eliminated – see Figure 8.9(a). For each

of the previous positions, a connected components process is applied to search for objects with an

height above 2 × lineHeight and width above spaceHeight × 0.70 as illustrated in Figure 8.9(b).

Each of these connected components must have a width and height that do not differ by more than

40% (Figure 8.9(c)). These values were chosen with the aim to preserve the geometric features of note

heads. If the procedure is detecting closed note heads then the algorithm rejects the selected objects

with white pixels inside – Figure 8.9(d).

The set of open note heads encompasses the minim notes, which have the symbols with stems ( ˘ “),
and breve and semibreve, which have the symbols without stems ( ¯ ). This type of music signs are

difficult to detect because their head can be degraded. Therefore, when this happen the algorithm first

detects black pixels with an height above 2 × lineHeight and then join these pixels with the closed

left objects found. At the end its width must be above spaceHeight× 0.70. The processing continues

with the selection of those that preserve the geometric features of note heads – see Figure 8.10.

Beams detection

The beams are one of the symbol types that can cause problems in the detection process due to their

shape and size, and the way they connect each other and to other symbols, which can happen in a huge

number of different ways. Another difficulty is related to the inconsistency in their thickness. For each

closed notehead previously detected, the algorithm searches for connected components with a width

above spaceHeight× 0.70 and a height below 4× spaceHeight.
In some situations the stem detection process could remove or disintegrate closed note heads, be-

cause of their height. In order to include them, a further procedure in the beams detection module was
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(a) The original score.

(b) The score with the detected clef.

(c) The score with the detected key signature.

(d) The score with the detected time signature.

(e) The score without the detected previous symbols.

Figure 8.8: The result after key and time signatures steps.

incorporated: to find rejected closed note heads at the beginning and at the ending of the beams selected

– see Figure 8.12.

Rests detection

To detect rests symbols, the matrix correlation process already explained for clefs detection was used.

Besides this, mathematical morphological procedures were also used. The algorithm has the following

steps:

1. Find connected components with a distance between objects of spaceHeight.



86 Chapter 8. Musical Symbols Segmentation and Classification

(a) The score 8.7(b) without stems.

(b) First noteheads detected.

(c) Noteheads with shape approximatly equal to a rectangle.

(d) Noteheads without white pixels inside them.

Figure 8.9: Closed noteheads detection steps.

(a) Input image for minims detection.

(b) Minims detected after connected components search.

(c) Image without minims detected.

Figure 8.10: Open noteheads with stems detection steps.

2. For the symbols detected in step 1 compute its 10× 5 matrix and calculate the correlation degree

using the 5 models for rests symbols (quarter > , quaver ? , semiquaver @ , demisemiquaver A and

hemidemisemiquaver ).

3. While the correlation degree is below 0.3 decrease the object detected width.

4. When the step 3 finds a compatible rest with the symbol detected in step 1 compute the ter-

mination points – see Figure 8.13(d) – using morphological operations: closed operation – see
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(a) The score 8.9(d) without the detected note heads.

(b) The beams that were detected.

Figure 8.11: The result after the beams detection step.

(a) The score 8.9(d) with the detected closed note heads.

(b) Closed notehead inserted to the previous closed noteheads selected.

Figure 8.12: Insertion of a closed notehead initially eliminated.

Figure 8.13(b) – and skeleton – see Figure 8.13(c).

5. If the termination points coincide with termination points expected for a rest symbol then the

object detected can be consider a rest symbol, otherwise the algorithm goes to another column

of the image and starts step 1.

(a) (b) (c) (d)

Figure 8.13: Morphological operations applied to the rest symbols: (a) Original rest symbol; (b) Closed
rest symbol; (c) Skeleton of the rest symbol; (d) Termination points of the rest symbol.

In Figure 8.14 an example of a possible result after the rest detection step is presented.

Dots, accents, flags and accidentals detection

For these symbols the algorithm uses contextual information and music writing rules. Hence, as already

mentioned, flags are symbols that are always placed to the right of the stem. As opposed to these signs,

accidentals exist before each notehead and at same height. Dots are always placed to the right of
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(a) The score 8.7(b) without the previously symbols detected.

(b) The rests that were detected.

Figure 8.14: The result after the rests detection step.

noteheads and in the center of a space; these symbols can exist associated with noteheads with flags.

In this situation they are located in the space above and beyond the tail. If the noteheads are placed on

lines the dots are in the center of the space above. If the staff has chords (more than one notehead in the

same stem) where the lower notehead is on a line its dots must go in the space beneath it. Accents exist

over or under a note head. In this manner, the connect components process is only applied on these

areas. Once again the objects are selected using only the size and the position of the bounding box of

the detected symbol.

(a) The score 8.7(b) without the previously symbols detected.

(b) The accents that were detected.

Figure 8.15: The result after the accents detection step.

Process limitations

Since in this proposed methodology the detection of the objects is dependent of the quality of the

connected component procedure, connected and overlapping symbols are a problem. Besides, rotations

and severe disintegration of the symbols can also cause bad results. To overcome some of these issues

we proposed to:

• execute the detection process more than once until there are no more symbol on the staff, adjust-

ing the several input parameters;

• assign recognition hypothesis to each detected symbol in order to help the classification stage;

• incorporate syntactic consistency at the end of the process.



8.1. Music Symbols Segmentation 89

For future work, we propose to use some existent techniques in the state-of-the-art to deal with

connected and overlapping symbols:

• Multiple matching of graphical pattern recognition methods (e.g. [5]).

• Tracking contour positions of the objects (e.g. [130]).

• Template matching with recognition hypothesis (e.g. [114]).

• Horizontal and vertical projections in the bounding box of the object.

8.1.1 Confidence Degrees

The music symbols extraction is based on musical rules. Hence, as the algorithm detects the various

objects it can assign a possible class for each of them with some certainty. In order to measure this

level of certainty favoring the position of the object on the staff we defined Confidence Degrees (CD).

These confidence degrees are probabilities of a symbol being correctly detected in its rule. The values

for these degrees can be computed empirically through experimental testing for each musical rule. We

have 16 musical rules according to the different classes of music symbols. The confidence degrees

obtained are displayed in Table 8.1. For each music score and for each musical rule, the number of

correct symbols was divided by the total number of the detected symbols. It is important to stress out

that each symbol is presented in the sample. In our tests a total of 156 handwritten and synthetic music

scores were used. In the end, we will have a matrix where for each detected symbol we have degrees

of certainty of belonging to each class.

Accents Accidentals Barlines Beams Clefs Dots DoubleWhole Half
0.06 0.60 0.95 0.91 0.47 0.49 0.03 0.53
Key Noteheads Minim Semibreve&Breve TimeN Whole Rests TimeL
0.40 0.82 0.54 0.13 0.01 0.13 0.19 0.01

Table 8.1: Confidence degrees of each class.

The CD values can also show the efficiency of the algorithm in detecting the music symbols. Hence,

the implemented rule to detect Barlines, Beams, Noteheads, and Accidentals presents an high value,

whereas the process to detect Time, Rests, Semibreve and Breve presents a low value. This indicates

that in future some procedures need to be improved.

8.1.2 Musical Symbols Classification

As mentioned on the previous section, some types of musical symbols are already divided in classes

during the segmentation phase because of the musical rules. In this manner, this was an aggregation

based on the graphical position and not on the symbols shape. For instance, the accidentals signs were

all put in the same class. Nonetheless, they should be further divided into 3 sub-classes (sharps, naturals

and flats). In order to complement the extraction stage, and to overcome possible errors, a classification

phase is needed.
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8.1.3 Neural Network Classifier

Although SVMs have obtained good results in our classification tests2, with NNs, which are nonlinear

statistical models, we can have an output with a probabilistic interpretation. Such methodology will aid

the automatic analysis of syntactic recognition3 of the music sheets by providing statistical reasonings

if a given pattern is a symbol or not. For this study, a Multi-Layer Perception (MLP) classifier with one

hidden layer with a sigmoid activation function was used. The input of the network was the symbol

bounding box resized to 20× 20 pixels which was afterwards converted to a vector of binary values.

Our approach encompassed the construction of 7 classification models, one for 20 main classes and

one for each of the 6 secondary classes4. The database consist on a set of 65 binary handwritten scores

and 380 distorted synthetic scores. To obtain all the NNs the available dataset was randomly split into

training and test sets, with 60% and 40% of the data, respectively. This division was repeated 20 times.

No special constraint was imposed on the distribution of the categories of symbols over the training and

test sets, ensuring only that at least one example of each category was present in the training set. The

best parametrization of each model was found using the training and validation sets being the expected

error estimated on the test set by a 4-cross validation scheme.

The results for the different models can be seen in Table 8.2. The expected performance in percent-

age for the group of the main classes with a 99% confidence interval was [87.6; 88.4].

Subclasses
Accents NotesFlag Relation Rests2 TimeSignaturesL TimeSignaturesN

99% CI for the Expected
performance in percentage: [88; 90] [74; 80] [93; 96] [92; 94] [98; 99] [63; 66]

Table 8.2: Accuracy obtained for the classification models for the secondary classes.

8.2 Music Symbols Segmentation through Recognition

In the previous section, the music symbol recognition procedure was composed by two main steps: first

the image was segmented in order to detect and isolate the primitive elements, and then the symbols

were classified. In this section a new method is presented. The idea was to perform segmentation

through recognition, that is, the method simultaneously segment and recognize the image. The principal

advantages regarding to the previous method are in the elimination of the heuristic approach and in the

way of dealing with connected and overlapping objects. As symbols are first detected and extracted

from the image and, after that, classified, various parameters related to the size, shape and position

of the objects are introduced. These parameters can constitute a severe problem in handwritten music

scores, because the variability in writing style of each composer. Segmenting the music sheet using

classification simplifies all the process and also overcomes the issues inherent in sequential detection

of the objects, becoming less prone to errors.

2See Appendix B.2 for more details.
3Please see the full explanation in section 8.3.
4See Appendix B Table B.1 for more details.
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8.2.1 Recognition Process

The recognition process consists first in splitting by staffs the music sheet without staff lines, and then

analyzing each of these segments. For each staff the connected component technique is applied. Once

again this technique has a threshold in order to union neighboring pixels from broken objects. The

algorithm proceed doing a scanning to each connected component in order to select what is object and

what is not. This analysis is carried out using classifiers. The objects detected can be noise or musical

symbol (see Figure 8.16).

Figure 8.16: Examples of objects that are considered noise and musical symbol.

The framework to execute this scanning through each connected component is presented in Fig-

ure 8.17. This is a process based on a hierarchical classification. First the detected objects are split

into noise and symbol, and then the noise objects are divided into four types (see Figure 8.18): (1)

connected symbol, (2) not symbol, (3) split symbol and (4) connected and split symbol.

Figure 8.17: Diagram of the algorithm for music symbols extraction.
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Figure 8.18: Examples of objects that are considered noise.

The objects that are classified as symbol can be one of the 19 possible symbols presented in Ta-

ble 8.3 and the objects that are classified as Noise and Symbol can be one of the 15 possible symbols

presented in Table 8.4. The reduction in the number of classes is related to the objects that are possible

to find in each case. Note that in the Noise and Symbol step we are trying to split objects, usually notes

connected to beams, so in this case the noise class is necessary.

Accent BassClef Beam Flat Natural Note NoteFlag NoteOpen

RestI RestII Sharp TrebleClef AltoClef TimeN TimeL Barlines

Dot Breve Semibreve

Table 8.3: The set of the musical symbols considered in the symbol class.

Accent Clef Beam Accidentals Barlines Note NoteFlag NoteOpen

RestI RestII Semibreve Barlines TimeN TimeL Noise

Table 8.4: The set of the musical symbols considered in the Noise and Symbol class.

As mentioned in the beginning of this section, the analysis executed during the procedure to select
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the musical symbols relies on classifiers. We built four types of classifiers relating them to each possible

situation that can appear in the connected components. The CNN_1 classifier5 is performed in order

to divide the objects detected as noise or symbol. If the objects detected are symbol then the CNN_3

is used, otherwise the CNN_2 is utilized. For connected symbol, split symbol and connected and

split symbol an analysis to each bounding box of the object is carried out. The construction of these

classifiers will be explained later.

Connected symbol

Connected symbol class encompasses notes connected to beams, notes connected to accidentals and

notes connected to accents. In the first situation accidentals and accents can also appear in the bounding

box, as illustrated in Figure 8.19. We proposed a sliding window procedure supported by the CNN_4

to detect and extract the symbols. First, the analysis window with an height equal to the height of the

bounding box is moved along the columns. The window width starts equal to staffspaceheight

and is increased three times. This value was obtained experimentally. Only the notes class is considered

on this step – see Figure 8.19(a). After this the search of the window is changed to go by rows – see

Figure 8.19(b). The aim is to look for accidentals and accents. Again the CNN_4 classifier is used to

detect and extract the symbols. The procedure to establish the window size is the same of the previous

step.

(a) Search objects along columns. (b) Search objects along rows.

Figure 8.19: Search objects in connected symbols.

Since an overlap exists between windows, there are repeated objects that need to be removed.

Hence, a process to group symbols is executed. The symbols from the same class are compared with

each other; if their positions are close enough, they are saved as one symbol. All the symbols detected

are removed from the image.

Now it is necessary to detect beams which are music symbols linking two notes. Towards this

goal, for each image composed by two adjacent notes, the algorithm looks for black pixels. It is worth

restating that notes were already removed from the image.

Split symbol

Split symbol class encompasses broken objects – see Figure 8.20. Usually they are notes separated

from their stems or fragmented accidentals and clefs.

The goal is to join black pixels near to the initial object. For that the window size increases until

a certain limit and the CNN_4 recognizer is used to see when we are in presence of a music symbol.
5The Combined Neural Network (CNN) will be explained on the next section.



94 Chapter 8. Musical Symbols Segmentation and Classification

Figure 8.20: Example of broken notes.

The augmentation of the window is first done in height, then in width and then in both. At the end the

procedure to look for repeated symbols is again computed.

Connected and split symbol

Connected and split symbol class encompasses the two previous groups of symbols. For that reason,

the techniques already described for each of the classes are applied here.

After the detection of all symbols a process to test some musical rules is executed. In here, the presence

of accents only above notes and the position of accidentals before and at same height of notes is verified.

If the symbols do not respect these rules then they are eliminated.

8.2.2 Combined Neural Network

To perform the various necessary classifications during the scanning procedure, as described in previous

sections, we propose a music symbol recognizer based on a majority vote combination of three Multi-

Layer Perception (MLP) classifiers – see figure 8.21 – named Combined Neural Networks (CNN). Two

of the networks have the same architecture, being initialized with different weights. The third network

is fed with a different input and with a different number of neurons in the hidden layer. In this way we

expect to increase the overall performance of the classifier regarding to the usual way of only one MLP.

For two of the networks each image of a symbol was initially resized to 20 × 20 pixels and then

converted to a vector of 400 binary values. For the third network each image of a symbol was initially

resized to 60 × 20 pixels and then converted to a vector of 1200 binary values. Usually the images

have an height larger than their width and the principle was thus to favor the height. In this manner, the

problem in the classification of barlines, due to its similarity with dots after the resize, is minimized.

Once again, all these networks have one hidden layer with a sigmoid transfer function.

A database of training patterns was created according to the possible objects that algorithm could

find in the scanning process. Also because of that, for each CNN we have a different database. Each

one of these databases was randomly split into training and test sets, with 60% and 40% of the data,

respectively. This division was repeated 10 times without restricting the distribution of the categories

of symbols over the training and test sets. Only two constraints were imposed: at least one example of

each category should be presented in the training set and the size of the noise class should be limited

to avoid unbalanced classes distributions. The best parametrization of each model was found using the
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Figure 8.21: The struture of a Combined Neural Network.

training and validation sets, with the expected error estimated on the test set by a 4-cross validation

scheme. The results for the different models can be seen in Table 8.5.

Noise/Symbol Noise Symbols Noise&Symbol
MLP [91; 92] [82; 84] [88; 89] [81; 84]
CNN CNN_1: [95; 96] CNN_2: [90; 91] CNN_3: [95; 96] CNN_4: [88; 89]

Table 8.5: Accuracy obtained on the 99% CI (in percentage) for the classification models.

Comparing the results with one MLP applied to the same dataset of music scores and also divided

in the same way, we obtained an higher accuracy. This improvement on the performance is related to

the increase (by a different order of magnitude of the input vector) of the information provided to the

algorithm. Moreover, the combination of the knowledge gained independently by the three learners

which is afterwards merged in a single symbol prediction is also another reason for the performance

gain.

8.3 Syntactic Consistency

During the detection and classification of the music symbols errors always occur: missed, wrong clas-

sified and falsely detected symbols. The purpose of the introduction of syntactic and semantic musical

rules before the construction of the final musical notation model is to overcome these possible errors.

In this thesis, the last two problems were treated.

The main idea behind the syntactic consistency procedure is related to the fact that in music sheet

the number of symbols contained within two bar lines and the time signature must match – see Fig. 8.22.

The procedure of checking the coherency is entirely related to the measure. The top number in the

time signature indicates the number of beats to be counted in each measure/bar line, while the bottom

number indicates which type of note value equals one beat. For instance, the number of beats or the

number of symbols between barlines in the Fig. 8.22 is 2 and the symbol that indicates the unit is the

minim symbol ( ˘ “), because the bottom number is 2, giving x × 2 = 1⇔ x = 1/2, where x represents

the symbol type. Every measure of music in a simple time signature has the same number of beats per
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measure throughout the song. Hence, symbols confusion and wrong symbols added can be mitigated

by querying if the detected symbols’ durations match with the amount of the value of the time signature

on each bar.

Figure 8.22: Example of measures according to the time signature. The bar lines are represented by the
green lines.

8.3.1 Global Constraints

We propose to detect the best combination of symbols between two bar lines given the indicated mea-

sure in the music sheet as an optimization problem. In this manner, the syntactic and semantic music

rules can be incorporated as global constraints, considering the following:

max

n∑
i=1

k∑
j=1

pijxij

s.t

∑k
j=1 xij ≤ 1, i = 1, . . . , n

D
∑k

j=1

∑n
i=1 αjxij = N∑n

i=1 xi2 ≤
∑n

i=1

∑M
j=3 xij

xi,1 ≤
∑M

j=3 xi+1j , i = 1, . . . , n− 1

xij ∈ {0, 1}

(8.1)

where pij is the likelihood (matrix of probabilities) given by a classifier, of the symbol i to belong

to the class j, xij represents the symbol i from class j, N and D are the numerator and denominator

(as aforementioned) in the time signature, respectively, n is the total number of symbols, k is the total

number of classes,M is the total number of symbols that could have associated accidentals and accents,

and αj is the music note value that represents how long each note lasts. Since notes come in different

levels, each with its own note value, it is possible to associate a note value to each class j. The first

constraint of the optimization problem allows symbols elimination, the second constraint is related to

the time signature, the third and fourth constraints are related to the position of the symbols in the staff.

Accents are placed above beams, bellow and above noteheads. Accidentals exist before each note-

head and at same height (placed on the same staff line or space). The third constraint incorporates the

rule of accents position on the optimization problem, allowing accents only if notes are presented in

the score. The fourth constraint imposes precedence of the accidentals for the notes symbols.

To better understand how αj works in the second constraint see Fig. 8.23 which illustrates most of

the notes that we can find in music arranged. For instance, the value of a half note ( ˘ “) is half of a whole

note ( ¯ ), the value of a quarter note ( ˇ “) is quarter of a whole note ( ¯ ), and so on. In Fig. 8.22 the note

value of ˘ “is 1/2. The rests have the same values as the notes. Occasionally, in a music sheet we can

have dots placing right to the notes and rests, increasing the original value: n dots lengthen the note’s
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or rest’s original d duration to d× (2− 2−n). These αj values will be used in the counting of the time

between the barlines. The note value of accents and accidentals is 0, because they do not interfere in

the meter. Depending on the time signature, the number of beats per note varies. Nevertheless, the note

lengths do not change in their relationships to each other: one beat of music could indicate the length

of a whole note, but two quarter notes will always be twice as fast as a half note.

Figure 8.23: Tree of notes representing the relation between them. At the top is the whole note, below
that half notes, then quarter notes, eighth notes, and finally sixteenth notes.

The matrix of probabilities given by pij is the result of one of the classifiers described in the

previous sections 8.1.3 and 8.2.2. If the process encompasses confidence degrees then the pij is the

multiplication of a matrix of probabilities with the matrix of the confidence degrees – see Figure 8.24.

In this case, we try to minimize the probabilities of the falsely detected symbols leading the process to

remove them.

Figure 8.24: The architecture of the syntactic consistency process.

8.4 Evaluation Metrics and Results

In a first experimental testing we compute the performance of our syntactic consistency model using

the reference position of the music symbols on the music score. This reference position was obtained

manually and it is composed by the coordinates of the bounding box of the object plus its class. The
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aim was to verify if the optimization process improves the classification results, making a good re-label

of the objects without the segmentation interference. The data set adopted consisted of 6 handwritten

scores from 3 different composers, 9 synthetic scores and 9 scanned printed scores, all written on

the standard notation. The scanned and real scores were binarized using Otsu’s method [92], while the

synthetic scores were already in binary format. In total we work with 1713 handwritten music symbols,

6486 printed music symbols and 4267 synthetic music symbols. Table 8.6 presents the obtained results

where TPB and TPA stands for true positive classification before and after the execution of the proposed

syntactic consistency process, respectively.

M LP + 400
TPB TPA

Synthetic scores 83% 82%
Real scores 74% 73%

Scanned scores 78% 79%

Table 8.6: Accuracy obtained for the classification models using 400 features before and after the
syntactic consistency model.

Only with scanned scores we could improve the overall performance. It is clear the need of adjust-

ment of the parameters of the global optimization problem. Nevertheless, the lost on the final accuracy

was not significant to stop the work on the global constraints methodology. Changing the constraints,

making possible to include new symbols or weigh the re-label of the symbols could improve the per-

formance.

Despite in the first results the advantage of using syntactic consistency was not clear, we also

computed the overall performance for the entire extraction process. The data set adopted to test the

proposed architectures for the music symbols extraction consists of both handwritten and synthetic

scores, as presented in Table 3.2 (section 3.1). To test only the detection step of the algorithm we

have 9 scanned printed scores, 26 handwritten scores and 882 images generated from 18 perfect scores,

while to test the classification step we only have 9 scanned printed scores, 6 handwritten scores and

132 images generated from 12 perfect scores. This decrease in music scores is related to the number of

manual references of the musical symbols positions with their classes.

The metrics accuracy rate, average precision and recall were considered. They are given by

accuracy = #tp+#tn
#tp+#fp+#fn+#tn , precision = #tp

#tp+#fp , recall = #tp
#tp+#fn

The true positive rate (TPR), false positive rate (FPR), true negative rate (TNR) and false negative

rate (FNR) were also considered:

TPR = #tp
#tp+#fn , FPR = #fp

#tn+#fp , TNR = #tn
#tn+#fp , FNR = #fn

#fn+#tp

as well as the classification rate given by:

accuracy_class = tpc/tp

where tp are the true positives, tn are the true negatives, fn are the false negatives, fp are the false

positives and tpc are the classes of the true positives. A false negative happens when the algorithm
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identifies a musical symbol as noise; and a false positive is when the algorithm identifies noise as a

music symbol. These percentages are computed using the symbols position reference and the symbols

position obtained by the segmentation algorithm.

The performance of the procedures is presented in the following Tables. Table 8.7 shows the impact

of the proposed technique to extract the music symbols with segmentation for all kind of music scores,

while Table 8.9 presents the same study but for the algorithm where the music symbols extraction was

based in the recognition of the objects. In Tables 8.8, 8.10, 8.12, 8.14, 8.16, and 8.18 the confusion

matrices are displayed in order to analyse with more detail where is the gain of the method. Tables 8.11,

8.13 and 8.15 indicate the results using syntactic consistency. In Table 8.11 the algorithm was computed

without confidence degrees (CD) as opposed to Table 8.13.

Precision Recall Accuracy Final classification Final classification
accuracy without CD accuracy with CD

Handwritten scores 61.0% 91.6% 97.6% 31.4% 48.2%
Printed scores 53.9% 93.0% 79.4% 29.8% 46.0%

Digitized scores 67.9% 93.8% 97.8% 29.2% 43.8%

Table 8.7: Results for music symbols extraction.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 91.7% 2.1% Positive 93.8% 2.7% Positive 93.0% 18.9%
Negative 99.9% 20.5% Negative 99.9% 30.5% Negative 94.1% 9.0%

Table 8.8: Confusion Matrix for the results from the Table 8.7.

Precision Recall Accuracy Final classification
accuracy

Handwritten scores 67.1% 78.8% 97.2% 48.4%
Printed scores 69.1% 79.9% 82.2% 45.8%

Digitized scores 66.1% 87.3% 96.7% 45.4%

Table 8.9: Results for music symbols extraction through recognition.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 78.8% 2.0% Positive 87.3% 2.8% Positive 79.9% 7.6%
Negative 99.9% 41.8% Negative 99.9% 44.4% Negative 90.5% 33.1%

Table 8.10: Confusion Matrix for the results from the Table 8.9.
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Precision Recall Accuracy Classification Accuracy
Handwritten scores 71.1% 84.5% 98.3% 40.9%

Printed scores 71.3% 84.7% 84.8% 43.6%
Digitized scores 69.5% 92.0% 97.0% 32.2%

Table 8.11: Results for music symbols extraction after syntactic consistency without confidence de-
grees.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 84.5% 1.3% Positive 92.0% 2.6% Positive 84.8% 14.0%
Negative 99.9% 31.3% Negative 99.9% 25.7% Negative 98.3% 30.3%

Table 8.12: Confusion matrix for the results from the Table 8.11.

Precision Recall Accuracy Classification Accuracy
Handwritten scores 72.0% 85.2% 98.3% 42.7%

Printed scores 73.3% 93.5% 89.7% 48.3%
Digitized scores 69.0% 92.5% 96.9% 32.0%

Table 8.13: Results for music symbols extraction after syntactic consistency with confidence degrees.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 85.2% 1.2% Positive 92.5% 2.7% Positive 93.5% 12.2%
Negative 99.9% 29.7% Negative 99.9% 23.3% Negative 98.5% 20.3%

Table 8.14: Confusion matrix for the results from the Table 8.13.

Precision Recall Accuracy Classification Accuracy
Handwritten scores 91.7% 30.7% 97.2% 28.4%

Printed scores 84.7% 51.5% 80.9% 38.8%
Digitized scores 94.0% 45.1% 96.1% 32.7%

Table 8.15: Results for music symbols extraction through recognition after syntactic consistency.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 30.7% 0.2% Positive 45.1% 0.5% Positive 51.5% 1.9%
Negative 99.9% 83.1% Negative 99.9% 84.6% Negative 90.8% 63.1%

Table 8.16: Confusion matrix for the results from the Table 8.15.
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Precision Recall Accuracy Classification Accuracy
Handwritten scores 63.7% 90.8% 98.0% 38.1%

Printed scores 90.9% 90.7% 74.1% 49.1%
Digitized scores 68.9% 94.4% 97.2% 31.7%

Table 8.17: Results for music symbols detection and classification after syntactic consistency with
confidence degrees, knowing the true positions of barlines and the real time signature.

Handwritten Scores Scanned Scores Printed Scores
True False True False True False

Positive 90.8% 1.8% Positive 94.4% 2.6% Positive 90.9% 9.1%
Negative 99.9% 20.7% Negative 99.9% 24.5% Negative 99.9% 29.2%

Table 8.18: Confusion matrix for the results from the Table 8.17.

8.5 Discussion

Looking to the various results, we can concluded that the algorithm to extract symbols through recog-

nition detects more false negatives and less true positives than just using the algorithm for symbol

extraction. This means that symbol extraction shows a reduction on the correct prediction of the sym-

bols for the three datasets (Table 8.8 and Table 8.10). This rationale is clearly depicted on the results

shown in Table 8.9 where the recall substantially decreased over the recall results shown in Table 8.7.

Hence, the first process has more missed symbols, even though it detects less noise (prediction rate).

Furthermore, comparing the Tables 8.7 and 8.9 the symbols extraction through recognition improves

the performance in printed scores (82.2%).

It is possible to note an increase in the classification performance when the algorithm uses the

confidence degrees (CD) – see Table 8.7. This shows that the prior knowledge implicitly introduced

with CD lead to a clear improvement over the performance. The low results in classification for all

methods could be explained by the bad quality of the extracted symbols, for instance broken objects. As

the syntactic consistency procedure is dependent of classification results, this could lead to a problem.

A decrease in noise is obtained when syntactic consistency is applied to the procedures. See for

example Tables 8.10 and 8.16 where the percentages of false negatives in handwritten scores decreases

from 2% to 0.2%. Nevertheless, we also have a reduction in the number of true positives. This could

indicate that the algorithm is discarding more symbols than it should. Moreover, in some cases with

syntactic consistency the number of missed symbols growth a lot, showing the need of being very

careful with the optimization method and its parameters. More research will be carried in the future to

assess this.

A balance between precision and recall rates is achieved when syntactic consistency is executed.

For example in Table 8.7 we have 61% of precision and 92% of recall for handwritten scores and

in Table 8.13 we have 72% of precision and 85% of recall, showing a slight decrease in the number

of detected symbols but also a decrease in noise. This shows that syntactic consistency procedure

is performing well in the elimination of noisy objects. Moreover, by analyzing the results obtained

for music symbols detection and classification after syntactic consistency with confidence degrees,

knowing the true positions of barlines and the real time signature we can conclude a trend in augmenting
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the number of false negatives after the use of syntactic consistency – see Tables 8.13 and 8.17. With

these results we can conclude that this method could be applied to remove unknown objects, leaving to

other procedure to recover or to detect the missed musical symbols. Besides, it is important to stress that

the syntactic consistency algorithm always expects that the previous process detects all music symbols

present in the score. In this way, the changes that occurs in the classification or the elimination of the

symbols should be seen taking this constraint into account. In future work, it will be very interesting to

include in the optimization algorithm the possibility of adding new symbols.
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CHAPTER 9

Conclusion

The work developed in this thesis had the target to overcome the several issues that affect musical

symbol recognition, particularly in handwritten scores. Despite advances made in the optical musi-

cal recognition algorithms, as described in the state of the art, several open problems still exist with

handwritten music sheets. On the one hand, the scores tend to be rather irregular and conditioned by

the authors’ own writing style and the quality of the paper in which it is written might have degraded

throughout the years, making it a lot harder to correctly identify its contents. On the other hand, they

are likely to have changes in size, shape and intensity of handwritten symbols by the same author

into the same score and the staff lines may be tilted one way or another on the same page. They also

may be curved and may have discontinuities. As a result, the detection and recognition process in the

handwritten music scores becomes more complicated than in printed music sheets.

An OMR system typical starts with a preprocessing phase. The line width and interval of the staff

is usually estimated to work as reference lengths for the subsequent operations. A robust method to

reliably estimate the thickness of the lines and the interline distance was presented. It was assumed that

the initial image is converted, column by column, in the run-length coding. Next, the estimation of the

sum of the two lengths was introduced as a more reliable estimation than the independent estimation

of the two lengths. The individual lengths were then estimated as the most likely combination of

runs summing to the pre-estimated total. To overcome the difficulties of binarization algorithms with

low quality music scores, it was proposed to integrate the estimation over every possible binarization

threshold. The basic idea of estimating first the sum of quantities of interest, and then estimating the

individual quantities of interest with the constraint that they sum to the estimated value, may apply in

other areas of document image analysis.

Image binarization is also a common operation in the preprocessing stage in most OMR systems.

The choice of an appropriate binarization method for handwritten music scores is a difficult problem.

Several works have already evaluated the performance of existing binarization processes in diverse

applications. However, no goal-directed studies for music sheets documents were carried out. This

thesis presents a novel binarization method based in the content knowledge of the image. The method

only needed the estimation of the staff line thickness and the vertical distance between two staff lines.

This information is extracted directly from the gray level music score.

Another challenge faced by an OMR system was staff lines detection and removal. A robust al-

gorithm for the automatic detection of staff lines in music scores based in stable paths was presented.

The proposed method uses a very simple but fundamental principle to assist detection and avoids the

difficulties typically asserted by symbols superimposed on staff lines. The main idea was to consider

the staff lines as the result of the shortest path between the two margins of the music sheet, giving pref-

erence to black pixels. This approach for the staff line detection algorithm was adapted to a wide range

of image conditions, thanks to its intrinsic robustness to skewed images, discontinuities, and curved

staff lines. The proposed method is also robust to discontinuities in staff lines (due to low-quality digi-

tization or low-quality originals) or staff lines as thin as one pixel. In order to take full advantage of the

105
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method, existing staff line removal algorithms were enhanced by using the stable paths method as its

first processing step. Several tests that enabled improvements in this proposed approach that induced

better results were also performed.

The next operations were segmentation and classification of the music symbols. Because the project

work with handwritten musical scores it was necessary to deal with several issues. Not only, the huge

variability in the symbols caused inconsistency problems in the size and shape of each object, but also

the presence of the complexity and ambiguity problems related to the number of possible arrangements

of music primitives.

In this thesis two processes to detect the music symbols are presented and discussed. The first

music symbols segmentation’s method is essentially based in contextual information and music rules.

The score is first split by staffs and the symbols are divided considering their graphical position and

geometric features: the symbols that are featured by a vertical segment, the symbols that link the

notes, the remaining symbols connected to staff lines and the symbols above and under staff lines. The

second method performs the extraction of music symbols without segmentation. The idea is to execute

simultaneously the segmentation and recognition of the objects avoiding the issues inherent in tracking

objects.

In the music symbol classification a comparative study with the most common classifiers that can

be adopted for the OMR of handwritten scores was carried out. The performances of these methods

were compared using both real and synthetic scores. We examined five classification methods, namely

Support Vector Machines, Relevance Vector Machines, Neural Networks, Nearest Neighbour and Hid-

den Markov Models. In the first tests, the SVMs, RVMS, NNs and kNN received raw pixels as input

features (a 400 feature vector, resulting from a 20x20 pixel image); the HMM received higher level

features, like information about the connects components in a 150x30 pixel window. In the second

tests, the classifiers receive raw pixels and 7 extracted characteristics as input features. All of these

options tried to reflect standard practices in the literature. The performance of any classifier depends

crucially on the choice of features. Therefore, results must be interpreted in light of these design op-

tions. In a global overview of the results, the performance of the SVM classifier was the best. The

simple kNN also achieved a very competitive performance, better than the NNs and the HMMs. The

less satisfying performance of the HMMs deserves additional exploration in the future: the number of

states and the distribution assumed for the observed variable are design option that may be hampering

the performance of the model.

Concerning the use of elastic deformations to increase the training set, it was interesting to observe

that the performance did not improve. Our aim was to increase the size of the training set, creating con-

trolled distorted symbols to prepare the classifier for the typical variations of symbols in handwritten

music sheets. We expected that the classifiers designed with this extended data would be more robust

and with improved performance. The results, in opposition to our initial thoughts, may have multiple

explanations, which require further investigation: the distortions created were not the most suited for

the recognition task, the initial dataset was already quite diverse in terms of symbol variety, or the raw

representation adopted for features is not the most appropriate for introducing this kind of variation.

The fact that the handwritten scores were authored by only five different authors may also help explain-

ing the results: it is possible that the writing was not so diverse to benefit from the design with elastic

deformation.

A distance metric learning is also successfully applied to k-NN classifier to recognize music sym-
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bols. The results achieved in our experiments showed an improvement in comparison with k-NN

with the simple Euclidean distance. We have also apply this method to derive a RBF SVM kernel

(dRBF) which provided significant improvements. Recent works have focused in the application of

metric learning in more advanced classifiers than k-NN, which is the classical and the simplest method

for pattern recognition. Nguyen and Guo [89] proposed a metric learning support vector machine

(MLSVM) method, where the problem of metric learning is formulated as a quadratic SDP problem

for local neighbors constraints. Notwithstanding, k-NN is still the most basic application for metric

learning, because we can easily demonstrate that with a proper distance metric, the process can im-

prove the accuracy. In the future, other metric learning algorithms1 can also be adapted, for instance

Probabilistic Global Distance Metric Learning (PGDM) or Active Distance Metric Learning, to other

classification methods.

In this thesis, we also propose to incorporate syntactic and semantic music rules as an optimization

problem. The idea is to detect the best combination of symbols in order to give the indicated measure.

The inclusion of prior knowledge in the OMR recognition process could lead to better results.

9.1 Future Trends

Over the last decades, substantial research was done in the development of systems that are able to op-

tically recognize and understand musical scores. An overview through the number of articles produced

during the past 40 years in the field of Optical Music Recognition, makes us aware of the clear increase

in research in this area. The progress of in the field spans many areas of computer science: from im-

age processing to graphic representation; from pattern recognition to knowledge representation; from

probabilistic encodings to error detection and correction. OMR is thus an important and complex field

where knowledge from several fields intersects.

An effective and robust OMR system for printed and handwritten music scores can provide several

advantages to the scientific community: (1) an automated and time-saving input method to transform

paper-based music scores into a machine-readable symbolic format for several music softwares, (2)

enable translations, for instance to Braille notations, (3) better access to music, (4) new functionalities

and capabilities with interactive multimedia technologies, for instance association of scores and video

excerpts, (5) playback, musical analysis, reprinting, editing, and digital archiving, and (6) preservation

of cultural heritage [66].

This thesis unveiled four challenges that should be addressed in future work on OMR as applied to

manuscript scores: (1) preprocessing, (2) staff detection and removal, (3) music symbols segmentation

and (4) recognition and final representation construction and comparison of results.

Preprocessing. This is one of the first steps in an OMR system. Hence, it is potentially responsible

for generating errors that can propagate to the next steps on the system. Several binarization methods

often produce breaks in staff connections, making the detection of staff lines harder. These methods

also increase the quantity of noise significantly (see Fig. 5.2 in Section 2.1). Back-to-front interference,

poor paper quality or non-uniform lighting causes these problems. A solution was proposed in [95]

(BLIST). Performing a binarization process using prior knowledge about the content of the document

can ensure better results, because this kind of procedure conserves the information that is important to

1http://www.cs.cmu.edu/˜liuy/distlearn.htm
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OMR. Moreover, the work proposed in [23] encourages the further research in using gray-level images

rather than using binary images. Similarly, new possibilities exists for music score segmentation by

exploiting the differences in the intensity of grey pixels of the ink and the intensity of grey pixels of the

paper.

Staff detection and removal. Some of the state-of-the-art algorithms are capable of performing

staff line detection and removal with a good degree of success. Cardoso et al. [22] present a technique

to overcome the existing problems in the staff lines of the music scores, by suggesting a graph-theoretic

framework (see end of Section 2.2). The promising results promote the utilization and development

of this technique for staff line detection and removal in gray-level images. In order to test the various

methodologies in this step the author suggest to the researchers the participation in the staff line removal

competition which in 2011 was promoted by International Conference on Document Analysis and

Recognition (ICDAR)2.

Music symbols segmentation and recognition. A musical document has a bidimensional structure

in which staff lines are superimposed with several combined symbols organized around the noteheads.

This imposes a high level of complexity in the music symbols segmentation which becomes even

more challenging in handwritten music scores due to the wider variability of the objects. For printed

music documents, a good methodology was proposed in [114]. The algorithm architecture consists

in detecting the isolated objects and computing recognition hypotheses for each of the symbols. A

final decision about the object is taken based on contextual information and music writing rules. This

propitious technique was implemented in Rebelo et al. [108] and also in this thesis. The proposed

procedure uses the natural existing dependency between music symbols to extract them. For instance,

beams connect eighth notes or smaller rhythmic values and accidentals are placed before a notehead

and at the same height. As a future trend, the importance of using global constraints to improve the

results in the extraction of symbols should be addressed and further explored. Errors associated to

missing symbols, symbols confusion and falsely detected symbols can be mitigated, e.g., by querying

if the detected symbols’ durations amount to the value of the time signature on each bar. We still believe

that the inclusion of prior knowledge of syntactic and semantic musical rules may help the extraction

of the handwritten music symbols and consequently it can also lead to better results in the future.

Final representation construction and comparison of results. The construction of a musical

notation model to represent the musical sheet as a symbolic description. A web-based system providing

broad access to a wide corpus of handwritten unpublished music encoded in digital format is also still

needed. Moreover, a framework with appropriate metrics to measure the accuracy of different OMR

systems does not exist, limiting the possibilities to test new algorithms.

An important issue that could also be addressed is the role of the users in the process. An automatic

OMR system capable of recognizing handwritten music scores with high robustness and precision

seems to be a goal difficult to achieve. Hence, interactive OMR systems may be a realistic and prac-

tical solution to this problem. MacMillan et al. [79] adopted a learning-based approach in which the

process improves its results through experts users. The same active learning idea was suggested by

Fujinaga [52] in which a method to learn new music symbols and handwritten music notations based

on the combination of a k-nearest neighbor classifier with a genetic algorithm was proposed.

An interesting application of OMR concerns online recognition, which allows an automatic conver-

2http://www.cvc.uab.es/cvcmuscima/competition/.
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sion of text as it is written on a special digital device. Taking into consideration the current proliferation

of small electronic devices with increasing computation power, such as tablets and smartphones, it may

be usefully to explore of such features applied to OMR. Besides, composers prefer the creativity which

can only be entirely achieved without restrictions. This implies total freedom of use, not only of OMR

softwares, but also the type of media (paper) where they can write their music. Hence, algorithms for

OMR are still necessary.
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APPENDIX A

Fundamentals for Staff Line Detection and Removal Algorithms

A.1 Dynamic Programming

Before presenting the operations of dynamic programming techniques let us take a look to the follow-

ing example [115]. Figure A.1 represents a directed acyclic graphs and its linearization (topological

ordering – the nodes are arranged on a line so that all edges go from left to right). This linearization

process is important for the shortest path.

Estart
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D

1

2

5
3

6

1
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Estart B A C D

1

2 5

3
6

14

Figure A.1: A directed acyclic graphs and its linearization.

Suppose we want to figure out distances from node E to the other nodes. For concreteness, let’s focus

on node C. The only way to get to it is through its predecessors, B or A; so to find the shortest path to

C, we need only compare these two routes:

dist(C) = min {dist(B) + 3, dist(A) + 4} .

A similar relation can be written for every node. If we compute these dist values in the left-to-right

order of Figure A.1, we can certainly get to a node v, and then we already have the information needed

to compute dist(v). We are therefore able to compute all distances in a single pass:

initialize all dist(·) values to∞
dist(s) = 0

for each v ∈ V {s}, in linearized order:

dist(v) = min(u,v)∈E {dist(u) + l(u, v)}

In face of it, we can note that this algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }:
it starts with the smallest of the distances, dist(e), since it immediately knows its answer to be 0; then,
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it proceeds with progressively “larger” subproblems – distances to vertices that are further and further

along in the linearization – where it is thinking of a subproblem as large if it needs to have solved a

lot of other subproblems before it can get to it. This is a very general technique. At each node, the

algorithm computes some function of the values of the node’s predecessors. In this case, the particular

function is a minimum of sums.

This is dynamic programming. This is a powerful algorithmic paradigm for efficiently solving a wide

range of search and optimization problems which exhibit the characteristics of overlapping subprob-

lems (the problem can be broken down into subproblems which are reused several times) and optimal

substructure (optimal solutions of subproblems can be used to find the optimal solutions of the overall

problem).

Now, it is crucial to know what the subproblems are when we are solving a problem by dynamic

programming. Each node will represent a subproblem, and each edge will represent a precedence

constraint, of the form (i− 1, j)→ (i, j), (i, j − 1)→ (i, j), and (i− 1, j − 1)→ (i, j), on the order

in which the subproblems are tackled. We can also put weights on the edges.

A.2 Staff Line Removal

Staff line detection algorithms can be used as a first step in many staff removal algorithms. In this

thesis, the following algorithms were considered: LineTrack Height, LineTrack Chord, Roach/Tatem –

see [34].

Line Track Height The algorithm tracks the staff lines and checks when a vertical black run is longer

than a threshold (experimentally set at 2×stafflineheight).

Line Track Height Modified The version modified of the Line Track Height algorithm also track

the staff lines positions obtained by a detection algorithm and removes vertical run sequences

of black pixels that have a value lower than a specified threshold (chosen experimentally as

2×stafflineheight). In this version, a carefully attention to the deformations – staff lines

may have discontinuities, be curved or inclined – that may occur in the music scores are given.

These problems will influence the success to achieve a correct detection of lines contained on

the score. The positions of the staff lines obtained by a staff line detection algorithm may pass

slightly above or under the real staff lines positions. Therefore, if we are in presence of a white

pixel when the staff lines are tracked, we search vertically for the closest black pixel. If that dis-

tance is lower than a specified tolerance – experimentally chosen as 1+ceil(stafflineheight/3.0)

– we move the reference position of the staff line to the position of the black pixel found.

Line Track Chord This algorithm computes, for a fixed angle resolution of three degrees, the chord

length through the skeleton point (see Figure A.2). This results in a function chordlenght(ϕ),

where ϕ is the chord angle, for each skeleton point. When the staff line pixel also belongs to a

crossing music symbol, the function should have a second distinct peak. To detect this peak the

following thresholds are used:
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1. There is a local maximum when chordlength is greater than 5×stafflineheight at

an angle below 30 degrees and another local maximum when chordlength is greater than

1.75×stafflineheight× sin(ϕ) at an angle ϕ > 30 degrees.

2. The valley between two maxima must have a depth greater than 1.5×stafflineheight.

Concluding, this algorithm removes the staff line through the angles peaks of the chord lengths.

There are two distinct peaks depending if the pixels belong to a staff line or a music symbol.

Figure A.2: Length of a chord through a skeleton point at some angle ϕ.

Roach/Tatem This algorithm uses a labelling scheme based on the angle information and pixel adja-

cency to identify the staff line pixels [113]. The chord length and the angle function described

in the Line Track Chord are computed for every pixel. Consequently, the original image can

be transformed into two-dimensional vector field by picking the angle and length of the longest

chord for each black pixel. This will assign pixels on staff lines a high length value and an angle

value of zero. To avoid the removal of symbol pixels on the staff lines, some horizontal line pixels

are iteratively relabelled as non-horizontal pixels, depending on the labels of their neighboring

pixels.

Skeleton This method consists of the following steps:

1. The skeleton is split at branching point and corner points with an angle below 135 degrees.

Around each spliting point a number of pixels are removed – see Figure A.3(a).

2. Staff line segment candidates are picked as skeleton segments if the orientation angle (least

square fitted line) is below 25 degrees, the segment is wider than tall and the straightness

(mean square deviation from least square fitted line) is bellow stafflineheigth2/2.

3. Apply a staff-finding algorithm to the staff segment candidates. Two staff segments are

horizontally linked when their extrapolations from the end points with the least square

fitted angle come closer than stafflineheigth/2.

4. Remove false positives: from each ovelapping staff segment group on the same line the one

that is closest to its least square fitted neighborhood is picked and the others are discarded;

non-staff segments that have the same branching point as a staff segment are extrapollated

by a parametric parabola: if this parabola is approximately tangential to the staff segment,

the latter is considered a false positive – see Figure A.3(b).

5. Remove staff lines: all vertical black runs around the detected staff skeleton are removed.
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(a) Pixels within the distance transform radius
around each splitting point are removed.

(b) A falsely detected staff segment that can be
identified as belonging to a music symbol because
it is appoximately tangential to an extrapolated
parabola from a non-staff segment.

Figure A.3: Example (from [34]).

A.3 Removal Error Metrics

Individual Pixels This metric considers the staff line removal as a two-class classification problem at

the pixel level, that is, one pixel can belong to a staff line or not. Therefore, a natural performance

measure is the error rate for this classification, given by

Pixel error rate =
x+ y

z

x =Number of misclassified staff pixels

y =Number of misclassified non staff pixels

z =Number of all black pixels

However, this metric has one problem: little information is given about how well the staff removal

algorithm separates symbols that are otherwise connected by staff lines; this error only indicates

how badly the symbols are distorted when compared to the ideal staff-less images.

Segmentation Region Level This error metric has as base the regions of the line segments. The staff

line removal can be considered as a segmentation problem where the staff lines segments need

to be separated from the symbol segments.

In an OMR application the staff lines segments are considered “background” and the remaining

symbols are taken as being the “segments of interest”. Nevertheless, when we are trying to eval-

uate the quality of the staff line removal the situation is reversed: our interest lies on the staff

segments and the rest constitutes “background”.

Following the notation given in [128], we have two segmentations for the set of black pixels

present in the test image:

1. The ground-truth segmentation G = Gobj ∪ {gnoise} with G = {g1, . . . , gM}

2. The segmentation detected from the algorithm S = Sobj∪{Snoise}with S = {s1, . . . , sN},
where each gi and sj contains the black pixels of a contiguous staff segment respectively,

and gnoise and snoise contain the remaining background black pixels, respectively.



In the set of all staff line segments from both segmentations an equivalence classes of overlapping

segments is built(two segments are considered equivalent a ' b when a sequence c1, c2, . . . , cn

exists with c1 = a, cn = b and ci ∩ ci+1 6= 0). For each equivalence class r we count the number

of the contained numbers of segments G and S and thus detect recognition errors. All possible

cases are listed in Table A.1. The formula is given by

Segmentation error rate =
x− y
z

x =Number of all classes r

y =Number of classes representing a correct recognition

z =Number of all classes r

Classes number Segments from Gobj Segments from Sobj Error description
n1 1 1 Correct
n2 1 0 Missed segment
n3 0 1 Falsely detected segment
n4 1 >1 Segment split
n5 >1 1 Segments merged
n6 >1 >1 Both splitting and merging occurred

Table A.1: Staff segment extraction errors based on the number of segments in an equivalence class r.

Staff Line Interruption To obtain this metric a comparison between the ground-truth images, con-

taining only the segments removed from the ideal case, with the image that contains exactly the

pixels that were in fact removed by the removal algorithm under evaluation, is made. In doing

so, each staff line is followed, from left to right, in the images containing only the removed staff

segments; and interruptions in the staff line are looked at. Each interruption represents a detected

music symbol that crosses the staff line. It follows two sets of intervals: the interrupting intervals

G = {g1, . . . , gM} in the ground-truth data and those in the algorithm output S = {s1, . . . , sN}.

With the purpose to establish an error metric, a bipartite graph is created by adding links between

intervals gi and sj that overlap. In this manner, two types of error are revealed: intervals from

G to S without a link and intervals with more than one link. In order to count the number of

errors of the second type, the maximum cardinality matching in this graph is computed [?].This

cardinality matching also removes the minimal number of links leading to the second type error.

As a result error rate we have

Staff line interruption error rate =
min {n3, n1 + n2}

n3

n1 =Number of interruptions without link

n2 =Number of removed links

n3 =Number of ground-truth interruptions

APPENDIX B
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Musical Symbols Classification

B.1 Musical Symbols

Main Classes Secondary Classes

Accents

Staccato

Staccatissimo

Dynamic >

Fermata
a.

Tenuto –

Marcato

Stopped +

Harmonic o

Mordent

Turn

Sharps ]

Naturals \

Flat [

Barlines |

Beams ˇ “ ˇ “
==

AltoClef

BassClef

TrebleClef

Breve || ¯ ||

Dots ‰
Notes ˇ “

TimeSignatureN
0

1

2

3

4

5

6

7

8

9

TimeSignatureL
CutR
CommonS

Semibreve ¯
Rests1 >

Rests2

Quaver ?
Semiquaver @
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Demisemiquaver A
Hemidemisemiquaver

Whole <
Half <

Relation

Tie

Slur

Glissando

NotesOpen ˘ “

NotesFlag

Quaver ˇ “(
Semiquaver ˇ “)
Demisemiquaver ˇ “*
Hemidemisemiquaver

Table B.1: The set of the musical symbols considered.

B.2 Experimental Testing

In this section an analytical study of the common classification algorithms presented in chapter 4 is

addressed. The work presented in [106] was a first investigation to explore these techniques. A more

complete analysis, that extends the experimental results, is now presented.

Towards a comparative study between classification procedures, five different approaches were

evaluated: HMMs, SVMs, RVMs, NNs and kNN. Three groups of experimental tests were carried out:

• First: the full set of training patterns extracted from the database of scores was augmented with

replicas of the existing patterns, transformed according to the elastic deformation technique (sec-

tion 3.3 chapter 3). Such transformations try to introduce robustness in the prediction with respect

to the known variability of symbols.

• Second: the different classifiers were tested for the following situations: separation of types of

music scores (handwritten and printed), gradual increase of deformations and union of real and

printed scores.

• Third: a distance metric directly connected to the application domain and the adopted symbol

representation was studied. The idea was to learn a Mahalanobis distance for kNN and SVMs.

For the NN, kNN, SVMs and RVMs methods, each image of a symbol was initially resized to

20 × 20 pixels and then converted to a vector of 400 binary values; under the HMM, the images

were normalised with a height and width of 150 and 30 pixels, respectively. These approaches follow

standard practices from the state of the art algorithms in the OMR field [99]. Moreover, in HMMs

a 2-pixel sliding window mechanism over the symbol image was used to produce the sequence of

observations (features). In doing so, dependent observations are replaced by observations depending

on the horizontal position of the window. The extracted features are based on the work of Pugin [99]:

1. the number of distinct connected components of black pixels in the window;

2. the area of the largest black connected component normalized by the area of the window;

3. the area of the smallest white connected component normalized by the area of the window;
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4. the position (x and y) of the centre of gravity of all black pixels in the window, normalized

between 0 and 1.

For the second and third comparative study, rather than using only the image pixels we also de-

cided to add in the classification process 7 music symbol features. The aim was to increase the final

performance of the classifier by including characteristics that distinguish similar objects. The extracted

features were based on the Gamera project1:

1. The percentage of black pixels in the 20× 20 pixels window of the image;

2. the orientation of the symbol;

3. the number of vertical holes;

4. the number of horizontal holes;

5. the compactness (the ratio between volume and connected components area);

6. the number of end points in the object skeleton;

7. the number of intersections in the object skeleton.

A Blurred Shape Model (BSM) descriptor [42] was also used and added to the previous features in

the metric learning case (third experimental test). A BSM descriptor encodes the probability of pixel

densities of image regions and hence symbols are described by a probability density function. Through

the high gradient magnitude of the pixels, the shape of the symbol can be codified in terms of a set

of key points. Then a grid comprised by a set of spatial regions is defined by the BSM descriptor. In

the end, the spatial relations among key points from neighbor regions are established and features are

computed. The output descriptor is a vector histogram where each position represents a distribution of

probabilities of the symbol structure considering spatial distortions encompassing four possible sizes:

8× 8, 16× 16, 32× 32 and 64× 64 [42]. We opted for a feature vector histogram of the size 16× 16,

not only due to the computational effort, but also because a higher definition grid would not provide a

richer information (contours, structure, etc) due to the proximity to the working image size (20× 20).

For the proposed evaluation of the different recognition methods, the data set of both real handwrit-

ten scores and synthetic scores, as presented in Chapter 3, was adopted.

First and second experiments

The real scores consist on a set of 50 handwritten scores from 5 Portuguese musicians. Images were

previously binarized with the Otsu threshold algorithm. The deformations applied to the perfect scores

were only those with significant impact on the features of symbols. For the preliminary tests, the de-

formations were rotation and curvature. In total, 288 images were generated from 18 perfect scores.

For the posterior tests, where a gradual study of the classifiers performances was made, the deforma-

tions applied to the printed scores were curvature, rotation, Kanungo and white speckles. In total, 380

distorted images were generated from 19 original scores. The images from the real scores data set

were previously binarized. Regarding the results achieved in the preliminary experiments, HMM was

discarded here due to its less satisfying performance.

1http://gamera.informatik.hsnr.de
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The relevant classes for handwritten/printed music symbols used in the training phase of the classi-

fication models is presented in Table B.2. The symbols are grouped according to their shape. The rests

symbols were divided into two groups – RestI and RestII. Besides that, an unknown class was included

to classify those symbols that do not fit into any of the classes listed in Table B.2. In total, we have

3222 handwritten music symbols, 2521 printed music symbols and 14 classes for each type of music

score.

Handwritten Music Symbols

Accent BassClef Beam Flat Natural Note NoteFlag NoteOpen RestI RestII Sharp Staccatissimo TrebleClef

Printed Music Symbols

AltoClef TieSlur Beam Flat Natural Note NoteFlag NoteOpen RestI RestII Sharp Time TrebleClef

Table B.2: Full set of handwritten and printed music symbols considered.

For evaluation of the pattern recognition process, the available dataset was randomly split into

training and test sets, with 60% and 40% of the data, respectively. This division was repeated ten times

in order to obtain more stable results for accuracy by averaging and also to assess the variability of this

measure. No special constraint was imposed on the distribution of the categories of symbols over the

training and test sets; we only guaranteed that at least one example of each category was present in

the training set. The best parameterization of each model was found based on a 4-fold cross validation

scheme conducted on the training set. A confidence interval was estimated for the mean of the error as

X̄ − t∗ S√
N
≤ µ ≤ X̄ + t∗

S√
N

(B.1)

where t∗ is the upper (1− C)/2 critical value for the t distribution with N − 1 degrees of freedom, X̄

is the sample mean, S is the sample standard deviation and N is the sample size.

Results from the first experiment

From the results obtained for the handwritten music symbols – see Table B.3 – we can conclude that

the classifier with the best performance was the support vector machine, with a 99% confidence inter-

val for the expected performance [95%; 96%]. Interestingly, the performance of the simplest model –

the nearest neighbour classifier – was clearly better than the performance of the HMM and the neural

network model and close to the performance of the SVMs. Finally, although the neural network per-

formed slightly better than the HMM, it exhibited strong difficulties with some classes, presenting very

low accuracy values (BassClef and NoteOpen).

The results obtained for the printed music symbols – see Table B.4 – further support the superiority

of the SVM model, with a 99% confidence interval for the expected performance [97%; 99%]. As

expected, all models presented the best performance when processing printed musical scores.

Next, we investigated the potential of the elastic deformation to improve the performance of the

classification models. The deformations as given by

D(x, y) =
M∑
m=1

N∑
n=1

ξxmnexmn + ξymneymn
λmn

(B.2)

(Equation (B.2) section 3.3) with M = 1, 2, 3 and N = 1, 2, 3 were applied to the training data.
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Neural network Nearest neighbour Support vector Hidden Markov

machines model

Accent 85% 99% 99% 91%

BassClef 13% 78% 77% 56%

Beam 85% 98% 95% 90%

Flat 84% 99% 98% 87%

Natural 93% 99% 98% 91%

Note 82% 97% 96% 73%

NoteFlag 51% 86% 89% 64%

NoteOpen 3% 75% 40% 22%

RestI 78% 100% 97% 90%

RestII 96% 100% 100% 92%

Sharp 85% 98% 98% 84%

Staccatissimo 58% 100% 100% 100%

TrebleClef 40% 92% 90% 94%

Unknown 52% 71% 89% 38%

99% CI for the Expected

performance in percentage: [81; 84] [93; 95] [95; 96] [77; 81]

Table B.3: Accuracy obtained for the handwritten music symbols for the classifiers trained without
elastically-deformed symbols.

The results in Tables B.5 and B.6 lead us to conclude that the application of the elastic deformation

to the music symbols does not improve the performance of the classifiers. Only in two handwritten

music symbols, very similar in shape, the accuracy did improve with elastically-deformed symbols –

see Table B.7.

It is important to state that the features used in the SVM, nearest neighbour and neural network were

raw pixels. This choice, grounded in standard practices in the literature, influences the performance of

the classifiers: a slight change on the boundary of a symbol can modify the image scaling and, as a

result, many pixel values may change.

Results from the second experiment

From the results obtained for the union of the handwritten and printed scores – see Table B.8 – we

can conclude that the SVMs had the best performance ([95%; 96%]), outperforming the k-NNs – the

simplest model – by approximately 1%, with a 99% confidence interval for the expected performance.

The performance of NNs was clearly worse than the other two classifiers. Besides that, this algorithm

exhibited some difficulties with a few classes, presenting low accuracy values (NoteFlag and Treble-

Clef).

As expected, and as it is shown in Table B.9 the performances of classifiers are slightly better than

when analyzing only the raw pixels – a 400 feature vector, resulting from a 20× 20 pixel image. This

is due to the additional of the 7 features, so that more information is provided to the classifier, which
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Neural network Nearest neighbour Support vector Hidden Markov

machines model

AltoClef 94% 99% 98% 83%

Beam 92% 100% 100% 98%

Flat 97% 100% 99% 96%

Natural 94% 100% 100% 95%

Note 90% 99% 99% 91%

NoteFlag 70% 92% 96% 65%

NoteOpen 88% 98% 97% 85%

TieSlur 55% 94% 87% 81%

RestI 85% 100% 100% 83%

RestII 75% 100% 100% 69%

Sharp 97% 100% 100% 99%

Time 40% 100% 100% 27%

TrebleClef 93% 100% 100% 58%

Unknown 65% 79% 93% 74%

99% CI for the Expected

performance in percentage: [88; 89] [96; 97] [97; 99] [83; 86]

Table B.4: Accuracy obtained for the printed music symbols for the classifiers trained without
elastically-deformed symbols.

makes the recognition more robust. Looking at the classification of each class, almost every class has

a better accuracy value, which improves the overall performance.

In an overall view of the results obtained with the gradual increase of deformations – see Table B.11

– the achievements of the classifiers do not vary much by changing the degradation degree (except

White Speckles). This leads us to conclude that they do not influence the dispersion of the classes,

in other words music symbols maintain their shape, although the performances decay up to 30% by

rising the degradation factor of the White Speckles. The main structure of the symbol is lost with this

increase. The results obtained for the degradated printed music symbols further support the superiority

of the SVM model, with a 99% confidence interval for the expected performance.

From the results obtained with the separation of types of music scores – see Table B.10 – the

simplest model outperformed the other, more complex, methods. On the one hand, the performance

of the k-NN classifier with synthetic music sheets with a 99% confidence interval for the expected

performance achieved [91%; 93%]. On the other hand, when processing handwritten musical scores,

all models presented a weaker accuracy, up to 30% lower. This is due to the high variability inherent to

each individual writing style.

Metric learning in OMR

Most authors use margin-based multi-class classification methods, for instance SVMs, as a benchmark

for classifying music scores. This is a common approach and can be identified in the state of the art.



136 Appendix B. Musical Symbols Classification

Neural network Nearest neighbour Support vector Hidden Markov

machines model

Accent 83% 100% 100% 87%

BassClef 0% 95% 73% 44%

Beam 85% 96% 96% 87%

Flat 82% 99% 99% 71%

Natural 92% 99% 98% 84%

Note 86% 97% 97% 64%

NoteFlag 20% 83% 91% 34%

NoteOpen 2% 53% 43% 11%

RestI 59% 99% 97% 99%

RestII 93% 100% 100% 75%

Sharp 85% 99% 99% 82%

Staccatissimo 30% 100% 100% 100%

TrebleClef 33% 91% 90% 63%

Unknown 34% 64% 84% 34%

99% CI for the Expected

performance in percentage: [77; 80] [92; 93] [94; 96] [69; 72]

Table B.5: Accuracy obtained for the handwritten music symbols for the classifiers trained with
elastically-deformed symbols.

However, it is possible to find strong similarities between Large Margin Nearest Neighbor classification

(LMNN) and SVMs [138]. The competing terms in

ε(L) =
∑
ij

ηij‖L(xi − xj)‖2 + c
∑
ijl

ηij(1− τil)

[
1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2

]
+

(B.3)

Equation (4.6) are analogues to the ones presented in the cost function at SVMs. One term penalizes

the norm of the parameter vector (linear transformation in distance metric, or (in SVM) the weight

vector of the maximum margin hyperplane. The second terms are responsible for hinge loss over the

examples that violate the condition of unit margin (the goal of margin maximization and a convex

objective function are based on hinge loss). Moreover, LMNN has no explicit dependence on the

number of classes, while in SVMs (multi-class classification) the training time scales at least linearly

in the number of classes. For these reasons we decided to perform a comparative study between LMNN

and SVMs.

The real scores consist on a set of 65 handwritten scores from 6 different composers. Images were

previously binarized with the Otsu threshold algorithm. The deformations applied to these printed

scores were curvature, rotation, Kanungo and white speckles. In total, 380 distorted images were

generated from 19 original scores.
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Neural network Nearest neighbour Support vector Hidden Markov

machines model

AltoClef 86% 99% 97% 97%

Beam 95% 100% 100% 99%

Flat 95% 100% 99% 82%

Natural 92% 100% 98% 95%

Note 81% 100% 98% 89%

NoteFlag 43% 94% 97% 39%

NoteOpen 89% 97% 98% 78%

TieSlur 17% 91% 89% 67%

RestI 87% 100% 100% 100%

RestII 33% 100% 97% 91%

Sharp 97% 100% 100% 100%

Time 0% 100% 100% 27%

TrebleClef 89% 100% 100% 91%

Unknown 42% 76% 93% 38%

99% CI for the Expected

performance in percentage: [79; 83] [95; 97] [97; 99] [81; 84]

Table B.6: Accuracy obtained for the printed music symbols for the classifiers trained with elastically-
deformed symbols.

Nearest neighbour Support vector machines

With Elastic Without Elastic With Elastic Without Elastic
Deformation Deformation Deformation Deformation

Natural 100% 99% 98% 98%

Sharp 99% 98% 99% 98%

Table B.7: Accuracy on the natural and sharp symbols.

The relevant classes for handwritten/printed music symbols used in the training phase of the clas-

sification models are presented in Table B.12. Once again, the symbols are grouped according to their

shape; the rests symbols were divided into two groups – RestI and RestII. In total the classifiers were

evaluated on a database containing 7128 examples divided into 20 classes.

For evaluation of the pattern recognition processes, the available dataset was randomly split into

three sub-sets: training, validation and test sets, with 25%, 25% and 50% of the data, respectively,

following the state-of-the-art sugestions. This division was repeated 20 times in order to obtain more

stable results for accuracy by averaging and also to assess the variability of this measure. No special

constraint was imposed on the distribution of the categories of symbols over the training, validation

and test sets; we only guaranteed that at least one example of each category was present in the training

set. The best parametrization of each model was found using the training and validation sets being

the expected error estimated on the test set by a 4-cross validation scheme. In this manner, for SVM



138 Appendix B. Musical Symbols Classification

Neural Network (%) k-NN (%) SVM (%) RVM (%)
Beams 86 98 96 95

Flat 88 99 100 96
Natural 92 98 99 96

Note 80 97 96 89
NoteFlag 62 90 94 81
NoteOpen 86 74 95 95

RestI 82 99 98 98
RestII 92 100 100 100
Sharp 88 99 98 96

TrebleClef 73 93 99 93
Unknown 50 76 81 62

99% CI for the Expected

performance in percentage: [80; 82] [93; 95] [95; 96] [89; 91]

Table B.8: Accuracy obtained with a database of real and printed scores. Input data: vector of 400
binary values.

Neural Network (%) k-NN (%) SVM (%) RVM (%)
Beams 90 97 96 94

Flat 90 99 98 97
Natural 93 99 99 98

Note 83 96 97 89
NoteFlag 69 90 94 85
NoteOpen 85 95 95 92

RestI 84 100 100 98
RestII 90 100 100 98
Sharp 90 98 98 97

TrebleClef 79 96 96 91
Unknown 42 70 81 63

99% CI for the Expected

performance in percentage: [80; 83] [94; 95] [95; 96] [90; 92]

Table B.9: Accuracy obtained with a database of real and printed scores. Input data: vector of 400
binary values plus 7 music symbol features.

SVM (%) Neural Network (%) k-NN (%)
Handwritten Symbols [56; 71] [50; 59] [62; 66]

Printed Symbols [86; 91] [77; 81] [91; 93]

Table B.10: Accuracy on the 99% CI for the expected performance in percentage for separation of
types of music scores. Input data: vector of 400 binary values.

classifier C and γ values were obtained based on a grid search. In LMNN algorithm the same grid

search was also conducted in order to obtain the optimal value of the nearest similar labeled vectors.

One more time, a confidence interval was estimated for the mean of the error of the model on the test

set as in the previous experiments.
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SVM (%) RVM (%) Neural Network (%) k-NN (%)
White Speckles 0.03 [89; 91] [82; 87] [80; 85] [87; 90]

0.05 [82; 87] [76; 81] [73; 77] [80; 84]
0.07 [77; 84] [70; 75] [63; 70] [68; 72]
0.09 [69; 77] [61; 67] [57; 62] [56; 61]

Curvature 0.02 [94; 96] [88; 91] [89; 93] [95; 96]
0.04 [92; 95] [83; 87] [87; 90] [92; 94]
0.06 [94; 96] [87; 90] [87; 91] [93; 96]
0.08 [93; 96] [83; 91] [86; 89] [91; 94]

Rotation 3 [97; 99] [93; 96] [93; 96] [96; 98]
4 [98; 100] [95; 98] [95; 97] [97; 99]
5 [99; 100] [95; 100] [97; 99] [98; 100]
-3 [98; 99] [94; 97] [95; 97] [97; 99]
-4 [97; 98] [94; 97] [94; 96] [95; 96]
-5 [96; 100] [93; 98] [95; 96] [95; 97]

Kanungo 0.25 [94; 95] [84; 96] [88; 91] [95; 97]
0.5 [93; 95] [87; 95] [89; 91] [95; 97]
0.75 [95; 97] [88; 93] [89; 92] [94; 96]

1 [95; 97] [89; 93] [90; 93] [94; 96]
1.25 [94; 97] [88; 92] [90; 92] [94; 95]
1.5 [95; 97] [90; 94] [91; 95] [94; 96]

Table B.11: Effect of different deformations on the 99% CI for the expected performance in percentage.
Input data: vector of 400 binary values.
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Accent BassClef Beam Flat Natural Note NoteFlag NoteOpen RestI RestII

Sharp TimeN TrebleClef TimeL AltoClef Relation Breve Semibreve Dots Barlines

Table B.12: Full set of handwritten and printed music symbols considered.

Results from the third experiment

The different classifiers were tested using different sets of features extracted: 7 (features presented in

section 8.1.2), 16 (BSM descriptor), and 23 (7+16) features. The vector of 400 binary values was also

tested but was discarded due to its less satisfying performance. Tables B.13 and B.14 present the results

obtained applying LMNN and SVMs classifiers in the OMR database, respectively.

The accuracy rates were compared using Euclidean and Mahalanobis distances. According with

our expectations using information about the metric improved the results of prediction error. The first

assessment is that LMNN achieved the best results, where the highest gain was obtained using 23

features with LMNN against k-NN. Moreover, within the SVM classifier, an overall improvement on

using the metric learning on SVM can be stated with exception for the set using 23 features. Even

though a continuous improvement is verified by consistently adding new features when using dRBF,

one can assess that the overall performance is higher when using 23 features with the standard RBF,

performing a cross validation on k in dRBF (due to time constrains) could be the reason behind this

behavior. Furthermore, since we first optimize a distance during the metric learning phase that will be
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k-NN LMNN

7 16 23 7 16 23
Accent 63% 73% 71% 66% 73% 77%
AltoClef 80% 95% 86% 81% 94% 88%
Barlines 77% 50% 84% 78% 50% 88%
BassClef 70% 89% 75% 72% 88% 85%
Beams 78% 75% 85% 78% 73% 87%
Breve 100% 100% 100% 100% 100% 100%
Dots 94% 94% 94% 94% 94% 96%
Flat 77% 92% 83% 79% 92% 87%
Naturals 82% 92% 86% 83% 93% 91%
Notes 66% 85% 73% 68% 83% 78%
NotesFlags 46% 83% 49% 76% 80% 59%
NoteOpen 71% 92% 76% 75% 92% 81%
Relation 66% 74% 71% 70% 74% 77%
RestsI 67% 84% 73% 71% 86% 78%
RestsII 70% 73% 75% 71% 72% 80%
Semibreve 71% 71% 73% 74% 71% 77%
Sharps 84% 86% 88% 85% 86% 93%
TimeL 57% 81% 69% 60% 81% 79%
TimeN 49% 71% 56% 52% 71% 65%
TrebleClef 81% 97% 82% 83% 96% 87%
99% CI for the Expected

performance in percentage: [72; 73] [80; 82] [77; 78] [73; 74] [80; 82] [82; 83]

Table B.13: Accuracy obtained using the k-NN and LMNN classifiers.

used to construct the kernel SVM, resulting thus in a similarity kernel, this transformation could also

produce performance losses.
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SVM (RBF) SVM (dRBF,k = 1)

7 16 23 7 16 23
Accent 51% 54% 79% 67% 63% 72%
AltoClef 79% 77% 92% 84% 89% 90%
Barlines 79% 70% 90% 79% 81% 87%
BassClef 69% 78% 82% 74% 86% 80%
Beams 82% 73% 89% 81% 74% 87%
Breve 100% 0% 100% 100% 100% 100%
Dots 95% 94% 98% 95% 93% 97%
Flat 60% 90% 90% 75% 90% 86%
Naturals 76% 90% 93% 81% 88% 86%
Notes 63% 67% 81% 67% 77% 76%
NotesFlags 40% 52% 63% 46% 74% 60%
NotesOpen 59% 57% 80% 67% 85% 75%
Relation 67% 50% 78% 65% 71% 70%
RestsI 52% 73% 74% 65% 82% 70%
RestsII 76% 65% 88% 71% 68% 78%
Semibreve 65% 0% 73% 69% 65% 79%
Sharps 87% 68% 93% 82% 81% 88%
TimeL 57% 67% 84% 58% 67% 70%
TimeN 63% 64% 75% 54% 70% 69%
TrebleClef 87% 87% 91% 82% 87% 87%
99% CI for the Expected

performance in percentage: [70; 71] [68; 69] [85; 85] [72; 73] [78; 79] [79; 81]

Table B.14: Accuracy obtained using the SVM classifier with different kernels.
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