490 research outputs found

    Sistemas granulares evolutivos

    Get PDF
    Orientador: Fernando Antonio Campos GomideTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. Métodos e algoritmos têm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princípio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinâmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação é uma técnica natural para dispensar atenção a detalhes desnecessários e enfatizar transparência, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepções ou descrições imprecisas do valor de uma variável. De maneira geral, vários fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele está sendo usado para representar. Neste trabalho são considerados dados numéricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares é baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parâmetros do modelo sempre que necessário. Este paradigma de aprendizagem é particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de séries temporais e controle usando dados sintéticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados não-estacionários com mudanças graduais e abruptas de regime é também analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluções aproximadas de alta qualidade e sumário de regras de conjuntos de dados de entrada e saída. As abordagens e o paradigma introduzidos constituem uma extensão natural de sistemas inteligentes evolutivos para processamento de dados numéricos a sistemas granulares evolutivos para processamento de dados granularesAbstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streamsDoutoradoAutomaçãoDoutor em Engenharia Elétric

    Cognitive Models and Computational Approaches for improving Situation Awareness Systems

    Get PDF
    2016 - 2017The world of Internet of Things is pervaded by complex environments with smart services available every time and everywhere. In such a context, a serious open issue is the capability of information systems to support adaptive and collaborative decision processes in perceiving and elaborating huge amounts of data. This requires the design and realization of novel socio-technical systems based on the “human-in-the-loop” paradigm. The presence of both humans and software in such systems demands for adequate levels of Situation Awareness (SA). To achieve and maintain proper levels of SA is a daunting task due to the intrinsic technical characteristics of systems and the limitations of human cognitive mechanisms. In the scientific literature, such issues hindering the SA formation process are defined as SA demons. The objective of this research is to contribute to the resolution of the SA demons by means of the identification of information processing paradigms for an original support to the SA and the definition of new theoretical and practical approaches based on cognitive models and computational techniques. The research work starts with an in-depth analysis and some preliminary verifications of methods, techniques, and systems of SA. A major outcome of this analysis is that there is only a limited use of the Granular Computing paradigm (GrC) in the SA field, despite the fact that SA and GrC share many concepts and principles. The research work continues with the definition of contributions and original results for the resolution of significant SA demons, exploiting some of the approaches identified in the analysis phase (i.e., ontologies, data mining, and GrC). The first contribution addresses the issues related to the bad perception of data by users. We propose a semantic approach for the quality-aware sensor data management which uses a data imputation technique based on association rule mining. The second contribution proposes an original ontological approach to situation management, namely the Adaptive Goal-driven Situation Management. The approach uses the ontological modeling of goals and situations and a mechanism that suggests the most relevant goals to the users at a given moment. Lastly, the adoption of the GrC paradigm allows the definition of a novel model for representing and reasoning on situations based on a set theoretical framework. This model has been instantiated using the rough sets theory. The proposed approaches and models have been implemented in prototypical systems. Their capabilities in improving SA in real applications have been evaluated with typical methodologies used for SA systems. [edited by Author]XXX cicl

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Enhancing Exploratory Analysis across Multiple Levels of Detail of Spatiotemporal Events

    Get PDF
    Crimes, forest fires, accidents, infectious diseases, human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its spatial location, time and related attributes are known with high levels of detail (LoDs). The LoD of analysis plays a crucial role in the user’s perception of phenomena. From one LoD to another, some patterns can be easily perceived or different patterns may be detected, thus requiring modeling phenomena at different LoDs as there is no exclusive LoD to study them. Granular computing emerged as a paradigm of knowledge representation and processing, where granules are basic ingredients of information. These can be arranged in a hierarchical alike structure, allowing the same phenomenon to be perceived at different LoDs. This PhD Thesis introduces a formal Theory of Granularities (ToG) in order to have granules defined over any domain and reason over them. This approach is more general than the related literature because these appear as particular cases of the proposed ToG. Based on this theory we propose a granular computing approach to model spatiotemporal phenomena at multiple LoDs, and called it a granularities-based model. This approach stands out from the related literature because it models a phenomenon through statements rather than just using granules to model abstract real-world entities. Furthermore, it formalizes the concept of LoD and follows an automated approach to generalize a phenomenon from one LoD to a coarser one. Present-day practices work on a single LoD driven by the users despite the fact that the identification of the suitable LoDs is a key issue for them. This PhD Thesis presents a framework for SUmmarizIng spatioTemporal Events (SUITE) across multiple LoDs. The SUITE framework makes no assumptions about the phenomenon and the analytical task. A Visual Analytics approach implementing the SUITE framework is presented, which allow users to inspect a phenomenon across multiple LoDs, simultaneously, thus helping to understand in what LoDs the phenomenon perception is different or in what LoDs patterns emerge

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Characterizing the Role of Syntaxin 1A in the Heart

    Get PDF
    The SNARE protein, STX1A, is expressed in various tissues. However, the role of STX1A in the heart remains unclear. Using a cardiac-specific STX1A knockout mouse model, this thesis explores the potential role of STX1A in excitation-contraction coupling. Echocardiography showed STX1A KO mice underwent transient systolic dysfunction persisting for 3 weeks. Ejection fraction and fractional shortening decreased in STX1A KO mice which returned to control levels by the 3rd week. No changes were observed in the control groups. Hypertrophy in STX1A KO hearts was not observed. Invasive hemodynamics revealed no change in LV or aortic pressures. Rate of pressure generation and relaxation were reduced in STX1A KO hearts at 0 weeks. Echocardiography also showed significant delay between the R-wave and onset of contraction in STX1A KO mice when compared to control mice. The observations of this study are indicative of STX1As role in the maintenance of normal excitation-contraction coupling in cardiomyocytes

    A systems biology approach identifies a gene regulatory network in parotid acinar cell differentiation.

    Get PDF
    Objective: This project sought to understand the gene regulatory networks that drive parotid salivary gland acinar cells to terminally differentiate, and drive expression of terminal differentiation genes in dedifferentiated ParC5 cells. Methodology: Laser capture microdissection was used to isolate acinar cells at multiple time points during differentiation. This important step allowed us to measure gene expression in a single and important cell type. A systems biology approach was taken to measure global mRNA and microRNA expression across acinar cell terminal differentiation in the rat parotid salivary gland. In ParC5 cells, the ER stress activator tunicamycin was used to stimulate Xbp1 activity. Results: Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Xbp1 and Mist1 (BHLHA15). The network suggests that a molecular switch involving Prdm1, Sox11, and Pax5 progressively decreases repression of Xbp1 transcription, in concert with decreased translational repression by miR-214. Transfection studies validate each of the tested network interactions. Treatment of ParC5 cells with tunicamycin increases expression of Mist1 downstream of Xbp1. However, further downstream effectors of Xbp1 and Mist1 (i.e. PSP, Connexin32) remain unchanged. The Mist1 target gene Rab3D is repressed. However, transfection of Mist1 cDNA, increases Rab3d expression. Conclusion: This study identified numerous novel transcription factor expressionpatterns during parotid acinar differentiation, including Pparg, Klf4, and Sox11. Many differentially expressed microRNAs were also measured which have not previously been described in salivary development. Network analysis identified a gene regulatory network driving expression of terminal differentiation genes. Stimulating Xbp1 activity in ParC5 cells increases Mist1 expression as predicted in the network, but other factors or epigenetic changes may be required for full expression of the network

    Existing and Potential Statistical and Computational Approaches for the Analysis of 3D CT Images of Plant Roots

    Get PDF
    Scanning technologies based on X-ray Computed Tomography (CT) have been widely used in many scientific fields including medicine, nanosciences and materials research. Considerable progress in recent years has been made in agronomic and plant science research thanks to X-ray CT technology. X-ray CT image-based phenotyping methods enable high-throughput and non-destructive measuring and inference of root systems, which makes downstream studies of complex mechanisms of plants during growth feasible. An impressive amount of plant CT scanning data has been collected, but how to analyze these data efficiently and accurately remains a challenge. We review statistical and computational approaches that have been or may be effective for the analysis of 3D CT images of plant roots. We describe and comment on different approaches to aspects of the analysis of plant roots based on images, namely, (1) root segmentation, i.e., the isolation of root from non-root matter; (2) root-system reconstruction; and (3) extraction of higher-level phenotypes. As many of these approaches are novel and have yet to be applied to this context, we limit ourselves to brief descriptions of the methodologies. With the rapid development and growing use of X-ray CT scanning technologies to generate large volumes of data relevant to root structure, it is timely to review existing and potential quantitative and computational approaches to the analysis of such data. Summaries of several computational tools are included in the Appendix
    corecore