14 research outputs found

    Inter-comparison and evaluation of Arctic sea ice type products

    Get PDF
    oai:publications.copernicus.org:tc102910Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. However, systematic inter-comparison and analysis for SITY products are lacking. This study analysed eight daily SITY products from five retrieval approaches covering the winters of 1999–2019, including purely radiometer-based (C3S-SITY), scatterometer-based (KNMI-SITY and IFREMER-SITY) and combined ones (OSISAF-SITY and Zhang-SITY). These SITY products were inter-compared against a weekly sea ice age product (i.e. NSIDC-SIA – National Snow and Ice Data Center sea ice age) and evaluated with five synthetic aperture radar (SAR) images. The average Arctic multiyear ice (MYI) extent difference between the SITY products and NSIDC-SIA varies from -1.32×106 to 0.49×106 km2. Among them, KNMI-SITY and Zhang-SITY in the QuikSCAT (QSCAT) period (2002–2009) agree best with NSIDC-SIA and perform the best, with the smallest bias of -0.001×106 km2 in first-year ice (FYI) extent and -0.02×106 km2 in MYI extent. In the Advanced Scatterometer (ASCAT) period (2007–2019), KNMI-SITY tends to overestimate MYI (especially in early winter), whereas Zhang-SITY and IFREMER-SITY tend to underestimate MYI. C3S-SITY performs well in some early winter cases but exhibits large temporal variabilities like OSISAF-SITY. Factors that could impact performances of the SITY products are analysed and summarized. (1) The Ku-band scatterometer generally performs better than the C-band scatterometer for SITY discrimination, while the latter sometimes identifies FYI more accurately, especially when surface scattering dominates the backscatter signature. (2) A simple combination of scatterometer and radiometer data is not always beneficial without further rules of priority. (3) The representativeness of training data and efficiency of classification are crucial for SITY classification. Spatial and temporal variation in characteristic training datasets should be well accounted for in the SITY method. (4) Post-processing corrections play important roles and should be considered with caution.</p

    A scatterometer record of sea ice extents and backscatter: 1992–2016

    Get PDF
    This paper presents the first long-term climate data record of sea ice extents and backscatter derived from intercalibrated satellite scatterometer missions (ERS, QuikSCAT and ASCAT) extending from 1992 to present date. This record provides a valuable independent account of the evolution of Arctic and Antarctic sea ice extents, one that is in excellent agreement with the passive microwave records during the fall and winter months but shows higher sensitivity to lower concentration and melting sea ice during the spring and summer months. The scatterometer record also provides a depiction of sea ice backscatter at C and Ku-band, allowing the separation of seasonal and perennial sea ice in the Arctic, and further differentiation between second year (SY) and older multiyear (MY) ice classes, revealing the emergence of SY ice as the dominant perennial ice type after the historical sea ice loss in 2007, and bearing new evidence on the loss of multiyear ice in the Arctic over the last 25 years. The relative good agreement between the backscatter-based sea ice (FY, SY and older MY) classes and the ice thickness record from Cryosat suggests its applicability as a reliable proxy in the historical reconstruction of sea ice thickness in the Arctic

    A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020

    Get PDF
    This study presents a long-term winter sea ice thickness proxy product for the Canadian Arctic based on a random forest regression model – applied to ice charts and scatterometer data, trained on CryoSat-2 observations, and applying an ice type–sea ice thickness correction using the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) – that provides 25 years of sea ice thickness in the Beaufort Sea, Baffin Bay, and, for the first time, the Canadian Arctic Archipelago. An evaluation of the product with in situ sea ice thickness measurements shows that the presented sea ice thickness proxy product correctly estimates the magnitudes of the ice thickness and accurately captures spatial and temporal variability. The product estimates sea ice thickness within 30 to 50 cm uncertainty from the model. The sea ice thickness proxy product shows that sea ice is thinning over most of the Canadian Arctic, with a mean trend of −0.82 cm yr−1 in April over the whole study area (corresponding to 21 cm thinning over the 25-year record), but that trends vary locally. The Beaufort Sea and Baffin Bay show significant negative trends during all months, though with peaks in November (−2.8 cm yr−1) and April (−1.5 cm yr−1), respectively. The Parry Channel, which is part of the Northwest Passage and relevant for shipping, shows significant thinning in autumn. The sea ice thickness proxy product provides, for the first time, the opportunity to study long-term trends and variability in sea ice thickness in the Canadian Arctic, including the narrow channels in the Canadian Arctic Archipelago.</p

    Open access data in polar and cryospheric remote sensing

    Get PDF
    This paper aims to introduce the main types and sources of remotely sensed data that are freely available and have cryospheric applications. We describe aerial and satellite photography, satellite-borne visible, near-infrared and thermal infrared sensors, synthetic aperture radar, passive microwave imagers and active microwave scatterometers. We consider the availability and practical utility of archival data, dating back in some cases to the 1920s for aerial photography and the 1960s for satellite imagery, the data that are being collected today and the prospects for future data collection; in all cases, with a focus on data that are openly accessible. Derived data products are increasingly available, and we give examples of such products of particular value in polar and cryospheric research. We also discuss the availability and applicability of free and, where possible, open-source software tools for reading and processing remotely sensed data. The paper concludes with a discussion of open data access within polar and cryospheric sciences, considering trends in data discoverability, access, sharing and use.A. Pope would like to acknowledge support from the Earth Observation Technology Cluster, a knowledge exchange project, funded by the Natural Environment Research Council (NERC) under its Technology Clusters Programme, the U.S. National Science Foundation Graduate Research Fellowship Program, Trinity College (Cambridge) and the Dartmouth Visiting Young Scientist program sponsored by the NASA New Hampshire Space Grant.This is the final published version. It's also available from MDPI at http://www.mdpi.com/2072-4292/6/7/6183

    Master of Science

    Get PDF
    thesisRecent accelerated mass loss offset by increased Arctic precipitation highlights the importance of a comprehensive understanding of the mechanisms controlling mass balance on the Greenland ice sheet. Knowledge of the spatiotemporal variability of snow accumulation is critical to accurately quantify mass balance, yet, considerable uncertainty remains in current snow accumulation estimates. Previous studies have shown the potential for large-scale retrievals of snow accumulation rates in regions that experience seasonal melt-refreeze metamorphosis using active microwave remote sensing. Theoretical backscatter models used in these studies to validate the hypothesis that observed decreasing freezing season backscatter signatures are linked to snow accumulation rates suggest the relationship is inverse and linear (dB). The net backscatter measurement is dominated by a Mie scattering response from the underlying ice-facie. Two-way attenuation resulting from a Raleigh scattering response within the overlying layer of snow accumulation forces a decrease in the backscatter measurement over time with increased snow accumulation rates. Backscatter measurements acquired from NASA's Ku-band SeaWinds scatterometer on the QuikSCAT satellite together with spatially calibrated snow accumulation rates acquired from the Polar MM5 mesoscale climate model are used to evaluate this relationship. Regions that experienced seasonal melt-refreeze metamorphosis and potentially formed dominant scattering layers are delineated, iv freeze-up and melt-onset dates identifying the freezing season are detected on a pixel-by-pixel basis, freezing season backscatter time series are linearly regressed, and a microwave snow accumulation metric is retrieved. A simple empirical relationship between the retrieved microwave snow accumulation metric (dB), , and spatially calibrated Polar MM5 snow accumulation rates (m w. e.), , is derived with a negative correlation coefficient of R=-.82 and a least squares linear fit equation of . Results indicate that an inverse relationship exists between decreasing freezing season backscatter decreases and snow accumulation rates; however, this technique fails to retrieve accurate snow accumulation estimates. An alternate geometric relationship is suggested between decreasing freezing season backscatter signatures, snow accumulation rates, and snowpack stratigraphy in the underlying ice-facie, which significantly influences the microwave scattering mechanism. To understand this complex relationship, additional research is required

    Spatiotemporal change analysis for snowmelt over the Antarctic ice shelves using scatterometers

    Get PDF
    Using Scatterometer-based backscatter data, the spatial and temporal melt dynamics of Antarctic ice shelves were tracked from 2000 to 2018. We constructed melt onset and duration maps for the whole Antarctic ice shelves using a pixel-based, adaptive threshold approach based on backscatter during the transition period between winter and summer. We explore the climatic influences on the spatial extent and timing of snowmelt using meteorological data from automatic weather stations and investigate the climatic controls on the spatial extent and timing of snowmelt. Melt extent usually starts in the latter week of November, peaks in the end of December/January, and vanishes in the first/second week of February on most ice shelves. On the Antarctic Peninsula (AP), the average melt was 70 days, with the melt onset on 20 November for almost 50% of the region. In comparison to the AP, the Eastern Antarctic experienced less melt, with melt lasting 40–50 days. For the Larsen-C, Shackleton, Amery, and Fimbul ice shelf, there was a substantial link between melt area and air temperature. A significant correlation is found between increased temperature advection and high melt area for the Amery, Shackleton, and Larsen-C ice shelves. The time series of total melt area showed a decreasing trend of −196 km2/yr which was statistical significant at 97% interval. The teleconnections discovered between melt area and the combined anomalies of Southern Annular Mode and Southern Oscillation Index point to the high southern latitudes being coupled to the global climate system. The most persistent and intensive melt occurred on the AP, West Ice Shelf, Shackleton Ice Shelf, and Amery Ice Shelf, which should be actively monitored for future stability

    A long-term record of sea ice thickness in the Canadian Arctic

    Get PDF
    Sea ice plays a vital role in the Arctic region and affects numerous processes: it influences the radiative budget by reflecting sunlight and acts as a barrier for heat transport between atmosphere and ocean; it influences Arctic ecosystems as a habitat for different species; it is important for hunting and travel for local communities; and it acts as a hazard for marine shipping. Monitoring sea ice, specifically its thickness, is essential in understanding how it is changing with ongoing global warming.This thesis presents a novel method to create a long-term record (1996-2020) for sea ice thickness in the Canadian Arctic and assesses how sea ice thickness changed and what the impacts of these changes are.This thesis initially aimed to extract a long-term sea ice thickness record for the Canadian Arctic from satellite altimetry. However, it revealed that assumptions regarding the snowpack, sea ice density, and processing algorithms highly influence conclusions on sea ice thickness state and trends, and this approach was rejected. Instead, this thesis presents a proxy sea ice thickness product for the Canadian Arctic using ice charts, which for the first time consistently covers the Canadian Arctic Archipelago. In the final research chapter, this sea ice thickness proxy product and ice charts are used to assess sea ice changes in the Canadian Arctic Archipelago and their impact on accessibility.Sea ice has thinned across most of the Canadian Arctic region, with a mean change over the full area of 38.5 cm for November and 20.5 cm for April over the period 1996-2020. Moreover, the marine navigability is shown to increase in the access channels to the Canadian Arctic Archipelago, which enhances the possibilities for resupply for local communities. However, with continuing dynamic influx of old and thick sea ice, there is no change in full navigability of the Northwest Passage connecting the Atlantic and Pacific Oceans

    EPS/Metop-SG Scatterometer Mission Science Plan

    Get PDF
    89 pages, figures, tablesThis Science Plan describes the heritage, background, processing and control of C-band scatterometer data and its remaining exploitation challenges in view of SCA on EPS/MetOp-SGPeer reviewe

    Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks

    Get PDF
    We explore new and existing convolutional neural network (CNN) architectures for sea ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects and ambiguities in the radar backscatter for certain conditions that include the reflection of complex information from sea ice surfaces. We use manually annotated SAR images containing various sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided into small patches which are processed one at a time. We demonstrate that the combination of data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16) network, trained from scratch, significantly improves the classification performance, compared to the original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively and quantitatively that our models produce accurate classification results

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version
    corecore