536 research outputs found

    A DSS for Cooperative Multiple Criteria Group Decision Making

    Get PDF
    Many decisions in organizations are made, or at least prepared, by multiple cooperating decision makers. A distributed DSS architecture is presented that connects multiple individual DSS to a groupDSS. The group decision making process is supported by content oriented methods based on extensions of multiple criteria decision making methods, as well as by process-oriented techniques using a computerized conferencing system A prototype of the system is operational on a personal computer configuration

    FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES

    Get PDF
    Today's market competition requires constant improvement of manufacturing companies. The primary key to sustainable improvement is evaluating the efficiency of manufacturing processes, which inevitably demands access to thorough and comprehensive information. However, due to the multiple numbers of effective factors that are varied in nature and value, it is impossible to identify certain factors that ensure the efficiency of a manufacturing procedure. As a solution, this paper proposes a novel approach that applies fuzzy TOPSIS. This approach provides the flexibility of evaluating multiple and varied factors of different weights in scrutinizing the efficiency of a manufacturer. The proposed approach has been applied to three different manufacturers (i.e., alternatives) in three steps. In the first step, with reference to the related literature and comments of manufacturing experts, the valuable factors (i.e., the criteria) have been selected to which experts specified linguistic terms. Linguistic terms were then converted to fuzzy numbers. Fuzzy TOPSIS was applied to analyze the efficiency performance of manufacturers. In the last step, to determine the impact of criteria weights on the decision-making process, sensitivity analysis was carried out. The findings confirm the implacability of the proposed approach to manufacturing performances in a consolidated manner. The approach can be employed by marketing managers, senior administrators, and other authorities in the manufacturing and business sectors

    Intuitionistic Trapezoidal Fuzzy Multiple Criteria Group Decision Making Method Based on Binary Relation

    Get PDF
    The aim of this paper is to develop a methodology for intuitionistic trapezoidal fuzzy multiple criteria group decision making problems based on binary relation. Firstly, the similarity measure between two vectors based on binary relation is defined, which can be utilized to aggregate preference information. Some desirable properties of the similarity measure based on fuzzy binary relation are also studied. Then, a methodology for fuzzy multiple criteria group decision making is proposed, in which the criteria values are in the terms of intuitionistic trapezoidal fuzzy numbers (ITFNs). Simple and exact formulas are also proposed to determine the vector of the aggregation and group set. According to the weighted expected values of group set, it is easy to rank the alternatives and select the best one. Finally, we apply the proposed method and the Cosine similarity measure method to a numerical example; the numerical results show that our method is effective and practical

    VIKOR method for multiple criteria group decision making under 2-tuple linguistic neutrosophic environment

    Get PDF
    In this article, the VIKOR method is proposed to solve the multiple criteria group decision making (MCGDM) with 2-tuple linguistic neutrosophic numbers (2TLNNs). Firstly, the fundamental concepts, operation formulas and distance calculating method of 2TLNNs are introduced. Then some aggregation operators of 2TLNNs are reviewed. Thereafter, the original VIKOR method is extended to 2TLNNs and the calculating steps of VIKOR method with 2TLNNs are proposed. In the proposed method, it’s more reasonable and scientific for considering the conflicting criteria. Furthermore, the VIKOR are extended to interval-valued 2-tuple linguistic neutrosophic numbers (IV2TLNNs). Moreover, a numerical example for green supplier selection has been given to illustrate the new method and some comparisons are also conducted to further illustrate advantages of the new method

    Some Operators with IVGSVTrN-Numbers and Their Applications to Multiple Criteria Group Decision Making

    Get PDF

    An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers

    Get PDF
    In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental concepts, operation formulas and distance calculating method of TFNNs. Then we review some aggregation operators of TFNNs. Thereafter, we extend the original VIKOR model to the triangular fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method, our proposed method which is more reasonable and scientific for considering the conflicting criteria. Furthermore, a numerical example for potential evaluation of emerging technology commercialization is presented to illustrate the new method, and some comparisons are also conducted to further illustrate advantages of the new method

    A hierarchical integration method under social constraints to maximize satisfaction in multiple criteria group decision making systems

    Get PDF
    Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for researchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers (DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is developed in this paper based on social choice theory and statistical mathematics. This method innovates by dividing the assessment into components which provides a multiple assessment analysis, assigning weights to each source regarding their position compared to the group for each considered criteria. This multiple-weighting process maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis is performed and comparisons with other methods are made. Finally, conclusions are presented.The first author acknowledges support from the Spanish Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and third author wish to recognise their support from the Serra Hunter programme. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    ”Should I stay or should I go?”: A multiple-criteria group decision-making approach to SME internationalization

    Get PDF
    Due to domestic markets’ current economic conditions, companies increasingly feel that they need to become actively involved in international trade. However, small and medium-sized enterprises (SMEs) typically face financial and intellectual constraints during internationalization processes. This means that decision makers must consider a wide range of different variables before deciding to internationalize firms. This study sought to integrate cognitive mapping and the Decision EXpert (DEX) method in order to develop a multiple-criteria decision model suitable for the identification and assessment of variables influencing SMEs’ internationalization capability. The results confirm that the dual methodology adopted facilitates the development of a robust evaluation model that can improve decision-making processes in the context in question. More specifically, the proposed model identifies product features as the most important factor in SMEs’ capability for successful internationalization. In addition, internal factors are significantly more relevant than external factors. The model-building process is discussed, including its advantages and limitations.info:eu-repo/semantics/publishedVersio

    A Fuzzy Linguistic VIKOR Multiple Criteria Group Decision Making Method for Supplier Selection

    Get PDF
    One of the important stages in supply chain management is called supplier selection. It is a highly important multiple criteria group decision making problem because the supplier performance has become a crucial element in a compan

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested
    corecore