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ABSTRACT 

USING PYTHAGOREAN FUZZY SETS (PFS) IN MULTIPLE CRITERIA GROUP 

DECISION MAKING (MCGDM) METHODS FOR ENGINEERING MATERIALS 
SELECTION APPLICATIONS 

by 

Alaa Momena 

The University of Wisconsin, Milwaukee, 2019 
Under the Supervision of Professor Nidal Abu-Zahra  

The process of materials’ selection is very critical during the initial stages of designing 

manufactured products. Inefficient decision-making outcomes in the material selection process 

could result in poor quality of products and unnecessary costs. In the last century, numerous 

materials have been developed for manufacturing mechanical components in different industries. 

Many of these new materials are similar in their properties and performances, thus creating great 

challenges for designers and engineers to make accurate selections. Our main objective in this 

work is to assist decision makers (DMs) within the manufacturing field to evaluate materials 

alternatives and to select the best alternative for specific manufacturing purposes.  

In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) 

methods are proposed for the material selection problem. The proposed methods tackle some 

challenges that are associated with the material selection decision making process, such as 

aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the 

proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp 

decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to 

express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed 

aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi 
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Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking 

methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for 

Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex 

PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and 

practicality in dealing with the nature of material selection problems. 

In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used 

to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new 

functions to calculate uncertainty from DMs recommendations are developed using the Takagai-

Sugeno approach. The literature reveals some work on these methods, but to our knowledge, 

there are no published works that integrate the proposed aggregation approach with the selected 

MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials 

selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to 

any MCDM problem in other areas. 

A practical validation of the proposed hybrid PFMCGDM methods is investigated 

through conducting a case study of material selection for high pressure turbine blades in jet 

engines. The main objectives of the case study were: 1) to investigate  the new developed 

aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) 

to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM 

COPRAS methods in the field of material selection.  

In this case study, a group of five DMs, faculty members and graduate students, from the 

Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were 

selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A 

computer application for material selection was developed to assist designers and engineers in 
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real life problems. A comparative analysis was performed to compare the results of both hybrid 

MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of 

the outcomes obtained from both methods. It is concluded that using the proposed hybrid 

PFMCGDM TOPSIS method is more effective and practical in the material selection process 

than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for 

further research are suggested. 
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CHAPTER ONE 

Introduction 

 Materials selection is very important in design and manufacturing because it maximizes 

the performance and minimizes the cost (Thakker, Jarvis, Buggy, & Sahed, 2008). Materials 

selection decisions should be taken within the initial design stage of the product life cycle once 

the component is first designed or redesigned (Edwards, 2005; Deng & Edwards, 2007). Any 

false decision making in this initial stage could lead to early failure of the component and 

unwanted cost. New materials have been discovered and manufactured throughout the last few 

decades to provide many innovative opportunities to companies in different industries through 

using those materials to maximize performance and minimize cost. However, due to the rapid 

development and manufacturing of materials, many new alternatives in materials can be used for 

the same product or component. Thus, engineers and designers encounter some challenges in 

decision making on selecting the best material from a large set of options and alternatives, taking 

in consideration different criteria that affect the material performance (Jajimoggala & Karri, 

2013). Also, it is essential to prioritize between these criteria in order to decide which property is 

more critical than the others (Zhao, Su, Chen, & Yu, 2016).   

 A main problem that decision makers face is the lack of information in the materials 

selection process. Using proper decision making procedures and appropriate material samples 

could be helpful in overcoming this lack of information. These decision making processes would 

involve picking the material that best suits the designated product, prioritizing the different 

alternatives and then ranking these alternatives. Therefore, applying a suitable decision making 

tool sets the basis for selecting and prioritizing the alternatives (Baghel, Jha, & Jindal, 2014). 
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 Designers and engineers have to consider a large number of criteria when choosing 

materials. Karana, Hekkert, & Kandachar (2008) indicate that when engineers select a material 

they must consider the following quantitative requirements: 

 Mechanical properties such as Young’s modulus, ultimate strength, yield strength, 

elasticity, fatigue, hardness, toughness, etc. 

 Fabrication requirements such as machining ability, welding ability, heat treatability, etc. 

 Maintenance 

 Thermal and radiation properties such as conductivity, transmissivity, reflectivity, 

specific heat, etc. 

 Physical properties such as density, crystal structure, melting point, viscosity, vapor 

pressure, etc. 

 Chemical properties 

 Electrical properties 

 Availability 

 Life of component factors 

 Business issues 

Material properties play an important role in the design process because they define the 

performance of the product. For example, the product components might need to meet a specific 

performance requirement such as cost, stiffness, or strength. Consequently, each of the 

aforementioned needs should affect the material selection process. Edwards & Deng (2007) 

classified material selection problems into two groups: 

https://www.sciencedirect.com/science/article/pii/S0261306907001458#!
https://www.sciencedirect.com/science/article/pii/S0261306907001458#!
https://www.sciencedirect.com/science/article/pii/S0261306907001458#!
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1. Material selection based on the material properties such as mechanical, thermal and 

chemical properties. 

2. Materials selection based on the design requirements, where the material properties 

are combined with those of the physical structure and the appropriate structural 

properties of the component. 

In previous studies, material performances are usually assessed by considering multiple 

criteria and attributes (Jahan, Edwards, & Bahraminasab, 2016). Materials selection decisions 

may be affected by several aspects such as product performance, quality, cost, or customer 

satisfaction (Ashby, Shercliff, & Cebon, 2007; Van Kesteren, 2008). In addition, selecting the 

incorrect material for a specific product or component may result in such bad consequences such 

as profit loss, undesirable cost, and poor reputation of the company that manufactured this 

product (Edwards, 2005). Therefore, multiple criteria decision making (MCDM) problems have 

been used as an effective technique to select the most suitable material for numerous engineering 

designs and products. The application of MCDM usually consists of defining a finite set of 

feasible alternatives and related criteria, determining the importance of the criteria and the 

influence of the alternatives on these criteria, and defining the performance measures of the 

alternatives in order to complete the final step of ranking (Jahan, Ismail, Sapuan, & Mustapha, 

2010; Chakraborty & Chatterjee, 2013). The MCDM problem can be mathematically represented 

in a decision making matrix that involve the assigned material alternatives and the listed 

weighted criteria (Jahan, Ismail, Sapuan, & Mustapha, 2010).  

One of the permanent issues and challenges for materials engineers, designers and 

decision makers is to choose the suitable material to meet complex design problems. Therefore, 

implementing MCDM methods is going to help decision makers to create effective and efficient 
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designs through developing the decision making process in engineering materials selection 

applications. Progressively, MCDM methods have been used to materials selection, showing 

significant potential for tackling complex design problems in engineering materials applications 

through the last decades. These methods enhance existing quantitative approaches, such as 

selection charts, by allowing simultaneous consideration of design criteria, component 

configurations and types of material (Jahan, Edwards, & Bahraminasab, 2016). 

MCDM is categorized into two groups; the first one is the multiple-objective decision-

making (MODM) method and the second is the multiple-attribute decision-making (MADM) 

method (Jahan & Edwards, 2013). MODM can be defined as a technique that is used for 

optimization by prioritizing functional relationships such as minimizing cost or maximizing 

profit. On the other hand, MADM aims to compare and then rank the alternatives by weighting 

assigned criteria (Zhou, Yin, & Hu, 2009; Chauhan & Vaish, 2013). 

Past researchers have focused on implementing diverse MCDM techniques and then 

defining the performance measures in order to rank the alternatives. MODM is totally 

disregarded by early researchers because of variable limitations. Instead, they tend to use 

MADM frequently for the process of considering relevant criteria to choose the proper material 

at the end (Yurdakul & İç, 2009). 

Furthermore, different MADM techniques were implemented to improve the accuracy of 

the decision making process for materials selection such as TOPSIS (technique for order 

performance by similarity to ideal solution) (Shanian & Savadogo, 2006; Dağdeviren,Yavuz, & 

Kılınç, 2009), VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje means 

Multicriteria Optimization and Compromise Solution) (Jahan, Mustapha, Ismail, Sapuan, & 

Bahraminasab, 2011; Jeya Girubha, & Vinodh, 2012), ELECTRE (elimination and choice 
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expressing the reality) (Shanian, Savadogo, 2006) and AHP ( analytical hierarchy process) 

(Jiang, Zhang, & Sutherland, 2011).  

Usually there is one phase that supposed to be implemented in MADM problems before 

applying a decision making ranking method such as TOPSIS to rank the material alternatives. 

These methods are generally used for weighting and prioritizing criteria such as Analytical AHP, 

the entropy method, the digital logic method, the Simos method, etc. (Xie, 2014). Most of these 

weighting tools consider decision makers’ (DMs) opinions and judgments to determine the 

weight for each criterion (Jajimoggala, & Karri, 2013). 

1.1  Broad Application of MCDM 

Çalışkan, Kurşuncu, Kurbanoğlu, & Güven (2013) use various MADM methods such as 

extended PROMETHEE II (EXPROM2) (preference ranking organization method for 

enrichment evaluation), TOPSIS and VIKOR to select the best material for the tool holder used 

under hard milling conditions as well as to rank the alternative materials. A compromised 

weighting technique such as AHP and entropy methods also have been performed to weight the 

material criteria and attributes. Moreover, Spearman’s rank correlation coefficient was used to 

evaluate the correlation between the three ranking methods. It was found that MADM techniques 

are a practical and useful way to solve the complex material selection decision problems.  

Chakraborty and Chatterjee (2013) test how the number of attributes and criteria can 

influence the ranking performance of some MCDM methods such as VIKOR, TOPSIS and 

PROMETHEE by addressing five material selection problems from different areas of 

applications. It was found that identifying the most significant criteria with the highest priority is 

very critical and can affect the selection of the best and the worst material. The authors suggested 

https://www.scientific.net/author-papers/xue-jun-xie-1
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that instead of focusing on building the comprehensive material selection decision models, 

designers may only concentrate on identifying the most important criterion that affect the entire 

decision making process. As a result, the application of this approach of selecting the best 

material based on the single highest priority criterion can decrease the complexity that is 

included in implementing MADM methods. Consequently, the weighting tool that determines 

criteria weights has a very important function in the material selection process. It also has been 

shown that VIKOR surpasses all of the other methods due to its advantages.  

Zhao, Su, Chen, & Yu (2016) discuss an integrated multi-attribute decision-making 

(MADM) approach to assist selection of three different alternatives materials, poly (vinyl 

chloride) (PVC), polypropylene (PP), and polyethylene (PE). These alternatives are investigated 

to define their best economic, environmental, and social performances in designing sustainable 

plastic pipes. The authors implemented two popular MADM methods, specifically AHP and 

Gray rational Analysis (GRA). AHP was used to inspect the relative importance and appoint the 

weighting values for each indicator. In addition, GRA was employed to rank the materials based 

on the several attributes and to offer a better order of different inspected items in terms of a 

specific performance index.  

Consequently, integrating these two previous methods can maximize their benefits as 

well as facilitate the multi-attributive decision-making of a complex system although it was 

found that limitations still exist in this MADM approach. First, the selected criteria need more 

examination to see if they can be properly used to help the selection of material alternatives in 

terms of sustainability. Second, engineers’ and designers’ opinions should be considered in 

determining the weight of each criterion (Zhao, Su, Chen, & Yu, 2016). 
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Jahan et al. (2011) present a mathematical aggregation technique in multi-criteria 

decision-making method to overcome the common issue of the similarity of the material 

alternatives to each other. This technique used ranking orders that were achieved through 

different MCDM methods such as the results of the ranking process obtained by various MCDM 

methods being used as the input of the proposed methodology. Thus, the application of this 

approach will aid designers and engineers to achieve a consensus on selecting the best material 

for a certain application. Researchers concluded that the recommended method is more practical 

than current methods as it takes into account each material being appointed to each ranking. 

Hence, an optimal aggregation ranking will be reached by applying this method.  

Jajimoggala & Karri (2013) developed a multiple criteria decision making methodology 

based on two phases to select the best suitable material for an impellor. The first phase weighted 

and prioritized the criteria by implementing fuzzy AHP and the second phase ranked the material 

alternatives using fuzzy TOPSIS. In addition, the use of ranking scores in the TOPSIS 

methodology allowed decision makers to identify alternatives from best to worst. Moreover, 

employing fuzzy methods improved uncertainty and imprecise evaluation of material alternatives 

and criteria.  

Fuzzy methods application focused on implementing triangular numbers into traditional 

AHP method. Therefore, this allows DMs to get a clear improvement in the overall criteria 

weighting and material alternatives ranking results. It was found that the proposed method is 

very reasonable to rank material alternatives considering several differing criteria and attributes. 

As well, it is capable of reinforcing the existing MCDM material selection techniques mainly 

when there are many alternatives (Jajimoggala & Karri, 2013). 
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Gupta (2011) discusses in his research how selecting the best suitable material for 

engineering design requires a strong knowledge of the functional condition for each material 

alternative as well as the need to respect different essential criteria and attributes. Despite the 

complication that may occur in material selection for the absorbent layer of thin-film solar cells 

because of the limitation in each proposed material, the author suggested a strategy that relies on 

the MADM approach using the TOPSIS method to enhance machine performance by picking the 

best material. The suggested materials that were analyzed for selecting the best alternative were 

Copper Indium Gallium Diselinide (CIGS), Amorphous Silicon (a-Si), Copper Indium 

Disulphide (CuInS2), Cadmium Telluride (CdTe), and Perylene Diamine.  

The main criteria that were considered for their weight evaluation are band gap, 

absorption coefficient, diffusion length, thermodynamic compatibility and recombination 

velocity. The evaluation of the weight priorities was performed by applying fuzzy linguistic 

variables. Fuzzy linguistic variables technique is used as a method to transform decision makers’ 

(DMs) judgment and opinions, which are considered as linguistic values and description, into 

quantitative and numerical values to help builda mathematical model to make a flexible 

framework for solving decision making issues. In addition, this type of approach was used 

effectively in many areas such as marketing, clinical diagnosis, decision making, educational 

grading systems, scheduling, materials selection, personnel management, education, etc. Thus, a 

suitable linguistic expression or word is selected to define the inaccurate or unclear data based on 

the issue area (Gupta, 2011). 

Xie (2014) suggests a new MADM method for the material selection problem. This 

method is implemented by using a G1 method for weighting attributes instead of the popular 

AHP. The reason for using G1 in this material selection problem is that it is easier than AHP for 
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calculation and it does not require any test for the consistency of the judgment matrix. 

Subsequently, the TOPSIS method is applied to rank all the material alternatives. Finally, the 

new proposed method is tested and studied through a case study to determine its validation. This 

method can be used in other applications in many various domains such as robot selection and 

investment project selection.  

Arul, Arumugam, & Parthiban (2014) also have applied multiple criteria decision making 

fuzzy TOPSIS to evaluate lean manufacturing in small and medium sized Indian industries. The 

TOPSIS method usually provides criteria and performance weights as crisp values. Crisp values 

are not always perfect in demonstrating real world situations because some of these cannot be 

projected with numerical values. Consequently, fuzzy set theory has been suggested to solve the 

vagueness and uncertainty of this issue; as a result, the model of fuzzy TOPSIS is founded.  

Criteria have been identified based on its effect on the application of lean manufacturing 

in Indian industries through literature review and expert consultation. These criteria were strong 

management and leadership, resistance to change\organization culture, employee trust, skills and 

expertise, financial capabilities, communication of the transformation process and goals, 

performance measures, education and training, plan and strategy, thinking development, and 

customer focus. Finally, a comparison was performed between companies’ alternatives in order 

to compare their relative closeness. The one with the highest relative closeness will ranked as the 

best industry. 

Yang, Nasr, Ong, & Nee (2017) also concentrate on developing a multi-criteria decision-

making framework by using the fuzzy TOPSIS method to facilitate materials selection from 

remanufacturing perspective and to determine the performance of alternative automotive 

materials. Also, this developed methodology can aid designers to improve their options about 
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materials and increase the opportunity for product remanufacturing. This method is illustrated by 

using two case studies in the automotive materials, an engine block and an intake manifold.  

The material performance and criteria are weighed from the remanufacturing perspective 

and consider durability, cleanability, restorability, EHS, cost and density. The outcomes have 

shown the effect of using light duty materials on automotive materials from the remanufacturing 

evaluation. As well, the outcomes emphasized the significance of selecting the best material 

from a life-cycle prospective.  

Mansor, Sapuan, Zainudin, Nuraini, & Hambali (2013) perform the multi-criteria 

decision making methodology by using AHP to select the most appropriate natural fiber material 

to be hybridized with glass fiber reinforced polymer composites for the manufacturing of an 

automotive brake lever component. Thirteen materials alternatives were chosen for the decision 

making process through three main criteria, which are performance, weight and cost. These 

criteria have been selected through a literature review based on the specifications of the 

automotive component product design.  

Consistency analysis was completed to determine the degree of consistency for the 

achieved outcomes during the pair-wise comparison analysis. After using AHP and selecting the 

best suitable material, which appear to be the kenaf bast fiber, a sensitivity analysis was applied 

to ensure that the selected material alternative is the best choice over the other two components 

and to verify that AHP methodology outcomes are accurate. It was concluded that AHP method 

was shown to be very applicable to solve multi-criteria decision making problems throughout the 

theoretical product design phase as exhibited in this project that enabled specified rating values 

to be provided between the comparable set of criteria and alternatives (Mansor, Sapuan, 

Zainudin, Nuraini, & Hambali, 2013). 
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Jahan and Edwards (2013) explain in their research the development of a proper 

technique for better management of weighting criteria in the material selection procedure. In 

addition, a different method has been proposed to efficiently integrate three types of weighting 

criteria, correlation, objective, and subjective weightings, when there is uncertainty in the 

importance of these criteria. This concern is very critical for inexperienced engineers and 

designers.  

This method has been implemented by biomedical applications where the first application 

shows the importance of correlation weighting in amalgam tooth filling material selection. The 

second one illustrates the implementation of target criteria through the application of a hip joint 

prosthesis material selection problem. The optimal decision-making in material selection in the 

entire process comprises integrating these three types of weightings, choosing the proper ranking 

method, and using the aggregation method for different cases where there are many similar 

comparable alternatives. Furthermore, a continuous improvement model in product development 

is defined. This model emphasized that material selection is a constant and stable mission for 

increasing sustainability and profitability. 

Kumar and Ray (2015) discuss a problem on gear material selection problem. Some 

MADM significant methods have been applied such as MOOSRA, EXPROM-2, ORESTE, 

OCRA methods. The results of implementing those methods have been compared to determine 

the most suitable method for material selection. For the comparison, the Spearman rack co-

relation co-efficient and the coefficient of variance have been considered.  

The Spearman rank correlation coefficient can be very helpful for defining the degree of 

relationship between ranks achieved by various MCDM methods. As well, the coefficient of 

variance has been used to compare the amounts of variation from one data series to a different 
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one. In addition, the performance value of the MADM methods was determined in order to 

calculate the coefficient of variance. Results showed that the best rank correlation coefficient is 

achieved between EXPROM-2 and OCRA whereas the worst correlation is obtained between 

MOOSRA and EXPROM-2. Moreover, the OCRA coefficient of variance result is ranked the 

best with 74.59 % compared with other MADM methods. It can be deduced from this study that 

the Spearman rank correlation coefficient method is a useful tool to measure the correlation 

between various MADM techniques (Kumar and Ray, 2015). 

Zhao, Neighbour, Deutz, & McGuire (2012) introduce in their study a suitable method 

that designers and engineers can use to support decision-making on selecting the most proper 

material while also considering environmental evaluation. A computational method has been 

created through a spreadsheet by integrating a binary- dominance matrix with grey relational 

analysis. The main focus of this research is selecting between comparable materials to help 

develop the environmental performance of the product and motivating engineers to include 

sustainability into manufacturing and production processes.  The authors used a case study to 

illustrate how implementing this method could be effective in real life cases. This case study is 

about choosing variety of poly(vinyl chloride) (PVC) materials for handbag manufacturing.  

However, after implementing this method the authors noted some room for improvement. 

First, the evaluation measures are broad in the setting of sustainable development. In order to 

improve this issue, other parameters can be considered during the material selection process to 

make it more specific and to make the evaluation outcomes more suitable for other cases. Next, 

the binary dominance matrix technique should be compared with other weighting factors 

techniques such as the analytic Hierarchy Process (AHP) and the entropy method in order to 

assure the effectiveness and efficiency of this method. Furthermore, the computational process 
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can be further developed as a decision-making aid tool for materials selection by embracing 

other essential features such as market demand and materials performance (Zhao et al., 2012). 

Patel and Prajapati (2017) present a MCDM method to address material selection 

problems that weighs both qualitative and quantitative attributes. The authors study an approach 

to solve blanking die material selection manufactured by WEDM Process problems by one of 

MCDM methods, namely, the multi-objective optimization on the basis of ratio analysis 

(MOORA) method. This method works by ranking the most proper material among all other 

alternatives.  

The MOORA method proved its ease, effectiveness and steadiness through previous 

applications in manufacturing, construction management and engineering (Brauers, Zavadskas, 

Peldschus, & Turskis, 2008; Chakraborty, 2011). MOORA’s process optimizes more than two 

conflicting attributes simultaneously that are exposed to some constraints. The implementation of 

MOORA is very smooth because it requires minimum statistical calculations and estimating 

time. The application of this method can be executed through several phases. It starts with 

choosing the objective and defining the appropriate criteria, then preparing a decision matrix that 

displays information regarding all chosen criteria, and finally normalizing each alternative’s 

performance with respect to criteria. 

MOORA technique implementation is strongly suggested for decision making issues and 

problems especially in the manufacturing area. The reason behind this recommendation is 

because of the ease of applying this tool to select the best material option between many 

alternatives for a certain application. It also assists the designer to select any of the most proper 

alternatives to move a new product from the design phase to the manufacturing and production 

process phase. (Patel & Prajapati, 2017). 
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Mangera, Kienhöfer, Carlson, Conning, Brown, & Govender (2018) apply the ELECTRE 

III multiple attribute decision-making method in selecting the most appropriate alternative for a 

pediatric prosthetic knee. The purpose of this research is to select the best material for the 

polycentric component. Alternatives for material selection were from light metals. The 

evaluation of the materials was based on critical criteria such as patient comfort, cost and 

structural stability.  

The measurement of patient comfort was done by evaluating material density since the 

weight of the prosthesis influences the comfort level. The application of the ISO 10328:2006 

standard on assessing the lower limb prostheses was employed in measuring the structural 

strength suitability of the material alternatives. Furthermore, the cost of all material alternatives 

was evaluated (Mangera at el, 2018). 

. Kumar & Ray (2015) explain an MADM integrated approach that consisted of entropy 

and multiple objectives on the basis of a simple ratio analysis (MOOSRA) method to handle the 

material selection problem. The suggested technique has been analyzed by applying it on a case 

study on exhaust manifolds.  

The criteria selected for the alternatives are surface hardness, core hardness, surface 

fatigue limit, bending fatigue limit, ultimate tensile strength, and cost. Material alternatives in 

this case study were ductile iron, cast iron, cast alloy steel, hardened alloy steel, surface hardened 

alloy steel, carburized steels, and nitride steels. It can be concluded that carburized steel is the 

most suitable material whereas cast steel alloy is the worst one. Furthermore, from this case 

study, it can be deducted that the application of this method is easy and depends on the simple 

ratio of useful and useless criteria embodying output and input through a decision making 

process by engineers. It is also noted that implementing the MOOSRA method for material 
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selection is easier than using other MADM methods such as ELECTRE, VIKOR, 

PROMETHEE, and EVAMIX (Kumar & Ray, 2015). 

Wang, Lei, Chang, Shi, Xiao, Li, He, Zhu, & Yang (2015) represent a mathematical 

model for an integrated evaluation that was developed based on grey relational analysis (GRA) 

and the analytic hierarchy process (AHP) theories. The developed model has been used to select 

the best biomass briquette fuel (BBF) system scheme. During the development of this model, 

several hierarchies were considered, such as economy, cleanliness and environmental protection, 

production capacity, product quality, and production stability. Moreover, criteria or indices that 

affect the previous mentioned hierarchies include the following: labor cost, capital investment, 

dust content, permitted moisture of material, lifetime of major parts, briquette rate, machine 

repair cycle, cooling capacity, noise, maintenance cost, and moisture content. 

After developing the AHP model, GRA is employed to control and calculate data. Then, 

normalization is performed to the data in order to make the comparison possible. After that, 

implementing grey relational coefficient equations to the normalized data complete the 

calculations for the next step, quantifying the qualitative factors. The last step in developing this 

multi-objective optimization model is to determine the weight vector and perform a coherence 

test in order to confirm that the comparative results are not in contradiction and that the AHP 

results are reasonable. Sensitivity analysis was applied on the most important criteria that 

influenced each hierarchy (Wang et al., 2015). 

The best scheme that was selected includes six sets of briquetting machines, three sets of 

chopping machines, six sets of drying machines, and one set of cooling machines. The selection 

of the evaluated indices and weight coefficients was made impartially. Hence, the overall 

performance of the certain BBF system scheme was enhanced. The major criteria that have an 
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impact on each hierarchy (economy, cleanliness and environmental protection, production 

capacity, product quality, and production stability) were analyzed using a sensitivity analysis. 

These major criteria included energy costs, dust density, drying capacity, density, and machine 

repair cycle.  

It can be concluded from the outcomes that the major machines used in a BBF system 

scheme, which are drying, chopping, briquetting, and cooling, were integrated rationally and 

were improved. Consequently, the represented mathemathical model gives a well-developed 

technological solution and creates a foundation for economical and steady system operation 

(Wang et al., 2015). 

Berdie, Osaci, Muscalagiu, & Barz (2017) suggest an approach of a multi-criteria 

analysis model that combines AHP and TOPSIS methods implemented in the integrated software 

systems area. By implementing the mentioned methods, the study developed a hierarchy among 

three ABAP UI SAP (System Applications and Products in Data Processing) technologies that 

include Web Dynpro -WD, Floorplan Manager - FPM and CRM WebClient UI - CRM WCUI. 

Also, these technologies are assessed based on their performances in being implemented on 

similar web business applications.  

The hybrid multi-criteria selection model was created through applying the 

SuperDecision software that define the weights for certain groups of criteria. After determining 

the seven chosen weights (response time, database request time,  time consumed at the end of a 

transaction (CBU), the time obtained in front-end (HTTP Watch time), technology development, 

technology maintenance and technology enhancement by using SuperDecision software with 

AHP), decision makers assign importance and priorities to these determined weights. The 

TOPSIS method was employed to achieve the ranking of the technologies alternatives. It was 
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concluded that Web Dynpro ABAP was ranked as the most suitable technology that can be 

implemented in developing a SAP UI project (Berdie et al., 2017).  

Mohagheghi, Mousavi, & Vahdanib (2017) introduce a new decision making 

methodology based on Pythagorean fuzzy sets (PFSs). PFSs have been extended from 

intuitionistic fuzzy sets and are characterized by increasing the influence of decision makers 

(DMs) to express their ideas and opinions. Also, PFSs gives the DMs more smoothness and 

flexibility in expressing uncertainty unlike many other methods, making it more credible in 

solving real-life decision making issues.  

This new method handles DMs weights as well as the entropy of criteria and uses a new 

ranking index. The PFSs method uses most of the collected information and also is more specific 

in cases where the DMs have conflicts and vary in their opinions. As well, it offers a greater 

feasible region in values referring to the levels of agreement, disagreement and hesitancy. 

Moreover, PFSs’ new ranking methodology is based on the model of ideal positive and negative 

solutions (Mohagheghi et al., 2017).  

Furthermore, this research developed a new integrated approach that focuses on 

measuring the weight of each DM using two main concepts. First, an appropriate computation of 

the weight is done by gathering most information and judgments in order to evaluate the 

importance of each DM opinion and thought. Second, the importance of each DM in his/her field 

and experience is considered. The proposed approach manages subjective and objective ways in 

setting the weight of each DM through using PFSs.   

All criteria weights have been processed by the entropy concept. Specifically, the 

significance of each criterion is addressed by collecting DMs opinions and by determining the 

https://www.sciencedirect.com/science/article/pii/S1568494617304854#!
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weights regarding the collected ideas and opinions. Moreover, the use of entropy as a concept in 

the given decision-making method is very important in determining and measuring uncertainty in 

various environments. Furthermore, a novel index is introduced to rank the alternatives. It should 

be noted that the index can be applied to estimate the utility degree of alternatives. Also, this 

index can display to what degree each alternative is superior or inferior to the others by 

comparing them with percentages.  

Finally, the authors suggested examining the efficiency of the PFSs in further research by 

adjusting it for application in a decision support system (DSSs). This step could assist the DMs 

in making accurate decisions under uncertain environments. In addition, implementing a PFS-

DSS in some real life decision making problems could effectively aid the DMs to reach 

agreement, disagreement or hesitance with high flexibility (Mohagheghi et al., 2017). 

Qu, Meng, & You (2016) study the use of a multi-stage group decision making approach 

under the fuzzy TOPSIS method based on interval-valued trapezoidal fuzzy sets to determine the 

optimal emergency technology with respect to different threat level criteria for water source 

pollution. The multi-stage approach consists of the following steps, (a) defining feasible 

technologies using a CBR-based tool, (b) estimating threat criteria, (c) assessing the alternatives 

by using the proposed fuzzy TOPSIS method. 

1.2 MCDM Applications in Material Selections 

Various types of material selection methods are made based on an MCDM approach such 

as the Ashby approach (Prashant Reddy, Gupta, 2010; Rashedi, Sridhar, & Tseng, 2012), the 

TOPSIS (technique for order performance by similarity to ideal solution) (Shanian & Savadogo, 

2006; Dağdeviren, Yavuz, & Kılınç, 2009), VIKOR (Vlse Kriterijumska Optimizacija 
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Kompromisno Resenje, means Multicriteria Optimization and Compromise Solution) (Jahan et 

al., 2011; Jeya Girubha & Vinodh, 2012), ELECTRE (elimination and choice expressing the 

reality) (Shania & Savadogo, 2006), PROMETHEE (preference ranking organization method for 

enrichment evaluation) (Chatterjee & Chakraborty, 2012), COPRAS (complex proportional 

assessment) (Chatterjee, Athawale, & Chakraborty, 2011; Maity, Chatterjee, & Chakraborty, 

2012) and COPRAS-G (Maity et al., 2012). The main idea behind building those methods is to 

find a solution for the material selection problems of engineering components and products in 

order to increase the performance and efficiency of the manufacturing process. 

Jahan et al.  (2010) stated that the most popular MCDM approaches for materials 

selection in the last decade are TOPSIS, ELECTRE and AHP. However, the authors mentioned 

several disadvantages in the implementation of ELECTRE and AHP, which makes TOPSIS the 

best option to be used in materials selection. One of ELECTRE’s drawbacks can be noticed in 

the absence of presenting clear numerical values to provide knowledge of the differences 

between materials alternatives. Another disadvantage of implementing the ELECTRE method is 

the rapid increase in calculations and computational complications when the number of 

alternatives increases. Moreover, ELECTRE analyzes the effect of the alternatives under each 

criterion individually, which is not applicable in a materials selection problem due to the 

importance of measuring the effect of all criteria with respect to each alternative. AHP as well 

has its own limitations and barriers in the application of materials selection (Mousavi-Nasab & 

Sotoudeh-Anvari, 2017). One such barrier is the limited number of material alternatives and 

criteria to be included in the process (not more than 15), which makes this approach impractical 

due to the huge set of alternatives and criteria usually used in material selection problems.  In 

other words, the traditional AHP method is ineffective when the given alternatives are in 

https://www.sciencedirect.com/science/article/pii/S0264127517301697#!
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hundreds and thousands (Jahan et al., 2010). Furthermore, ELECTERE and AHP cannot deal 

with benefit and cost criteria in one process at the same time, which makes using these methods 

not valid in the materials selection process. 

On the other hand, TOPSIS can be the best option to be implemented in MCDM 

problems for material selections due to the following reasons:  

 It is applicable for qualitative and quantitative data. 

 It is simple with a systematic process. 

 It allows including an unlimited amount of material alternatives and criteria, 

which is very practical in materials selection MCDM problems. 

 It allows benefit and cost factors to be included easily within one process. 

 It is a compensatory tool and gives clear compromise among criteria, which 

means it allows trade-offs between various decision making criteria where a 

negative impact in one criteria may be rewarded with a positive one in other 

criteria. 

 Results can be expressed in a preferential ranking of the alternatives with a 

numerical value that delivers a clear idea about the differences and similarities 

between alternatives (Jahan et al., 2010; Mousavi-Nasab & Sotoudeh-Anvari, 

2017; Yang et al., 2017). 

Based on the above advantages, TOPSIS can be considered as a crucial MCDM approach 

compared with other techniques in the materials selection field, such as AHP and ELECTRE. 

TOPSIS has been used widely and efficiently in many material selection problems (Jahan et al., 

2010). The traditional TOPSIS, which was first proposed by Yoon and Hwang (1980), can be 

https://www.sciencedirect.com/science/article/pii/S0264127517301697#!
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defined as a practical method to solve the MCDM problems with crisp numbers by selecting the 

alternative with the shortest distance from the positive ideal solution (PIS) and the farthest 

distance from the negative ideal solution (NIS). Based on an overall literature review, Jahan et al. 

(2010) conclude that TOPSIS is a very effective and reliable MCDM tool to solve materials 

selection problems. Yousefpour & Rahimi (2014) state that TOPSIS is a decision-making 

approach that will be suitable in material selection problem. Kumar & Singal (2015) report that 

TOPSIS is very appropriate as an MCDM tool for penstock material selection. Rathod & 

Kanzaria (2011) infer that TOPSIS and fuzzy TOPSIS are applicable approaches in materials 

selection problems when the assessments are accurate and inaccurate. Lin, Wang, Chen, & 

Chang (2008) recommend a method that combines the AHP and TOPSIS to aid decision makers 

to find optimal design alternatives. Shanian & Savadogo (2006a) use the TOPSIS tool to select 

the most suitable materials for metallic bipolar plates for polymer electrolyte fuel cells. Çalıskan, 

Kursuncu, Kurbanoglu, & Güven (2013) implement the TOPSIS concept to choose the best 

material option for tool holder production. In addition, Anupam, Lal, Bist, Sharma, & Swaroop 

(2014) successfully prove the applicability of using the TOPSIS method as an MCDM approach 

in the raw material selection problem by considering chemical and morphological characteristics 

of Eucalyptus and Leucaena varieties to select the most reliable material alternative among them 

for pulping and papermaking.  

Another recommended MCDM approach to be used in solving the material selection 

problem is the complex proportional assessment (COPRAS method), introduced by Zavadskas et 

al. (1994). This method determines the most preferred solution by comparing between the direct 

and proportional ratio of the best solution and the ideal-worst solution. Recent studies that 

extensively reviewed the applicability of MCDM approaches within the material selection field 
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suggested that COPRAS is one of the best MCDM techniques along with TOPSIS that can be 

used in this area. For example, according to Mousavi-Nasab and Sotoudeh-Anvari (2017), 

TOPSIS and COPRAS are selected as the best MCDM methods for material selection in general 

practice. They also introduced a comprehensive MCDM approach using TOPSIS, COPRAS and 

data envelopment analysis (DEA) to be implemented in general material selection problems. As 

well, Mousavi-Nasab and Sotoudeh-Anvari (2018) studied the rank reversal phenomena that 

occur in applying MCDM to material selection problems. They conclude that DMs should 

implement TOPSIS, COPRAS, and simple additive weight (SAW) in a comparison approach to 

verify the ranking results. Chatterjee et al. (2011) studied the performance of different MCDM 

approaches. He indicated that COPRAS can be considered as one of the best material selection 

techniques due to its easy procedure and low calculation time.  

Moreover, researchers have investigated the implementation of COPRAS in different 

material selection applications. Zavadskas et al. (2014) reviewed various MCDM methods and 

pointed out that COPRAS is a rapid developed method to deal appropriately with real problems. 

Chatterjee and Chakraborty (2012) studied implementing COPRAS and additive ratio assessment 

(ARAS)-based techniques in the application of gear material selection by performing a 

comparative analysis. The outcome of this study showed that both methods can be effectively 

applied to any type of industrial material selection decision making processes, including 

problems with a large number of criteria and alternatives. Aghdaie, Zolfani, & Zavadskas (2013) 

evaluated and selected the most suitable machine tool using a hybrid model that integrates step-

wise assessment ratio analysis (SWARA) and COPRAS-G. By studying the results of 

implementing the hybrid model in a machine tool selection problem, the implementation of 

COPRAS-G proves its validity by assisting the model in ranking the alternatives precisely from 
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best to worst. Petković, Madić, Radenković (2015) implemented COPRAS with weighted 

aggregated sum product assessment (WASPAS) in a novel MCDM approach to the machining of 

materials specifically in a non-conventional machining process for ceramics machining. Despite 

the challenge of requiring a large number of criteria and alternatives in most NCMP selection 

problems, this method has shown its efficiency in selecting the best NCMP for ceramics 

machining; therefore, it can be successfully employed for solving any type of decision-making 

problems in the manufacturing area. Yazdani (2015) tests the effect of implementing various 

normalization methods in COPRAS on decision making about selecting the most proper 

materials and designs. He mentioned that selecting COPRAS to be tested as MCDM method in 

this study is due to its recognition as a promising approach in the material selection field. It is 

constructed based on the attributes of alternatives to handle the complex real-world problems 

where the properties of attributes are conflicting. In summary, it can be inferred from many 

studies that the reasons for selecting TOPSIS and COPRAS as the most proper MCDM 

techniques to solve real material selection problems are briefly reviewed as follow: 

- Both can deal with a large number of criteria and material alternatives. 

 

- Both can treat beneficial (benefit) and non-beneficial (cost) criteria in one process. 

 

- Both can rank material alternatives in a descending order (from best to worst). 

 

- Both can manage quantitative as well as qualitative factors (Shanian & Savadogo, 

2006; Jahan et al., 2010; Chatterjee & Chakraborty, 2011; Podvezko, 2011; Özcan, 

Çelebi & Esnaf, 2011; Mulliner, Smallbone & Maliene, 2013; Yazdani & Payam, 

2015; Mousavi-Nasab & Sotoudeh-Anvari, 2017).  

 

As mentioned above, TOPSIS and COPRAS have been implemented efficiently in 

various real manufacturing and materials selection applications. However, despite the 

applicability of both techniques in addressing MCDM models, they have a major weakness, 

https://www.sciencedirect.com/science/article/pii/S0264127517301697#!
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specially the inability to model the vagueness and uncertainty involved in the judgment process. 

This problem can be treated by applying both methods within the fuzzy logic environment (Yang 

et al., 2017). The fuzzy logic concept will be explained in the subsequent section. 
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CHAPTER TWO 

Theoretical Background 

2.1  Fuzzy Logic Applications to MCDM Problem 

Multicriteria decision making (MCDM) is used to achieve the optimal alternative that has 

the maximum level of satisfaction among a group of feasible alternatives that contain multiple 

criteria. Many MCDM tools such as the traditional TOPSIS express the problem in the form of a 

decision matrix filled with crisp data, with the assumption that the provided information is 

precisely defined. However, this might not be applicable in some real world MCDM problems. 

Due to the time barrier and the limited knowledge about the problem domain, decision makers 

tend to express their preferences with ranges and verbal descriptions, instead of crisp data or 

exact numbers. For this reason, fuzzy logic is suggested by many researchers to be used in 

MCDM problems to overcome this issue. The concept of fuzzy logic has been presented by 

Zadeh to form human logic from lacking and imprecise information by providing definitions to 

vague expressions (Zadeh, 1965, 1973). Fuzzy logic also can integrate human experiential data 

and give it an engineering perception to control and form such unclear systems with uncertainty 

(Siddique & Adeli, 2013). Therefore, implementing fuzzy logic in MCDM tools will include a 

higher degree of uncertainty in the decision making process. Hence, this will provide more 

realistic and accurate decision making outcomes and results (Yang et al., 2017). The combination 

of fuzzy logic and MCDM is often called the fuzzy-MCDM approach, which can be helpful in 

handling the imprecise information and data by converting them into linguistic variables 

(Siddique & Adeli, 2013). 
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In order to clearly demonstrate the concept of fuzzy logic, classical logic should be 

defined first. In classical logic a proposition is either true or false, ‘cold or hot,’ which is 

imprecise, unrealistic, and cannot define many real life problems. On the other hand, fuzzy logic 

is a change from absolute truth to partial truth. A clear example of using the fuzzy logic concept 

is by changing the obsolete truth in the variable x (Cold or Hot) to a partial truth in the linguistic 

variable ‘Very cold,’ ‘Slightly cold,’ ‘Warm,’ ‘Slightly hot,’and ‘Very hot’ (Siddique & Adeli, 

2013). Theses linguistic terms can be translated to crisp number such as ‘1’ for ‘very cold’ and 

‘5’ for ‘warm.’ The process in which these crisp data are converted to fuzzy numbers is called 

the fuzzification process. The major issue in the fuzzification process in MCDM problems is 

choosing the suitable membership function that will be responsible for the conversion of fuzzy 

numbers. A membership function can be described as a curve that expresses how each point in 

the input space is represented by a membership value (degree of membership) between 0 and 1, 

which is usually given in the form of fuzzy numbers, that is, 𝑢𝐶𝑗(𝑥𝑖). The membership functions 

are usually developed from many basic functions such as piecewise linear function, Gaussian 

distribution function, sigmoid curve, and quadratic and cubic polynomial curves (Maity & 

Chakraborty, 2013). 

 Fuzzy sets theory, which was introduced by Bellman and Zadeh (1970), was the first 

implementation of fuzzy numbers in MCDM. This concept has been developed to assist decision 

makers in solving MCDM problems, considering the fuzziness in decision makers’ preferences 

and the uncertainty of the objects. They suggested that the decision makers could implement the 

𝑢𝐶𝑗(𝑥𝑖) to show their preference about the membership grade of a specific alternative 𝑥𝑖 with 

respect to a criterion 𝐶𝑗; in other words, it means the grade to which the alternative 𝑥𝑖 satisfies 

the criterion 𝐶𝑗. In the practical MCDM procedure, decision makers usually give their opinions 
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regarding the grade to which the alternative 𝑥𝑖 not only satisfies but also dissatisfies the 

criterion 𝐶𝑗. For this reason, Atanassov (1986) developed the concept of intuitionistic fuzzy set 

(IFS), where decision makers can express their preferences about a membership grade and a 

nonmembership grade of an alternative 𝑥𝑖 with respect to a criterion 𝐶𝑗 meeting the condition 

that the sum of its membership grade and its nonmembership grade is equal to or less than 1. The 

IFS concept has been widely employed in real-world MCDM issues and problems. Moreover, 

much research has been conducted on the application of MCDM problems with IFSs. 

 Lately, Yager (2013) presented a Pythagorean fuzzy set (PFS) concept that can be 

defined as the alternative’s membership grade and nonmembership grade meeting the condition 

that the square sum of both the membership grade and the nonmembership grade is equal to or 

less than 1, which is a generalization of IFS. The motive behind developing this concept is that in 

the real-life decision making practice, decision makers present their views about the support 

(membership) grade and the against (nonmembership) grade for an alternative meeting of a 

criterion and the sum of these membership grades and nonmembership grades may be bigger 

than 1 but their square sum is equal to or less than 1. For simplicity, Yager (2014) provided an 

example to clarify this case about a decision maker who states his preference taking in 

consideration the membership grade of an alternative 𝑥𝑖 regarding a criterion 𝐶𝑗 in which the 

membership grade of an alternative 𝑥𝑖 that satisfies the criterion 𝐶𝑗 is equal to 
√3

2
 and a 

nonmembership grade of an alternative 𝑥𝑖 that dissatisfies the criterion 𝐶𝑗 is equal to 
1

2
. It can be 

obviously noticed that  
√3

2
+
1

2
≥ 1; hence, IFS cannot define this situation. On the other hand, 

(√
3

2
)2 + (

1

2
)2 ≤ 1 can be defined by PFS. As a result, PFSs’ ability in modeling uncertainty in 

real-life MCDM problems is stronger than that of IFS. 
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 Furthermore, Yager (2014) developed a group of aggregation operations for PFSs in 

order to be implemented for future PFSs decision making applications. Yager also presented an 

effective decision making technique to deal with MCDM problems with Pythagorean fuzzy 

information based on the new aggregation operations and the PFSs concept. Additionally, Yager 

& Abbasov (2013) discussed the relation between Pythagorean membership degrees and 

complex numbers. They showed that the Pythagorean membership degrees are a subclass of 

complex numbers called ∏–  I numbers. As well, they recommended a decision-making method 

built on the Pythagorean fuzzy geometric mean and the order weighted geometric operator to 

address the MCDM issues with Pythagorean fuzzy information (i.e., ∏− I numbers). As 

observed, the two decision making methods mainly focus on the extensions of the aggregation 

approaches that are used to solve the MCDM problems under Pythagorean fuzzy situations.  

2.2  Fuzzy Topsis Applications to MCDM Problems 

 The TOPSIS method has been extended and studied by many researchers for solving 

MCDM problems in many fuzzy environments such as fuzzy number contexts, interval fuzzy set 

contexts, IFS contexts, hesitant fuzzy set contexts, and hesitant fuzzy linguistic term set contexts 

(Chen, 2000; Chen & Tsao, 2008; Boran, Genc, Kurt, & Akay, 2009; Xu & Zhang, 2013; Beg & 

Rashid, 2013; Chen, 2016). However, the fuzzy TOPSIS methods and its extensions have been 

ineffective to deal with Pythagorean fuzzy environments. For this reason, Zhang and Xu (2014) 

developed the TOPSIS approach to successfully address the MCDM problem with Pythagorean 

fuzzy information. 
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2.3  Applications of Fuzzy TOPSIS to MCDM Problems in Material Selections 

 In materials selection MCDM problems, weights are usually assigned by linguistic terms 

described by decision makers. Thus, the final decision results might encounter a risk due to this 

incomplete, vague and imprecise information. For this reason, using fuzzy logic in materials 

selection is to address the problem that might occur from assigning weight using linguistic terms 

described by decision makers. The application of fuzzy logic in this situation can be very helpful 

to deal with such materials selection problems because sometimes the evaluations completed by 

engineers, designers and decision makers throughout the initial design stage contain indefinite 

and uncertain requirements, parameters, and relationships. Thus, fuzzy logic is implemented as a 

supportive concept to express the action and approach of the decision makers while selecting the 

most suitable material alternative (Maity and Chakraborty, 2013).  

Since TOPSIS has demonstrated its applicability in materials selection problems, many 

researchers combine the use of TOPSIS under fuzzy environments to address the uncertainty and 

vagueness issues that might occur in the decision making process and that affect the final 

decision results. Maity and Chakraborty (2013) adopted fuzzy logic effectively with the TOPSIS 

method in selecting the most suitable material for a list of eight grinding wheel abrasives whose 

efficiency is assessed based on multiple criteria. Maldonado-Macías, Alvarado, García, & 

Balderrama (2014) introduced the use of the TOPSIS method under an intuitionistic fuzzy 

environment to select the best alternative among three CNC milling machines for an advanced 

manufacturing technology training center considering human factors and ergonomics attributes. 

The intuitionistic fuzzy TOPSIS method was very beneficial in dealing with the vagueness or 

sometimes incorrect information provided by decision makers in the evaluation process. Yang et 

al. (2017) studied how applying fuzzy TOPSIS for material selection in the initial phase could 
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effectively improve the remanufacturability of automotive parts. Combining the TOPSIS method 

with fuzzy logic was very effective in reducing personal bias and uncertainty of the evaluation 

process. Liao (2015) developed a two-interval type 2 fuzzy TOPSIS method to handle the high 

nature of uncertainty and vagueness of material properties in the material selection process 

within the product design stage. Purohit and Ramachandran (2015) used a fuzzy Topsis approach 

in MCDM to select the best suitable alternative among five materials for making engine 

flywheels. They suggested that this approach can be implemented for any materials selection 

problem in a manufacturing field. However, to the best of our knowledge, no application of the 

MCDM method on material selection based on the use of the TOPSIS technique under the 

Pythagorean fuzzy environment is currently available in the open literature. To fill this gap, this 

research will suggest an effective Pythagorean fuzzy TOPSIS MCDM approach to be used in 

real life materials selection problems. 

2.4 Applications of Fuzzy COPRAS to MCDM Problems in Material Selections 

The COPRAS method has been commonly used as an effective MCDM technique to deal 

with real decision making problems (Zavadskas et al., 2014). Due to its simplicity, it has been 

successfully implemented for solving many problems in different fields and applications 

(Podvezko, 2011; Antucheviciene et al., 2012; Mulliner et al., 2013; Gadakh, 2014; Mousavi-

Nasab and Sotoudeh-Anvari, 2017, Chatterjee et al, 2011). The idea of using the fuzzy COPRAS 

approach to address MCDM problems in material selection applications has been studied by 

several researchers. Dursun and Arslan (2018) introduced a fuzzy multi-criteria group decision-

making framework (MCGDM) that incorporates customer and experts’ requirements in the 

decision making process and used the fuzzy COPRAS technique as a ranking method for 

material selection purposes. They implemented the principles of quality function deployment 
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(QFD), 2-tuple fuzzy linguistic representation and linguistic hierarchies in the initial phase of the 

decision making framework, which is considered the assessment phase, and then applied fuzzy 

COPRAS to rank all material alternatives and choose the most suitable one. Nguyen et al. (2014) 

developed a hybrid approach of the fuzzy ANP (Analytic Network Process) and COPRAS-G 

(COmplex Proportional ASsessment of alternatives with Grey relations) for MCDM problems in 

the machine tool selection application. The proposed decision making model consists of three 

phases: setting the criteria and alternatives, determining the interaction and weights of the criteria 

using the fuzzy ANP, and selecting the most appropriate alternative by implementing COPRAS-

G ranking method. They concluded that implementing this hybrid approach is effective in 

selecting the best machine tool and using the COPRAS-G method allows the interval values to 

consider the uncertainty about the criteria, which helps in ranking and identifying the most 

suitable option. Nguyen et al. (2015) presented a MCDM framework by integrating fuzzy AHP 

and fuzzy COPRAS for machine tool evaluation. The developed framework allows processing 

uncertain information within the data collection phase by integrating the fuzzy linguistic 

preference relation into AHP to determine the elements of MCDM matrix based on DMs thought 

and opinions and then applying fuzzy COPRAS in the ranking phase. The study inferred that the 

use of this integrated approach could be helpful in the machine tool selection process due to its 

applicability in measuring uncertainty and modeling DMs judgments to be used properly in the 

ranking procedure. 

However, to the best of our knowledge, the contribution in the research area regarding the 

implementation of the fuzzy COPRAS method in material selection problems is still insufficient. 

For this reason, this research will introduce an effective Hybrid Pythagorean fuzzy MCGDM 

COPRAS model for the application of real life materials selection problems. 
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CHAPTER THREE 

Research Significance, Novelty and Objectives  

3.1 Research significance 

The core significance of this research is in how the implementation of the proposed 

hybrid methods could affect selecting the best materials precisely in the design stage better than 

any other commonly used methods. Engineers, designers and decision makers may benefit from 

using these methods because it incorporate the Pythagorean fuzzy environment in modeling 

uncertainty in the given data, leading to better outcomes and decisions. 

3.2 Research Novelty 

The novelty in this research approach is based on the application of hybrid MCGDM 

methods with the Pythagorean fuzzy information in the decision making process of engineering 

materials selection. The Pythagorean fuzzy sets are superior to other properly used fuzzy sets 

because of their flexibility in allowing decision makers to express their preferences without any 

limitations or constraints. Furthermore, no publications have been cited with reference to the use 

of the Pythagorean fuzzy TOPSIS method in engineering materials selection applications. 

Another novelty in this research is the contribution of delivering a new set of aggregations to 

convert real life crisp decisions into Pythagorean fuzzy numbers.  

 

 

 

 



33 
   

3.3 Research Objectives 

The objectives of this research can be summarized as follows: 

1. To develop an approach to aggregate decision makers’ and experts’ knowledge from 

crisp decisions to Pythagorean Fuzzy Numbers (PFNs). 

2. To build hybrid MCGDM methods through integrating the developed aggregation 

approach into ranking methods that deal with PFNs such as Pythagorean Fuzzy TOPSIS 

and Pythagorean Fuzzy COPRAS methods.     

3.  To implement the new hybrid Pythagorean Fuzzy MCGDM methods into real world 

materials selection problem. 

4. To evaluate the accuracy and sensitivity of the proposed methods outcomes. 
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CHAPTER FOUR 

Methodology  

4.1  Fuzzy Method 

Initially, the concept of the proposed fuzzy method, which is the Pythagorean fuzzy set, 

needs to be clarified for the purpose of this study. The Pythagorean fuzzy set (PFS) is a 

generalization of Intuitionistic Fuzzy Set (IFS). Therefore, IFS should be explained clearly first 

before introducing the concept of PFS.   

4.1.1 Intuitionistic fuzzy set  

DEFINITION 4.1. Let a set X be a universe of discourse. An IFS  I  is an object having the form, 

                                       𝐼 = { < 𝑥, 𝐼 (𝜇𝐼 (𝑥),𝑣𝐼(𝑥)) > |𝑥 𝜖 𝑋}                                        (4.1) 

where the function 𝜇𝐼: 𝑋 → [0,1] describes the degree of membership and 𝑣𝐼 :𝑋 → [0,1] 

describes the degree of nonmembership of the element 𝑥 ∈ 𝑋 𝑡𝑜 𝐼, respectively, and for every 

𝑥 ∈ 𝑋, it holds that                                   

                                                  0 ≤ 𝜇𝐼 (𝑥)+  𝑣𝐼(𝑥) ≤ 1                                                    (4.2) 

For any IFS  I and 𝑥 ∈ 𝑋, 𝜋𝐼  (𝑥) = 1− 𝜇𝐼  (𝑥) −  𝑣𝐼(𝑥) is called the degree of 

indeterminacy of 𝑥 𝑡𝑜 𝐼. Moreover, Xu1 denoted 𝛼 = 𝐼 (𝜇𝛼 ,𝑣𝛼) as an intuitionistic fuzzy 

number (IFN), where 𝜇α and 𝑣α is the degree of membership and the degree of nonmembership 

of the element 𝑥 ∈ 𝑋  to I, respectively. 

IFS is more practical to be used from decision makers in the assessment process of real 

life decision making issues than IFN. The basic operational laws of the IFNs 𝛼𝑗 =
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𝐼 (𝜇𝛼𝑗  ,𝑣𝛼𝑗) ( 𝑗 = 1,2)  and = 𝐼 (𝜇𝛼 , 𝑣𝛼) , developed by Xu and Yager (2006) and Xu (2007)  

are presented as follows: 

1. 𝛼1⊕ 𝛼2 = 𝐼 ( 𝜇𝛼1 + 𝜇𝛼2 − 𝜇𝛼1𝜇𝛼2, 𝑣𝛼1𝑣𝛼2 ); 

2. 𝛼1⊗ 𝛼2 = 𝐼 (𝜇𝛼1𝜇𝛼2, 𝑣𝛼1 + 𝑣𝛼2 − 𝑣𝛼1𝑣𝛼2); 

3. 𝜆𝛼 = 𝐼 (1 − (1 − 𝜇𝛼)
𝜆 , 𝑣𝛼

𝜆), 𝜆 > 0; 

4. 𝛼𝜆 = 𝐼 (𝜇𝛼
𝜆 − (1− 𝑣𝛼)

𝜆), 𝜆 > 0;        

5. 𝛼𝐶 = 𝐼 (𝑣𝛼 ,𝑢𝛼)              

However, managers, designers and engineers in various real-life multiple criteria decision 

making issues may show their preferences about the degree of an alternative 𝑥𝑖 with respect to a 

criterion 𝐶𝑗 meeting the condition that the sum of the degree to which the alternative 𝑥𝑖 meets the 

criterion 𝐶𝑗 and the degree to which the alternative  𝑥𝑖 does not meet the criterion 𝐶𝑗 is more than 

1. Clearly, this state cannot be expressed by using the IFS. Thus, Yager developed a novel model 

of PFS to cover this issue and to prevent decision makers from changing their preferences to fit 

within IFS’s constraints (Zhang & Xu, 2014). PFS is introduced in the follow part. 

4.1.2 Pythagorean Fuzzy Sets 

Yager (2013, 2014) represented three key demonstrations for Pythagorean membership 

grades. The first one is (𝑎, 𝑏) fulfilling the conditions that 𝑎 ∈ [0,1],b ∈ [0,1], and 𝑎2 + 𝑏2 ≤ 1. 

The second one is the polar coordinates (𝑟, θ) fulfilling the conditions that 𝑟 ∈ [0,1],θ ∈

[0,π/2]. The third one is (𝑟, 𝑑) close to the second one fulfilling the conditions that 𝑟 ∈

[0,1],θ ∈ [0,π/2], and 𝑑 = 1− 2θ/π. Their relationship is that 𝑎2 +𝑏2 = 𝑅2  , a = r cos(θ), b 

= r sin(θ). As well, he denoted a fuzzy subset having these Pythagorean membership grades as a 

PFS. 
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DEFINITION 4.2. Let a set X be a universe of discourse. A PFS P is an object having the form  

                                            𝑃 = { < 𝑥, 𝑃 (𝜇𝑃 (𝑥),𝑣𝑃(𝑥)) > |𝑥 𝜖 𝑋}                                 (4.3)      

where the function 𝜇𝑃: X → [0, 1] describes the degree of membership and 𝑣𝑃  : X → [0, 1] 

describes the degree of nonmembership of the element x ∈ X to P, respectively, and for every x 

∈ X, it holds that  

                                                      ( 𝜇𝑃(𝑥))
2 + ( 𝑣𝑝(𝑥))

2 ≤ 1                                             (4.4) 

 

For any PFS P and x ∈ X,  𝜋𝑃(𝑥) = √1− 𝜇𝑃
2(𝑥)− 𝑣𝑃

2(𝑥)  is called the degree of 

indeterminacy of x to P. Moreover, in order to simplify it,𝑃(𝜇𝑃(𝑥),𝑣𝑃(𝑥)) is called a 

Pythagorean fuzzy number (PFN) denoted by 𝛽 = 𝑃(𝜇𝛽 , 𝑣𝛽), where 𝜇𝛽 , 𝑣𝛽  ∈ [0, 1], 𝜋𝛽 = 1−

(𝜇𝛽)
2 − (𝑣𝛽)

2, and (𝜇𝛽)
2 − (𝑣𝛽)

2 ≤ 1.  

Yager (2013, 2014), and Yager & Abbasov (2013) stated the major operations on three 

PFNs, which are 𝛽1 = 𝑃(𝑢𝛽1 ,𝑣𝛽1), 𝛽2 = 𝑃(𝑢𝛽2 , 𝑣𝛽2) and 𝛽 = 𝑃(𝜇𝛽 ,𝑣𝛽) as follows: 

1. 𝛽1 ∪ 𝛽2 = 𝑃(max{ 𝜇𝛽1, 𝜇𝛽2} , min{ 𝑣𝛽1 ,𝑣𝛽2})          

2. 𝛽1 ∩ 𝛽2 = 𝑃(max{ 𝜇𝛽1, 𝜇𝛽2} , min{ 𝑣𝛽1 ,𝑣𝛽2}) 

3. 𝛽𝐶 = 𝑃 ( 𝑣𝛽 ,𝑢𝛽)  

Zhang and Xu (2014) developed some operations on the basis of a relationship between 

PFNs and IFNs, which can be expressed as follows:  

4. 𝛽1⊕ 𝛽2 = 𝑃 ( √𝜇𝛽1
2 + 𝜇𝛽2

2 − 𝜇𝛽1
2 𝜇𝛽2

2 , 𝑣𝛽1𝑣𝛽2) 
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5. 𝛽1⊗ 𝛽2 = 𝑃 ( 𝑢𝛽1𝑢𝛽2 ,√𝑣𝛽1
2 +𝑣𝛽2

2 −𝑣𝛽1
2 𝑣𝛽2

2 ) 

6. 𝜆𝛽 = 𝑃 ( √1 − (1 − 𝜇𝛽
2)𝜆 , (𝑣𝛽)

𝜆  ), 𝜆 > 0  

7. 𝛽𝜆 = 𝑃 ((𝜇𝛽)
𝜆, √1 − (1 − 𝑣𝛽

2)𝜆,   ), 𝜆 > 0 

THEOREM 4.1. For three PFNs 𝛽1 = 𝑃(𝑢𝛽1 ,𝑣𝛽1), 𝛽2 = 𝑃(𝑢𝛽2 , 𝑣𝛽2), and 𝛽 = 𝑃(𝜇𝛽 ,𝑣𝛽), the 

following ones are valid: 

1. 𝛽1⊕ 𝛽2 =  𝛽2 ⊕𝛽1 

2. 𝛽1⊗ 𝛽2 =  𝛽2 ⊗𝛽1 

3. 𝜆(𝛽1+ 𝛽2) =  𝜆𝛽1⊕𝜆𝛽2, 𝜆 > 0        λ (β1 + β2) = λβ1 ⊕ λβ2, λ > 0. 

4. 𝜆1𝛽⊕𝜆2𝛽 = (𝜆1+ 𝜆2)𝛽, 𝜆1,𝜆2 > 0 

5. (𝛽1⊗ 𝛽2)
𝜆 = 𝛽1

𝜆 ⊗ 𝛽2
𝜆 , 𝜆 > 0 

6. 𝛽𝜆1 ⊗ 𝛽𝜆2 = 𝛽(𝜆1+𝜆2) , 𝜆1, 𝜆2 > 0  

DEFINITION 4.3. Let  𝛽𝑗 = 𝑃 (𝑢𝛽𝑗 ,𝑣𝛽𝑗) ( 𝑗 = 1,2) be two PFNs; then the nature quasi-ordering 

on the PFNs can be defined as follows: 

𝛽1 ≥ 𝛽2   if and only if   𝑢𝛽1 ≥ 𝑢𝛽2 and   𝑣𝛽1 ≤ 𝑣𝛽2 . 

Also, a score function is developed and implemented in order to compare the magnitudes 

of two PFNs as defined in what follows. 
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DEFINITION 4.4. Let 𝛽 = 𝑃(𝑢𝛽 ,𝑣𝛽) be a PFN; then the score function of 𝛽 can be defined as 

follows: 

                                                       𝑠(𝛽) = (𝑢𝛽)
2 − (𝑣𝛽)

2                                                   (4.5) 

It is observed that the score function 𝑠(𝛽) contains some desirable properties as below. 

Rule 5.1. For any PFN 𝛽 = 𝑃(𝑢𝛽 ,𝑣𝛽), the proposed score function 𝑠(𝛽) ∈ [−1, 1]. 

Rule 5.2. For two PFNs 𝛽𝑗 = 𝑃 (𝑢𝛽𝑗 ,𝑣𝛽𝑗 ) ( 𝑗 = 1,2), if 𝛽1 ≤ 𝛽2, then 𝑠(𝛽1) ≤ 𝑠(𝛽2). 

The subsequent laws are introduced on the basis of the score function of PFNs in order to 

make a comparison between two PFNs. 

DEFINITION 4.5. Let 𝛽𝑗 = 𝑃 (𝑢𝛽𝑗 ,𝑣𝛽𝑗) ( 𝑗 = 1,2) be two PFNs, 𝑠(𝛽1) and 𝑠(𝛽2) be the scores 

of 𝛽1 and 𝛽2, respectively; then 

1. If 𝑠(𝛽1) < 𝑠(𝛽2), then 𝛽1 ≺ 𝛽2; 

2. If 𝑠(𝛽1) > 𝑠(𝛽2), then 𝛽1 ≻ 𝛽2; 

3. If 𝑠(𝛽1) = 𝑠(𝛽2), then 𝛽1 ∼ 𝛽2; 

Example 4.1. Let 𝛽1 = 𝑃(
√3

2
,
1

2
)  and 𝛽2 = 𝑃(

√2

2
,
√2

2
), according to Definitions 4.4-4.5, we have 

𝑠(𝛽1) = (
√3

2
)2 − (

1

2
)
2

=
1

2
, 𝑠(𝛽2) = (

√2

2
)
2

− (√
2

2
)
2

= 0 

Evidently, 𝑠(𝛽1) > 𝑠(𝛽2), thus 𝛽1 ≻ 𝛽2. 

Furthermore, Yager (2014) presented the next weighted averaging aggregation operator 

in order to aggregate PFNs. 
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DEFINITION 4.6. Let 𝛽𝑗 = 𝑃 (𝑢𝛽𝑗 ,𝑣𝛽𝑗) ( 𝑗 = 1,2, … , 𝑛) be a collection of PFNs and 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 be the weight vector of  𝛽𝑗( 𝑗 = 1,2,… , 𝑛) , where 𝑤𝑗 specifies the magnitude 

degree of  𝛽𝑗 , fulfilling 𝑤𝑗 ≥  0 ( 𝑗 = 1,2,… , 𝑛)    ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 , and let Pythagorean fuzzy 

weighted averaging (𝑃𝐹𝑊𝐴):𝛩𝑛 → 𝛩 if   

                                  𝑃𝐹𝑊𝐴(𝛽1,𝛽2, … , 𝛽𝑛) = 𝑃( ∑ 𝑤𝑗𝑢𝛽𝑗 ,
𝑛
𝑗=1 ∑ 𝑤𝑗𝑣𝛽𝑗) 

𝑛
𝑗=1                           (4.6) 

Then the function PFWA is called the PFWA operator. 

4.2  MCDM Problem 

This section demonstrates a brief explanation of the MCDM structure and how it can be 

effectively implemented in the proposed model. 

4.2.1 General MCDM structure  

The effective formation of an MCDM problem plays a significant role in having a 

successful decision making model with precise results. Typical MCDM problems are structured 

in a way to allow decision makers to rate each alternative with respect to each criterion. The 

MCDM matrix generally can be formed as follows: 

                                                                𝐶 1 𝐶2 − 𝐶𝑗 

                                        𝐷(𝑎𝑖𝑗)𝑚×𝑛 =

𝐴1
𝐴2
−
𝐴𝑖

     [

𝑎11 𝑎12 − 𝑎1𝑗
𝑎21 𝑎22 − 𝑎2𝑗
− − − −
𝑎𝑖1 𝑎𝑖2 − 𝑎𝑖𝑗

]                      (Model 4.1) 

Where 𝐷(𝑎𝑖𝑗) called the decision matrix and 𝑎𝑖𝑗 is the performance value of the ith 

alternative (𝐴𝑖: 𝑖 = 1,2, ..  , 𝑚)  regarding the jth criterion (𝐶𝑗: 𝑗 = 1,2, . .  , 𝑛). Weights should be 

assigned to each criterion (𝑤𝑗: 𝑗 = 1,2, … , 𝑛) and satisfy ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Moreover, criteria are 
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divided into main categories: beneficial (profit) criteria and non-beneficial (cost) criteria. 

Specifically, the criterion that satisfies the condition that higher scores are desirable is a 

beneficial criterion, whereas the criterion that satisfies the condition that lower scores are 

desirable is a non-beneficial criterion. 

4.2.2 MCDM for Group Decision Making (MCGDM) 

The proposed method assumes that groups of decision makers are going to express their 

preferences in order to influence the decision making outcomes. Therefore, the designated 

MCDM problem should be developed to serve the purpose of aggregating the decision makers’ 

group’s knowledge and experiences to make the most suitable decision (Yue, 2014). In this case, 

the group decision matrix should be designed as shown below: 

𝐶1 𝐶2 − 𝐶𝑛 

                      𝑋𝑖 = (𝑟𝑘𝑗
𝑖 )𝑡×𝑛 =

𝑑1
𝑑2
−
𝑑𝑡

     

[
 
 
 
𝑟11
𝑖 𝑟12

𝑖 − 𝑟1𝑛
𝑖

𝑟21
𝑖 𝑟22

𝑖 − 𝑟2𝑛
𝑖

− − − −
𝑟𝑡1
𝑖 𝑟𝑡2

𝑖 − 𝑟𝑡𝑛
𝑖 ]
 
 
 

 , 𝑖 = 1,2, … ,𝑚          (Model 4.2) 

𝑋𝑖 = (𝑟𝑘𝑗
𝑖 )𝑡×𝑛  refers to the group decision matrix for each ith alternative in which each 

decision maker 𝐷 = {𝑑𝑘 : 𝑘 = 1,2, … , 𝑡} evaluates the importance of each given criterion 𝐶 =

{𝐶𝑗: 𝑗 = 1,2,… , 𝑛} with respect to the alternative 𝑥 = {𝑥𝑖: 𝑖 = 1,2, … ,𝑚}.  

4.1.1.1. Normalization 

Normalizing decision makers’ data regarding performance evaluation is a significant step 

in order to begin the fuzzification process. Appropriate normalization of the given numbers 

would facilitate converting them into Pythagorean fuzzy numbers efficiently, leading to an 

effective application of the MCGDM TOPSIS model. To start the normalization process, each 
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group decision matrix 𝑋𝑖 = (𝑟𝑘𝑗
𝑖 )𝑡×𝑛  for each ith alternative needs to be normalized into 𝑅𝑖 =

(𝑠𝑘𝑗
𝑖 )𝑡×𝑛 using the following equations: 

                         𝑠𝑘𝑗
𝑖 =

𝑟𝑘𝑗
𝑖 −min 𝑗

max 𝑗−min 𝑗
,      𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝐶𝑗                                (4.7) 

                   𝑠𝑘𝑗
𝑖 =

max 𝑗−𝑟𝑘𝑗
𝑖

max 𝑗−min 𝑗
,      𝑓𝑜𝑟 𝑛𝑜𝑛− 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝐶𝑗                          (4.8) 

where the max 𝑗 and min 𝑗, respectively, are the maximum grade and the minimum grade 

used by a decision maker 𝑑𝑘  in the evaluation system. In this case, for example, the hundred-

mark system that consists of 100 as the maximum grade ( max 𝑗  ) and 0 as the minimum grade ( 

min  𝑗 ) is suggested to be used by the decision makers in the evaluation process. For this reason, 

equations (4.7) & (4.8) will be re-written as follow:  

                         𝑠𝑘𝑗
𝑖 =

𝑟𝑘𝑗
𝑖

100
,      𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝐶𝑗                                            (4.9) 

                   𝑠𝑘𝑗
𝑖 =

100 −𝑟𝑘𝑗
𝑖

100
,      𝑓𝑜𝑟 𝑛𝑜𝑛− 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝐶𝑗                             (4.10) 

After normalization, 𝑅𝑖 = (𝑠𝑘𝑗
𝑖 )𝑡×𝑛  matrix will be presented as follows: 

𝐶1 𝐶2 − 𝐶𝑛 

                            𝑅𝑖 = (𝑠𝑘𝑗
𝑖 )𝑡×𝑛 =

𝑑1
𝑑2
−
𝑑𝑡

     

[
 
 
 
𝑠11
𝑖 𝑠12

𝑖 − 𝑠1𝑛
𝑖

𝑠21
𝑖 𝑠22

𝑖 − 𝑠2𝑛
𝑖

− − − −
𝑠𝑡1
𝑖 𝑠𝑡2

𝑖 − 𝑠𝑡𝑛
𝑖 ]
 
 
 

 , 𝑖 = 1,2, … ,𝑚     (Model 4.3) 

However, normalizing column vectors in Model (4.3) should be done in which all values 

are within [0,1] and satisfy that the maximum value is 1 and the minimum is 0. The satisfactory 
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and dissatisfactory values in  𝑅𝑖 = ( 𝑠1𝑗
𝑖 , 𝑠2𝑗

𝑖 , … , 𝑠𝑡𝑗
𝑖 ) , which is the attribute/column vector in 𝑅𝑖, 

still need to be defined to pursue the aggregation approach. 

4.2.3 Aggregation of crisp decisions into PFNs for MCGDM 

Before explaining this part, it is important to note that the following developed technique 

has been inspired by the You (2014) method in deriving intuitionistic fuzzy numbers from crisp 

data. However, You’s method has been criticized by Lin & Zhang (2016) for having weaknesses 

that result in illogical outcomes, which makes it impractical for real applications. In addition, Lin 

& Zhang (2016) have suggested a new revised aggregation approach for intuitionistic fuzzy 

numbers to overcome the gaps in You’s method. Accordingly, we have built our novel 

aggregation approach to convert crisp numbers into Pythagorean Fuzzy sets based on the 

aforementioned aggregation techniques.  

In order to determine a PFN efficiently, all crisp decisions in 𝑅𝑖 need to be aggregated 

within the process. The aggregation process of PFN should consider  determining three main 

elements: membership degree μα (degree of satisfaction), non-membership degree να (degree of 

dissatisfaction) and hesitation degree πα (degree of uncertainty) in which the induced numbers 

satisfy the following: 

                                                     0 ≤ 𝜇𝑃(𝑥), 𝑣𝑃(𝑥), 𝜋𝑃(𝑥) ≤ 1                                             (4.11)                                          

                                                 √𝜇𝑃
2(𝑥) + 𝑣𝑃

2(𝑥)+ 𝜋𝑃
2(𝑥) = 1                                          (4.12) 

Initially, some rules should be followed to define the satisfactory, dissatisfactory or 

uncertain values in Rij. As seen in (Model 4.3) all values are within [0,1]; thus, “0.5” will be the 

bound for identifying the satisfactory and dissatisfactory value in 𝑅𝑖. These values can be 

represented as follows: 
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𝑠𝑘𝑗
𝑢 = {𝑠𝑘𝑗

𝑖 > 0.5,  𝑠𝑘𝑗
𝑖  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓  𝑅𝑖𝑗}                            

 

𝑠𝑘𝑗
𝑐 = {𝑠𝑘𝑗

𝑖 < 0.5,  𝑠𝑘𝑗
𝑖  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓  𝑅𝑖𝑗}                            

 
Then, a linear transformation should be made to each element to determine the 

satisfaction, dissatisfaction, and uncertainty degrees. The calculation of this process should take 

in consideration that (1) the closer the element value (𝑠𝑘𝑗
𝑢 ) is to 1, the larger the satisfactory level 

is; (2) the closer the element value (𝑠𝑘𝑗
𝑐 ) is to 0, the larger the dissatisfactory level is; and (3) the 

closer the element value (𝑠𝑘𝑗
𝑢 ) or (𝑠𝑘𝑗

𝑐 ) is to 0.5, the larger the uncertainty level is. The linear 

transformation formula can represented as follows: 

                                                      𝜊𝑘𝑗 =
𝑠𝑘𝑗
𝑢 −0.5

1−0.5
                                                           (4.13) 

                                                      𝜉𝑘𝑗 =
0.5−𝑠𝑘𝑗

𝑐

0.5−0
                                                            (4.14) 

where  𝜊𝑖𝑗 represents each satisfactory element of ith alternative with respect to jth 

attribute and  𝜉𝑖𝑗  represents each dissatisfactory element of ith alternative with respect to jth 

attribute. 

The next step is to aggregate the satisfaction and dissatisfaction elements of each jth 

criterion in ith alternative with respect to all decision makers’ (DMs) importance (weights). We 

need to take in consideration that DM weights may not all be equal. In fact, the importance of a 

decision maker should be assigned based on several factors such as his/her educational 

background, experience level and authority (Jian & Quing, 2016). In order to assign the priority 

of each decision maker effectively, an evaluation process can be done by conducting surveys and 

interviews with the assigned committee members. Since each DM has its own weight, we need to 

assure that the effect of each DM power is properly aggregated to the calculation of the 
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satisfactory and dissatisfactory weighted average degrees. For this reason, Jian & Quing (2016) 

have suggested the use of the Shapely value method, which is the most popular method that is 

applied for solving cooperative games in this stage. The Shapley value will help us in covering 

the correlative and interaction phenomenon among DMs, and therefore, weights can be assigned 

more fairly and efficiently. DM’s Shapley value reflects how much his opinion affects or 

contributes to a coalition, specifically, how much he adds to a coalition. For example, a DM 

whose opinion never adds much to a coalition has a small Shapley value, while a DM whose 

opinion has significant effect on the coalition has a high Shapley value. As a result, it is a useful 

way for a fair division of DMs weights based on their contributions to the system (Fatima, 

Wooldridge & Jennings, 2008). The following formula can clearly express the Shapely value 

mathematically: 

      𝛷𝑘 =
1

𝑡!
∑ |𝐹|! (𝑡 − |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑𝑘}) − 𝜇(𝐹)],           (4.15) 

∀   𝑘 ∈ {1,2,… , 𝑡} 

𝛷𝑘 is the Shapely value, which indicates the weighted averaging value of the marginal 

contribution with respect to a player (decision maker) 𝑑𝑘 . 𝜇 is a fuzzy measure on a finite set 

that represents decision makers 𝐷 = {𝑑1, 𝑑2 ,… , 𝑑𝑡} with: (1) 𝜇(𝜙) = 0, 𝜇({𝑑1, 𝑑2 , … , 𝑑𝑡 }) = 1; 

(2) If A, B ⊆ D and A ⊆ B , then 𝜇(𝐴) ≤ 𝜇(𝐵) (Monotonic). Since 𝜇(𝐷) = 1, therefore, the 

Shapley value 𝛷𝑘 = (𝛷1 , 𝛷2 ,… , 𝛷𝑘) is a weighting vector and  ∑ 𝛷𝑘 = 1𝑡
𝑘=1 . 𝜇({𝑑𝑘}) is a 

singleton sets called the fuzzy density value that expresses the importance value of  each 

decision maker 𝑑𝑘 , 𝑘 = 1,2, … , 𝑡 and it can be assigned based on his/her influence and power 

that will be derived from surveys and interviews. In the group decision making, 𝜇(𝐹) can be 

https://en.wikipedia.org/wiki/Turned_a
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viewed as the importance of the subset (or coalition) 𝐹, 𝐹 ⊆ 𝐷 and it can be determined using 

the 𝜆-fuzzy measures of Sugeno as follows (Sugeno, 1974; Leszczyński, Penczek & Grochulski, 

1985): 

                                𝜆 + 1 = ∏ (1 + 𝜆𝜇({𝑑𝑘}))
𝑡
𝑘=1 ,                                                    (4.16) 

  𝑤ℎ𝑒𝑟𝑒 𝜆 > −1 

𝜇(𝐹) =  𝜇({𝑑𝐴} ∪  {𝑑𝐵}) = 𝜇(𝑑𝐴) +  𝜇({𝑑𝐵}) + 𝜆𝜇(𝑑𝐴)𝜇({{𝑑𝐵})      

𝑤ℎ𝑒𝑟𝑒 𝐴 & 𝐵 ∈ (1,2,… , 𝑘), 𝑎𝑛𝑑 𝐴 ≠ 𝐵   

As seen above, the key property of a fuzzy measure is monotonicity with respect to set 

inclusion. In addition, the Sugeno 𝜆-fuzzy measures is a nondecreasing function with respect to 

the values of the measure of the constituent fuzzy density values 𝜇({𝑑𝑘}). Finding the unique 

value of the parameter 𝜆 requires obtaining a root of a high order polynomial in 𝜆 (Mohamed & 

Xiao, 2003). 

After calculating the Shapely value of each DM, the weighted averaging satisfactory and 

dissatisfactory values can be measured, respectively, as follows: 

                                                  𝜅𝑖𝑗 = ∑ 𝛷𝑘
𝑡
𝑘=1 𝜊𝑘                                                        (4.17) 

                                                 𝜍𝑖𝑗 = ∑ 𝛷𝑘
𝑡
𝑘=1 𝜉𝑘                                                          (4.18) 

where 𝜅𝑖𝑗 and 𝜍𝑖𝑗 are the weighted average satisfactory degree and the weighted average 

dissatisfactory degree, respectively, and 𝛷 is the weight of importance of each DM, with 𝛷𝑘 ∈

[0,1]. 
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After finding the weighted average satisfactory and dissatisfactory values, the only phase 

left to complete this aggregation is to measure the uncertainty of the induced numbers. The 

following uncertainty calculations are based on Pythagorean fuzzy sets concept in multi criteria 

decision making that is defined by Yager (2014). In order to pursue this step, 𝑟 computation 

should be measured by determining the sum of the square root of satisfactory and dissatisfactory 

degrees. It can be shown as follows: 

                                                     𝑟 = √𝜅𝑖𝑗
2 + 𝜍𝑖𝑗

2                                                          (4.19) 

Then, the determination of theta (𝜃) would play a very important role to identify the 

performance of the uncertainty function. Using 𝑟, (𝜃) can be calculated as follows: 

                                                       cos(𝜃) =
𝜅

𝑟
                                                      (4.20) 

The calculated cos(𝜃) can be used to find (𝜃) value through trigonometric tables. It can 

be also measured by the following formula: 

                                               (𝜃) = cos−1( cos(𝜃))                                                   (4.21) 

 For function modeling purposes, (𝜃) will be transformed as follows: 

                                                                  𝑑 = 1−
𝜃

𝜋
                                                               (4.22) 

Hence, when (𝜃) = 0 we have 𝑑 = 1 and when (𝜃) =
𝜋

2
  we have 𝑑 = 0. To define the 

uncertainty degree in an appropriate logical and mathematical approach, a fuzzy modeling 

method by using Takagi–Sugeno (T-K) approach will be applied to build the required functions 

(Takagi & Sugeno, 1985). The fuzzy modeling application relies on forming fuzzy base rules 

that aim to explain local input–output relations between the previous experimental data in the 



47 
   

function (Salgado, Viegas, Azevedo, Ferreira, Vieira & Sousa, 2017). The rule should be formed 

as follows: 

𝑅𝑖 ∶ IF 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑… 𝑎𝑛𝑑 𝑥𝑘  𝑖𝑠 𝐴𝑖   

                                                THEN 𝑦𝑖 = 𝑔𝑖 (𝑥), 

𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑛   ,𝑘 = 1,2, … , 𝐾  

where 𝑅𝑖 refers to ith rule of total number of rules 𝑛, 𝑥𝑘 is the input vector of 𝐾 inputs, 

and 𝑦𝑖 is the output of rule 𝑅𝑖. 𝐴𝑘
𝑖  is the antecedent fuzzy subset with a linear membership 

function 𝐸𝐴𝑖𝑗 (𝑥𝑗). The model output is computed by aggregating 𝑛 rules contributions as shown 

below: 

                                                             𝑓(𝑥) =  
∑ 𝛽𝑖 𝑔𝑖(𝑥)
𝑛
𝑖=1

∑ 𝛽𝑖
𝑛
𝑖=1

                                                      (4.23) 

Where 𝛽𝑖 = ∏ 𝐸𝐴𝑖 (𝑥𝑘)
𝑘
𝑗=1  

 In order to form reasonable fuzzy base rules, the required function 𝐹(𝑥) behavior should 

be demonstrated precisely. As mentioned before, 0.5 is the bound that has been used to 

distinguish between the satisfactory and dissatisfactory degrees in each element; therefore, it will 

be used again for identifying the amount of uncertainty. In other words, if d = 0.5 then the 

uncertainty will be at its highest degree 𝐹 = 1 and the farthest the value from the bound whether 

it is  (𝑑 < 0.5) or (𝑑 > 0.5) , the lower the uncertainty degree will be. Consequently, the fuzzy 

base rules that are going to be implemented in the modeling technique can be defined as follows:  

A) First function modeling rules (When 𝑑 > 0.5  , 𝜃 <
𝜋

4
 ) : 

                                         𝑅1 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1  
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                                                     THEN 𝑔1(𝑥) = 0, 

                                         𝑅2 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0.5  

                                                     THEN 𝑔2(𝑥) = 2, 

                                                    𝑅3 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0  

                                                     THEN 𝑔3(𝑥) = 1, 

B) Second function modeling rules (When 𝑑 < 0.5  , 𝜃 >
𝜋

4
 ) : 

                                     𝑅1 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0  

                                                     THEN 𝑔1(𝑟,𝑑) = 0, 

   𝑅2 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0.5  

                                                     THEN 𝑔2(𝑟, 𝑑) = 2, 

                                                 𝑅3 ∶ IF 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0  

                                                     THEN 𝑔3(𝑟, 𝑑) = 1, 

For more clarification, 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 will be represented as a fuzzy subset 𝐴1 on the unit 

interval with a membership function(𝐸𝐴1(𝑟) = 𝑟). For 𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0, it will be represented as a 

fuzzy subset 𝐴2 on the unit interval with a membership function (𝐸𝐴2 (𝑟) = 1− 𝑟). In the first 

function rules, 𝑑 ∈ [0.5,1]; thus, in this situation, 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1 will be represented as a fuzzy 

subset 𝐶1 on the unit interval with a membership function (𝐸𝐶1(𝑑) = 𝑑) and 

𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0.5 will be represented as a fuzzy subset 𝐶2 on the unit interval with a membership 

function (𝐸𝐶2(𝑑) = 1− 𝑑). In the second function rules, 𝑑 ∈ [0, 0.5], accordingly, 

𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0 will be represented as a fuzzy subset 𝑁1 on the unit interval with a membership 
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function (𝐸𝑁1(𝑑) = 1 − 𝑑) and 𝑑 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0.5 will be represented as a fuzzy subset 𝑁2 on the 

unit interval with a membership function (𝐸𝑁2(𝑑) = 𝑑).  𝑔𝑖(𝑟,𝑑) is the output of applying the ith 

rule. 

Therefore, the uncertainty functions will be developed by applying a T-K approach to 

aggregate fuzzy rule bases as the model output represented in equation (4.23). As a result, the 

following functions: function (A) and function (B) are modeled, respectively, as follows: 

                                   𝑓𝐴(𝑟, 𝑑) =  
𝐸𝐴1(𝑟)𝐸𝐶1 (𝑑)(2)+𝐸𝐴1 (𝑟)𝐸𝐶2 (𝑑)(0)+𝐸𝐴2 (𝑟)(1)

𝐸𝐴1 (𝑟)𝐸𝐶1 (𝑑)+𝐸𝐴1 (𝑟)𝐸𝐶2 (𝑑)+𝐸𝐴2 (𝑟)
                               (4.24) 

                                  𝑓𝐵(𝑟, 𝑑) =  
𝐸𝐴1(𝑟)𝐸𝑁1 (𝑑)(0)+𝐸𝐴1 (𝑟)𝐸𝑁2 (𝑑)(2)+𝐸𝐴2 (𝑟)(1)

𝐸𝐴1 (𝑟)𝐸𝑁1 (𝑑)+𝐸𝐴1 (𝑟)𝐸𝑁2 (𝑑)+𝐸𝐴2 (𝑟)
                               (4.25) 

 It can be observed from the first function behavior that if 𝑟 has been placed as a fixed arc 

of radius, then the uncertainty function will decrease from 𝑓𝐴(𝑟,𝑑) = 1 to 𝑓𝐴(𝑟,𝑑) = 0  as it 

goes from 𝑑 = 0.5 to 𝑑 = 1, which is similar to 𝜃 = 𝜋/4 to 𝜃 = 0. Also, if 𝑑 is any fixed value 

from (0.5 < 𝑑 ≤ 1) then the function will decrease from 𝑓𝐴(𝑟,𝑑) = 1 to 𝑓𝐴(𝑟,𝑑) = 0 as the 

radius increases from 𝑟 = 0  to 𝑟 = 1. Lastly, if 𝑑 = 0.5 than 𝑓𝐴(𝑟,𝑑) = 1 and it stays the same 

at any 𝑟 value. For this reason, the output of implementing the first rule 𝑅1 has been assigned as 

𝑔2(𝑥) = 0 , where 𝑑 is close to 1, and the output of implementing the second rule 𝑅2 has been 

assigned as 𝑔2(𝑥) = 2 ,where 𝑑 is close to 0.5. Therefore, if 𝑑 goes from 0.5 to 1 the function 

will decrease from 𝑓𝐴(𝑟, 𝑑) = 1 to 𝑓𝐴(𝑟, 𝑑) = 0. For the second function performance, it will 

decrease from 𝑓𝐵(𝑟, 𝑑) = 1 to 𝑓𝐵(𝑟, 𝑑) = 0 as r is constant and 𝑑 decreases from 0.5 to 1. As 

well, if 𝑑 is any fixed value from (0 ≤ 𝑑 < 0.5) then the function will decrease from 𝑓𝐴(𝑟, 𝑑) =

1 to 𝑓𝐴(𝑟, 𝑑) = 0 as the radius increases from 𝑟 = 0  to 𝑟 = 1 and similarly to the previous 

function if 𝑑 = 0.5 than 𝑓𝐴(𝑟, 𝑑) = 1 and it stays the same at any 𝑟 value. For the same reason 

mentioned before in the first function behavior, the output of implementing the first rule 𝑅1 has 
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been assigned as 𝑔2(𝑥) = 0 , where 𝑑 is close to 0, and the output of implementing the second 

rule 𝑅2 has been assigned as 𝑔2(𝑥) = 2 ,where 𝑑 is close to 0.5. Hence, if 𝑑 goes from 0.5 to 0 

the function will decrease from 𝑓𝐴(𝑟,𝑑) = 1 to 𝑓𝐴(𝑟,𝑑) = 0. 

 After mode1ing the functions (4.24) & (4.25), the uncertainty degree can be measured 

clearly as part of the aggregation process in this piecewise function:  

                                          𝜏𝑖𝑗 =

{
 
 

 
 
𝑓𝐴(𝑟, 𝑑)     ;     {𝑑| 0.5 < 𝑑 ≤ 1}

𝑓𝐵(𝑟, 𝑑)      ;     {𝑑| 0 ≤ 𝑑 < 0.5}

1               ;          {𝑑| 𝑑 = 0.5}

                                  (4.26) 

where 𝜏𝑖𝑗  is the uncertainty degree. The last step is to make 𝜅𝑖𝑗, 𝜍𝑖𝑗 and 𝜏𝑖𝑗  aggregated to 

satisfy the conditions of PFN in equation (4.4). This can determined as follows: 

                                                             𝜇𝑖𝑗 = √
𝜅𝑖𝑗

𝜅𝑖𝑗+𝜍𝑖𝑗+𝜏𝑖𝑗
  ,                                                      (4.27) 

                                                             𝜐𝑖𝑗 = √
𝜍𝑖𝑗

𝜅𝑖𝑗+𝜍𝑖𝑗+𝜏𝑖𝑗
  ,                                                      (4.28) 

                                                             𝜋𝑖𝑗 = √
𝜏𝑖𝑗

𝜅𝑖𝑗+𝜍𝑖𝑗+𝜏𝑖𝑗
                                                        (4.29) 

where 𝜇𝑖𝑗 and 𝜐𝑖𝑗 are PFNs that refer to the Pythagorean Fuzzy satisfactory degree and 

dissatisfactory degree of ith alternative with respect to jth attribute, respectively, and can be 

represented in a PFS: 𝑃(𝜇𝑖𝑗, 𝑣𝑖𝑗). 

After fuzzyfying all crisp data into PFNs, the collective evaluation Pythagorean fuzzy 

decision matrix 𝑅 = (𝐶𝑗(𝑥𝑖))𝑚×𝑛 can be represented as follows: 
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                𝐶1                 𝐶2             −                     𝐶𝑛 

𝑅 = (𝐶𝑗(𝑥𝑖))𝑚×𝑛 =

𝑥1
𝑥2
−
𝑥𝑚

     [

𝑃(𝜇11, 𝑣11) 𝑃(𝜇12, 𝑣12) − 𝑃(𝜇1𝑛, 𝑣1𝑛)

𝑃(𝜇21, 𝑣21) 𝑃(𝜇22, 𝑣22 ) − 𝑃(𝜇2𝑛, 𝑣2𝑛 )
− − − −

𝑃(𝜇𝑚1, 𝑣𝑚1) 𝑃(𝜇𝑚2, 𝑣𝑚2 ) − 𝑃(𝜇𝑚𝑛 , 𝑣𝑚𝑛)

]   (Model 4.4) 

Where each of elements 𝐶𝑗(𝑥𝑖) = 𝑃(𝜇𝑖𝑗, 𝑣𝑖𝑗) is a PFS, which indicates that the degree to 

which the alternative 𝑥 = {𝑥𝑖: 𝑖 = 1,2, … ,𝑚} meets the criterion 𝐶 = {𝐶𝑗: 𝑗 = 1,2, … , 𝑛} is the 

value 𝜇𝑖𝑗 and the degree to which the alternative 𝑥 = {𝑥𝑖: 𝑖 = 1,2,… ,𝑚} doesn’t meet the 

criterion 𝐶 = {𝐶𝑗: 𝑗 = 1,2, … , 𝑛} is the value 𝑣𝑖𝑗. 

4.2.4 Assigning criteria weights  

Prior to the implementation of the ranking method, we need to assign criteria weights 

first. The final criteria weights need to fulfill the condition ∑ 𝑤𝑗 = 1𝑛
𝑗=1 .  For this reason, the 

Sugeno 𝜆-fuzzy measures and Shapley values methods mentioned in equation (4.16) and (4.15), 

respectively, will be applied in this phase for the fair distribution of criteria weights. The setting 

of the initial weights (fuzzy density values) (𝜒(𝑄)) used in the fuzzy measure technique to 

calculate the marginal contributions for each weight  will be through conducting information 

about each criteria priority and importance in the material selection process. The following 

linguistic terms can be employed to facilitate the assignment of the initial fuzzy density values 

for criteria weights: 

 

 

 

 



52 
   

 

 

 

Table 4. 1 The assignment of initial criteria weights and their Shapley method results: 

Importance level 

Initial weight 

(fuzzy density value) 

𝜒({𝑞𝑗}) 

Very Important (VI) 0.9 

Important (I) 0.7 

Fair (F) 0.5 

Unimportant (U) 0.3 

Very Unimportant (VU) 0.1 

 

 Where 𝜒({𝑞𝑗}) is the initial weight assigned for each jth criteria. 

4.3  TOPSIS Implementation  

This section will illustrate how the TOPSIS method works under the Pythagorean fuzzy 

environment in MCDM; however, the standard form of traditional TOPSIS needs to be clarified 

first.  

4.3.1 The Traditional TOPSIS Approach in MCDM 

 The traditional TOPSIS method implementation in MCDM can be represented in the 

following steps: 
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1- Normalization of the decision matrix ( In model 1) using the following equation : 

 𝑟𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗
2𝑚

𝑖=1

 , 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛 

2- Calculation of the weighted normalized matrix by using the following equation:  

         𝑉𝑖𝑗 = 𝑎𝑖𝑗 × 𝑤𝑗 ,         𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛    

3- Identification of Positive Ideal (𝐴∗) and Negative Ideal (𝐴−)  Solutions, which can be 

represented, respectively, as follow : 

𝐴∗ = {(𝑚𝑎𝑥
𝑖
𝑉𝑖𝑗| 𝑗 ∈ 𝐵) , (𝑚𝑖𝑛

𝑖
𝑉𝑖𝑗| 𝑗 ∈ 𝐶)} = {𝑉𝑗

∗| 𝑗 = 1,2, … , 𝑛} 

                              𝐴− =  {(𝑚𝑖𝑛
𝑖
𝑉𝑖𝑗 | 𝑗 ∈ 𝐵) , (𝑚𝑎𝑥

𝑖
𝑉𝑖𝑗| 𝑗 ∈ 𝐶)} = {𝑉𝑗

−| 𝑗 = 1,2, … , 𝑛} 

where 𝐵 refers to beneficial criteria and 𝐶 refers to non-beneficial criteria. 

4- Calculation of positive separation measures 𝑆𝑖
∗ and negative separation measures 𝑆𝑖

− of 

alternatives can  be expressed by the Euclidean distance ,respectively, as follows: 

𝑆𝑖
∗ = √∑ (𝑉𝑖𝑗 −𝑉𝑗

∗)2𝑛
𝑗=1  ,         𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛 

𝑆𝑖
− = √∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2𝑛
𝑗=1  ,         𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2,… , 𝑛 

The calculations of both separation measures indicate the deviation of each alternative 

from its positive and negative ideal solutions, respectively. 

5- Calculation of the relative closeness to the ideal solution can be defined as: 

                                   𝐶𝑖 =
𝑆𝑖
−

𝑆𝑖
−+𝑆𝑖

∗ , 𝑖 = 1,2, … ,𝑚      0 ≤ 𝐶𝑖 ≤ 1                                 

This step can define how near are an alternative’s attributes to the best hypothetical 

solution. 
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6- Ranking the alternatives based on relative closeness scores in descending order (from 

highest to lowest), where the highest score is the best alternative and the lowest score is 

the worst one. 

4.3.2 The Pythagorean fuzzy TOPSIS Approach 

After describing the traditional TOPSIS in the previous section, a suggested approach 

that combines the TOPSIS form and Pythagorean fuzzy sets will be illustrated.  This approach 

has been developed by Zhang & Xu to effectively address MCDM problems with PFNs (Zhang 

& Xu, 2014). Also, the illustrated method is built on the principle that the optimal alternative 

should have the shortest distance from the PIS and the farthest distance from the NIS. 

 Thus, this approach begins by setting of the Pythagorean fuzzy PIS and the Pythagorean 

fuzzy NIS (Zhang & Xu, 2014). The score function in eq. (4.5) based comparison technique 

presented in Definition 4.5 is used to find the Pythagorean fuzzy PIS and the Pythagorean fuzzy 

NIS, taking in consideration that the decision data take the form of PFNs. The Pythagorean fuzzy  

PIS is denoted by 𝑥+, which can be expressed by the following formula: 

𝑥+ = {(𝐶𝑗, max
𝑖
〈𝑠 (𝐶𝑗(𝑥𝑖))〉 | 𝑗 ∈ 𝐵) , (𝐶𝑗,min

𝑖
〈𝑠 (𝐶𝑗(𝑥𝑖))〉| 𝑗 ∈ 𝐵)| 𝑗 = 1,2, … , 𝑛} 

                                  = {〈𝐶1,𝑃(𝑢1
+ ,𝑣1

+)〉 , 〈𝐶2,𝑃(𝑢2
+ ,𝑣2

+)〉 ,… , 〈𝐶𝑛,𝑃(𝑢𝑛
+ ,𝑣𝑛

+)〉}           (4.30) 

Where 𝐵 refers to beneficial criteria and 𝐶 refers to non-beneficial criteria. 

The Pythagorean fuzzy PIS normally does not exist in the real-world MCDM procedure. 

In other words, the Pythagorean fuzzy PIS 𝑥+ typical is not the feasible alternative;that is, 𝑥+ ∉

𝑋. Moreover, the optimal alternative of the MCDM problem is the Pythagorean fuzzy PIS 𝑥+. 
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Next, the distance between each alternative and the Pythagorean fuzzy PIS needs to be measured. 

For this reason, the concept of measuring the distance for PFNs should be defined. 

DEFINITION 4.7. Let 𝛽𝑗 = 𝑃 (𝑢𝛽𝑗 ,𝑣𝛽𝑗) ( 𝑗 = 1,2) be two PFNs, then the distance between 𝛽1 

and 𝛽2 can be defined as follows: 

               𝑑(𝛽1,𝛽2) =
1

2
(|(𝜇𝛽1)

2 − (𝜇𝛽2)
2| + |(𝑣𝛽1)

2 − (𝑣𝛽2)
2| + |(𝜋𝛽1)

2 − (𝜋𝛽2)
2|)         (4.31) 

THEOREM 4.2. Let 𝛽𝑗 = 𝑃 (𝜇𝛽𝑗 ,𝑣𝛽𝑗 ) ( 𝑗 = 1,2) be two PFNs, then 0 ≤ 𝑑(𝛽1,𝛽2) ≤ 1. 

THEOREM 4.3. Let 𝛽𝑗 = 𝑃 (𝜇𝛽𝑗 ,𝑣𝛽𝑗 ) ( 𝑗 = 1,2) be two PFNs, then 𝑑(𝛽1, 𝛽2) = 0, if and only if 

𝛽1 = 𝛽2. 

THEOREM 4.4. Let 𝛽𝑗 = 𝑃 (𝜇𝛽𝑗 ,𝑣𝛽𝑗 ) ( 𝑗 = 1,2) be two PFNs, then 𝑑(𝛽1, 𝛽2) =  𝑑(𝛽2, 𝛽1) 

THEOREM 4.5. Let 𝛽𝑗 = 𝑃 (𝜇𝛽𝑗 ,𝑣𝛽𝑗 ) ( 𝑗 = 1,2,3) be three PFNs, if 𝛽1 ≤ 𝛽2 ≤ 𝛽3, then 

𝑑(𝛽1,𝛽2) ≤  𝑑(𝛽1,𝛽3) and 𝑑(𝛽2, 𝛽3) ≤  𝑑(𝛽1, 𝛽3).  

Thus, the distance between the alternative 𝑥𝑖 and the Pythagorean fuzzy PIS 𝑥+ can be calculated 

by using Equation (4.14) as follows: 

𝐷(𝑥𝑖 ,𝑥
+) =∑𝑤𝑗𝑑(𝐶𝑗(𝑥𝑖),𝐶𝑗(𝑥

+))

𝑛

𝑗=1

 

                   = 
1

2
∑𝑤𝑗 (|(𝜇𝑖𝑗)

2 − (𝜇𝑗
+)

2
| + |(𝑣𝑖𝑗)

2 − (𝑣𝑗
+)

2
| + |(𝜋𝑖𝑗)

2 − (𝜋𝑗
+)

2
|)

𝑛

𝑗=1

, 

                                                                                               𝑖 = 1,2,… , 𝑛                              (4.32) 
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Usually, the smaller 𝐷(𝑥𝑖 ,𝑥
+) the better the alternative 𝑥𝑖, which means that the optimal 

alternative should have the shortest distance from the PIS and let  

                                                      𝐷𝑚𝑖𝑛(𝑥𝑖 ,𝑥
+) = min

1≤𝑖≤𝑚
𝐷(𝑥𝑖 ,𝑥

+)                                        (4.33) 

It is also important to mention that the alternative with the closest distance to the 

Pythagorean fuzzy PIS may not necessarily be the farthest from the Pythagorean fuzzy NIS. The 

Pythagorean fuzzy NIS is denoted by 𝑥−, which can be defined by the following formula: 

𝑥− = {(𝐶𝑗, min
𝑖
〈𝑠 (𝐶𝑗(𝑥𝑖))〉| 𝑗 ∈ 𝐵) , (𝐶𝑗,max

𝑖
〈𝑠 (𝐶𝑗(𝑥𝑖))〉| 𝑗 ∈ 𝐵)| 𝑗 = 1,2, … , 𝑛} 

                                            = {〈𝐶1,𝑃(𝑢1
− ,𝑣1

−)〉 , 〈𝐶2,𝑃(𝑢2
− ,𝑣2

−)〉 ,… , 〈𝐶𝑛,𝑃(𝑢𝑛
− ,𝑣𝑛

−)〉}      (4.34) 

  where 𝐵 refers to beneficial criteria and 𝐶 refers to non-beneficial criteria. 

It is definitely observed from Equation (4.17) that the achieved value of the Pythagorean 

fuzzy NIS under each criterion is less between all the alternatives. Normally, the Pythagorean 

fuzzy NIS does not exist in the realistic MCDM process. In other words, the Pythagorean fuzzy 

PIS 𝑥− is typically an unfeasible alternative, that is, 𝑥− ∉ 𝑋. In addition, the Pythagorean fuzzy 

NIS 𝑥− is the worst alternative of the decision making approach, which should be removed in the 

process. The distance between the alternative 𝑥𝑖 and the Pythagorean fuzzy NIS 𝑥− can be found 

through applying Equation (4.35), as follows: 

𝐷(𝑥𝑖 ,𝑥
−) =∑𝑤𝑗𝑑(𝐶𝑗(𝑥𝑖),𝐶𝑗(𝑥

−))

𝑛

𝑗=1

 

                   = 
1

2
∑𝑤𝑗 (|(𝜇𝑖𝑗)

2 − (𝜇𝑗
−)

2
| + |(𝑣𝑖𝑗)

2 − (𝑣𝑗
−)

2
| + |(𝜋𝑖𝑗)

2 − (𝜋𝑗
−)

2
|)

𝑛

𝑗=1

, 
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                                                                                               𝑖 = 1,2,… , 𝑛                              (4.35) 

 Usually, the bigger 𝐷(𝑥𝑖 ,𝑥
+) the better the alternative 𝑥𝑖 , which means that the optimal 

alternative should have the farthest distance from the NIS and let  

                                                        𝐷𝑚𝑎𝑥(𝑥𝑖 ,𝑥
−) = max

1≤𝑖≤𝑚
𝐷(𝑥𝑖 ,𝑥

−)                                      (4.36) 

In order to rank the alternatives, determining the extent to which the alternative 𝑥𝑖 is 

close to the Pythagorean fuzzy PIS 𝑥+ and is far from the Pythagorean fuzzy NIS 𝑥−, 

concurrently, should be done first. The relative closeness has been used usually in the traditional 

TOPSIS to perform this step. However, the relative closeness in some cases has failed to fulfill 

the objective that the optimal solution should have the shortest distance from the PIS and the 

farthest distance from the NIS, simultaneously. For this reason, the revised closeness has been 

suggested by Hadi-Vencheh & Mirjaberi (2014) to overcome this issue and measure the optimal 

alternative; it can be represented as follows: 

                                              𝜁(𝑥𝑖) =
𝐷(𝑥𝑖,𝑥

−)

𝐷𝑚𝑎𝑥(𝑥𝑖,𝑥
−)
−

𝐷(𝑥𝑖,𝑥
+)

𝐷𝑚𝑖𝑛(𝑥𝑖,𝑥
+)

                                        (4.37) 

It can be simply noticed that 𝜁(𝑥𝑖) ≤ 0(𝑖 = 1,2,… ,𝑚) and the bigger 𝜁(𝑥𝑖), the better 

the alternative 𝑥𝑖. An alternative 𝑥∗ will be the best alternative if it meets the conditions that 

𝐷(𝑥∗,𝑥−) = 𝐷𝑚𝑎𝑥(𝑥𝑖 ,𝑥
−) and  𝐷(𝑥∗,𝑥+) = 𝐷𝑚𝑖𝑛(𝑥𝑖 ,𝑥

+), simultaneously, then 𝜁(𝑥∗) = 0. As 

well, it will obviously be the closest alternative to the Pythagorean fuzzy PIS 𝑥+ and farthest one 

from the Pythagorean fuzzy NIS 𝑥−, concurrently. 
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4.4  The Algorithm of the Proposed Fuzzy Pythagorean MCGDM TOPSIS Method 

In this section, a practical algorithm of the Pythagorean fuzzy TOPSIS approach is 

demonstrated based on the previous methodology explanation. The algorithm can be applied by 

following the next steps: 

Step 1. Establish group decision matrix 𝑋𝑖 = (𝑟𝑘𝑗
𝑖 )𝑡×𝑛 for each ith alternative in which each 

decision maker 𝐷 = {𝑑𝑘 : 𝑘 = 1,2, … , 𝑡} evaluates the importance of each given criterion 𝐶 =

{𝐶𝑗: 𝑗 = 1,2,… , 𝑛} with respect to each alternative 𝑥 = {𝑥𝑖: 𝑖 = 1,2, … ,𝑚}, as shown in Model 

(4.1).  

Step 2. Normalize each group decision matrix 𝑋𝑖 = (𝑟𝑘𝑗
𝑖 )𝑡×𝑛 into 𝑅𝑖 = (𝑠𝑘𝑗

𝑖 )𝑡×𝑛 for each 

alternative by using equations (4.9) & (4.10). 

Step 3. Do a linear transformation by applying equations (4.13) & (4.14), respectively, for each 

criterion vector in 𝑅𝑖. 

Step 4. Determine the Shapley value (weight) of each DM by applying equations (4.16) & (4.15), 

respectively. 

Step 5. Measure the weighted averaging satisfactory and dissatisfactory degrees for each jth 

attribute in ith alternative with respect to all DMs weights in 𝑅𝑖 using equations (4.17) & (4.18), 

respectively. 

 Step 6 Calculate the uncertainty degree using equations (4.19), (4.20), (4.21), (4.22) & (4.26), 

respectively, for each criterion vector in 𝑅𝑖. 

Step 7. Perform the calculations in equations (4.27), (4.28), & (4.29), respectively, to obtain the 

final PFNs.  
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 Step 8. Form all the resulted PFNs from crisp data in 𝑅𝑖 = (𝑠𝑘𝑗
𝑖 )𝑚×𝑛 to a collective evaluation 

Pythagorean fuzzy decision matrix  𝑅 = (𝐶𝑗(𝑥𝑖))𝑚×𝑛 = (𝑃(𝜇𝑖𝑗, 𝑣𝑖𝑗))𝑚×𝑛
, in which the decision 

information is expressed in the aggregated PFSs = 𝑃(𝜇𝑖𝑗,𝑣𝑖𝑗), as shown in model (4.4). 

Step 9. Determine the Shapley value of each criterion weight using equations (4.16) & (4.15), 

respectively. 

Step 10. Use the score function in equation (4.5) to identify the Pythagorean fuzzy 

PIS  𝑥+ = {𝐶1(𝑥
+),𝐶2(𝑥

+),… ,𝐶𝑛(𝑥
+)} and the Pythagorean fuzzy NIS 𝑥− = 

{𝐶1(𝑥
−),𝐶2(𝑥

−),… , 𝐶𝑛(𝑥
−)}, respectively. 

Step 11. By using the assigned weight for each criterion 𝑤 = (𝑤𝐶1 ,𝑤𝐶2 , … , 𝑤𝐶𝑗 ) , ∑ 𝑤𝐶𝑗
𝑛
𝑗=1 =

1 where 𝑗 = (1,2, … ,𝑛)   0 ≤ 𝑤𝐶𝑗 ≤ 1  , implement Equations (4.32) and (4.35) to measure the 

distances between the alternative 𝑥𝑖 and the Pythagorean fuzzy PIS 𝑥+ as well as the 

Pythagorean fuzzy NIS 𝑥−, respectively. 

Step 12. Apply Equation (4.37) to determine the revised closeness 𝜁(𝑥𝑖) of the alternative 𝑥𝑖  (𝑖 =

1,2, … ,𝑚) 

Step 13. Define the optimal ranking order of the alternatives and find the optimal alternative. 

Based on the revised closeness 𝜁(𝑥𝑖) achieved from Step 10, the alternatives will be ranked into 

order with respect to the declining values of 𝜁(𝑥𝑖) (𝑖 = 1,2,… ,𝑚) and the alternative with the 

highest revised closeness 𝜁(𝑥𝑖) is the optimal one, namely, 

𝑥∗ ≔ {𝑥𝑖: (𝑖:𝜁(𝑥𝑖)= max
1≤𝑖≤𝑚

𝜁(𝑥𝑖))} 
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4.5  COPRAS Implementation 

The following section will demonstrate the COPRAS method in the Pythagorean Fuzzy 

environment for MCDM problems. First, the standard form of the normal COPRAS is going to 

be clarified; then the Pythagorean Fuzzy COPRAS method will be explained. 

4.5.1 The Traditional COPRAS Approach in MCDM 

The traditional COPRAS method application for MCDM problems can be represented in 

the following steps: 

1- Normalize the decision matrix ( In model 1) using the following equation : 

𝑟𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑚
𝑖=1

 , 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2,… , 𝑛 

2- Calculate the weighted normalized matrix by using the following equation:  

𝑉𝑖𝑗 = 𝑎𝑖𝑗 × 𝑤𝑗 ,         𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛 

3- Measure the sums of weighted normalized elements for beneficial and non-beneficial  

criteria as follows: 

𝑆+𝑖 =∑𝑉+𝑖𝑗

𝑛

𝑗=1

 , 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛 

        𝑆−𝑖 =∑𝑉−𝑖𝑗

𝑛

𝑗=1

 , 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛 

where 𝑉+𝑖𝑗 is associated with maximizing criteria and 𝑉−𝑖𝑗 is associated with minimizing 

criteria, respectively. Thus, the bigger 𝑆+𝑖 value, the higher is the alternative 𝑖  as well as the 
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lower 𝑆+𝑖 value, the higher is the alternative 𝑖. In fact, 𝑆+𝑖and 𝑆−𝑖 show the level of objectives 

reached by alternative 𝑖. 

4- Obtain the minimum value of  𝑆−𝑖 which can be referred as 𝑆−𝑚𝑖𝑛 . 

5- Determine the relative weight of each alternative as follow : 

𝑄𝑖 = 𝑆+𝑖 +
𝑆−𝑚𝑖𝑛 ∑ 𝑆−𝑖

𝑚
𝑖=1

𝑆−𝑖 ∑
𝑆−𝑚𝑖𝑛
𝑆−𝑖

𝑚
𝑖=1

=  𝑆+𝑖 +
∑ 𝑆−𝑖
𝑚
𝑖=1

𝑆−𝑖∑
1
𝑆−𝑖

𝑚
𝑖=1

, 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛  

6- Determine the priority of alternatives by calculating the utility degree 𝑈𝑖 of each 

alternative as follows:                      

𝑈𝑖 =
𝑄𝑖
𝑄𝑚𝑎𝑥

× 100 

                                                        

7- Rank the alternatives based on their priorities. The larger the value of 𝑈𝑖, the more 

preference of the alternative 𝑖. . 

4.5.2 The Pythagorean fuzzy COPRAS Approach 

After explaining the traditional COPRAS in the previous section, a suggested approach 

defining the COPRAS method within the Pythagorean fuzzy environment will be illustrated.  

This approach has been proposed by Peng & Selvachandran (2017) to effectively address 

MCDM problems with PFNs (Peng & Selvachandran, 2017). Also, the illustrated method is 

developed on the concept that the optimal alternative should have the highest utility level. 
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Initially, we need to set the Pythagorean fuzzy decision matrix 𝑅 = 𝑃(𝜇𝑖𝑗,𝑣𝑖𝑗)𝑚𝑥𝑛  

according to the following equation: 

𝑅′ = 𝑃(𝜇′𝑖𝑗, 𝑣′𝑖𝑗)𝑚𝑥𝑛 =

{
 

 
 

𝑃(𝜇𝑖𝑗, 𝑣𝑖𝑗)                            𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑃(𝑣𝑖𝑗, 𝜇𝑖𝑗)               𝑖𝑠 𝑛𝑜𝑛− 𝑏𝑒𝑛𝑒𝑓𝑒𝑐𝑖𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

                      (4.38) 

Then, we need to measure the weighted Pythagorean fuzzy decision matrix through 

multiplying criteria 𝐶𝑗 weights to the collective decision making matrix in Model (4.4). The new 

weighted Pythagorean fuzzy decision matrix 𝑆 = (𝑠𝑖𝑗)𝑚×𝑛
 can be calculated using the following 

equation:               

                                                     𝑠𝑖𝑗 = 𝑤𝑗𝑅
′ = (∑𝑤𝑗𝜇

′
𝑖𝑗

𝑚

𝑖=1

,∑𝑤𝑗𝑣
′
𝑖𝑗

𝑚

𝑖=1

)                                       (4.39) 

          

After that, the summation of beneficial criteria values will be calculated for each 

alternative. Let BA refers to beneficial criteria, the higher values of which are better. As well, the 

summation of beneficial criteria values will be calculated for each alternative. Let CA refer to 

non-beneficial criteria, the lower values of which are better. The equations to calculate the sum 

of beneficial criteria and non-beneficial criteria for each alternative can be written, respectively, 

as follows:  

                                              𝑃+𝑖 =  
⨁
𝑗∈𝐵𝐴

 𝒔𝒊𝒋                                             (4.40) 

                                                  𝑃−𝑖 =  
⨁
𝑗∈𝐶𝐴

 𝒔𝒊𝒋                                             (4.41) 
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where 𝑃+𝑖  𝑎𝑛𝑑 𝑃−𝑖 represent the beneficial criteria values and non-beneficial criteria values, 

respectively. In fact, 𝐶𝐴 ∪  𝐵𝐴 is all the criteria. 

The next step is to measure the score of 𝑃+𝑖 , 𝑃−𝑖  𝑎𝑛𝑑 𝑃−𝑚𝑖𝑛 using the score function in 

equation (4.4). It is important to note that 𝑃−𝑚𝑖𝑛 refers to alternative  𝑖  with the lowest value that 

belongs to a non-beneficial criterion. The calculated score functions can be referred to as 𝑠(𝑃+𝑖),

𝑠(𝑃−𝑖) 𝑎𝑛𝑑 𝑠(𝑃−𝑚𝑖𝑛). Also, 𝑠(𝑃−𝑚𝑖𝑛) can be written as min
𝑖
𝑠(𝑃−𝑖) . Now, we can calculate the 

relative weight of each alternative. Thus, the relative priority 𝑄(𝑥𝑖) for each alternative can be 

determined by the following formula:                                                   

𝑄(𝑥𝑖) = 𝑠(𝑃+𝑖) +
𝑠(𝑃−𝑚𝑖𝑛) ∑ 𝑒𝑠(𝑃−𝑖)𝑚

𝑖=1

𝑒𝑠(𝑃−𝑖)∑
𝑠(𝑃−𝑚𝑖𝑛)
𝑒𝑠(𝑃−𝑖)

𝑚
𝑖=1

=  𝑠(𝑃+𝑖) +
∑ 𝑒𝑠(𝑃−𝑖)𝑚
𝑖=1

𝑒𝑠(𝑃−𝑖)∑
1

𝑒𝑠(𝑃−𝑖)
𝑚
𝑖=1

 

     , 𝑖 = 1,2, … ,𝑚;  𝑗 = 1,2, … , 𝑛                     (4.42) 

After that, we obtain the maximum relative priority 𝑄𝑚𝑎𝑥  (𝑥𝑖) to calculate the level of 

utility 𝑈(𝑥𝑖)  for each alternative 𝑖 as follows: 

                                        𝑈(𝑥𝑖) =
𝑄(𝑥𝑖)

𝑄𝑚𝑎𝑥  (𝑥𝑖)
× 100                                   (4.43) 

Finally, the alternatives can be ranked based on the level of utility 𝑈(𝑥𝑖) for each one: the 

larger the value of  𝑈(𝑥𝑖), the more preference of the alternative 𝑖. Accordingly, the best 

alternative is going to have the highest utility degree  𝑈𝑚𝑎𝑥(𝑥𝑖). 
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4.6 The Algorithm of the Proposed Fuzzy Pythagorean MCGDM COPRAS Method 

In this section, a practical algorithm of the Pythagorean fuzzy COPRAS approach is 

demonstrated based on the previous methodology explanation. The algorithm can be applied by 

following the next steps: 

Step 1. Follow step1-step 9 in the proposed MCGDM Fuzzy Pythagorean COPRAS algorithm in 

section (4.4). 

Step 2. Set collective evaluation Pythagorean fuzzy decision matrix 𝑅 = 𝑃(𝜇𝑖𝑗, 𝑣𝑖𝑗)𝑚𝑥𝑛  into 

𝑅′ = (𝜇′𝑖𝑗, 𝑣′𝑖𝑗)𝑚𝑥𝑛 as in equation (4.38). 

Step 3. Determine the weighted Pythagorean fuzzy decision matrix 𝑆 = (𝑠𝑖𝑗)𝑚×𝑛
 using equation 

(39). 

Step 4. Calculate the sum of beneficial criteria 𝑃+𝑖 and non-beneficial criteria 𝑃−𝑖 for each 

alternative by implementing equations (4.40) and (4.41), receptively. 

Step 5. Use the score function in equation (4.5) to measure the score of 𝑃+𝑖 , 𝑃−𝑖  and 𝑃−𝑚𝑖𝑛. The 

calculated score functions will be represented as s(𝑃+𝑖), s(𝑃−𝑖) and s(𝑃−𝑚𝑖𝑛), respectively.  

Step 6. Measure the relative priority 𝑄(𝑥𝑖) for each alternative as well as determine 𝑄𝑚𝑎𝑥  (𝑥𝑖) 

using equation (4.42). 

Step 7. Calculate the level of utility 𝑈(𝑥𝑖) for each alternative 𝑖 by applying equation (4.43). 

Step 8. Define the optimal ranking order of the alternatives and find the optimal alternative. 

Based on the utility degree 𝑈(𝑥𝑖) achieved from Step 7, the alternatives will be ranked into order 
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with respect to the declining values of 𝑈(𝑥𝑖) (𝑖 = 1,2, … ,𝑚) and the alternative with the highest 

utility degree 𝑈(𝑥𝑖) is the optimal one, namely, 

 𝑥∗ ≔ {𝑥𝑖:(𝑖:𝑈(𝑥𝑖) = max
1≤𝑖≤𝑚

𝑈(𝑥𝑖))} 

. 
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CHAPTER FIVE 

Validation of the Proposed MCGDM Methods in Material Selection Applications 

In this section, a real life example in the material selection field will be examined and 

solved using the proposed hybrid PFMCGDM frameworks. Results of both methods will be 

discussed and compared. Furthermore, to test the validation of the model, a sensitivity analysis 

will be carried by adjusting some critical input parameters such as criteria and DMs weights.  

5.1  Application of the methods in a Real Life Material Selection Case 

The following scenario has been inspired by real problems in the aerospace industry. It 

was selected to achieve the purpose of this research in studying the suggested method through 

implementing it in a suitable real life example in the material selection field. The main objectives 

of the case study were: 1) investigating the new developed aggregation approach in converting 

real DMs crisp decisions into Pythagorean fuzzy numbers; 2) testing the applicability of both the 

hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS approaches in the field of 

material selection.  

5.1.1 Case study: Material selection for high pressure turbine blades in jet engines 

The design of an aircraft engine is composed of three major sections: the compressor, the 

combustion chamber and the gas turbine section. The efficiency of the turbine blades in turbojet 

engines can be harmfully affected in the long term by the high temperature gas that comes from 

the combustion chamber. Other problems that can damage the turbine blades performance are 

related to corrosion and fatigue cracking. In 2017, Trent 1000 high pressure turbine blades, 

which are manufactured by Rolls-Royce, have been reported to encounter some major issues 

regarding corrosion that affect turbofan engines in Boeing 787 jets (Johnson & Raina, 2018). 

https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Fatigue_crack
https://www.reuters.com/journalists/eric-m-johnson
https://www.reuters.com/journalists/mekhla-raina
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Due to these blade problems, many airlines had remove the Boeing 787 from service and 

Rolls-Royce had to pay approximately 35 M $ for blade inspections and replacements. In 2018, 

the estimation of the total cost of fixing the blades was about 504 M $ (Kollewe, 2018).  To 

avoid such problem, materials should be designed and selected to properly suit the high pressure 

turbine blade environment. It is important to note that the high pressure turbine in modern jet 

engines operates at a temperature degree range of 1350–1450°C or higher. As well, lighter 

weight materials will be more desirable since the aerospace industry tends to favor materials that 

save weight (Boyer, Cotton, Mohaghegh, & Schafrik, 2015). Accordingly, in order to select an 

efficient material for the turbine blade, the material selection process requirements and criteria 

will be shown in (Table 4.1) as follows: 

 

Table 5. 1. Material criteria descriptions and their level of importance 

Criteria  Material requirements  Material indices Importance 

C1 It should be high-resistant to high 

temperature environment  

Max service 

temperature  
Very important (VI) 

C2 It should be low in weight Low density Very Important (VI) 

C3 It should be high-resistant to tensile 

stresses 

High yield 

strength  
Important (I) 

C4 It should be high-resistant to bending 

stresses 

High young’s 

modulus 
Important (I) 

C5 It should be economic in its price Low cost Unimportant (U) 

https://www.theguardian.com/profile/juliakollewe
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Figure 5. 1 High pressure turbine in the turbojet engine. From the seattletimes. Retrieved from 

https://www.seattletimes.com/business/jet-engine-explosion-triggered-chaotic-2015-las-vegas-fire-ntsb-

report-says/. Copyright 2018 by General Electric & (Mark Nowlin/ theseattletimes) 

 

Figure 5. 2 Rolls Royce jet engine on Boing 787. From Rolls Royce for aircraft. Retrieved from 

http://aircraft.sewaro.us/rolls-royce-engine-for-aircraft/. 
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Based on the requirements provided in the previous table, our material candidates will be 

between titanium- and nickel-based Super alloys and stainless steels since these materials are 

capable of withstanding the harsh high pressure and temperature conditions. The material 

candidates are listed in the following table 5.2:  

 

 

 

 

Figure 5. 3. Crews work on the engine of an Air New Zealand Boeing 787-9 Dreamliner, July 

9, 2014 in Everett, Washington. From International Business Times. Retrieved from 

https://www.ibtimes.co.uk/rolls-royce-engine-trouble-forces-air-new-zealand-ground-flights-

1650546. Photo by Stephen Brashear 

 

https://www.ibtimes.co.uk/rolls-royce-engine-trouble-forces-air-new-zealand-ground-flights-1650546
https://www.ibtimes.co.uk/rolls-royce-engine-trouble-forces-air-new-zealand-ground-flights-1650546
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Table 5. 2. Material candidates and their commercial names  

 

Symbol  

 

Material alternative 

 

Commercial name 

X1 Nickel-based Super alloy  Inconel 625 

X2 Nickel-based Super alloy  Pyromet 680 

X3 Nickel-based Super alloy  Haynes R-41 

X4 Nickel-Chromium Super alloy Inconel 706 

X5 Nickel-Co-Cr Super alloy  Udimet 700 

X6 Titanium alpha beta Super alloy  Ti-6Al-2Sn-2Zr-2Mo (Ti-6-6-6-6) 

X7 Austinitic Stainless steel  AISI 202, Wrought 

X8 Nickel-Cr-Co-Mo Super alloy  Rene 41 

X9 Austinitic Stainless steel  AISI 302, Wrought 

X10 Nickel based Super alloy  Rene 80 

 

5.1.1.1 Implementing the proposed hybrid MCGDM methods  

5.1.1.1.1 Aggregation phase 

Initially, for the purpose of this study, we have assigned a total of five participants 

between graduate students and faculty members from the Material Science Department to 

participate as decision makers. Then, we provide each DM (participant) with the needed 

information about material indices and performances for each material candidate for the process 

of selecting the best material that suits the high pressure turbine environment and requirements  

along with an evaluation paper using the document in Appendix A. Based on his/her perspective 

, knowledge and experience level, every DM = {𝑑𝑘 : 𝑘 = 1,2,3,4,5} will rate each criterion Cj 

with respect to the material alternative Xi as explained in Step 1 through completing the 

evaluation document. The rating system will be performed based on grades from 0 to 100, with 0 
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being worst and 100 being best. After collecting the evaluation papers from the DMs, the data 

will be gathered and represented in the following tables: 

Table 5. 3. Rating of DMs to all criteria with respect to material alternative Inconel 625 (X1) 

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 80 10 40 60 95 

d2 80 12 35 60 90 

d3 79 15 46 66 92 

d4 82 5 32 70 80 

d5 80 10 25 68 85 

 

 

Table 5. 4. Rating of DMs to all criteria with respect to material alternative Pyromet 680 (X2)  

 Material indices (criteria) 

Material 

alternative 

Max service 

temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 

modulus 

(C4) 

 

Cost 

(C5) 

d1 15 18 20 62 75 

d2 10 12 25 60 70 

d3 5 14 10 70 72 

d4 12 10 20 70 70 

d5 8 5 18 68 68 
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Table 5. 5. Rating of DMs to all criteria with respect to material alternative Haynes R-41 (X3)  

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 81 17 75 65 90 

d2 80 12 70 67 82 

d3 78 15 75 70 90 

d4 80 10 68 75 80 

d5 79 5 70 70 85 

 

 

Table 5. 6. Rating of DMs to all criteria with respect to material alternative Inconel 706 (X4)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 65 20 95 100 85 

d2 55 15 95 95 75 

d3 70 20 92 92 88 

d4 65 18 90 90 73 

d5 70 20 92 95 85 
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Table 5. 7. Rating of DMs to all criteria with respect to material alternative Udimet 700 (X5)  

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 55 25 100 85 60 

d2 50 20 100 80 70 

d3 60 18 95 84 65 

d4 40 20 97 79 35 

d5 61 10 95 90 40 

 

 

Table 5. 8. Rating of DMs to all criteria with respect to material alternative Ti-6-6-6-6 (X6)   

 Material indices (criteria) 

Material 

alternative 

Max service 

temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 

modulus 

(C4) 

 

Cost 

(C5) 

d1 70 100 95 10 40 

d2 70 100 96 15 50 

d3 75 90 100 20 45 

d4 60 95 90 22 35 

d5 81 100 95 8 25 
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Table 5. 9. Rating of DMs to all criteria with respect to material alternative AISI 202 (X7)    

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 70 40 45 65 60 

d2 73 30 35 72 70 

d3 75 25 55 68 65 

d4 65 20 33 75 30 

d5 80 15 57 69 35 

 

 

 

Table 5. 10. Rating of DMs to all criteria with respect to material alternative Rene 41 (X8)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 93 20 83 100 10 

d2 95 16 80 95 5 

d3 90 12 82 92 13 

d4 95 10 83 90 15 

d5 90 10 75 95 18 

 

 

 

 

 



75 
   

Table 5. 11. Rating of DMs to all criteria with respect to material alternative AISI 302 (X9)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 50 35 40 62 30 

d2 45 25 30 60 15 

d3 60 25 55 71 15 

d4 45 18 30 70 18 

d5 48 15 55 65 16 

 

 

Table 5. 12. Rating of DMs to all criteria with respect to material alternative Rene 80 (X10)    

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 100 40 90 95 10 

d2 100 28 95 95 5 

d3 95 25 90 88 15 

d4 95 22 95 92 15 

d5 95 15 85 90 12 

 

We have three beneficial criteria (max service temperature, yield strength, and Young’s 

modulus), which means the larger the points the better the criterion rate, and two non-beneficial 

criteria (density and cost), which means the lower the points the better the criterion rate.  
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Following step 2, all the elements in the previous evaluation tables will be normalized. 

Therefore, normalization values can be displayed in the next tables as follows: 

Table 5. 13. Normalized values of DMs evaluations for material alternative Inconel 625 (X1) 

 Material indices (criteria) 

Material 

alternative 

Max service 

temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 

modulus 

(C4) 

 

Cost 

(C5) 

d1 0.80 0.10 0.40 0.60 0.95 

d2 0.80 0.12 0.35 0.60 0.90 

d3 0.79 0.15 0.46 0.66 0.92 

d4 0.82 0.5 0.32 0.70 0.80 

d5 0.80 0.10 0.25 0.68 0.85 

 

 

Table 5. 14. Normalized values of DMs evaluations for material alternative Pyromet 680 (X2) 

 Material indices (criteria) 

Material 

alternative 

Max service 

temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 

modulus 

(C4) 

 

Cost 

(C5) 

d1 0.15 0.18 0.20 0.62 0.75 

d2 0.10 0.12 0.25 0.60 0.70 

d3 0.05 0.14 0.10 0.70 0.72 

d4 0.12 0.10 0.20 0.70 0.70 

d5 0.08 0.05 0.18 0.68 0.68 
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Table 5. 15. Normalized values of DMs evaluations for material alternative Haynes R-41 (X3) 

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.81 0.17 0.75 0.65 0.90 

d2 0.80 0.12 0.70 0.67 0.82 

d3 0.78 0.15 0.75 0.70 0.90 

d4 0.80 0.10 0.68 0.75 0.80 

d5 0.79 0.05 0.70 0.70 0.85 

 

 

Table 5. 16. Normalized values of DMs evaluations for material alternative Inconel 706 (X4)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.65 0.20 0.95 1.00 0.85 

d2 0.55 0.15 0.95 0.95 0.75 

d3 0.70 0.20 0.92 0.92 0.88 

d4 0.65 0.18 0.90 0.90 0.73 

d5 0.70 0.20 0.92 0.95 0.85 
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Table 5. 17. Normalized values of DMs evaluations for material alternative Udimet 700 (X5) 

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.55 0.25 1.00 0.85 0.60 

d2 0.50 0.20 1.00 0.80 0.70 

d3 0.60 0.18 0.95 0.84 0.65 

d4 0.40 0.20 0.97 0.79 0.35 

d5 0.61 0.10 0.95 0.90 0.40 

 

 

 

Table 5. 18. Normalized values of DMs evaluations for material alternative Ti-6-6-6-6 (X6)   

 Material indices (criteria) 

Material 

alternative 

Max service 

temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 

modulus 

(C4) 

 

Cost 

(C5) 

d1 0.70 1.00 0.95 0.10 0.40 

d2 0.70 1.00 0.96 0.15 0.50 

d3 0.75 0.90 1.00 0.20 0.45 

d4 0.60 0.95 0.90 0.22 0.35 

d5 0.81 1.00 0.95 0.08 0.25 
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Table 5. 19. Normalized values of DMs evaluations for material alternative AISI 202 (X7)    

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.70 0.40 0.45 0.65 0.60 

d2 0.73 0.30 0.35 0.72 0.70 

d3 0.75 0.25 0.55 0.68 0.65 

d4 0.65 0.20 0.33 0.75 0.30 

d5 0.80 0.15 0.57 0.69 0.35 

 

 

 

Table 5. 20. Normalized values of DMs evaluations for material alternative Rene 41 (X8)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.93 0.20 0.83 1.00 0.10 

d2 0.95 0.16 0.80 0.95 0.05 

d3 0.90 0.12 0.82 0.92 0.13 

d4 0.95 0.10 0.83 0.90 0.15 

d5 0.90 0.10 0.75 0.95 0.18 
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Table 5. 21. Normalized values of DMs evaluations for material alternative AISI 302 (X9)   

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 0.50 0.35 0.40 0.62 0.30 

d2 0.45 0.25 0.30 0.60 0.15 

d3 0.60 0.25 0.55 0.71 0.15 

d4 0.45 0.18 0.30 0.70 0.18 

d5 0.48 0.15 0.55 0.65 0.16 

 

 

 

 

Table 5. 22. Normalized values of DMs evaluations for material alternative Rene 80 (X10)    

 Material indices (criteria) 

Material 

alternative 

Max service 
temperature  

(C1) 

 

Density 

(C2) 

 

Yield strength 

(C3) 

Young’s 
modulus 

(C4) 

 

Cost 

(C5) 

d1 1.00 0.40 0.90 0.95 0.10 

d2 1.00 0.28 0.95 0.95 0.05 

d3 0.95 0.25 0.90 0.88 0.15 

d4 0.95 0.22 0.95 0.92 0.15 

d5 0.95 0.15 0.85 0.90 0.12 
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Following step 3, we are going to linearly transform all the normalized values for each 

criterion vector in every material alternative expressed in each previous table in which 𝑠𝑘𝑗
𝑖 > 0.5 

and 𝑠𝑘𝑗
𝑖 < 0.5 will be transformed to satisfactory 𝜊𝑘𝑗 and dissatisfactory 𝜉𝑘𝑗 elements, 

respectively. After that, we need to set the initial weight for each DM in order to proceed in 

measuring the marginal contributions using the Sugeno fuzzy measure. Next we need to 

determine the importance of each DM based on their contributions to the whole decision making 

process by implementing the Shapely value method as mentioned in step 4.  

As aforementioned, the initial weight, which is the fuzzy density value 𝜇({𝑑𝑘}), can be 

assigned by conducting surveys or interviews with DMs. As well, many factors should be 

considered such as educational background and experience level. For the sake of this study, we 

are going to assign the weights based on our participants’ educational background and research 

experience following the setting demonstrated in the next table: 

Table 5. 23. The assignment of initial weight based on level of educational and  research experience   

Level of experience 

(years) 

Initial weight 

(fuzzy density value) 

𝜇({𝑑𝑘}) 

12+ 0.8 

10 0.6 

8 0.4 

6 0.2 
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   The participants’ (DMs) group is composed of one faculty member (12+ years), two 

PhD students (8+ years) and two master’s students (6+ years). Thus, according to (Table 5.24) 

the DMs weights will be assigned as 𝜇({𝑑1}) = 0.8, 𝜇({𝑑2}) = 0.4, 𝜇({𝑑3}) = 0.4, 𝜇({𝑑4}) = 

0.2, and 𝜇({𝑑5}) = 0.2, respectively. Now we can use the fuzzy measure to find the value of the 

parameter 𝜆 and, then determine the marginal contribution of each DM to every coalition as 

shown in the following table: 

 

 

 

 

 



 

 
   

8
3 

Table 5. 24. 𝜆-Sugeno Fuzzy measure coalition results of {𝑑1, 𝑑2,𝑑3, 𝑑4, 𝑑5}  

𝝀 =  -0.93459 < -1 

𝜇({∅}) = 0,                   𝜇({𝑑1}) = 0.8,                  𝜇({𝑑2}) = 0.4,                  𝜇({𝑑4}) = 0.2,                     𝜇({𝑑5}) = 0.2  

𝝁(𝑭 ∪ {𝒅𝟏 }) 𝝁(𝑭 ∪ {𝒅𝟐 }) 𝝁(𝑭 ∪ {𝒅𝟑 }) 𝝁(𝑭 ∪ {𝒅𝟒 }) 𝝁(𝑭 ∪ {𝒅𝟓 }) 

𝜇({∅}, {𝑑1}) = 0.8 𝜇({∅}, {𝑑2}) = 0.4 𝜇({∅}, {𝑑3}) = 0.4 𝜇({∅}, {𝑑4}) = 0.2 𝜇({∅}, {𝑑5}) = 0.2 

𝜇({𝑑1}, {𝑑2}) = 0.90092 𝜇({𝑑1}, {𝑑2}) = 0.90092 𝜇({𝑑1}, {𝑑3}) = 0.90092 𝜇({𝑑1}, {𝑑4}) = 0.85046 𝜇({𝑑1}, {𝑑5}) = 0.85046 

𝜇({𝑑1}, {𝑑3}) = 0.90092 𝜇({𝑑2}, {𝑑3}) = 0.65046 𝜇({𝑑2}, {𝑑3}) = 0.65046 𝜇({𝑑2}, {𝑑4}) = 0.52523 𝜇({𝑑2}, {𝑑5}) = 0.52523 

𝜇({𝑑1}, {𝑑4}) = 0.85046 𝜇({𝑑2}, {𝑑4}) = 0.52523 𝜇({𝑑3}, {𝑑4}) = 0.52523 𝜇({𝑑3}, {𝑑4}) = 0.52523 𝜇({𝑑3}, {𝑑5}) = 0.52523 

𝜇({𝑑1}, {𝑑5}) = 0.85046 𝜇({𝑑2}, {𝑑5}) = 0.52523 𝜇({𝑑3}, {𝑑5}) = 0.52523 𝜇({𝑑4}, {𝑑5}) = 0.36261 𝜇({𝑑4}, {𝑑5}) = 0.36261 

𝜇({𝑑1}, {𝑑2}, {𝑑3}) = 0.96412  𝜇({𝑑1}, {𝑑2}, {𝑑3}) = 0.96412 𝜇({𝑑1}, {𝑑2}, {𝑑3}) = 0.96412 𝜇({𝑑1}, {𝑑2}, {𝑑4}) = 0.93252 𝜇({𝑑1}, {𝑑2}, {𝑑5}) = 0.93252 

𝜇({𝑑1}, {𝑑2}, {𝑑4}) = 0.93252 𝜇({𝑑1}, {𝑑2}, {𝑑4}) = 0.93252 𝜇({𝑑1}, {𝑑3}, {𝑑4}) = 0. 93252  𝜇({𝑑1}, {𝑑3}, {𝑑4}) = 0. 93252 𝜇({𝑑1}, {𝑑3}, {𝑑5}) = 0. 93252 

𝜇({𝑑1}, {𝑑2}, {𝑑5}) = 0.93252 𝜇({𝑑1}, {𝑑2}, {𝑑5}) = 0.93252 𝜇({𝑑1}, {𝑑3}, {𝑑5}) = 0. 93252 𝜇({𝑑1}, {𝑑4}, {𝑑5}) = 0.89149 𝜇({𝑑1}, {𝑑4}, {𝑑5}) = 0.89149 

𝜇({𝑑1}, {𝑑3}, {𝑑4}) = 0. 93252 𝜇({𝑑2}, {𝑑3}, {𝑑4}) = 0.72887 𝜇({𝑑2}, {𝑑3}, {𝑑4}) = 0.72887 𝜇({𝑑2}, {𝑑3}, {𝑑4}) = 0.72887 𝜇({𝑑2}, {𝑑3}, {𝑑5}) = 0.72887 

𝜇({𝑑1}, {𝑑3}, {𝑑5}) = 0. 93252 𝜇({𝑑2}, {𝑑3}, {𝑑5}) = 0.72887 𝜇({𝑑2}, {𝑑3}, {𝑑5}) = 0.72887 𝜇({𝑑2}, {𝑑4}, {𝑑5}) = 0.62705 𝜇({𝑑2}, {𝑑4}, {𝑑5}) = 0.62705 

𝜇({𝑑1}, {𝑑4}, {𝑑5}) = 0.89149 𝜇({𝑑2}, {𝑑4}, {𝑑5}) = 0.62705 𝜇({𝑑3}, {𝑑4}, {𝑑5}) = 0.62705 𝜇({𝑑3}, {𝑑4}, {𝑑5}) = 0.62705 𝜇({𝑑3}, {𝑑4}, {𝑑5}) = 0.62705 

𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}) = 0.98391 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}) = 0.98391 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}) = 0.98391  𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}) = 0.98391 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑5}) = 0. 98391 

𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑5}) = 0. 98391 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑5}) = 0. 98391 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑5}) = 0. 98391 𝜇({𝑑1}, {𝑑2}, {𝑑4}, {𝑑5}) = 0.95822 𝜇({𝑑1}, {𝑑2}, {𝑑4}, {𝑑5}) = 0.95822 

𝜇({𝑑1}, {𝑑2}, {𝑑4}, {𝑑5}) = 0.95822 𝜇({𝑑1}, {𝑑2}, {𝑑4}, {𝑑5}) = 0.95822 𝜇({𝑑1}, {𝑑3}, {𝑑4}, {𝑑5}) = 0. 95822 𝜇({𝑑1}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.95822 𝜇({𝑑1}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.95822 

𝜇({𝑑1}, {𝑑3}, {𝑑4}, {𝑑5}) = 0. 95822 𝜇({𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.79263 𝜇({𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.79263 𝜇({𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.79263 𝜇({𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 0.79263 

𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 1 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 1 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 1 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 1 𝜇({𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}) = 1 



 

84 
   

  By using the Shapley values method, the weight of each DM can be calculated as follow: 

𝛷1 =
1

5!
∑ |𝐹|! (5− |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑1})− 𝜇(𝐹)] = 0.45762 

𝛷2 =
1

5!
∑ |𝐹|! (5− |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑2}) − 𝜇(𝐹)] = 0.18517 

𝛷3 =
1

5!
∑ |𝐹|! (5− |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑3}) − 𝜇(𝐹)] = 0.18517 

𝛷4 =
1

5!
∑ |𝐹|! (5− |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑4}) − 𝜇(𝐹)] = 0.08601 

𝛷5 =
1

5!
∑ |𝐹|! (5− |𝐹| − 1)!𝐹⊆𝐷∖{𝑑𝑘}

[ 𝜇(𝐹 ∪ {𝑑5}) − 𝜇(𝐹)] = 0.08601 

As a consequence, the weighted averaging satisfactory and dissatisfactory degrees of the 

material alternative Xi  regarding the criteria Cj will be determined by following Step 5. Results 

can be expressed in the following table: 

Table 5. 25. Results of the weighted averaging satisfactory and dissatisfactory degrees for Inconel 625 (X1)  

 Material 

alternative 

        Material 

        Criteria 
𝜿𝒊𝒋             𝝇𝒊𝒋 

    

        Inconel 625 (X1) C1 0.59973 0.00000 

 C2 0.00000 0.78627 

 C3 0.00000 0.23586 

 C4 0.25318 0.00000 

 C5 0.82736 0.00000 
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Table 5. 26. Results of the weighted averaging satisfactory and dissatisfactory degrees for Pyromet 680 (X2) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Pyromet 680 (X2) C1 0.00000 0.77275 

 C2 0.00000 0.71316 

 C3 0.00000 0.62195 

 C4 0.28630 0.00000 

 C5 0.44972 0.00000 

 

 

Table 5. 27. Results of the weighted averaging satisfactory and dissatisfactory degrees for Haynes R-41 (X3) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Haynes R-41 (X3) C1 0.59259 0.00000 

 C2 0.00000 0.71861 

 C3 0.46083 0.00000 

 C4 0.35172 0.00000 

 C5 0.73716 0.00000 
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Table 5. 28. Results of the weighted averaging satisfactory and dissatisfactory degrees for Inconel 706 (X4)   

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Inconel 706 (X4)   C1 0.29008 0.00000 

 C2 0.00000 0.62195 

 C3 0.87512 0.00000 

 C4 0.92605 0.00000 

 C5 0.64576 0.00000 

 

 

Table 5. 29. Results of the weighted averaging satisfactory and dissatisfactory degrees for Udimet 700 (X5) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Udimet 700 (X5) C1 0.10000 0.01720 

 C2 0.00000 0.57884 

 C3 0.96772 0.00000 

 C4 0.67063 0.00000 

 C5 0.22114 0.04300 
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Table 5. 30. Results of the weighted averaging satisfactory and dissatisfactory degrees for Ti-6-6-6-6 (X6)   

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Ti-6-6-6-6 (X6)   C1 0.41851 0.00000 

 C2 0.95436 0.00000 

 C3 0.89139 0.00000 

 C4 0.00000 0.72724 

 C5 0.00000 0.17885 

 

 

Table 5. 31. Results of the weighted averaging satisfactory and dissatisfactory degrees for AISI 202 (X7) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        AISI 202 (X7) C1 0.43822 0.00000 

 C2 0.00000 0.37000 

 C3 0.02711 0.12711 

 C4 0.35939 0.00000 

 C5 0.22114 0.06021 
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Table 5. 32. Results of the weighted averaging satisfactory and dissatisfactory degrees for Rene 41 (X8) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Rene 41 (X8) C1 0.85457 0.00000 

 C2 0.00000 0.67884 

 C3 0.63142 0.00000 

 C4 0.92605 0.00000 

 C5 0.00000 0.78279 

 

 

Table 5. 33. Results of the weighted averaging satisfactory and dissatisfactory degrees for AISI 302 (X9) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        AISI 302 (X9) C1 0.03703 0.03055 

 C2 0.00000 0.43772 

 C3 0.02711 0.20000 

 C4 0.28484 0.00000 

 C5 0.00000 0.55411 
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Table 5. 34. Results of the weighted averaging satisfactory and dissatisfactory degrees for Rene 80 (X10) 

 Material 

alternative 

        Material 

        Criteria 

𝜅𝑖𝑗             𝜍𝑖𝑗 

    

        Rene 80 (X10) C1 0.96427 0.00000 

 C2 0.00000 0.37396 

 C3 0.80000 0.00000 

 C4 0.86427 0.00000 

 C5 0.00000 0.78279 

   

The computation of the uncertainty degree (𝝉𝒊𝒋) will be completed by performing Step 6. 

The related parameters and uncertainty functions results are displayed in the following tables:  

Table 5. 35. Results of the related parameters to calculate uncertainty for each criteria in Inconel 625 (X1)   

 

Material 

       alternative 

 

 Material            

criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

    Inconel 625 (X1)         C1 0.59973    1.00000     00.00  1.00000           0.40026 

       C2 0.78267    0.00000     90.00 0.00000           0.21732 

       C3 0.23586    0.00000     90.00 0.00000        0.76413 

       C4 0.25318    1.00000     00.00 1.00000           0.74681 

        C5 0.82736    1.00000     00.00 1.00000          0.17263 
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Table 5. 36. Results of the related parameters to calculate uncertainty for each criteria in Pyromet 680 (X2) 

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

   Pyromet 680 (X2)         C1 0.77275    0.00000     90.00 0.00000           0.22724 

       C2 0.71316    0.00000     90.00 0.00000           0.28683 

       C3 0.62195    0.00000     90.00 0.00000        0.37804 

       C4 0.28630    1.00000     00.00 1.00000           0.71369 

       C5 0.44972    1.00000     00.00 1.00000           0.55027 

 

 

Table 5. 37. Results of the related parameters to calculate uncertainty for each criteria in Haynes R-41 (X3) 

 

Material 

       alternative 

 

 Material            

criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

  Haynes R-41 (X3)         C1 0.59259    1.00000     00.00 1.00000           0.40740 

       C2 0.71861    0.00000     90.00 0.00000           0.28138 

       C3 0.46083    1.00000     00.00 1.00000        0.53916 

       C4 0.35172    1.00000     00.00 1.00000           0.64827 

       C5 0.73716    1.00000     00.00 1.00000           0.26283 
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Table 5. 38. Results of the related parameters to calculate uncertainty for each criteria in Inconel 706 (X4)   

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

  Inconel 706 (X4)         C1 0.29008    1.00000     00.00 1.00000           0.70991 

       C2 0.62195    0.00000     90.00 0.00000           0.37804 

       C3 0.87512    1.00000     00.00 1.00000        0.12487 

       C4 0.92605    1.00000     00.00 1.00000           0.07394 

       C5 0.64576    1.00000     00.00 1.00000           0.35423 

 

 

Table 5. 39. Results of the related parameters to calculate uncertainty for each criteria in Udimet 700 (X5) 

 

Material 

       alternative 

 

 Material            

criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

 Udimet 700 (X5)         C1 0.10146    0.98552     9.761 0.89154           0.92054 

       C2 0.57884    0.00000     90.00 0.00000           0.42115 

       C3 0.96772    1.00000     00.00 1.00000        0.03227 

       C4 0.67063    1.00000     00.00 1.00000           0.32936 

       C5 0.22528    0.98160     11.01 0.87771           0.82981 
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Table 5. 40. Results of the related parameters to calculate uncertainty for each criteria in Ti-6-6-6-6 (X6)   

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

 Ti-6-6-6-6 (X6)         C1 0.41851    1.00000     00.00 1.00000           0.58148 

       C2 0.95436    1.00000     00.00 1.00000           0.04563 

       C3 0.89139    1.00000     00.00 1.00000        0.10860 

       C4 0.72724    0.00000     90.00 0.00000           0.27275 

       C5 0.17885    0.00000     90.00 0.00000           0.82114 

 

 

Table 5. 41. Results of the related parameters  to calculate uncertainty for each criteria in AISI 202 (X7) 

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

 AISI 202 (X7)         C1 0.43822    1.00000     00.00 1.00000           0.56177 

       C2 0.37000    0.00000     90.00 0.00000           0.62999 

       C3 0.12997    0.20863     77.96 0.13380        0.90480 

       C4 0.35939    1.00000     00.00 1.00000           0.64060 

       C5 0.22919    0.96487     15.23 0.83076           0.84838 
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Table 5. 42. Results of the related parameters to calculate uncertainty for each criteria in Rene 41 (X8) 

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

  Rene 41 (X8)         C1 0.85457    1.00000     00.00 1.00000           0.14542 

       C2 0.67884    0.00000     90.00 0.00000           0.32115 

       C3 0.63142    1.00000     00.00 1.00000        0.36857 

       C4 0.92605    1.00000     00.00 1.00000           0.07394 

       C5 0.78279    0.00000     90.00 0.00000           0.21720 

 

 

Table 5. 43. Results of the related parameters to calculate uncertainty for each criteria in AISI 302 (X9) 

 

Material 

       alternative 

 

 Material            

criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

  AISI 302 (X9)         C1 0.04801    0.77130     39.53 0.56079           0.99416 

       C2 0.43772    0.00000     90.00 0.00000           0.56227 

       C3 0.20183    0.13436     82.28 0.08579        0.83280 

       C4 0.28484    1.00000     00.00 1.00000           0.71515 

       C5 0.55411    0.00000     90.00 0.00000           0.44588 
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Table 5. 44. Results of the related parameters  to calculate uncertainty for each criteria in Rene 80 (X10) 

 

Material 

       alternative 

 

 Material            
criteria 

 

𝑟 

 

𝑐𝑜𝑠 (𝜃) 

 

𝜃 

                 

                  𝑑  

    

       𝜏𝑖𝑗 

       

  Rene 80 (X10)         C1 0.96427    1.00000     00.00 1.00000           0.03572 

       C2 0.37396    0.00000     90.00 0.00000           0.62603 

       C3 0.80000    1.00000     00.00 1.00000        0.20000 

       C4 0.86427    1.00000     00.00 1.00000           0.13572 

       C5 0.78279    0.00000     90.00 0.00000           0.21720 

 

By applying the Steps 7 and 8, the aggregated PFNs can be simply obtained and 

expressed in a collective evaluation PF decision making matrix as shown on the next page: 

 

 

 

 

 

 



 

   

9
5 

 

 

                                                    𝐶1                                𝐶2                                      𝐶3                                𝐶4                                           𝐶5          

𝑅 = 

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑋9

𝑋10

     

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑃(0.77442,0.00000) 𝑃(0.00000,0.88469) 𝑃(0.00000, 0.48565) 𝑃(0.50317,0.00000) 𝑃(0.90959, 0.00000)

𝑃(0.00000,0.87906) 𝑃(0.00000,0.84448) 𝑃(0.00000, 0.78864) 𝑃(0.53507,0.00000) 𝑃(0.67061, 0.00000)

𝑃(0.76980,0.00000) 𝑃(0.00000,0.84770) 𝑃(0.67885, 0.00000) 𝑃(0.59306,0.00000) 𝑃(0.85850, 0.00000)

𝑃(0.53859,0.00000) 𝑃(0.00000,0.78864) 𝑃(0.93548, 0.00000) 𝑃(0.96231,0.00000) 𝑃(0.80359, 0.00000)

𝑃(0.31042,0.12875) 𝑃(0.00000,0.76082) 𝑃(0.98372, 0.00000) 𝑃(0.81892,0.00000) 𝑃(0.44961, 0.00000)

𝑃(0.64692,0.00000) 𝑃(0.97691,0.00000) 𝑃(0.94413, 0.00000) 𝑃(0.00000,0.85278) 𝑃(0.00000, 0.42291)

𝑃(0.66198,0.00000) 𝑃(0.00000,0.60827) 𝑃(0.16002, 0.34645) 𝑃(0.59949,0.00000) 𝑃(0.44243, 0.23086)

𝑃(0.92443,0.00000) 𝑃(0.00000,0.82392) 𝑃(0.79462, 0.00000) 𝑃(0.96231,0.00000) 𝑃(0.00000, 0.88475)

𝑃(0.18676,0.16965) 𝑃(0.00000,0.66161) 𝑃(0.15995, 0.43438) 𝑃(0.53371,0.00000) 𝑃(0.00000, 0.74438)

𝑃(0.98197,0.00000) 𝑃(0.00000,0.61153) 𝑃(0.89442, 0.00000) 𝑃(0.92966,0.00000) 𝑃(0.00000, 0.88475)]
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The next phase is to assign criteria weights and to implement the MCDM approaches to 

solve the induced PF matrix and rank the alternatives. 

5.1.1.1.2 Assigning criteria weights 

The initial weight (fuzzy density value) 𝜒({𝑞𝑗}) to each criterion will be assigned based 

on the provided data in (Table 5.1). Then, the Sugeno 𝜆-fuzzy measure and the Shapley value 

methods will be applied to distribute the weights of the criteria equally as mentioned in Step 9. 

The initial criteria weights and their Shapley values are displayed in the following table: 

Table 5. 45. The assignment of initial criteria weights and their Shapley method results: 

 service 

temperature 

(C1) 

Density 

(C2) 

Yield 

strength 

(C3)  

Young’s 

modulus 

(C4) 

Cost 

(C5) 

∑𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 

 

Initial weight  

𝜒({𝑞𝑗}) 

0.9 0.9 0.7 0.7 0.3 3.5 

Shapley value 

(𝑤𝑗) 
0.26863 0.26863 0.19403 0.19403 0.074662 1 

 

As seen above, the weighting vector is 𝑤 = (0.26863,0.26863, 0.19403,0.19403,0.074662) 

and satisfies   ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 
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5.1.1.1.3 First method implementation: Pythagorean fuzzy MCGDM TOPSIS  

To start implementing the PF TOPSIS approach, we will apply the score function as in 

Step 10 to obtain the PFPIS and PFNIS, respectively. The results can be presented as: 

𝑋+

= {𝑃(0.98197,0.00000),𝑃(0.97691,0.00000),𝑃(0.98372,0.00000),𝑃(0.96231,0.00000),P(0.90959,0.00000)} 

𝑋−

= { 𝑃(0.00000,0.87906),𝑃(0.00000,0.88469),𝑃(0.00000,0.78864),𝑃(0.00000,0.85278),𝑃(0.00000,0.88475)} 

Then, we will calculate the distances and revised closeness, and rank the alternatives as 

shown in Steps 11, 12, and 13. The outcomes are displayed in the following table:  

Table 5. 46. Results of the Pythagorean fuzzy TOPSIS method  

Material 

alternative (𝑿𝒊) 
𝐷(𝑋𝑖 , 𝑋

+) 𝐷(𝑋𝑖 , 𝑋
−) 𝜁(𝑋𝑖 ) Ranking 

Inconel 625 (X1) 0.67263 0.48538 -1.15297 8 

Pyromet 680 (X2) 0.85551 0.21823 -2.04342 10 

Haynes R-41(X3) 0.57274 0.54503 -0.79133 6 

Inconel 706 (X4) 0.46900 0.65870 -0.34098 4 

Udimet 700 (X5) 0.58576 0.64228 -0.68664 5 

Ti-6-6-6-6 (X6) 0.40287 0.68201 -0.12494 2 

AISI 202 (X7) 0.73760 0.61141 -1.14992 7 

Rene 41 (X8) 0.41286 0.55966 -0.32935 3 

AISI 302 (X9) 0.87503 0.53477 -1.63966 9 

Rene 80 (X10) 0.36267 0.69176 0.00000 1 

 

For more illustration of the proposed method and aforementioned steps, processes can be 

clearly simplified in Fig (4.2) as follows: 
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Figure 5. 4. Illustration of the Pythagorean fuzzy MCGDM TOPSIS method 
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5.1.1.1.4 Second model implementation: Pythagorean fuzzy MCGDM COPRAS 

 First, we will find the weighted Pythagorean fuzzy decision matrix following step 2 and  

step 3.  After that, to proceed with the ranking process, we will calculate the summations of the 

beneficial criteria 𝑃+𝑖 and the non-beneficial criteria 𝑃−𝑖, and calculate their score functions 

s(𝑃+𝑖), s(𝑃−𝑖) and s(𝑃−𝑚𝑖𝑛) as shown in step 4 and 5. Then, in order to rank the material 

alternatives, we should calculate the relative priority 𝑄(𝑋𝑖) and level of utility 𝑈(𝑋𝑖) as 

explained in steps 6, 7 and 8. All the calculations are displayed in the next table:  

 

 

 

 

 

 

 

 

 



 

   

1
0
0 

 

                Table 5. 47.Results of the Pythagorean fuzzy COPRAS method  

 

 For more illustration of the proposed method and aforementioned steps, processes can be clearly simplified in (Figure 5.1) as 

follow:

 

Material 

alternative (𝑿𝒊) 
𝑃+𝑖 𝑃−𝑖 s(𝑃+𝑖)  s(𝑃−𝑖)  s(𝑃−𝑚𝑖𝑛) 𝑄(𝑥𝑖) 

 

𝑈(𝑥𝑖) 

 

Ranking 

Inconel 625 (X1) (0.30567,0.09424) (0.23765,0.06791) 0.08455 0.05186 

-0.06787 

1.11109 78.97 8 

Pyromet 680 (X2) (0.10382,0.38917) (0.22685,0.05006) -0.14067 0.04895 0.88886 63.18 10 

Haynes R-41(X3) (0.45359,0.00000) (0.22772,0.06410) 0.20574 0.04774 1.23652 87.89 5 

Inconel 706 (X4) (0.51292,0.00000) (0.21185,0.05999) 0.26309 0.04128 1.30056 92.44 3 

Udimet 700 (X5) (0.43317,0.03458) (0.21185,0.03356) 0.18644 0.04691 1.21808 86.58 6 

Ti-6-6-6-6 (X6) (0.35698,0.16547) (0.03157,0.26243) 0.10005 -0.06787 1.25718 89.36 4 

AISI 202 (X7) (0.32520,0.06722) (0.18063,0.03303) 0.10124 0.03153 1.14886 81.66 7 

Rene 41 (X8) (0.58924,0.00000) (0.28738,0.00000) 0.34720 0.08259 1.34269 95.43 2 

AISI 302 (X9) (0.18476,0.12986) (0.23330,0.00000) 0.01727 0.05443 1.04119 74.00 9 

Rene 80 (X10) (0.61773,0.00000) (0.00000,0.23033) 0.38159 0.05305 1.40692 100 1 
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Determine the weighted decision matrix 

Rank the alternatives 

COPRAS Ranking Method 

Sum the values of beneficial criteria and non-beneficial 

criteria   

Calculate the relative priority 𝑄(𝑋𝑖) and level of utility 𝑈(𝑋𝑖) 

of each alternative 

 
Figure 5. 5. Illustration of the Pythagorean Fuzzy MCGDM COPRAS method 
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5.1.2 Computational application 

For the implementation of the proposed models in real life material selection situations, 

an application has been developed using Microsoft Excel and Python to achieve this purpose. 

Microsoft Excel was used to develop and model the proposed algorithms mathematical 

approaches including Sugeno 𝜆 fuzzy measure, model solver to find the root of high order 

polynomial equations, Shapley value, uncertainty function, the Pythagorean Fuzzy TOPSIS 

method and the Pythagorean Fuzzy COPRAS method. Then, Python was employed to design the 

Graphical User Interface (GUI) for this application. The developed application characterized by 

its simplicity and applicability to be used by designers and engineers in real life material 

selection problems. 

We used the aforementioned case study data to illustrate the processes and steps of using 

the developed application in a practical material selection problem. Initially, we need to select 

the number of materials and their commercial names as displayed in (Figure 5.6) below:  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 6. Illustration of using the material selection application (select the number of materials & enter their 

commercial names) 
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 Next, we will select the number of criteria and enter their initial weights as shown in 

(Figure 5.7) below: 

 

 

 

 

 

 

 

 

 

 

 

After that, we are going to choose the number of decision makers and enter their initial 

weights as shown in (Figure 5.8) below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7. Illustration of using the material selection application (select the number of criteria & enter their initial 

weights) 

 

Figure 5. 8. Illustration of using the material selection application (select the number of decision makers & enter 

their initial weights) 
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Then, we will select each material and fill the decision makers’ assessments as explained 

in (Figure 5.9) below: 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we will press ‘Rank’ and the results of the hybrid PFMCGDM TOPSIS model 

and hybrid PFMCGDM COPRAS model will show up as shown in (Figure 5.10) below:  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 9. Illustration of using the material selection application (select each material & fill the decision makers’ 

assessments) 

 

Figure 5. 10. Illustration of using the material selection application (Press ‘Rank’ to get the final ranking outcomes 

of both methods) 

 



 

105 
   

5.1.3 Discussion and comparative analysis of both MCGDM methods 

In the PFMCGDM TOPSIS method, the material alternatives were ranked based on the 

revised closeness coefficient results in a descending order. As mentioned before, the revised 

closeness coefficient was used instead of the relative closeness coefficient due to its superiority 

in satisfying the purpose of the optimal solution having the shortest distance from the PIS and the 

farthest distance from the NIS, simultaneously (Hadi-Vencheh & Mirjaberi. 2014; Zhang & Xu, 

2014). The ranking order of the MCGDM TOPSIS method is 𝑋10 ≻ 𝑋6 ≻ 𝑋8 ≻ 𝑋4 ≻ 𝑋5 ≻ 𝑋3 ≻

𝑋7 ≻ 𝑋1 ≻ 𝑋9 ≻ 𝑋2 with 𝑋10 , which is Nickel-based Super alloy Rene 80, being the optimal 

material to be used in high pressure turbine blades in the turbojet engine and 𝑋2, which is Nickel-

based Super alloy Pyromet 680, being the worst one. As seen in (Figure 5.11), the optimal 

alternative 𝑋10 has a revised closeness coefficient equal to zero, indicating that this alternative 

has satisfied the condition of having the shortest distance from the PIS and the farthest distance 

from the NIS at the same time. The second most preferred alternative is Titanium alpha beta 

Super alloy (𝑋6) with a revised closeness coefficient equal to -0.12. It can be seen that the 

difference between the coefficient of the best material alternative 𝑋10 and the second one 𝑋6 is 

considered small (-0.12), which makes material 𝑋6 performance close to the optimal one 𝑋10. 

Furthermore, it is important to mention that there are no significant differences in coefficients 

between the top four material alternatives 𝑋10 ≻ 𝑋6 ≻ 𝑋8 ≻ 𝑋4; in particular, the difference 

among 𝑋8 and 𝑋4 is barely noticed (0.01), which implies that both materials have similar 

performances. 
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On the other hand, the final ranking of material alternatives in the PFMCGDM COPRAS 

method was based on the degree of utility outcomes. The utility degree can be obtained by 

calculating the relative weight, which is the result of summing the maximization and 

minimization indices for each material alternative. The final ranking order of the PFMCGDM 

COPRAS method is 𝑋10 ≻ 𝑋8 ≻ 𝑋4 ≻ 𝑋6 ≻ 𝑋3 ≻ 𝑋5 ≻ 𝑋7 ≻ 𝑋1 ≻ 𝑋9 ≻ 𝑋2 with 𝑋10 (Nickel-

based Super alloy Rene 80) being the optimal material alternative and 𝑋2 (Nickel-based Super 

alloy Pyromet 680) being the worst option to be used to fit the high pressure turbine 

requirements. The difference between the level of utility between the optimal alternative 𝑋10 

(100%) and the second one 𝑋8 (95%) is slightly low, showing that 𝑋8  performance is close to 

the best material 𝑋10. Additionally, it can be observed from (Figure 5.12) that the differences 

between the materials 𝑋3 and 𝑋6 as well as 𝑋3 and 𝑋5 are very insignificant.   

Figure 5. 11. Revised Closeness Coefficient 𝜁(𝑋𝑖 ) for all material alternatives 
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5.1.4 Comparative analysis  

It can be clearly noticed from the results displayed in final ranking processes that both 

methods recommended Nickel-based Super alloy Rene 80 (𝑋10) as the optimal material 

alternative in the application of high pressure turbine in jet engines. Note that, regardless of their 

ranking order, the top three proposed materials that follow the optimal alternative (𝑋8 ,𝑋4 & 𝑋6) 

are the same materials given by both methods with a ranking order of 𝑋10 ≻ 𝑋8 ≻ 𝑋4 ≻ 𝑋6 in 

PFMCGDM TOPSIS and 𝑋10 ≻ 𝑋6 ≻ 𝑋8 ≻ 𝑋4 in PFMCGDM COPRSAS as shown in (Figure 

5.13). From final ranking results of both approaches, it can be seen that Titanium alpha beta 

Super alloy, Ti-6-6-6-6 (𝑋6) has been placed as the fourth recommended material in PFMCGDM 

TOPSIS whereas in PFMCGDM COPRSAS has been ranked the second for most preferred 

materials. This indicates how both methods differ in terms of their mathemathical approaches for 

Figure 5. 12. Utility degree 𝑈(𝑋𝑖 ) for all material alternatives 
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identifying the optimal alternative. To be more specific, the alternative 𝑋6 has the positive ideal 

solution and closest number to an ideal solution in the most and second dominant criteria 

(density and tensile strength), respectively, within the PFMCGDM TOPSIS that results in the 

alternative being ranked second in the final ranking process, whereas in the PFMCGDM 

COPRAS method, the same alternative has the minimum index value for the summation of the 

non-beneficial criteria elements but it failed to have the maximum index value for the summation 

of the beneficial criteria elements. This outcome leads to decrease its level of utility, thus 

lowering it to fourth place in the COPRAS ranking process. Moreover, it is significant to note 

that the last four materials are ranked in the same order as 𝑋7 ≻ 𝑋1 ≻ 𝑋9 ≻ 𝑋2  with Nickel-

based Super alloy Pyromet 680 (𝑋2) being the worst option within the two methods. 

 

 

 

Figure 5. 13. Comparison of final ranking outcomes between Hybrid PFMCGDM TOPSIS and 

hybrid PFMCGDM COPRAS model 
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5.2 Sensitivity analysis 

The implementation of MCDM usually faces some problems that affect the decision- 

making process in which inaccurate and instable results may occur in the final ranking 

procedure. Therefore, performing the proper sensitivity analysis can be helpful in investigating 

the initial input factors or parameters that can affect the accuracy of the final outcome 

performance of the tested model. Furthermore, this analysis can examine the main purpose of the 

decision making model by studying its applicability in the desired field, which is material 

selection in our case. Many approaches and methods have been proposed in research on this 

matter. One popular approach that has been used by researchers is to study the final results 

ranking behavior under various conditions. This can be done by defining the most important 

input and slightly manipulating its values to observe how sensitive the model responds to these 

small changes. However, it is important to mention that there is no consensus on such a tool or a 

general way to perform the sensitivity analysis and check the reliability of the MCDM method 

outcomes. Additionally, the measurement of the robustness and stability of the model outputs 

really depend on the purpose of designing and applying the tested decision making method. For 

this reason, to analyze the proposed MCGDM methods, the important parameters that might 

influence the outcome performance need to be defined first.  

In the material selection field, DMs’ priorities should be considered in selecting the best 

material that suits the design or product. As a result, our selected approach to test the reliability 

of the proposed method results will be based on changing the DMs weights and study the 

performance of the resultant ranking outputs. 

To proceed with this approach, the fuzzy measure and Shapley value methods that are 

used to fairly distribute the weights of DMs and criteria in our MCGDM frameworks will be 



 

110 
   

implemented again to modify weights in this sensitivity analysis. These aforementioned 

techniques will allow other weights to be adjusted proportionally and hold the condition 

∑ 𝑤𝑗 = 1𝑛
𝑗=1   if we make any changes to a certain weight.    

In order to provide accurate analysis in testing the sensitivity of the final outcomes to the 

changes of input parameters, specifically DMs’ weights, we decided to slightly modify the 

original initial weight (fuzzy density value) used in the previous case study 𝜇({𝑑1}) = 0.8, 

𝜇({𝑑2}) = 0.4, 𝜇({𝑑3}) = 0.4, 𝜇({𝑑4}) = 0.2, and 𝜇({𝑑5}) = 0.2 through applying the following 

scenarios to each method : 

1) Decreasing the weight of the first decision maker (the most influential one) (DM1) 

by 25%, 50% and 75%. 

2) Increasing the weight of the second decision maker (DM2) by 50% and 100%. 

3) Increasing the weight of the third decision maker (DM3) by 50% and 100%. 

4) Increasing the weight of the fourth decision maker (DM4) by 50%, 100% and 

200%. 

5) Increasing the weight of the fifth decision maker (DM5) by 50%, 100% and 200%. 

Comparing the previous scenarios ranking outcomes with the original ranking results of 

implementing each method in the last case study will allow us to observe carefully to what extent 

changing DMs weights within the fuzzy number aggregation process would affect the final 

ranking results of the proposed MCGDM methods. 
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5.2.1  Changing decision makers (DMs) weights in Hybrid PFMCGDM TOPSIS 

There was no change noticed in the ranking order when the weight of DM1 increased by 

25%. However, as seen in (Figure 5.14), the final ranking of material alternatives has changed 

after decreasing the weight of DM1 by 50%. Specifically, the material alternative X7 has shifted 

from the seventh to the eighth rank with a slight decrease of (- 0.00608) in the revised closeness 

coefficient value.  As well, X1 alternative has placed seventh instead of eighth in the ranking 

order with a barely noticeable increase of (+ 0.00044) in the coefficient value. Note that we still 

get the same ranking results when the weight of DM1 increased from 50% up to 75% as seen in 

figure (Figure 5.15). 

No difference has been observed in the ranking outcomes when DM2 weight increased 

by 50% and 100%. On the other hand, when the weight of DM3 increased to 50%, the ranking 

order varied, as shown in figure (Figure 5.16). The difference this time is significant since the 

change affected the order of the top four materials in the final ranking. To be more specific, the 

alternative X4 has exchanged places with X8 and transferred to the third rank, whereas X8 

moved to the fourth place. Thus, the effect of changing DM3’s weight on X4 alternative was 

noticeable since it caused a significant increase in the material’s revised closeness coefficient 

from (-0.34098) to (-0.32323) as exhibited in (Figure 5.24), resulting in X4 surpassing X8 in the 

ranking process. Furthermore, when DM3 weight increased up to 100% as shown in (Figure 

5.17), the revised coefficient of X4 increased to reach (-0.31649). The ranking outcomes remain 

the same as when DM3 weight increased 50%.  

(Figure 5.18) shows that after increasing DM4 weight by 50%, the material alternative 

ranking changed from the original one. Alternative X7’s revised closeness coefficient has 

notably decreased compared with the other materials, causing the material to shift from the 
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seventh to the eighth in final ranking outcomes. The decreasing in the coefficient occurred 

because of the poor rating of DM4 to the material alternative X7. Consequently, increasing 

DM4’s weight has influenced alternative X7’s Pythagorean fuzzy satisfactory numbers to 

decrease and dissatisfactory numbers to increase in their values. For this reason, we obtained the 

same pattern in behavior from material X7 when DM4 weight increased up to 100% and 200% 

as displayed in (Figure 5.19) and (Figure 5.20) as well as materials alternatives were ranked the 

same as in the 50% weight increasing .  

It can be seen from (Figure 5.21), (Figure 5.22) and (Figure 5.23) that after increasing 

DM5 by 50%, 100%, and 200%, the coefficient closeness of alternative X4 has clearly increased 

similar to the results of increasing DM3’s weight. The reason for this noticeable increase in the 

X4 coefficient is the high assessment of DM5 to the alternative X4 compared to other DMs. 

Subsequently, any change in DM5 weight will affect the results of X4. 

 

Figure 5. 14. Difference in the final ranking outcomes after decreasing 50% of DM1 weight 

in the hybrid PFMCGDM TOPSIS method 
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Figure 5. 15. Difference in the final ranking outcomes after decreasing 75% of DM1 

weight in the hybrid PFMCGDM TOPSIS method 

 

Figure 5. 16. Difference in the final ranking outcomes after increasing 50% of DM3 weight 

in the hybrid PFMCGDM TOPSIS method 
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   Figure 5. 18. Difference in the final ranking outcomes after increasing 50% of DM4 weight 

in the hybrid PFMCGDM TOPSIS method 

Figure 5. 17. Difference in the final ranking outcomes after increasing 100% of DM3 weight 

in the hybrid PFMCGDM TOPSIS method 
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Figure 5. 20. Difference in the final ranking outcomes after increasing 200% of DM4 

weight in the hybrid PFMCGDM TOPSIS method 

Figure 5. 19. Difference in the final ranking outcomes after increasing 100% of DM4 

weight in the hybrid PFMCGDM TOPSIS method 
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Figure 5. 21. Difference in the final ranking outcomes after increasing 50% of DM5 weight 

in the hybrid PFMCGDM TOPSIS method 

Figure 5. 22. Difference in the final ranking outcomes after increasing 100% of DM5 

weight in the hybrid PFMCGDM TOPSIS method 
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Figure 5. 23. Difference in the final ranking outcomes after increasing 200% of DM5 

weight in the hybrid PFMCGDM TOPSIS method 
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Figure 5. 24. Revised Closeness Coefficient ζ (Xi ) behavior caused by changing DMs weights in the hybrid PFMCGDM TOPSIS method 
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5.2.2 Changing decision makers (DMs) weights in Hybrid PFMCGDM COPRAS  

There were no changes in ranking order for all alternatives in the Hybrid PFMCGDM 

COPRAS method under any scenario. One can conclude that the PFMCGDM COPRAS method 

ranking results is less sensitive to be affected by changing DMs weights than the ranking 

outcomes in the PFMCGDM TOPSIS method. However, as shown in (Figure 5.25), the utility 

degree for all material alternatives has been changing with varying DMs’ weight, indicating that 

the ranking order of the PFMCGDM COPRAS may be altered by the effect of DMs’ weight 

under different scenarios and assessments.



 

   

1
2
0 

Figure 5. 25. Utility degree U (Xi) behavior caused by changing DMs weights in the hybrid PFMCGDM COPRAS method 
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CHAPTER SIX 

Summary and Conclusions 

  Research in the implementation of multi-criteria decision making (MCDM) tools in the 

material selection field has developed and grown over the last few decades. Many methods and 

approaches have been studied and examined for their use in selecting the optimal alternatives for 

material and mechanical designs. The TOPSIS and COPRAS MCDM approaches have been 

commonly used as ranking tools in the material selection applications due to their practicality 

and lack of complications. For this reason, many studies have extended the use of these methods, 

combining them with fuzzy sets and intuitionistic fuzzy sets (IFS) to overcome the lack of 

uncertainty modeling in these decision-making approaches. Therefore, this research has 

developed two hybrid MCDM approaches through integrating a new extension of fuzzy sets 

called the Pythagorean Fuzzy sets (PFS), which is more effective in modeling uncertainty than 

fuzzy and intuitionistic fuzzy sets, with TOPSIS and COPRAS MCDM methods. 

This study has focused on developing practical hybrid multi criteria group decision 

making (MCGDM) methods by converting a group of human (decision makers) judgments and 

opinions (crisp data) to Pythagorean fuzzy numbers (PFN) and integrating them with a ranking 

method that is built to solve the induced Pythagorean fuzzy multi criteria group decision making 

(PFMCGDM) matrix and rank the alternatives. A novel aggregation approach has been 

suggested to derive crisp data into PFNs considering decision makers’ (DMs) weights and 

uncertainty degrees. The Sugeno fuzzy measure and the Shapley value methods have been 

implemented to fairly distribute DMs powers within the aggregation process. Additionally, the 

Takagi-Sugeno approach has been applied to build the uncertainty degree functions based on 

fuzzy base rules to be aggregated within the PFNs. 
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The applicability of using PFMCGDM TOPSIS and COPRAS methods has been 

investigated by applying it to solve a real life materials selection problem, specifically in 

selecting the best material for high pressure turbine blades in jet engines. Both methods have 

expressed different results in the final ranking process, sharing in common the best and worst 

material alternatives that are Rene 80 (X10) and Inconel 625 (X2), respectively. Moreover, a 

computer application has been developed based on the proposed methods to assist designers and 

engineers in the real world material selection problems. 

Sensitivity analysis has been applied to test the effect of the input parameters, specifically 

within the developed aggregation approach, on the ranking output results in both MCGDM 

methods. Different scenarios have been suggested to manipulate DMs weights. In the 

PFMCGDM TOPSIS method, the final rankings have changed and the revised closeness 

coefficient for some material alternatives have noticeably differed under certain scenarios. On 

the other hand, the PFMCGDM COPRAS method has shown no changes in the final ranking 

outcomes; however, small changes in the utility degrees for all alternatives have been observed 

in response of varying DMs weights.     

It can be inferred from these results that the PFMCGDM COPRAS method is less 

sensitive than the PFMCGDM TOPSIS method when interacting with changes within the input 

parameter in the aggregation phase. The reason for that result is the nature of the mathematical 

approach of the Pythagorean fuzzy TOPSIS ranking method in measuring the Pythagorean fuzzy 

positive and negative ideal solutions for each criterion with respect to all alternatives. This is 

accomplished based on the score function taking in consideration the aggregated PFNs; 

therefore, the alternative with the farthest distance from the negative ideal solution and the 

closest distance from the positive ideal solution, simultaneously, will be named as the optimal 
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alternative. Contrarily, the Pythagorean fuzzy COPRAS method’s mathemathical approach to 

determine the optimal alternative is based on calculating the summation of values for all 

beneficial criteria and non-beneficial criteria in each alternative index and then obtaining their 

score functions, resulting in more resistance to the changes in DMs’ weight, since all beneficial 

and non-beneficial criteria are being considered. 

In summary, this research determined that the Pythagorean fuzzy TOPSIS interacts 

effectively with the novel aggregation approach for the aforementioned reasons. Therefore, using 

the developed hybrid PFMCGDM TOPSIS method in materials selection decision making 

problems is more recommended than the hybrid PFMCGDM COPRAS method.   
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CHAPTER SEVEN 

Recommendations for Future Work 

 This study can be improved if numerical data are more involved in the hybrid MCGDM 

methods. For example, data measurements can be normalized and assigned weights as a decision 

maker to contribute to the aggregation of the Pythagorean Fuzzy satisfactory and dissatisfactory 

numbers. Another way to incorporate measured numerical data in the ranking method is through 

using it in calculating the criteria weights.  

 Moreover, the suggested MCGDM methods can be applied to many different fields such 

as logistics, finance, healthcare and facility locations. Furthermore, it is recommended to use the 

aforementioned methods in decision making processes that require involving DMs with their 

opinion and judgments. 

 Further investigations are needed to report the behavior of the PFMCGDM COPRAS 

method in response to varying the input parameters. In other words, different scenarios should be 

investigated such as changing the weight of multiple DMs at the same time for more accuracy in 

analysis.    
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APPENDICIES 

APPENDIX: A 

Evaluation document 

The efficiency of the turbine blades in turbojet engines can be harmfully affected on the long 

term by the high temperature gas that comes from the combustion chamber. Other problems that 

can damage the turbine blades performance are related to corrosion and fatigue cracking. For this 

reason, the required material alternative to operate under the high pressure turbine environment 

should be (1) high in temperature tolerance, (2) lower in weight, and (3) high in strength. 

 

1) Please specify your position in the material science department: 

 

 

 

2) How many years of research experience do you have in material science? 

 

3) The following table will give you a brief knowledge about the performance of each 

nominated material to be used in the HP turbine blades regarding each criterion :  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Fatigue_crack
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Material 
alternative 

  Criteria   

 Cost Yield strength  
(MPa) 

Tensile 
strength  
( MPa) 

Young’s modulus  
(GPa) 

Service 
temperature  

(°C) 

Inconel 625 20 460 880 160 982 

Pyromet 680 25 241 421 165 540 

Haynes R-41 25 869 1040 169 982 

INCONEL 706  25 993  1300 210 872 

UDIMET 700 30 1057 1361 190 780 

Ti-6Al-2Sn-2Zr-

2Mo 
35 1015 1237 122 900 

AISI 202, 
Wrought 

30 580 980 170 910 

Rene 41 45 938 1048 210 1000 

AISI 302, 
Wrought 

30 550 920 165 710 

Rene 80 45 980 1123 200 1050 
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You are now asked based on your knowledge to rate each criterion with respect to nominated 

material to achieve the requirements for high pressure turbine blades from (0 – 100) with 0 being 

the worst grade and 100 being the best grade 

 

Material 

alternative 

  Criteria   

 Cost Yield strength  
(MPa) 

Tensile 
strength  
( MPa) 

Young’s modulus  
(GPa) 

Service 
temperature  

(°C) 

Inconel 625      

Pyromet 680      

Haynes R-41      

INCONEL 706       

UDIMET 700      

Ti-6Al-2Sn-2Zr-

2Mo 

     

AISI 202, 

Wrought 

     

Rene 41      

AISI 302, 
Wrought 

     

Rene 80      
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