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The aim of this paper is to develop a methodology for intuitionistic trapezoidal fuzzy multiple criteria group decision making
problems based on binary relation. Firstly, the similaritymeasure between two vectors based on binary relation is defined, which can
be utilized to aggregate preference information. Some desirable properties of the similarity measure based on fuzzy binary relation
are also studied. Then, a methodology for fuzzy multiple criteria group decision making is proposed, in which the criteria values
are in the terms of intuitionistic trapezoidal fuzzy numbers (ITFNs). Simple and exact formulas are also proposed to determine the
vector of the aggregation and group set. According to the weighted expected values of group set, it is easy to rank the alternatives
and select the best one. Finally, we apply the proposed method and the Cosine similarity measure method to a numerical example;
the numerical results show that our method is effective and practical.

1. Introduction

With the development of internet technology, multiple crite-
ria group decisionmaking (MCGDM) becomes an important
part of modern decision science. It has been extensively
applied to various areas, such as society, economics, manage-
ment, military, and engineering technology. Since Bellman
and Zadeh [1] initially proposed the fuzzy decision mak-
ing model based on the fuzzy mathematical theory, many
achievements have been made in literature on fuzzy multiple
criteria group decision making (FMCDM) problems [2].
Some related fuzzy decision making methods were pro-
posed in the references, for example, weighted aggrega-
tion operators [3], ordered weighted aggregation operators
[4], weighted geometric aggregation operators [5], TOPSIS
method [6], analytic hierarchy process method [7], grey rela-
tional analysismethod [8], similaritymeasures [9], and so on.
Similarity measure is an important tool to determine the
degree of similarity between two fuzzy uncertain objects,
which has successfully applied in FMCDM problem. Many
different similarity measures for FMCDM problems have
been investigated in the literature [10–14]. Based on the

extension of the Hamming distance on fuzzy sets, Szmidt and
Kacprzyk [15] introduced the Hamming distance between
two intuitionistic fuzzy sets (IFSs) to define the similarity
measure for IFSs and applied the method to group decision
making. On the other hand, Xu [16] developed some simi-
larity measures of IFSs based on the geometric distance and
defined the notions of positive ideal IFS and negative ideal
IFS, which can be applied to multiple attribute decision mak-
ing under intuitionistic fuzzy environment. But as an effective
method to solve FMCDM problem, it is rarely applied in
intuitionistic trapezoidal fuzzy group decision making.

Nehi and Maleki [17] firstly introduced the ITFN and the
operation law of ITFNs. Because the ITFN is intuitive and
easy to use, many researchers used it to express the preference
information of the experts and the criteria values. Ye [18] used
the ITFN to express the decision information. Based on the
expected values for ITFNs, he presented a handling method
for intuitionistic trapezoidal fuzzymultiple attribute decision
making. In [19], Ye used the vector similarity measures
between two ITFNs to rank the alternative, through the
weighted similarity measures between each alternative and
ideal alternative, and it was easy to select the best one.
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However, the above methods are without considering the
binary relation between decision criteria. In the complex real-
life case, it has complex binary relation between each crite-
rion. For example, in emergency resource allocation decision
making problem, food and water (i.e., criteria) have “pro-
portion” relationship (i.e., binary relation). In this case, some
traditional FMCGDM methods are unsuitable to solve this
problem. So in this paper, we introduce a new method for
FMCGDM based on binary relation of criteria, with intu-
itionistic trapezoidal fuzzy information.The rest of this paper
is arranged as follows: in the next section, we firstly introduce
some basic notions and preliminary definitions of fuzzy num-
bers and intuitionistic trapezoidal fuzzy numbers; Section 3
contains a newdegree of similarity between two vectors based
on binary relation; in Section 4, the clustering algorithm
based on binary relation similarity measure is given, and we
use an example to compare with the other two clustering
algorithms; we propose a new FMCGDM method based on
binary relation in Section 5; then, we give an illustrative
example to authenticate the method and discuss the result
of numerical example in Section 6; the results of the Cosine
similarity measure are also given for comparison; the paper
ends with conclusion in Section 7.

2. Preliminaries

We consider the following well-known description of a fuzzy
number 𝛼.

Definition 1 (Dubois and Prade [20]). Let 𝛼 be a fuzzy num-
ber in the set of real number 𝑅; its membership function is
defined as follows:
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The intuitionistic trapezoidal fuzzy number, which is
expressed by a membership function and nonmembership
function, is shown as follows.
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The following properties for ITFN can be seen in [17]. Let
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Definition 3 (Grzegrorzewski [21]). Let 𝛼 = ⟨(𝑎
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Therefore, the expected value of ITFNs based on the expected
value of IFN can be obtained as the following theorem.
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3. The New Similarity Based on Binary
Relation on Finite Set

Firstly, we introduce the definition of vector similarity mea-
sure.

Definition 5. Let𝑋 = (𝑥
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is called a similarity measure between𝑋 and 𝑌:
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1
, V
2
); 𝑄 is

defined by its membership function 𝑄(V
1
, V
2
).

Let𝑀1(𝑄) and𝑀2(𝑄) be two 0-1 matrixes; the following
equation holds true:

𝑀
1

(𝑄) +𝑀
2

(𝑄) = (Max (𝑚1
𝑖𝑗
, 𝑚
2

𝑖𝑗
))
𝑛×𝑛

. (8)

Definition 6. For the binary relation 𝑄, the relation matrixes
of the two vectors 𝑋 and 𝑌 are 𝑀 and 𝑁, respectively. By
using the norm of the matrix, the similarity measure between
two vectors is defined as follows:
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Taking (11) into (9), we get
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4. The Clustering Algorithm Based on Binary
Relation Similarity Measure

Let Φ = {𝑋
1
, 𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑝
} be a set of vector, let 𝑄 be

a binary relation on vector 𝑋
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, and let 𝛿 be a threshold

value, which is used to determine the similarity between two
vectors. If 𝑟
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The clustering algorithm based on binary relation similarity
measure can be summarized as follows.

Step 1. We form the relation matrix𝑀
𝑖
(𝑖 = 1, 2, . . . , 𝑝) based

on the binary relation 𝑄. Let 𝑈 = {𝑀
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, . . . ,𝑀

𝑝
} be a set

of relation matrix and let 𝑇 be a temporary set.

Step 2. Let 𝑘 be number of aggregation, initially, 𝑘 = 1, 𝑖 = 1;
the threshold value 𝛿 is a real number, such as 0.2, 0.3, and
0.6.

Step 3. Select𝑀
𝑖
by orders from the finite set𝑈,𝑀

𝑖
∈ 𝑈, and

then put it into the aggregation 𝐶
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; at the same time, remove

𝑀
𝑖
from 𝑈; the number of matrixes in 𝐶

𝑘
is 𝑛
𝑘
= 1.

Step 4. The linear combination of the relation matrix in 𝐶
𝑘
is

obtained by

𝑍
𝑘
=

𝑛
𝑘

∑
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𝑀
𝑖
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Step 5. If 𝑈 is nonempty, select the next relation matrix 𝑀
𝑖

(𝑖 = 𝑖 + 1) by order from 𝑈; if 𝑈 is empty, go to Step 7.

Step 6. Using (9), the similarity measure between 𝑀
𝑖
and 𝑍

can be got. If 𝑟
𝑖
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from 𝑈. Then, go to Step 4.
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Step 7. If 𝑇 is nonempty, let 𝑈 = 𝑇, 𝑘 = 𝑘 + 1; go to Step 3, or
else, 𝑇 is empty; go to Step 8.

Step 8. Record the clustering results.

Example 8. Let Φ = {𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, 𝑋
5
, 𝑋
6
} be a set of

vector,

𝑋
1
= (0.74, 0.71, 0.64, 0.69, 0.93) ;

𝑋
2
= (0.86, 0.03, 0.81, 0.14, 0.28) ;

𝑋
3
= (0.03, 1.00, 0.28, 0.26, 0.44) ;

𝑋
4
= (0.65, 0.01, 0.88, 0.61, 0.14) ;

𝑋
5
= (0.12, 0.61, 0.97, 0.68, 0.86) ;

𝑋
6
= (0.03, 0.72, 0.67, 0.79, 0.94) .

(15)

In the real life, a binary relation can be got through by
the analysis of the past data. In an illustrated example, a
binary can be given by the decision maker. So in this case,
we give the binary relation between the five elements for each
vector is “≻”; “≻” means better or more important, which
can be described in mathematic language as 𝑥

𝑖
− 𝑥
𝑗
≥ 0.4

(𝑖 = 1, 2, . . . , 5; 𝑗 = 1, 2, . . . , 5). Using the above clustering
algorithm, we get the clustering results as in Table 1; for
comparison, we also use the other clustering algorithm in
[22, 23]; the results are shown in Table 1.

In [22], Xu and Chen defined the consistency index 𝜌

to show the effectiveness of the clustering algorithm; the
larger𝜌 is, themore effective the clustering algorithm is. From
Table 1, we can see that the consistency index of our cluster-
ing algorithm is larger than the other two clustering algo-
rithms; so our clustering algorithm is more effective.

5. Multiple Criteria Group Decision Making
Method Based on Binary Relation

In this section, we present a handling method for ITFNs
multiple criteria decision making problems. Let 𝐴 = {𝐴
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members. Assume𝑄 is a binary relation on a finite criteria set
𝐶. The characteristic of alternative 𝐴
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for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑙. The decision procedure for
the proposed method can be summarized as follows.

Table 1: The clustering results for different clustering algorithm.

Different clustering
algorithm 𝑛

𝑘

Group
member

The consistency
index 𝜌 [22]

Binary relation clustering
algorithm (BRCA)

5 𝑋
1
, 𝑋
2
, 𝑋
4
,

𝑋
5
, 𝑋
6

0.6450 (BRCA)
1 𝑋

3

Vector clustering algorithm
(VCA)

2 𝑋
1
, 𝑋
2

0.3029 (VCA)1 𝑋
3

2 𝑋
4
, 𝑋
6

1 𝑋
5

Ants-clustering algorithm
(ACA)

1 𝑋
1

0.6442 (ACA)2 𝑋
2
, 𝑋
3

1 𝑋
4

2 𝑋
5
, 𝑋
6

Step 1. Using (6), we get the expected vector of all group
members for each alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑛). Let Ω

𝑖
=

{𝐸
1

𝑖
, 𝐸
2

𝑖
, . . . , 𝐸

𝑙

𝑖
} be a set of group member’s expected vectors

for the alternative 𝐴
𝑖
.

Step 2. Using the similarity model (9) and the clustering
algorithm in Section 4, for the alternative 𝐴

𝑖
, we get 𝐾 (1 ≤

𝐾 ≤ 𝑚) aggregations; if 𝑛
𝑘
is the number of expected vector

of kth aggregation, then ∑
𝑚

𝑘=1
𝑛
𝑘
= 𝑚; the group members in

the same aggregation have the relative closeness preference.

Step 3. The expected vector of the aggregation 𝐶
𝑘

𝑖
of alterna-

tive 𝐴
𝑖
can be obtained by

𝐻
𝑘

𝑖
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ℎ
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, (17)

where ℎ
𝑘

𝑖
= ∑
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𝑗
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𝑗

𝑖
and |ℎ

𝑘
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| is the Euclidean norm of

the expected vector of aggregation 𝐶
𝑘

𝑖
. Then, we calculate the

expected vector of the whole group for the alternative 𝐴
𝑖
:
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where 𝑔
𝑖

= ∑
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𝑘=1
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𝑘
/𝑚)𝐻

𝑘
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and |𝑔
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| is the length of the

expected vector of 𝑔
𝑖
.

Step 4. For each alternative 𝐴
𝑖
in 𝐴 = {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
}

(where 𝑖 = 1, 2, . . . , 𝑛), using Steps 1– 3, we can get the group
expected matrix; that is,
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Step 5. For the weight of the criteria 𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑚),

it is a trapezoidal intuitionistic fuzzy weight 𝑤
𝑗
= ⟨(𝑐

1
, 𝑐
2
,

𝑐
3
, 𝑐
4
), (𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
)⟩ (𝑗 = 1, 2, . . . , 𝑛). The expected weight
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value 𝑤
𝑗
(𝑗 = 1, 2, . . . , 𝑛) for an intuitionistic trapezoidal

fuzzy weight is obtained by (6). Then we normalize the
expected weight value 𝑤

𝑗
(𝑗 = 1, 2, . . . , 𝑛) by using the

following formula:

𝑤
𝑗
=

EV (𝑤
𝑗
)

∑
𝑛

𝑗=1
EV (𝑤

𝑗
)

. (20)

Step 6. The ranking order of all alternatives 𝐴 = {𝐴
1
, 𝐴
2
,

. . . , 𝐴
𝑛
} can be obtained as follows:

𝐹 = 𝑊
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(21)

According to the maximum principle, we can select the
best one by

Best alternative = max
1≤𝑖≤𝑛

{𝐹
𝑖
} . (22)

Then by using (22), we can easily select the best one in the
alternative set.

6. Application and Comparison

In this section, we use the illustrative example in [19] for
a multiple criteria decision making problem, which is a
demonstration of the application of the proposed FMCGDM
in Section 5.

There is a panel with four possible alternatives to invest
the money (adapted from [19]): (1) 𝐴

1
is a car company; (2)

𝐴
2
is a food company; (3) 𝐴

3
is a computer company; (4) 𝐴

4

is a television company.The investment companymust take a
decision according to the following three criteria: (1)𝐶

1
is the

social benefit; (2) 𝐶
2
is the economical benefit; (3) 𝐶

3
is the

environmental impact, where 𝐶
1
and 𝐶

2
are benefit criteria

and 𝐶
3
is cost criterion. The four possible alternatives are to

be evaluated under the above three criteria by corresponding
to the linguistic values of ITFNs for the linguistic terms, as
shown in Table 2.

Suppose we invite 3 experts to make judgment on four
alternatives. They are expected to give linguistic terms.Then,
from Table 2, we convert the linguistic terms to ITFNs, as
listed in Table 3.

The decision procedure for the proposed method can be
summarized as follows.

Step 1. Using formulation (6), we get the expected value of 3
experts for each alternative, as listed in Table 4.

Step 2. The decision maker gives the binary relation as “≻,”
which has been shown in detail in Section 4. The binary
relation between criteria is 𝐶

2
≻ 𝐶
3

≻ 𝐶
1
; “≻” can be

described in mathematic as 𝑥
𝑖
−𝑥
𝑗
≥ 0.4. For each alternative

Table 2: Nine-member linguistic values of ITFNs.

Linguistic term Linguistic values of ITFN

Absolutely low ⟨(0.0001, 0.001, 0.001, 0.001),
(0.001, 0.001, 0.001, 0.001)⟩

Low ⟨(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)⟩

Fairly low ⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

Medium ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

Fairly high ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

High ⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩

Absolutely high ⟨(1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 1.0, 1.0)⟩

𝐴
𝑖
(𝑖 = 1, 2, 3, 4), let the threshold value 𝛿 = 0.6; using

similarity model (9) and the clustering method in Section 4,
we can get the aggregation 𝐶

𝑘

𝑖
and the group members in 𝐶

𝑘

𝑖

for each alternative 𝐴
𝑖
, as listed in Table 5.

Step 3. Using (17) and (18), we can get the expected vectors of
aggregation and group, as listed in Table 5.

Step 4. The weight value of criteria 𝐶
𝑖
is shown in Table 3.

The expected weight values can be obtained by (6). Then
we normalize the expected weight value by (20) and get the
weight vector𝑊𝑇 = (0.3490, 0.3020, 0.3490).

Step 5. Using the dates in the last row of Table 5, we get the
group expected matrix:

𝐺 = (

0.5537 0.5632 0.5649 0.7353

0.7665 0.6940 0.7107 0.6199

0.3145 0.4407 0.4192 0.2739

) . (23)

Using (21),

𝐹 = 𝑊
𝑇

𝐺 = (0.3490, 0.3020, 0.3490)

× (

0.5537 0.5632 0.5649 0.7353

0.7665 0.6940 0.7107 0.6199

0.3145 0.4407 0.4192 0.2739

)

= (0.5345, 0.5599, 0.5581, 0.5394) .

(24)

Step 6. Rank the alternatives as follows:𝐴
2
≻ 𝐴
4
≻ 𝐴
3
≻ 𝐴
1
.

Thus, the most desirable alternative is 𝐴
2
in accordance

with the above result, which is the same as the C-similarity
measure in [19].

Our method’s decision results are the same as the Cosine
similarity measure’s decision results, but our method gets
the same results more rapidly than the Cosine similarity
measure, especially when the number of the experts is large
(for example 100 or 1000). Because an ITFN has 8 elements,
each preference vector has 32 elements or more; when the
group members are many, the Cosine similarity measure has
more complex computations.The decision results ofmethods
in [19] were got by the weighted similarity measure between
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Table 3: Preference values of alternative and weights given from 3 experts by ITFN.

𝐴 𝑀 𝐶
1

𝐶
2

𝐶
3

𝐴
1

1
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

2
⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

⟨(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)⟩

3
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

𝐴
2

1
⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

2
⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩ ⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

3
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

𝐴
3

1
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

2
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

3
⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

𝐴
4

1 ⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

2 ⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

⟨(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)⟩

3
⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩ ⟨(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

Weights

1
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

2
⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

3
⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)⟩

⟨(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)⟩

Table 4: The expected values of ITFNs.

Alternatives Group member 𝐶
1

𝐶
2

𝐶
3

Alternatives Group member 𝐶
1

𝐶
2

𝐶
3

𝐴
1

1 0.450 0.450 0.250 𝐴
2

1 0.650 0.650 0.450
𝐴
1

2 0.250 0.450 0.150 𝐴
2

2 0.650 0.850 0.450
𝐴
1

3 0.450 0.650 0.250 𝐴
2

3 0.450 0.650 0.450
𝐴
3

1 0.450 0.650 0.450 𝐴
4

1 0.850 0.650 0.250
𝐴
3

2 0.450 0.650 0.250 𝐴
4

2 0.850 0.650 0.250
𝐴
3

3 0.650 0.650 0.450 𝐴
4

3 0.850 0.850 0.450

Table 5: The aggregation of group member based on binary relation, when 𝛿 = 0.6.

Alternatives 𝑛
𝑘

Group member EV of aggregation EV of group set
𝐴
1

2 1, 3 (0.5974, 0.7301, 0.3319)
𝐴
1

1 2 (0.4663, 0.8393, 0.2798) (0.5537, 0.7665, 0.3145)
𝐴
2

1 1 (0.6351, 0.6351, 0.4397)
𝐴
2

1 2 (0.5599, 0.7322, 0.3877)
𝐴
2

1 3 (0.4947, 0.7145, 0.4947) (0.5632, 0.6940, 0.4407)
𝐴
3

3 1, 2, 3 (0.5649, 0.7107, 0.4192) (0.5649, 0.7107, 0.4192)
𝐴
4

3 1, 2, 3 (0.7353, 0.6199, 0.2739) (0.7353, 0.6199, 0.2739)
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each alternative and the ideal alternative. In real-world
emergence decision making problem, it is difficult to get the
ideal alternative; so our method is more applicable in fuzzy
multiple criteria large group decision making problem.

7. Conclusion

In the complex real-life case, it has complex binary relation
between each criterion.Thus, in this paper, we propose a new
method for intuitionistic trapezoidal fuzzy multiple criteria
group decision problem based on binary relation, in which
the preference values for an alternative and the weight values
of criteria take the form of ITFNs. The similarity measure
between two expected vectors of ITFNs in the vector space
based on the binary relation is suggested, and some desirable
properties are also proved. Using the similarity measure
model, we establish the clustering algorithm for FMCGDM.
We also compare our clustering algorithm with the other
two clustering algorithms in the reference. Finally, a practical
example is given; from theweighted expected vector of group,
the ranking order of all alternatives can be determined and
the best one(s) can be easily identified as well.The illustrative
example shows that the proposed method in this paper is
applicable. The comparison between our method and the
Cosine similarity measure is given to show our method’s
effectiveness; the twomethods have the same decision results,
but our method has simpler computation and gets the same
results more rapidly than the Cosine similarity measure
method. In the future, we will implement the proposed
method into a business decision support system and solve the
some real-world problem, such as facility location selection
problem, emergence decision making problem, and environ-
ment issues.
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