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A B S T R A C T   

Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for re-
searchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers 
(DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to 
combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is devel-
oped in this paper based on social choice theory and statistical mathematics. This method innovates by dividing 
the assessment into components which provides a multiple assessment analysis, assigning weights to each source 
regarding their position compared to the group for each considered criteria. This multiple-weighting process 
maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously 
assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis 
is performed and comparisons with other methods are made. Finally, conclusions are presented.   

1. Introduction 

Modern decision science is becoming an essential concept across all 
fields. Multiple criteria decision-making (MCDM) methods have been 
extensively used to assess, evaluate, or prioritise a set of alternatives 
concerning a finite set of criteria or attributes in all fields. Healthcare 
(Bharsakade et al., 2021), public administration (Pardo-Bosch & 
Aguado, 2016; Pujadas et al., 2017), robotics (Abd et al., 2014) or 
environmental and engineering sciences (Boix-Cots et al., 2022; 
Casanovas-Rubio et al., 2019; Pujadas et al., 2019) are just a few ex-
amples where MCDM methods are applied. 

However, the constant development of science and increasingly 
specific expert knowledge have made problems more complex. Nowa-
days, a single decision-maker (DM) may not be able to consider all 
relevant decision aspects (Yue, 2013). Consequently, multiple criteria 
group decision-making (MCGDM) methods are widely used in real- 
world decisions (Yue et al., 2009). Nevertheless, reconciling the opin-
ions of different DMs to reach a consensus is still a challenge (Kerr & 

Tindale, 2004; Roigé et al., 2020). 
In this regard, a wide range of MCGDM methods has been proposed 

to address this challenge, covering multiple perspectives (Koksalmis & 
Kabak, 2019). Some examine the negotiation among DMs, proposing 
discussion and debate processes. Others focus on assigning weights to 
decision-makers, either by analysing who is giving the opinion (DM- 
based methods) and factors such as their skills, experience or education 
or by analysing the position of their evaluations relative to the group 
(Data-based methods). Finally, some studies propose methods of direct 
aggregation assessments or rankings. 

Nevertheless, even with such a variety of approaches and methods, it 
is striking how three fundamental issues have been overlooked:  

(1) First, while these methods have been presented as specialised 
approaches to obtain the best group solution, it is noticeable how 
they have omitted the social choice theory scheme (Davis, 1973). 
This theory, originally based on the studies of the election theory 
(Black, 1958) and the choice according to individual values 
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Barcelona 08028, Spain. 

E-mail address: Pablo.pujadas@upc.edu (P. Pujadas).   
1 https://orcid.org/0000-0002-8462-8887.  
2 https://orcid.org/0000-0001-9532-8508.  
3 https://orcid.org/0000-0001-5634-7431. 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2022.119471 
Received 7 September 2022; Received in revised form 2 December 2022; Accepted 22 December 2022   

mailto:Pablo.pujadas@upc.edu
https://orcid.org/0000-0002-8462-8887
https://orcid.org/0000-0001-9532-8508
https://orcid.org/0000-0001-5634-7431
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.119471
https://doi.org/10.1016/j.eswa.2022.119471
https://doi.org/10.1016/j.eswa.2022.119471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119471&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 216 (2023) 119471

2

(Arrow, 1963), aims on aggregating multiple individual opinions 
and preferences to reach an acceptable collective decision for 
social welfare. To ensure a fair, ethical, and objective consensus 
considering all participants, this theory states a set of Axioms, or 
social rules, which have to be considered in the aggregation 
procedure. Even though the importance that this theory has 
nowadays, being used in most democratic decisions, most 
MCGDM methods apply mathematical approximations without 
considering the contributions that this science has made. 

(2) Current methods only consider a scenario in which all partici-
pants have an equivalent and equative influence on the decision. 
However, in the real world, DMs may have different influences on 
a decision because of the impossibility of having a homogeneous 
expert group in terms of experiences, attitudes, knowledge or 
power positions (Koksalmis & Kabak, 2019). Such circumstance 
is particularly striking in examples such as governments trying to 
introduce citizens’ opinions into their decisions (Georgiou, 
2022).  

(3) The Data-based weighing methods, based on assigning weights to 
DMs regarding their assessments and opinions, consider the 
multi-criteria DM’s evaluation as an indivisible dataset. Even 
though, some experts have stated that a component separation 
would significantly improve the group consensus (Kerr & Tin-
dale, 2004). 

Considering the above-mentioned shortcomings, this paper proposes 
a new approach to conceal different stakeholders’ opinions, overcoming 
the limitations of current methods. With this aim, a novel methodology 
is presented to determine DM weights considering social choice theory 
constraints, giving researchers and practitioners a tool that enhances 
and guarantees the decision equity and fairness for all participants while 
considering the influence factor in non-homogeneous DMs and which 
improves the group response by analysing the multi-criteria data set 
component by component. The paper is organised as follows: the next 
section presents the literature review. Section 3 explains the novel 
method. Section 4 illustrates our proposed method with an example. 
Sections 5 and 6 compare the proposed method with other approaches 
and show a sensitivity analysis. The final section gives a general 
conclusion. 

2. Literature review 

As mentioned in the previous section, there are several proposed 
methodologies to handle an MCGDM problem. Generally, they can be 
labelled as subjective or objective techniques depending on how much 
an individual DM can affect the aggregated decision (Liu & Li, 2015), as 
shown in Table 1. The subjective methodologies are divided into two 
main subgroups: negotiation methods and DM-based methods, and the 
objective methodologies, in turn, are divided into three main subgroups: 
Data-based methods, Assessment aggregation operators and Ranking 
aggregation methods, depending, in both cases, on the approach that 
they use to aggregate the different group opinions or assessments. 

Regarding the subjective methodologies, the negotiation methods 
reach a consensus based on discussions and debates among DMs. In this 
subgroup are classified examples such as the DELPHI method and its 
extensions (Greatorex & Dexter, 2000; Okoli & Pawlowski, 2004), which 
propose an interactive discussion between DMs that can become itera-
tive after the results are known, the Devil’s advocacy (Schwenk & 
Cosier, 1993), where a DM takes the role to point out all the flaws and 
risks of the proposed solution, and the Ward method (Schielke et al., 
2009), in which DMs have periods of group discussion and periods of 
individual thinking. 

Rather, the DM-based methods assign a weight to each DM based on 
interpersonal evaluations or using their individual characteristics as a 
benchmark. Within this subgroup can be included the following ap-
proaches: manager interpersonal evaluations, group interpersonal 

evaluation and individual characteristics. The manager interpersonal 
evaluations consist of either direct DMs valuations given by a manager 
or superior (Hafezalkotob & Hafezalkotob, 2017; Tabatabaei et al., 
2019). The interpersonal evaluations consider the direct DMs valuations 
given by group members using Markov chains (Bodily, 1979), an ana-
lytic hierarchy process (van den Honert, 2001), or by confidence surveys 
(Chen et al., 2018; Wu et al., 2015). These direct evaluations show the 
evaluators’ opinions regarding other DMs. Finally, among the individual 
characteristics, Slevin et al. (1998) propose a form to state the self- 
confidence of each DM in their individual assessments. Similar is the 
idea of Elbarkouky and Fayek (2011), who send each DM a form to fill in 
that considers their years and diversity of work experience, position and 
time in the company, plus enthusiasm and willingness to participate. 
DMs are weighted by comparing the group forms. Experience and 
knowledge (Borissova, 2018; Chunhua et al., 2020) and formation and 
expertise (Ivlev et al., 2015) comparisons have also been used as 
weighting characteristics. Finally, there are some discrimination and 
consistency capability comparisons among DMs (Cheng et al., 2018; 
Herowati et al., 2014). 

Even though subjective techniques are easier to apply, some scien-
tists and experts considered dishonesty or unfairness, among other is-
sues, could take place in the decision, leading to a biased consensus. 
Therefore, techniques which ignore DMs and only look at their 

Table 1 
MCGDM literature approaches  

Label Subgroup Type References 

Subjective Negotiation 
methods 

DELPHI Greatorex and Dexter 
(2000); Okoli and 
Pawlowski (2004) 

Devil’s advocacy Schwenk and Cosier (1993) 
Ward method Schielke et al. (2009) 

DM-based 
methods 

Manager 
interpersonal 
evaluation 

Hafezalkotob and 
Hafezalkotob (2017); 
Tabatabaei et al. (2019) 

Group 
interpersonal 
evaluation 

Bodily (1979); van den 
Honert (2001); Chen et al. 
(2018); Wu et al. (2015) 

Individual 
characteristics 

Slevin et al. (1998); 
Elbarkouky and Fayek 
(2011); Borissova (2018); 
Chunhua et al. (2020), Ivlev 
et al. (2015); Cheng et al. 
(2018); Herowati et al. 
(2014) 

Objective Data-based 
methods 

Group distance Theil (1963); Xu and Zhou 
(2017); Zeng et al. (2016); 
Thong et al. (2020) 

Distance to a 
centroid 

Chen et al. (2021); Lin et al. 
(2018); Yue (2012); Yue 
(2011) 

Optimisation 
algorithms 

Xu and Wu (2013); Lin and 
Wang (2018); Li et al. 
(2019); Ma et al. (2020); 
Meng et al. (2016); Wan 
et al. (2016); Dong and 
Cooper (2016); Ji et al. 
(2021) 

Evaluation 
quality 

Cabrerizo et al. (2010); Wu 
et al. (2018); Toloie- 
Eshlaghy and Farokhi 
(2011); Ye (2014); 
RazaviToosi and Samani 
(2019); Wu et al. (2020) 

Assessment 
aggregation 
operators 

Direct 
aggregation 

Akram et al. (2019); Garg 
and Kaur (2020); Zindani 
et al. (2020) 

Ranking 
aggregation 
methods 

Probability 
distribution 
techniques 

Thurstone (1927a, 1927b) 

Heuristic 
techniques 

Aslam and Montague 
(2001); Deconde et al. 
(2006); Dwork et al. (2001)  
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evaluation have been proposed as possible solutions to these problems 
(Liu & Li, 2015). These are known as objective techniques, and the last 
three subgroups can be labelled as such. 

The first objective subgroup encompasses the Data-based methods, 
which use DM evaluations to determine their weight based on four 
characteristics: Their group distance, their distance to a centroid, an 
optimisation algorithm or the evaluation quality. The group distance 
methods analyse the distance between DM assessments. A short distance 
can be considered to have a negative effect, reflecting inefficacy (Theil, 
1963) or not helping to discern between options (Xu & Zhou, 2017). On 
the other hand, it can be considered positive as a short distance implies 
compatibility (Zeng et al., 2016) or correlation (Thong et al., 2020) 
among DMs. The centroid distance methods use the distance to a central 
point, considered the agreement, to determine DM weights in a directly 
relative way. The total average has been the most widely used central 
point (Chen et al., 2021; Lin et al., 2018), also applied in the projection 
method (Yue, 2012) to determine distance among DMs and average 
vectorial projections. However, the same author has also modified the 
well-known TOPSIS (Yue, 2011) to weigh DMs by their distance to the 
ideal and non-ideal solution. The optimisation algorithms methods 
generally generate dynamic weights to determine the minimum dis-
tance. This distance can be between DMs (Xu & Wu, 2013; Lin & Wang, 
2018; Li et al., 2019; Ma et al., 2020), or among each DM and the group 
average (Meng et al., 2016; Wan et al., 2016). Some of these algorithms 
introduce a feedback phase to allow an assessment change depending on 
the results (Dong & Cooper, 2016; Ji et al., 2021). Finally, the evaluation 
quality methods use indicators to analyse the assessment worth. These 
indicators can be such as the assessment consistency (Cabrerizo et al., 
2010; Wu et al., 2018), the iterations needed to obtain the convergence 
vector (Toloie-Eshlaghy & Farokhi, 2011) or the entropy degree, un-
derstood as the lack of information in each evaluation (Ye, 2014; 
RazaviToosi & Samani, 2019; Wu et al., 2020). 

The Assessment aggregation operators, which is the second subgroup 
of objective approaches, encompasses the direct aggregation operators, 
such as the arithmetic or geometric means. These are mainly used to 
simplify MCGDM problems by converting them into MCDM. For 
example, some studies aggregate the DMs’ preferences before applying 
TOPSIS, a Technique for Order of Preference by Similarity to the Ideal 
Solution (Akram et al., 2019; Garg & Kaur, 2020), or TODIM (Zindani 
et al., 2020), an acronym in Portuguese for Interactive Multi-criteria 
Decision Making. 

Finally, the Ranking aggregation methods, based on combining the 
DM individual rankings once applied their assessments. This combina-
tion can be done using probability distribution techniques based on the 
Thurstone scale (Thurstone, 1927a) or binary comparisons (Thurstone, 
1927b), or heuristic techniques to obtain a solution by simple and 
intuitive mathematical approximations, such as Borda methods (Aslam 
& Montague, 2001) or Markov chains (Deconde et al., 2006; Dwork 
et al., 2001). 

Even though all the studies mentioned above have contributed to 
finding group consensus and explicitly aim to obtain the best group 
solution, as said in the introduction section, the social choice theory has 
been omitted in creating their proposed methodologies. Overlooking 
this theory could lead to a mathematically acceptable but socially un-
acceptable solution. In addition, these methods generally do not 
consider the existence of previous influence, which is an increasingly 
necessary feature. Lastly, the multi-criteria assessment data set is not 
considered component by component, which could lead to a consensus 
disagreement among DMs. 

3. HIVES method 

This section presents the proposed methodology to reach a consensus 
by weighting DMs. Firstly, the idea behind the development approach is 
explained plus why the method has been proposed. Then, the social 
constraints and new mathematical approaches and definitions 

encompassed by the methodology are laid out. Finally, the algorithm is 
given. 

3.1. Developed approach 

As presented in section 1, there is a lack of mathematical consensus 
approaches that include social choice theory characteristics. This is 
important as social choice theory has a long history of developing 
multiple participant aggregation approaches beyond mathematical ap-
proximations, including psychological or social welfare considerations 
to ensure fairness and equity in a decision. Furthermore, the literature 
review highlighted other possible improvements. For example, compo-
nent division is proposed as some authors have presented a consensus 
group response improvement (Kerr & Tindale, 2004) with its use. 
Additionally, how the previous influence is addressed must be analysed 
as in real-world decisions, participants might not have same importance. 
With this in mind, we needed to develop a methodology that could attain 
5 objectives. 

First, consensus must be reached by maximizing group satisfaction. 
Second, social choice theory must be considered in the form of mathe-
matical methodology constraints. Third, the method must be able to 
handle previously given weights or influence. Fourth, methodology 
must be applicable even with no alternative knowledge. Finally, analysis 
technique must divide the MCGDM into components to improve the 
satisfaction response. 

The proposed methodology has been developed considering these 
objectives. It was named Hierarchical Integration of Values and Evalu-
ations under Social constraints (henceforth HIVES). HIVES is a dynamic 
methodology which can use the initial participant influence and their 
assessments given in non-negative percentage values to simulate group 
behaviour, called hive behaviour (HB). HB is used to maximise group 
satisfaction in all components of the decision, as every component is 
specifically analysed. The representation of how HIVES works is shown 
in Fig. 1, inspired by beehive consensus. 

Every DM assessment contains a weight vector regarding the ana-
lysed criterion set. This vector is affected by the DMs respective previous 
influence which is represented by different hive roles, such as a worker 
bee or a queen bee, and it means that HIVES can consider participants 
equally or unequally. Once assessments have been influenced by DM 
weights, every component of the set of criteria is allocated in a unique 
HIVES analysis. This analysis applies statistical mathematics with social 
theory constraints to find the most desirable group solution. 

This solution is based on a game methodology where DMs obtain a 
score regarding their position compared to the group. This score is 
assigned using two new concepts: the social ideal consensus point (SICP) 
and the score bell. The DMs’ score places their weights. Finally, the 
consensus is reached by a component aggregation. 

3.2. Social choice theory constraints 

The social choice theory has been used to analyse multiple ways of 
combining individual preferences and opinions to reach an acceptable 
collective decision. In this theoretical framework, numerous axioms, 
statements or premises taken to be true have been proposed to ensure 
fairness and equity. Ramanathan and Ganesh (1994) presented 4 of the 
most common Axioms and provided another one to consider. These five 
have been used to develop statistical mathematics HIVES social re-
straints and have been adapted to consider criteria preferences instead 
of alternatives due to the HIVES domain. The following are the social 
choice Axioms that are used:  

- Axiom 1: Universal domain. The group preference aggregation 
method should define a group preference pattern for all individual 
preferences that are logically possible. In other words, it should not 
be impossible to provide the group preference for any set of indi-
vidual preferences. 
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- Axiom 2: Pareto optimality. Let A and B be two criteria. If all group 
members prefer A to B, then the group decision should favour A. 

- Axiom 3: Independence of irrelevant criteria. If a criterion is elimi-
nated from consideration, the new group ordering for the remaining 
criteria should be equivalent (i.e., same ordering) to the original 
group ordering for the same criteria.  

- Axiom 4: Non-dictatorship. There is no individual whose preferences 
automatically become the group’s preferences, independently of the 
preferences of other group members.  

- Axiom 5: Recognition. Group preferences are reached only after 
considering all the members’ preferences. This means that all DM or 
participants must be considered. 

Regarding the HIVES method, two Axiom characteristics should be 
highlighted. First, Axiom 3 “Independence of irrelevant criteria” has 
been adapted to state criteria orderings instead of alternatives. As HIVES 
works with percentual criteria scores, the same ordering can be pro-
duced. It means that the new methodology must be able to accept the 
deletion of a criterion. Second, Axiom 4 “non-dictatorship” is directly 
related to previous DM weights. This means that, in an initial condition 
affected by equality, the method ensures this Axiom. If there are pre-
vious weights to be applied, that Axiom might be violated. For example, 
if one participant holds 60 % of the decision power before applying 
HIVES, it is obvious that this Axiom cannot be applied. 

Besides these occasional highlights, HIVES ensures an adaptable 
methodology which improves the process’s objectivity and neutrality. 
At the same time, social choice Axioms increase fairness and equity 
throughout the technique. 

3.3. Mathematical concepts developed 

As has been said, HIVES is based on an HB concept generated by DMs 
assessments. These group assessments are introduced to two new 
methodological concepts, the social ideal consensus point (SICP) and 
score bell, which create a game where all DM-introduced assessments 
obtain a score from SICP distance and the Axioms are used as mathe-
matical restrictions. These scores are used to weight DMs in every 
component of the criterion set. 

3.4. Social ideal consensus point (SICP) 

Even though the data average has been widely used as an ideal 
consensus, some academic studies have questioned its usefulness (Crott 
et al., 1991; Davis et al., 1997). Moreover, its direct use may violate the 
presented Axioms. For example, an extremely biased DM might modify 
the result, violating Axiom 4. Therefore, in the present paper a novel 
ideal consensus, named as the social ideal consensus point (SICP), is 
developed. 

The SICP is generated by the average of the criterion assessments 
encompassed between the first and third quartile data. These assess-
ments have the highest probabilities of being accepted by the group due 
to its position and are placed in a range named influence zone (IZ). On 
the other hand, criterion assessments encompassed by the minimum and 
first quartile and third quartile and maximum are placed in a range 
named dispersion zone (DZ). These assessments are far from possible 
consensus, meaning these DMs must bend to reach a solution. As seen in 
Fig. 2, IZ and DZ representation creates a combination of boxplot and 
Japanese candle. 

Therefore, the SICP is determined as follows. For convenience, in this 
paper, let M = {1, 2, …, m}, N = {1, 2, …, n}; i ∈ M and j ∈N. And let C =
{c1, c2, c3, …, cn} be a discrete set of criteria and D = {d1, d2, d3, …, dm} a 
group of DMs. Suppose each di ∈ D evaluates the importance of each 
criterion of the criteria set by a weight vector Wi = {wi1, wi2, wi3, …, 
win}, such that 0 ≥ wij ≥ 100, 

∑n
j=1wij = 100 for ∀ j ∈ N and ∀ i ∈ M. 

Then, all member group evaluations constitute a decision matrix 
expressed by: 

(1)  

where wij expresses the weighting of DM di over the criterion cj. For each 
criterion cj there is a SICPj generated by the set of weights wij which are 
placed between the first and third quartile of cj data. Therefore, let Fj =

{j1, j2, …, jf}; jr ∈ Fj be the discrete subset of cj in which its components 
meet Q1

j ≤ wij ≤ Q3
j, where Q1

j and Q2
j are the first and third quartiles, 

respectively. These considered weights form a set Wrj,j = {wj1,j, wj2,j, wj2, 

j, …, wjf,j} which are used to get the SICPj, as follows: 

SICPj =
1
jf

⋅
∑jf

jr=j1
wrj,j (2)  

3.5. Score bell (SB) 

Once the SICP has been presented, a scoring tool to judge each DM 
position over the group in every component is needed. The selected tool 
is the score bell (SB), a function similar to a probability density function 
for two reasons: (i) Its ability to link the assessments’ influence status 
(IZ, DZ, SICP) shown in Fig. 2 and its actual relevance with the data set 
and (ii) the possibility of treating the function in parts, assigning fixed 
values that turn the considered Axioms into mathematical restrictions. 

Hence, SB is formed by 4 functions depending on its respective 
application zone. The first encompasses from the minimum assessment 
to Q1 value. The second encompasses from Q1 value to the SICP. The 

Fig. 1. Representation of how HIVES works.  
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third comprises from SICP to Q3 value. The fourth includes from Q3 
value to maximum assessment. Every SB equation contains a relative 
position score. This means that a score value must be given to equation 
limits. Thus, for each criterion there are four SB equations: 

SB1 = e
Ln(SMean)⋅

(
xrel

xQ1 − xmin

)f

(3)  

SB2 = (Smax + 1) − e
Ln(Smax+1− SMean)⋅

(

1− xrel
xMax inf. − xQ1

)f

(4)  

SB3 = (Smax + 1) − e
Ln(Smax+1− SMean)⋅

(
xrel

xQ3 − xMax inf.

)f

(5)  

SB4 = e
Ln(SMean)⋅

(

1− xrel
xmax − xQ3

)f

(6)  

where:  

- SMean: Q1 and Q3 turning point scores.  
- SMax: SICP score.  
- xrel: Relative DM assessment for analysed criteria regarding SB 

domain as shown in Fig. 3.  
- xmin: Minimum assessment value.  
- xQ1: Q1 assessment value.  
- xMax inf.: SICP value.  
- xQ3: Q3 assessment value.  
- xmax: Maximum assessment value.  
- f: SB shape form. 

HIVES development highlighted some characteristics. Minimum 
score must be 1 due Axiom 5 restriction. Medium score of 50 is given to 
Q1 and Q3 values. A maximum score of 100 is given to SICP. A shape 
factor of 2 has been used to express the influence difference between 
zones. Thus, four SB equations are: 

SB1 = e
Ln(50)⋅

(
xrel

xQ1 − xmin

)2

(7)  

SB2 = (101) − e
Ln(51)⋅

(

1− xrel
xMax inf. − xQ1

)2

(8)  

SB3 = (101) − e
Ln(51)⋅

(
xrel

xQ3 − xMax inf.

)2

(9)  

SB4 = e
Ln(50)⋅

(

1− xrel
xmax − xQ3

)2

(10) 

As expressed, these four equations shown in Fig. 4 are directly 
related to the influence treatment. DZ equations exponentially decrease 
the DM score once their opinion moves away from SICP. On the other 
side, IZ equations consider an exponentially flat rising score, given the 
SICP proximity. Once the SB is generated, each DM receives a score 
vector Si = {Si1, Si2, Si3, …, Sin}, for all i ∈ M, directly related to Wi =

{wi1, wi2, wi3, …, win}, which defines its score on each criterion. The DM 
weights will be defined by the score vectors. 

3.6. Previous influence treatment 

Once the social constraints have been presented, and the HIVES 
mathematical concepts explained, how HIVES manages previous influ-
ence will be shown. In the real world, equal influence is barely normal. 
Differing knowledge levels, work hierarchy or citizen representation 
percentages are all situations in which decision participants might have 
different weights. HIVES brings in the “vote-casting” concept to intro-
duce different initial influences into the methodology. 

As presented, HIVES uses DM assessments to generate IZ, DZ, SICP 
and SB. In other words, HIVES considers each assessment as a DM vote to 
generate the process. When a previous influence exists, HIVES translates 
it into a different number of votes cast, taking the DM with less influence 
as a basis. Thus, the number of votes cast by each di is: 

vi =
Influencei

Influencemin
(11) 

Then, Axiom 5 of representativity is ensured as the less weighted DM 
is represented. Slight differences between DM are dependent on the 
relative aspect of the weight, as in some cases they will be neglected. 
This system is widely used in democracy, where parliamentary positions 
are assigned by a minimum number of votes. 

3.7. HIVES algorithm 

Once the mathematical and social concepts used have been pre-
sented, the HIVES algorithm to determine DM consensus and weights is 

Fig. 2. Representation of influence zones.  

Fig. 3. xrel position example regarding SB domain.  
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shown in Fig. 5. Notice that previous MCDM preparation steps are 
included. These are DM selection, influence analysis and evaluation 
gathering. Even though these steps are common in every MCDM process, 
their inclusion is used to show the vote casting technique and compo-
nent separation application. 

As shown, representation of HIVES behaviour starts once the vote 
casting technique has been used to consider possible previous influence 
and component separation has been performed to divide the MCDM 
problem in cj analysis. For each criterion, there is a set generated by 
decision maker’ assessments regarding its importance. For each one of 
them, HIVES follows these steps: 

• Step 1: SICP calculation. Minimum, Q1, Q3 and maximum assess-
ments are used to generate IZ, and DZ. SICP is determined by Eq. (2).  

• Step 2: DM assessment zone designation and xrel derivation. As SB is 
generated by 4 functions with their respective domains, each DM 
assessment must be positioned in one of them as shown in Fig. 3 and 
its xrel must be obtained.  

• Step 3: Score bell application. With DM assessment xrel, IZ, DZ and 
SICP knowledge, the score bell can be applied by equations (7) to 
(10). Each DM will obtain a score vector Si directly related its Wi. 
These score vectors form a HIVES score matrix (HSM) as follows: 

(12)    

• Step 4: DM criteria weight. For every cj each DM obtains a score 
percentage regarding other DMs. This percentage represents di 
weight over the analysed criteria and is obtained using Eq. (13). 
These weights constitute the percentage score matrix (14): 

λij =
sij

∑m
i=1sij

⋅100 (13)  

(14)    

• Step 5: Criteria weights. Once DMs have obtained their respective 
decision weights, a weight sum method (WSM) is used to aggregate 
the assessments. Thus, criteria cj weight γj is: 
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Fig. 4. Graphic representation of Score Bell.  

Fig. 5. HIVES process representation.  
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γj =
∑m

i=1
λij⋅wij (15)    

• Step 6: Component aggregation. The sum of the criteria may not be 
100 as HIVES maximizes DM satisfaction over all criteria. This means 
that, in some cases, the correction factor shown in equation (16) is 
needed to transform the result into 

∑n
j=1γj = 100. This correlation 

factor does not affect the final decision as the relative aspect between 
criteria weights remains constant. Then, the final modified criteria 
weight γ’j is (17): 

β =
100

∑n
j=1γj

(16)  

γ′

j = β⋅γj (17)  

4. Illustrative example 

In the following, an instance adapted from Shih et al. (2007) is 
provided to illustrate the proposed approach. 

A local chemical company is trying to recruit an online manager. The 
company’s human resources department provides relevant selection 
tests as the benefit attributes to be evaluated. These objective tests 
include knowledge tests (language test, education test, professional test, 
and safety test), and skill tests (professional skills and computer skills). 
After these objective tests, the candidates (as alternatives marked as A1, 
A2, …, A15) obtain the scores shown in Table 2. Then, seven DMs 
(marked as d1, d2, …, d7) give the elicited criteria weights shown in 
Table 3, which must be aggregated to rank the candidates set. Impor-
tance equity is supposed between DMs; thus, they have the same initial 
weight. 

The HIVES method is applied using this information. First, compo-
nent separation must be performed: 

c1 = { 23, 10, 7, 15, 38, 25, 30 } (18)  

c2 = { 8, 9, 9, 10, 17, 25, 20 } (19)  

c3 = { 14, 7, 14, 10, 8, 15, 10 } (20)  

c4 = { 30, 45, 20, 35, 20, 10, 17 } (21)  

c5 = { 15, 20, 25, 20, 2, 15, 13 } (22)  

c6 = { 10, 9, 25, 10, 15, 10, 10 } (23)    

• Step 1: SICP calculation. For each criterion, IZ, DZ and equation (2) 
are applied to obtain Table 4 data.  

• Step 2: DM assessment zone designation and xrel derivation. With 
Table 4 data, each DM assessment can be placed in one SB zone as 
shown in Table 5. Table 6 contains the relative distance of each 
assessment placed in HB.  

• Step 3: Score bell application. With DM assessment xrel, IZ, DZ and 
SICP knowledge, the score bell is applied by Eqs. (7) to (10). Table 7 
shows the DM score results over each criterion.  

• Step 4: DM criteria weight. Given the Table 7 DM scores, equation 
(13) is applied. Thus, Table 8 DM weights are obtained for each 
criterion.  

• Step 5: Criteria weights. Table 8 data is aggregated by equation (15) 
to obtain the criteria weight set shown in equation (24). A shown, the 
criteria sum is not 100 %. Therefore, equation (16) is applied to 
obtain the correlation factor, which is introduced to the criteria 
weight set to obtain the modified weight set shown in equation (25). 

γj = { 21.25, 12.14, 11.34, 23.50, 16.40, 10.18 } (24)  

γ′
j = { 22.41, 12.80, 11.96, 24.78, 17.30, 10.74 } (25) 

These weight values can be directly applied in Table 2 to obtain 
Table 9 data. This table includes the criteria with their respective 
weights, the aggregated sum and the final ranking. 

5. Comparisons with other methods 

In this section, the HIVES method is compared to other methods. The 
methods to be compared here are ETOPSIS and Projection (Yue, 2011, 
2012). These methods have been selected as they focus on assigning 
weights to DMs analysing their assessments, being part of the same 
HIVES subgroup, the objective Data-based methods. Furthermore, both 
are recently presented techniques that have had a huge scientific impact 
on the MCGDM field and use non-negative real numbers. 

To begin the comparison, the theoretical part of each method is 
analysed in Table 10. This table contains a theoretical comparison with 

Table 2 
Decision matrix with the candidates set and their respective scores.  

Candidates c1 c2 c3 c4 c5 c6 

A1 11 22 16 69 67 16 
A2 92 72 10 31 45 36 
A3 74 49 15 6 20 42 
A4 77 87 72 94 35 98 
A5 51 81 13 9 21 75 
A6 90 68 12 4 57 39 
A7 32 77 13 8 51 90 
A8 87 15 37 6 4 31 
A9 67 45 38 10 93 42 
A10 55 79 14 33 41 61 
A11 16 89 80 23 13 45 
A12 28 96 11 74 19 17 
A13 59 78 75 90 50 93 
A14 83 30 68 94 39 13 
A15 48 58 34 28 30 20  

Table 3 
Proposed criteria weights.  

DMs c1 c2 c3 c4 c5 c6 

d1 23 8 14 30 15 10 
d2 10 9 7 45 20 9 
d3 7 9 14 20 25 25 
d4 15 10 10 35 20 10 
d5 38 17 8 20 2 15 
d6 25 25 15 10 15 10 
d7 30 20 10 17 13 10  

Table 4 
Criteria assessments characteristics.   

c1 c2 c3 c4 c5 c6 

Min.  7.00  8.00  7.00  10.00  2.00  9.00 
Q1  12.50  9.00  9.00  18.50  14.00  10.00 
SICP  21.00  11.25  12.00  23.33  17.50  10.00 
Q3  27.50  18.50  14.00  32.50  20.00  12.50 
Max.  38.00  25.00  15.00  45.00  25.00  25.00  

Table 5 
DM assessments assigned zones.  

DMs c1 c2 c3 c4 c5 c6 

d1 3 1 3 3 2 3 
d2 1 2 1 4 3 1 
d3 1 2 3 2 4 4 
d4 2 2 2 4 3 3 
d5 4 3 1 2 1 4 
d6 3 4 4 1 2 3 
d7 4 4 2 1 1 3  
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the main characteristics, making it possible to distinguish elements. 
Although three methods share the same purpose, there are differ-

ences that must be raised. However, we must highlight that each method 
has its own advantages and disadvantages. No one method performs 
better in all situations. For example, ETOPSIS can be used not only to 
obtain maximum profit but to avoid maximum risk. There can be situ-
ations in which DMs might decide to forfeit profit to gain safety. The 
ETOPSIS and Projection method could also be easier to apply. 

However, a practical comparison is also needed to compare the 
HIVES performance with other methods. With this aim, illustrative 
example data is used to obtain ETOPSIS and Projection criteria weight 
vectors shown in Table 11. This table also contains a resume of HIVES 
criteria assigned weights. As can be seen, even though the percentage 
values are similar, there are some noticeable differences. Criteria 1 and 5 

obtain a higher value, as HIVES has been able to analyse the existence of 
discordant DMs, d3 and d5, and has raised its value. The opposite occurs 
in Criteria 2 and 6, as d3, d6, and d7 gave discordant values and HIVES 
has decreased its value. 

Nevertheless, to analyse each method’s performance, a comparison 
through ranking correlation needs to be done. With this aim, Spearman’s 
(Kendall & Smith, 1939) correlation coefficient to evaluate the statistical 
difference between rankings is selected, as it is one of the most widely 
used ranking comparison coefficients (Kannan et al., 2014). Its value 
ranges from − 1 to 1 and is calculated as follows: 

Table 6 
DM assessments xrel regarding their respective zones.  

DMs c1 c2 c3 c4 c5 c6 

d1  2.00  0.00  2.00  6.67  1.00  0.00 
d2  3.00  0.00  0.00  12.50  2.50  0.00 
d3  0.00  0.00  2.00  1.50  5.00  12.50 
d4  2.50  1.00  1.00  2.50  2.50  0.00 
d5  10.50  5.75  1.00  1.50  0.00  2.50 
d6  4.00  6.50  1.00  0.00  1.00  0.00 
d7  2.50  1.50  1.00  7.00  11.00  0.00  

Table 7 
DM scores once SB equations have been applied.  

DMs c1 c2 c3 c4 c5 c6 

d1  99.55  1.00  50.00  93.00  93.57  100.00 
d2  3.20  50.00  1.00  1.00  50.00  1.00 
d3  1.00  50.00  50.00  94.51  1.00  1.00 
d4  93.91  97.63  95.26  12.23  50.00  100.00 
d5  1.00  89.14  2.66  94.51  1.00  12.23 
d6  96.57  1.00  1.00  1.00  93.57  100.00 
d7  9.69  10.12  95.26  14.20  26.77  100.00  

Table 8 
DM weights for each studied criterion.  

DMs c1 c2 c3 c4 c5 c6 

d1  32.65 %  0.33 %  16.94 %  29.96 %  29.62 %  24.14 % 
d2  1.05 %  16.73 %  0.34 %  0.32 %  15.83 %  0.24 % 
d3  0.33 %  16.73 %  16.94 %  30.44 %  0.32 %  0.24 % 
d4  30.80 %  32.66 %  32.27 %  3.94 %  15.83 %  24.14 % 
d5  0.33 %  29.82 %  0.90 %  30.44 %  0.32 %  2.95 % 
d6  31.67 %  0.33 %  0.34 %  0.32 %  29.62 %  24.14 % 
d7  3.18 %  3.39 %  32.27 %  4.57 %  8.47 %  24.14 %  

Table 9 
Alternatives’ weighted criteria, criteria aggregation and its ranking position.  

Candidates c1 ⋅ γ2 c 2 ⋅ γ2 c3 ⋅ γ2 c4 ⋅ γ2 c5 ⋅ γ2 c6 ⋅ γ2 Σ Raking 

A1  246.56  281.58  191.43  1710.01  1159.17  171.81  3760.56 10 
A2  2062.14  921.53  119.64  768.27  778.55  386.58  5036.70 4 
A3  1658.68  627.15  179.47  148.70  346.02  451.01  3411.02 14 
A4  1725.92  1113.51  861.43  2329.58  605.54  1052.35  7688.34 1 
A5  1143.14  1036.72  155.54  223.04  363.32  805.37  3727.13 12 
A6  2017.31  870.33  143.57  99.13  986.16  418.79  4535.30 7 
A7  717.27  985.52  155.54  198.26  882.35  966.45  3905.38 9 
A8  1950.07  191.98  442.68  148.70  69.20  332.89  3135.52 15 
A9  1501.78  575.95  454.64  247.83  1609.00  451.01  4840.21 5 
A10  1232.80  1011.12  167.50  817.83  709.34  655.03  4593.63 6 
A11  358.63  1139.11  957.15  570.00  224.91  483.22  3733.03 11 
A12  627.61  1228.70  131.61  1833.93  328.72  182.55  4333.11 8 
A13  1322.46  998.32  897.33  2230.45  865.05  998.66  7312.27 2 
A14  1860.41  383.97  813.57  2329.58  674.74  139.60  6201.87 3 
A15  1075.90  742.34  406.79  693.92  519.03  214.77  3652.74 13  

Table 10 
Theoretical Comparison between ETOPSIS, Projection and HIVES method.  

Characteristic ETOPSIS Projection HIVES 

Objective Selection and 
ranking of a 
number of 
experts 

Selection and 
ranking of a 
number of experts 

Selection and 
ranking of a number 
of experts 

Alternative 
knowledge 
needed 

Yes Yes No 

Number of DM N≧2 N≧2 N≧3 
Previous 

influence 
treatment 

No No Yes 

Component 
separation 

No No Yes 

Ideal solutions (3) Average, 
negative, 
maximum 

(1) Average (1) Majority 
average 

Key decision Relative 
closeness 

Projection Punctuation over 
group behaviour 

Core factors The distance from 
each individual 
decision to ideal 
decision 

Both distance and 
angle from each 
individual decision 
to ideal decision 

Relativeness 
between individual 
punctuation and 
group punctuation 

Final decision Ranking of a 
number of 
alternatives 

Ranking of a 
number of 
alternatives 

Criteria weights 
decision and 
ranking of a number 
of alternatives 

Goal(s) Both maximum 
profit and 
minimum risk/ 
regret 

Maximum profit Maximum profit 
and group 
satisfaction  

Table 11 
Criteria weights for each method.  

Method c1 c 2 c3 c 4 c5 c 6 

HIVES 22.41 % 12.80 % 11.96 % 24.78 % 17.30 % 10.74 % 
ETOPSIS 21.00 % 13.88 % 11.22 % 25.45 % 15.88 % 12.56 % 
Projection 22.01 % 14.26 % 10.99 % 25.20 % 15.12 % 12.43 %  
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ρ = 1 −
6S

(
d2
)

(n3 − n)
(26)  

where:  

• S(d2) is the sum of differences between two ranks of each observation  
• n are the considered alternatives 

Therefore, HIVES, ETOPSIS and Projection final rankings must be 
compared with each DM’s individual ranking. Applying Table 11 
weights to Table 2 participants’ scores, both ETOPSIS and Projection 
methods obtain the same final ranking R = {A4, A13, A14, A2, A9, A10, A6, 
A12, A7, A5, A11, A1, A15, A3, A8}, but different from the HIVES ranking 
shown in Table 9. The Spearman correlation between these rankings and 
HIVES is shown in Table 12. This table gives a correlation value for each 
DM and the compared method, including the aggregated value. 

As can be seen, this table highlights the correlation improvement 
that the HIVES method achieves. One of the main reasons for this good 
performance lies in the component separation. Even though some DMs 
have proposed “biased” assessments, HIVES has safeguarded their 
weightage in their “non-biased” criteria, leading to a more accurate and 
fair analysis. For example, d3, d5, d6 and d7, which received a lower 
weight in some criteria due to their discordance with the group, 
improved their correlation with the final ranking. However, d1 and d2 
correlation drops have to be pointed out. 

In resume, the application of the method has highlighted three 
points. (i) First, HIVES is easily computable even in complex situations. 
(ii) In fact, HIVES outperforms other methods is in these complex situ-
ations, with a larger number of criteria and DMs. However, for non- 
complex MCGDM problems the use of other methods would ensure an 
acceptable result. (iii) HIVES group profit maximisation has been 
proved. Using the component division, the method has been able to 
detect the majorities in each criterion and to generate a ranking with 
more DM correlation, improving the group profits. 

6. Sensitivity analysis 

Some technical HIVES aspects must be studied in detail to ensure that 
the proposed social axioms are met. In these cases, the method is typi-
cally proven in the most critical situations. In HIVES, critical situations 
are those generated by 3 DMs. This is the minimum number of partici-
pants required to obtain the statistic HIVES data. Furthermore, “biased” 
DM existence could lead to high alteration of results. 

Once the number of participants has been selected, a double sensi-
tivity analysis is proposed as shown in Fig. 6. The first focuses on HIVES 
behaviour with 3 DMs with extreme assessment combinations. It con-
tains 6 different case studies with 3 possible assessment types. The first 
type is Neutral (N), in which all criteria have the same value. The second 
type is Extremist (E), in which just one criterion matters. The last type is 
Biased (B), in which one criterion is sacrificed to benefit another. 

The second sensitivity analysis is focused on previous influence and 
vote casting technique. It contains 3 different case studies regarding 
minimal, subtle differences and huge influences. 

6.1. HIVES behaviour analysis 

As presented in Fig. 6. HIVES behaviour analysis is carried out with 3 
DMs, considering 6 situations. Moreover, these situations consider DMs 
+ 1 criteria to highlight technical DM’ weight distributions. 

First, two situations are related to a unified point of view. 3 Neutral 
assessments consider criteria weight equity. 3 Homogeneous Extremist 
assessments consider the same criteria at the same time. Situations 3 to 5 
are related to a consensus majority. In these cases, 2 out of 3 DMs share 
interests. The last situation presents total disagreement. All DMs use 
Extremist assessments although all of them focus on a different criterion. 

As HIVES methodology has been clearly presented in the previous 
section, results are shown directly in Table 13. This table shows the DMs 
group, expressed as D = {d1, d2, d3} and the proposed criteria set C =
{c1, c2, c3, c4}. For each cj, j ∈ N, each DM assigns a weight to each 
criterion obtaining the weight vector denoted as Wi = {w1, w2, w3, w4}, 
i ∈ M. The same table gives the HIVES DM weight allocation for each 
criterion, expressed as λi = {λ 1, λ2, λ3, λ4}, i ∈ M, and the final aggre-
gation is shown as the result. 

6.2. Influence and vote casting analysis 

The impact of considering the proposed HIVES previous influence 
method is studied by a vote casting analysis. This analysis allows to show 
how DM weights change as their assessments change while the initial 
influence is static, to shed light in the relation between the initial DMs 
influence and the DMs influence assigned by HIVES. 

As presented in Fig. 6, the analysis considers a group of 3 DMs 
expressed as D = {d1, d2, d3} in 3 different situations. Only one criterion, 
expressed as C = {c}, is considered to specifically analyse the weight 
flow between DMs. This weight flow is analysed by considering two DM 
assessment scenarios encompassed in each situation, as shown in 
Table 14. The study of the DMs’ obtained weights in each scenario and 
its comparison, will allow to know how HIVES assigns these weights and 
how they change in the proposed situation. Furthermore, both samples 
are prepared to contain critical assessment points such as nullity, 
average and totality. 

Once analysis characteristics have been presented, the vote casting 
technique is applied in all three situations. For each situation, an initial 
DM influence vector, expressed as α = {α1, α2, α3} and 

∑3
i=1αi = 100, for 

each decision maker i ∈ M, is proposed. 
The first situation positions a DM with minor influence on the de-

cision. Public opinion concerning municipal projects or decisions could 
be one example of this kind of influence. The proposed α for this situ-
ation is α = {5, 40, 55} in which the first DM presents the minor in-
fluence. The second situation considers a subtle influence difference 
between DMs. A company role influence in a decision could represent 
this situation. In these cases, a CEO’s double vote or influence is usual. 
The proposed α for this situation is α = {20, 40, 40}. The latter situation 
studies the impact of a dominant DM on the decision. As an example, it 
could be administrative or company decisions where secondary opinions 
might need to be considered. The proposed α for this situation is α = {10, 
10, 80}. 

The proposed α vectors are translated into votes by the vote casting 
equation (11). These are expressed as V = {v1, v2, v3} corresponding to 
each DM’s respective vote. With this equation, the obtained number of 
votes cast V S1 = {1, 8, 11}, V S2 = {1, 2, 2}, V S3 = {1, 1, 8} for each 
situation. As HIVES methodology has been clearly presented in the 
previous section, results are shown directly in Table 15. This table 
contains DM votes, DM assessments, the obtained DM weights, and the 
result. 

6.3. Results discussion 

Regarding the behaviour sensitivity analysis, HIVES has clearly 

Table 12 
Spearman’s correlation between each DM and the method ranking.  

DMs HIVES ETOPSIS Projection 

d1 0,414 0,471 0,471 
d2 − 0,089 − 0,032 − 0,032 
d3 0,146 0,061 0,061 
d4 0,257 0,143 0,143 
d5 0,689 0,632 0,632 
d6 − 0,161 − 0,304 − 0,304 
d7 0,571 0,514 0,514 
Total 1,829 1,486 1,486  
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presented the expected reactions. In situations where DMs present a 
unified point of view, DM weights are equally distributed by HIVES. This 
parity is obtained because all DM assessments coincide with SICP. A 
similar condition is shown in situations 3, 4 and 5. HIVES can detect the 
group majority (2 DMs) and makes it possible to prioritize shared in-
terests. Even then, the discordant DM consideration must be stated to 
meet Axiom 5. With a low decision weight, this DM can slightly modify 
the final decision. Furthermore, this slight modification is related to the 
strength of the discordant assessment. However, Axiom 4 of non- 
dictatorship is met as the other assessments have no preferences. 

Fig. 6. Double sensitivity analysis representation.  

Table 13 
HIVES behaviour sensitivity analysis data results.    

c1 c2 c3 c4 c1 c2 c3 c4  

d1 Situation 1  25.00 %  25.00 %  25.00 %  25.00 %  100.00 %  0.00 %  0.00 %  0.00 % Situation 2 
d2  25.00 %  25.00 %  25.00 %  25.00 %  100.00 %  0.00 %  0.00 %  0.00 % 
d3  25.00 %  25.00 %  25.00 %  25.00 %  100.00 %  0.00 %  0.00 %  0.00 % 
λ1  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 % 
λ2  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 % 
λ3  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 %  33.33 % 
Result  25.00 %  25.00 %  25.00 %  25.00 %  100.00 %  0.00 %  0.00 %  0.00 % 
d1 Situation 3  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 % Situation 4 
d2  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 %  25.00 % 
d3  100.00 %  0.00 %  0.00 %  0.00 %  25.00 %  25.00 %  0.00 %  50.00 % 
λ1  49.75 %  49.75 %  49.75 %  49.75 %  33.33 %  33.33 %  49.75 %  49.75 % 
λ2  49.75 %  49.75 %  49.75 %  49.75 %  33.33 %  33.33 %  49.75 %  49.75 % 
λ3  0.50 %  0.50 %  0.50 %  0.50 %  33.33 %  33.33 %  0.50 %  0.50 % 
Result  25.37 %  24.88 %  24.88 %  24.88 %  25.00 %  25.00 %  24.88 %  25.12 % 
d1 Situation 5  100.00 %  0.00 %  0.00 %  0.00 %  100.00 %  0.00 %  0.00 %  0.00 % Situation 6 
d2  100.00 %  0.00 %  0.00 %  0.00 %  0.00 %  100.00 %  0.00 %  0.00 % 
d3  25.00 %  25.00 %  25.00 %  25.00 %  0.00 %  0.00 %  100.00 %  0.00 % 
λ1  49.75 %  49.75 %  49.75 %  49.75 %  0.50 %  49.75 %  49.75 %  33.33 % 
λ2  49.75 %  49.75 %  49.75 %  49.75 %  49.75 %  0.50 %  49.75 %  33.33 % 
λ3  0.50 %  0.50 %  0.50 %  0.50 %  49.75 %  49.75 %  0.50 %  33.33 % 
Result  99.63 %  0.12 %  0.12 %  0.12 %  33.33 %  33.33 %  33.33 %  0.00 %  

Table 14 
DM assessment scenarios introduced in each situation.   

c 1 c2 

d1  00.00 %  50.00 % 
d2  50.00 %  0.00 % 
d3  100.00 %  100.00 %  

Table 15 
HIVES previous influence sensitivity analysis data results.   

Situation 1 Situation 2 Situation 3  

c1 c2 c 1 c2 c1 c2 

v1 1 1 1 
v2 8 2 1 
v3 11 2 8 
d1 0.00 % 50.00 % 0.00 %  50.00 %  0.00 % 50.00 % 
d2 50.00 % 0.00 % 50.00 %  0.00 %  50.00 % 0.00 % 
d3 100.00 

% 
100.00 
% 

100.00 
%  

100.00 %  100.00 % 100.00 
% 

λ1 0.11 % 9.52 % 0.50 %  33.33 %  0.12 % 0,33 % 
λ2 42.06 % 38.10 % 49.75 %  33.33 %  0.33 % 0,12 % 
λ3 57.83 % 52.38 % 49.75 %  33.33 %  99.54 % 99,54 % 
Result 78.86 % 57.14 % 74.62 %  50.00 %  99.71 % 99.71 %  

D. Boix-Cots et al.                                                                                                                                                                                                                              



Expert Systems With Applications 216 (2023) 119471

11

When these DMs have a clear preference, as in situation 5, the neutral 
assessment does not modify the criteria prioritization. In this case, C1 is 
maintained as the first criteria while c2 to c4 receive minimum weight. 
At the same time, situations 2, 3, 4 and 5 demonstrate compliance with 
Axiom 2. When the majority presents a criteria preference, the result is 
consistent with this preference. Obviously, neutral assessments do not 
count as a preference as every criterion is assessed equally. 

On the other hand, situation 6 presents a complete disagreement 
between DMs. HIVES detect majority in the null assessments, assigning 
equity between weights. In this situation, as in situation 2, Axiom 3 is 
shown to be met completely. The independence of irrelevant criteria is 
pointed out as these (c4 and c2, c3, c4 in situations 6 and 2 respectively) 
can be deleted without affecting the process. 

As a HIVES behaviour sensitivity analysis conclusion, good perfor-
mance has been demonstrated. It was possible to compute all critical 
situations, which ensures that Axiom 1 is met. Furthermore, component 
division presents a breakthrough. It makes it possible to consider mul-
tiple analysis by assigning numerous weights to DMs regarding the 
group. These weights only depend on their given assessments, as they 
are compared with the group. When a bias or extreme assessment is 
given, HIVES can reduce its impact on the group while it is being 
considered. The quantity or consensus level of participants are factors 
related to this reduction. 

The previous influence sensitivity analysis has been held by the vote 
casting technique proposed by HIVES. Over the 3 case studies, DM 
assessment allocation importance and the number of votes are high-
lighted. For example, situation 1 d1 multiplies its decision weightage by 
more than 86 from sample 1 to sample 2. In this second sample, it even 
has 10 % of the decision weightage while it cast 5 % of votes (1 out 20), 
doubling its proposed initial influence. This large influence increase is 
generated by the d1 assessment position, as the situation 1 case 2 SICP is 
placed at 57.50 %. As d1 has proposed the SICP closest assessment, it 
obtains a huge influence rise. This SICP distance effect can also be seen 
in situation 2. With just one vote, in case 2, d1 assumes the same weight 
has other DMs who double this DM initial influence. 

Another HIVES vote casting technique characteristic is vote pro-
portionality. In situations 1 and 2, decision-makers d2 and d3 obtain 
proportional weight regarding their vote numbers. In situation 1 case 1, 
each vote corresponds to 5.26 % weightage. 42.06 % and 57.83 % of 
weight is assigned to d2 and d3 with 8 and 11 votes respectively. In 
situation 2, case 2, d2 and d3 obtain a 49.75 % weight as every vote 
corresponds to a 24.88 % weightage. 

This particularity can be explained by how the vote casting tech-
nique affects the inherent HIVES statistical mathematics. The first and 
third quartiles are being altered by N repeated assessments. An influence 
zone is generated between d2 and d3 assessments. If the remaining DM 
assessment is not placed inside this interval, HIVES considers SICP as the 
average of these values. In this case, every influence zone vote receives 
the same weight. On the other hand, if the remaining DM assessment is 
placed inside the influence zone, it affects SICP generation. This DM 
receives more weight as its assessment is closer to SICP than others, 
which generates Q1 and Q3. 

Situation 3 examines how HIVES can be monopolized with enough 
initial influence. In both cases, this situation shows that Axiom 4 of non- 
dictatorship is not met. Nevertheless, this Axiom is pointless with this 
initial influence difference. In any condition when a DM possesses such 
influences, Axiom 4 must be ignored as it is violated before the aggre-
gation process. 

Moreover, HIVES vote casting technique has ensured Axiom 1 of 
universal domain and Axiom 5 of recognition. Any initial influence can 
be processed, and every DM is represented in the final decision. Also, the 
analysis has presented the technique’s good performance. Different in-
fluence opinions can be successfully aggregated with a coherent result 
weightage. Furthermore, these initial weights are effectively and 
coherently affected by DM opinion position. In non-extreme situations 
such as situation 3, the decision weights are altered positively if the 

participant has a rational group opinion. 

7. Conclusion 

A specific method has been developed in this paper, based on social 
theories and statistical mathematics to aggregate DM opinions in a 
group decision environment. 

HIVES has no data distribution limits, and it can handle an indefinite 
set of DMs and criteria if the minimum requirement of 3 DMs is met. 
Furthermore, no alternative knowledge is needed, allowing HIVES to be 
applied previously in the process. This could ensure interference 
avoidance generated by alternatives that had already been presented. 
The inclusion of social axioms and component division ensures fairness, 
equity, and neutrality for the participants. DMs receive specific attribute 
weights regarding their own proposed assessments and the group 
behaviour. When a DM proposes an assessment which facilities 
consensus, it obtains larger influence. This feature is improved consid-
ering HIVES previous ability to influence. DMs who support group 
consensus with commonly rational assessments can greatly improve 
their decision influence. In a non-extreme situation, this HIVES ability 
could even modify the DMs’ weightage ranking. 

Nevertheless, it should be made clear that the use of the proposed 
method is limited by the requirement that the given data is in crisp 
percentual numbers. In future research, the proposed method should be 
extended to support situations in other data forms, e.g., intervals, lin-
guistic variables, or fuzzy numbers. 
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