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Abstract 

In today's competitive industry landscape, it is crucial to assess manufacturing 

processes to enhance efficiency. However, identifying the critical factors that impact 

productivity can be a daunting task due to their intricate nature. To tackle this 

challenge, we propose a novel approach that combines fuzzy logic with TOPSIS to 

comprehensively evaluate manufacturing company efficiency. The method presented 

by the author treats this as a complex MCDM problem and accommodates diverse 

factors with distinct weights, which are crucial for a thorough efficiency analysis. 

This approach was applied to evaluate potential manufacturing entities in Cyprus 

through a three-step process. Firstly, relevant criteria were curated using literature 

and expert insights, endowing them with linguistic terms that were then translated 

into fuzzy values. Next, fuzzy TOPSIS evaluated efficiency, and sensitivity analysis 

gauged the criteria weight impact on decisions. This article introduces a new 

methodology for holistic manufacturing company evaluation. The synergy of fuzzy-set 

theory and TOPSIS proves effective amidst the ambiguity inherent in performance 

measurement. By uniting these methodologies, this study advances manufacturing 

performance evaluation, aiding informed decision-making. The research contributes 

a pioneering method to enhance manufacturing efficiency assessment while 

accommodating uncertainty through fuzzy logic integration. 

1. INTRODUCTION 

Performance measurement is one of the most effective tools for identifying areas in 

manufacturing companies that lead to optimized improvement. Measuring the performance 

of manufacturing companies is essential to provide a financial view to the stakeholders. 

Manufacturing performance evaluation is not new, however, it has changed considerably. 

Some companies consider efficiency metrics that only capture a small part of the 

actual/true productivity (Ahmad & Dhafr, 2002).  

Conventional methods in performance measurement cannot help managers to 

continuously and effectively monitor, control, and improve industrial operations 

(Pourjavad & Mayorga 2019). Manufacturing performance evaluation was primarily 
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focused on only one or two criteria at a time, such as cost and labor efficiency (Norman & 

Bahiri, 1972), total productivity (Barlev & Callen, 1986; National Research Council, 

1979), quality and output volume (Leachman, Pegels & Kyoon Shin, 2005), infrastructure 

(Sakakibara, Flynn, Schroeder & Morris, 1997).  

The other drawback is that studies have usually analyze performance against individual 

indicators and have reported them separately (Leachman et al., 2005). However, taking this 

approach rather than in a consolidated manner through an aggregate index of performance 

cannot illustrate a thorough picture of a firm’s performance to the senior managers 

(Leachman et al., 2005). Focusing on only one or two dimensions can lead to more harm 

than good. Making decisions based on incomplete metrics can cause improper actions. 

Therefore, considering multiple factors was required instead of examining manufacturing 

efficiency based on a particular dimension (Eccles, 1991; Kaplan, Norton, 2005). 

To solve a problem involving multiple factors, researchers and scholars use 

multicriteria decision-making (MCDM) methods (Chowdhury & Paul, 2020; Emovon & 

Oghenenyerovwho, 2020; Stojčić, Zavadskas, Pamučar, Stević & Mardani, 2019). Making 

decisions while there are multiple criteria and usually conflicting ones refers to MCDM 

(Kahraman, Onar & Oztaysi, 2015). Multicriteria decision-making methods have been 

used to select the best alternative out of a group of possibilities as well as to find a solution 

for the problems regarding sorting or ranking the potential alternatives (Palczewski & 

Sałabun, 2019). Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 

introduced by Hwang and Yoon (Hwang & Yoon, 1981a), is one of the effective MCDM 

methods. TOPSIS has been widely used in many challenges and real-world issues due to 

its comprehensive mathematical concept, simplicity, and computational efficiency 

(Palczewski & Sałabun, 2019). 

Since the output of MCDM methods is highly dependent on its weight value, the 

method itself is unable to conclusively process imprecise and uncertain data within 

decision criteria (Liu, Kwong, Zhang & Li, 2019). Combining with fuzzy set theory, the 

methods of MCDM are successfully modified and improved (Bashir et al., 2018; 

Karczmarczyk, Jankowski & Wątróbski, 2018; Sotoudeh-Anvari, 2022). When holding 

comprehensive knowledge is impossible, fuzzy set theory is applied to describe 

complexity, uncertainty, and ambiguity valid to decision-making processes (Zadeh, 1996). 

The TOPSIS method improves by the combination with fuzzy set theory to solve imprecise 

and uncertain issues (Sotoudeh-Anvari, 2022). Fuzzy TOPSIS differentiates between two 

kinds of criteria and then selects solutions that are close to positive ideal solutions and far 

from negative ones (Rouyendegh, Yildizbasi, and & Üstünyer, 2020a). 

Fuzzy TOPSIS has been successfully applied in different areas such as privacy 

measurement (Guo, Yao, Lin & Xu, 2023), risk assessment (Awodi, Liu, AyoImoru & 

Ayodeji, 2023), selection of location (Hooshangi, Gharakhanlou & Razin, 2023), analyzing 

smart manufacturing technologies (Abdullah, Al-Ahmari & Anwar, 2023), sustainability 

(Regragui, Sefiani, Azzouzi & Cheikhrouhou, 2023; Solangi, Tan, Mirjat & Ali, 2019), 

retail industries (Rouyendegh, Yildizbasi & Yilmaz, 2020b), green suppliers performance 

evaluation (Dos Santos, Godoy & Campos, 2019; Hajiaghaei-Keshteli, Cenk, Erdebilli, 

Ozdemir & Gholian-Jouybari,  2023), suppliers performance evaluation (Chatterjee & 

Stević, 2019; Hosseinzadeh Lotfi, Allahviranloo, Shafiee & Saleh, 2023). 

As a first attempt in the literature, this study thus proposes a hybrid method that 

combines fuzzy logic with TOPSIS to assess the efficiency of manufacturing companies in 
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addressing the criteria respected by managers and stakeholders. In other words, 

considering the number of factors involved, this study formulates the performance of 

manufacturing companies as an MCDM problem. The main focus of this article is to find a 

novel method to evaluate the performance of manufacturing companies in a consolidated 

manner through an aggregate index of performance rather than for each indicator. The 

approach presented in this study may interest senior managers and decision-making 

authorities in the industry.  

2. PRELIMINARIES 

Definition 1. Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} be the universal discourse. A fuzzy set �̃� in 𝑈 is 

defined as follows: 

�̃� = {(𝑢, 𝜇�̃�(𝑢))|𝑢 ∈ 𝑈} 

𝜇�̃�(𝑢): U → [0,1] 
(1) 

 

where 𝜇�̃�(𝑢) is the membership function. 

Definition 2. The membership function of a triangular fuzzy number (TFN), 𝑓 =
(𝑓1, 𝑓2, 𝑓3) is given by  

 

𝜇�̃�(𝑢) =

{
  
 

  
 

0,   𝑢 ≤ 𝑓1,
𝑢 − 𝑓1
𝑓2 − 𝑓1

,   𝑓1 ≤ 𝑢 ≤ 𝑓2,

𝑓3 − 𝑢

𝑓3 − 𝑓2
,   𝑓2 ≤ 𝑢 ≤ 𝑓3,

0,   𝑢 > 𝑓3

 

 

(2) 

Fig. 1 shows the triangular fuzzy number 𝑓. 

 

Fig. 1. Triangular fuzzy number �̃� 

Definition 3. Let �̃� = (𝒇𝟏, 𝒇𝟐, 𝒇𝟑) and �̃� = (𝒆𝟏, 𝒆𝟐, 𝒆𝟑) be two TFNs and 𝒌 ≥ 𝟎 be any real number. We 

can have the following operations: 

1. Multiplication: 

𝑓 × �̃� = (𝑓1 × 𝑒1, 𝑓2 × 𝑒2, 𝑓3 × 𝑒3) 
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𝑘𝑓 = (𝑘𝑓1, 𝑘𝑓2, 𝑘𝑓3) 
 

2. Addition:  

𝑓 + �̃� = (𝑓1 + 𝑒1, 𝑓2 + 𝑒2, 𝑓3 + 𝑒3) 
3. Subtraction: 

𝑓 − �̃� = (𝑓1 − 𝑒1, 𝑓2 − 𝑒2, 𝑓3 − 𝑒3) 
4. Division: 

𝑓/�̃� = (𝑓1/𝑒1, 𝑓2/𝑒2, 𝑓3/𝑒3) 
𝑓/𝑘 = (𝑓1/𝑘, 𝑓2/𝑘, 𝑓3/𝑘) 

𝑘/𝑓 = (𝑘/𝑓1, 𝑘/ 𝑓2, 𝑘/ 𝑓3) 
 

Definition 4. The distance between 𝑓 = (𝑓1, 𝑓2, 𝑓3) and �̃� = (𝑒1, 𝑒2, 𝑒3): 

𝑑(𝑓, �̃�) = √
1

3
[(𝑓1 − 𝑒1)

2 + (𝑓2 − 𝑒2)
2 + (𝑓3 − 𝑒3)

2] 

 

Definition 5. A matrix with at least one fuzzy number element is a fuzzy matrix. 

 

Definition 6. A variable whose values are linguistic terms is called a linguistic variable. 

The linguistic variables and the corresponding fuzzy ratings used for the alternatives and 

criteria are listed in Tab. 1 and 2, respectively, with a scale of 1–9. The representation of 

rating scales for the alternatives and criteria are presented in Fig. 2 and 3, correspondingly.  

The review of more than 200 publications that focus on fuzzy MCDM, shows that more 

articles extended TOPSIS into a fuzzy environment by using triangular membership rather 

than trapezoidal membership (Salih, Zaidan, Zaidan & Ahmed, 2019; Sotoudeh-Anvari, 

2022). The triangular fuzzy membership was used since it is the largest, easiest, and most 

used membership function applied by scholars. They are simple to interpret and 

computationally easy to use in a fuzzy environment (Nila & Roy, 2023). By this means, in 

this article triangular fuzzy membership was employed. 

 

 Tab. 1. Linguistic variables for alternatives 

Linguistic variables Abbreviation TFN 

Very Poor  VP (1,1,3) 

Poor  P (1,3,5) 

Fair F (3,5,7) 

Good G (5,7,9) 

Very Good VG (7,9,9) 
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        Tab. 2. Linguistic variables for criteria 

Linguistic variables Abbreviation TFN 

Very Low VL (1,1,3) 

Low L (1,3,5) 

Medium M (3,5,7) 

High H (5,7,9) 

Very High VH (7,9,9) 

 

 

Fig. 2. Rating scale for alternatives 

 

 

Fig. 3. Rating scale for criteria 

3. PROPOSED METHOD 

The fuzzy TOPSIS approach uses fuzzy evaluations of criteria and alternatives in 

TOPSIS. The method selects the alternative with the maximum similarity to the positive-

ideal solution (Hwang & Yoon, 1981b). Considering the difficulty of measuring an 

alternative’s performance precisely, employing a fuzzy approach provides the chance to 

assign relative importance to attributes for real-world situations (Kuo, Tzeng & Huang, 

2007; Yang & Hung, 2007). The fuzzy TOPSIS method is proposed as a suitable approach 

for solving MCDM issues under uncertainty (Chen, 2000). 

Employing the fuzzy TOPSIS, this study proposes a novel systematic hybrid approach 

that can be used to evaluate the efficiency of manufacturing companies. In the following, 

the proposed method is described. 
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3.1. Selection of criteria  

The first step is selecting criteria for measuring the performance of manufacturing 

companies. Since the criteria have a significant impact on evaluating the performance of 

manufacturing companies, decision-makers and managers need to consider different 

criteria. Asking the opinion of experts and with reference to the literature (Alqahtani, 

Gupta & Nakashima, 2019; Anderl, Haag, Schützer & Zancul, 2018; Attaran, 2017; 

Bartosik-Purgat & Ratajczak-Mrożek, 2018; Büchi, Cugno & Castagnoli, 2020; Choi, 

2018; Coxon, Kelly & Page, 2016; Druehl, Carrillo & Hsuan, 2018; Khorram Niaki & 

Nonino, 2017; Lee, Bagheri, & Jin, 2016; Lu, 2017; Markopoulos & Hosanagar, 2018; 

Pourjavad & Mayorga, 2019; Rezk, Singh Srai & Williamson, 2016; Xu, Xu & Li, 2018), 

eleven criteria have been chosen which are derived from five main categories. The list of 

criteria is shown in Tab. 3. 

Then, each criterion is classified into Benefits (+) and Costs (-). Benefit means the 

higher the value, the more preferable the alternative is, while Cost means the lower the 

value, the more preferable the alternative is. 

Tab. 3. List of criteria 

Category 
𝐾𝑎: 

Productivity 

𝐾𝑏: 

Production 

Rate 

𝐾𝑐: Production Cost 𝐾𝑑: Sale Amount 𝐾𝑒: Quality Cost 

Criteria 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 𝐾7 𝐾8 𝐾9 𝐾10 𝐾11 

 

Average 

ratio 

(monthly) 

Production 

rate 

Direct 

material 

cost 

Direct 

labor 

cost 

Factory 

burden 

Internal 

sale 

(detail) 

Internal 

sales 

(general) 

External 

sale 

Failure 

cost 

(internal) 

Failure 

cost 

(external) 

Prevention 

cost 

Class + + - - - + + + - - - 

 

3.2. Numerical Example 

In this study, the author proposes using the fuzzy TOPSIS technique to measure the 

efficiency of manufacturing companies, with a focus on the textile industry in Cyprus. This 

is important because textiles make up a significant portion of the country's exports, and 

their success in producing and exporting high-quality products is crucial for the nation's 

economy. Three potential manufacturing companies were evaluated using a list of decision 

criteria and linguistic terms provided by expert decision-makers. These experts were 

directors of manufacturing and production line inspectors with at least 15 years of industry 

experience.  

The proposed fuzzy multicriteria approach for evaluating the efficiency of 

manufacturers consists of the following steps. 

Step 1: Alternatives and criteria are rated. 

Suppose 𝑀 =  {𝑀1,𝑀2, . . . , 𝑀𝑗} is a set of J possible alternatives which are to be evaluated 

against n criteria, 𝐾 =  {𝐾1, 𝐾2, . . . , 𝐾𝑖}. In this article, three potential textile manufacturing 

companies in Cyprus were selected to be evaluated and compared against the selected list 

of criteria. 

Three decision-makers (D1, D2, D3), using the linguistic terms presented in Tab. 1, 

assessed the ratings of alternatives against each criterion. The ratings of three alternatives 

(M1, M2, and M3) under eleven criteria (𝐾1, 𝐾2, 𝐾3, . . . , 𝐾11) are shown in Tab. 4. Using the 
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linguistic terms in Tab. 2, the decision-makers assessed the significance of the criterion. 

The assessment results are shown in Tab. 5. 

 

    Tab. 4. Linguistic evaluation for alternatives 

Criteria Alternatives 

  M1   M2   M3 

  D1 D2 D3   D1 D2 D3   D1 D2 D3 

K1 VG VG VG   VG VG G   G G VG 

K2 VG VG G   G G VG   G G G 

K3 VG G VG   G VG VG   F G F 

K4 VG VG VG   G VG G   VG VG VG 

K5 G VG G   G VG G   F G G 

K6 VG VG VG   F G F   F G G 

K7 G G VG   F G F   P G P 

K8 VG VG G   P G P   VP F VP 

K9 VP VP P   VP P VP   VG VG VG 

K10 P P F   P F VP   VG VG VG 

K11 G VG VG   G VG G   VP P VP 

 

Step 2: Aggregate the weight of criteria. 

Fuzzy triangular numbers �̃�𝑘 = (𝑙𝑘 ,𝑚𝑘 , 𝑢𝑘), 𝑘 =  1, 2, . . . , 𝐾, is the fuzzy ratings given by 

all decision-makers. The aggregated fuzzy rating is determined by �̃�𝑘 = (𝑙,𝑚, 𝑢). Here, 

 

𝑙 = min
𝑘
{𝑙𝑘},   𝑚 =

1

𝐾
∑𝑚𝑘 , 𝑢 = max

𝑘
{𝑢𝑘}

𝐾

𝑘=1

 (3) 

 

The fuzzy rating and importance weight of the kth decision-maker is indicated as �̃�𝑖𝑗𝑘 =

(𝑙𝑖𝑗𝑘 , 𝑚𝑖𝑗𝑘 , 𝑢𝑖𝑗𝑘) and �̃�𝑖𝑗𝑘 = (𝑦𝑗𝑘1, 𝑦𝑗𝑘2, 𝑦𝑗𝑘3), correspondingly, where 𝑖 =  1, 2, . . . , 𝑚,

𝑗 =  1, 2, . . . , 𝑛, then the aggregated fuzzy ratings of alternatives with respect to each 

criterion is defined as �̃�𝑖𝑗 = (𝑙𝑖𝑗, 𝑚𝑖𝑗 , 𝑢𝑖𝑗). Here, 

 

𝑙𝑖𝑗 = min
𝑘
{𝑙𝑖𝑗𝑘},   𝑚𝑖𝑗 =

1

𝐾
∑𝑚𝑖𝑗𝑘 ,   𝑢𝑖𝑗 = max

𝑘
{𝑢𝑖𝑗𝑘}

𝐾

𝑘=1

 (4) 

 

The aggregated fuzzy weights of each criterion are defined as �̃�𝑗  =  (𝑦𝑗1, 𝑦𝑗2, 𝑦𝑗3), where 

 

𝑦𝑗1 = min
𝑘
{𝑦𝑗𝑘1},   𝑦𝑗2 =

1

𝐾
∑𝑦𝑗𝑘2,   𝑦𝑗3 = max

𝑘
{𝑦𝑗𝑘3}

𝐾

𝑘=1

 (5) 
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Tab. 5. Linguistic evaluation for criteria 

Criteria 

 
Decision-makers 

 
D1 D2 D3 

K1 H VH H 

K2 VH H VH 

K3 H M M 

K4 M M M 

K5 H M H 

K6 M H M 

K7 VH VH H 

K8 M L L 

K9 H H VH 

K10 H H M 

K11 H M H 

 

For instance, for the first criterion (K1), the aggregated fuzzy weight was denoted by �̃�𝑗 =

(𝑦𝑗1, 𝑦𝑗2 , 𝑦𝑗3), where 

𝑦𝑗1 = min(5,7,5)
𝑘

,     𝑦𝑗2 =
1

3
∑(7 + 9 + 7),      𝑦𝑗3 = max

𝑘
(9,9,9)

3

𝑘=1

 

 �̃�𝑗 = (5,7.667,9) 

 

Tab. 6 shows the calculated �̃�𝑗 for all criteria. 

Step 3: Construct the fuzzy decision matrix. 

The construction of the fuzzy decision matrix (�̃�) for the alternatives and the criteria is as 

follows: 

 

�̃� =    [

�̃�11 �̃�12 ⋯ �̃�1𝑛
�̃�21 �̃�22 ⋯ �̃�2𝑛
⋯ ⋯ ⋯ ⋯
�̃�𝑚1 �̃�𝑚2 ⋯ �̃�𝑚𝑛

] , 𝑖 =  1, 2, . . . , 𝑚;  𝑗 =  1, 2, . . . , 𝑛 

 

(6) 

�̃� = (�̃�1, �̃�2, �̃�3) (7) 

 

Then, by using Eqn. 3 the aggregate fuzzy weights of the alternatives were calculated. For 

instance, to calculate the aggregate rating for the first manufacturing company (M1) against 

criterion (K1), based on the rating given by the decision-makers, the following calculation 

was done: 

𝑙𝑖𝑗 = min
𝑘
(7,7,7),   𝑚𝑖𝑗 =

1

3
∑(9 + 9 + 9),   𝑢𝑖𝑗 = max

𝑘
(9,9,9)

3

𝑘=1

 

�̃�𝑖𝑗 = (7,9,9) 
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Tab. 6. Aggregated fuzzy criteria weights 

Criteria  Decision-makers  Aggregated 

weights (�̃�𝑗) 

 D1 D2 D3  

K1 (5,7,9) (7,9,9) (5,7,9) (5,7.667,9) 

K2 (7,9,9) (5,7,9) (7,9,9) (5,8.333,9) 

K3 (5,7,9) (3,5,7) (3,5,7) (3,5.667,9) 

K4 (3,5,7) (3,5,7) (3,5,7) (3,5,7) 

K5 (5,7,9) (3,5,7) (5,7,9) (3,6.333,9) 

K6 (3,5,7) (5,7,9) (3,5,7) (3,5.667,9) 

K7 (7,9,9) (7,9,9) (5,7,9) (5,8.333,9) 

K8 (3,5,7) (1,3,5) (1,3,5) (1,3.667,7) 

K9 (5,7,9) (5,7,9) (7,9,9) (5,7.667,9) 

K10 (5,7,9) (5,7,9) (3,5,7) (3,6.333,9) 

K11 (5,7,9) (3,5,7) (5,7,9) (3,6.333,9) 

 

Tab. 7 shows the value of  �̃�𝑖𝑗 for all alternatives (Mj) with respect to all criteria (Ki). 

Tab. 7. Aggerate fuzzy decision matrix for alternatives 

Criteria  Alternatives  

 M1 M2 M3 

K1 (7,9,9) (5,8.333,9) (5,7.667,9) 

K2 (5,8.333,9) (5,7.667,9) (5,7,9) 

K3 (5,8.333,9) (5,8.333,9) (3,5.667,9) 

K4 (7,9,9) (5,7.667,9) (7,9,9) 

K5 (5,7.667,9) (5,7.667,9) (3,6.33,9) 

K6 (7,9,9) (3,5.667,9) (3,6.33,9) 

K7 (5,7.667,9) (3,5.667,9) (1,4.333,9) 

K8 (5,8.333,9) (1,4.333,9) (1,2.333,7) 

K9 (1,1.667,5) (1.1.667,5) (7,9,9) 

K10 (1,3.667,7) (1,3,7) (7,9,9) 

K11 (5,8.333,9) (5,7.667,9) (1,1.667,5) 

 

Step 4: Normalize the fuzzy decision matrix. 

The normalized fuzzy decision matrix �̃� is defined as follows: 

 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛, 𝑖 =  1, 2, . . . , 𝑚;  𝑗 =  1, 2, . . . , 𝑛; (8) 

where, 

�̃�𝑖𝑗 = (
𝑙𝑖𝑗

𝑢𝑗
∗ ,
𝑚𝑖𝑗

𝑢𝑗
∗ ,
𝑢𝑖𝑗

𝑢𝑗
∗),   𝑢𝑗

∗ = max
𝑖
(𝑢𝑖𝑗)   (Benefit criteria,+) (9) 

 

�̃�𝑖𝑗 = (
𝑙𝑗
−

𝑢𝑖𝑗
,
𝑙𝑗
−

𝑚𝑖𝑗
,
𝑙𝑗
−

𝑙𝑖𝑗
),   𝑙𝑗

− = min
𝑖
(𝑙𝑖𝑗)   (Cost criteria,−) (11) 
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For instance, the calculation of the normalized rating for the first alternative (M1) against 

criterion (K1) was: 

𝑙𝑗
− = min

𝑖
(7,5,5) = 5 

𝑢𝑗
∗ = max

𝑖
(9,9,9) = 9 

The category of (K1) was a Benefit (+), so 

 

�̃�𝑖𝑗 = (
7

9
,
9

9
,
9

9
) = (0.778,1,1) 

Tab. 8 shows the normalized fuzzy decision matrix. 

   

  Tab. 8. Normalized fuzzy decision matrix 

Criteria  Alternatives  

 M1 M2 M3 

K1 (0.778,1,1) (0.556,0.926,1) (0.556,0.926,1) 

K2 (0.556,0.926,1) (0.556,0.852,1) (0.556,0.852,1) 

K3 (0.333,0.36,0.6) (0.333,0.36,0.6) (0.333,0.529,1) 

K4 (0.556,0.556,0.714) (0.556,0.652,1) (0.556,0.556,0.714) 

K5 (0.333,0.391,0.6) (0.333,0.391,0.6) (0.333,0.474,1) 

K6 (0.778,1,1) (0.333,0.629,1) (0.333,0.629,1) 

K7 (0.556,0.852,1) (0.333,0.629,1) (0.111,0.629,1) 

K8 (0.556,0.926,1) (0.111,0.481,1) (0.111,0.481,1) 

K9 (0.2,0.6,1) (0.2,0.6,1) (0.111,0.111,0.143) 

K10 (0.143,0.273,1) (0.143,0.333,1) (0.111,0.111,0.143) 

K11 (0.111,0.12,0.2) (0.111,0.130,0.2) (0.2,0.6,1) 

 

Step 5: Construct the weighted normalize matrix. 

The matrix  �̃� is defined as follows: 

 

𝐻 = [ℎ̃𝑖𝑗]𝑚×𝑛  where ℎ̃𝑖𝑗 = �̃�𝑖𝑗(. )�̃�𝑗 , 𝑖 =  1, 2, . . . , 𝑚;  𝑗 =  1, 2, . . . , 𝑛; (11) 

 

where �̃�𝑗 is the weights of evaluation criteria. 

To construct �̃�, for the alternatives, the �̃�𝑗 values from the last column of Tab. 6 and �̃�𝑖𝑗 
values from Tab. 8 were used. For instance, for alternative (M1) and criterion (K1) we have 

the following: 

 

ℎ̃𝑖𝑗 = (5,7.667,9)(. )(0.778,1,1) = (3.889,7.667,9) 

 

Tab. 9 shows the weighted normalized fuzzy decision matrix for alternatives. 

Step 6: Calculate the fuzzy positive (FPIS, M∗) and negative (FNIS, M−) ideal solutions.  

(FPIS, M∗) is founded as: 

 

(FPIS,𝑀∗) = (ℎ̃1
∗ , ℎ̃2

∗ , … , ℎ𝑛
∗ )   

ℎ̃𝑗
∗ = max

𝑖
{ℎ𝑖𝑗3},  𝑖 =  1, 2, . . . , 𝑚;  𝑗 =  1, 2, . . . , 𝑛;  

(12) 
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(FNIS, M−) is founded as: 

 

(FNIS,𝑀−) = (ℎ̃1
−, ℎ̃2

−, … , ℎ𝑛
−) 

ℎ̃𝑗
− = min

𝑖
{ℎ𝑖𝑗1},  𝑖 =  1, 2, . . . , 𝑚;  𝑗 =  1, 2, . . . , 𝑛;  

(13) 

 

For instance, (FPIS, M∗)=(9, 9, 9) and (FNIS, M−)=(2.778, 2.778, 2.778), for criterion (K1). 

The last two columns of Tab. 9 shows (FPIS, M∗) and (FNIS, M−) for all criteria. 

 

  Tab. 9. Weighted normalized matrix, (FPIS, M∗) and (FNIS, M−) 

Criteria  Alternatives 

 M1 M2 M3  (FPIS, M∗) (FNIS, M−) 

K1 (3.889,7.667,9) (2.778,7.099,9) (2.778,7.099,9)  (9,9,9) (2.778,2.778,2.778) 

K2 (2.778,7.716,9) (2.778,7.099,9) (2.778,7.099,9)  (9,9,9) (2.778,2.778,2.778) 

K3 (1,2.04,5.4) (1,2.04,5.4) (1,3,9)  (9,9,9) (1,1,1) 

K4 (1.667,2.778,5) (1.667,3.261,7) 1.667,2.778,5)  (7,7,7) (1.667,1.667,1.667) 

K5 (1,2.478,5.4) (1,2.478,5.4) (1,3,9)  (9,9,9) (1,1,1) 

K6 (2.333,5.667,9) (1,3.3.568,9) (1,3.568,9)  (9,9,9) (1,1,1) 

K7 (2.778,7.098,9) (1.667,5.247,9) (0.556,5.247,9)  (9,9,9) (0.556,0.556,0.556) 

K8 (0.556,3.395,7) (0.111,1.765,7) (0.111,1.765,7)  (7,7,7) (0.111,0.111,0.111) 

K9 (1,4.6,9) (1,4.6,9) (0.556,0.852,1.286)  (9,9,9) (0.556,0.556,0.556) 

K10 (0.428,1.727,9) (0.492,2.111,9) (0.333,0.704,1.286)  (9,9,9) (0.333,0.333,0.333) 

K11 (0.333,0.76,1.8) (0.333,0.826,1.8) (0.6,3.8,9)  (9,9,9) (0.333,0.333,0.333) 

 

Step 7: Calculate the distance of each alternative from (FPIS, M∗) and (FNIS, M−).  

 𝑞𝑖
∗ is computed as: 

 

𝑞𝑖
∗ = ∑ 𝑞ℎ(ℎ̃𝑖𝑗, ℎ̃𝑗

∗
)𝑛

𝑗=1 ,   𝑖 =  1, 2, . . . , 𝑚  (14) 

 
𝑞𝑖
− is computed as: 

 

𝑞𝑖
− = ∑ 𝑞ℎ(ℎ̃𝑖𝑗, ℎ̃𝑗

−
)𝑛

𝑗=1 ,   𝑖 =  1, 2, . . . , 𝑚  (15) 

 

For instance, for alternative (M1) and the criterion (K1), the distances were given by 

 

𝑞ℎ(𝑀1,𝑀
∗) = √

1

3
[(3.889 − 9)2 + (7.667 − 9)2 + (9 − 9)2] = 3.050 

𝑞ℎ(𝑀1,𝑀
−) = √

1

3
[(3.889 − 2.778)2 + (7.667 − 2.778)2 + (9 − 2.778)2] = 4.613 

In the same way, the distances for the other criteria for all alternatives were calculated as 

shown in Tab. 10. 

Then, the distances 𝑞𝑖
∗ and 𝑞𝑖

− were calculated using Eqns. 14 and 15. For instance, for 

alternative (M1), the distances 𝑞1
∗ and 𝑞1

−  were calculated as: 
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𝑞1
∗ = √

1

3
[(3.889 − 9)2 + (7.667 − 9)2 + (9 − 9)2]

+ √
1

3
[(2.778 − 9)2 + (7.716 − 9)2 + (9 − 9)2]

+ √
1

3
[(1 − 9)2 + (2.04 − 9)2 + (5.4 − 9)2] + …

+ √
1

3
[(0.333 − 9)2 + (0.76 − 9)2 + (1.8 − 9)2] = 55.731 

𝑞1
− = √

1

3
[(3.889 − 2.778)2 + (7.667 − 2.778)2 + (9 − 2.778)2]

+ √
1

3
[(2.778 − 2.778)2 + (7.716 − 2.778)2 + (9 − 2.778)2]

+ √
1

3
[(1 − 1)2 + (2.04 − 1)2 + (5.4 − 1)2] + …

+ √
1

3
[(0.333 − 0.333)2 + (0.76 − 0.333)2 + (1.8 − 0.333)2]

= 43.996 
 

In the same way, the distances 𝑞𝑖
∗ and 𝑞𝑖

− were calculated for the rest of the alternatives as 

shown in the last row of Tab. 10. 

Step 8: Calculate a closeness coefficient (𝐶𝐶𝑖) of each alternative. 

The 𝐶𝐶𝑖 is calculated as follows: 

 

𝐶𝐶𝑖 =
𝑞𝑖
−

𝑞𝑖
∗+𝑞𝑖

− ,   𝑖 =  1, 2, . . . , 𝑚  (16) 

 

The value of (𝐶𝐶𝑖) shows the distances to the (FPIS, M∗) and (FNIS, M−). For instance, for 

alternative (M1) we have: 

𝐶𝐶1 =
𝑞1
−

𝑞1
∗ + 𝑞1

− = 
43.996

55.731 +  43.996
= 0.441 

  

In the same way, 𝐶𝐶𝑖 were calculated for the remaining alternatives, and the results are 

shown in Tab. 11. 
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    Tab. 10. Distance 𝒒𝒉(𝑴𝒋, 𝑴
∗) and 𝒒𝒉(𝑴𝒋, 𝑴

−) 

Criteria  𝒒𝒉(𝑴𝒋, 𝑴
∗)    𝒒𝒉(𝑴𝒋, 𝑴

−)  

 M1 M2 M3  M1 M2 M3 

K1 3.050 3.756 3.756  4.613 4.374 4.374 

K2 3.668 3.756 3.756  4.586 4.374 4.374 

K3 6.465 6.465 5.774  2.610 2.610 4.761 

K4 4.094 3.761 4.094  2.029 3.214 2.029 

K5 6.311 6.311 5.774  2.680 2.680 4.761 

K6 4.303 5.583 5.583  5.402 4.851 4.851 

K7 3.756 4.756 5.335  6.300 5.614 5.577 

K8 4.263 4.995 4.995  4.414 4.090 4.090 

K9 5.271 5.271 8.108  5.412 5.412 0.455 

K10 6.490 6.349 8.235  5.068 5.108 0.590 

K11 8.059 8.037 5.704  0.882 0.893 5.391 

Sum 55.731 59.041 61.113  43.996 43.220 41.253 

 

       Tab. 11. The value of 𝑪𝑪𝒊 for each alternative 

 Alternatives 

 M1 M2 M3 

𝒒𝒊
− 43.996 43.220 41.253 

𝒒𝒊
∗ 55.731 59.041 61.113 

𝑪𝑪𝒊 0.441 0.423 0.403 

 

Step 9: Rank the alternatives. 

In the final step, according to the value of 𝐶𝐶𝑖 in Tab. 11, the alternatives were ranked. 

Then the alternative with the highest  𝐶𝐶𝑖 was selected. The best alternative is the one that 

is the closest to the FPIS and the farthest from the FNIS.  

According to the values of  𝐶𝐶𝑖 for the alternatives in Tab. 11, the ranking order of the 

alternatives was found as M1 > M2 > M3. Therefore, it can be concluded that manufacture 

(M1) has the best performance (efficiency). 

3.3. Sensitivity analysis  

To investigate the impact of criteria weights on evaluating the performance of 

manufacturing companies, a sensitivity analysis was conducted. The criteria weights are 

represented by 𝑊𝐾𝑖  for criteria 𝐾𝑖 where 𝑖 = 1,… , 𝑛. In total, twenty experiments were 

performed, as shown in Tab. 12.  The criteria weights 𝑊𝐾𝑖 in the experiment E.1 to E.5 are 

set to equal 𝑊𝐾1−𝐾11 = (1,1,3), 𝑊𝐾1−𝐾11 = (1,3,5), 𝑊𝐾1−𝐾11 = (3,5,7), 𝑊𝐾1−𝐾11 =

(5,7,9), 𝑊𝐾1−𝐾11 = (7,9,9), respectively. In the experiment E6. the weights of all Cost 

criteria, 𝑊𝐾3−𝐾5,𝐾9−𝐾11, have the highest weights while the remaining criteria are set to the 

lowest value.  In the experiment E7. the weights of all Benefit criteria, 𝑊𝐾1−𝐾2,𝐾6−𝐾8, have 

the highest weights while the remaining criteria are set to the lowest value.  In the 

experiment E.8 to E.18, the 𝑊𝐾𝑖 of one criterion is set to (7,9,9) which is the highest 
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weight, while the weights of other criteria are set to (1,1,3) which are the lowest weights. 

In experiment E.19, the weight of the Cost category (𝐾𝑐):𝑊𝐾3−𝐾5 = (7,7,9) is the highest, 

and the remaining 𝑊𝐾𝑖  is the lowest. In the last experiment, the weight of the Cost category 

(𝐾𝑒):𝑊𝐾9−𝐾11 = (7,7,9) is set to the highest value, and the remaining 𝑊𝐾𝑖  is the lowest. 

The main objective of the sensitivity analysis is to determine which criteria have the most 

significant impact on the decision-making process. Fig. 4 displays the findings of the 

sensitivity analysis. According to the result of the sensitivity tests in Tab.12 and Fig.4, 

alternative M1 has the highest 𝐶𝐶𝑖 value in fourteen out of twenty experiments. Therefore, 

manufacture M1, compared to other alternatives, showed the best performance in meeting 

the decision criteria. 

  
Tab. 12. Experiment results for sensitivity analysis 

E. no. Definition Closeness coefficient (𝑪𝑪𝒊) Ranking 

 
 

M1 M2 M3  

E.1 𝑊𝐾1−𝐾11 = (1,1,3) 0.385 0.380 0.364 M1 > M2 > M3 

E.2 𝑊𝐾1−𝐾11 = (1,3,5) 0.424 0.415 0.399 M1 > M2 > M3 

E.3 𝑊𝐾1−𝐾11 = (3,5,7) 0.436 0.416 0.398 M1 > M2 > M3 

E.4 𝑊𝐾1−𝐾11 = (5,7,9) 0.444 0.417 0.397 M1 > M2 > M3 

E.5 𝑊𝐾1−𝐾11 = (7,9,9) 0.481 0.434 0.411 M1 > M2 > M3 

E.6 𝑊𝐾3−𝐾5,𝐾9−𝐾11 = (7,9,9), 𝑊𝐾1−𝐾2,𝐾6−𝐾8 = (1,1,3) 0.363 0.375 0.347 M2 > M1 > M3 

E.7 𝑊𝐾3−𝐾5,𝐾9−𝐾11 = (1,1,3), 𝑊𝐾1−𝐾2,𝐾6−𝐾8 = (7,9,9) 0.554 0.466 0.451 M1 > M2 > M3 

E.8 𝑊𝐾1 = (7,9,9), 𝑊𝐾2−𝐾11 = (1,1,3) 0.425 0.407 0.392 M1 > M2 > M3 

E.9 𝑊𝐾2 = (7,9,9), 𝑊𝐾1,𝐾3−𝐾11 = (1,1,3) 0.412 0.403 0.389 M1 > M2 > M3 

E.10 𝑊𝐾3 = (7,9,9), 𝑊𝐾1−𝐾2,𝐾4−𝐾11 = (1,1,3) 0.369 0.366 0.381 M3 > M1 > M2 

E.11 𝑊𝐾4 = (7,9,9), 𝑊𝐾1−𝐾3,𝐾5−𝐾11 = (1,1,3) 0.376 0.393 0.357 M2 > M1 > M3 

E.12 𝑊𝐾5 = (7,9,9), 𝑊𝐾1−𝐾4,𝐾6−𝐾11 = (1,1,3) 0.371 0.368 0.379 M3 > M1 > M2 

E.13 𝑊𝐾6 = (7,9,9), 𝑊𝐾1−𝐾5,𝐾7−𝐾11 = (1,1,3) 0.443 0.400 0.386 M1 > M2 > M3 

E.14 𝑊𝐾7 = (7,9,9), 𝑊𝐾1−𝐾6,𝐾8−𝐾11 = (1,1,3) 0.442 0.416 0.395 M1 > M2 > M3 

E.15 𝑊𝐾8 = (7,9,9), 𝑊𝐾1−𝐾2,𝐾4−𝐾11 = (1,1,3) 0.445 0.401 0.388 M1 > M2 > M3 

E.16 𝑊𝐾9 = (7,9,9), 𝑊𝐾1−𝐾8,𝐾9−𝐾11 = (1,1,3) 0.414 0.409 0.323 M1 > M2 > M3 

E.17 𝑊𝐾10 = (7,9,9), 𝑊𝐾1−𝐾9,𝐾11 = (1,1,3) 0.397 0.395 0.323 M1 > M2 > M3 

E.18 𝑊𝐾11 = (7,9,9), 𝑊𝐾1−𝐾10 = (1,1,3) 0.343 0.341 0.396 M3 > M1 > M2 

E.19 𝑊𝐾1−𝐾2,𝐾6−𝐾11 = (1,1,3),𝑊𝐾3−𝐾5 = (7,7,9) 0.353 0.368 0.385 M3 > M2 > M1 

E.20 𝑊𝐾1−𝐾8 = (1,1,3),𝑊𝐾9−𝐾11 = (7,7,9) 0.386 0.385 0.324 M1 > M2 > M3 
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Fig.  4. Results of sensitivity analysis 

4. CONCLUSION AND DISCUSSION 

The conventional techniques for assessing performance fall short due to their limited 

scope, failing to capture the full complexity of the issue at hand. To address this, a more 

comprehensive approach is proposed in this article, treating the problem as one with 

multiple criteria. Given that performance measurement often involves incomplete or 

uncertain data, fuzzy-set theory is introduced to tackle this challenge. Specifically, this 

study examines fuzzy-set theory in conjunction with the TOPSIS technique, which 

considers the imprecision and ambiguity inherent in decision-making when evaluating 

different alternatives.  

In decision-making, linguistic variables are highly beneficial when numerical values 

cannot indicate performance values. In other words, in assessing manufacturing companies 

concerning criteria and importance weights, it is appropriate to use linguistic variables 

instead of numerical values. The proposed approach copes effectively with problems of 

uncertain, imprecise, and ambiguous information because the evaluations of the 

alternatives are fuzzified. Additionally, fuzzy numbers have orientations, which allow us to 

distinguish the types of criteria (benefit or cost). The case study demonstrates that the 

Fuzzy TOPSIS method proposed here can be applied successfully in practical application.  

After consulting with industry experts and conducting thorough literature research, we 

developed a list of eleven criteria. These criteria were assigned linguistic variables and 

converted into fuzzy numbers. We then utilized the fuzzy TOPSIS approach to evaluate the 

performance of three manufacturing companies in meeting these criteria. Finally, a 
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sensitivity analysis was conducted to determine the impact of criteria weights on decision-

making. 

Based on the closeness coefficient values and observations from the sensitivity analysis, 

we concluded that alternative M1 performed the best in meeting the decision criteria 

compared to the other alternatives. This approach not only allows for performance 

evaluation but also the ability to rank the alternatives, showcasing the flexibility of the 

approach. 

This method is especially useful when dealing with a lack of quantitative information. It 

can provide a more objective evaluation of manufacturing companies. Findings have 

indicated that implementing a systematic hybrid TOPSIS approach can equip senior 

management and other decision-makers within the manufacturing industry with a more 

comprehensive and impartial comprehension of their organization's effectiveness. By 

conducting a thorough analysis, this holistic approach can facilitate more informed 

decision-making and policy formulation by authorized stakeholders, ultimately resulting in 

better financial investments. Ultimately, this methodology can enable stakeholders to 

optimize their policies and utilize their financial resources more efficiently. 

5. LIMITATIONS AND RECOMMENDATIONS  

The proposed method boasts a crucial advantage in its adaptability, making it suitable 

for application in other manufacturing companies. This is possible because the criteria 

provided are broad, enabling successful evaluation of other industries. The study also 

emphasizes the need for thorough research into potential areas of improvement for a 

company, taking into account its unique characteristics. 

Further research into the comparison of various MCDM techniques would be highly 

beneficial. To overcome data vagueness and uncertainty, it is recommended to use fuzzy 

numbers combined with MCDM, as real numbers can make it challenging to determine 

subjective opinions. TOPSIS has faced several problems that researchers intend to address 

in future studies. The weight of criteria can significantly impact the final selection and 

aggregation techniques, which can be resolved using normalization and distance measuring 

approaches. These issues provide a valid reason for academics to pursue further research in 

this field. 
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