191 research outputs found

    Segmentation of Multiple Sclerosis Lesions Using Dictionary Learning in Feature Space

    Get PDF
    Manual segmentation is used in the diagnosis, management and evaluation of clinical trials for Multiple Sclerosis (MS), but human error makes manual segmentation variable. Automatic segmentation has been proposed using a Machine Learning algorithm Dictionary Learning (DL). We explored using different feature spaces to automatically segment MS lesions from healthy brain tissue. Methods of image texture analysis quantify the spatial distribution of the voxels in multi-weighted MR scans. We present the results of using a single voxel, single voxel and standard deviation (sigma) of adjacent voxels and a large spatial patch as feature spaces. The single voxel method segments the MS lesions with a Dice Similarity Coefficient (DSC) of 0.985 on simulated Brainweb data, but performed poorly with noise in the image (0.654). The single voxel and sigma performs at a DSC of 0.943 in the presence of 3% noise. The method should be attempted on real patient data

    Apprentissage de dictionnaires pour la reconnaissance de motifs en imagerie médicale

    Get PDF
    Most natural signals can be approximated by a linear combination of a few atoms in a dictionary. Such sparse representations of signals and dictionary learning (DL) methods have received a special attention over the past few years. While standard DL approaches are effective in applications such as image denoising or compression, several discriminative DL methods have been proposed to achieve better image classification. In this thesis, we have shown that the dictionary size for each class is an important factor in the pattern recognition applications where there exist variability difference between classes, in the case of both the standard and discriminative DL methods. We validated the proposition of using different dictionary size based on complexity of the class data in a computer vision application such as lips detection in face images, followed by more complex medical imaging application such as classification of multiple sclerosis (MS) lesions using MR images. The class specific dictionaries are learned for the lesions and individual healthy brain tissues, and the size of the dictionary for each class is adapted according to the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients.La plupart des signaux naturels peuvent ĂȘtre reprĂ©sentĂ©s par une combinaison linĂ©aire de quelques atomes dans un dictionnaire. Ces reprĂ©sentations parcimonieuses et les mĂ©thodes d'apprentissage de dictionnaires (AD) ont suscitĂ© un vif intĂ©rĂȘt au cours des derniĂšres annĂ©es. Bien que les mĂ©thodes d'AD classiques soient efficaces dans des applications telles que le dĂ©bruitage d'images, plusieurs mĂ©thodes d'AD discriminatifs ont Ă©tĂ© proposĂ©es pour obtenir des dictionnaires mieux adaptĂ©s Ă  la classification. Dans ce travail, nous dĂ©montrons que la taille des dictionnaires de chaque classe est un facteur crucial dans les applications de reconnaissance des formes lorsqu'il existe des diffĂ©rences de variabilitĂ© entre les classes, Ă  la fois dans le cas des dictionnaires classiques et des dictionnaires discriminatifs. Nous avons validĂ© la proposition d'utiliser diffĂ©rentes tailles de dictionnaires, dans une application de vision par ordinateur, la dĂ©tection des lĂšvres dans des images de visages, ainsi que par une application mĂ©dicale plus complexe, la classification des lĂ©sions de sclĂ©roses en plaques (SEP) dans des images IRM multimodales. Les dictionnaires spĂ©cifiques Ă  chaque classe sont appris pour les lĂ©sions et les tissus cĂ©rĂ©braux sains. La taille du dictionnaire pour chaque classe est adaptĂ©e en fonction de la complexitĂ© des donnĂ©es. L'algorithme est validĂ© Ă  l'aide de 52 sĂ©quences IRM multimodales de 13 patients atteints de SEP

    Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images

    Full text link
    Reliably modeling normality and differentiating abnormal appearances from normal cases is a very appealing approach for detecting pathologies in medical images. A plethora of such unsupervised anomaly detection approaches has been made in the medical domain, based on statistical methods, content-based retrieval, clustering and recently also deep learning. Previous approaches towards deep unsupervised anomaly detection model patches of normal anatomy with variants of Autoencoders or GANs, and detect anomalies either as outliers in the learned feature space or from large reconstruction errors. In contrast to these patch-based approaches, we show that deep spatial autoencoding models can be efficiently used to capture normal anatomical variability of entire 2D brain MR images. A variety of experiments on real MR data containing MS lesions corroborates our hypothesis that we can detect and even delineate anomalies in brain MR images by simply comparing input images to their reconstruction. Results show that constraints on the latent space and adversarial training can further improve the segmentation performance over standard deep representation learning

    MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting

    Full text link
    [EN] Accurate quantification of white matter hyperintensities (WMH) from Magnetic Resonance Imaging (MRI) is a valuable tool for the analysis of normal brain ageing or neurodegeneration. Reliable automatic extraction of WMH lesions is challenging due to their heterogeneous spatial occurrence, their small size and their diffuse nature. In this paper, we present an automatic method to segment these lesions based on an ensemble of overcomplete patch-based neural networks. The proposed method successfully provides accurate and regular segmentations due to its overcomplete nature while minimizing the segmentation error by using a boosted ensemble of neural networks. The proposed method compared favourably to state of the art techniques using two different neurodegenerative datasets. (C) 2018 Elsevier Ltd. All rights reserved.This research has been done thanks to the Australian distinguished visiting professor grant from the CSIRO (Commonwealth Scientific and Industrial Research Organisation) and the Spanish "Programa de apoyo a la investigacion y desarrollo (PAID-00-15)" of the Universidad Politecnica de Valencia. This research was partially supported by the Spanish grant TIN2013-43457-R from the Ministerio de Economia y competitividad. This study has been carried out also with support from the French State, managed by the French National Research Ageny in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project), Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57) and the CNRS multidisciplinary project Defi imag'In. Some of the data used in this work was collected by the AIBL study group. Funding for the AIBL study is provided by the CSIRO Flagship Collaboration Fund and the Science and Industry Endowment Fund (SIEF) in partnership with Edith Cowan University (ECU), Mental Health Research Institute (MHRI), Alzheimer's Australia (AA), National Ageing Research Institute (NARI), Austin Health, Macquarie University, CogState Ltd, Hollywood Private Hospital, and Sir Charles Gairdner Hospital.ManjĂłn Herrera, JV.; Coupe, P.; Raniga, P.; Xia, Y.; Desmond, P.; Fripp, J.; Salvado, O. (2018). MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Computerized Medical Imaging and Graphics. 69:43-51. https://doi.org/10.1016/j.compmedimag.2018.05.001S43516

    A large margin algorithm for automated segmentation of white matter hyperintensity

    Get PDF
    Precise detection and quantification of white matter hyperintensity (WMH) is of great interest in studies of neurological and vascular disorders. In this work, we propose a novel method for automatic WMH segmentation with both supervised and semi-supervised large margin algorithms provided by the framework. The proposed algorithms optimize a kernel based max-margin objective function which aims to maximize the margin between inliers and outliers. We show that the semi-supervised learning problem can be formulated to learn a classifier and label assignment simultaneously, which can be solved efficiently by an iterative algorithm. The model is learned first via the supervised approach and then fine-tuned on a target image by using the semi-supervised algorithm. We evaluate our method on 88 brain fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) images from subjects with vascular disease. Quantitative evaluation of the proposed approach shows that it outperforms other well known methods for WMH segmentation

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Domain Generalization for Medical Image Analysis: A Survey

    Full text link
    Medical Image Analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, DL models for MedIA remain challenging to deploy in real-world situations, failing for generalization under the distributional gap between training and testing samples, known as a distribution shift problem. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution data distributions. This paper comprehensively reviews domain generalization studies specifically tailored for MedIA. We provide a holistic view of how domain generalization techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we include benchmark datasets and applications used to evaluate these approaches and analyze the strengths and weaknesses of various methods, unveiling future research opportunities

    White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks

    Get PDF
    The accurate assessment of White matter hyperintensities (WMH) burden is of crucial importance for epidemiological studies to determine association between WMHs, cognitive and clinical data. The manual delineation of WMHs is tedious, costly and time consuming. This is further complicated by the fact that other pathological features (i.e. stroke lesions) often also appear as hyperintense. Several automated methods aiming to tackle the challenges of WMH segmentation have been proposed, however cannot differentiate between WMH and strokes. Other methods, capable of distinguishing between different pathologies in brain MRI, are not designed with simultaneous WMH and stroke segmentation in mind. In this work we propose to use a convolutional neural network (CNN) that is able to segment hyperintensities and differentiate between WMHs and stroke lesions. Specifically, we aim to distinguish between WMH pathologies from those caused by stroke lesions due to either cortical, large or small subcortical infarcts. As far as we know, this is the first time such differentiation task has explicitly been proposed. The proposed fully convolutional CNN architecture, is comprised of an analysis path, that gradually learns low and high level features, followed by a synthesis path, that gradually combines and up-samples the low and high level features into a class likelihood semantic segmentation. Quantitatively, the proposed CNN architecture is shown to outperform other well established and state-of-the-art algorithms in terms of overlap with manual expert annotations. Clinically, the extracted WMH volumes were found to correlate better with the Fazekas visual rating score. Additionally, a comparison of the associations found between clinical risk-factors and the WMH volumes generated by the proposed method, were found to be in line with the associations found with the expert-annotated volumes

    Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation

    Get PDF
    We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the networks soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumors, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available
    • 

    corecore